FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Ke, X Xu, YT Yu, CC Zhao, J Cui, GF Higgins, D Li, Q Wu, G AF Ke, Xi Xu, Yantong Yu, Changchun Zhao, Jie Cui, Guofeng Higgins, Drew Li, Qing Wu, Gang TI Nanoporous gold on three-dimensional nickel foam: An efficient hybrid electrode for hydrogen peroxide electroreduction in acid media SO JOURNAL OF POWER SOURCES LA English DT Article DE Electrodes; Nanoporous gold; Nickel foam; Hydrogen peroxide electroreduction; Porous materials ID CARBON-FIBER CLOTH; FUEL-CELL; H2O2 ELECTROREDUCTION; CATALYTIC PERFORMANCE; PD NANOPARTICLES; LOW-TEMPERATURE; NI FOAM; REDUCTION; METHANOL; ELECTROCATALYST AB A hybrid structure of nanoporous gold (NPG) on three-dimensional (3D) macroporous Ni foam has been synthesized by electrodeposition of Au-Sn alloy film followed by a facile chemical dealloying process under free corrosion conditions. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) are used to characterize the morphology and structure of the NPG/Ni foam hybrids. It is shown that the Ni foam skeletons are uniformly wrapped by the NPG film which is composed of bicontinuous nanostructures consisting of interconnected ligaments and nanopores. Electroreduction of H2O2 on the NPG/Ni foam hybrid electrode in acid media is investigated by linear scan voltammetry, chronoamperometry and electrochemical impedance spectroscopy. It is found that such hierarchical porous electrode displays superior activity, durability and mass transport property for H2O2 electroreduction. These results demonstrate the potential of the NPG/Ni foam hybrid electrodes for the applications in fuel cell technology. (C) 2014 Elsevier B.V. All rights reserved. C1 [Ke, Xi; Xu, Yantong; Cui, Guofeng] Sun Yat Sen Univ, Sch Chem & Chem Engn, Elect Packaging Electrochem Lab, Guangzhou 510275, Guangdong, Peoples R China. [Yu, Changchun; Zhao, Jie] S China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Guangdong, Peoples R China. [Higgins, Drew; Li, Qing; Wu, Gang] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Wu, Gang] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA. RP Cui, GF (reprint author), Sun Yat Sen Univ, Sch Chem & Chem Engn, Elect Packaging Electrochem Lab, Guangzhou 510275, Guangdong, Peoples R China. EM cuigf@mecart.cn RI Wu, Gang/E-8536-2010; Ke, Xi/P-8335-2014; Li, Qing/G-4502-2011 OI Wu, Gang/0000-0003-4956-5208; Ke, Xi/0000-0002-0737-4174; Li, Qing/0000-0003-4807-030X FU National Natural Science Foundation of China [51271205, 50801070]; Fundamental Research Funds for the Central Universities [11lgpy08]; Guangzhou Pearl Technology the Nova Special Project [2012J2200058]; Research and Application of Key Technologies Oriented the Industrial Development [90035-3283309]; Plan of Science and Technology Project" by the DaYa Gulf district in Huizhou city [31000-4207387]; Innovative Laboratory Fund by Sun Yat-Sen University; Foundation for Distinguished Young Teachers in Higher Education of Guangdong, China [Yq2013006] FX G.F.C. gratefully acknowledges the financial support by National Natural Science Foundation of China (51271205, 50801070), "The Fundamental Research Funds for the Central Universities" (11lgpy08), "Guangzhou Pearl Technology the Nova Special Project" (2012J2200058), "Research and Application of Key Technologies Oriented the Industrial Development" (90035-3283309), "Plan of Science and Technology Project" by the DaYa Gulf district in Huizhou city (31000-4207387), the Innovative Laboratory Fund by Sun Yat-Sen University and Foundation for Distinguished Young Teachers in Higher Education of Guangdong, China (Yq2013006). NR 38 TC 10 Z9 10 U1 18 U2 260 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 10 PY 2014 VL 269 BP 461 EP 465 DI 10.1016/j.jpowsour.2014.07.015 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA AO0BX UT WOS:000340975200057 ER PT J AU Feng, CH Zhang, L Wang, ZH Song, XY Sun, KN Wu, F Liu, G AF Feng, Caihong Zhang, Le Wang, Zhihui Song, Xiangyun Sun, Kening Wu, Feng Liu, Gao TI Synthesis of copper sulfide nanowire bundles in a mixed solvent as a cathode material for lithium-ion batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Copper sulfide; Nanowire bundles; Mixed solvent; Lithium-ion batteries ID LARGE-SCALE SYNTHESIS; HOLLOW SPHERES; SEMICONDUCTOR NANOMATERIALS; SECONDARY BATTERIES; ANODE MATERIALS; CUS; PERFORMANCE; NANORODS; CHALCOGENIDES; NANOPARTICLES AB Novel copper sulfide (CuS) nanowire bundles with a diameter of about 6 nm and a length up to several micrometers are successfully synthesized by a template- and surfactant-free method in a dimethyl sulfoxide (DMSO)-ethyl glycol (EG) mixed solvent The resulting CuS nanowire bundles are used as a cathode material in lithium-ion batteries and exhibit a large capacity and excellent cycling stability and rate capability. The unique structure of the CuS nanowire bundles is responsible for their excellent electrochemical performance. (C) 2014 Elsevier B.V. All rights reserved. C1 [Feng, Caihong; Zhang, Le; Sun, Kening; Wu, Feng] Beijing Inst Technol, Sch Chem Engn & Environm, Beijing 100081, Peoples R China. [Feng, Caihong; Wang, Zhihui; Song, Xiangyun; Liu, Gao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Liu, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 70R108B, Berkeley, CA 94720 USA. EM gliu@lbl.gov FU Assistant Secretary for Energy Efficiency, Vehicle Technologies Office of the U.S. Department of Energy, under the Batteries for Advanced Transportation Technologies (BAIT) [DE-AC02-05CH11231]; State Scholarship Fund of China, China Scholarship Council (CSC); Creative Technology Project of the Beijing Institute of Technology [20131042005] FX This work was funded by the Assistant Secretary for Energy Efficiency, Vehicle Technologies Office of the U.S. Department of Energy, under the Batteries for Advanced Transportation Technologies (BAIT) under contract no. DE-AC02-05CH11231. The State Scholarship Fund of China was organized by China Scholarship Council (CSC) and the Creative Technology Project of the Beijing Institute of Technology (No. 20131042005). NR 41 TC 21 Z9 21 U1 22 U2 280 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 10 PY 2014 VL 269 BP 550 EP 555 DI 10.1016/j.jpowsour.2014.07.006 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA AO0BX UT WOS:000340975200068 ER PT J AU Cullen, DA More, KL Atanasoska, LL Atanasoski, RT AF Cullen, David A. More, Karren L. Atanasoska, Ljiljana L. Atanasoski, Radoslav T. TI Impact of IrRu oxygen evolution reaction catalysts on Pt nanostructured thin films under start-up/shutdown cycling SO JOURNAL OF POWER SOURCES LA English DT Article DE Fuel cells; Start-up/shutdown; Oxygen evolution reaction; Catalyst; Scanning transmission electron microscopy; X-ray photoelectron spectroscopy ID MEMBRANE FUEL-CELLS; POLYMER ELECTROLYTE FUEL; RED SUPPORT WHISKERS; EXCHANGE MEMBRANE; PHOTOELECTRON-SPECTROSCOPY; PLATINUM DISSOLUTION; INTERFACE FORMATION; DEGRADATION; XPS; MECHANISM AB Electron microscopy and X-ray photoelectron spectroscopy (XPS) were utilized to study the role of oxygen evolution reaction (OER) catalysts in mitigating degradation arising from start-up/shutdown events. Pt nanostructured thin films (NSTF) were coated with a Ru0.1Ir0.9 OER catalyst at loadings ranging from 1 to 10 mu g cm(-2) and submitted to 5000 potential cycles within a membrane electrode assembly. Analysis of the as-deposited catalyst showed that the Ir and Ru coating is primarily metallic, and further evidence is provided to support the previously reported interaction between Ru and the perylene-red support. Aberration-corrected scanning transmission electron microscopy and energy dispersive X-ray spectroscopy were used to observe the impact of the OER catalysts on Pt dissolution and migration into the membrane. Elemental mapping showed a high percentage of the Ir catalyst was maintained on the NSTF whisker surfaces following testing. The presence of the OER catalysts greatly reduced the smoothing of the Pt NSTF whiskers, which has been correlated with Pt dissolution and losses in electrochemically active surface area. The dissolution of both Ir and Pt led to the formation of IrPt nanoparticle clusters in the membrane close to the cathode, as well as the formation of a Pt band deeper in the membrane. Published by Elsevier B.V. C1 [Cullen, David A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [More, Karren L.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Atanasoska, Ljiljana L.; Atanasoski, Radoslav T.] 3M Co, Fuel Cell Components Program, St Paul, MN 55144 USA. RP Cullen, DA (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM cullenda@ornl.gov RI Cullen, David/A-2918-2015; More, Karren/A-8097-2016 OI Cullen, David/0000-0002-2593-7866; More, Karren/0000-0001-5223-9097 FU Fuel Cell Technologies Office, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy [DE-EE0000456]; ORNL's Center for Nanophase Materials Sciences (CNMS); Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the Fuel Cell Technologies Office, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy under Award Number DE-EE0000456 and through a user project supported by ORNL's Center for Nanophase Materials Sciences (CNMS), which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 38 TC 3 Z9 3 U1 2 U2 72 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 10 PY 2014 VL 269 BP 671 EP 681 DI 10.1016/j.jpowsour.2014.06.153 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA AO0BX UT WOS:000340975200081 ER PT J AU Baginska, M Blaiszik, BJ Rajh, T Sottos, NR White, SR AF Baginska, Marta Blaiszik, Benjamin J. Rajh, Tijana Sottos, Nancy R. White, Scott R. TI Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres SO JOURNAL OF POWER SOURCES LA English DT Article DE Li-ion batteries; Thermal shutdown; Polyethylene microspheres; Polydopamine coating ID SEPARATORS; MECHANISMS AB Thermally triggered autonomic shutdown of a Lithium-ion (Li-ion) battery is demonstrated using polydopamine (PDA)-coated polyethylene microspheres applied onto a battery anode. The microspheres are dispersed in a buffered 10 mM dopamine salt solution and the pH is raised to initiate the polymerization and coat the microspheres. Coated microspheres are then mixed with an aqueous binder, applied onto a battery anode surface, dried, and incorporated into Li-ion coin cells. FTIR and Raman spectroscopy are used to verify the presence of the polydopamine on the surface of the microspheres. Scanning electron microscopy is used to examine microsphere surface morphology and resulting anode coating quality. Charge and discharge capacity, as well as impedance, are measured for Li-ion coin cells as a function of microsphere content. Autonomous shutdown is achieved by applying 1.7 mg cm(-2) of PDA-coated microspheres to the electrode. The PDA coating significantly reduces the mass of microspheres for effective shutdown compared to our prior work with uncoated microspheres. (C) 2014 Elsevier B.V. All rights reserved. C1 [Baginska, Marta; White, Scott R.] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA. [Baginska, Marta; Sottos, Nancy R.; White, Scott R.] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA. [Sottos, Nancy R.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Blaiszik, Benjamin J.; Rajh, Tijana] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP White, SR (reprint author), Univ Illinois, Dept Aerosp Engn, 306 Talbot Lab,104 S Wright St, Urbana, IL 61801 USA. EM swhite@illinois.edu FU Center for Electrical Energy Storage; Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences; National Science Foundation; Argonne National Laboratory Director's Postdoctoral Fellowship FX This research was supported as part of the Center for Electrical Energy Storage, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. M. Baginska would also like to acknowledge the National Science Foundation for its Graduate Research Fellowship Program (GRFP) Fellowship. B. Blaiszik was supported via the Argonne National Laboratory Director's Postdoctoral Fellowship. The authors would like to thank Dr. Chris Johnson at Argonne National Laboratory for allowing the use of the CH instruments potentiostat in his lab and Dr. David Schilter (UIUC) for assistance with FTIR experiments. NR 13 TC 6 Z9 6 U1 11 U2 161 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 10 PY 2014 VL 269 BP 735 EP 739 DI 10.1016/j.jpowsour.2014.07.048 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA AO0BX UT WOS:000340975200088 ER PT J AU Hudak, NS AF Hudak, Nicholas S. TI Practical thermodynamic quantities for aqueous vanadium- and iron-based flow batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Flow battery; Thermodynamics; Entropy; Formal potential; Nernst Equation; Non-isothermal ID RESEARCH-AND-DEVELOPMENT; REDOX BATTERY; TEMPERATURE COEFFICIENTS; ELECTRODE-POTENTIALS; ENERGY-STORAGE; MODEL; ION; ENTROPY; WATER; ACID AB A simple method for experimentally determining thermodynamic quantities for flow battery cell reactions is presented. Equilibrium cell potentials, temperature derivatives of cell potential (dE/dT), Gibbs free energies, and entropies are reported here for all-vanadium, iron vanadium, and iron chromium flow cells with state-of-the-art solution compositions. Proof is given that formal potentials and formal temperature coefficients can be used with modified forms of the Nernst Equation to quantify the thermodynamics of flow cell reactions as a function of state-of-charge. Such empirical quantities can be used in thermo-electrochemical models of flow batteries at the cell or system level. In most cases, the thermodynamic quantities measured here are significantly different from standard values reported and used previously in the literature. The data reported here are also useful in the selection of operating temperatures for flow battery systems. Because higher temperatures correspond to lower equilibrium cell potentials for the battery chemistries studied here, it can be beneficial to charge a cell at higher temperature and discharge at lower temperature. Proof-of-concept of improved voltage efficiency with the use of such non-isothermal cycling is given for the all-vanadium redox flow battery, and the effect is shown to be more pronounced at lower current densities. (C) 2014 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Adv Power Sources Res & Dev, Albuquerque, NM 87185 USA. RP Hudak, NS (reprint author), Sandia Natl Labs, Adv Power Sources Res & Dev, POB 5800 MS 0613, Albuquerque, NM 87185 USA. EM nhudak@sandia.gov RI Hudak, Nicholas/D-3529-2011 FU U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The author gratefully acknowledges the financial support of the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability (Dr. Imre Gyuk, Energy Storage Program Manager). The author also thanks David Ingersoll and Karen Waldrip, both of Sandia National Laboratories, for helpful discussions and ideas. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 45 TC 2 Z9 2 U1 8 U2 103 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 10 PY 2014 VL 269 BP 962 EP 974 DI 10.1016/j.jpowsour.2013.12.089 PG 13 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA AO0BX UT WOS:000340975200115 ER PT J AU Hua, T Ahluwalia, R Eudy, L Singer, G Jermer, B Asselin-Miller, N Wessel, S Patterson, T Marcinkoski, J AF Thanh Hua Ahluwalia, Rajesh Eudy, Leslie Singer, Gregg Jermer, Boris Asselin-Miller, Nick Wessel, Silvia Patterson, Timothy Marcinkoski, Jason TI Status of hydrogen fuel cell electric buses worldwide SO JOURNAL OF POWER SOURCES LA English DT Review DE Fuel cell electric bus; Fuel cell technology; Hydrogen refueling; Hydrogen infrastructure; Public transportation AB This review summarizes the background and recent status of the fuel cell electric bus (FCEB) demonstration projects in North America and Europe. Key performance metrics include accumulated miles, availability, fuel economy, fuel cost, roadcalls, and hydrogen fueling. The state-of-the-art technology used in today's fuel cell bus is highlighted. Existing hydrogen infrastructure for refueling is described. The article also presents the challenges encountered in these projects, the experiences learned, as well as current and future performance targets. (C) 2014 Elsevier B.V. All rights reserved. C1 [Thanh Hua; Ahluwalia, Rajesh] Argonne Natl Lab, Argonne, IL 60439 USA. [Eudy, Leslie] Natl Renewable Energy Lab, Golden, CO USA. [Singer, Gregg] BC Transit, Vancouver, BC, Canada. [Jermer, Boris] HyCologne, Cologne, Germany. [Asselin-Miller, Nick] Element Energy, Cambridge, England. [Wessel, Silvia] Ballard, Burnaby, BC, Canada. [Patterson, Timothy] ClearEdge Power, Hartford, CT USA. [Marcinkoski, Jason] US DOE, Washington, DC 20585 USA. RP Hua, T (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hua@anl.gov OI Asselin-Miller, Nick/0000-0002-5563-0224 FU U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy; [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory, is operated by UChicago Argonne, LLC, under Contract No. DE-AC02-06CH11357. The authors acknowledge the contribution of the Advanced Fuel Cells Implementing Agreement, IEA, from which this paper results, specifically the activities of Annex 26: Fuel Cells for Transportation. Please see www.ieafuelcells.com for more information. NR 15 TC 32 Z9 32 U1 7 U2 127 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 10 PY 2014 VL 269 BP 975 EP 993 DI 10.1016/j.jpowsour.2014.06.055 PG 19 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA AO0BX UT WOS:000340975200116 ER PT J AU Moody, DI Brumby, SP Rowland, JC Altmann, GL AF Moody, Daniela I. Brumby, Steven P. Rowland, Joel C. Altmann, Garrett L. TI Land cover classification in multispectral imagery using clustering of sparse approximations over learned feature dictionaries SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE land cover classification; multispectral learned dictionaries; clustering of sparse approximations; Hebbian learning; spectral-textural features; unsupervised multispectral classification ID ARCTIC TUNDRA; VEGETATION; ALASKA; ALGORITHM; PURSUITS; CANADA; AREA AB We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labels are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. Our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery. (c) The Authors. C1 [Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; Altmann, Garrett L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Moody, DI (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM damoody@lanl.gov OI Moody, Daniela/0000-0002-4452-8208 FU U.S. Department of Energy (DOE) through the LANL/LDRD Program FX This work was supported by the U.S. Department of Energy (DOE) through the LANL/LDRD Program. Application of the methodology and continued development is supported by DOE's Office of Science, Biological and Environmental Research (BER) Program, through the Next Generation Ecosystem Experiment (NGEE)-Arctic project. NR 36 TC 0 Z9 0 U1 2 U2 13 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD DEC 9 PY 2014 VL 8 AR 084793 DI 10.1117/1.JRS.8.084793 PG 19 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA CA1KK UT WOS:000348671300001 ER PT J AU Chien, YT Vitev, I AF Chien, Yang-Ting Vitev, Ivan TI Jet shape resummation using soft-collinear effective theory SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE QCD Phenomenology; Jets ID ELECTRON-POSITRON ANNIHILATION; ABELIAN ENERGY-LOSS; QUANTUM-CHROMODYNAMICS; E(+)E(-) ANNIHILATION; E&E ANNIHILATION; INCLUSIVE JET; COLLISIONS; DETECTOR; QCD; OBSERVABLES AB The jet shape is a classic jet substructure observable that probes the average transverse energy profile inside a reconstructed jet. The studies of jet shapes in proton-proton collisions have served as precision tests of perturbative Quantum Chromodynamics (QCD). They have also recently become the baseline for studying the in-medium modification of porton showers in ultra-relativistic nucleus-nucleus collisions. The jet shape is a function of two angular parameters R and r, which can be at hierarchical scales. Its calculation suffers from large logarithms of the ratio between the two scales, and these phase space logarithms can be conveniently resummed in the framework of soft-collinear effective theory (SCET). We find that, up to power corrections, the integral jet shape can be expressed in a factorized form which involves only the ratio between two jet energy functions. Resummation is performed at next-to-leading logarithmic order using renormalization-group evolution techniques. Comparisons to jet shape measurements at the Large fladron Collider (LHC) are presented to verify the dominant role of the collinear porton shower and to identify the kinematic region in which power-suppressed soft modes and non-perturbative effects may play a role. C1 [Chien, Yang-Ting; Vitev, Ivan] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Chien, YT (reprint author), Los Alamos Natl Lab, Div Theoret, T-2, Los Alamos, NM 87545 USA. EM ytchien@lanl.gov; ivitev@lanl.gov FU US Department of Energy, Office of Science FX Y.-T. C. would like to thank Andrew Hornig, Andrew Larkoski, Christopher Lee, Yen-Jie Lee, Hsiang-nan Li, Yaxian Mao, Matthew Schwartz and Wouter Waalewijn for very helpful discussions and comments on the manuscript. Tile authors would also like to thank the anonymous referee for careful review of the paper. Y.-T. Chien and I. Vitev are supported by the US Department of Energy, Office of Science. NR 62 TC 11 Z9 11 U1 1 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD DEC 9 PY 2014 IS 12 AR 061 DI 10.1007/JHEP12(2012)061 PG 24 WC Physics, Particles & Fields SC Physics GA AZ3SH UT WOS:000348146500006 ER PT J AU Lu, JL Liu, B Guisinger, NP Stair, PC Greeley, JP Elam, JW AF Lu, Junling Liu, Bin Guisinger, Nathan P. Stair, Peter C. Greeley, Jeffrey P. Elam, Jeffrey W. TI First-Principles Predictions and in Situ Experimental Validation of Alumina Atomic Layer Deposition on Metal Surfaces SO CHEMISTRY OF MATERIALS LA English DT Article ID QUARTZ-CRYSTAL MICROBALANCE; ENHANCED RAMAN-SPECTROSCOPY; INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; CORROSION PROTECTION; PD NANOPARTICLES; STAINLESS-STEEL; SADDLE-POINTS; CATALYSTS; AL2O3 AB The atomic layer deposition (ALD) of metal oxides on metal surfaces is of great importance in applications such as microelectronics, corrosion resistance, and catalysis. In this work, Al2O3 ALD using trimethylaluminum (TMA) and water was investigated on Pd, Pt, Ir, and Cu surfaces by combining in situ quartz crystal microbalance (QCM), quadrupole mass spectroscopy (QMS), and scanning tunneling microscopy (STM) measurements with density functional theory (DFT) calculations. These studies revealed that TMA undergoes dissociative chemisorption to form monomethyl aluminum (AlCH3*, the asterisk designates a surface species) on both Pd and Pt, which transform into Al(OH)(3)* during the subsequent water exposure. Furthermore, the AlCH3* can further dissociate into Al* and CH3* on stepped Pt(211). Additional DFT calculations predicted that Al2O3 ALD should proceed on Ir following a similar mechanism but not on Cu due to the endothermicity for TMA dissociation. These predictions were confirmed by in situ QCM, QMS, and STM measurements. Our combined theoretical and experimental study also found that the preferential decoration of low-coordination metal sites, especially after high temperature treatment, correlates with the differences in free energy between Al2O3 ALD on the (111) and stepped (211) surfaces. These insights into Al2O3 growth on metal surfaces can guide the future design of advanced metal/metal oxide catalysts with greater durability by protecting the metal against sintering and dissolution and enhanced selectivity by blocking low-coordination metal sites while leaving (111) facets available for catalysis. C1 [Lu, Junling] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Dept Chem Phys, Hefei 230026, Anhui, Peoples R China. [Lu, Junling] Univ Sci & Technol China, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China. [Liu, Bin] Kansas State Univ, Dept Chem Engn, Manhattan, KS 66503 USA. [Guisinger, Nathan P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Greeley, Jeffrey P.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Greeley, JP (reprint author), Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. EM jgreeley@purdue.edu; jelam@anl.gov RI Lu, Junling/F-3791-2010; Liu, Bin/C-1475-2012 OI Lu, Junling/0000-0002-7371-8414; FU Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Recruitment Program of Global Experts; University of Science and Technology of China; Kansas State University; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This material is based upon work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. J.L. gratefully thanks the Recruitment Program of Global Experts and University of Science and Technology of China for the startup funds. B.L. also thanks the Start-up support from the Kansas State University. We acknowledge grants of computer time at the Argonne Laboratory Computing Resource Center (LCRC) and the National Energy Research Scientific Computing Center (NERSC). Work at the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Finally, we thank F. H. Ribeiro, D. Y. Zemlyanov, A. Gharachorlou, and M. D. Detwiler for technical assistance. NR 58 TC 14 Z9 14 U1 15 U2 106 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD DEC 9 PY 2014 VL 26 IS 23 BP 6752 EP 6761 DI 10.1021/cm503178j PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AW5PI UT WOS:000346326300012 ER PT J AU Adams, S Thai, D Mascona, X Schwartzberg, AM Zhang, JZ AF Adams, Staci Thai, Dalena Mascona, Xiomara Schwartzberg, Adam M. Zhang, Jin Z. TI Key Factors Affecting the Reproducibility of Synthesis and Growth Mechanism of Near-Infrared Absorbing Hollow Gold Nanospheres SO CHEMISTRY OF MATERIALS LA English DT Article ID ENHANCED RAMAN-SCATTERING; TARGETED PHOTOTHERMAL ABLATION; CANCER-THERAPY; OPTICAL-PROPERTIES; METAL NANOSTRUCTURES; NANOSHELLS; NANOPARTICLES; NANORODS; CELLS; PARTICLES AB Hollow gold nanospheres (HGNs) with near-infrared (NIR) surface plasmon resonance (SPR) absorption are highly desired for many applications including photothermal ablation therapy (PTA) of cancer; however, they are challenging to synthesize at relevant resonant wavelengths in a reproducible manner. In this work, we have systematically varied the reaction parameters to determine the origin of the irreproducibility of synthesis. This allows for much finer control of the synthesis, including homogeneous NIR absorbing HGNs that were characterized using UV-vis spectroscopy and electron microscopy (EM) techniques. We have found that cobalt seed particle growth time plays a more critical role than previously realized and is one of the most important parameters for high synthetic reproducibility. The results also provide new insight into the mechanism of cobalt seed and HGN growth, which further aids the successful synthesis of high quality HGNs with strong and tunable NIR SPR absorption. C1 [Adams, Staci; Thai, Dalena; Mascona, Xiomara; Zhang, Jin Z.] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Schwartzberg, Adam M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Schwartzberg, AM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM ams@lbl.gov; zhang@ucsc.edu RI Foundry, Molecular/G-9968-2014 FU Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. National Science Foundation; Delta Dental Plan Associates; UCSC Faculty Special Research Fund FX We acknowledge Dr. Tom Yuzvinsky for image acquisition and the W.M. Keck Center for Nanoscale Optofluidics for use of the PET Quanta 3D Dualbeam microscope. We also acknowledge Sarah Lindley for her help in conducting the HRTEM measurements at National Center for electron Microscopy (NCEM) at Lawrence Berkeley National Laboratory. S.A. would also like to thank Dr. Randa Roland for helpful discussions regarding the manuscript. Work at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Funding from U.S. National Science Foundation, Delta Dental Plan Associates, and UCSC Faculty Special Research Fund is acknowledged. NR 51 TC 11 Z9 11 U1 3 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD DEC 9 PY 2014 VL 26 IS 23 BP 6805 EP 6810 DI 10.1021/cm5033892 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AW5PI UT WOS:000346326300018 ER PT J AU Calta, NP Francisco, MC Malliakas, CD Schlueter, JA Kanatzidis, MG AF Calta, Nicholas P. Francisco, Melanie C. Malliakas, Christos D. Schlueter, John A. Kanatzidis, Mercouri G. TI Four High-Temperature Ferromagnets in the Hf-Fe-Sn System SO CHEMISTRY OF MATERIALS LA English DT Article ID MAGNETIC-PROPERTIES; INTERMETALLIC COMPOUNDS; TRANSPORT-PROPERTIES; ALLOYS; PHASES; REFRIGERANTS; HF1-XTAXFE2; TRANSITION; ELEMENTS; HFFE2 AB We report the synthesis and characterization of four new ferromagnetic compounds discovered using Sn flux: Hf1.823(16)Fe5Sn3.815(14), HfFe2-xSnx, and two polymorphs of Hf1-xFe2Snx. All are closely related to HfFe2 Laves phase parent structures. HfFe2-xSnx (x approximate to 0.3-0.4) adopts the MgZn2-type (C14) crystal structure, whereas Hf1-xFe2Snx (x approximate to 0.1-0.4) adopts both the MgCu2-type (C15), and MgNi2-type (C36) structures. They crystallize in P6(3)/mmc, Fd3m, and P6(3)/mmc, respectively, with measured unit-cell parameters of a = 4.9238(7) angstrom and c = 7.9643(12) angstrom; a = 7.068(2) angstrom; and a = 4.9944(4) angstrom and c = 16.2604(15) angstrom, although phase width leads to a range of unit cell edge lengths. Hf1.823(16)Fe5Sn3.815(14) adopts a more complicated, incommensurately modulated structure in the superspace group Xmmm(00 gamma)000 with an orthorhombic subcell a = 9.7034(12) angstrom, b = 16.823(2) angstrom, and c = 8.4473(10) angstrom, three centering vectors of (1/2 0 0 1/2), (0 1/2 0 1/2), and (1/2 1/2 0 0), and a single-component modulation vector q = 0.2768(8)c*. The structure is composed of alternating slabs of the Fe-bonded Kagome nets observed in the HfFe2 parent structures alternated with Sn-rich Th2Zn17-type slabs, with Hf atoms primarily occurring at the interfaces between the slabs. All four compounds are ferromagnetic metals at room temperature, with Curie temperatures ranging from 467(2) to 658(2) K. Their coercive fields are remarkably low, between 2(1) and 15(2) Oe. Interestingly, in two of three cases the addition of nonmagnetic Sn atoms in place of magnetic Hf or Fe atoms in the HfFe2 structure seems to strengthen rather than weaken magnetic coupling and increase TC. Fits to electrical resistivity data for the compound suggest that electron scattering in the Laves phase polymorphs shows substantial contributions from electron-magnon and/or electron-electron scattering, while the electrical behavior of Hf1.823(16)Fe5Sn3.815(14) is dominated by electron-phonon scattering, as is the case in most metals. C1 [Calta, Nicholas P.; Francisco, Melanie C.; Malliakas, Christos D.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Malliakas, Christos D.; Schlueter, John A.; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Schlueter, John A.] Natl Sci Fdn, Div Mat Res, Arlington, VA 22230 USA. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu FU US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (Argonne) [DE-AC02-06CH11357]; Independent Research/Development program; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Northwestern University's International Institute for Nanotechnolog; State of Illinois Department of Commerce and Economic Opportunity (DCEO) Award [10-203031] FX Research at Argonne was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (Argonne Contract No. DE-AC02-06CH11357). JAS acknowledges support from the Independent Research/Development program while serving at the National Science Foundation. We also thank Prof. Daniel Shoemaker and Daniel Hannah for helpful discussions. Dr. Matthew Suchomel provided advice and help with synchrotron powder diffraction. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We thank Prof. Danna Freedman and her research group, as well as support from Northwestern University's International Institute for Nanotechnolog and the State of Illinois Department of Commerce and Economic Opportunity (DCEO) Award #10-203031, which facilitated field-dependent magnetic measurements. NR 54 TC 2 Z9 2 U1 3 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD DEC 9 PY 2014 VL 26 IS 23 BP 6827 EP 6837 DI 10.1021/cm503466a PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AW5PI UT WOS:000346326300021 ER PT J AU Beckingham, BS Ho, V Segalman, RA AF Beckingham, Bryan S. Ho, Victor Segalman, Rachel A. TI Melting Behavior of Poly(3-(2 '-ethyl)hexylthiophene) SO MACROMOLECULES LA English DT Article ID CONDUCTING BLOCK-COPOLYMERS; RIGID AMORPHOUS FRACTION; REGIOREGULAR POLY(3-HEXYLTHIOPHENE); OPTOELECTRONIC PROPERTIES; ISOTACTIC POLYSTYRENE; HEAT-CAPACITY; CRYSTALLIZATION; POLYTHIOPHENE; POLY(3-ALKYLTHIOPHENES); TEREPHTHALATE) AB While polymer materials possess significant promise as components in large-area organic electronic devicessuch as thin-film transistors or photovoltaic devicesthe ability to improve the performance of these materials is critically linked to understanding and controlling the morphology, namely control of crystallinity, crystallite size, and texture. In this context, conjugated poly(3-alkylthiophenes) are a model system for studying the structureproperty relationships in conjugated polymers. Herein, we examine P3EHT as a model polymer for exploring crystallization in P3ATsas it has a final melting transition well below degradation in contrast to the more common P3HTusing differential scanning calorimetry (DSC) and wide-angle X-ray scattering. Notably, examination of the melting endotherms following isothermal crystallization of P3ATsnamely poly(3-hexylthiophene) (P3HT) and poly(3-(2'ethyl)hexylthiophene) (P3EHT)reveals a bimodal final melting peak. Differential scanning calorimetry reveals a shift in the lower temperature peak to higher temperatures as the isothermal crystallization temperature is raised and convergence into a single observed endothermic peak at high crystallization temperatures. Complementary wide-angle X-ray scattering experiments reveal an increase in crystallite perfection along the pp stack direction at higher crystallization temperatures. Thus, properties of the P3EHT crystallite populations, average size and/or perfection, can be deliberately manipulated through control of the isothermal crystallization temperature. We further determine that the bimodal nature of P3EHTs melting behavior is a consequence of a melt-recrystallization mechanism and observe perfection of the pp stack direction during the melt-recrystallization process. Lastly, we utilize the obtained final melting temperatures to elucidate values for Delta H-m(0) and T-m(0), 20 +/- 4 J/g and 92 degrees C, respectively. C1 [Beckingham, Bryan S.; Ho, Victor] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ho, Victor] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Segalman, Rachel A.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. [Segalman, Rachel A.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RP Segalman, RA (reprint author), Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. EM segalman@engineering.ucsb.edu OI Beckingham, Bryan/0000-0003-4004-0755 FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) Thermoelectrics Program at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; National Science Foundation [DMR-1206296] FX B.S.B. gratefully acknowledges support from the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) Thermoelectrics Program, at Lawrence Berkeley National Laboratory under Award # DE-AC02-05CH11231. V.H. and R.A.S. gratefully acknowledge support from the National Science Foundation, DMR-1206296. NR 45 TC 4 Z9 4 U1 6 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD DEC 9 PY 2014 VL 47 IS 23 BP 8305 EP 8310 DI 10.1021/ma501915v PG 6 WC Polymer Science SC Polymer Science GA AW5OY UT WOS:000346325300021 ER PT J AU Adamczyk, L Adkins, JK Agakishiev, G Aggarwal, MM Ahammed, Z Alekseev, I Alford, J Anson, CD Aparin, A Arkhipkin, D Aschenauer, EC Averichev, GS Banerjee, A Beavis, DR Bellwied, R Bhasin, A Bhati, AK Bhattarai, P Bichsel, H Bielcik, J Bielcikova, J Bland, LC Bordyuzhin, IG Borowski, W Bouchet, J Brandin, AV Brovko, SG Bultmann, S Bunzarov, I Burton, TP Butterworth, J Caines, H Sanchez, MCD Cebra, D Cendejas, R Cervantes, MC Chaloupka, P Chang, Z Chattopadhyay, S Chen, HF Chen, JH Chen, L Cheng, J Cherney, M Chikanian, A Christie, W Chwastowski, J Codrington, MJM Contin, G Cramer, JG Crawford, HJ Cui, X Das, S Leyva, AD De Silva, LC Debbe, RR Dedovich, TG Deng, J Derevschikov, AA de Souza, RD Dhamija, S di Ruzza, B Didenko, L Dilks, C Ding, F Djawotho, P Dong, X Drachenberg, JL Draper, JE Du, CM Dunkelberger, LE Dunlop, JC Efimov, LG Engelage, J Engle, KS Eppley, G Eun, L Evdokimov, O Eyser, O Fatemi, R Fazio, S Fedorisin, J Filip, P Finch, E Fisyak, Y Flores, CE Gagliardi, CA Gangadharan, DR Garand, D Geurts, F Gibson, A Girard, M Gliske, S Greiner, L Grosnick, D Gunarathne, DS Guo, Y Gupta, A Gupta, S Guryn, W Haag, B Hamed, A Han, LX Haque, R Harris, JW Heppelmann, S Hirsch, A Hoffmann, GW Hofman, DJ Horvat, S Huang, B Huang, HZ Huang, X Huck, P Humanic, TJ Igo, G Jacobs, WW Jang, H Judd, EG Kabana, S Kalinkin, D Kang, K Kauder, K Ke, HW Keane, D Kechechyan, A Kesich, A Khan, ZH Kikola, DP Kisel, I Kisiel, A Koetke, DD Kollegger, T Konzer, J Koralt, I Kotchenda, L Kraishan, AF Kravtsov, P Krueger, K Kulakov, I Kumar, L Kycia, RA Lamont, MAC Landgraf, JM Landry, KD Lauret, J Lebedev, A Lednicky, R Lee, JH LeVine, MJ Li, C Li, W Li, X Li, X Li, Y Li, ZM Lisa, MA Liu, F Ljubicic, T Llope, WJ Lomnitz, M Longacre, RS Luo, X Ma, GL Ma, YG Don, DMMDM Mahapatra, DP Majka, R Margetis, S Markert, C Masui, H Matis, HS McDonald, D McShane, TS Minaev, NG Mioduszewski, S Mohanty, B Mondal, MM Morozov, DA Mustafa, MK Nandi, BK Nasim, M Nayak, TK Nelson, JM Nigmatkulov, G Nogach, LV Noh, SY Novak, J Nurushev, SB Odyniec, G Ogawa, A Oh, K Ohlson, A Okorokov, V Oldag, EW Olvitt, DL Pachr, M Page, BS Pal, SK Pan, YX Pandit, Y Panebratsev, Y Pawlak, T Pawlik, B Pei, H Perkins, C Peryt, W Pile, P Planinic, M Pluta, J Poljak, N Porter, J Poskanzer, AM Pruthi, NK Przybycien, M Pujahari, PR Putschke, J Qiu, H Quintero, A Ramachandran, S Raniwala, R Raniwala, S Ray, RL Riley, CK Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Ross, JF Roy, A Ruan, L Rusnak, J Rusnakova, O Sahoo, NR Sahu, PK Sakrejda, I Salur, S Sandweiss, J Sangaline, E Sarkar, A Schambach, J Scharenberg, RP Schmah, AM Schmidke, WB Schmitz, N Seger, J Seyboth, P Shah, N Shahaliev, E Shanmuganathan, PV Shao, M Sharma, B Shen, WQ Shi, SS Shou, QY Sichtermann, EP Singaraju, RN Skoby, MJ Smirnov, D Smirnov, N Solanki, D Sorensen, P Spinka, HM Srivastava, B Stanislaus, TDS Stevens, JR Stock, R Strikhanov, M Stringfellow, B Sumbera, M Sun, X Sun, XM Sun, Y Sun, Z Surrow, B Svirida, DN Symons, TJM Szelezniak, MA Takahashi, J Tang, AH Tang, Z Tarnowsky, T Thomas, JH Timmins, AR Tlusty, D Tokarev, M Trentalange, S Tribble, RE Tribedy, P Trzeciak, BA Tsai, OD Turnau, J Ullrich, T Underwood, DG Van Buren, G van Nieuwenhuizen, G Vandenbroucke, M Vanfossen, JA Varma, R Vasconcelos, GMS Vasiliev, AN Vertesi, R Videbaek, F Viyogi, YP Vokal, S Vossen, A Wada, M Wang, F Wang, G Wang, H Wang, JS Wang, XL Wang, Y Wang, Y Webb, G Webb, JC Westfall, GD Wieman, H Wissink, SW Witt, R Wu, YF Xiao, Z Xie, W Xin, K Xu, H Xu, J Xu, N Xu, QH Xu, Y Xu, Z Yan, W Yang, C Yang, Y Yang, Y Ye, Z Yepes, P Yi, L Yip, K Yoo, IK Yu, N Zawisza, Y Zbroszczyk, H Zha, W Zhang, JB Zhang, JL Zhang, S Zhang, XP Zhang, Y Zhang, ZP Zhao, F Zhao, J Zhong, C Zhu, X Zhu, YH Zoulkarneeva, Y Zyzak, M AF Adamczyk, L. Adkins, J. K. Agakishiev, G. Aggarwal, M. M. Ahammed, Z. Alekseev, I. Alford, J. Anson, C. D. Aparin, A. Arkhipkin, D. Aschenauer, E. C. Averichev, G. S. Banerjee, A. Beavis, D. R. Bellwied, R. Bhasin, A. Bhati, A. K. Bhattarai, P. Bichsel, H. Bielcik, J. Bielcikova, J. Bland, L. C. Bordyuzhin, I. G. Borowski, W. Bouchet, J. Brandin, A. V. Brovko, S. G. Bueltmann, S. Bunzarov, I. Burton, T. P. Butterworth, J. Caines, H. Sanchez, M. Calderon de la Barca Cebra, D. Cendejas, R. Cervantes, M. C. Chaloupka, P. Chang, Z. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, L. Cheng, J. Cherney, M. Chikanian, A. Christie, W. Chwastowski, J. Codrington, M. J. M. Contin, G. Cramer, J. G. Crawford, H. J. Cui, X. Das, S. Leyva, A. Davila De Silva, L. C. Debbe, R. R. Dedovich, T. G. Deng, J. Derevschikov, A. A. Derradi de Souza, R. Dhamija, S. di Ruzza, B. Didenko, L. Dilks, C. Ding, F. Djawotho, P. Dong, X. Drachenberg, J. L. Draper, J. E. Du, C. M. Dunkelberger, L. E. Dunlop, J. C. Efimov, L. G. Engelage, J. Engle, K. S. Eppley, G. Eun, L. Evdokimov, O. Eyser, O. Fatemi, R. Fazio, S. Fedorisin, J. Filip, P. Finch, E. Fisyak, Y. Flores, C. E. Gagliardi, C. A. Gangadharan, D. R. Garand, D. Geurts, F. Gibson, A. Girard, M. Gliske, S. Greiner, L. Grosnick, D. Gunarathne, D. S. Guo, Y. Gupta, A. Gupta, S. Guryn, W. Haag, B. Hamed, A. Han, L-X. Haque, R. Harris, J. W. Heppelmann, S. Hirsch, A. Hoffmann, G. W. Hofman, D. J. Horvat, S. Huang, B. Huang, H. Z. Huang, X. Huck, P. Humanic, T. J. Igo, G. Jacobs, W. W. Jang, H. Judd, E. G. Kabana, S. Kalinkin, D. Kang, K. Kauder, K. Ke, H. W. Keane, D. Kechechyan, A. Kesich, A. Khan, Z. H. Kikola, D. P. Kisel, I. Kisiel, A. Koetke, D. D. Kollegger, T. Konzer, J. Koralt, I. Kotchenda, L. Kraishan, A. F. Kravtsov, P. Krueger, K. Kulakov, I. Kumar, L. Kycia, R. A. Lamont, M. A. C. Landgraf, J. M. Landry, K. D. Lauret, J. Lebedev, A. Lednicky, R. Lee, J. H. LeVine, M. J. Li, C. Li, W. Li, X. Li, X. Li, Y. Li, Z. M. Lisa, M. A. Liu, F. Ljubicic, T. Llope, W. J. Lomnitz, M. Longacre, R. S. Luo, X. Ma, G. L. Ma, Y. G. Don, D. M. M. D. Madagodagettige Mahapatra, D. P. Majka, R. Margetis, S. Markert, C. Masui, H. Matis, H. S. McDonald, D. McShane, T. S. Minaev, N. G. Mioduszewski, S. Mohanty, B. Mondal, M. M. Morozov, D. A. Mustafa, M. K. Nandi, B. K. Nasim, Md. Nayak, T. K. Nelson, J. M. Nigmatkulov, G. Nogach, L. V. Noh, S. Y. Novak, J. Nurushev, S. B. Odyniec, G. Ogawa, A. Oh, K. Ohlson, A. Okorokov, V. Oldag, E. W. Olvitt, D. L., Jr. Pachr, M. Page, B. S. Pal, S. K. Pan, Y. X. Pandit, Y. Panebratsev, Y. Pawlak, T. Pawlik, B. Pei, H. Perkins, C. Peryt, W. Pile, P. Planinic, M. Pluta, J. Poljak, N. Porter, J. Poskanzer, A. M. Pruthi, N. K. Przybycien, M. Pujahari, P. R. Putschke, J. Qiu, H. Quintero, A. Ramachandran, S. Raniwala, R. Raniwala, S. Ray, R. L. Riley, C. K. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Ross, J. F. Roy, A. Ruan, L. Rusnak, J. Rusnakova, O. Sahoo, N. R. Sahu, P. K. Sakrejda, I. Salur, S. Sandweiss, J. Sangaline, E. Sarkar, A. Schambach, J. Scharenberg, R. P. Schmah, A. M. Schmidke, W. B. Schmitz, N. Seger, J. Seyboth, P. Shah, N. Shahaliev, E. Shanmuganathan, P. V. Shao, M. Sharma, B. Shen, W. Q. Shi, S. S. Shou, Q. Y. Sichtermann, E. P. Singaraju, R. N. Skoby, M. J. Smirnov, D. Smirnov, N. Solanki, D. Sorensen, P. Spinka, H. M. Srivastava, B. Stanislaus, T. D. S. Stevens, J. R. Stock, R. Strikhanov, M. Stringfellow, B. Sumbera, M. Sun, X. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Svirida, D. N. Symons, T. J. M. Szelezniak, M. A. Takahashi, J. Tang, A. H. Tang, Z. Tarnowsky, T. Thomas, J. H. Timmins, A. R. Tlusty, D. Tokarev, M. Trentalange, S. Tribble, R. E. Tribedy, P. Trzeciak, B. A. Tsai, O. D. Turnau, J. Ullrich, T. Underwood, D. G. Van Buren, G. van Nieuwenhuizen, G. Vandenbroucke, M. Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vasiliev, A. N. Vertesi, R. Videbaek, F. Viyogi, Y. P. Vokal, S. Vossen, A. Wada, M. Wang, F. Wang, G. Wang, H. Wang, J. S. Wang, X. L. Wang, Y. Wang, Y. Webb, G. Webb, J. C. Westfall, G. D. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. F. Xiao, Z. Xie, W. Xin, K. Xu, H. Xu, J. Xu, N. Xu, Q. H. Xu, Y. Xu, Z. Yan, W. Yang, C. Yang, Y. Yang, Y. Ye, Z. Yepes, P. Yi, L. Yip, K. Yoo, I-K. Yu, N. Zawisza, Y. Zbroszczyk, H. Zha, W. Zhang, J. B. Zhang, J. L. Zhang, S. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhao, F. Zhao, J. Zhong, C. Zhu, X. Zhu, Y. H. Zoulkarneeva, Y. Zyzak, M. CA STAR Collaboration TI Dielectron azimuthal anisotropy at mid-rapidity in Au plus Au collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID RESISTIVE PLATE CHAMBERS; QUARK-GLUON PLASMA; PARTICLE IDENTIFICATION; STAR EXPERIMENT; P COLLISIONS; COLLABORATION; PERSPECTIVE; SYSTEM; TRAY; TPC AB We report on the first measurement of the azimuthal anisotropy (v(2)) of dielectrons (e(+)e(-) pairs) at mid-rapidity fromv root s(NN) = 200 GeV Au + Au collisions with the STAR detector at the Relativistic Heavy Ion Collider (RHIC), presented as a function of transverse momentum (pT) for different invariant-mass regions. In the mass region M-ee < 1.1 GeV/c(2) the dielectron v(2) measurements are found to be consistent with expectations from pi(0), eta, omega, and phi decay contributions. In the mass region 1.1 < M-ee < 2.9 GeV/c(2), the measured dielectron v(2) is consistent, within experimental uncertainties, with that from the c<(c)over bar> contributions. C1 [Adamczyk, L.; Przybycien, M.] AGH Univ Sci & Technol, Krakow, Poland. [Gliske, S.; Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Nelson, J. M.] Univ Birmingham, Birmingham, W Midlands, England. [Arkhipkin, D.; Aschenauer, E. C.; Beavis, D. R.; Bland, L. C.; Burton, T. P.; Christie, W.; Debbe, R. R.; di Ruzza, B.; Didenko, L.; Dunlop, J. C.; Eyser, O.; Fazio, S.; Fisyak, Y.; Guryn, W.; Huang, B.; Ke, H. W.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Ogawa, A.; Pile, P.; Ruan, L.; Schmidke, W. B.; Smirnov, D.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Wang, H.; Webb, J. C.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Perkins, C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Brovko, S. G.; Sanchez, M. Calderon de la Barca; Cebra, D.; Ding, F.; Draper, J. E.; Flores, C. E.; Haag, B.; Kesich, A.; Romero, J. L.; Sangaline, E.] Univ Calif Davis, Davis, CA 95616 USA. [Dunkelberger, L. E.; Huang, H. Z.; Igo, G.; Landry, K. D.; Pan, Y. X.; Shah, N.; Trentalange, S.; Tsai, O. D.; Wang, G.; Zhao, F.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Derradi de Souza, R.; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Chen, L.; Huck, P.; Li, Z. M.; Liu, F.; Luo, X.; Pei, H.; Wu, Y. F.; Xu, J.; Yang, Y.; Yu, N.; Zhang, J. B.; Zhao, J.] Cent China Normal Univ, HZNU, Wuhan 430079, Peoples R China. [Evdokimov, O.; Hofman, D. J.; Kauder, K.; Khan, Z. H.; Pandit, Y.; Wang, Y.; Ye, Z.] Univ Illinois, Chicago, IL 60607 USA. [Chwastowski, J.; Kycia, R. A.] Cracow Univ Technol, Krakow, Poland. [Cherney, M.; De Silva, L. C.; Don, D. M. M. D. Madagodagettige; McShane, T. S.; Ross, J. F.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Chaloupka, P.; Pachr, M.; Rusnakova, O.; Trzeciak, B. A.] Czech Tech Univ, FNSPE, Prague 11519, Czech Republic. [Bielcikova, J.; Rusnak, J.; Sumbera, M.; Tlusty, D.; Vertesi, R.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Kisel, I.; Kollegger, T.; Kulakov, I.; Stock, R.; Zyzak, M.] Frankfurt Inst Adv Studies FIAS, Frankfurt, Germany. [Das, S.; Mahapatra, D. P.; Sahu, P. K.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Pujahari, P. R.; Sarkar, A.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Dhamija, S.; Jacobs, W. W.; Page, B. S.; Skoby, M. J.; Vossen, A.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Alekseev, I.; Bordyuzhin, I. G.; Kalinkin, D.; Svirida, D. N.] Alikhanov Inst Theoret & Expt Phys, Moscow, Russia. [Bhasin, A.; Gupta, A.; Gupta, S.] Univ Jammu, Jammu 180001, India. [Agakishiev, G.; Aparin, A.; Averichev, G. S.; Bunzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneeva, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Alford, J.; Bouchet, J.; Keane, D.; Lomnitz, M.; Margetis, S.; Quintero, A.; Shanmuganathan, P. V.] Kent State Univ, Kent, OH 44242 USA. [Adkins, J. K.; Fatemi, R.; Ramachandran, S.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Jang, H.; Noh, S. Y.] Korea Inst Sci & Technol Informat, Taejon, South Korea. [Du, C. M.; Sun, Z.; Wang, J. S.; Xu, H.; Yang, Y.] Inst Modern Phys, Lanzhou, Peoples R China. [Contin, G.; Dong, X.; Eun, L.; Greiner, L.; Masui, H.; Matis, H. S.; Mustafa, M. K.; Odyniec, G.; Porter, J.; Poskanzer, A. M.; Qiu, H.; Ritter, H. G.; Sakrejda, I.; Salur, S.; Schmah, A. M.; Shi, S. S.; Sichtermann, E. P.; Sun, X.; Sun, X. M.; Symons, T. J. M.; Szelezniak, M. A.; Thomas, J. H.; Wieman, H.; Xu, N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Stevens, J. R.; van Nieuwenhuizen, G.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Novak, J.; Tarnowsky, T.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Kotchenda, L.; Kravtsov, P.; Nigmatkulov, G.; Okorokov, V.; Strikhanov, M.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Haque, R.; Kumar, L.; Mohanty, B.; Nasim, Md.] Natl Inst Sci Educ & Res, Bhubaneswar 751005, Orissa, India. [Anson, C. D.; Gangadharan, D. R.; Humanic, T. J.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.; Koralt, I.] Old Dominion Univ, Norfolk, VA 23529 USA. [Pawlik, B.; Turnau, J.] Inst Nucl Phys PAN, Krakow, Poland. [Aggarwal, M. M.; Bhati, A. K.; Pruthi, N. K.; Sharma, B.] Panjab Univ, Chandigarh 160014, India. [Cendejas, R.; Dilks, C.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Garand, D.; Hirsch, A.; Konzer, J.; Li, X.; Scharenberg, R. P.; Srivastava, B.; Stringfellow, B.; Wang, F.; Xie, W.; Yi, L.] Purdue Univ, W Lafayette, IN 47907 USA. [Oh, K.; Yoo, I-K.] Pusan Natl Univ, Pusan 609735, South Korea. [Raniwala, R.; Raniwala, S.; Solanki, D.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Butterworth, J.; Eppley, G.; Geurts, F.; Llope, W. J.; Roberts, J. B.; Xin, K.; Yepes, P.] Rice Univ, Houston, TX 77251 USA. [Chen, H. F.; Cui, X.; Guo, Y.; Li, C.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Yang, C.; Zawisza, Y.; Zha, W.; Zhang, Y.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Deng, J.; Xu, Q. H.; Zhang, J. L.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Chen, J. H.; Han, L-X.; Li, W.; Ma, G. L.; Ma, Y. G.; Shen, W. Q.; Shou, Q. Y.; Zhang, S.; Zhong, C.; Zhu, Y. H.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Borowski, W.; Kabana, S.] SUBATECH, Nantes, France. [Gunarathne, D. S.; Kraishan, A. F.; Li, X.; Surrow, B.; Vandenbroucke, M.] Temple Univ, Philadelphia, PA 19122 USA. [Cervantes, M. C.; Chang, Z.; Djawotho, P.; Gagliardi, C. A.; Hamed, A.; Mioduszewski, S.; Mondal, M. M.; Sahoo, N. R.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Bhattarai, P.; Codrington, M. J. M.; Leyva, A. Davila; Hoffmann, G. W.; Markert, C.; Oldag, E. W.; Ray, R. L.; Schambach, J.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Bellwied, R.; McDonald, D.; Timmins, A. R.] Univ Houston, Houston, TX 77204 USA. [Cheng, J.; Huang, X.; Kang, K.; Li, Y.; Wang, Y.; Xiao, Z.; Yan, W.; Zhang, X. P.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Engle, K. S.; Witt, R.] US Naval Acad, Annapolis, MD 21402 USA. [Drachenberg, J. L.; Gibson, A.; Grosnick, D.; Koetke, D. D.; Stanislaus, T. D. S.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Banerjee, A.; Chattopadhyay, S.; Nayak, T. K.; Pal, S. K.; Roy, A.; Singaraju, R. N.; Tribedy, P.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Girard, M.; Kikola, D. P.; Kisiel, A.; Pawlak, T.; Peryt, W.; Pluta, J.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.] Univ Washington, Seattle, WA 98195 USA. [Putschke, J.] Wayne State Univ, Detroit, MI 48201 USA. [Caines, H.; Chikanian, A.; Finch, E.; Harris, J. W.; Horvat, S.; Majka, R.; Ohlson, A.; Riley, C. K.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Adamczyk, L (reprint author), AGH Univ Sci & Technol, Krakow, Poland. RI Alekseev, Igor/J-8070-2014; Svirida, Dmitry/R-4909-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Gunarathne, Devika/C-4903-2017; Takahashi, Jun/B-2946-2012; Kycia, Radoslaw/J-4397-2015; Chaloupka, Petr/E-5965-2012; Huang, Bingchu/H-6343-2015; Rusnak, Jan/G-8462-2014; Bielcikova, Jana/G-9342-2014; Derradi de Souza, Rafael/M-4791-2013; Xin, Kefeng/O-9195-2016; Yi, Li/Q-1705-2016; Sumbera, Michal/O-7497-2014; XIAO, Zhigang/C-3788-2015; Fazio, Salvatore /G-5156-2010; Kumar, Lokesh/A-6154-2010 OI Alekseev, Igor/0000-0003-3358-9635; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Gunarathne, Devika/0000-0002-7155-7418; Takahashi, Jun/0000-0002-4091-1779; Kycia, Radoslaw/0000-0002-6390-4627; Huang, Bingchu/0000-0002-3253-3210; Derradi de Souza, Rafael/0000-0002-2084-7001; Xin, Kefeng/0000-0003-4853-9219; Yi, Li/0000-0002-7512-2657; Sumbera, Michal/0000-0002-0639-7323; Kumar, Lokesh/0000-0002-2746-9840 FU RHIC Operations Group and RCF at BNL; NERSC Center at LBNL; KISTI Center in Korea; Open Science Grid consortium; Offices of NP; HEP within the US DOE Office of Science; US NSF; CNRS/IN2P3; FAPESP CNPq of Brazil; Ministry of Education and Science of the Russian Federation; NNSFC; CAS; MoST; MoE of China; Korean Research Foundation; GA and MSMT of the Czech Republic; FIAS of Germany; DAE; DST; CSIR of India; National Science Centre of Poland; National Research Foundation [NRF-2012004024]; Ministry of Science, Education and Sports of the Republic of Croatia; RosAtom of Russia FX We thank C. Gale, R. Rapp, G. Vujanovic, and C. Young for valuable discussions and for providing the theoretical calculations. We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, the KISTI Center in Korea, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Offices of NP and HEP within the US DOE Office of Science, the US NSF, CNRS/IN2P3, FAPESP CNPq of Brazil, the Ministry of Education and Science of the Russian Federation, NNSFC, CAS, MoST, and MoE of China, the Korean Research Foundation, GA and MSMT of the Czech Republic, FIAS of Germany, DAE, DST, and CSIR of India, the National Science Centre of Poland, the National Research Foundation (NRF-2012004024), the Ministry of Science, Education and Sports of the Republic of Croatia, and RosAtom of Russia. NR 64 TC 5 Z9 5 U1 1 U2 53 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD DEC 9 PY 2014 VL 90 IS 6 AR 064904 DI 10.1103/PhysRevC.90.064904 PG 15 WC Physics, Nuclear SC Physics GA AW6MR UT WOS:000346384100005 ER PT J AU Hlophe, L Eremenko, V Elster, C Nunes, FM Arbanas, G Escher, JE Thompson, IJ AF Hlophe, L. Eremenko, V. Elster, Ch. Nunes, F. M. Arbanas, G. Escher, J. E. Thompson, I. J. CA TORUS Collaboration TI Separable representation of proton-nucleus optical potentials SO PHYSICAL REVIEW C LA English DT Article ID COULOMB INTERACTIONS; MOMENTUM-SPACE; SCATTERING AB Recently, a new approach for solving the three-body problem for (d,p) reactions in the Coulomb-distorted basis in momentum space was proposed. Important input quantities for such calculations are the scattering matrix elements for proton-(neutron-) nucleus scattering. We present a generalization of the the Ernst-Shakin-Thaler scheme in which a momentum space separable representation of proton-nucleus scattering matrix elements in the Coulomb basis can be calculated. The success of this method is demonstrated by comparing S-matrix elements and cross sections for proton scattering from C-12, Ca-48, and Pb-208 with the corresponding coordinate space calculations. C1 [Hlophe, L.; Eremenko, V.; Elster, Ch.] Ohio Univ, Inst Nucl & Particle Phys, Athens, OH 45701 USA. [Hlophe, L.; Eremenko, V.; Elster, Ch.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Eremenko, V.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia. [Nunes, F. M.] Michigan State Univ, Natl Supercond Cyclotron Lab, E Lansing, MI 48824 USA. [Nunes, F. M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Arbanas, G.] Oak Ridge Natl Lab, Reactor & Nucl Syst Div, Oak Ridge, TN 37831 USA. [Escher, J. E.; Thompson, I. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Hlophe, L (reprint author), Ohio Univ, Inst Nucl & Particle Phys, Athens, OH 45701 USA. EM lh421709@ohio.edu; elster@ohio.edu RI Elster, Charlotte/N-9845-2015 FU U.S. Department of Energy, Office of Science of Nuclear Physics [DE-SC0004084, DE-SC0004087, DE-FG52-08NA28552]; Ohio University; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.T. Battelle LLC [DE-AC0500OR22725]; National Science Foundation [PHY-0800026]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This material is based on work in part supported by the U.S. Department of Energy, Office of Science of Nuclear Physics under Programs No. DE-SC0004084 and No. DE-SC0004087 (TORUS Collaboration), under Contracts No. DE-FG52-08NA28552 with Michigan State University and No. DE-FG02-93ER40756 with Ohio University; and by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and the U.T. Battelle LLC Contract No. DE-AC0500OR22725. F.M. Nunes acknowledges support from the National Science Foundation under Grant No. PHY-0800026. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 19 TC 2 Z9 2 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD DEC 9 PY 2014 VL 90 IS 6 AR 061602 DI 10.1103/PhysRevC.90.061602 PG 5 WC Physics, Nuclear SC Physics GA AW6MR UT WOS:000346384100001 ER PT J AU Aaltonen, T Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Bae, T Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bedeschi, F Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Bland, KR Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brigliadori, L Bromberg, C Brucken, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Butti, P Buzatu, A Calamba, A Camarda, S Campanelli, M Canelli, F Carls, B Carlsmith, D Carosi, R Carrillo, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Cho, K Chokheli, D Clark, A Clarke, C Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Cremonesi, M Cruz, D Cuevas, J Culbertson, R d'Ascenzo, N Datta, M de Barbaro, P Demortier, L Deninno, M D'Errico, M Devoto, F Di Canto, A Di Ruzza, B Dittmann, JR Donati, S D'Onofrio, M Dorigo, M Driutti, A Ebina, K Edgar, R Elagin, A Erbacher, R Errede, S Esham, B Farrington, S Ramos, JPF Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Frisch, H Funakoshi, Y Galloni, C Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Lopez, OG Gorelov, I Goshaw, AT Goulianos, K Gramellini, E Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Hahn, SR Han, JY Happacher, F Hara, K Hare, M Harr, RF Harrington-Taber, T Hatakeyama, K Hays, C Heinrich, J Herndon, M Hocker, A Hong, Z Hopkins, W Hou, S Hughes, RE Husemann, U Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Junk, TR Kambeitz, M Kamon, T Karchin, PE Kasmi, A Kato, Y Ketchum, W Keung, J Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SH Kim, SB Kim, YJ Kim, YK Kimura, N Kirby, M Knoepfel, K Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kreps, M Kroll, J Kruse, M Kuhr, T Kurata, M Laasanen, AT Lammel, S Lancaster, M Lannon, K Latino, G Lee, HS Lee, JS Leo, S Leone, S Lewis, JD Limosani, A Lipeles, E Lister, A Liu, H Liu, Q Liu, T Lockwitz, S Loginov, A Lucchesi, D Luca, A Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maestro, P Malik, S Manca, G Manousakis-Katsikakis, A Marchese, L Margaroli, F Marino, P Martinez, M Matera, K Mattson, ME Mazzacane, A Mazzanti, P McNulty, R Mehta, A Mehtala, P Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, MJ Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Nigmanov, T Nodulman, L Noh, SY Norniella, O Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Pagliarone, C Palencia, E Palni, P Papadimitriou, V Parker, W Pauletta, G Paulini, M Paus, C Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Poprocki, S Potamianos, K Pranko, A Prokoshin, F Ptohos, F Punzi, G Ranjan, N Fernandez, IR Renton, P Rescigno, M Rimondi, F Ristori, L Robson, A Rodriguez, T Rolli, S Ronzani, M Roser, R Rosner, JL Ruffini, F Ruiz, A Russ, J Rusu, V Sakumoto, WK Sakurai, Y Santi, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, EE Schwarz, T Scodellaro, L Scuri, F Seidel, S Seiya, Y Semenov, A Sforza, F Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shochet, M Shreyber-Tecker, I Simonenko, A Sliwa, K Smith, JR Snider, FD Song, H Sorin, V St Denis, R Stancari, M Stentz, D Strologas, J Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thomson, E Thukral, V Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Ukegawa, F Uozumi, S Vazquez, F Velev, G Vellidis, C Vernieri, C Vidal, M Vilar, R Vizan, J Vogel, M Volpi, G Wagner, P Wallny, R Wang, SM Waters, D Wester, WC Whiteson, D Wicklund, AB Wilbur, S Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamato, D Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Zanetti, AM Zeng, Y Zhou, C Zucchelli, S AF Aaltonen, T. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Bae, T. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bedeschi, F. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Bland, K. R. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brigliadori, L. Bromberg, C. Brucken, E. Budagov, J. Budd, H. S. Burkett, K. Busetto, G. Bussey, P. Butti, P. Buzatu, A. Calamba, A. Camarda, S. Campanelli, M. Canelli, F. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Cho, K. Chokheli, D. Clark, A. Clarke, C. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Cremonesi, M. Cruz, D. Cuevas, J. Culbertson, R. d'Ascenzo, N. Datta, M. de Barbaro, P. Demortier, L. Deninno, M. D'Errico, M. Devoto, F. Di Canto, A. Di Ruzza, B. Dittmann, J. R. Donati, S. D'Onofrio, M. Dorigo, M. Driutti, A. Ebina, K. Edgar, R. Elagin, A. Erbacher, R. Errede, S. Esham, B. Farrington, S. Fernandez Ramos, J. P. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Frisch, H. Funakoshi, Y. Galloni, C. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez Lopez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gramellini, E. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Hahn, S. R. Han, J. Y. Happacher, F. Hara, K. Hare, M. Harr, R. F. Harrington-Taber, T. Hatakeyama, K. Hays, C. Heinrich, J. Herndon, M. Hocker, A. Hong, Z. Hopkins, W. Hou, S. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kambeitz, M. Kamon, T. Karchin, P. E. Kasmi, A. Kato, Y. Ketchum, W. Keung, J. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. H. Kim, S. B. Kim, Y. J. Kim, Y. K. Kimura, N. Kirby, M. Knoepfel, K. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kreps, M. Kroll, J. Kruse, M. Kuhr, T. Kurata, M. Laasanen, A. T. Lammel, S. Lancaster, M. Lannon, K. Latino, G. Lee, H. S. Lee, J. S. Leo, S. Leone, S. Lewis, J. D. Limosani, A. Lipeles, E. Lister, A. Liu, H. Liu, Q. Liu, T. Lockwitz, S. Loginov, A. Lucchesi, D. Luca, A. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maestro, P. Malik, S. Manca, G. Manousakis-Katsikakis, A. Marchese, L. Margaroli, F. Marino, P. Martinez, M. Matera, K. Mattson, M. E. Mazzacane, A. Mazzanti, P. McNulty, R. Mehta, A. Mehtala, P. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Nigmanov, T. Nodulman, L. Noh, S. Y. Norniella, O. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Pagliarone, C. Palencia, E. Palni, P. Papadimitriou, V. Parker, W. Pauletta, G. Paulini, M. Paus, C. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Poprocki, S. Potamianos, K. Pranko, A. Prokoshin, F. Ptohos, F. Punzi, G. Ranjan, N. Redondo Fernandez, I. Renton, P. Rescigno, M. Rimondi, F. Ristori, L. Robson, A. Rodriguez, T. Rolli, S. Ronzani, M. Roser, R. Rosner, J. L. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Sakumoto, W. K. Sakurai, Y. Santi, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, E. E. Schwarz, T. Scodellaro, L. Scuri, F. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shochet, M. Shreyber-Tecker, I. Simonenko, A. Sliwa, K. Smith, J. R. Snider, F. D. Song, H. Sorin, V. St Denis, R. Stancari, M. Stentz, D. Strologas, J. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thomson, E. Thukral, V. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Ukegawa, F. Uozumi, S. Vazquez, F. Velev, G. Vellidis, C. Vernieri, C. Vidal, M. Vilar, R. Vizan, J. Vogel, M. Volpi, G. Wagner, P. Wallny, R. Wang, S. M. Waters, D. Wester, W. C., III Whiteson, D. Wicklund, A. B. Wilbur, S. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamato, D. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Zanetti, A. M. Zeng, Y. Zhou, C. Zucchelli, S. CA CDF Collaboration TI Measurements of Direct CP-Violating Asymmetries in Charmless Decays of Bottom Baryons SO PHYSICAL REVIEW LETTERS LA English DT Article ID B DECAYS; SYMMETRY AB We report final measurements of direct CP-violating asymmetries in charmless decays of neutral bottom hadrons to pairs of charged hadrons with the upgraded Collider Detector at the Fermilab Tevatron. Using the complete root s = 1.96 TeV proton-antiproton collisions data set, corresponding to 9.3 fb(-1) of integrated luminosity, we measure A(A(b)(0) -> p pi(-)) = +0.06 +/- 0.07(stat) +/- 0.03(syst) and A(A(b)(0) -> pK(-)) = -0.10 +/- 0.08(stat) +/- 0.04(syst), compatible with no asymmetry. In addition we measure the CP-violating asymmetries in B-s(0) -> K-pi(-) and B-0 -> K+pi(-) decays to be A(B-s(0) -> K-pi(-)) = +0.22 +/- 0.07(stat) +/- 0.02(syst) and A(B-0 -> K+pi(-)) = -0.083 +/- 0.013(stat) +/- 0.004(syst), respectively, which are significantly different from zero and consistent with current world averages. C1 [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Auerbach, B.; Nodulman, L.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, ICREA, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Hatakeyama, K.; Kasmi, A.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Gramellini, E.; Marchese, L.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Pilot, J.; Shalhout, S. Z.; Smith, J. R.; Wilbur, S.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Ruiz, A.; Scodellaro, L.; Vilar, R.; Vizan, J.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Calamba, A.; Jang, D.; Jun, S. Y.; Paulini, M.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Frisch, H.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Rosner, J. L.; Shochet, M.; Tang, J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Goshaw, A. T.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yu, G. B.; Zeng, Y.; Zhou, C.] Duke Univ, Durham, NC 27708 USA. [Anastassov, A.; Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Behari, S.; Beretvas, A.; Burkett, K.; Chlachidze, G.; Convery, M. E.; Corbo, M.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; Di Ruzza, B.; Flanagan, G.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harrington-Taber, T.; Hocker, A.; Hopkins, W.; James, E.; Jayatilaka, B.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Knoepfel, K.; Lammel, S.; Lewis, J. D.; Liu, T.; Lukens, P.; Madrak, R.; Mazzacane, A.; Miao, T.; Moed, S.; Moon, C. S.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Poprocki, S.; Ristori, L.; Roser, R.; Rusu, V.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Stancari, M.; Stentz, D.; Sukhanov, A.; Tang, J.; Thom, J.; Tonelli, D.; Torretta, D.; Velev, G.; Vellidis, C.; Wallny, R.; Wester, W. C., III; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Konigsberg, J.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Luca, A.; Ptohos, F.; Torre, S.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Buzatu, A.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Catastini, P.; Franklin, M.; da Costa, J. Guimaraes] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Carls, B.; Cavaliere, V.; Errede, S.; Esham, B.; Gerberich, H.; Matera, K.; Norniella, O.; Pitts, K.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Blumenfeld, B.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Kambeitz, M.; Kreps, M.; Kuhr, T.; Lueck, J.; Muller, Th.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Ewha Womans Univ, Seoul 120750, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Lujan, P.; Lys, J.; Potamianos, K.; Pranko, A.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Campanelli, M.; Cerrito, L.; Lancaster, M.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez Ramos, J. P.; Gonzalez Lopez, O.; Redondo Fernandez, I.] Ctr Invest Energet Medioambient & Technol, E-28040 Madrid, Spain. [Gomez-Ceballos, G.; Goncharov, M.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Amidei, D.; Edgar, R.; Mietlicki, D.; Schwarz, T.; Tecchio, M.; Wilson, J. S.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber-Tecker, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Palni, P.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Hughes, R. E.; Lannon, K.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Yamamoto, K.; Yamato, D.; Yoshida, T.] Osaka City Univ, Osaka 5588585, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Busetto, G.; D'Errico, M.; Lucchesi, D.; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Amerio, S.; Bauce, M.; Busetto, G.; D'Errico, M.; Lucchesi, D.] Univ Padua, I-35131 Padua, Italy. [Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Rodriguez, T.; Thomson, E.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Butti, P.; Carosi, R.; Chiarelli, G.; Cremonesi, M.; Di Canto, A.; Donati, S.; Galloni, C.; Garosi, P.; Introzzi, G.; Latino, G.; Leo, S.; Leone, S.; Maestro, P.; Marino, P.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Ronzani, M.; Ruffini, F.; Scuri, F.; Sforza, F.; Trovato, M.; Vernieri, C.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Butti, P.; Di Canto, A.; Donati, S.; Galloni, C.; Punzi, G.; Ronzani, M.; Sforza, F.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Garosi, P.; Latino, G.; Maestro, P.; Ruffini, F.] Univ Siena, I-56127 Pisa, Italy. [Marino, P.; Morello, M. J.; Trovato, M.; Vernieri, C.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Introzzi, G.] Ist Nazl Fis Nucl, I-27100 Pavia, Italy. [Introzzi, G.] Univ Pavia, I-27100 Pavia, Italy. [Boudreau, J.; Gibson, K.; Nigmanov, T.; Shepard, P. F.; Song, H.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Barnes, V. E.; Bortoletto, D.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Ranjan, N.; Vidal, M.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; de Barbaro, P.; Han, J. Y.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [Giagu, S.; Iori, M.; Margaroli, F.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Asaadi, J.; Aurisano, A.; Cruz, D.; Elagin, A.; Goldin, D.; Hong, Z.; Kamon, T.; Nett, J.; Thukral, V.; Toback, D.] Texas A&M Univ, Mitchell Inst Fundamental Phys & Astron, College Stn, TX 77843 USA. [Casarsa, M.; Cauz, D.; Dorigo, M.; Driutti, A.; Pagliarone, C.; Pauletta, G.; Santi, L.; Zanetti, A. M.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Cauz, D.; Driutti, A.; Pauletta, G.; Santi, L.] Grp Collegato Udine, I-33100 Udine, Italy. [Cauz, D.; Driutti, A.; Pauletta, G.; Santi, L.] Univ Udine, I-33100 Udine, Italy. [Dorigo, M.] Univ Trieste, I-34127 Trieste, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.] Tufts Univ, Medford, MA 02155 USA. [Group, R. C.; Liu, H.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Herndon, M.; Parker, W.; Pondrom, L.] Univ Wisconsin, Madison, WI 53706 USA. [Husemann, U.; Lockwitz, S.; Loginov, A.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, Siltavuorenpenger 20D, FIN-00014 Helsinki, Finland. RI Piacentino, Giovanni/K-3269-2015; Chiarelli, Giorgio/E-8953-2012; Marino, Pietro/N-7030-2015; song, hao/I-2782-2012; Gorelov, Igor/J-9010-2015; maestro, paolo/E-3280-2010; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; vilar, rocio/P-8480-2014; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Ruiz, Alberto/E-4473-2011; Paulini, Manfred/N-7794-2014; Grinstein, Sebastian/N-3988-2014; OI Piacentino, Giovanni/0000-0001-9884-2924; Chiarelli, Giorgio/0000-0001-9851-4816; Marino, Pietro/0000-0003-0554-3066; song, hao/0000-0002-3134-782X; Gorelov, Igor/0000-0001-5570-0133; maestro, paolo/0000-0002-4193-1288; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Introzzi, Gianluca/0000-0002-1314-2580; Vidal Marono, Miguel/0000-0002-2590-5987; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Dorigo, Mirco/0000-0002-0681-6946; Brucken, Jens Erik/0000-0001-6066-8756; Torre, Stefano/0000-0002-7565-0118; Ruiz, Alberto/0000-0002-3639-0368; Paulini, Manfred/0000-0002-6714-5787; Casarsa, Massimo/0000-0002-1353-8964; Margaroli, Fabrizio/0000-0002-3869-0153; Group, Robert/0000-0002-4097-5254; Grinstein, Sebastian/0000-0002-6460-8694; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean World Class University Program; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, United Kingdom; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio Spain; Slovak RD Agency; Academy of Finland; Australian Research Council (ARC); EU community Marie Curie Fellowship [302103] FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship Contract No. 302103. NR 31 TC 9 Z9 9 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 9 PY 2014 VL 113 IS 24 AR 242001 DI 10.1103/PhysRevLett.113.242001 PG 8 WC Physics, Multidisciplinary SC Physics GA AW6OC UT WOS:000346387700008 PM 25541767 ER PT J AU Lee, E Lu, J Ren, Y Luo, XY Zhang, XY Wen, JG Miller, D DeWahl, A Hackney, S Key, B Kim, D Slater, MD Johnson, CS AF Lee, Eungje Lu, Jun Ren, Yang Luo, Xiangyi Zhang, Xiaoyi Wen, Jianguo Miller, Dean DeWahl, Aaron Hackney, Stephen Key, Baris Kim, Donghan Slater, Michael D. Johnson, Christopher S. TI Layered P2/O3 Intergrowth Cathode: Toward High Power Na-Ion Batteries SO ADVANCED ENERGY MATERIALS LA English DT Article ID SODIUM-ION; ELECTROCHEMICAL INTERCALATION; PHYSICAL-PROPERTIES; POSITIVE ELECTRODE; ENERGY-STORAGE; LESS-THAN; X-RAY; BRONZES; DIFFRACTION; LI C1 [Lee, Eungje; Lu, Jun; Luo, Xiangyi; Key, Baris; Kim, Donghan; Slater, Michael D.; Johnson, Christopher S.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Ren, Yang; Zhang, Xiaoyi] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Luo, Xiangyi] Univ Utah, Dept Met Engn, Salt Lake City, UT 84112 USA. [Wen, Jianguo; Miller, Dean] Argonne Natl Lab, Electron Microscopy Ctr, Argonne, IL 60439 USA. [DeWahl, Aaron; Hackney, Stephen] Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA. RP Johnson, CS (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM cjohnson@anl.gov RI Luo, Xiangyi/K-6058-2015 OI Luo, Xiangyi/0000-0002-4817-1461 FU Department of Energy [DE-AC02-06CH11357]; Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX Funding from the Department of Energy under Contract DE-AC02-06CH11357 is gratefully acknowledged. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. This article was amended after online publication to correct the author list in ref. 5. NR 34 TC 33 Z9 33 U1 24 U2 134 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD DEC 9 PY 2014 VL 4 IS 17 AR 1400458 DI 10.1002/aenm.201400458 PG 8 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA AW3FY UT WOS:000346172900001 ER PT J AU Chen, Y Falkowski, A Low, I Vega-Morales, R AF Chen, Yi Falkowski, Adam Low, Ian Vega-Morales, Roberto TI New observables for CP violation in Higgs decays SO PHYSICAL REVIEW D LA English DT Article ID LARGE HADRON COLLIDER; TOP-QUARK; BOSON; LHC; COUPLINGS; SPIN; PARITY; T(T)OVER-BAR; PARTICLE; TAU AB Current experimental data on the 125 GeV Higgs boson still allow room for large CP violation. The observables usually considered in this context are triple product asymmetries, which require an input of four visible particles after imposing momentum conservation. We point out a new class of CP-violating observables in Higgs physics which require only three reconstructed momenta. They may arise if the process involves an interference of amplitudes with different intermediate particles, which provide distinct "strong phases" in the form of the Breit-Wigner widths, in addition to possible "weak phases" that arise from CP-violating couplings of the Higgs in the Lagrangian. As an example, we propose a forward-backward asymmetry of the charged lepton in the three-body Higgs decay, h -> l(-) l(+) gamma, as a probe for CP-violating Higgs couplings to Z gamma and gamma gamma pairs. Other processes exhibiting this type of CP violation are also discussed. C1 [Chen, Yi] CALTECH, Lauritsen Lab High Energy Phys, Pasadena, CA 92115 USA. [Falkowski, Adam; Vega-Morales, Roberto] Univ Paris 11, CNRS, UMR 8627, Phys Theor Lab, F-91405 Orsay, France. [Low, Ian] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Low, Ian] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Chen, Y (reprint author), CALTECH, Lauritsen Lab High Energy Phys, Pasadena, CA 92115 USA. EM yichen@caltech.edu; adam.falkowski@th.u-psud.fr; ilow@northwestern.edu; roberto.vega@th.u-psud.fr FU ERC; Weston Havens Foundation; DOE [DE-FG02-92-ER-40701]; U.S. Department of Energy at ANL [DE-AC02- 06CH11357]; U.S. Department of Energy at NU [DE-SC0010143] FX A. F. and R. V. M. are supported by the ERC Advanced Grant Higgs@LHC. Y. C. is supported by the Weston Havens Foundation and DOE Grant No. DE-FG02-92-ER-40701. I. L. is supported in part by the U.S. Department of Energy under Contracts No. DE-AC02- 06CH11357 at ANL and No. DE-SC0010143 at NU. Three of the authors (A. F., I. L., and R. V. M.) would also like to thank the participants of the workshop "After the Discovery: Hunting for a Non-Standard Higgs Sector" at Centro de Ciencias de Benasque Pedro Pascual for lively atmosphere and discussions. NR 46 TC 17 Z9 17 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 9 PY 2014 VL 90 IS 11 AR 113006 DI 10.1103/PhysRevD.90.113006 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AW6MY UT WOS:000346384700001 ER PT J AU Queiroz, FS Sinha, K Wester, W AF Queiroz, Farinaldo S. Sinha, Kuver Wester, William TI Rich tapestry: Supersymmetric axions, dark radiation, and inflationary reheating SO PHYSICAL REVIEW D LA English DT Article ID CP INVARIANCE; CONSTRAINTS; PARTICLES; MATTER; MODEL AB We exploit the complementarity among supersymmetry, inflation, axions, big bang nucleosynthesis (BBN), and cosmic microwave background radiation (CMB) to constrain supersymmetric axion models in the light of the recent Planck and BICEP results. In particular, we derive BBN bounds coming from altering the light element abundances by taking into account hadronic and electromagnetic energy injection, and CMB constraints from black-body spectrum distortion. Last, we outline the viable versus excluded region of these supersymmetric models that might account for the mild dark radiation observed. C1 [Queiroz, Farinaldo S.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Queiroz, Farinaldo S.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Sinha, Kuver] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. [Wester, William] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Queiroz, FS (reprint author), Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. FU U.S. Department of Energy [SC0010107]; Brazilian National Counsel for Technological and Scientific Development (CNPq); NASA [NNH12ZDA001N]; Fermi Research Alliance, LLC [DE-AC02-07CH11359]; U.S. Department of Energy FX The authors are indebted to Takeo Moroi and Kazunori Kohri for clarifications regarding BBN constraints. The authors would like to thank Tom Banks, Alex Dias, Michael Dine, Patrick Draper, Jiji Fan, Kazunori Kohri, Takeo Moroi, Ogan Ozsoy, Carlos Pires, Paulo Rodrigues, William Shepherd, and Scott Watson for useful discussions. The authors thank the organizers of the Mitchell Workshop in Texas where this project was initiated. F. Q. is partly supported by U.S. Department of Energy Grant No. SC0010107 and the Brazilian National Counsel for Technological and Scientific Development (CNPq). K. S. is supported by NASA Astrophysics Theory Grant No. NNH12ZDA001N. W. W. is supported by the Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. NR 47 TC 8 Z9 8 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC 9 PY 2014 VL 90 IS 11 AR 115009 DI 10.1103/PhysRevD.90.115009 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AW6MY UT WOS:000346384700005 ER PT J AU Zareapour, P Hayat, A Zhao, SYF Kreshchuk, M Lee, YK Reijnders, AA Jain, A Xu, ZJ Liu, TS Gu, GD Jia, S Cava, RJ Burch, KS AF Zareapour, Parisa Hayat, Alex Zhao, Shu Yang F. Kreshchuk, Michael Lee, Yong Kiat Reijnders, Anjan A. Jain, Achint Xu, Zhijun Liu, T. S. Gu, G. D. Jia, Shuang Cava, Robert J. Burch, Kenneth S. TI Evidence for a new excitation at the interface between a high-T-c superconductor and a topological insulator SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; ANDREEV BOUND-STATES; TUNNELING SPECTROSCOPY; MAJORANA FERMIONS; QUANTUM-DOT; NANOWIRE; JUNCTIONS; CONDUCTANCE; SIGNATURE; GAP AB High-temperature superconductors exhibit a wide variety of novel excitations. If contacted with a topological insulator, the lifting of spin rotation symmetry in the surface states can lead to the emergence of unconventional superconductivity and novel particles. In pursuit of this possibility, we fabricated high critical-temperature (T-c similar to 85 K) superconductor/topological insulator (Bi2Sr2CaCu2O8+delta/Bi2Te2Se) junctions. Below 75 K, a zero-bias conductance peak (ZBCP) emerges in the differential conductance spectra of this junction. The magnitude of the ZBCP is suppressed at the same rate for magnetic fields applied parallel or perpendicular to the junction. Furthermore, it can still be observed and does not split up to at least 8.5 T. The temperature and magnetic field dependence of the excitation we observe appears to fall outside the known paradigms for a ZBCP. C1 [Zareapour, Parisa; Hayat, Alex; Zhao, Shu Yang F.; Kreshchuk, Michael; Lee, Yong Kiat; Jain, Achint; Burch, Kenneth S.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Zareapour, Parisa; Hayat, Alex; Zhao, Shu Yang F.; Kreshchuk, Michael; Lee, Yong Kiat; Jain, Achint; Burch, Kenneth S.] Univ Toronto, Inst Opt Sci, Toronto, ON M5S 1A7, Canada. [Reijnders, Anjan A.] Montana Instruments, Bozeman, MT 59715 USA. [Xu, Zhijun; Liu, T. S.; Gu, G. D.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci CMPMS, Upton, NY 11973 USA. [Liu, T. S.] North Univ China, Sch Chem Engn & Environm, Taiyuan, Peoples R China. [Jia, Shuang; Cava, Robert J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Burch, Kenneth S.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. RP Zareapour, P (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. RI xu, zhijun/A-3264-2013; OI xu, zhijun/0000-0001-7486-2015; Kreshchuk, Michael/0000-0002-8037-3733 FU Natural Sciences and Engineering Research Council of Canada; Canadian Foundation for Innovation; Ontario Ministry for Innovation; National Science Foundation [DMR-1410846]; DOE [DE-AC02-98CH10886]; U.S. National Science Foundation [DMR-0819860] FX We acknowledge Y. Tanaka, J. Linder, T. Klapwijk, G. Koren, Y. Ran, and Hae-Young Kee for very helpful discussions. The work at the University of Toronto was supported by the Natural Sciences and Engineering Research Council of Canada, the Canadian Foundation for Innovation, and the Ontario Ministry for Innovation. K.S.B. acknowledges support from the National Science Foundation (Grant No. DMR-1410846). The work at Brookhaven National Laboratory (BNL) was supported by DOE under Contract No. DE-AC02-98CH10886. The crystal growth at Princeton was supported by the U.S. National Science Foundation, Grant No. DMR-0819860. NR 43 TC 5 Z9 5 U1 1 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 9 PY 2014 VL 90 IS 24 AR 241106 DI 10.1103/PhysRevB.90.241106 PG 5 WC Physics, Condensed Matter SC Physics GA AW6MN UT WOS:000346383700001 ER PT J AU Gainaru, C Agapov, AL Fuentes-Landete, V Amann-Winkel, K Nelson, H Koster, KW Kolesnikov, AI Novikov, VN Richert, R Bohmer, R Loerting, T Sokolov, AP AF Gainaru, Catalin Agapov, Alexander L. Fuentes-Landete, Violeta Amann-Winkel, Katrin Nelson, Helge Koester, Karsten W. Kolesnikov, Alexander I. Novikov, Vladimir N. Richert, Ranko Boehmer, Roland Loerting, Thomas Sokolov, Alexei P. TI Anomalously large isotope effect in the glass transition of water SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE dynamics of water; isotope effect; quantum effects; glass transition; amorphous ice ID DIFFERENTIAL SCANNING CALORIMETRY; INELASTIC NEUTRON-SCATTERING; DIELECTRIC-RELAXATION; STRUCTURAL RELAXATION; STRONG LIQUID; HEAVY-WATER; ICE; DYNAMICS; DEPENDENCE; FRAGILITY AB We present the discovery of an unusually large isotope effect in the structural relaxation and the glass transition temperature T-g of water. Dielectric relaxation spectroscopy of low-density as well as of vapor-deposited amorphous water reveal T-g differences of 10 +/- 2 K between H2O and D2O, sharply contrasting with other hydrogen-bonded liquids for which H/D exchange increases Tg by typically less than 1 K. We show that the large isotope effect and the unusual variation of relaxation times in water at low temperatures can be explained in terms of quantum effects. Thus, our findings shed new light on water's peculiar low-temperature dynamics and the possible role of quantum effects in its structural relaxation, and possibly in dynamics of other low-molecular-weight liquids. C1 [Gainaru, Catalin; Nelson, Helge; Koester, Karsten W.; Boehmer, Roland] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Agapov, Alexander L.; Novikov, Vladimir N.; Sokolov, Alexei P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Agapov, Alexander L.; Novikov, Vladimir N.; Sokolov, Alexei P.] Univ Tennessee, Joint Inst Neutron Sci, Knoxville, TN 37996 USA. [Agapov, Alexander L.; Novikov, Vladimir N.; Sokolov, Alexei P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Kolesnikov, Alexander I.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Fuentes-Landete, Violeta; Amann-Winkel, Katrin; Loerting, Thomas] Univ Innsbruck, Inst Phys Chem, A-6020 Innsbruck, Austria. [Richert, Ranko] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. RP Sokolov, AP (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM sokolov@utk.edu RI Richert, Ranko/M-8942-2015; Kolesnikov, Alexander/I-9015-2012 OI Richert, Ranko/0000-0001-8503-3175; Kolesnikov, Alexander/0000-0003-1940-4649 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; NSF Chemistry Division [CHE-1213444, CHE-1026124]; Austrian Science Fund FWF [Y391, I1392, T463]; European Research Council ERC; Deutsche Forschungsgemeinschaft [BO1301] FX A.L.A. and A.I.K. were supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. We also thank NSF Chemistry Division for partial financial support (A.P.S. and V.N.N. acknowledge Grant CHE-1213444 and R.R. acknowledges Grant CHE-1026124). T.L. acknowledges funding by the Austrian Science Fund FWF (START Award Y391 and International Grant I1392) and the European Research Council ERC (Starting Grant SULIWA). K.A.-W. acknowledges funding by the Austrian Science Fund FWF (Firnberg programme T463). Work at Dortmund was partially funded by the Deutsche Forschungsgemeinschaft under Grant BO1301. NR 46 TC 15 Z9 15 U1 4 U2 45 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 9 PY 2014 VL 111 IS 49 BP 17402 EP 17407 DI 10.1073/pnas.1411620111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AU9NR UT WOS:000345921500026 PM 25422420 ER PT J AU Sylak-Glassman, EJ Malnoe, A De Re, E Brooks, MD Fischer, AL Niyogi, KK Fleming, GR AF Sylak-Glassman, Emily J. Malnoe, Alizee De Re, Eleonora Brooks, Matthew D. Fischer, Alexandra Lee Niyogi, Krishna K. Fleming, Graham R. TI Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE PsbS; nonphotochemical quenching; fluorescence lifetime; carotenoids; photosystem II ID PHOTOPROTECTIVE ENERGY-DISSIPATION; XANTHOPHYLL CYCLE; STEADY-STATE; DELTA-PH; IN-VIVO; CHLOROPLASTS; ARABIDOPSIS; FIELD; PMF AB The photosystem II (PSII) protein PsbS and the enzyme violaxanthin deepoxidase (VDE) are known to influence the dynamics of energy-dependent quenching (qE), the component of nonphotochemical quenching (NPQ) that allows plants to respond to fast fluctuations in light intensity. Although the absence of PsbS and VDE has been shown to change the amount of quenching, there have not been any measurements that can detect whether the presence of these proteins alters the type of quenching that occurs. The chlorophyll fluorescence lifetime probes the excited-state chlorophyll relaxation dynamics and can be used to determine the amount of quenching as well as whether two different genotypes with the same amount of NPQ have similar dynamics of excited-state chlorophyll relaxation. We measured the fluorescence lifetimes on whole leaves of Arabidopsis thaliana throughout the induction and relaxation of NPQ for wild type and the qE mutants, npq4, which lacks PsbS; npq1, which lacks VDE and cannot convert violaxanthin to zeaxanthin; and npq1 npq4, which lacks both VDE and PsbS. These measurements show that although PsbS changes the amount of quenching and the rate at which quenching turns on, it does not affect the relaxation dynamics of excited chlorophyll during quenching. In addition, the data suggest that PsbS responds not only to Delta pH but also to the Delta psi across the thylakoid membrane. In contrast, the presence of VDE, which is necessary for the accumulation of zeaxanthin, affects the excited-state chlorophyll relaxation dynamics. C1 [Sylak-Glassman, Emily J.; Fischer, Alexandra Lee; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Malnoe, Alizee; Brooks, Matthew D.; Niyogi, Krishna K.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [De Re, Eleonora; Fleming, Graham R.] Univ Calif Berkeley, Grad Grp Appl Sci & Technol, Berkeley, CA 94720 USA. [Brooks, Matthew D.; Niyogi, Krishna K.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Sylak-Glassman, Emily J.; Malnoe, Alizee; De Re, Eleonora; Brooks, Matthew D.; Fischer, Alexandra Lee; Niyogi, Krishna K.; Fleming, Graham R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM vcrfleming@berkeley.edu FU US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division; National Science Foundation Graduate Research Fellowship Program; Gordon and Betty Moore Foundation [GBMF3070] FX This material is based upon work supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. E.J.S.-G. was partially supported by a National Science Foundation Graduate Research Fellowship Program. K.K.N. is an investigator of the Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation (through Grant GBMF3070). NR 28 TC 6 Z9 6 U1 5 U2 42 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 9 PY 2014 VL 111 IS 49 BP 17498 EP 17503 DI 10.1073/pnas.1418317111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AU9NR UT WOS:000345921500042 PM 25422428 ER PT J AU Baskaran, S Carlson, LA Stjepanovic, G Young, LN Kim, DJ Grob, P Stanley, RE Nogales, E Hurley, JH AF Baskaran, Sulochanadevi Carlson, Lars-Anders Stjepanovic, Goran Young, Lindsey N. Kim, Do Jin Grob, Patricia Stanley, Robin E. Nogales, Eva Hurley, James H. TI Architecture and Dynamics of the Autophagic Phosphatidylinositol 3-Kinase Complex SO ELIFE LA English DT Article ID ELECTRON-MICROSCOPY; CRYSTAL-STRUCTURE; PROTEIN-KINASE; BECLIN 1; LIPID KINASE; VPS34; SYSTEM; BIOGENESIS; ATG14L; DOMAIN AB The class III phosphatidylinositol 3-kinase complex I (PI3KC3-C1) that functions in early autophagy consists of the lipid kinase VPS34, the scaffolding protein VPS15, the tumor suppressor BECN1, and the autophagy-specific subunit ATG14. The structure of the ATG14-containing PI3KC3-C1 was determined by single-particle EM, revealing a V-shaped architecture. All of the ordered domains of VPS34, VPS15, and BECN1 were mapped by MBP tagging. The dynamics of the complex were defined using hydrogen-deuterium exchange, revealing a novel 20-residue ordered region C-terminal to the VPS34 C2 domain. VPS15 organizes the complex and serves as a bridge between VPS34 and the ATG14: BECN1 subcomplex. Dynamic transitions occur in which the lipid kinase domain is ejected from the complex and VPS15 pivots at the base of the V. The N-terminus of BECN1, the target for signaling inputs that regulate PI3KC3 activity, resides near the pivot point. These observations provide a framework for understanding the allosteric regulation of lipid kinase activity. C1 [Baskaran, Sulochanadevi; Carlson, Lars-Anders; Stjepanovic, Goran; Young, Lindsey N.; Kim, Do Jin; Grob, Patricia; Nogales, Eva; Hurley, James H.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Baskaran, Sulochanadevi; Carlson, Lars-Anders; Stjepanovic, Goran; Young, Lindsey N.; Kim, Do Jin; Grob, Patricia; Nogales, Eva; Hurley, James H.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Grob, Patricia; Nogales, Eva] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Nogales, Eva; Hurley, James H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Stanley, Robin E.] Natl Inst Diabet & Digest & Kidney Dis, Mol Biol Lab, NIH, Bethesda, MD 20892 USA. RP Nogales, E (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM enogales@lbl.gov; jimhurley@berkeley.edu RI Stjepanovic, Goran/A-7902-2010 OI Stjepanovic, Goran/0000-0002-4841-9949 FU National Institutes of Health [GM111730]; Damon Runyon Cancer Research Fellowship; L'Oreal USA Women in Science Fellowship; Human Frontiers Science Program [LT001037/2011-L] FX This work was supported by National Institutes of Health grant GM111730 (J.H.H.). R. E. S. was supported by a Damon Runyon Cancer Research Fellowship and a L'Oreal USA Women in Science Fellowship. L.-A. C was supported by a Long-Term Fellowship from the Human Frontiers Science Program (LT001037/2011-L). We thank David Taylor for assistance with the tilt pair validation. E.N. is a Howard Hughes Medical Institute Investigator. NR 60 TC 29 Z9 30 U1 2 U2 4 PU ELIFE SCIENCES PUBLICATIONS LTD PI CAMBRIDGE PA SHERATON HOUSE, CASTLE PARK, CAMBRIDGE, CB3 0AX, ENGLAND SN 2050-084X J9 ELIFE JI eLife PD DEC 9 PY 2014 VL 3 AR e05115 DI 10.7554/eLife.05115 PG 36 WC Biology SC Life Sciences & Biomedicine - Other Topics GA AW3FB UT WOS:000346170300002 ER PT J AU Hupin, G Quaglioni, S Navratil, P AF Hupin, Guillaume Quaglioni, Sofia Navratil, Petr TI Predictive theory for elastic scattering and recoil of protons from He-4 SO PHYSICAL REVIEW C LA English DT Article ID CROSS-SECTIONS; MICROSCOPIC MODEL; LAGRANGE MESH; HYDROGEN; HELIUM; IONS; NUCLEI; REGION; HALO; LI-5 AB Low-energy cross sections for elastic scattering and recoil of protons from He-4 nuclei (also known as a particles) are calculated directly by solving the Schrodinger equation for five nucleons interacting through accurate two- and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and depth profiles of either hydrogen or helium. We compare our results to available experimental data and show that direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets and can be used to predict these cross sections when measurements are not available. C1 [Hupin, Guillaume; Quaglioni, Sofia] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Navratil, Petr] TRIUMF, Vancouver, BC V6T 2A3, Canada. RP Hupin, G (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. EM ghupin@nd.edu; quaglioni1@llnl.gov; navratil@triumf.ca FU Lawrence Livermore National Laboratory (LLNL) Institutional Computing Grand Challenge program; LLNL [DE-AC52-07NA27344]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [SCW1158]; NSERC [401945-2011]; Canadian National Research Council FX Computing support for this work came from the Lawrence Livermore National Laboratory (LLNL) Institutional Computing Grand Challenge program. It was prepared in part by LLNL under Contract No. DE-AC52-07NA27344. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Work Proposal No. SCW1158, and by the NSERC Grant No. 401945-2011. TRIUMF receives funding via a contribution through the Canadian National Research Council. NR 49 TC 15 Z9 15 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD DEC 8 PY 2014 VL 90 IS 6 AR 061601 DI 10.1103/PhysRevC.90.061601 PG 5 WC Physics, Nuclear SC Physics GA AW1KI UT WOS:000346048000005 ER PT J AU Berman, D Erdemir, A Sumant, AV AF Berman, Diana Erdemir, Ali Sumant, Anirudha V. TI Graphene as a protective coating and superior lubricant for electrical contacts SO APPLIED PHYSICS LETTERS LA English DT Article ID SLIDING STEEL SURFACES; ELASTIC PROPERTIES; SHEETS; WEAR; RESISTANCE; FRICTION; LAYER AB Potential for graphene to be used as a lubricant for sliding electrical contacts has been evaluated. Graphene, being deposited as a sporadic flakes on the gold substrate sliding against titanium nitride ball shows not only significant improvement in tribological behavior by reducing both friction (by factor of 2-3) and wear (by 2 orders) but also, even more importantly, demonstrates stable and low electrical resistance at the sliding contacts undergoing thousands of sliding passes regardless of the test environment (i.e., both in humid and dry conditions). (C) 2014 AIP Publishing LLC. C1 [Berman, Diana; Sumant, Anirudha V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Erdemir, Ali] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Sumant, AV (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sumant@anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 29 TC 5 Z9 5 U1 13 U2 80 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 8 PY 2014 VL 105 IS 23 AR 231907 DI 10.1063/1.4903933 PG 4 WC Physics, Applied SC Physics GA AW4QO UT WOS:000346266000039 ER PT J AU Romanenko, A Grassellino, A Crawford, AC Sergatskov, DA Melnychuk, O AF Romanenko, A. Grassellino, A. Crawford, A. C. Sergatskov, D. A. Melnychuk, O. TI Ultra-high quality factors in superconducting niobium cavities in ambient magnetic fields up to 190 mG SO APPLIED PHYSICS LETTERS LA English DT Article AB Ambient magnetic field, if trapped in the penetration depth, leads to the residual resistance and therefore sets the limit for the achievable quality factors in superconducting niobium resonators for particle accelerators. Here, we show that a complete expulsion of the magnetic flux can be performed and leads to: (1) record quality factors Q > 2 x 10(11) up to accelerating gradient of 22 MV/m; (2) Q similar to 3 x 10(10) at 2K and 16 MV/m in up to 190 mG magnetic fields. This is achieved by large thermal gradients at the normal/superconducting phase front during the cooldown. Our findings open up a way to ultra-high quality factors at low temperatures and show an alternative to the sophisticated magnetic shielding implemented in modern superconducting accelerators. (C) 2014 Author(s). C1 [Romanenko, A.; Grassellino, A.; Crawford, A. C.; Sergatskov, D. A.; Melnychuk, O.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Romanenko, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM aroman@fnal.gov OI Crawford, Anthony C./0000-0003-4867-0495 FU US Department of Energy, Offices of High Energy and Nuclear Physics; [DE-AC02-07CH11359] FX This work was supported by the US Department of Energy, Offices of High Energy and Nuclear Physics. Authors would like to acknowledge technical assistance of A. Rowe, M. Merio, B. Golden, Y. Pischalnikov, B. Squires, G. Kirschbaum, D. Marks, and R. Ward for cavity preparation and testing. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 9 TC 15 Z9 15 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 8 PY 2014 VL 105 IS 23 AR 234103 DI 10.1063/1.4903808 PG 4 WC Physics, Applied SC Physics GA AW4QO UT WOS:000346266000106 ER PT J AU Nocton, G Booth, CH Maron, L Ricard, L Andersen, RA AF Nocton, Gregory Booth, Corwin H. Maron, Laurent Ricard, Louis Andersen, Richard A. TI Carbon-Hydrogen Bond Breaking and Making in the Open-Shell Singlet Molecule Cp*Yb-2(4,7-Me(2)phen) SO ORGANOMETALLICS LA English DT Article ID DECAMETHYLYTTERBOCENE COMPLEXES; PHENANTHROLINE LIGANDS; INTERMEDIATE-VALENCE; ELECTRON-TRANSFER; RADICAL-ANIONS; 1,10-PHENANTHROLINE; BIS(ETA-5-CYCLOPENTADIENYL)TITANIUM; BIPYRIDINES; STATES AB The adducts formed between the 4,7-Me-2-, 3,4,7,8-Me-4-, and 3,4,5,6,7,8-Me-6-phenanthroline ligands and Cp*Yb-2 are shown to have open-shell singlet ground states by magnetic susceptibility and LIII-edge XANES spectroscopy. Variable-temperature XANES data show that two singlet states are occupied in each adduct that are fit to a Boltzmann distribution for which Delta H = 5.75 kJ mol(-1) for the 4,7-Me(2)phen adduct. The results of a CASSCF calculation for the 4,7-Me(2)phen adduct indicates that three open-shell singlet states, SS1SS3, lie 0.44, 0.06. and 0.02 eV, respectively, below the triplet state. These results are in dramatic contrast to those acquired for the phenanthroline and 5,6-Me(2)phen adducts, which are ground state triplets ( J. Am. Chem. Soc. 2014, 136, 8626). A model that accounts for these differences is traced to the relative energies of the LUMO and LUMO+1 orbitals that depend on the position the methyl group occupies in the phenanthroline ligand. The model also accounts for the difference in reactivities of Cp*Yb-2(3,8-Me(2)phen) and Cp*Yb-2(4,7-Me(2)phen); the former forms a s CC bond between C(4)C(4'), and the latter undergoes CH bond cleavage at the methyl group on C(4) and leads to two products that cocrystallize: Cp*Yb-2(4-(CH2),7-Mephen), which has lost a hydrogen atom, and Cp*Yb-2(4,7-Me-2-4H-phen), which has gained a hydrogen atom. C1 [Nocton, Gregory; Andersen, Richard A.] CNRS, Ecole Polytech, Lab Chim Mol, F-91128 Palaiseau, France. [Nocton, Gregory; Andersen, Richard A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Booth, Corwin H.; Andersen, Richard A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Maron, Laurent] Univ Toulouse, INSA, UPS, CNRS,LPCNO,UMR 5215, F-31000 Toulouse, France. RP Nocton, G (reprint author), CNRS, Ecole Polytech, Lab Chim Mol, Route Saclay, F-91128 Palaiseau, France. RI Nocton, Greg/D-4435-2009 FU CNRS; Ecole Polytechnique; Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, Heavy Element Chemistry Program, of the U.S. Department of Energy [DE-AC02-05CH11231]; ABC 9440058088; Cines; CALMIP; Humboldt Foundation FX G.N. thanks the CNRS and Ecole Polytechnique for funding. Work at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, Heavy Element Chemistry Program, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. X-ray absorption data were collected at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. We thank Antonio DiPasquale and Fred Hollander at CHEXRAY Berkeley for their help with crystal structures and Wayne W. Lukens for the EPR spectrum and discussions. L.M. is a member of the Institut Universitaire de France. Cines and CALMIP are acknowledged for a generous grant of computing time. L.M. also thanks the Humboldt Foundation for a fellowship. NR 27 TC 6 Z9 6 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 EI 1520-6041 J9 ORGANOMETALLICS JI Organometallics PD DEC 8 PY 2014 VL 33 IS 23 BP 6819 EP 6829 DI 10.1021/om500843z PG 11 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA AW2JX UT WOS:000346114900015 ER PT J AU Amami, S Murray, A Stauffer, A Nixon, K Armstrong, G Colgan, J Madison, D AF Amami, Sadek Murray, Andrew Stauffer, Al Nixon, Kate Armstrong, Gregory Colgan, James Madison, Don TI Theoretical and experimental (e,2e) study of electron-impact ionization of laser-aligned Mg atoms SO PHYSICAL REVIEW A LA English DT Article AB We have performed calculations of the fully differential cross sections for electron-impact ionization of magnesium atoms. Three theoretical approximations, the time-dependent close coupling, the three-body distorted wave, and the distorted wave Born approximation, are compared with experiment in this article. Results will be shown for ionization of the 3s ground state of Mg for both asymmetric and symmetric coplanar geometries. Results will also be shown for ionization of the 3p state which has been excited by a linearly polarized laser which produces a charge cloud aligned perpendicular to the laser beam direction and parallel to the linear polarization. Theoretical and experimental results will be compared for several different alignment angles, both in the scattering plane as well as in the plane perpendicular to the incident beam direction. C1 [Amami, Sadek; Madison, Don] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA. [Murray, Andrew; Nixon, Kate] Univ Manchester, Photon Sci Inst, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Stauffer, Al] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Armstrong, Gregory; Colgan, James] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Amami, S (reprint author), Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA. RI Nixon, Kate/I-4968-2014 OI Nixon, Kate/0000-0002-1226-1879 FU United States National Science Foundation [PHY-1068237]; Libyan Ministry of Higher Education's Scholarship; Photon Science Institute at the University Of Manchester; European Commission for a Marie Curie International Incoming Fellowship; National Nuclear Security Administration of the US Department of Energy [DE-AC5206NA25396] FX . This work was supported, in part, by the United States National Science Foundation under Grant No. PHY-1068237 (S.A. and D.M.). S.A. would also like to thank the Libyan Ministry of Higher Education's Scholarship for funding. A.J.M. and K.L.N. would like to thank Dr. Alisdair McPherson for assistance with the dye laser, which was supplied by the Photon Science Institute at the University Of Manchester. K.L.N. also thanks the European Commission for a Marie Curie International Incoming Fellowship. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under Contract No. DE-AC5206NA25396. NR 21 TC 6 Z9 6 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD DEC 8 PY 2014 VL 90 IS 6 AR 062707 DI 10.1103/PhysRevA.90.062707 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA AW1JI UT WOS:000346045400009 ER PT J AU Lee, J Demura, S Stone, MB Iida, K Ehlers, G dela Cruz, CR Matsuda, M Deguchi, K Takano, Y Mizuguchi, Y Miura, O Louca, D Lee, SH AF Lee, J. Demura, S. Stone, M. B. Iida, K. Ehlers, G. dela Cruz, C. R. Matsuda, M. Deguchi, K. Takano, Y. Mizuguchi, Y. Miura, O. Louca, D. Lee, S. -H. TI Coexistence of ferromagnetism and superconductivity in CeO0.3F0.7BiS2 SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC-STRUCTURES; POWDER DIFFRACTION; CRITICAL FIELD; URHGE; RUSR2GDCU2O8; TEMPERATURE; TRANSPORT; PRESSURE; T=NI; GD AB Bulk magnetization, transport, and neutron scattering measurements were performed to investigate the electronic and magnetic properties of a polycrystalline sample of the newly discovered ferromagnetic superconductor, CeO0.3F0.7BiS2. Ferromagnetism develops below T-FM = 6.54(8) K and superconductivity is found to coexist with the ferromagnetic state below T-SC similar to 4.5 K. Inelastic neutron scattering measurements reveal a very weakly dispersive magnetic excitation at 1.8 meV that can be explained by an Ising-like spin Hamiltonian. Under application of an external magnetic field, the direction of the magnetic moment changes from the c axis to the ab plane and the 1.8 meV excitation splits into two modes. A possible mechanism for the unusual magnetism and its relation to superconductivity is discussed. C1 [Lee, J.; Iida, K.; Louca, D.; Lee, S. -H.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Lee, J.; Stone, M. B.; Ehlers, G.; dela Cruz, C. R.; Matsuda, M.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Demura, S.; Deguchi, K.; Takano, Y.; Mizuguchi, Y.] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan. [Mizuguchi, Y.; Miura, O.] Tokyo Metropolitan Univ, Dept Elect & Elect Engn, Hachioji, Tokyo 1920397, Japan. RP Lee, J (reprint author), Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. RI Stone, Matthew/G-3275-2011; Instrument, CNCS/B-4599-2012; Ehlers, Georg/B-5412-2008; Lee, Jooseop/A-5631-2016; Matsuda, Masaaki/A-6902-2016; dela Cruz, Clarina/C-2747-2013; OI Stone, Matthew/0000-0001-7884-9715; Ehlers, Georg/0000-0003-3513-508X; Lee, Jooseop/0000-0002-4413-5412; Matsuda, Masaaki/0000-0003-2209-9526; dela Cruz, Clarina/0000-0003-4233-2145; Takano, Yoshihiko/0000-0002-1541-6928 FU National Science Foundation [DMR-1404994]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The work at the University of Virginia has been supported by the National Science Foundation, Grant No. DMR-1404994. A portion of this research at ORNL's High Flux Isotope Reactor and Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 78 TC 10 Z9 10 U1 1 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 8 PY 2014 VL 90 IS 22 AR 224410 DI 10.1103/PhysRevB.90.224410 PG 8 WC Physics, Condensed Matter SC Physics GA AW1JO UT WOS:000346046000004 ER PT J AU Yang, JH Park, JS Kang, J Metzger, W Barnes, T Wei, SH AF Yang, Ji-Hui Park, Ji-Sang Kang, Joongoo Metzger, Wyatt Barnes, Teresa Wei, Su-Huai TI Tuning the Fermi level beyond the equilibrium doping limit through quenching: The case of CdTe SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; TOPOLOGICAL-INSULATOR; SEMICONDUCTORS; EFFICIENCY; SOLUBILITY; DEFECTS; ORIGIN AB The Fermi level of a material is a fundamental quantity that determines its electronic properties. Thus, the ability to tune Fermi levels is important for developing electronic device materials. However, for most materials, the Fermi level is limited to a certain range in the band gap due to the existence of certain intrinsic compensating defects. Here we demonstrate that quenching can be used as an effective way to overcome this limit, allowing the Fermi levels to be tuned in a much wider range. Taking a photovoltaic material CdTe as a prototype example, we analyzed the physical origin of Fermi level pinning and explained why growing the sample at high temperature followed by rapid quenching to room temperature can overcome the self-compensation limit. We further show that for CdTe, quenching can increase the Fermi level range from about 0.6 to 1.1 eV, which has a great potential in improving CdTe solar cell performance. Our proposed strategy of tuning Fermi level positions beyond the intrinsic equilibrium doping limit is general and can be applied to other semiconductor systems. C1 [Yang, Ji-Hui; Park, Ji-Sang; Metzger, Wyatt; Barnes, Teresa; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Kang, Joongoo] DGIST, Dept Emerging Mat Sci, Taegu 711873, South Korea. RP Yang, JH (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Suhuai.Wei@nrel.gov RI Park, Ji-Sang/F-9944-2010 OI Park, Ji-Sang/0000-0002-1374-8793 FU US Department of Energy, EERE/SunShot program [DE-AC36-08GO28308]; DGIST MIREBraiN Program FX The work at NREL is supported by the US Department of Energy, EERE/SunShot program, under Contract No. DE-AC36-08GO28308. The work at DGIST was supported by the DGIST MIREBraiN Program. NR 33 TC 17 Z9 17 U1 1 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD DEC 8 PY 2014 VL 90 IS 24 AR 245202 DI 10.1103/PhysRevB.90.245202 PG 5 WC Physics, Condensed Matter SC Physics GA AW1KC UT WOS:000346047300005 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Agnew, JP Alexeev, GD Alkhazov, G Alton, A Askew, A Atkins, S Augsten, K Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Borysova, M Brandt, A Brandt, O Brock, R Bross, A Brown, D Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Buszello, CP Camacho-Perez, E Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chan, KM Chandra, A Chapon, E Chen, G Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Das, A Davies, G de Jong, SJ De la Cruz-Burelo, E Deliot, F Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dubey, A Dudko, LV Duperrin, A Dutt, S Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, VN Faure, A Feng, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Garbincius, PH Garcia-Bellido, A Garcia-Gonzalez, JA Gavrilov, V Geng, W Gerber, CE Gershtein, Y Ginther, G Gogota, O Golovanov, G Grannis, PD Greder, S Greenlee, H Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De la Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hogan, J Hohlfeld, M Holzbauer, JL Howley, I Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jayasinghe, A Jeong, MS Jesik, R Jiang, P Johns, K Johnson, E Johnson, M Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kajfasz, E Karmanov, D Katsanos, I Kaur, M Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kiselevich, I Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Lammers, S Lebrun, P Lee, HS Lee, SW Lee, WM Lei, X Lellouch, J Li, D Li, H Li, L Li, QZ Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, H Liu, Y Lobodenko, A Lokajicek, M de Sa, RL Luna-Garcia, R Lyon, AL Maciel, AKA Madar, R Magana-Villalba, R Malik, S Malyshev, VL Mansour, J Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Mulhearn, M Nagy, E Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nguyen, HT Nunnemann, T Orduna, J Osman, N Osta, J Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Pleier, MA Podstavkov, VM Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Ratoff, PN Razumov, I Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Sajot, G Sanchez-Hernandez, A Sanders, MP Santos, AS Savage, G Savitskyi, M Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shaw, S Shchukin, AA Simak, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stoyanova, DA Strauss, M Suter, L Svoisky, P Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verkheev, AY Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weichert, J Welty-Rieger, L Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, S Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yin, H Yip, K Youn, SW Yu, JM Zennamo, J Zhao, TG Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Agnew, J. P. Alexeev, G. D. Alkhazov, G. Alton, A. Askew, A. Atkins, S. Augsten, K. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Borysova, M. Brandt, A. Brandt, O. Brock, R. Bross, A. Brown, D. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Buszello, C. P. Camacho-Perez, E. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Das, A. Davies, G. de Jong, S. J. De la Cruz-Burelo, E. Deliot, F. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dubey, A. Dudko, L. V. Duperrin, A. Dutt, S. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, V. N. Faure, A. Feng, L. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Garbincius, P. H. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Gavrilov, V. Geng, W. Gerber, C. E. Gershtein, Y. Ginther, G. Gogota, O. Golovanov, G. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De la Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hogan, J. Hohlfeld, M. Holzbauer, J. L. Howley, I. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jayasinghe, A. Jeong, M. S. Jesik, R. Jiang, P. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kajfasz, E. Karmanov, D. Katsanos, I. Kaur, M. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kiselevich, I. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Lammers, S. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, H. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Mansour, J. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Mulhearn, M. Nagy, E. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nguyen, H. T. Nunnemann, T. Orduna, J. Osman, N. Osta, J. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Pleier, M. -A. Podstavkov, V. M. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Ratoff, P. N. Razumov, I. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santos, A. S. Savage, G. Savitskyi, M. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shaw, S. Shchukin, A. A. Simak, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stoyanova, D. A. Strauss, M. Suter, L. Svoisky, P. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verkheev, A. Y. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, S. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. M. Zennamo, J. Zhao, T. G. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Observation and studies of double J/psi production at the Tevatron SO PHYSICAL REVIEW D LA English DT Article ID PSI-PSI-PRODUCTION; DOUBLE-PARTON SCATTERING; ROOT S=1.8 TEV; PP COLLISIONS; P(P)OVER-BAR COLLISIONS; RUN-II; DETECTOR; PHYSICS AB We present the observation of doubly produced J/psi mesons with the D0 detector at Fermilab in p (p) over bar collisions at root s = 1.96 TeV. The production cross section for both singly and doubly produced J/psi mesons is measured using a sample with an integrated luminosity of 8.1 fb(-1). For the first time, the double J/psi production cross section is separated into contributions due to single and double parton scatterings. Using these measurements, we determine the effective cross section seff, a parameter characterizing an effective spatial area of the parton-parton interactions and related to the parton spatial density inside the nucleon. C1 [Hensel, C.; Maciel, A. K. A.; Santos, A. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Han, L.; Jiang, P.; Liu, Y.; Yang, S.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont Ferrand, France. [Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Univ Aix Marseille, CNRS, IN2P3, CPPM, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chapon, E.; Couderc, F.; Deliot, F.; Faure, A.; Grohsjean, A.; Hubacek, Z.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, D-52062 Aachen, Germany. [Bernhard, R.; Madar, R.] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. [Brandt, O.; Deterre, C.; Mansour, J.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55122 Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kaur, M.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Jeong, M. S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De la Cruz-Burelo, E.; Garcia-Gonzalez, J. A.; Heredia-De la Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] Nikhef, Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Kiselevich, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] Inst Catalana Rec & Estudis Avancats, Barcelona, Spain. [Juste, A.] Inst Fis Altes Energies, Barcelona, Spain. [Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Borysova, M.; Gogota, O.; Savitskyi, M.] Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Imperial Coll London, London SW7 2AZ, England. [Agnew, J. P.; Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Peters, Y.; Petridis, K.; Price, D.; Schwanenberger, C.; Shaw, S.; Soeldner-Rembold, S.; Suter, L.; Vesterinen, M.; Wyatt, T. R.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Li, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Blessing, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Garbincius, P. H.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Herner, K.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; de Sa, R. Lopes; Lyon, A. L.; Melnitchouk, A.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Savage, G.; Verzocchi, M.; Wang, M. H. L. S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Williams, M. R. J.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barberis, E.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Neal, H. A.; Qian, J.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Johnson, E.; Linnemann, J.; Schwienhorst, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Holzbauer, J. L.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Haley, J.; Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Heintz, U.; Narain, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Ilchenko, Y.; Kehoe, R.; Liu, H.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Hogan, J.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Bandurin, D. V.; Hirosky, R.; Li, H.; Mulhearn, M.; Nguyen, H. T.] Univ Virginia, Charlottesville, VA 22904 USA. [Watts, G.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Gutierrez, Phillip/C-1161-2011; Yip, Kin/D-6860-2013; Sharyy, Viatcheslav/F-9057-2014; Dudko, Lev/D-7127-2012; Merkin, Mikhail/D-6809-2012; Li, Liang/O-1107-2015; Juste, Aurelio/I-2531-2015; OI Hoeneisen, Bruce/0000-0002-6059-4256; Yip, Kin/0000-0002-8576-4311; Beuselinck, Raymond/0000-0003-2613-7446; Sharyy, Viatcheslav/0000-0002-7161-2616; Dudko, Lev/0000-0002-4462-3192; Li, Liang/0000-0001-6411-6107; Sawyer, Lee/0000-0001-8295-0605; Hedin, David/0000-0001-9984-215X; Blessing, Susan/0000-0002-4455-7279; Duperrin, Arnaud/0000-0002-5789-9825; Bassler, Ursula/0000-0002-9041-3057; Filthaut, Frank/0000-0003-3338-2247; Ding, Pengfei/0000-0002-4050-1753; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Malik, Sudhir/0000-0002-6356-2655; Blazey, Gerald/0000-0002-7435-5758; Wahl, Horst/0000-0002-1345-0401; Gershtein, Yuri/0000-0002-4871-5449; Juste, Aurelio/0000-0002-1558-3291; de Jong, Sijbrand/0000-0002-3120-3367; Grohsjean, Alexander/0000-0003-0748-8494; Chapon, Emilien/0000-0001-6968-9828; Melnychuk, Oleksandr/0000-0002-2089-8685 FU Department of Energy and National Science Foundation (United States of America); Alternative Energies and Atomic Energy Commission and National Center for Scientific Research/ National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation (Russia); National Research Center "Kurchatov Institute" of the Russian Federation (Russia); Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology; Carlos Chagas Filho Foundation; State of Rio de Janeiro (Brazil); Department of Atomic Energy and Department of Science and Technology (India); Administrative Department of Science, Technology and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (The Netherlands); Science and Technology Facilities Council and The Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium fur Bildung und Forschung (Federal Ministry of Education and Research); Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences and National Natural Science Foundation of China (China); Ministry of Education and Science of Ukraine (Ukraine) FX We are grateful to the authors of the theoretical calculations, S. P. Baranov, N. P. Zotov, A. M. Snigirev, C.-F. Qiao, J.-P. Lansberg, H.-S. Shao, and M. Strikman for providing predictions and for many useful discussions. We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the Department of Energy and National Science Foundation (United States of America); Alternative Energies and Atomic Energy Commission and National Center for Scientific Research/ National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation, National Research Center "Kurchatov Institute" of the Russian Federation, and Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology and Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy and Department of Science and Technology (India); Administrative Department of Science, Technology and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (The Netherlands); Science and Technology Facilities Council and The Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium fur Bildung und Forschung (Federal Ministry of Education and Research) and Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences and National Natural Science Foundation of China (China); and Ministry of Education and Science of Ukraine (Ukraine). NR 39 TC 23 Z9 23 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 8 PY 2014 VL 90 IS 11 AR 111101 DI 10.1103/PhysRevD.90.111101 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AW1KK UT WOS:000346048200001 ER PT J AU Abeysekara, AU Alfaro, R Alvarez, C Alvarez, JD Arceo, R Arteaga-Velazquez, JC Solares, HAA Barber, AS Baughman, BM Bautista-Elivar, N Gonzalez, JB Belmont, E BenZvi, SY Berley, D Rosales, MB Braun, J Caballero-Lopez, RA Caballero-Mora, KS Carraminnana, A Castillo, M Cotti, U Cotzomi, J de la Fuente, E De Leon, C DeYoung, T Hernandez, RD Diaz-Cruz, L Diaz-Velez, JC Dingus, BL DuVernois, MA Ellsworth, RW Fiorino, DW Fraija, N Galindo, A Garfias, F Gonzalez, MM Goodman, JA Grabski, V Gussert, M Hampel-Arias, Z Harding, JP Hui, CM Huntemeyer, P Imran, A Iriarte, A Karn, P Kieda, D Kunde, GJ Lara, A Lauer, RJ Lee, WH Lennarz, D Vargas, HL Linares, EC Linnemann, JT Longo, M Luna-Garcia, R Marinelli, A Martinez, H Martinez, O Martinez-Castro, J Matthews, JAJ McEnery, J Torres, EM Miranda-Romagnoli, P Moreno, E Mostafa, M Nellen, L Newbold, M Noriega-Papaqui, R Oceguera-Becerra, T Patricelli, B Pelayo, R Perez-Perez, EG Pretz, J Riviere, C Rosa-Gonzalez, D Ryan, J Salazar, H Salesa, F Sanchez, FE Sandoval, A Schneider, M Silich, S Sinnis, G Smith, AJ Woodle, KS Springer, RW Taboada, I Toale, PA Tollefson, K Torres, I Ukwatta, TN Villasenor, L Weisgarber, T Westerhoff, S Wisher, IG Wood, J Yodh, GB Younk, PW Zaborov, D Zepeda, A Zhou, H Abazajian, KN AF Abeysekara, A. U. Alfaro, R. Alvarez, C. Alvarez, J. D. Arceo, R. Arteaga-Velazquez, J. C. Solares, H. A. Ayala Barber, A. S. Baughman, B. M. Bautista-Elivar, N. Gonzalez, J. Becerra Belmont, E. BenZvi, S. Y. Berley, D. Bonilla Rosales, M. Braun, J. Caballero-Lopez, R. A. Caballero-Mora, K. S. Carraminana, A. Castillo, M. Cotti, U. Cotzomi, J. de la Fuente, E. De Leon, C. DeYoung, T. Diaz Hernandez, R. Diaz-Cruz, L. Diaz-Velez, J. C. Dingus, B. L. DuVernois, M. A. Ellsworth, R. W. Fiorino, D. W. Fraija, N. Galindo, A. Garfias, F. Gonzalez, M. M. Goodman, J. A. Grabski, V. Gussert, M. Hampel-Arias, Z. Harding, J. P. Hui, C. M. Huentemeyer, P. Imran, A. Iriarte, A. Karn, P. Kieda, D. Kunde, G. J. Lara, A. Lauer, R. J. Lee, W. H. Lennarz, D. Leon Vargas, H. Linares, E. C. Linnemann, J. T. Longo, M. Luna-Garcia, R. Marinelli, A. Martinez, H. Martinez, O. Martinez-Castro, J. Matthews, J. A. J. McEnery, J. Mendoza Torres, E. Miranda-Romagnoli, P. Moreno, E. Mostafa, M. Nellen, L. Newbold, M. Noriega-Papaqui, R. Oceguera-Becerra, T. Patricelli, B. Pelayo, R. Perez-Perez, E. G. Pretz, J. Riviere, C. Rosa-Gonzalez, D. Ryan, J. Salazar, H. Salesa, F. Sanchez, F. E. Sandoval, A. Schneider, M. Silich, S. Sinnis, G. Smith, A. J. Woodle, K. Sparks Springer, R. W. Taboada, I. Toale, P. A. Tollefson, K. Torres, I. Ukwatta, T. N. Villasenor, L. Weisgarber, T. Westerhoff, S. Wisher, I. G. Wood, J. Yodh, G. B. Younk, P. W. Zaborov, D. Zepeda, A. Zhou, H. Abazajian, K. N. CA HAWC Collaboration TI Sensitivity of HAWC to high-mass dark matter annihilations SO PHYSICAL REVIEW D LA English DT Article ID DWARF SPHEROIDAL GALAXIES; GAMMA-RAY EMISSION; HALO; CONSTRAINTS; FERMI; SIMULATION; DETECTOR; SEARCH AB The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in central Mexico at 19 degrees North latitude and 4100 m above sea level, HAWC will observe gamma rays and cosmic rays with an array of water Cherenkov detectors. The full HAWC array is scheduled to be operational in Spring 2015. In this paper, we study the HAWC sensitivity to the gamma-ray signatures of high-mass (multi-TeV) dark matter annihilation. The HAWC observatory will be sensitive to diverse searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from nonluminous dark matter subhalos. Here we consider the HAWC sensitivity to a subset of these sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from these sources in several well-motivated dark matter annihilation channels. If no gamma-ray excess is observed, we show the limits HAWC can place on the dark matter cross section from these sources. In particular, in the case of dark matter annihilation into gauge bosons, HAWC will be able to detect a narrow range of dark matter masses to cross sections below thermal. HAWC should also be sensitive to nonthermal cross sections for masses up to nearly 1000 TeV. The constraints placed by HAWC on the dark matter cross section from known sources should be competitive with current limits in the mass range where HAWC has similar sensitivity. HAWC can additionally explore higher dark matter masses than are currently constrained. C1 [Abeysekara, A. U.; Linnemann, J. T.; Tollefson, K.; Ukwatta, T. N.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alfaro, R.; Belmont, E.; Grabski, V.; Leon Vargas, H.; Marinelli, A.; Oceguera-Becerra, T.; Sandoval, A.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 04510, DF, Mexico. [Alfaro, R.; Alvarez, C.; Baughman, B. M.; Gonzalez, J. Becerra; Berley, D.; Braun, J.; Ellsworth, R. W.; Gonzalez, M. M.; Goodman, J. A.; Smith, A. J.; Wood, J.] Univ Maryland, Dept Phys, College Pk, MD 20740 USA. [Alvarez, C.; Arceo, R.] Univ Autonoma Chiapas, CEFyMAP, Chiapas, Mexico. [Alvarez, J. D.; Arteaga-Velazquez, J. C.; Cotti, U.; De Leon, C.; Linares, E. C.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Solares, H. A. Ayala; Hui, C. M.; Huentemeyer, P.; Zhou, H.] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA. [Barber, A. S.; Kieda, D.; Newbold, M.; Springer, R. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Bautista-Elivar, N.; Perez-Perez, E. G.] Univ Politecn Pachuca, Pachuca, Hgo, Mexico. [Gonzalez, J. Becerra] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [BenZvi, S. Y.; Diaz-Velez, J. C.; DuVernois, M. A.; Fiorino, D. W.; Hampel-Arias, Z.; Imran, A.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bonilla Rosales, M.; Carraminana, A.; Diaz Hernandez, R.; Galindo, A.; Mendoza Torres, E.; Rosa-Gonzalez, D.; Silich, S.; Torres, I.] Inst Nacl Astrofis Opt & Electr, Puebla, Mexico. [Caballero-Lopez, R. A.; Lara, A.] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City 04510, DF, Mexico. [Caballero-Mora, K. S.; Martinez, H.; Sanchez, F. E.; Zepeda, A.] IPN, Ctr Invest & Estudios Avanzados, Dept Phys, Mexico City 07738, DF, Mexico. [Castillo, M.; Cotzomi, J.; Diaz-Cruz, L.; Martinez, O.; Moreno, E.; Salazar, H.] Benemerita Univ Autonoma Puebla, Fac Ciencias Fis & Matemat, Puebla, Mexico. [de la Fuente, E.; Oceguera-Becerra, T.] Ctr Univ Ciencias Exactas & Ingn, Dept Fis, Guadalajara, Jalisco, Mexico. [de la Fuente, E.; Oceguera-Becerra, T.] Univ Guadalajara, Ctr Univ Valles, Dept Ciencias Nat & Exactas, Guadalajara, Jalisco, Mexico. [DeYoung, T.; Mostafa, M.; Pretz, J.; Salesa, F.; Woodle, K. Sparks; Zaborov, D.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Dingus, B. L.; Harding, J. P.; Kunde, G. J.; Sinnis, G.; Younk, P. W.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Ellsworth, R. W.] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA. [Fraija, N.; Garfias, F.; Gonzalez, M. M.; Iriarte, A.; Lee, W. H.; Patricelli, B.; Riviere, C.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Gussert, M.; Longo, M.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Karn, P.; Yodh, G. B.; Abazajian, K. N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Lauer, R. J.; Matthews, J. A. J.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Lennarz, D.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Lennarz, D.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Luna-Garcia, R.; Martinez-Castro, J.; Pelayo, R.] Inst Politecn Nacl, Ctr Invest Computac, Mexico City, DF, Mexico. [McEnery, J.] Univ Autonoma Estado Hidalgo, Pachuca, Hidalgo, Mexico. [Miranda-Romagnoli, P.; Noriega-Papaqui, R.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Nellen, L.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Ryan, J.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Schneider, M.; Toale, P. A.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. RP Abeysekara, AU (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. EM bbaugh@umdgrb.umd.edu; jpharding@lanl.gov; kevork@uci.edu OI Dingus, Brenda/0000-0001-8451-7450; Lara, Alejandro/0000-0001-6336-5291; Becerra Gonzalez, Josefa/0000-0002-6729-9022 FU U.S. National Science Foundation (NSF); U.S. Department of Energy, Office of High-Energy Physics; Laboratory Directed Research and Development (LDRD) program of Los Alamos National Laboratory; Consejo Nacional de Ciencia y Tecnologia (CONACyT), Mexico; Red de Fisica de Altas Energias, Mexico; DGAPA-UNAM, Mexico [IN108713 IG100414-3]; Luc-Binette Foundation UNAM Postdoctoral Fellowship; University of Wisconsin Alumni Research Foundation; NSF CAREER [PHY-11-59224] FX We acknowledge the support from U.S. National Science Foundation (NSF); U.S. Department of Energy, Office of High-Energy Physics; The Laboratory Directed Research and Development (LDRD) program of Los Alamos National Laboratory; Consejo Nacional de Ciencia y Tecnologia (CONACyT), Mexico; Red de Fisica de Altas Energias, Mexico; DGAPA-UNAM IN108713 IG100414-3, Mexico; Luc-Binette Foundation UNAM Postdoctoral Fellowship; and the University of Wisconsin Alumni Research Foundation. K. N. A. is supported by NSF CAREER Grant No. PHY-11-59224. NR 69 TC 13 Z9 13 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 8 PY 2014 VL 90 IS 12 AR 122002 DI 10.1103/PhysRevD.90.122002 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AW1KN UT WOS:000346048500001 ER PT J AU Das, P Lin, SZ Ghimire, NJ Huang, K Ronning, F Bauer, ED Thompson, JD Batista, CD Ehlers, G Janoschek, M AF Das, Pinaki Lin, S. -Z. Ghimire, N. J. Huang, K. Ronning, F. Bauer, E. D. Thompson, J. D. Batista, C. D. Ehlers, G. Janoschek, M. TI Magnitude of the Magnetic Exchange Interaction in the Heavy-Fermion Antiferromagnet CeRhIn5 SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTUM PHASE-TRANSITIONS; KONDO-LATTICE; SUPERCONDUCTIVITY; METALS; EXCITATIONS; CRITICALITY; SCATTERING AB We have used high-resolution neutron spectroscopy experiments to determine the complete spin wave spectrum of the heavy-fermion antiferromagnet CeRhIn5. The spin wave dispersion can be quantitatively reproduced with a simple frustrated J(1)-J(2) model that also naturally explains the magnetic spin-spiral ground state of CeRhIn 5 and yields a dominant in-plane nearest-neighbor magnetic exchange constant J(0) = 0.74(3) meV. Our results pave the way to a quantitative understanding of the rich low-temperature phase diagram of the prominent CeTIn5 (T = Co, Rh, Ir) class of heavy-fermion materials. C1 [Das, Pinaki; Lin, S. -Z.; Ghimire, N. J.; Huang, K.; Ronning, F.; Bauer, E. D.; Thompson, J. D.; Janoschek, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Huang, K.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Ehlers, G.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Das, P (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mjanoschek@lanl.gov RI Das, Pinaki/C-2877-2012; Lin, Shi-Zeng/B-2906-2008; Instrument, CNCS/B-4599-2012; Janoschek, Marc/M-8871-2015; Ehlers, Georg/B-5412-2008; Batista, Cristian/J-8008-2016; OI Bauer, Eric/0000-0003-0017-1937; Lin, Shi-Zeng/0000-0002-4368-5244; Janoschek, Marc/0000-0002-2943-0173; Ehlers, Georg/0000-0003-3513-508X; Ronning, Filip/0000-0002-2679-7957 FU DOE; OBES; Division of Materials Sciences and Engineering; LANL Directed Research and Development program; Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy; Seaborg Institute Research Fellowship FX Work at Los Alamos National Laboratory (LANL) was performed under the auspices of the U. S. DOE, OBES, Division of Materials Sciences and Engineering and funded in part by the LANL Directed Research and Development program. Research conducted at SNS (CNCS instrument) was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. We are grateful to Monika Hartl and Luke Daemon for technical support when coaligning the sample mosaic by means of x-ray diffraction. We further acknowledge useful discussions with Jon Lawrence. K. H. acknowledges financial support through a Seaborg Institute Research Fellowship. NR 38 TC 9 Z9 9 U1 3 U2 38 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 8 PY 2014 VL 113 IS 24 AR 246403 DI 10.1103/PhysRevLett.113.246403 PG 5 WC Physics, Multidisciplinary SC Physics GA AW1LA UT WOS:000346049700008 PM 25541784 ER PT J AU Leemans, WP Gonsalves, AJ Mao, HS Nakamura, K Benedetti, C Schroeder, CB Toth, C Daniels, J Mittelberger, DE Bulanov, SS Vay, JL Geddes, CGR Esarey, E AF Leemans, W. P. Gonsalves, A. J. Mao, H. -S. Nakamura, K. Benedetti, C. Schroeder, C. B. Toth, Cs. Daniels, J. Mittelberger, D. E. Bulanov, S. S. Vay, J. -L. Geddes, C. G. R. Esarey, E. TI Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime SO PHYSICAL REVIEW LETTERS LA English DT Article ID PLASMA; ACCELERATOR; RAYS AB Multi-GeV electron beams with energy up to 4.2 GeV, 6% rms energy spread, 6 pC charge, and 0.3 mrad rms divergence have been produced from a 9-cm-long capillary discharge waveguide with a plasma density of approximate to 7 x 10(17) cm(-3), powered by laser pulses with peak power up to 0.3 PW. Preformed plasma waveguides allow the use of lower laser power compared to unguided plasma structures to achieve the same electron beam energy. A detailed comparison between experiment and simulation indicates the sensitivity in this regime of the guiding and acceleration in the plasma structure to input intensity, density, and near-field laser mode profile. C1 [Leemans, W. P.; Gonsalves, A. J.; Mao, H. -S.; Nakamura, K.; Benedetti, C.; Schroeder, C. B.; Toth, Cs.; Daniels, J.; Mittelberger, D. E.; Bulanov, S. S.; Vay, J. -L.; Geddes, C. G. R.; Esarey, E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Leemans, W. P.; Mittelberger, D. E.; Bulanov, S. S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Leemans, WP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM WPLeemans@lbl.gov RI Daniels, Joost/N-2378-2015; OI Daniels, Joost/0000-0002-9480-6077; Schroeder, Carl/0000-0002-9610-0166 FU Office of Science, Office of High Energy Physics of the U.S. Department of Energy [DE-AC02-05CH11231, DE-FG02-12ER41798] FX This work was supported by the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under Contracts No. DE-AC02-05CH11231 and No. DE-FG02-12ER41798. The authors gratefully acknowledge technical support from Dave Evans, Mark Kirkpatrick, Art Magana, Greg Mannino, Joe Riley, Ken Sihler, Ohmar Sowle, Tyler Sipla, Don Syversrud, and Nathan Ybarrolaza, as well as the THALES laser team for the development of the BELLA laser. We also thank Jeroen van Tilborg, Nicholas Matlis, Nadezhda Bobrova, Sergey Bulanov, and Krishnan Mahadevan for their contributions and discussions. NR 26 TC 167 Z9 170 U1 10 U2 72 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 8 PY 2014 VL 113 IS 24 AR 245002 DI 10.1103/PhysRevLett.113.245002 PG 5 WC Physics, Multidisciplinary SC Physics GA AW1LA UT WOS:000346049700006 PM 25541775 ER PT J AU Wuosmaa, AH Schiffer, JP Bedoor, S Albers, M Alcorta, M Almaraz-Calderon, S Back, BB Bertone, PF Deibel, CM Hoffman, CR Lighthall, JC Marley, ST Pardo, RC Rehm, KE Shetty, DV AF Wuosmaa, A. H. Schiffer, J. P. Bedoor, S. Albers, M. Alcorta, M. Almaraz-Calderon, S. Back, B. B. Bertone, P. F. Deibel, C. M. Hoffman, C. R. Lighthall, J. C. Marley, S. T. Pardo, R. C. Rehm, K. E. Shetty, D. V. TI Stretched states in B-12,B-13 with the (d, alpha) reaction SO PHYSICAL REVIEW C LA English DT Article ID SCATTERING CROSS-SECTIONS; ELASTIC-SCATTERING; MICROSCOPIC MODEL; LAGRANGE MESH; RECOIL; HYDROGEN; PROTONS; HELIUM; IONS; NUCLEI AB The (d, alpha) reaction is highly selective, favoring final states in which the removed neutron and proton are completely aligned in a J = 2j configuration. We have studied the C-14,C-15(d, alpha)B-12,B-13 reactions in inverse kinematics using the Helical Orbit Spectrometer (HELIOS) at Argonne National Laboratory. In B-12, the reaction strongly favors the population of a known 3(+) state at 5.61 MeV, and for B-13, we observe a possible unreported doublet of states at high excitation energy, probably corresponding to the B-12(3(+)) state coupled to the 1s(1/2) neutron from the C-15 ground state. In contrast to single-nucleon transfer, deuteron-transfer reactions have not been widely studied with exotic nuclei. C1 [Wuosmaa, A. H.; Bedoor, S.; Lighthall, J. C.; Marley, S. T.; Shetty, D. V.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Wuosmaa, A. H.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Schiffer, J. P.; Albers, M.; Alcorta, M.; Almaraz-Calderon, S.; Back, B. B.; Bertone, P. F.; Hoffman, C. R.; Marley, S. T.; Pardo, R. C.; Rehm, K. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Deibel, C. M.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. RP Wuosmaa, AH (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. RI Alcorta, Martin/G-7107-2011; Hoffman, Calem/H-4325-2016 OI Alcorta, Martin/0000-0002-6217-5004; Hoffman, Calem/0000-0001-7141-9827 FU LLNL [DE-AC52-07NA27344]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [SCW1158]; NSERC [401945-2011]; Canadian National Research Council FX Computing support for this work came from the Lawrence Livermore National Laboratory (LLNL) Institutional Computing Grand Challenge program. It was prepared in part by LLNL under Contract No. DE-AC52-07NA27344. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Work Proposal No. SCW1158, and by the NSERC Grant No. 401945-2011. TRIUMF receives funding via a contribution through the Canadian National Research Council. NR 45 TC 1 Z9 1 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD DEC 8 PY 2014 VL 90 IS 6 AR 061301 DI 10.1103/PhysRevC.90.061301 PG 10 WC Physics, Nuclear SC Physics GA AW1KI UT WOS:000346048000001 ER PT J AU Bogomilov, M Matev, R Tsenov, R Dracos, M Bonesini, M Palladino, V Tortora, L Mori, Y Planche, T Lagrange, JB Kuno, Y Benedetto, E Efthymiopoulos, I Garoby, R Gilardoini, S Martini, M Wildner, E Prior, G Blondel, A Karadzhow, Y Ellis, M Kyberd, P Bayes, R Laing, A Soler, FJP Alekou, A Apollonio, M Aslaninejad, M Bontoiu, C Jenner, LJ Kurup, A Long, K Pasternak, J Zarrebini, A Poslimski, J Blackmore, V Cobb, J Tunnell, C Andreopoulos, C Bennett, JRJ Brooks, S Caretta, O Davenne, T Densham, C Edgecock, TR Fitton, M Kelliher, D Loveridge, P McFarland, A Machida, S Prior, C Rees, G Rogers, C Rooney, M Thomason, J Wilcox, D Booth, C Skoro, G Back, JJ Harrison, P Berg, JS Fernow, R Gallardo, JC Gupta, R Kirk, H Simos, N Stratakis, D Souchlas, N Witte, H Bross, A Geer, S Johnstone, C Makhov, N Neuffer, D Popovic, M Strait, J Striganov, S Morfin, JG Wands, R Snopok, P Bagacz, SA Morozov, V Roblin, Y Cline, D Ding, X Bromberg, C Hart, T Abrams, RJ Ankenbrandt, CM Beard, KB Cummings, MAC Flanagan, G Johnson, RP Roberts, TJ Yoshikawa, CY Graves, VB McDonald, KT Coney, L Hanson, G AF Bogomilov, M. Matev, R. Tsenov, R. Dracos, M. Bonesini, M. Palladino, V. Tortora, L. Mori, Y. Planche, T. Lagrange, J. B. Kuno, Y. Benedetto, E. Efthymiopoulos, I. Garoby, R. Gilardoini, S. Martini, M. Wildner, E. Prior, G. Blondel, A. Karadzhow, Y. Ellis, M. Kyberd, P. Bayes, R. Laing, A. Soler, F. J. P. Alekou, A. Apollonio, M. Aslaninejad, M. Bontoiu, C. Jenner, L. J. Kurup, A. Long, K. Pasternak, J. Zarrebini, A. Poslimski, J. Blackmore, V. Cobb, J. Tunnell, C. Andreopoulos, C. Bennett, J. R. J. Brooks, S. Caretta, O. Davenne, T. Densham, C. Edgecock, T. R. Fitton, M. Kelliher, D. Loveridge, P. McFarland, A. Machida, S. Prior, C. Rees, G. Rogers, C. Rooney, M. Thomason, J. Wilcox, D. Booth, C. Skoro, G. Back, J. J. Harrison, P. Berg, J. S. Fernow, R. Gallardo, J. C. Gupta, R. Kirk, H. Simos, N. Stratakis, D. Souchlas, N. Witte, H. Bross, A. Geer, S. Johnstone, C. Makhov, N. Neuffer, D. Popovic, M. Strait, J. Striganov, S. Morfin, J. G. Wands, R. Snopok, P. Bagacz, S. A. Morozov, V. Roblin, Y. Cline, D. Ding, X. Bromberg, C. Hart, T. Abrams, R. J. Ankenbrandt, C. M. Beard, K. B. Cummings, M. A. C. Flanagan, G. Johnson, R. P. Roberts, T. J. Yoshikawa, C. Y. Graves, V. B. McDonald, K. T. Coney, L. Hanson, G. TI Neutrino factory SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID ACCELERATION; BEAM AB The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed. C1 [Bogomilov, M.; Matev, R.; Tsenov, R.] Sofia Univ St Kliment Ohridski, Dept Atom Phys, BG-1164 Sofia, Bulgaria. [Dracos, M.] Univ Strasbourg, CNRS, IN2P3, IPHC, F-67037 Strasbourg, France. [Bonesini, M.] Ist Nazl Fis Nucl, Sez Milano Bicocca, Milan, Italy. [Palladino, V.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Palladino, V.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Tortora, L.] Ist Nazl Fis Nucl, Sez Roma 3, Rome, Italy. [Mori, Y.; Planche, T.; Lagrange, J. B.] Kyoto Univ, Inst Res Reactor, Kumatori, Osaka 5900494, Japan. [Kuno, Y.] Osaka Univ, Grad Sch, Sch Sci, Toyonaka, Osaka 5600043, Japan. [Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.] CERN, CH-1211 Geneva 23, Switzerland. [Blondel, A.; Karadzhow, Y.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Ellis, M.; Kyberd, P.] Brunel Univ West London, Uxbridge UB8 3PH, Middx, England. [Bayes, R.; Laing, A.; Soler, F. J. P.] Univ Glasgow, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, London SW7 2AZ, England. [Blackmore, V.; Cobb, J.; Tunnell, C.] Particle Phys Dept, Oxford OX1 3RH, England. [Andreopoulos, C.; Bennett, J. R. J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.] STFC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Booth, C.; Skoro, G.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Back, J. J.; Harrison, P.] Univ Warwick, Coventry CV4 7AL, W Midlands, England. [Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfin, J. G.; Wands, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Snopok, P.] IIT, Chicago, IL 60616 USA. [Bagacz, S. A.; Morozov, V.; Roblin, Y.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Cline, D.; Ding, X.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Bromberg, C.] Michigan State Univ, E Lansing, MI 48824 USA. [Hart, T.] Univ Mississippi, Dept Phys & Astron, University, MS 38677 USA. [Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A. C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.] Muons Inc, Batavia, IL 60510 USA. [Graves, V. B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [McDonald, K. T.] Princeton Univ, Princeton, NJ 08544 USA. [Coney, L.; Hanson, G.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. RP Poslimski, J (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, Exhibition Rd, London SW7 2AZ, England. EM j.pozimski@imperial.ac.uk RI Soler, Paul/E-8464-2011; Skoro, Goran/P-1229-2014; Booth, Christopher/B-5263-2016; OI Soler, Paul/0000-0002-4893-3729; Skoro, Goran/0000-0001-7745-9045; Bonesini, Maurizio/0000-0001-5119-1896; Booth, Christopher/0000-0002-6051-2847; Dracos, Marcos/0000-0003-0514-193X; Johnson, Rolland/0000-0001-7205-1913; Edgecock, Rob/0000-0002-7896-3312 FU European Community under the European Commission Framework Programme 7 Design Study: EUROnu [212372]; Science and Technologies Facilities Council (UK) FX The work reported here was supported by the European Community under the European Commission Framework Programme 7 Design Study: EURO nu, Project Number 212372. We also thank the Science and Technologies Facilities Council (UK) for the support of the work performed. We gratefully acknowledge the work of many of our colleagues within the muon beams for particle physics community without their contributions the progress in the design of a Neutrino Factory would have been very limited. We are indebted to the IDS-NF collaboration which has provided context within which the work reported has been carried out. NR 80 TC 3 Z9 3 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC 8 PY 2014 VL 17 IS 12 AR 121002 DI 10.1103/PhysRevSTAB.17.121002 PG 14 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AW1LC UT WOS:000346049900003 ER PT J AU Waisman, EM McBride, RD Cuneo, ME Wenger, DF Fowler, WE Johnson, WA Basilio, LI Coats, RS Jennings, CA Sinars, DB Vesey, RA Jones, B Ampleford, DJ Lemke, RW Martin, MR Schrafel, PC Lewis, SA Moore, JK Savage, ME Stygar, WA AF Waisman, E. M. McBride, R. D. Cuneo, M. E. Wenger, D. F. Fowler, W. E. Johnson, W. A. Basilio, L. I. Coats, R. S. Jennings, C. A. Sinars, D. B. Vesey, R. A. Jones, B. Ampleford, D. J. Lemke, R. W. Martin, M. R. Schrafel, P. C. Lewis, S. A. Moore, J. K. Savage, M. E. Stygar, W. A. TI Voltage measurements at the vacuum post-hole convolute of the Z pulsed-power accelerator SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID DIVIDER AB Presented are voltage measurements taken near the load region on the Z pulsed-power accelerator using an inductive voltage monitor (IVM). Specifically, the IVM was connected to, and thus monitored the voltage at, the bottom level of the accelerator's vacuum double post-hole convolute. Additional voltage and current measurements were taken at the accelerator's vacuum-insulator stack (at a radius of 1.6 m) by using standard D-dot and B-dot probes, respectively. During postprocessing, the measurements taken at the stack were translated to the location of the IVM measurements by using a lossless propagation model of the Z accelerator's magnetically insulated transmission lines (MITLs) and a lumped inductor model of the vacuum post-hole convolute. Across a wide variety of experiments conducted on the Z accelerator, the voltage histories obtained from the IVM and the lossless propagation technique agree well in overall shape and magnitude. However, large-amplitude, high-frequency oscillations are more pronounced in the IVM records. It is unclear whether these larger oscillations represent true voltage oscillations at the convolute or if they are due to noise pickup and/or transit-time effects and other resonant modes in the IVM. Results using a transit-time-correction technique and Fourier analysis support the latter. Regardless of which interpretation is correct, both true voltage oscillations and the excitement of resonant modes could be the result of transient electrical breakdowns in the post-hole convolute, though more information is required to determine definitively if such breakdowns occurred. Despite the larger oscillations in the IVM records, the general agreement found between the lossless propagation results and the results of the IVM shows that large voltages are transmitted efficiently through the MITLs on Z. These results are complementary to previous studies [R. D. McBride et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010)] that showed efficient transmission of large currents through the MITLs on Z. Taken together, the two studies demonstrate the overall efficient delivery of very large electrical powers through the MITLs on Z. C1 [Waisman, E. M.; McBride, R. D.; Cuneo, M. E.; Wenger, D. F.; Fowler, W. E.; Johnson, W. A.; Basilio, L. I.; Coats, R. S.; Jennings, C. A.; Sinars, D. B.; Vesey, R. A.; Jones, B.; Ampleford, D. J.; Lemke, R. W.; Martin, M. R.; Schrafel, P. C.; Lewis, S. A.; Moore, J. K.; Savage, M. E.; Stygar, W. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Schrafel, P. C.] Cornell Univ, Plasma Studies Lab, Ithaca, NY 14853 USA. RP Waisman, EM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU United States Department of Energy's National Nuclear Security Administration [DE-AC0-494AL85000] FX The authors thank two anonymous reviewers for their very helpful comments and suggestions, particularly for those related to approximating the inductance of the IVM probe. The authors also thank M. K. Matzen, M. C. Herrmann, and J. L. Porter for programmatic support, M. Cleveland, T. J. Rogers, D. Sandoval, R. L. Harmon, and A. C. Owen for their assistance with the design, analysis, and fabrication of the IVM-compatible debris inhibitor, M. Jones, M. R. Lopez, A. D. Edens, J. W. Weed, R. D. Thomas, and T. C. Wagoner for reviewing the IVM design for use on Z, T. D. Mulville, E. W. Breden, and the rest of the Z center section crew for their technical assistance with fielding the IVM on Z, and the Z operations, engineering, pulsed-power, diagnostics, LTGS support, CMDAS support, load hardware design, A. Maurer, L. Molina, and the rest of load hardware assembly, target fabrication, management, administrative support, and the dynamic material properties, K-shell x-ray sources, and ICF research groups for their general assistance with various activities on Z. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin company, for the United States Department of Energy's National Nuclear Security Administration, under Contract No. DE-AC0-494AL85000. NR 42 TC 1 Z9 1 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC 8 PY 2014 VL 17 IS 12 AR 120401 DI 10.1103/PhysRevSTAB.17.120401 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AW1LC UT WOS:000346049900001 ER PT J AU Ahrenkie, RK Johnston, SW Kuciauskas, D Tynan, J AF Ahrenkie, R. K. Johnston, S. W. Kuciauskas, D. Tynan, Jerry TI Dual-sensor technique for characterization of carrier lifetime decay transients in semiconductors SO JOURNAL OF APPLIED PHYSICS LA English DT Article AB This work addresses the frequent discrepancy between transient photoconductive (PC) decay and transient photoluminescence (PL) decay. With this dual-sensor technique, one measures the transient PC and PL decay simultaneously with the same incident light pulse, removing injection-level uncertainty. Photoconductive decay measures the transient photoconductivity, Delta sigma(t). PCD senses carriers released from shallow traps as well as the photo-generated electron-hole pairs. In addition, variations in carrier mobility with injection level (and time) contribute to the decay time. PL decay senses only electron-hole recombination via photon emission. Theory and experiment will show that the time dependence of the two techniques can be quite different at high injection. C1 [Ahrenkie, R. K.; Johnston, S. W.; Kuciauskas, D.; Tynan, Jerry] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Ahrenkie, R. K.] Lakewood Semicond LLC, Lakewood, CO 80232 USA. RP Ahrenkie, RK (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. FU National Renewable Energy Laboratory as a part of the Non-Proprietary Partnering Program [DE-AC36-08-GO28308]; U.S. Department of Energy FX This work was supported by the National Renewable Energy Laboratory as a part of the Non-Proprietary Partnering Program under Contract No. DE-AC36-08-GO28308 with the U.S. Department of Energy. NR 8 TC 0 Z9 1 U1 2 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 7 PY 2014 VL 116 IS 21 AR 214510 DI 10.1063/1.4903213 PG 7 WC Physics, Applied SC Physics GA AW0TU UT WOS:000346007400057 ER PT J AU Jamer, ME Assaf, BA Sterbinsky, GE Arena, DA Heiman, D AF Jamer, M. E. Assaf, B. A. Sterbinsky, G. E. Arena, D. A. Heiman, D. TI Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ALLOYS AB Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. The results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value. (C) 2014 AIP Publishing LLC. C1 [Jamer, M. E.; Assaf, B. A.; Heiman, D.] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Sterbinsky, G. E.; Arena, D. A.] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. RP Jamer, ME (reprint author), Northeastern Univ, Dept Phys, Boston, MA 02115 USA. OI Jamer, Michelle/0000-0001-5316-8817 FU National Science Foundation [DMR-0907007, ECCS-1402738]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We thank T. Devakul for his work on the samples. M.E.J. acknowledges M. Loving's advice on XMCD analysis. The work was supported by the National Science Foundation Grants DMR-0907007 and ECCS-1402738. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 21 TC 8 Z9 8 U1 3 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 7 PY 2014 VL 116 IS 21 AR 213914 DI 10.1063/1.4903771 PG 4 WC Physics, Applied SC Physics GA AW0TU UT WOS:000346007400030 ER PT J AU Schwartz, J Aloni, S Ogletree, DF Tomut, M Bender, M Severin, D Trautmann, C Rangelow, IW Schenkel, T AF Schwartz, J. Aloni, S. Ogletree, D. F. Tomut, M. Bender, M. Severin, D. Trautmann, C. Rangelow, I. W. Schenkel, T. TI Local formation of nitrogen-vacancy centers in diamond by swift heavy ions SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID COLOR-CENTERS; IMPLANTATION; SPINS AB We exposed nitrogen-implanted diamonds to beams of swift heavy ions (similar to 1 GeV, similar to 4 MeV/u) and find that these irradiations lead directly to the formation of nitrogen vacancy (NV) centers, without thermal annealing. We compare the photoluminescence intensities of swift heavy ion activated NV- centers to those formed by irradiation with low-energy electrons and by thermal annealing. NV- yields from irradiations with swift heavy ions are 0.1 of yields from low energy electrons and 0.02 of yields from thermal annealing. We discuss possible mechanisms of NV center formation by swift heavy ions such as electronic excitations and thermal spikes. While forming NV centers with low efficiency, swift heavy ions could enable the formation of three dimensional NV- assemblies over relatively large distances of tens of micrometers. Further, our results show that NV center formation is a local probe of (partial) lattice damage relaxation induced by electronic excitations from swift heavy ions in diamond. (C) 2014 AIP Publishing LLC. C1 [Schwartz, J.; Schenkel, T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Accelerator Technol & Appl Phys Div, Berkeley, CA 94720 USA. [Schwartz, J.; Rangelow, I. W.] Ilmenau Univ Technol, Dept Microelect & Nanoelect Syst, D-98684 Ilmenau, Germany. [Aloni, S.; Ogletree, D. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Tomut, M.; Bender, M.; Severin, D.; Trautmann, C.] GSI Helmholtz Ctr Heavy Ion Res, D-64291 Darmstadt, Germany. [Trautmann, C.] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. RP Schenkel, T (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Accelerator Technol & Appl Phys Div, Berkeley, CA 94720 USA. EM T_Schenkel@lbl.gov RI Foundry, Molecular/G-9968-2014; Ogletree, D Frank/D-9833-2016 OI Ogletree, D Frank/0000-0002-8159-0182 FU Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Laboratory Directed Research and Development Program FX This work was performed in part at the Molecular Foundry and the National Center for Electron Microscopy at Lawrence Berkeley National Laboratory and was supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and by the Laboratory Directed Research and Development Program. NR 31 TC 2 Z9 2 U1 3 U2 26 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 7 PY 2014 VL 116 IS 21 AR 214107 DI 10.1063/1.4903075 PG 6 WC Physics, Applied SC Physics GA AW0TU UT WOS:000346007400037 ER PT J AU El-Khoury, PZ Khon, E Gong, Y Joly, AG Abelian, P Evans, JE Browning, ND Hu, DH Zamkov, M Hess, WP AF El-Khoury, Patrick Z. Khon, Elena Gong, Yu Joly, Alan G. Abelian, Patricia Evans, James E. Browning, Nigel D. Hu, Dehong Zamkov, Mikhail Hess, Wayne P. TI Electric field enhancement in a self-assembled 2D array of silver nanospheres SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ULTRATHIN GOLD NANOWIRES; RAMAN-SCATTERING; SURFACE; NANOPARTICLES; PLASMONS; OLEYLAMINE; SPECTRA; DIMERS; AUCL AB We investigate the plasmonic properties of a self-assembled 2D array of Ag nanospheres (average particle diameter/inter-particle separation distance of 9/3.7 nm). The structures of the individual particles and their assemblies are characterized using high-resolution transmission electron microscopy (HR-TEM). The plasmonic response of the nanoparticle network is probed using two-photon photoemission electron microscopy (TP-PEEM). HR-TEM and TP-PEEM statistics reveal the structure and plasmonic response of the network to be homogeneous on average. This translates into a relatively uniform surface-enhanced Raman scattering (SERS) response from biphenyl, 4-4'-dithiol (BPDT) molecules adsorbed onto different sites of the network. Reproducible, bright, and low-background SERS spectra are recorded and assigned on the basis of density functional theory calculations in which BPDT is chemisorbed onto the vertex of a finite tetrahedral Ag cluster consisting of 20 Ag atoms. A notable agreement between experiment and theory allows us to rigorously account for the observable vibrational states of BPDT in the similar to 200-2200 cm(-1) region of the spectrum. Finite difference time domain simulations further reveal that physical enhancement factors on the order of 10(6) are attainable at the nanogaps formed between the silver nanospheres in the 2D array. Combined with modest chemical enhancement factors, this study paves the way for reproducible single molecule signals from an easily self-assembled SERS substrate. (C) 2014 AIP Publishing LLC. C1 [El-Khoury, Patrick Z.; Gong, Yu; Joly, Alan G.; Abelian, Patricia; Browning, Nigel D.; Hess, Wayne P.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Khon, Elena; Hu, Dehong; Zamkov, Mikhail] Bowling Green State Univ, Dept Phys, Bowling Green, OH 43403 USA. [Khon, Elena; Hu, Dehong; Zamkov, Mikhail] Bowling Green State Univ, Ctr Photochem Sci, Bowling Green, OH 43403 USA. [Evans, James E.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP El-Khoury, PZ (reprint author), Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. EM patrick.elkhoury@pnnl.gov; wayne.hess@pnnl.gov RI Hu, Dehong/B-4650-2010; Abellan, Patricia/G-4255-2011; Gong, Yu /I-9950-2014; OI Hu, Dehong/0000-0002-3974-2963; Abellan, Patricia/0000-0002-5797-1102; Gong, Yu /0000-0002-9357-9503; Browning, Nigel/0000-0003-0491-251X FU Laboratory Directed Research and Development Program through a Linus Pauling Fellowship at Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Division of Chemical Sciences, Geosciences and Biosciences; Chemical Imaging Initiative, under the Laboratory Directed Research and Development Program at PNNL; DOE's Office of Biological and Environmental Research FX P.Z.E. acknowledges support from the Laboratory Directed Research and Development Program through a Linus Pauling Fellowship at Pacific Northwest National Laboratory (PNNL), an allocation of computing time from the National Science Foundation (TG-CHE130003), and the use of the Extreme Science and Engineering Discovery Environment. W.P.H. acknowledges support from the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Division of Chemical Sciences, Geosciences and Biosciences. The TBM work was supported through the Chemical Imaging Initiative, under the Laboratory Directed Research and Development Program at PNNL. Part of this work was performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is a multiprogram national laboratory operated for DOE by Battelle. NR 31 TC 2 Z9 2 U1 4 U2 85 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 7 PY 2014 VL 141 IS 21 AR 214308 DI 10.1063/1.4902905 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AW0XJ UT WOS:000346014200025 PM 25481145 ER PT J AU Hu, W Lin, L Yang, C Yang, JL AF Hu, Wei Lin, Lin Yang, Chao Yang, Jinlong TI Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID FINITE-LENGTH MODELS; CLAR SEXTET THEORY; QUANTUM DOTS; CARBON NANOTUBES; HALF-METALLICITY; NANORIBBONS; ZIGZAG; HYDROCARBONS; MAGNETISM; FILMS AB With the help of the recently developed SIESTA-pole (Spanish Initiative for Electronic Simulations with Thousands of Atoms) - PEXSI (pole expansion and selected inversion) method [L. Lin, A. Garcia, G. Huhs, and C. Yang, J. Phys.: Condens. Matter 26, 305503 (2014)], we perform Kohn-Sham density functional theory calculations to study the stability and electronic structure of hydrogen passivated hexagonal graphene nanoflakes (GNFs) with up to 11 700 atoms. We find the electronic properties of GNFs, including their cohesive energy, edge formation energy, highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap, edge states, and aromaticity, depend sensitively on the type of edges (armchair graphene nanoflakes (ACGNFs) and zigzag graphene nanoflakes (ZZGNFs)), size and the number of electrons. We observe that, due to the edge-induced strain effect in ACGNFs, large-scale ACGNFs' edge formation energy decreases as their size increases. This trend does not hold for ZZGNFs due to the presence of many edge states in ZZGNFs. We find that the energy gaps Eg of GNFs all decay with respect to 1/L, where L is the size of the GNF, in a linear fashion. But as their size increases, ZZGNFs exhibit more localized edge states. We believe the presence of these states makes their gap decrease more rapidly. In particular, when L is larger than 6.40 nm, we find that ZZGNFs exhibit metallic characteristics. Furthermore, we find that the aromatic structures of GNFs appear to depend only on whether the system has 4N or 4N + 2 electrons, where N is an integer. (C) 2014 AIP Publishing LLC. C1 [Hu, Wei; Lin, Lin; Yang, Chao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Lin, Lin] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA. [Yang, Jinlong] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Yang, Jinlong] Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Anhui, Peoples R China. [Yang, Jinlong] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China. RP Hu, W (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. EM whu@lbl.gov; linlin@lbl.gov; cyang@lbl.gov; jlyang@ustc.edu.cn RI Yang, Jinlong/D-3465-2009; OI Yang, Jinlong/0000-0002-5651-5340; Hu, Wei/0000-0001-9629-2121 FU National Key Basic Research Program [2011CB921404, 2012CB922001]; National Science Foundation of China (NSFC) [21121003, 91021004, 20933006, 11004180]; Strategic Priority Research Program of CAS [XDB01020300]; Scientific Discovery through Advanced Computing (SciDAC) Program - (U.S.) Department of Energy (DOE), Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences; Center for Applied Mathematics for Energy Research Applications (CAMERA) FX This work is partially supported by the National Key Basic Research Program (2011CB921404, 2012CB922001), by the National Science Foundation of China (NSFC) (21121003, 91021004, 20933006, 11004180), and by the Strategic Priority Research Program of CAS (XDB01020300). This work is also partially supported by the Scientific Discovery through Advanced Computing (SciDAC) Program funded by (U.S.) Department of Energy (DOE), Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences (W.H., L.L., and C.Y.), and by the Center for Applied Mathematics for Energy Research Applications (CAMERA), which is a partnership between Basic Energy Sciences and Advanced Scientific Computing Research at the (U.S.) Department of Energy (L.L. and C.Y.). We thank the National Energy Research Scientific Computing (NERSC) center, and the USTCSCC, SC-CAS, Tianjin, and Shanghai Supercomputer Centers for the computational resources. NR 55 TC 13 Z9 13 U1 6 U2 45 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 7 PY 2014 VL 141 IS 21 AR 214704 DI 10.1063/1.4902806 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AW0XJ UT WOS:000346014200038 PM 25481158 ER PT J AU Skinner, LB Benmore, CJ Neuefeind, JC Parise, JB AF Skinner, L. B. Benmore, C. J. Neuefeind, J. C. Parise, J. B. TI The structure of water around the compressibility minimum SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TOTAL SCATTERING DATA; RAY-STRUCTURE FACTOR; X-RAY; LIQUID WATER; TEMPERATURE-DEPENDENCE; MOLECULAR-DYNAMICS; SUPERCOOLED WATER; HYDROGEN-BOND; AMBIENT; REARRANGEMENTS AB Here we present diffraction data that yield the oxygen-oxygen pair distribution function, g(OO)(r) over the range 254.2-365.9 K. The running O-O coordination number, which represents the integral of the pair distribution function as a function of radial distance, is found to exhibit an isosbestic point at 3.30(5) angstrom. The probability of finding an oxygen atom surrounding another oxygen at this distance is therefore shown to be independent of temperature and corresponds to an O-O coordination number of 4.3(2). Moreover, the experimental data also show a continuous transition associated with the second peak position in g(OO)(r) concomitant with the compressibility minimum at 319 K. (C) 2014 AIP Publishing LLC. C1 [Skinner, L. B.; Benmore, C. J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Skinner, L. B.; Parise, J. B.] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. [Neuefeind, J. C.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37922 USA. [Parise, J. B.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Parise, J. B.] Brookhaven Natl Lab, Photon Sci Div, Upton, NY 11973 USA. RP Benmore, CJ (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. EM benmore@aps.anl.gov RI Neuefeind, Joerg/D-9990-2015; Skinner, Lawrie/I-2603-2012; OI Neuefeind, Joerg/0000-0002-0563-1544; Skinner, Lawrie/0000-0001-7317-1642; Benmore, Chris/0000-0001-7007-7749 FU U.S. Department of Energy (DOE) office of Basic Energy Sciences [BES DE-FG02-09ER46650]; DOE [DE-AC02-06CH11357] FX Thanks to Rick Spence for support with the beamline equipment at the Advanced Photon Source. This work was supported by the U.S. Department of Energy (DOE) office of Basic Energy Sciences Grant No. BES DE-FG02-09ER46650, which supported the x-ray experiments, MD simulations, data analysis, and paper preparation (L.B.S. and J.B.P.). DOE Contract No. DE-AC02-06CH11357 supports operation of the Advanced Photon Source at Argonne National Laboratory. NR 43 TC 10 Z9 10 U1 0 U2 44 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 7 PY 2014 VL 141 IS 21 AR 214507 DI 10.1063/1.4902412 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AW0XJ UT WOS:000346014200032 PM 25481152 ER PT J AU Zioutas, K Tsagri, M Semertzidis, YK Papaevangelou, T Hoffmann, DHH Anastassopoulos, V AF Zioutas, K. Tsagri, M. Semertzidis, Y. K. Papaevangelou, T. Hoffmann, D. H. H. Anastassopoulos, V. TI The 11 years solar cycle as the manifestation of the dark Universe SO MODERN PHYSICS LETTERS A LA English DT Article DE 11 years solar cycle; dark matter; gravitational lensing ID PARTICLES; SUN; SUNSPOTS; JUPITER; AXIONS; MILKY; DISK AB Sun's luminosity in the visible changes at the 10(-3) level, following the 11 years period. This variation increases with energy, and in X-rays, which should not even be there, the amplitude varies up to similar to 10(5) times stronger, making their mysterious origin since the discovery in 1938 even more puzzling, and inspiring. We suggest that the multifaceted mysterious solar cycle is due to some kind of dark matter streams hitting the Sun. Planetary gravitational lensing enhances (occasionally) slow moving flows of dark constituents toward the Sun, giving rise to the periodic behavior. Jupiter provides the driving oscillatory force, though its 11.8 years orbital period appears slightly decreased, just as 11 years, if the lensing impact of other planets is included. Then, the 11 years solar clock may help to decipher (overlooked) signatures from the dark sector in laboratory experiments or observations in space. C1 [Zioutas, K.] CERN, CH-1211 Geneva 23, Switzerland. [Tsagri, M.] Univ Amsterdam, Nikhef, Amsterdam, Netherlands. [Semertzidis, Y. K.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Papaevangelou, T.] IRFU, Ctr Etud Nucl Saclay, F-91191 Gif Sur Yvette, France. [Hoffmann, D. H. H.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Anastassopoulos, V.] Univ Patras, Dept Phys, Patras 26504, Greece. RP Papaevangelou, T (reprint author), CENS, IRFU, F-91191 Gif Sur Yvette, France. EM thomas.papaevangelou@cea.fr RI Papaevangelou, Thomas/G-2482-2016 OI Papaevangelou, Thomas/0000-0003-2829-9158 NR 21 TC 1 Z9 1 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 EI 1793-6632 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD DEC 7 PY 2014 VL 29 IS 37 AR 1440008 DI 10.1142/S0217732314400082 PG 7 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA AU9OB UT WOS:000345922500009 ER PT J AU Pimentel, H Parra, M Gee, S Mohandas, N Pachter, L Conboy, JG AF Pimentel, Harold Parra, Marilyn Gee, Sherry Mohandas, Narla Pachter, Lior Conboy, John G. TI An Erythroid-Specific Intron Retention Program Regulates Expression of Selected Genes during Terminal Erythropoiesis SO BLOOD LA English DT Meeting Abstract C1 [Pimentel, Harold; Pachter, Lior] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Parra, Marilyn; Gee, Sherry; Conboy, John G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Mohandas, Narla] New York Blood Ctr, New York, NY 10021 USA. NR 0 TC 0 Z9 0 U1 1 U2 5 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 2021 L ST NW, SUITE 900, WASHINGTON, DC 20036 USA SN 0006-4971 EI 1528-0020 J9 BLOOD JI Blood PD DEC 6 PY 2014 VL 124 IS 21 PG 3 WC Hematology SC Hematology GA CA9KQ UT WOS:000349242703072 ER PT J AU Abelev, B Adam, J Adamova, D Aggarwal, MM Rinella, GA Agnello, M Agostinelli, A Agrawal, N Ahammed, Z Ahmad, N Ahmed, I Ahn, SU Ahn, SA Aimo, I Aiola, S Ajaz, M Akindinov, A Alam, SN Aleksandrov, D Alessandro, B Alexandre, D Alici, A Alkin, A Alme, J Alt, T Altinpinar, S Altsybeev, I Prado, CAG Andrei, C Andronic, A Anguelov, V Anielski, J Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelsharuser, H Arcelli, S Armesto, N Arnaldi, R Aronsson, T Arsene, IC Arslandok, M Augustinus, A Averbeck, R Awes, TC Azmi, MD Bach, M Badala, A Baek, YW Bagnasco, S Bailhache, R Bala, R Baldisseri, A Pedrosa, FBD Baral, RC Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartke, J Basile, M Bastid, N Basu, S Bathen, B Batigne, G Camejo, AB Batyunya, B Batzing, PC Baumann, C Bearden, IG Beck, H Bedda, C Behera, NK Belikov, I Bellini, F Bellwied, R Belmont-Moreno, E Belmont, R Belyaev, V Bencedi, G Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Berger, ME Bertens, RA Berzano, D Betev, L Bhasin, A Bhat, IR Bhati, AK Bhattacharjee, B Bhom, J Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Bjelogrlic, S Blanco, F Blau, D Blume, C Bock, F Bogdanov, A Boggild, H Bogolyubsky, M Bohmer, FV Boldizsar, L Bombara, M Book, J Borel, H Borissov, A Bossu, F Botje, M Botta, E Bottger, S Braun-Munzinger, P Bregant, M Breitner, T Broker, TA Browning, TA Broz, M Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Buncic, P Busch, O Buthelezi, Z Caffarri, D Cai, X Caines, H Diaz, LC Caliva, A Villar, EC Camerini, P Carena, F Carena, W Castellanos, JC Casula, EAR Catanescu, V Cavicchioli, C Sanchez, CC Cepila, J Cerello, P Chang, B Chapeland, S Charvet, JL Chattopadhyay, S Chattopadhyay, S Chelnokov, V Cherney, M Cheshkov, C Cheynis, B Barroso, VC Chinellato, DD Chochula, P Chojnacki, M Choudhury, S Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chung, SU Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Colamaria, F Colella, D Collu, A Colocci, M Balbastre, GC del Valle, ZC Connors, ME Contreras, JG Cormier, TM Morales, YC Cortese, P Maldonado, IC Cosentino, MR Costa, F Crochet, P Albino, RC Cuautle, E Cunqueiro, L Dainese, A Dang, R Danu, A Das, D Das, I Das, K Das, S Dash, A Dash, S De, S Delagrange, H Deloff, A Denes, E D'Erasmo, G De Caro, A de Cataldo, G de Cuveland, J De Falco, A De Gruttola, D De Marco, N De Pasquale, S de Rooij, R Corchero, MAD Dietel, T Dillenseger, P Divia, R Di Bari, D Di Liberto, S Di Mauro, A Di Nezza, P Djuvsland, O Dobrin, A Dobrowolski, T Gimenez, DD Dnigus, B Dordic, O Dorheim, S Dubey, AK Dubla, A Ducroux, L Dupieux, P Majumdar, AKD Hilden, TE Ehlers, RJ Elia, D Engel, H Erazmus, B Erdal, HA Eschweiler, D Espagnon, B Esposito, M Estienne, M Esumi, S Evans, D Evdokimov, S Fabris, D Faivre, J Falchieri, D Fantoni, A Fasel, M Fehlker, D Feldkamp, L Felea, D Feliciello, A Feofilov, G Ferencei, J Tellez, AF Ferreiro, EG Ferretti, A Festanti, A Figiel, J Figueredo, MAS Filchagin, S Finogeev, D Fionda, FM Fiore, EM Floratos, E Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Francescon, A Frankenfeld, U Fuchs, U Furget, C Furs, A Girard, MF Gaardhoje, JJ Gagliardi, M Gago, AM Gallio, M Gangadharan, DR Ganoti, P Gao, C Garabatos, C Garcia-Solis, E Gargiulo, C Garishvili, I Gerhard, J Germain, M Gheata, A Gheata, M Ghidini, B Ghosh, P Ghosh, SK Gianotti, P Giubellino, P Gladysz-Dziadus, E Glassel, P Ramirez, AG Gonzalez-Zamora, P Gorbunov, S Gorlich, L Gotovac, S Graczykowski, LK Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Grosse-Oetringhaus, JF Grossiord, JY Grosso, R Guber, F Guernane, R Guerzoni, B Guilbaud, M Gulbrandsen, K Gulkanyan, H Gumbo, M Gunji, T Gupta, A Gupta, R Khan, KH Haake, R Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Hanratty, LD Hansen, A Harris, JW Hartmann, H Harton, A Hatzifotiadou, D Hayashi, S Heckel, ST Heide, M Helstrup, H Herghelegiu, A Corral, GH Hess, BA Hetland, KF Hippolyte, B Hladky, J Hristov, P Huang, M Humanic, TJ Hussain, N Hutter, D Hwang, DS Ilkaev, R Ilkiv, I Inaba, M Innocenti, GM Ionita, C Ippolitov, M Irfan, M Ivanov, M Ivanov, V Jacholkowski, A Jacobs, PM Jahnke, C Jang, HJ Janik, A Jayarathna, PHSY Jena, C Jena, S Bustamante, RTJ Jones, PG Jung, H Jusko, A Kadyshevskiy, V Kalcher, S Kalinak, P Kalweit, A Kamin, J Kang, JH Kaplin, V Kar, S Uysal, AK Karavichev, O Karavicheva, T Karpechev, E Kebschull, U Keidel, R Keijdener, DLD Svn, MK Khan, MM Khan, P Khan, SA Khanzadeev, A Kharlov, Y Kileng, B Kim, B Kim, DW Kim, DJ Kim, JS Kim, M Kim, M Kim, S Kim, T Kirsch, S Kisel, I Kiselev, S Kisiel, A Kiss, G Klay, JL Klein, J Klein-Bosing, C Kluge, A Knichel, ML Knospe, AG Kobdaj, C Kofarago, M Kohler, MK Kollegger, T Kolojvari, A Kondratiev, V Kondratyeva, N Konevskikh, A Kovalenko, V Kowalski, M Kox, S Meethaleveedu, GK Kral, J Kralik, I Kravcakova, A Krelina, M Kretz, M Krivda, M Krizek, F Kryshen, E Krzewicki, M Kucera, V Kucheriaev, Y Kugathasan, T Kuhn, C Kuijer, PG Kulakov, I Kumar, J Kurashvili, P Kurepin, A Kurepin, AB Kuryakin, A Kushpil, S Kweon, MJ Kwon, Y de Guevara, PL Fernandes, CL Lakomov, I Langoy, R Lara, C Lardeux, A Lattuca, A La Pointe, SL La Rocca, P Lea, R Leardini, L Lee, GR Legrand, I Lehnert, J Lemmon, RC Lenti, V Leogrande, E Leoncino, M Monzon, IL Levai, P Li, S Lien, J Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Ljunggren, HM Lodato, DF Loenne, PI Loggins, VR Loginov, V Lohner, D Loizides, C Lopez, X Torres, EL Lu, XG Luettig, P Lunardon, M Luparello, G Ma, R Maevskaya, A Mager, M Mahapatra, DP Mahmood, SM Maire, A Majka, RD Malaev, M Cervantes, IM Malinina, L Mal'Kevich, D Malzacher, P Mamonov, A Manceau, L Manko, V Manso, F Manzari, V Marchisone, M Mares, J Margagliotti, GV Margotti, A Marin, A Markert, C Marquard, M Martashvili, I Martin, NA Martinengo, P Martinez, MI Garcia, GM Blanco, JM Martynov, Y Mas, A Masciocchi, S Masera, M Masoni, A Massacrier, L Mastroserio, A Matyja, A Mayer, C Mazer, J Mazzoni, MA Meddi, F Menchaca-Rocha, A Meninno, E Perez, JM Meres, M Miake, Y Mikhaylov, K Milano, L Milosevic, J Mischke, A Mishra, AN Miskowiec, D Mitra, J Mitu, CM Mlynarz, J Mohammadi, N Mohanty, B Molnar, L Zetina, LM Montes, E Morando, M De Godoy, DAM Moretto, S Morreale, A Morsch, A Muccifora, V Mudnic, E Muhlheim, D Muhuri, S Mukherjee, M Muller, H Munhoz, MG Murray, S Musa, L Musinsky, J Nandi, BK Nania, R Nappi, E Nattrass, C Nayak, K Nayak, TK Nazarenko, S Nedosekin, A Nicassio, M Niculescu, M Nielsen, BS Nikolaev, S Nikulin, S Nikulin, V Nilsen, BS Noferini, F Nomokonov, P Nooren, G Norman, J Nyanin, A Nystrand, J Oeschler, H Oh, S Oh, SK Okatan, A Olah, L Oleniacz, J Da Silva, ACO Onderwaater, J Oppedisano, C Velasquez, AO Oskarsson, A Otwinowski, J Oyama, K Ozdemir, M Sahoo, P Pachmayer, Y Pachr, M Pagano, P Paic, G Painke, F Pajares, C Pal, SK Palmeri, A Pant, D Papikyan, V Pappalardo, GS Pareek, P Park, WJ Parmar, S Passfeld, A Patalakha, DI Paticchio, V Paul, B Pawlak, T Peitzmann, T Da Costa, HP De Oliveira, EP Peresunko, D Lara, CEP Pesci, A Peskov, V Pestov, Y Petracek, V Petran, M Petris, M Petrovici, M Petta, C Piano, S Pikna, M Pillot, P Pinazza, O Pinsky, L Piyarathna, DB Ploskon, M Planinic, M Pluta, J Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Pohjoisaho, EHO Polichtchouk, B Poljak, N Pop, A Porteboeuf-Houssais, S Porter, J Potukuchi, B Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puddu, G Pujahari, P Punin, V Putschke, J Qvigstad, H Rachevski, A Raha, S Rak, J Rakotozafindrabe, A Ramello, L Raniwala, R Raniwala, S Rasanen, SS Rascanu, BT Rathee, D Rauf, AW Razazi, V Read, KF Real, JS Redlich, K Reed, RJ Rehman, A Reichelt, P Reicher, M Reidt, F Renfordt, R Reolon, AR Reshetin, A Rettig, F Revol, JP Reygers, K Riabov, V Ricci, RA Richert, T Richter, M Riedler, P Riegler, W Riggi, F Rivetti, A Rocco, E Cahuantzi, MR Manso, AR Roed, K Rogochaya, E Rohni, S Rohr, D Rohrich, D Romita, R Ronchetti, F Ronflette, L Rosnet, P Rossi, A Roukoutakis, F Roy, A Roy, C Roy, P Montero, AJR Rui, R Russo, R Ryabinkin, E Ryabov, Y Rybicki, A Sadovsky, S Safarik, K Sahlmuller, B Sahoo, R Sahu, PK Saini, J Sakai, S Salgado, CA Salzwedel, J Sambyal, S Samsonov, V Castro, XS Rodriguez, FJS Sandor, L Sandoval, A Sano, M Santagati, G Sarkar, D Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schuchmann, S Schukraft, J Schulc, M Schuster, T Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, R Segato, G Seger, JE Sekiguchi, Y Selyuzhenkov, I Seo, J Serradilla, E Sevcenco, A Shabetai, A Shabratova, G Shahoyan, R Shangaraev, A Sharma, N Sharma, S Shigaki, K Shtejer, K Sibiriak, Y Siddhanta, S Siemiarczuk, T Silvermyr, D Silvestre, C Simatovic, G Singaraju, R Singh, R Singha, S Singhal, V Sinha, BC Sinha, T Sitar, B Sitta, M Skaali, TB Skjerdal, K Slupecki, M Smirnov, N Snellings, RJM Sogaard, C Soltz, R Song, J Song, M Soramel, F Sorensen, S Spacek, M Spiriti, E Sputowska, I Spyropoulou-Stassinaki, M Srivastava, BK Stachel, J Stan, I Stefanek, G Steinpreis, M Stenlund, E Steyn, G Stiller, JH Stocco, D Stolpovskiy, M Strmen, P Suaide, AAP Sugitate, T Suire, C Suleymanov, M Sultanov, R Sumbera, M Susa, T Symons, TJM Szabo, A de Toledo, AS Szarka, I Szczepankiewicz, A Szymanski, M Takahashi, J Tangaro, MA Takaki, JDT Peloni, AT Martinez, AT Tarzila, MG Tauro, A Munoz, GT Telesca, A Terrevoli, C Thader, J Thomas, D Tieulent, R Timmins, AR Toia, A Trubnikov, V Trzaska, WH Tsuji, T Tumkin, A Turrisi, R Tveter, TS Ullaland, K Uras, A Usai, GL Vajzer, M Vala, M Palomo, LV Vallero, S Vyvre, PV Van Der Maarel, J Van Hoorne, JW van Leeuwen, M Vargas, A Vargyas, M Varma, R Vasileiou, M Vasiliev, A Vechernin, V Veldhoen, M Velure, A Venaruzzo, M Vercellin, E Limon, SV Vernet, R Verweij, M Vickovic, L Viesti, G Viinikainen, J Vilakazi, Z Baillie, OV Vinogradov, A Vinogradov, L Vinogradov, Y Virgili, T Viyogi, YP Vodopyanov, A Volkl, MA Voloshin, K Voloshin, SA Volpe, G von Haller, B Vorobyev, I Vranic, D Vrlakova, J Vulpescu, B Vyushin, A Wagner, B Wagner, J Wagner, V Wang, M Wang, Y Watanabe, D Weber, M Wessels, JP Westerhoff, U Wiechula, J Wikne, J Wilde, M Wilk, G Wilkinson, J Williams, MCS Windelband, B Winn, M Yaldo, CG Yamaguchi, Y Yang, H Yang, P Yang, S Yano, S Yasnopolskiy, S Yi, J Yin, Z Yoo, IK Yushmanov, I Zaccolo, V Zach, C Zaman, A Zampolli, C Zaporozhets, S Zarochentsev, A Zavada, P Zaviyalov, N Zbroszczyk, H Zgura, IS Zhalov, M Zhang, H Zhang, X Zhang, Y Zhao, C Zhigareva, N Zhou, D Zhou, F Zhou, Y Zhou, Z Zhu, H Zhu, J Zhu, X Zichichi, A Zimmermann, A Zimmermann, MB Zinovjev, G Zoccarato, Y Zyzak, M AF Abelev, B. Adam, J. Adamova, D. Aggarwal, M. M. Rinella, G. Aglieri Agnello, M. Agostinelli, A. Agrawal, N. Ahammed, Z. Ahmad, N. Ahmed, I. Ahn, S. U. Ahn, S. A. Aimo, I. Aiola, S. Ajaz, M. Akindinov, A. Alam, S. N. Aleksandrov, D. Alessandro, B. Alexandre, D. Alici, A. Alkin, A. Alme, J. Alt, T. Altinpinar, S. Altsybeev, I. Garcia Prado, C. Alves Andrei, C. Andronic, A. Anguelov, V. Anielski, J. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaeruser, H. Arcelli, S. Armesto, N. Arnaldi, R. Aronsson, T. Arsene, I. C. Arslandok, M. Augustinus, A. Averbeck, R. Awes, T. C. Azmi, M. D. Bach, M. Badala, A. Baek, Y. W. Bagnasco, S. Bailhache, R. Bala, R. Baldisseri, A. Pedrosa, F. Baltasar Dos Santos Baral, R. C. Barbera, R. Barile, F. Barnafoeldi, G. G. Barnby, L. S. Barret, V. Bartke, J. Basile, M. Bastid, N. Basu, S. Bathen, B. Batigne, G. Camejo, A. Batista Batyunya, B. Batzing, P. C. Baumann, C. Bearden, I. G. Beck, H. Bedda, C. Behera, N. K. Belikov, I. Bellini, F. Bellwied, R. Belmont-Moreno, E. Belmont, R., III Belyaev, V. Bencedi, G. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Berger, M. E. Bertens, R. A. Berzano, D. Betev, L. Bhasin, A. Bhat, I. R. Bhati, A. K. Bhattacharjee, B. Bhom, J. Bianchi, L. Bianchi, N. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Bjelogrlic, S. Blanco, F. Blau, D. Blume, C. Bock, F. Bogdanov, A. Boggild, H. Bogolyubsky, M. Boehmer, F. V. Boldizsar, L. Bombara, M. Book, J. Borel, H. Borissov, A. Bossu, F. Botje, M. Botta, E. Boettger, S. Braun-Munzinger, P. Bregant, M. Breitner, T. Broker, T. A. Browning, T. A. Broz, M. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Buncic, P. Busch, O. Buthelezi, Z. Caffarri, D. Cai, X. Caines, H. Diaz, L. Calero Caliva, A. Villar, E. Calvo Camerini, P. Carena, F. Carena, W. Castellanos, J. Castillo Casula, E. A. R. Catanescu, V. Cavicchioli, C. Ceballos Sanchez, C. Cepila, J. Cerello, P. Chang, B. Chapeland, S. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Chelnokov, V. Cherney, M. Cheshkov, C. Cheynis, B. Barroso, V. Chibante Chinellato, D. D. Chochula, P. Chojnacki, M. Choudhury, S. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Colamaria, F. Colella, D. Collu, A. Colocci, M. Balbastre, G. Conesa del Valle, Z. Conesa Connors, M. E. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Cortese, P. Cortes Maldonado, I. Cosentino, M. R. Costa, F. Crochet, P. Cruz Albino, R. Cuautle, E. Cunqueiro, L. Dainese, A. Dang, R. Danu, A. Das, D. Das, I. Das, K. Das, S. Dash, A. Dash, S. De, S. Delagrange, H. Deloff, A. Denes, E. D'Erasmo, G. De Caro, A. de Cataldo, G. de Cuveland, J. De Falco, A. De Gruttola, D. De Marco, N. De Pasquale, S. de Rooij, R. Diaz Corchero, M. A. Dietel, T. Dillenseger, P. Divia, R. Di Bari, D. Di Liberto, S. Di Mauro, A. Di Nezza, P. Djuvsland, O. Dobrin, A. Dobrowolski, T. Gimenez, D. Domenicis Dnigus, B. Dordic, O. Dorheim, S. Dubey, A. K. Dubla, A. Ducroux, L. Dupieux, P. Majumdar, A. K. Dutta Hilden, T. E. Ehlers, R. J. Elia, D. Engel, H. Erazmus, B. Erdal, H. A. Eschweiler, D. Espagnon, B. Esposito, M. Estienne, M. Esumi, S. Evans, D. Evdokimov, S. Fabris, D. Faivre, J. Falchieri, D. Fantoni, A. Fasel, M. Fehlker, D. Feldkamp, L. Felea, D. Feliciello, A. Feofilov, G. Ferencei, J. Tellez, A. Fernandez Ferreiro, E. G. Ferretti, A. Festanti, A. Figiel, J. Figueredo, M. A. S. Filchagin, S. Finogeev, D. Fionda, F. M. Fiore, E. M. Floratos, E. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Francescon, A. Frankenfeld, U. Fuchs, U. Furget, C. Furs, A. Girard, M. Fusco Gaardhoje, J. J. Gagliardi, M. Gago, A. M. Gallio, M. Gangadharan, D. R. Ganoti, P. Gao, C. Garabatos, C. Garcia-Solis, E. Gargiulo, C. Garishvili, I. Gerhard, J. Germain, M. Gheata, A. Gheata, M. Ghidini, B. Ghosh, P. Ghosh, S. K. Gianotti, P. Giubellino, P. Gladysz-Dziadus, E. Glaessel, P. Ramirez, A. Gomez Gonzalez-Zamora, P. Gorbunov, S. Goerlich, L. Gotovac, S. Graczykowski, L. K. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Grosse-Oetringhaus, J. F. Grossiord, J. -Y. Grosso, R. Guber, F. Guernane, R. Guerzoni, B. Guilbaud, M. Gulbrandsen, K. Gulkanyan, H. Gumbo, M. Gunji, T. Gupta, A. Gupta, R. Khan, K. H. Haake, R. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Hanratty, L. D. Hansen, A. Harris, J. W. Hartmann, H. Harton, A. Hatzifotiadou, D. Hayashi, S. Heckel, S. T. Heide, M. Helstrup, H. Herghelegiu, A. Herrera Corral, G. Hess, B. A. Hetland, K. F. Hippolyte, B. Hladky, J. Hristov, P. Huang, M. Humanic, T. J. Hussain, N. Hutter, D. Hwang, D. S. Ilkaev, R. Ilkiv, I. Inaba, M. Innocenti, G. M. Ionita, C. Ippolitov, M. Irfan, M. Ivanov, M. Ivanov, V. Jacholkowski, A. Jacobs, P. M. Jahnke, C. Jang, H. J. Janik, A. Jayarathna, P. H. S. Y. Jena, C. Jena, S. Jimenez Bustamante, R. T. Jones, P. G. Jung, H. Jusko, A. Kadyshevskiy, V. Kalcher, S. Kalinak, P. Kalweit, A. Kamin, J. Kang, J. H. Kaplin, V. Kar, S. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karpechev, E. Kebschull, U. Keidel, R. Keijdener, D. L. D. Svn, M. Keil Khan, M. M. Khan, P. Khan, S. A. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, B. Kim, D. W. Kim, D. J. Kim, J. S. Kim, M. Kim, M. Kim, S. Kim, T. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Kiss, G. Klay, J. L. Klein, J. Klein-Boesing, C. Kluge, A. Knichel, M. L. Knospe, A. G. Kobdaj, C. Kofarago, M. Koehler, M. K. Kollegger, T. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Konevskikh, A. Kovalenko, V. Kowalski, M. Kox, S. Meethaleveedu, G. Koyithatta Kral, J. Kralik, I. Kravcakova, A. Krelina, M. Kretz, M. Krivda, M. Krizek, F. Kryshen, E. Krzewicki, M. Kucera, V. Kucheriaev, Y. Kugathasan, T. Kuhn, C. Kuijer, P. G. Kulakov, I. Kumar, J. Kurashvili, P. Kurepin, A. Kurepin, A. B. Kuryakin, A. Kushpil, S. Kweon, M. J. Kwon, Y. de Guevara, P. Ladron Fernandes, C. Lagana Lakomov, I. Langoy, R. Lara, C. Lardeux, A. Lattuca, A. La Pointe, S. L. La Rocca, P. Lea, R. Leardini, L. Lee, G. R. Legrand, I. Lehnert, J. Lemmon, R. C. Lenti, V. Leogrande, E. Leoncino, M. Leon Monzon, I. Levai, P. Li, S. Lien, J. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Ljunggren, H. M. Lodato, D. F. Loenne, P. I. Loggins, V. R. Loginov, V. Lohner, D. Loizides, C. Lopez, X. Lopez Torres, E. Lu, X. -G. Luettig, P. Lunardon, M. Luparello, G. Ma, R. Maevskaya, A. Mager, M. Mahapatra, D. P. Mahmood, S. M. Maire, A. Majka, R. D. Malaev, M. Maldonado Cervantes, I. Malinina, L. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manceau, L. Manko, V. Manso, F. Manzari, V. Marchisone, M. Mares, J. Margagliotti, G. V. Margotti, A. Marin, A. Markert, C. Marquard, M. Martashvili, I. Martin, N. A. Martinengo, P. Martinez, M. I. Garcia, G. Martinez Blanco, J. Martin Martynov, Y. Mas, A. Masciocchi, S. Masera, M. Masoni, A. Massacrier, L. Mastroserio, A. Matyja, A. Mayer, C. Mazer, J. Mazzoni, M. A. Meddi, F. Menchaca-Rocha, A. Meninno, E. Perez, J. Mercado Meres, M. Miake, Y. Mikhaylov, K. Milano, L. Milosevic, J. Mischke, A. Mishra, A. N. Miskowiec, D. Mitra, J. Mitu, C. M. Mlynarz, J. Mohammadi, N. Mohanty, B. Molnar, L. Montano Zetina, L. Montes, E. Morando, M. De Godoy, D. A. Moreira Moretto, S. Morreale, A. Morsch, A. Muccifora, V. Mudnic, E. Muehlheim, D. Muhuri, S. Mukherjee, M. Mueller, H. Munhoz, M. G. Murray, S. Musa, L. Musinsky, J. Nandi, B. K. Nania, R. Nappi, E. Nattrass, C. Nayak, K. Nayak, T. K. Nazarenko, S. Nedosekin, A. Nicassio, M. Niculescu, M. Nielsen, B. S. Nikolaev, S. Nikulin, S. Nikulin, V. Nilsen, B. S. Noferini, F. Nomokonov, P. Nooren, G. Norman, J. Nyanin, A. Nystrand, J. Oeschler, H. Oh, S. Oh, S. K. Okatan, A. Olah, L. Oleniacz, J. Da Silva, A. C. Oliveira Onderwaater, J. Oppedisano, C. Ortiz Velasquez, A. Oskarsson, A. Otwinowski, J. Oyama, K. Ozdemir, M. Sahoo, P. Pachmayer, Y. Pachr, M. Pagano, P. Paic, G. Painke, F. Pajares, C. Pal, S. K. Palmeri, A. Pant, D. Papikyan, V. Pappalardo, G. S. Pareek, P. Park, W. J. Parmar, S. Passfeld, A. Patalakha, D. I. Paticchio, V. Paul, B. Pawlak, T. Peitzmann, T. Da Costa, H. Pereira Filho, E. Pereira De Oliveira Peresunko, D. Lara, C. E. Perez Pesci, A. Peskov, V. Pestov, Y. Petracek, V. Petran, M. Petris, M. Petrovici, M. Petta, C. Piano, S. Pikna, M. Pillot, P. Pinazza, O. Pinsky, L. Piyarathna, D. B. Ploskon, M. Planinic, M. Pluta, J. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Pohjoisaho, E. H. O. Polichtchouk, B. Poljak, N. Pop, A. Porteboeuf-Houssais, S. Porter, J. Potukuchi, B. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puddu, G. Pujahari, P. Punin, V. Putschke, J. Qvigstad, H. Rachevski, A. Raha, S. Rak, J. Rakotozafindrabe, A. Ramello, L. Raniwala, R. Raniwala, S. Rasanen, S. S. Rascanu, B. T. Rathee, D. Rauf, A. W. Razazi, V. Read, K. F. Real, J. S. Redlich, K. Reed, R. J. Rehman, A. Reichelt, P. Reicher, M. Reidt, F. Renfordt, R. Reolon, A. R. Reshetin, A. Rettig, F. Revol, J. -P. Reygers, K. Riabov, V. Ricci, R. A. Richert, T. Richter, M. Riedler, P. Riegler, W. Riggi, F. Rivetti, A. Rocco, E. Rodriguez Cahuantzi, M. Manso, A. Rodriguez Roed, K. Rogochaya, E. Rohni, S. Rohr, D. Rohrich, D. Romita, R. Ronchetti, F. Ronflette, L. Rosnet, P. Rossi, A. Roukoutakis, F. Roy, A. Roy, C. Roy, P. Rubio Montero, A. J. Rui, R. Russo, R. Ryabinkin, E. Ryabov, Y. Rybicki, A. Sadovsky, S. Safarik, K. Sahlmuller, B. Sahoo, R. Sahu, P. K. Saini, J. Sakai, S. Salgado, C. A. Salzwedel, J. Sambyal, S. Samsonov, V. Castro, X. Sanchez Sanchez Rodriguez, F. J. Sandor, L. Sandoval, A. Sano, M. Santagati, G. Sarkar, D. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schuchmann, S. Schukraft, J. Schulc, M. Schuster, T. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, R. Segato, G. Seger, J. E. Sekiguchi, Y. Selyuzhenkov, I. Seo, J. Serradilla, E. Sevcenco, A. Shabetai, A. Shabratova, G. Shahoyan, R. Shangaraev, A. Sharma, N. Sharma, S. Shigaki, K. Shtejer, K. Sibiriak, Y. Siddhanta, S. Siemiarczuk, T. Silvermyr, D. Silvestre, C. Simatovic, G. Singaraju, R. Singh, R. Singha, S. Singhal, V. Sinha, B. C. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Skjerdal, K. Slupecki, M. Smirnov, N. Snellings, R. J. M. Sogaard, C. Soltz, R. Song, J. Song, M. Soramel, F. Sorensen, S. Spacek, M. Spiriti, E. Sputowska, I. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Stan, I. Stefanek, G. Steinpreis, M. Stenlund, E. Steyn, G. Stiller, J. H. Stocco, D. Stolpovskiy, M. Strmen, P. Suaide, A. A. P. Sugitate, T. Suire, C. Suleymanov, M. Sultanov, R. Sumbera, M. Susa, T. Symons, T. J. M. Szabo, A. de Toledo, A. Szanto Szarka, I. Szczepankiewicz, A. Szymanski, M. Takahashi, J. Tangaro, M. A. Takaki, J. D. Tapia Peloni, A. Tarantola Martinez, A. Tarazona Tarzila, M. G. Tauro, A. Tejeda Munoz, G. Telesca, A. Terrevoli, C. Thaeder, J. Thomas, D. Tieulent, R. Timmins, A. R. Toia, A. Trubnikov, V. Trzaska, W. H. Tsuji, T. Tumkin, A. Turrisi, R. Tveter, T. S. Ullaland, K. Uras, A. Usai, G. L. Vajzer, M. Vala, M. Palomo, L. Valencia Vallero, S. Vyvre, P. Vande Van Der Maarel, J. Van Hoorne, J. W. van Leeuwen, M. Vargas, A. Vargyas, M. Varma, R. Vasileiou, M. Vasiliev, A. Vechernin, V. Veldhoen, M. Velure, A. Venaruzzo, M. Vercellin, E. Vergara Limon, S. Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Viinikainen, J. Vilakazi, Z. Baillie, O. Villalobos Vinogradov, A. Vinogradov, L. Vinogradov, Y. Virgili, T. Viyogi, Y. P. Vodopyanov, A. Voelkl, M. A. Voloshin, K. Voloshin, S. A. Volpe, G. von Haller, B. Vorobyev, I. Vranic, D. Vrlakova, J. Vulpescu, B. Vyushin, A. Wagner, B. Wagner, J. Wagner, V. Wang, M. Wang, Y. Watanabe, D. Weber, M. Wessels, J. P. Westerhoff, U. Wiechula, J. Wikne, J. Wilde, M. Wilk, G. Wilkinson, J. Williams, M. C. S. Windelband, B. Winn, M. Yaldo, C. G. Yamaguchi, Y. Yang, H. Yang, P. Yang, S. Yano, S. Yasnopolskiy, S. Yi, J. Yin, Z. Yoo, I. -K. Yushmanov, I. Zaccolo, V. Zach, C. Zaman, A. Zampolli, C. Zaporozhets, S. Zarochentsev, A. Zavada, P. Zaviyalov, N. Zbroszczyk, H. Zgura, I. S. Zhalov, M. Zhang, H. Zhang, X. Zhang, Y. Zhao, C. Zhigareva, N. Zhou, D. Zhou, F. Zhou, Y. Zhou, Zhuo Zhu, H. Zhu, J. Zhu, X. Zichichi, A. Zimmermann, A. Zimmermann, M. B. Zinovjev, G. Zoccarato, Y. Zyzak, M. CA ALICE Collaboration TI Exclusive J/psi Photoproduction off Protons in Ultraperipheral p-Pb Collisions at root s(NN)=5.02 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID MESONS; HERA; QCD; E(+)E(-); RAPIDITY AB We present the first measurement at the LHC of exclusive J/psi photoproduction off protons, in ultraperipheral proton-lead collisions at root s(NN) = 5.02 TeV. Events are selected with a dimuon pair produced either in the rapidity interval, in the laboratory frame, 2.5 < y < 4 (p-Pb) or -3.6 < y < -2.6 (Pb-p), and no other particles observed in the ALICE acceptance. The measured cross sections sigma(gamma + p -> J/psi + p) are 33.2 +/- 2.2(stat) +/- 3.2(syst) +/- 0.7(theor) nb in p-Pb and 284 +/- 36(stat)(-32)(+27)(syst) +/- 26(theor) nb in Pb-p collisions. We measure this process up to about 700 GeV in the gamma p center of mass, which is a factor of two larger than the highest energy studied at HERA. The data are consistent with a power law dependence of the J/psi photoproduction cross section in gamma p energies from about 20 to 700 GeV, or equivalently, from Bjorken x scaling variable between similar to 2 x 10(-2) and similar to 2 x 10(-5), thus indicating no significant change in the gluon density behavior of the proton between HERA and LHC energies. C1 [Grigoryan, A.; Gulkanyan, H.; Papikyan, V.] Yerevan Phys Inst, AI Alikhanyan Natl Sci Lab, Yerevan 375036, Armenia. [Cortes Maldonado, I.; Tellez, A. Fernandez; Martinez, M. I.; Rodriguez Cahuantzi, M.; Tejeda Munoz, G.; Vargas, A.; Vergara Limon, S.] Benemeita Univ Autonoma Puebla, Puebla, Mexico. [Alkin, A.; Chelnokov, V.; Grinyov, B.; Martynov, Y.; Trubnikov, V.; Zinovjev, G.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Das, S.; Ghosh, S. K.; Prasad, S. K.; Raha, S.] Bose Inst, Dept Phys, Kolkata, India. [Das, S.; Ghosh, S. K.; Prasad, S. K.; Raha, S.] Ctr Astroparticle Phys & Space Sci, Kolkata, India. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Cai, X.; Dang, R.; Gao, C.; Li, S.; Wang, M.; Yang, P.; Yin, Z.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhou, D.; Zhou, F.; Zhu, H.; Zhu, J.; Zhu, X.] Cent China Normal Univ, Wuhan, Peoples R China. [Vernet, R.] IN2P3, Ctr Calcul, Villeurbanne, France. [Ceballos Sanchez, C.; Lopez Torres, E.; Shtejer, K.] Ctr Aplicac Tecnol & Dasarrollo Nucl CEADEN, Havana, Cuba. [Blanco, F.; Diaz Corchero, M. A.; Gonzalez-Zamora, P.; Montes, E.; Rubio Montero, A. J.; Serradilla, E.] CIEMAT, E-28040 Madrid, Spain. [Contreras, J. G.; Cruz Albino, R.; Herrera Corral, G.; Montano Zetina, L.] CINVESTAV, Mexico City, DF, Mexico. [Contreras, J. G.; Cruz Albino, R.; Herrera Corral, G.; Montano Zetina, L.] CINVESTAV, Merida, Mexico. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Preghenella, R.; Zichichi, A.] Ctr Fermi Museo Stor Fis, Rome, Italy. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Preghenella, R.; Zichichi, A.] Ctr Studi Ric & Enrico Fermi, Rome, Italy. [Garcia-Solis, E.; Harton, A.] Chicago State Univ, Chicago, IL USA. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Da Costa, H. Pereira; Rakotozafindrabe, A.] IRFU, Commissariat Energie Atom, Saclay, France. [Ahmed, I.; Ajaz, M.; Khan, K. H.; Rauf, A. W.; Suleymanov, M.; Zaman, A.] COMSATS Inst Informat Technol, Islamabad, Pakistan. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Ahmad, N.; Azmi, M. D.; Irfan, M.; Khan, M. M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Ahmad, N.; Azmi, M. D.; Irfan, M.; Khan, M. M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Gangadharan, D. R.; Humanic, T. J.; Lisa, M. A.; Salzwedel, J.; Steinpreis, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Hwang, D. S.; Kim, S.] Sejong Univ, Dept Phys, Seoul, South Korea. [Arsene, I. C.; Batzing, P. C.; Dordic, O.; Lindal, S.; Mahmood, S. M.; Milosevic, J.; Qvigstad, H.; Richter, M.; Roed, K.; Skaali, T. B.; Tveter, T. S.; Wikne, J.; Zhao, C.] Univ Oslo, Inst Phys, Oslo, Norway. [Meddi, F.] Univ Roma La Sapienza, Dept Chem, I-00185 Rome, Italy. [Meddi, F.] Sez INFN Rome, Rome, Italy. [Casula, E. A. R.; Collu, A.; De Falco, A.; Razazi, V.; Terrevoli, C.; Usai, G. L.] Univ Cagliari, Dipartmento Fis, Cagliari, Italy. [Casula, E. A. R.; Collu, A.; De Falco, A.; Puddu, G.; Razazi, V.; Terrevoli, C.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Camerini, P.; Lea, R.; Luparello, G.; Margagliotti, G. V.; Rui, R.; Venaruzzo, M.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Camerini, P.; Lea, R.; Luparello, G.; Margagliotti, G. V.; Rui, R.; Venaruzzo, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Lattuca, A.; Leoncino, M.; Marchisone, M.; Masera, M.; Russo, R.; Shtejer, K.; Vallero, S.; Vercellin, E.] Univ Turin, Dipartmento Fis, Turin, Italy. [Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Lattuca, A.; Leoncino, M.; Marchisone, M.; Masera, M.; Russo, R.; Shtejer, K.; Vallero, S.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Agostinelli, A.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Colocci, M.; Falchieri, D.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Agostinelli, A.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Colocci, M.; Falchieri, D.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Caffarri, D.; Festanti, A.; Francescon, A.; Jena, C.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Segato, G.; Soramel, F.; Viesti, G.] Univ Padua, Dipartimento Fis & Astron, Padua, Italy. [Caffarri, D.; Festanti, A.; Francescon, A.; Jena, C.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Segato, G.; Soramel, F.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84100 Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] Ist Nazl Fis Nucl, Grp Collegato, Salerno, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & Innovaz Tecnol, Alessandria, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Ist Nazl Fis Nucl, Grp Collegato, Alessandria, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; D'Erasmo, G.; Di Bari, D.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Mastroserio, A.; Tangaro, M. A.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; D'Erasmo, G.; Di Bari, D.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Mastroserio, A.; Tangaro, M. A.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Christiansen, P.; Ljunggren, H. M.; Ortiz Velasquez, A.; Oskarsson, A.; Richert, T.; Sogaard, C.; Stenlund, E.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Hess, B. A.; Schmidt, H. R.; Wiechula, J.] Univ Tubingen, Tubingen, Germany. [Rinella, G. Aglieri; Augustinus, A.; Pedrosa, F. Baltasar Dos Santos; Betev, L.; Buncic, P.; Caffarri, D.; Carena, F.; Carena, W.; Cavicchioli, C.; Chapeland, S.; Barroso, V. Chibante; Chochula, P.; Costa, F.; Cunqueiro, L.; Divia, R.; Di Mauro, A.; Erazmus, B.; Esposito, M.; Floris, M.; Francescon, A.; Fuchs, U.; Gargiulo, C.; Gheata, A.; Gheata, M.; Giubellino, P.; Grigoras, A.; Grigoras, C.; Grosse-Oetringhaus, J. F.; Grosso, R.; Hristov, P.; Ionita, C.; Kalweit, A.; Svn, M. Keil; Kluge, A.; Kobdaj, C.; Kofarago, M.; Kryshen, E.; Kugathasan, T.; Legrand, I.; Mager, M.; Martinengo, P.; Milano, L.; Morsch, A.; Mueller, H.; Musa, L.; Niculescu, M.; Pinazza, O.; Poghosyan, M. G.; Reidt, F.; Revol, J. -P.; Riedler, P.; Riegler, W.; Safarik, K.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Shahoyan, R.; Szczepankiewicz, A.; Tauro, A.; Telesca, A.; Vyvre, P. Vande; Van Hoorne, J. W.; Volpe, G.; von Haller, B.; Vranic, D.; Weber, M.; Zimmermann, M. B.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Alme, J.; Erdal, H. A.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szabo, A.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Adam, J.; Bielcik, J.; Broz, M.; Cepila, J.; Contreras, J. G.; Krelina, M.; Pachr, M.; Petracek, V.; Petran, M.; Schulc, M.; Spacek, M.; Wagner, V.; Zach, C.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Bombara, M.; Kravcakova, A.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Alt, T.; Bach, M.; de Cuveland, J.; Eschweiler, D.; Gerhard, J.; Gorbunov, S.; Hartmann, H.; Hutter, D.; Kalcher, S.; Kirsch, S.; Kisel, I.; Kollegger, T.; Kretz, M.; Krzewicki, M.; Lindenstruth, V.; Painke, F.; Rettig, F.; Rohr, D.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60054 Frankfurt, Germany. [Baek, Y. W.; Jung, H.; Kim, D. W.; Kim, J. S.; Kim, M.; Oh, S. K.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Bhattacharjee, B.; Hussain, N.] Gauhati Univ, Dept Phys, Gauhati, India. [Hilden, T. E.; Pohjoisaho, E. H. O.; Rasanen, S. S.] Helsinki Inst Phys, Helsinki, Finland. [Shigaki, K.; Sugitate, T.; Yano, S.] Hiroshima Univ, Hiroshima, Japan. [Agrawal, N.; Behera, N. K.; Dash, S.; Meethaleveedu, G. Koyithatta; Kumar, J.; Nandi, B. K.; Pant, D.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Mishra, A. N.; Sahoo, P.; Pareek, P.; Roy, A.; Sahoo, R.] Ind Technol Inst, Indore, Madhya Pradesh, India. [Kweon, M. J.] Inha Univ, Inchon, South Korea. [del Valle, Z. Conesa; Das, I.; Espagnon, B.; Hadjidakis, C.; Lakomov, I.; Suire, C.; Takaki, J. D. Tapia] Univ Paris 11, CNRS, IN2P3, Inst Phys Nucl Orsay, F-91405 Orsay, France. [Boettger, S.; Breitner, T.; Engel, H.; Ramirez, A. Gomez; Kebschull, U.; Lara, C.] Goethe Univ Frankfurt, Inst Informat, D-60054 Frankfurt, Germany. [Appelshaeruser, H.; Arslandok, M.; Bailhache, R.; Baumann, C.; Beck, H.; Blume, C.; Book, J.; Broker, T. A.; Buesching, H.; Dillenseger, P.; Heckel, S. T.; Kamin, J.; Kulakov, I.; Lehnert, J.; Luettig, P.; Marquard, M.; Ozdemir, M.; Peskov, V.; Rascanu, B. T.; Reicher, M.; Renfordt, R.; Sahlmuller, B.; Schuchmann, S.; Peloni, A. Tarantola; Toia, A.; Zyzak, M.] Goethe Univ Frankfurt, Inst Kernphys, D-60054 Frankfurt, Germany. [Anielski, J.; Bathen, B.; Dietel, T.; Feldkamp, L.; Heide, M.; Klein-Boesing, C.; Muehlheim, D.; Passfeld, A.; Wessels, J. P.; Westerhoff, U.; Wilde, M.; Zimmermann, M. B.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Belikov, I.; Hippolyte, B.; Kuhn, C.; Maire, A.; Molnar, L.; Roy, A.; Castro, X. Sanchez] Univ Strasbourg, CNRS, IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Finogeev, D.; Furs, A.; Guber, F.; Karavichev, O.; Karavicheva, T.; Konevskikh, A.; Kurepin, A.; Kurepin, A. B.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.] Acad Sci, Inst Nucl Res, Moscow, Russia. [Bertens, R. A.; Bianchin, C.; Bjelogrlic, S.; Caliva, A.; de Rooij, R.; Dubla, A.; Grelli, A.; Keijdener, D. L. D.; La Pointe, S. L.; Leogrande, E.; Lodato, D. F.; Luparello, G.; Mischke, A.; Mohammadi, N.; Nooren, G.; Peitzmann, T.; Reicher, M.; Rocco, E.; Snellings, R. J. M.; Thomas, D.; Van Der Maarel, J.; van Leeuwen, M.; Veldhoen, M.; Yang, H.; Zhou, Y.] Univ Utrecht, Inst Subat Phys, Utrecht, Netherlands. [Akindinov, A.; Kiselev, S.; Mal'Kevich, D.; Mikhaylov, K.; Nedosekin, A.; Sultanov, R.; Voloshin, K.; Zhigareva, N.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Kalinak, P.; Kralik, I.; Krivda, M.; Musinsky, J.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Hladky, J.; Mares, J.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Baral, R. C.; Mahapatra, D. P.; Sahu, P. K.] Inst Phys, Bhubaneswar 751007, Orissa, India. [Danu, A.; Felea, D.; Gheata, M.; Haiduc, M.; Niculescu, M.; Sevcenco, A.; Stan, I.; Zgura, I. S.] Inst Space Sci, Bucharest, Romania. [Cuautle, E.; Jimenez Bustamante, R. T.; de Guevara, P. Ladron; Maldonado Cervantes, I.; Ortiz Velasquez, A.; Paic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Belmont-Moreno, E.; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Bossu, F.; Buthelezi, Z.; Foertsch, S.; Steyn, G.; Vilakazi, Z.] Natl Res Fdn, iThemba LABS, Somerset West, South Africa. [Batyunya, B.; Grigoryan, S.; Kadyshevskiy, V.; Malinina, L.; Mikhaylov, K.; Nomokonov, P.; Rogochaya, E.; Shabratova, G.; Vala, M.; Vodopyanov, A.; Zaporozhets, S.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Oh, S. K.] Konkuk Univ, Seoul, South Korea. [Ahn, S. U.; Ahn, S. A.; Jang, H. J.; Kim, D. W.] Korea Inst Sci & Technol Informat, Taejon, South Korea. [Uysal, A. Karasu; Okatan, A.] KTO Karatay Univ, Konya, Turkey. [Baek, Y. W.; Barret, V.; Bastid, N.; Camejo, A. Batista; Crochet, P.; Dupieux, P.; Li, S.; Lopez, X.; Manso, F.; Marchisone, M.; Porteboeuf-Houssais, S.; Rosnet, P.; Palomo, L. Valencia; Vulpescu, B.] Univ Clermont Ferrand, Univ Blaise Pascal, Phys Corpusculaire Lab, CNRS IN2P3, Clermont Ferrand, France. [Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Kox, S.; Real, J. S.; Silvestre, C.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [Bianchi, N.; Diaz, L. Calero; Cunqueiro, L.; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.; Sakai, S.; Spiriti, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Ricci, R. A.; Venaruzzo, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Bock, F.; Fasel, M.; Gangadharan, D. R.; Jacobs, P. M.; Loizides, C.; Ploskon, M.; Porter, J.; Symons, T. J. M.; Zhang, X.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Abelev, B.; Garishvili, I.; Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Belyaev, V.; Bogdanov, A.; Grigoriev, V.; Kondratyeva, N.; Loginov, V.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kurashvili, P.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Natl Ctr Nucl Studies, Warsaw, Poland. [Andrei, C.; Berceanu, I.; Bercuci, A.; Catanescu, V.; Herghelegiu, A.; Petris, M.; Petrovici, M.; Pop, A.; Schiaua, C.; Tarzila, M. G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Mohanty, B.; Nayak, K.; Singha, S.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bearden, I. G.; Bilandzic, A.; Boggild, H.; Chojnacki, M.; Christensen, C. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Hansen, A.; Nielsen, B. S.; Zaccolo, V.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Botje, M.; Christakoglou, P.; Kuijer, P. G.; Lara, C. E. Perez; Manso, A. Rodriguez] Natl Inst Subat Phys, Nikhef, Amsterdam, Netherlands. [Lemmon, R. C.; Romita, R.] STFC Daresbury Lab, Nucl Phys Grp, Daresbury, Cheshire, England. [Adamova, D.; Bielcikova, J.; Ferencei, J.; Krizek, F.; Kucera, V.; Kushpil, S.; Sumbera, M.; Vajzer, M.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Awes, T. C.; Cormier, T. M.; Ganoti, P.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Malaev, M.; Nikulin, V.; Riabov, V.; Ryabov, Y.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Cherney, M.; Nilsen, B. S.; Poghosyan, M. G.; Seger, J. E.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Aggarwal, M. M.; Bhati, A. K.; Parmar, S.; Rathee, D.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Floratos, E.; Ganoti, P.; Roukoutakis, F.; Spyropoulou-Stassinaki, M.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Azmi, M. D.; Cleymans, J.; Dietel, T.; Gumbo, M.; Murray, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Bala, R.; Bhasin, A.; Bhat, I. R.; Gupta, A.; Gupta, R.; Potukuchi, B.; Rohni, S.; Sambyal, S.; Sharma, S.; Singh, R.] Univ Jammu, Dept Phys, Jammu 180004, India. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Berger, M. E.; Boehmer, F. V.; Dorheim, S.] Tech Univ Munich, Dept Phys, D-80290 Munich, Germany. [Anguelov, V.; Bock, F.; Busch, O.; Fasel, M.; Glaessel, P.; Klein, J.; Kweon, M. J.; Leardini, L.; Lohner, D.; Lu, X. -G.; Maire, A.; Perez, J. Mercado; Oeschler, H.; Pachmayer, Y.; Reidt, F.; Reygers, K.; Stachel, J.; Vallero, S.; Voelkl, M. A.; Wang, Y.; Wilkinson, J.; Windelband, B.; Winn, M.; Zimmermann, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Aimo, I.; Bedda, C.] Politecn Torino, Turin, Italy. [Browning, T. A.; Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. [Borissov, A.; Chung, S. U.; Seo, J.; Song, J.; Yi, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Andronic, A.; Arsene, I. C.; Averbeck, R.; Braun-Munzinger, P.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivanov, M.; Knichel, M. L.; Koehler, M. K.; Krzewicki, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Otwinowski, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.; Wagner, J.] GSI Helmholtzzentrum Schwerionenforschung, Res Div & ExtreMe Matter Inst EMMI, Darmstadt, Germany. [Anticic, T.; Planinic, M.; Poljak, N.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Budnikov, D.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Punin, V.; Tumkin, A.; Vinogradov, Y.; Vyushin, A.; Zaviyalov, N.] Russian Fed Nucl Ctr, VNIIEF, Sarov, Russia. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Kucheriaev, Y.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yasnopolskiy, S.; Yushmanov, I.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Chattopadhyay, S.; Das, D.; Das, K.; Majumdar, A. K. Dutta; Khan, P.; Paul, B.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Alexandre, D.; Barnby, L. S.; Evans, D.; Hanratty, L. D.; Jones, P. G.; Jusko, A.; Krivda, M.; Lee, G. R.; Lietava, R.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Villar, E. Calvo; Gago, A. M.] Pontificia Univ Catolica Peru, Dept Ciencias, Sec Fis, Lima, Peru. [de Cataldo, G.; Elia, D.; Lenti, V.; Manzari, V.; Nappi, E.; Paticchio, V.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Alici, A.; Antonioli, P.; Cindolo, F.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pesci, A.; Pinazza, O.; Preghenella, R.; Scapparone, E.; Williams, M. C. S.; Zampolli, C.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Cicalo, C.; Masoni, A.; Siddhanta, S.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Badala, A.; Palmeri, A.; Pappalardo, G. S.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Antinori, F.; Dainese, A.; Fabris, D.; Toia, A.; Turrisi, R.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [Di Liberto, S.; Mazzoni, M. A.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Fragiacomo, E.; Grion, N.; Piano, S.; Rachevski, A.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Agnello, M.; Aimo, I.; Alessandro, B.; Arnaldi, R.; Bagnasco, S.; Bruna, E.; Cerello, P.; De Marco, N.; Feliciello, A.; La Pointe, S. L.; Manceau, L.; Oppedisano, C.; Prino, F.; Rivetti, A.; Scomparin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Bogolyubsky, M.; Evdokimov, S.; Kharlov, Y.; Patalakha, D. I.; Polichtchouk, B.; Sadovsky, S.; Shangaraev, A.; Stolpovskiy, M.] NRC Kurchatov Inst, SSC IHEP, Protvino, Russia. [Aphecetche, L.; Batigne, G.; Delagrange, H.; Erazmus, B.; Estienne, M.; Germain, M.; Lardeux, A.; Garcia, G. Martinez; Blanco, J. Martin; Mas, A.; Massacrier, L.; De Godoy, D. A. Moreira; Morreale, A.; Pillot, P.; Ronflette, L.; Schutz, Y.; Shabetai, A.; Stocco, D.; Wang, M.] Univ Nantes, Ecole Mines Nantes, CNRS IN2P3, SUBATECH, Nantes, France. [Kobdaj, C.] Suranaree Univ Technol, Nakhon Ratchasima, Thailand. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Bartke, J.; Figiel, J.; Gladysz-Dziadus, E.; Goerlich, L.; Kowalski, M.; Matyja, A.; Mayer, C.; Otwinowski, J.; Rybicki, A.; Sputowska, I.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Knospe, A. G.; Markert, C.] Univ Texas Austin, Austin, TX 78712 USA. [Leon Monzon, I.; Podesta-Lerma, P. L. M.; Sanchez Rodriguez, F. J.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Garcia Prado, C. Alves; Bregant, M.; Cosentino, M. R.; Gimenez, D. Domenicis; Jahnke, C.; De Godoy, D. A. Moreira; Munhoz, M. G.; Da Silva, A. C. Oliveira; Filho, E. Pereira De Oliveira; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chinellato, D. D.; Dash, A.; Takahashi, J.] Univ Estadual Campinas, UNICAMP, Campinas, SP, Brazil. [Bellwied, R.; Chinellato, D. D.; Jayarathna, P. H. S. Y.; Jena, S.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.; Weber, M.] Univ Houston, Houston, TX USA. [Chang, B.; Kim, D. J.; Kral, J.; Rak, J.; Slupecki, M.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J.] Univ Jyvaskyla, Jyvaskyla, Finland. [Figueredo, M. A. S.; Norman, J.; Romita, R.] Univ Liverpool, Liverpool L69 3BX, Merseyside, England. [Martashvili, I.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.; Sharma, N.; Sorensen, S.] Univ Tennessee, Knoxville, TN USA. [Gunji, T.; Hamagaki, H.; Hayashi, S.; Sekiguchi, Y.; Tsuji, T.; Yamaguchi, Y.] Univ Tokyo, Tokyo, Japan. [Bhom, J.; Chujo, T.; Esumi, S.; Inaba, M.; Miake, Y.; Sano, M.; Watanabe, D.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Planinic, M.; Poljak, N.; Simatovic, G.] Univ Zagreb, Zagreb 41000, Croatia. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J. -Y.; Guilbaud, M.; Tieulent, R.; Uras, A.; Zoccarato, Y.] Univ Lyon 1, CNRS, IN2P3, IPN Lyon, F-69622 Villeurbanne, France. [Altsybeev, I.; Feofilov, G.; Kolojvari, A.; Kondratiev, V.; Kovalenko, V.; Vechernin, V.; Vinogradov, L.; Vorobyev, I.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg 199034, Russia. [Ahammed, Z.; Alam, S. N.; Basu, S.; Chattopadhyay, S.; Choudhury, S.; De, S.; Dubey, A. K.; Ghosh, P.; Kar, S.; Khan, S. A.; Mitra, J.; Mohanty, B.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Pal, S. K.; Saini, J.; Sarkar, D.; Singha, S.; Singhal, V.; Sinha, B. C.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Langoy, R.; Lien, J.] Vestfold Univ Coll, Tonsberg, Norway. [Graczykowski, L. K.; Janik, A.; Kisiel, A.; Oleniacz, J.; Pawlak, T.; Pluta, J.; Szymanski, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Belmont, R., III; Borissov, A.; Cormier, T. M.; Loggins, V. R.; Mlynarz, J.; Prasad, S. K.; Pruneau, C. A.; Pujahari, P.; Putschke, J.; Reed, R. J.; Verweij, M.; Voloshin, S. A.; Yaldo, C. G.] Wayne State Univ, Detroit, MI USA. [Barnafoeldi, G. G.; Bencedi, G.; Berenyi, D.; Boldizsar, L.; Denes, E.; Hamar, G.; Kiss, G.; Levai, P.; Olah, L.; Pochybova, S.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary. [Aiola, S.; Aronsson, T.; Caines, H.; Connors, M. E.; Ehlers, R. J.; Harris, J. W.; Ma, R.; Majka, R. D.; Oh, S.; Reed, R. J.; Schuster, T.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Kang, J. H.; Kim, B.; Kim, M.; Kwon, Y.; Song, M.] Yonsei Univ, Seoul 120749, South Korea. [Keidel, R.] Zentrum Technologietransfer & Telekommuni, Fachhochschule Worms, Worms, Germany. [Berdnikov, Y.] St Petersburg State Univ, St Petersburg, Russia. [Khan, M. M.] Aligarh Muslim Univ, Dept Appl Phys, Aligarh, Uttar Pradesh, India. [Malinina, L.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Milosevic, J.] Univ Belgrade, Fac Phys, YU-11001 Belgrade, Serbia. [Milosevic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Redlich, K.] Univ Wroclaw, Inst Theoret Phys, PL-50138 Wroclaw, Poland. [Takaki, J. D. Tapia] Univ Kansas, Lawrence, KS 66045 USA. RP Abelev, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Cosentino, Mauro/L-2418-2014; Suaide, Alexandre/L-6239-2016; Castillo Castellanos, Javier/G-8915-2013; Inst. of Physics, Gleb Wataghin/A-9780-2017; Ferreiro, Elena/C-3797-2017; Armesto, Nestor/C-4341-2017; Ferretti, Alessandro/F-4856-2013; Martinez Hernandez, Mario Ivan/F-4083-2010; Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; feofilov, grigory/A-2549-2013; Adamova, Dagmar/G-9789-2014; Christensen, Christian/D-6461-2012; De Pasquale, Salvatore/B-9165-2008; Chinellato, David/D-3092-2012; de Cuveland, Jan/H-6454-2016; Kurepin, Alexey/H-4852-2013; Jena, Deepika/P-2873-2015; Jena, Satyajit/P-2409-2015; Akindinov, Alexander/J-2674-2016; Takahashi, Jun/B-2946-2012; Nattrass, Christine/J-6752-2016; Karasu Uysal, Ayben/K-3981-2015; HAMAGAKI, HIDEKI/G-4899-2014; Pshenichnov, Igor/A-4063-2008; Guber, Fedor/I-4271-2013; Zarochentsev, Andrey/J-6253-2013; Altsybeev, Igor/K-6687-2013; Vinogradov, Leonid/K-3047-2013; Kondratiev, Valery/J-8574-2013; Vechernin, Vladimir/J-5832-2013; Graczykowski, Lukasz/O-7522-2015; Janik, Malgorzata/O-7520-2015; Kharlov, Yuri/D-2700-2015; Mitu, Ciprian/E-6733-2011; Sevcenco, Adrian/C-1832-2012; Felea, Daniel/C-1885-2012; Ahmed, Ijaz/E-9144-2015; Usai, Gianluca/E-9604-2015; Salgado, Carlos A./G-2168-2015; Bregant, Marco/I-7663-2012; Barnby, Lee/G-2135-2010; Barbera, Roberto/G-5805-2012; Bruna, Elena/C-4939-2014; Peitzmann, Thomas/K-2206-2012; Kovalenko, Vladimir/C-5709-2013 OI Cosentino, Mauro/0000-0002-7880-8611; Suaide, Alexandre/0000-0003-2847-6556; Castillo Castellanos, Javier/0000-0002-5187-2779; Ferreiro, Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783; Ferretti, Alessandro/0000-0001-9084-5784; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; feofilov, grigory/0000-0003-3700-8623; Christensen, Christian/0000-0002-1850-0121; De Pasquale, Salvatore/0000-0001-9236-0748; Chinellato, David/0000-0002-9982-9577; de Cuveland, Jan/0000-0003-0455-1398; Kurepin, Alexey/0000-0002-1851-4136; Jena, Deepika/0000-0003-2112-0311; Jena, Satyajit/0000-0002-6220-6982; Akindinov, Alexander/0000-0002-7388-3022; Takahashi, Jun/0000-0002-4091-1779; Nattrass, Christine/0000-0002-8768-6468; Karasu Uysal, Ayben/0000-0001-6297-2532; Pshenichnov, Igor/0000-0003-1752-4524; Guber, Fedor/0000-0001-8790-3218; Zarochentsev, Andrey/0000-0002-3502-8084; Altsybeev, Igor/0000-0002-8079-7026; Vinogradov, Leonid/0000-0001-9247-6230; Kondratiev, Valery/0000-0002-0031-0741; Vechernin, Vladimir/0000-0003-1458-8055; Janik, Malgorzata/0000-0002-3356-3438; Sevcenco, Adrian/0000-0002-4151-1056; Felea, Daniel/0000-0002-3734-9439; Usai, Gianluca/0000-0002-8659-8378; Salgado, Carlos A./0000-0003-4586-2758; Barnby, Lee/0000-0001-7357-9904; Barbera, Roberto/0000-0001-5971-6415; Bruna, Elena/0000-0001-5427-1461; Peitzmann, Thomas/0000-0002-7116-899X; Kovalenko, Vladimir/0000-0001-6012-6615 FU Grid centres; Worldwide LHC Computing Grid (WLCG) collaboration; State Committee of Science; World Federation of Scientists (WFS); Swiss Fonds Kidagan; Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3; "Region Pays de Loire," "Region Alsace,"; "Region Auvergne,"; CEA, France; German BMBF; Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA; National Office for Research and Technology (NKTH); Department of Atomic Energy; Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN); Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi," Italy; MEXT; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT; DGAPA, Mexico; ALFA-EC; EPLANET Program (European Particle Physics Latin American Network) Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics; CNCS-UEFISCDI Romania; Ministry of Education and Science of Russian Federation; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT; EELA; Ministerio de Economia y Competitividad (MINECO) of Spain; Xunta de Galicia (Conselleria de Educacion); CEADEN; Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Swedish Research Council (VR); Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); United States Department of Energy; United States National Science Foundation; State of Texas; State of Ohio; Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia FX The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the "Region Pays de Loire," "Region Alsace," "Region Auvergne," and CEA, France; German BMBF and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi," Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT, DGAPA, Mexico, ALFA-EC and the EPLANET Program (European Particle Physics Latin American Network) Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics and CNCS-UEFISCDI Romania; Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT, EELA, Ministerio de Economia y Competitividad (MINECO) of Spain, Xunta de Galicia (Conselleria de Educacion), CEADEN, Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio; Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia. NR 28 TC 20 Z9 20 U1 2 U2 51 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 5 PY 2014 VL 113 IS 23 AR 232504 DI 10.1103/PhysRevLett.113.232504 PG 11 WC Physics, Multidisciplinary SC Physics GA AX3JT UT WOS:000346836400003 PM 25526123 ER PT J AU Mihovilovic, M Jin, G Long, E Zhang, YW Allada, K Anderson, B Annand, JRM Averett, T Boeglin, W Bradshaw, P Camsonne, A Canan, M Cates, GD Chen, C Chen, JP Chudakov, E De Leo, R Deng, X Deltuva, A Deur, A Dutta, C El Fassi, L Flay, D Frullani, S Garibaldi, F Gao, H Gilad, S Gilman, R Glamazdin, O Golak, J Golge, S Gomez, J Hansen, O Higinbotham, DW Holmstrom, T Huang, J Ibrahim, H de Jager, CW Jensen, E Jiang, X Jones, M Kang, H Katich, J Khanal, HP Kievsky, A King, P Korsch, W LeRose, J Lindgren, R Lu, HJ Luo, W Marcucci, LE Markowitz, P Meziane, M Michaels, R Moffit, B Monaghan, P Muangma, N Nanda, S Norum, BE Pan, K Parno, D Piasetzky, E Posik, M Punjabi, V Puckett, AJR Qian, X Qiang, Y Qui, X Riordan, S Saha, A Sauer, PU Sawatzky, B Schiavilla, R Schoenrock, B Shabestari, M Shahinyan, A Sirca, S Skibinski, R St John, J Subedi, R Sulkosky, V Tobias, WA Tireman, W Urciuoli, GM Viviani, M Wang, D Wang, K Wang, Y Watson, J Wojtsekhowski, B Witala, H Ye, Z Zhan, X Zhang, Y Zheng, X Zhao, B Zhu, L AF Mihovilovic, M. Jin, G. Long, E. Zhang, Y. -W. Allada, K. Anderson, B. Annand, J. R. M. Averett, T. Boeglin, W. Bradshaw, P. Camsonne, A. Canan, M. Cates, G. D. Chen, C. Chen, J. P. Chudakov, E. De Leo, R. Deng, X. Deltuva, A. Deur, A. Dutta, C. El Fassi, L. Flay, D. Frullani, S. Garibaldi, F. Gao, H. Gilad, S. Gilman, R. Glamazdin, O. Golak, J. Golge, S. Gomez, J. Hansen, O. Higinbotham, D. W. Holmstrom, T. Huang, J. Ibrahim, H. de Jager, C. W. Jensen, E. Jiang, X. Jones, M. Kang, H. Katich, J. Khanal, H. P. Kievsky, A. King, P. Korsch, W. LeRose, J. Lindgren, R. Lu, H. -J. Luo, W. Marcucci, L. E. Markowitz, P. Meziane, M. Michaels, R. Moffit, B. Monaghan, P. Muangma, N. Nanda, S. Norum, B. E. Pan, K. Parno, D. Piasetzky, E. Posik, M. Punjabi, V. Puckett, A. J. R. Qian, X. Qiang, Y. Qui, X. Riordan, S. Saha, A. Sauer, P. U. Sawatzky, B. Schiavilla, R. Schoenrock, B. Shabestari, M. Shahinyan, A. Sirca, S. Skibinski, R. St John, J. Subedi, R. Sulkosky, V. Tobias, W. A. Tireman, W. Urciuoli, G. M. Viviani, M. Wang, D. Wang, K. Wang, Y. Watson, J. Wojtsekhowski, B. Witala, H. Ye, Z. Zhan, X. Zhang, Y. Zheng, X. Zhao, B. Zhu, L. CA Jefferson Lab Hall A Collaboration TI Measurement of Double-Polarization Asymmetries in the Quasielastic (3)(He)over-right-arrow((e)over-right-arrow,e ' d) Process SO PHYSICAL REVIEW LETTERS LA English DT Article ID DEUTERON KNOCKOUT; HE-3; COMPONENTS; MANIFESTATION; SCATTERING; ELECTRON; NUCLEI; STATE AB We present a precise measurement of double-polarization asymmetries in the (3)(He) over right arrow((e) over right arrow ,e'd) reaction. This particular process is a uniquely sensitive probe of hadron dynamics in He-3 and the structure of the underlying electromagnetic currents. The measurements have been performed in and around quasielastic kinematics at Q(2) = 0.25(GeV/c)(2) for missing momenta up to 270 MeV/c. The asymmetries are in fair agreement with the state-of-the-art calculations in terms of their functional dependencies on p(m) and omega, but are systematically offset. Beyond the region of the quasielastic peak, the discrepancies become even more pronounced. Thus, our measurements have been able to reveal deficiencies in the most sophisticated calculations of the three-body nuclear system, and indicate that further refinement in the treatment of their two-and/or three-body dynamics is required. C1 [Mihovilovic, M.; Sirca, S.] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia. [Jin, G.; Cates, G. D.; Deng, X.; Lindgren, R.; Norum, B. E.; Riordan, S.; Shabestari, M.; Tobias, W. A.; Wang, D.; Wang, Y.; Zheng, X.] Univ Virginia, Charlottesville, VA 22908 USA. [Long, E.; Anderson, B.] Kent State Univ, Kent, OH 44242 USA. [Zhang, Y. -W.; El Fassi, L.; Gilman, R.] Rutgers State Univ, New Brunswick, NJ 08901 USA. [Allada, K.; Camsonne, A.; Chen, J. P.; Chudakov, E.; Deur, A.; Gomez, J.; Hansen, O.; Higinbotham, D. W.; de Jager, C. W.; Jones, M.; LeRose, J.; Michaels, R.; Moffit, B.; Nanda, S.; Qiang, Y.; Saha, A.; Sawatzky, B.; Schiavilla, R.; Watson, J.; Wojtsekhowski, B.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Annand, J. R. M.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Averett, T.; Bradshaw, P.; Katich, J.; Meziane, M.; Zhao, B.] Coll William & Mary, Williamsburg, VA 23187 USA. [Boeglin, W.; Khanal, H. P.; Markowitz, P.] Florida Int Univ, Miami, FL 33181 USA. [Canan, M.; Golge, S.; Schiavilla, R.] Old Dominion Univ, Norfolk, VA 23529 USA. [Chen, C.; Monaghan, P.; Ye, Z.; Zhu, L.] Hampton Univ, Hampton, VA 23669 USA. [De Leo, R.] Univ Bari Aldo Moro, I-70121 Bari, Italy. [Deltuva, A.] Univ Lisbon, Ctr Nucl Phys, P-1649003 Lisbon, Portugal. [Deltuva, A.] Vilnius Univ, Inst Theoret Phys & Astron, LT-01108 Vilnius, Lithuania. [Dutta, C.; Korsch, W.] Univ Kentucky, Lexington, KY 40506 USA. [Flay, D.; Posik, M.] Temple Univ, Philadelphia, PA 19122 USA. [Frullani, S.; Garibaldi, F.; Urciuoli, G. M.] INFN Sanita, Rome, Italy. [Gao, H.; Qian, X.] Duke Univ, Durham, NC 27708 USA. [Gilad, S.; Huang, J.; Muangma, N.; Pan, K.; Sulkosky, V.; Zhan, X.] MIT, Cambridge, MA 02139 USA. [Glamazdin, O.] Kharkov Phys & Technol Inst, UA-61108 Kharkov, Ukraine. [Golak, J.; Skibinski, R.; Witala, H.] Jagiellonian Univ, M Smoluchowski Inst Phys, PL-30059 Krakow, Poland. [Holmstrom, T.; St John, J.] Longwood Coll, Farmville, VA 23909 USA. [Ibrahim, H.] Cairo Univ, Giza 12613, Egypt. [Jensen, E.] Christopher Newport Univ, Newport News, VA 23606 USA. [Jiang, X.; Puckett, A. J. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kang, H.] Seoul Natl Univ, Seoul, South Korea. [Kievsky, A.; Viviani, M.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [King, P.] Ohio Univ, Athens, OH 45701 USA. [Lu, H. -J.] Huangshan Univ, Huangshan, Peoples R China. [Luo, W.; Qui, X.; Zhang, Y.] Lanzhou Univ, Lanzhou 730000, Gansu, Peoples R China. [Marcucci, L. E.] Univ Pisa, Dept Phys, I-56127 Pisa, Italy. [Parno, D.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Piasetzky, E.] Tel Aviv Univ, IL-69978 Tel Aviv, Israel. [Punjabi, V.] Norfolk State Univ, Norfolk, VA 23504 USA. [Sauer, P. U.] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany. [Schoenrock, B.; Tireman, W.] No Michigan Univ, Marquette, MI 49855 USA. [Shahinyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Subedi, R.] George Washington Univ, Washington, DC 20052 USA. [Wang, Y.] Univ Illinois, Urbana, IL 61801 USA. [Sirca, S.] Univ Ljubljana, SI-1000 Ljubljana, Slovenia. RP Sirca, S (reprint author), Univ Ljubljana, SI-1000 Ljubljana, Slovenia. EM simon.sirca@fmf.uni-lj.si RI Deltuva, Arnoldas/M-3749-2013; Pan, Kai/D-4241-2016; Parno, Diana/B-7546-2017; Ye, Zhihong/E-6651-2017 OI Deltuva, Arnoldas/0000-0002-0732-7749; Pan, Kai/0000-0001-9930-5063; Parno, Diana/0000-0002-9363-0401; Ye, Zhihong/0000-0002-1873-2344 FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC05-06OR23177]; Polish National Science Center [DEC-2013/10/M/ST2/00420] FX We thank the Jefferson Lab Hall A and Accelerator Operations technical staff for their outstanding support. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC05-06OR23177. This work was supported in part by the Polish National Science Center under Grant No. DEC-2013/10/M/ST2/00420. The numerical calculations of the Bochum-Krakow group were partly performed on the supercomputer cluster of the JSC, Julich, Germany. NR 34 TC 1 Z9 1 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 5 PY 2014 VL 113 IS 23 AR UNSP 232505 DI 10.1103/PhysRevLett.113.232505 PG 6 WC Physics, Multidisciplinary SC Physics GA AX3JT UT WOS:000346836400004 PM 25526124 ER PT J AU Huang, JR Liu, T Wang, LT Yu, F AF Huang, Jinrui Liu, Tao Wang, Lian-Tao Yu, Felix TI Supersymmetric subelectroweak scale dark matter, the Galactic Center gamma-ray excess, and exotic decays of the 125 GeV Higgs boson SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; FORTRAN CODE; GLOBAL SYMMETRIES; ATLAS DETECTOR; NMSSM; LHC; PARTICLE; MSSM; CONSTRAINTS; ABUNDANCES AB We continue our exploration of the nearly Peccei-Quinn symmetric limit shared by common singlet extensions of the minimal supersymmetric standard model. This limit has been established as a viable framework for studying subelectroweak scale dark matter phenomenology and has interesting and direct connections to new exotic Higgs decay physics. We present analytic calculations to motivate the important phenomenological features mentioned above. We also discuss benchmark points in this model framework that accommodate the observed Galactic center gamma-ray excess. We emphasize connections between phenomenology of dark matter direct detection and indirect detection, and new exotic decay channels for the 125 GeV Higgs boson. We conclude by identifying two benchmark modes of exotic Higgs decays for h -> t(+)t(-) is not an element of(T) and h -> b (b) over bar is not an element of(T) final states and estimate their sensitivity prospects at the LHC. C1 [Huang, Jinrui] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Liu, Tao] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Wang, Lian-Tao] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Wang, Lian-Tao] Univ Chicago, KICP, Chicago, IL 60637 USA. [Wang, Lian-Tao] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Yu, Felix] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Huang, JR (reprint author), Los Alamos Natl Lab, Div Theoret, T-2,MS B285, Los Alamos, NM 87545 USA. EM jinruih@lanl.gov; taoliu@ust.hk; liantaow@uchicago.edu; felixyu@fnal.gov FU Hong Kong University of Science and Technology; DOE Office of Science; LANL LDRD program; DOE Early Career Award [DE-SC0003930]; Kavli Institute for Cosmological Physics at the University of Chicago through NSF [PHY-1125897]; Kavli Foundation; Fermi Research Alliance, LLC [DE-AC02-07CH11359]; National Science Foundation [NSF PHY11-25915] FX We would like to thank Brock Tweedie, Patrick Draper, Michael Graesser, Joe Lykken, Adam Martin, Nausheen Shah, Jessie Shelton, Matt Strassler, and CarlosWagner for useful discussions. T.L. is supported by his start-up fund at the Hong Kong University of Science and Technology. J.H. is supported by the DOE Office of Science and the LANL LDRD program. J.H. would also like to thank the University of Washington for hospitality, where part of the work was finished. L-T.W. is supported by the DOE Early Career Award under Grant No. DE-SC0003930. L-T.W. is also supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through NSF Grant No. PHY-1125897 and an endowment from the Kavli Foundation and its founder Fred Kavli. F.Y. would like to thank the Theoretical High Energy Physics group at Johannes Gutenberg Universitat Mainz for their hospitality, where part of this work was completed. Fermilab is operated by the Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. We also would like to acknowledge the hospitality of the Kavli Institute for Theoretical Physics and the Aspen Center for Physics, where part of this work was completed, and this research is supported in part by the National Science Foundation under Grant No. NSF PHY11-25915. NR 130 TC 41 Z9 41 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 5 PY 2014 VL 90 IS 11 AR 115006 DI 10.1103/PhysRevD.90.115006 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AX3GY UT WOS:000346829300002 ER PT J AU Wawrousek, K Noble, S Korlach, J Chen, J Eckert, C Yu, JP Maness, PC AF Wawrousek, Karen Noble, Scott Korlach, Jonas Chen, Jin Eckert, Carrie Yu, Jianping Maness, Pin-Ching TI Genome Annotation Provides Insight into Carbon Monoxide and Hydrogen Metabolism in Rubrivivax gelatinosus SO PLOS ONE LA English DT Article ID RALSTONIA-EUTROPHA H16; BOUND NIFE HYDROGENASE; FE-ONLY HYDROGENASE; IRON-SULFUR PROTEIN; RHODOSPIRILLUM-RUBRUM; ESCHERICHIA-COLI; PHYSIOLOGICAL CHARACTERIZATION; TRANSCRIPTIONAL REGULATORS; RHODOBACTER-CAPSULATUS; TOLERANT HYDROGENASE AB We report here the sequencing and analysis of the genome of the purple non-sulfur photosynthetic bacterium Rubrivivax gelatinosus CBS. This microbe is a model for studies of its carboxydotrophic life style under anaerobic condition, based on its ability to utilize carbon monoxide (CO) as the sole carbon substrate and water as the electron acceptor, yielding CO2 and H-2 as the end products. The CO-oxidation reaction is known to be catalyzed by two enzyme complexes, the CO dehydrogenase and hydrogenase. As expected, analysis of the genome of Rx. gelatinosus CBS reveals the presence of genes encoding both enzyme complexes. The CO-oxidation reaction is CO-inducible, which is consistent with the presence of two putative CO-sensing transcription factors in its genome. Genome analysis also reveals the presence of two additional hydrogenases, an uptake hydrogenase that liberates the electrons in H-2 in support of cell growth, and a regulatory hydrogenase that senses H-2 and relays the signal to a two-component system that ultimately controls synthesis of the uptake hydrogenase. The genome also contains two sets of hydrogenase maturation genes which are known to assemble the catalytic metallocluster of the hydrogenase NiFe active site. Collectively, the genome sequence and analysis information reveals the blueprint of an intricate network of signal transduction pathways and its underlying regulation that enables Rx. gelatinosus CBS to thrive on CO or H-2 in support of cell growth. C1 [Wawrousek, Karen; Eckert, Carrie; Yu, Jianping; Maness, Pin-Ching] Univ Wyoming, Dept Chem & Petr Engn, Laramie, WY 82071 USA. [Noble, Scott] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO USA. [Korlach, Jonas] Pacific Biosci, Menlo Pk, CA USA. [Chen, Jin] Michigan State Univ, Dept Energy Plant Res Lab, E Lansing, MI 48824 USA. RP Maness, PC (reprint author), Univ Wyoming, Dept Chem & Petr Engn, Laramie, WY 82071 USA. EM pinching.maness@nrel.gov FU U.S. Department of Energy Fuel Cell Technologies Office; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-FG02-91ER20021]; University of Wyoming FX This work was supported by the U.S. Department of Energy Fuel Cell Technologies Office (to SN, CE, JY, and PCM), Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy award number DE-FG02-91ER20021 (to JC), and the University of Wyoming start-up funds (to KW). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 62 TC 0 Z9 0 U1 1 U2 15 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD DEC 5 PY 2014 VL 9 IS 12 AR e114551 DI 10.1371/journal.pone.0114551 PG 18 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AX4MS UT WOS:000346907200100 PM 25479613 ER PT J AU Kung, YF Chen, CC Moritz, B Johnston, S Thomale, R Devereaux, TP AF Kung, Y. F. Chen, C. -C. Moritz, B. Johnston, S. Thomale, R. Devereaux, T. P. TI Numerical exploration of spontaneous broken symmetries in multiorbital Hubbard models SO PHYSICAL REVIEW B LA English DT Article ID HIGH-T-C; HIGH-TEMPERATURE SUPERCONDUCTORS; COPPER-OXIDE METALS; PSEUDOGAP STATE; ELECTRONIC-STRUCTURE; CHARGE-TRANSFER; MAGNETIC ORDER; MONTE-CARLO; DENSITY; PHASE AB We study three proposals for broken symmetry in the cuprate pseudogap-oxygen antiferromagnetism, Theta(II) orbital loop currents, and circulating currents involving apex oxygens-through numerical exploration of multiorbital Hubbard models. Our numerically exact results show no evidence for the existence of oxygen antiferromagnetic order or the Theta(II) phase in the three-orbital Hubbard model. The model also fails to sustain an ordered current pattern even with the presence of additional apex oxygen orbitals. We thereby conclude that it is difficult to stabilize the aforementioned phases in the multiorbital Hubbard models for parameters relevant to cuprate superconductors. However, the Theta(II) phase might be stabilized through explicit flux terms. We find an enhanced propensity for circulating currents with such terms in calculations simulating applied stress or strain, which skew the copper-oxygen plane to resemble a kagome lattice. We propose an experimental viewpoint to shed additional light on this problem. C1 [Kung, Y. F.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Kung, Y. F.; Moritz, B.; Devereaux, T. P.] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Chen, C. -C.] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. [Moritz, B.] Univ N Dakota, Dept Phys & Astrophys, Grand Forks, ND 58202 USA. [Johnston, S.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Johnston, S.] Univ Tennessee, Joint Inst Adv Mat, Knoxville, TN 37996 USA. [Thomale, R.] Univ Wurzburg, Inst Theoret Phys, D-97074 Wurzburg, Germany. [Devereaux, T. P.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. RP Kung, YF (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RI Moritz, Brian/D-7505-2015; Johnston, Steven/J-7777-2016 OI Moritz, Brian/0000-0002-3747-8484; FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-76SF00515]; SLAC National Accelerator Laboratory (SLAC), Stanford Institute for Materials and Energy Sciences; Department of Defense (DOD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG); National Science Foundation (NSF) [1147470]; U.S. DOE [DE-AC02-06CH11357, DE-AC02-05CH11231]; European Research Council (ERC) [ERC-StG-Thomale-336012] FX The authors acknowledge helpful discussions with Marc-Henri Julien, Chandra Varma, Cedric Weber, Arno Kampf, Douglas Scalapino, Sri Raghu, Steve Kivelson, Richard Scalettar, Chunjing Jia, Alexander Kemper, Tsezar Seman, and Jiun-Haw Chu. Part of this research was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-76SF00515, SLAC National Accelerator Laboratory (SLAC), Stanford Institute for Materials and Energy Sciences. Y.F.K. was supported by the Department of Defense (DOD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program and by the National Science Foundation (NSF) Graduate Research Fellowship under Grant No. 1147470. C.C.C. is supported by the Aneesur Rahman Postdoctoral Fellowship at Argonne National Laboratory, operated under the U.S. DOE Contract No. DE-AC02-06CH11357. R.T. was supported by the European Research Council (ERC) through ERC-StG-Thomale-336012. The computational work was partially performed at the National Energy Research Scientific Computing Center (NERSC), supported by the U.S. DOE under Contract No. DE-AC02-05CH11231. NR 89 TC 6 Z9 6 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 5 PY 2014 VL 90 IS 22 AR 224507 DI 10.1103/PhysRevB.90.224507 PG 9 WC Physics, Condensed Matter SC Physics GA AW9WZ UT WOS:000346607200008 ER PT J AU Liu, Y Lograsso, TA AF Liu, Yong Lograsso, Thomas A. TI Crossover in the magnetic response of single-crystalline Ba1-xKxFe2As2 and Lifshitz critical point evidenced by Hall effect measurements SO PHYSICAL REVIEW B LA English DT Article ID HEAVY-ELECTRON MATERIALS; IRON PNICTIDES; SUPERCONDUCTIVITY; ORDER AB We report on the doping evolution of magnetic susceptibility chi(T) and Hall coefficient R-H in high-quality Ba1-xKxFe2As2 (0.13 <= x <= 1) single crystals. It is found that the normal-state magnetic susceptibility of Ba1-xKxFe2As2 compounds undergoes a crossover from linear-T dependence in the undoped and underdoped samples into KFe2As2-type magnetic response in the overdoped samples with increasing K content. Although magnetic susceptibility chi(T) of optimally doped samples (0.34 <= x <= 0.47) still follows a monotonic increase with increasing temperature, a big hump around 300 K emerges. As x exceeds 0.53, a broad peak forms in overdoped samples (0.53 <= x <= 1), which shifts toward 120 K for the end member KFe2As2. Above the peak temperature T* = 120 K, a Curie-Weiss-like behavior is observed in KFe2As2. The Hall coefficient R-H of underdoped sample x = 0.22 shows a rapid increase above spin-density-wave transition temperature T-SDW. Below T-SDW, it increases slowly. R-H of optimally doped and slightly overdoped samples (0.34 <= x <= 0.65) shows relatively weak temperature dependence and a saturation tendency below 150 K. However, R-H of K heavily overdoped samples (0.80 <= x <= 1) increases rapidly below 150 K. Meanwhile, the Hall angle cot theta(H) displays a concave temperature dependence within the doping range 0.22 <= x <= 0.55, whereas it changes to a convex temperature dependence within the doping range 0.65 <= x <= 1. The dramatic change coincides with the Lifshitz transition occurring around the critical doping x = 0.80, where angle photoemission spectroscopy measurements had confirmed that the electron pocket disappears with excess hole doping in the Ba1-xKxFe2As2 system. It is suggested that the characteristic temperature T* at around 120 similar to 150 K observed in susceptibility and the Hall coefficient, as well as previously reported resistivity data, may indicate an incoherence-coherence crossover in the Ba1-xKxFe2As2 system. C1 [Liu, Yong; Lograsso, Thomas A.] Ames Lab, Div Engn & Mat Sci, Ames, IA 50011 USA. [Lograsso, Thomas A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Liu, Y (reprint author), Ames Lab, Div Engn & Mat Sci, Ames, IA 50011 USA. EM yliu@ameslab.gov FU US Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; US DOE [DE-AC02-07CH11358] FX This work was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. The research was performed at the Ames Laboratory, which is operated for the US DOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 57 TC 8 Z9 8 U1 2 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 5 PY 2014 VL 90 IS 22 AR 224508 DI 10.1103/PhysRevB.90.224508 PG 9 WC Physics, Condensed Matter SC Physics GA AW9WZ UT WOS:000346607200009 ER PT J AU Rincon, J Moreo, A Alvarez, G Dagotto, E AF Rincon, Julian Moreo, Adriana Alvarez, Gonzalo Dagotto, Elbio TI Quantum phase transition between orbital-selective Mott states in Hund's metals SO PHYSICAL REVIEW B LA English DT Article ID DENSITY-MATRIX RENORMALIZATION; INSULATOR-TRANSITION; ELECTRONIC MODELS; DOUBLE EXCHANGE AB We report a quantum phase transition between orbital-selective Mott states, with different localized orbitals, in a Hund's metals model. Using the density matrix renormalization group, the phase diagram is constructed varying the electronic density and Hubbard U, at robust Hund's coupling. We demonstrate that this transition is preempted by charge fluctuations and the emergence of free spinless fermions, as opposed to the magnetically driven Mott transition. The Luttinger correlation exponent is shown to have a universal value in the strong-coupling phase, whereas it is interaction dependent at intermediate couplings. At weak coupling we find a second transition from a normal metal to the intermediate-coupling phase. C1 [Rincon, Julian; Alvarez, Gonzalo] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Rincon, Julian; Moreo, Adriana; Dagotto, Elbio] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Moreo, Adriana; Dagotto, Elbio] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Alvarez, Gonzalo] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Rincon, J (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. FU Early Career Research Program, U.S. Department of Energy; National Science Foundation [DMR-1404375] FX J.R. acknowledges insightful conversations with A. Millis and K. Al-Hassanieh. Support by the Early Career Research Program, U.S. Department of Energy (J.R., G.A.) is acknowledged. A.M. and E. D. were supported by the National Science Foundation under Grant No. DMR-1404375. NR 44 TC 3 Z9 3 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 5 PY 2014 VL 90 IS 24 AR 241105 DI 10.1103/PhysRevB.90.241105 PG 5 WC Physics, Condensed Matter SC Physics GA AW9YN UT WOS:000346611200001 ER PT J AU Gu, DC Dai, X Le, CC Sun, LL Wu, Q Saparov, B Guo, J Gao, PW Zhang, S Zhou, YZ Zhang, C Jin, SF Xiong, L Li, R Li, YC Li, XD Liu, J Sefat, AS Hu, JP Zhao, ZX AF Gu, Dachun Dai, Xia Le, Congcong Sun, Liling Wu, Qi Saparov, Bayrammurad Guo, Jing Gao, Peiwen Zhang, Shan Zhou, Yazhou Zhang, Chao Jin, Shifeng Xiong, Lun Li, Rui Li, Yanchun Li, Xiaodong Liu, Jing Sefat, Athena S. Hu, Jiangping Zhao, Zhongxian TI Robust antiferromagnetism preventing superconductivity in pressurized (Ba0.61K0.39)Mn2Bi2 SO SCIENTIFIC REPORTS LA English DT Article ID INSULATOR; MAGNETISM; COMPOUND; CRYSTALS; LAMNPO AB BaMn2Bi2 possesses an iso-structure of iron pnictide superconductors and similar antiferromagnetic (AFM) ground state to that of cuprates, therefore, it receives much more attention on its properties and is expected to be the parent compound of a new family of superconductors. When doped with potassium (K), BaMn2Bi2 undergoes a transition from an AFM insulator to an AFM metal. Consequently, it is of great interest to suppress the AFM order in the K-doped BaMn2Bi2 with the aim of exploring the potential superconductivity. Here, we report that external pressure up to 35.6 GPa cannot suppress the AFM order in the K-doped BaMn2Bi2 to develop superconductivity in the temperature range of 300 K-1.5 K, but induces a tetragonal (T) to an orthorhombic (OR) phase transition at similar to 20 GPa. Theoretical calculations for the T and OR phases, on basis of our high-pressure XRD data, indicate that the AFM order is robust in the pressurized Ba0.61K0.39Mn2Bi2. Both of our experimental and theoretical results suggest that the robust AFM order essentially prevents the emergence of superconductivity. C1 [Gu, Dachun; Dai, Xia; Le, Congcong; Sun, Liling; Wu, Qi; Guo, Jing; Gao, Peiwen; Zhang, Shan; Zhou, Yazhou; Zhang, Chao; Jin, Shifeng; Hu, Jiangping; Zhao, Zhongxian] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Gu, Dachun; Dai, Xia; Le, Congcong; Sun, Liling; Wu, Qi; Guo, Jing; Gao, Peiwen; Zhang, Shan; Zhou, Yazhou; Zhang, Chao; Jin, Shifeng; Hu, Jiangping; Zhao, Zhongxian] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Sun, Liling; Hu, Jiangping; Zhao, Zhongxian] Collaborat Innovat Ctr Quantum Matter, Beijing 100190, Peoples R China. [Saparov, Bayrammurad; Sefat, Athena S.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Xiong, Lun; Li, Rui; Li, Yanchun; Li, Xiaodong; Liu, Jing] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. RP Sun, LL (reprint author), Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. EM llsun@iphy.ac.cn; zhxzhao@iphy.ac.cn RI Hu, Jiangping/A-9154-2010; Sefat, Athena/R-5457-2016 OI Hu, Jiangping/0000-0003-4480-1734; Sefat, Athena/0000-0002-5596-3504 FU NSF of China [91321207, 11427805]; 973 projects [2011CBA00100, 2010CB923000]; Strategic Priority Research Program (B) of the Chinese Academy of Sciences [XDB07020300]; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX This work in China was supported by the NSF of China (Grant No. 91321207 and 11427805), 973 projects (Grant No. 2011CBA00100 and 2010CB923000) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020300). The work in the USA has been supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 51 TC 2 Z9 2 U1 5 U2 45 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 5 PY 2014 VL 4 AR 7342 DI 10.1038/srep07342 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AW4SK UT WOS:000346270600002 PM 25475224 ER PT J AU Wang, KF Graf, D Li, LJ Wang, LM Petrovic, C AF Wang, Kefeng Graf, D. Li, Lijun Wang, Limin Petrovic, C. TI Anisotropic giant magnetoresistance in NbSb2 SO SCIENTIFIC REPORTS LA English DT Article ID TOPOLOGICAL INSULATOR AB The magnetic field response of the transport properties of novel materials and then the large magnetoresistance effects are of broad importance in both science and application. We report large transverse magnetoreistance (the magnetoresistant ratio similar to 1.33 x 10(5)% in 2 K and 9 T field, and 4.3 x 10(6)% in 0.4 K and 32 T field, without saturation) and field-induced metal-semiconductor-like transition, in NbSb2 single crystal. Magnetoresistance is significantly suppressed but the metal-semiconductor-like transition persists when the current is along the ac-plane. The sign reversal of the Hall resistivity and Seebeck coefficient in the field, plus the electronic structure reveal the coexistence of a small number of holes with very high mobility and a large number of electrons with low mobility. The large MR is attributed to the change of the Fermi surface induced by the magnetic field which is related to the Dirac-like point, in addition to orbital MR expected for high mobility metals. C1 [Wang, Kefeng; Li, Lijun; Wang, Limin; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Graf, D.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. RP Wang, KF (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM kwang@bnl.gov; petrovic@bnl.gov RI Wang, Kefeng/E-7683-2011; Petrovic, Cedomir/A-8789-2009 OI Wang, Kefeng/0000-0002-8449-9720; Petrovic, Cedomir/0000-0001-6063-1881 FU U.S. DOE [DE-AC02-98CH10886]; DOE NNSA [DE-FG52-10NA29659]; NSF Cooperative Agreement [DMR-0654118]; state of Florida FX We thank John Warren for help with SEM measurements. Work at Brookhaven is supported by the U.S. DOE under contract No. DE-AC02-98CH10886 (K.W., L.L., L.W. and C.P.). Work at the National High Magnetic Field Laboratory is supported by the DOE NNSA DE-FG52-10NA29659 (D.G.), by the NSF Cooperative Agreement No. DMR-0654118 and by the state of Florida. NR 43 TC 47 Z9 47 U1 25 U2 129 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 5 PY 2014 VL 4 AR 7328 DI 10.1038/srep07328 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AW4SC UT WOS:000346269800003 PM 25476239 ER PT J AU Chambers, SA AF Chambers, Scott A. TI Stability at the surface SO SCIENCE LA English DT Editorial Material ID HETEROJUNCTION C1 Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Chambers, SA (reprint author), Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. EM sa.chambers@pnnl.gov NR 12 TC 2 Z9 2 U1 9 U2 57 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD DEC 5 PY 2014 VL 346 IS 6214 BP 1186 EP 1187 DI 10.1126/science.aaa1543 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AW3LU UT WOS:000346189000044 PM 25477444 ER PT J AU Pizer, W Adler, M Aldy, J Anthoff, D Cropper, M Gillingham, K Greenstone, M Murray, B Newell, R Richels, R Rowell, A Waldhoff, S Wiener, J AF Pizer, William Adler, Matthew Aldy, Joseph Anthoff, David Cropper, Maureen Gillingham, Kenneth Greenstone, Michael Murray, Brian Newell, Richard Richels, Richard Rowell, Arden Waldhoff, Stephanie Wiener, Jonathan TI Using and improving the social cost of carbon SO SCIENCE LA English DT Editorial Material C1 [Pizer, William; Adler, Matthew; Murray, Brian; Newell, Richard; Wiener, Jonathan] Duke Univ, Durham, NC 27708 USA. [Pizer, William; Aldy, Joseph; Cropper, Maureen; Newell, Richard; Wiener, Jonathan] Resources Future Inc, Washington, DC 20036 USA. [Aldy, Joseph] Harvard Univ, Cambridge, MA 02138 USA. [Anthoff, David] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Cropper, Maureen] Univ Maryland, College Pk, MD 20742 USA. [Gillingham, Kenneth] Yale Univ, New Haven, CT 06511 USA. [Greenstone, Michael] Univ Chicago, Chicago, IL 60637 USA. [Richels, Richard] Elect Power Res Inst, Washington, DC 20036 USA. [Rowell, Arden] Univ Illinois, Champaign, IL 61801 USA. [Waldhoff, Stephanie] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Pizer, W (reprint author), Duke Univ, Durham, NC 27708 USA. EM william.pizer@duke.edu RI Newell, Richard/I-3838-2015 OI Newell, Richard/0000-0002-3205-5562 NR 12 TC 21 Z9 21 U1 3 U2 29 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD DEC 5 PY 2014 VL 346 IS 6214 BP 1189 EP 1190 DI 10.1126/science.1259774 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AW3LU UT WOS:000346189000046 PM 25477446 ER PT J AU Kim, J Hong, XP Jin, CH Shi, SF Chang, CYS Chiu, MH Li, LJ Wang, F AF Kim, Jonghwan Hong, Xiaoping Jin, Chenhao Shi, Su-Fei Chang, Chih-Yuan S. Chiu, Ming-Hui Li, Lain-Jong Wang, Feng TI Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers SO SCIENCE LA English DT Article ID TRANSITION-METAL DICHALCOGENIDES; SINGLE-ELECTRON SPIN; QUANTUM-DOT; MOLYBDENUM-DISULFIDE; LAYER MOS2; MONO LAYER; MANIPULATION; POLARIZATION; COHERENCE; HELICITY AB The valley pseudospin is a degree of freedom that emerges in atomically thin two-dimensional transition metal dichalcogenides (MX2). The capability to manipulate it, in analogy to the control of spin in spintronics, can open up exciting opportunities. Here, we demonstrate that an ultrafast and ultrahigh valley pseudo-magnetic field can be generated by using circularly polarized femtosecond pulses to selectively control the valley degree of freedom in monolayer MX2. Using ultrafast pump-probe spectroscopy, we observed a pure and valley-selective optical Stark effect in WSe2 monolayers from the nonresonant pump, resulting in an energy splitting of more than 10 milli-electron volts between the K and K' valley exciton transitions. Our study opens up the possibility to coherently manipulate the valley polarization for quantum information applications. C1 [Kim, Jonghwan; Hong, Xiaoping; Jin, Chenhao; Shi, Su-Fei; Wang, Feng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Shi, Su-Fei; Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Chang, Chih-Yuan S.; Li, Lain-Jong] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan. [Chiu, Ming-Hui; Li, Lain-Jong] King Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia. [Wang, Feng] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Wang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM fengwang76@berkeley.edu RI Li, Lain-Jong/D-5244-2011; wang, Feng/I-5727-2015 OI Li, Lain-Jong/0000-0002-4059-7783; FU Office of Basic Energy Science, U.S. Department of Energy [DE-SC0003949, DE-AC02-05CH11231]; Academia Sinica; National Science Council Taiwan [NSC-102-2119-M-001-005-MY3]; David and Lucile Packard fellowship FX This work was supported by Office of Basic Energy Science, U.S. Department of Energy under contract DE-SC0003949 (Early Career Award) and DE-AC02-05CH11231 (Materials Science Division). L.J.L. thanks the support from Academia Sinica and National Science Council Taiwan (NSC-102-2119-M-001-005-MY3). F.W. also acknowledges the support from a David and Lucile Packard fellowship. All data described in the paper are presented in this report and supplementary materials. NR 29 TC 52 Z9 52 U1 20 U2 256 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD DEC 5 PY 2014 VL 346 IS 6214 BP 1205 EP 1208 DI 10.1126/science.1258122 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AW3LU UT WOS:000346189000051 PM 25477455 ER PT J AU Jasper, AW Pelzer, KM Miller, JA Kamarchik, E Harding, LB Klippenstein, SJ AF Jasper, Ahren W. Pelzer, Kenley M. Miller, James A. Kamarchik, Eugene Harding, Lawrence B. Klippenstein, Stephen J. TI Predictive a priori pressure-dependent kinetics SO SCIENCE LA English DT Article ID 2-DIMENSIONAL MASTER EQUATION; COLLISIONAL ENERGY-TRANSFER; THERMAL UNIMOLECULAR REACTIONS; 1ST-PRINCIPLES THEORY; CHEMICAL-REACTION; FALLOFF CURVES; GAS-PHASE; DISSOCIATION; LIMIT; RECOMBINATION AB The ability to predict the pressure dependence of chemical reaction rates would be a great boon to kinetic modeling of processes such as combustion and atmospheric chemistry. This pressure dependence is intimately related to the rate of collision-induced transitions in energy E and angular momentum J. We present a scheme for predicting this pressure dependence based on coupling trajectory-based determinations of moments of the E, J-resolved collisional transfer rates with the two-dimensional master equation. This completely a priori procedure provides a means for proceeding beyond the empiricism of prior work. The requisite microcanonical dissociation rates are obtained from ab initio transition state theory. Predictions for the CH4 = CH3 + H and C2H3 = C2H2 + H reaction systems are in excellent agreement with experiment. C1 [Jasper, Ahren W.; Kamarchik, Eugene] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Pelzer, Kenley M.; Miller, James A.; Harding, Lawrence B.; Klippenstein, Stephen J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Klippenstein, SJ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sjk@anl.gov RI Jasper, Ahren/A-5292-2011; OI Klippenstein, Stephen/0000-0001-6297-9187 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (DOE-BES); Argonne as part of the Argonne-Sandia Consortium on High-Pressure Combustion Chemistry (FWP) [DE-AC02-06CH11357, 59044]; U.S. DOE [DE-AC04-94-AL85000]; AITSTME project as part of the Predictive Theory and Modeling component of the Materials Genome Initiative of DOE-BES; DOE Computational Science Graduate Fellowship [DE-FG02-97ER25308] FX This work is supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (DOE-BES). The work at Argonne was supported under Contract no. DE-AC02-06CH11357 as part of the Argonne-Sandia Consortium on High-Pressure Combustion Chemistry (FWP no. 59044). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. DOE under Contract no. DE-AC04-94-AL85000. Software development was supported by the AITSTME project as part of the Predictive Theory and Modeling component of the Materials Genome Initiative of DOE-BES. K. Pelzer acknowledges the support of the DOE Computational Science Graduate Fellowship under grant no. DE-FG02-97ER25308. NR 33 TC 31 Z9 32 U1 7 U2 85 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD DEC 5 PY 2014 VL 346 IS 6214 BP 1212 EP 1215 DI 10.1126/science.1260856 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AW3LU UT WOS:000346189000053 PM 25477457 ER PT J AU Tenboer, J Basu, S Zatsepin, N Pande, K Milathianaki, D Frank, M Hunter, M Boutet, S Williams, GJ Koglin, JE Oberthuer, D Heymann, M Kupitz, C Conrad, C Coe, J Roy-Chowdhury, S Weierstall, U James, D Wang, DJ Grant, T Barty, A Yefanov, O Scales, J Gati, C Seuring, C Srajer, V Henning, R Schwander, P Fromme, R Ourmazd, A Moffat, K Van Thor, JJ Spence, JCH Fromme, P Chapman, HN Schmidt, M AF Tenboer, Jason Basu, Shibom Zatsepin, Nadia Pande, Kanupriya Milathianaki, Despina Frank, Matthias Hunter, Mark Boutet, Sebastien Williams, Garth J. Koglin, Jason E. Oberthuer, Dominik Heymann, Michael Kupitz, Christopher Conrad, Chelsie Coe, Jesse Roy-Chowdhury, Shatabdi Weierstall, Uwe James, Daniel Wang, Dingjie Grant, Thomas Barty, Anton Yefanov, Oleksandr Scales, Jennifer Gati, Cornelius Seuring, Carolin Srajer, Vukica Henning, Robert Schwander, Peter Fromme, Raimund Ourmazd, Abbas Moffat, Keith Van Thor, Jasper J. Spence, John C. H. Fromme, Petra Chapman, Henry N. Schmidt, Marius TI Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein SO SCIENCE LA English DT Article ID X-RAY CRYSTALLOGRAPHY; FREE-ELECTRON LASER; MACROMOLECULAR CRYSTALLOGRAPHY; LAUE CRYSTALLOGRAPHY; STRUCTURAL DYNAMICS; ROOM-TEMPERATURE; SPECTROSCOPY; DIFFRACTION; NANOCRYSTALLOGRAPHY; PHOTOCYCLE AB Serial femtosecond crystallography using ultrashort pulses from x-ray free electron lasers (XFELs) enables studies of the light-triggered dynamics of biomolecules. We used microcrystals of photoactive yellow protein (a bacterial blue light photoreceptor) as a model system and obtained high-resolution, time-resolved difference electron density maps of excellent quality with strong features; these allowed the determination of structures of reaction intermediates to a resolution of 1.6 angstroms. Our results open the way to the study of reversible and nonreversible biological reactions on time scales as short as femtoseconds under conditions that maximize the extent of reaction initiation throughout the crystal. C1 [Tenboer, Jason; Pande, Kanupriya; Scales, Jennifer; Schwander, Peter; Ourmazd, Abbas; Schmidt, Marius] Univ Wisconsin, Dept Phys, Milwaukee, WI 53211 USA. [Basu, Shibom; Kupitz, Christopher; Conrad, Chelsie; Coe, Jesse; Roy-Chowdhury, Shatabdi; Fromme, Raimund; Fromme, Petra] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Zatsepin, Nadia; Weierstall, Uwe; James, Daniel; Wang, Dingjie; Spence, John C. H.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Milathianaki, Despina; Boutet, Sebastien; Williams, Garth J.; Koglin, Jason E.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Frank, Matthias; Hunter, Mark] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Oberthuer, Dominik; Gati, Cornelius; Seuring, Carolin; Chapman, Henry N.] Univ Hamburg, Ctr Ultrafast Imaging, D-22761 Hamburg, Germany. [Heymann, Michael; Barty, Anton; Yefanov, Oleksandr; Gati, Cornelius; Chapman, Henry N.] Deutsch Elektronen Synchrotron DESY, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany. [Grant, Thomas] SUNY Buffalo, Hauptman Woodward Inst, Buffalo, NY 14260 USA. [Srajer, Vukica; Henning, Robert; Moffat, Keith] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. [Moffat, Keith] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. [Moffat, Keith] Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA. [Van Thor, Jasper J.] Univ London Imperial Coll Sci Technol & Med, Fac Nat Sci, London SW7 2AZ, England. RP Schmidt, M (reprint author), Univ Wisconsin, Dept Phys, Milwaukee, WI 53211 USA. EM m-schmidt@uwm.edu RI Barty, Anton/K-5137-2014; Chapman, Henry/G-2153-2010; Heymann, Michael/J-6134-2015; Fromme, Raimund/C-8885-2012; Seuring, Carolin/K-6364-2016; OI Barty, Anton/0000-0003-4751-2727; Chapman, Henry/0000-0002-4655-1743; Heymann, Michael/0000-0002-9278-8207; Fromme, Raimund/0000-0003-4835-1080; Seuring, Carolin/0000-0003-1000-0859; Pande, Kanupriya/0000-0003-4272-9273; James, Daniel/0000-0002-8348-6661 FU NSF [0952643]; NIH [R01GM095583, R24GM111072]; NSF Science and Technology Centers [NSF-1231306]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LLNL Lab-Directed Research and Development Project [012-ERD-031] FX Supported by NSF career grant 0952643 (M.S.), NIH grant R01GM095583 (P.F.), NIH grant R24GM111072 (V.S., R.H., and K.M.), and NSF Science and Technology Centers grant NSF-1231306 ("Biology with X-ray Lasers"). The work of M.F. and his team was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and supported by LLNL Lab-Directed Research and Development Project 012-ERD-031. We thank T. White for making the newest version of CrystFEL available to us, R. G. Sierra and H. DeMirci for help setting up crystal preparation in their labs, S. Lisova for making injector nozzles, and D. Deponte for help with the injector setup. M.S. thanks R. Hovey and S. Tripathi for help on early attempts to produce microcrystals. The TR-SFX measurements were carried out at the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. J.S. is an inventor on a patent applied for by Arizona State University that covers the gas dynamic virtual nozzle. Coordinates and (difference) structure factors are deposited in the Protein Data Bank under accession numbers 4WL9 and 4WLA. NR 34 TC 101 Z9 102 U1 21 U2 147 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD DEC 5 PY 2014 VL 346 IS 6214 BP 1242 EP 1246 DI 10.1126/science.1259357 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AW3LU UT WOS:000346189000061 PM 25477465 ER PT J AU Timilsina, R Tan, S Livengood, R Rack, PD AF Timilsina, R. Tan, S. Livengood, R. Rack, P. D. TI Monte Carlo simulations of nanoscale focused neon ion beam sputtering of copper: elucidating resolution limits and sub-surface damage SO NANOTECHNOLOGY LA English DT Article DE IBIP; sputtering; neon sputtering; ion Monte Carlo; dry etching; helium; neon ID INDUCED DEPOSITION; MICROSCOPE; IMPLANTATION; LITHOGRAPHY; NANOPILLARS; PROGRAM; ENERGY AB A three dimensional Monte Carlo simulation program was developed to model physical sputtering and to emulate vias nanomachined by the gas field ion microscope. Experimental and simulation results of focused neon ion beam induced sputtering of copper are presented and compared to previously published experiments. The simulation elucidates the nanostructure evolution during the physical sputtering of high aspect ratio nanoscale features. Quantitative information such as the energy-dependent sputtering yields, dose dependent aspect ratios, and resolution-limiting effects are discussed. Furthermore, the nuclear energy loss and implant concentration beneath the etch front is correlated with the sub-surface damage revealed by transmission electron microscopy at different beam energies. C1 [Timilsina, R.; Rack, P. D.] Univ Tennessee, Knoxville, TN 37996 USA. [Rack, P. D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Tan, S.; Livengood, R.] Intel Corp, Santa Clara, CA 95054 USA. RP Timilsina, R (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. EM prack@utk.edu OI Rack, Philip/0000-0002-9964-3254 FU Semiconductor Research Corporation; Intel Corporation; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX RT and PDR would like to acknowledge support of the Semiconductor Research Corporation (Bob Havemann program manager) and Intel Corporation. PDR also acknowledges that some of the original Monte Carlo algorithms were developed at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 49 TC 9 Z9 9 U1 2 U2 29 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD DEC 5 PY 2014 VL 25 IS 48 AR 485704 DI 10.1088/0957-4484/25/48/485704 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AU0AU UT WOS:000345286400020 PM 25387461 ER PT J AU Lyakh, DI AF Lyakh, Dmitry I. TI Scale-Adaptive Tensor Algebra for Local Many-Body Methods of Electronic Structure Theory SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY LA English DT Article DE electronic structure; many-body theory; tensor algebra; local coupled-cluster method; multiresolution ID COUPLED-CLUSTER THEORY; ATOMIC ORBITAL BASIS; MULTIRESOLUTION QUANTUM-CHEMISTRY; DENSITY-MATRIX RENORMALIZATION; CONTRACTED FUNCTION-METHOD; POTENTIAL-ENERGY SURFACES; FAST MULTIPOLE METHOD; CONFIGURATION-INTERACTION; THERMODYNAMIC LIMIT; PERTURBATION-THEORY AB While the formalism of multiresolution analysis, based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent-particle level and, recently, second-order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many-particle) theory based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this article, we present a formalism called scale-adaptive tensor algebra, which introduces an adaptive representation of tensors of many-body operators via the local adjustment of the basis set quality. Given a series of locally supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability of certain local correlated many-body methods of electronic structure theory, for example, those directly based on atomic orbitals (or any other localized basis functions in general). (c) 2014 Wiley Periodicals, Inc. C1 Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. RP Lyakh, DI (reprint author), Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. EM quant4me@gmail.com OI Lyakh, Dmitry/0000-0002-1851-2974 FU U.S. Department of Energy [DE-AC05-00OR22725] FX This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 180 TC 1 Z9 1 U1 1 U2 35 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0020-7608 EI 1097-461X J9 INT J QUANTUM CHEM JI Int. J. Quantum Chem. PD DEC 5 PY 2014 VL 114 IS 23 BP 1607 EP 1618 DI 10.1002/qua.24732 PG 12 WC Chemistry, Physical; Mathematics, Interdisciplinary Applications; Physics, Atomic, Molecular & Chemical SC Chemistry; Mathematics; Physics GA AS5UN UT WOS:000344335000005 ER PT J AU Perepezko, JH Santhaweesuk, C Wang, JQ Imhoff, SD AF Perepezko, J. H. Santhaweesuk, C. Wang, J. Q. Imhoff, S. D. TI Kinetic competition during glass formation SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT International Symposium on Metastable, Amorphous and Nanostructured Materials (ISMANAM) CY JUN 30-JUL 05, 2013 CL Torino, ITALY DE Metallic glass; Critical cooling rate range; Nucleation kinetics ID BULK AMORPHOUS-ALLOYS; PB-SB ALLOYS; SUPERCOOLED LIQUID; FORMING ABILITY; PHASE-CHANGE; COOLING RATE; CRYSTALLIZATION AB For vitrification of an alloy melt during cooling there is a kinetic competition with the nucleation and growth of metastable and stable crystalline phases. Many of the measures of glass forming ability (GFA) attempt to capture some of the features of the kinetic competition, but the GFA metrics are static measures and the kinetic processes are dynamic in nature. In fact, the critical cooling rate for glass formation should be viewed in terms of a critical cooling rate range to acknowledge the stochastic nature of crystal nucleation behavior. Direct measurements of the critical cooling rate range confirm this behavior and also provide useful input for kinetics analysis. Usually kinetics analyses are based upon crystallization behavior that is measured either isothermally or upon heating to temperatures near the crystallization onset, T-x and the results are extrapolated to much higher temperatures. This practice is based upon a number of assumptions about transport behavior in the undercooled liquid. With rapid up-quenching of amorphous samples, the high temperature crystallization behavior can be measured and used to refine the kinetics analysis and provide useful insight on the kinetic competition and glass forming ability. (C) 2013 Elsevier B.V. All rights reserved. C1 [Perepezko, J. H.; Santhaweesuk, C.; Wang, J. Q.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Imhoff, S. D.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Perepezko, JH (reprint author), Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA. EM perepezk@engr.wisc.edu RI Wang, Jun-Qiang /G-5989-2010; Wang, Junqiang/C-2839-2015 OI Wang, Junqiang/0000-0002-8066-6237 FU NSF [DMR-1005334, DMR-1332851] FX The authors appreciate the technical assistance from T.W. Glendenning. The financial support from the NSF (DMR-1005334 and DMR-1332851) is gratefully acknowledged. NR 26 TC 3 Z9 3 U1 6 U2 37 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD DEC 5 PY 2014 VL 615 SU 1 BP S192 EP S197 DI 10.1016/j.jallcom.2013.11.220 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA AR5GR UT WOS:000343613600041 ER PT J AU Koehler, MR Garlea, VO McGuire, MA Jia, L Keppens, V AF Koehler, M. R. Garlea, V. O. McGuire, M. A. Jia, L. Keppens, V. TI Spin reorientation and magnetoelastic coupling in Tb6Fe1-xCoxBi2 (x=0, 0.125, 0.25, and 0.375) alloy system SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Rare earth alloys and compounds; Neutron diffraction; Crystal structure ID MAGNETIC-STRUCTURE; INTERMETALLIC COMPOUNDS; RARE-EARTH; TRANSITIONS; CRYSTAL; ERFE3 AB Tb6FeBi2 adopts a noncentrosymmetric crystal structure and orders ferromagnetically at T-C1 = 250 K with an additional magnetic transition at T-C2 = 60 K. The low temperature magnetoelastic response in this material is strong, and is enhanced by cobalt substitution. Here, the temperature dependence of the atomic and magnetic structure of Tb6Fe1-xCoxBi2 (x = 0, 0.125, 0.25, and 0.375) is reported from powder X-ray diffraction (XRD) and powder neutron diffraction (PND) measurements. Below the Neel temperature a ferrimagnetic ordering between the terbium and iron moments exists in all compounds studied. Related to the enhanced magnetostructural response, the Co-doped compounds undergo a crystallographic phase transition below about 60 K. This transition also involves a canting of the magnetic moments away from the c-axis. The structural transition is sluggish and not fully completed in the parent Tb6FeBi2 compound, where a mixture of monoclinic and hexagonal phases is identified below 60 K. The spin reorientation transition is discussed in terms of competing exchange interactions and magnetocrystalline anisotropies of the two Tb sites and Fe/Co sublattices. (C) 2014 Elsevier B.V. All rights reserved. C1 [Koehler, M. R.; Jia, L.; Keppens, V.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Garlea, V. O.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [McGuire, M. A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Koehler, MR (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM mrkoehler@gmail.com RI McGuire, Michael/B-5453-2009; Garlea, Vasile/A-4994-2016 OI McGuire, Michael/0000-0003-1762-9406; Garlea, Vasile/0000-0002-5322-7271 FU DOD DEP-SCoR Grant [N00014-08-1-0783]; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. DOE, Office of Basic Energy Sciences, Scientific User Facilities Division FX Work at The University of Tennessee is supported by DOD DEP-SCoR Grant No. N00014-08-1-0783. Work at Oak Ridge National Laboratory was sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. The work performed at the High Flux Isotope Reactor was sponsored by the U.S. DOE, Office of Basic Energy Sciences, Scientific User Facilities Division. NR 22 TC 0 Z9 0 U1 0 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD DEC 5 PY 2014 VL 615 BP 514 EP 520 DI 10.1016/j.jallcom.2014.06.183 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA AP7GL UT WOS:000342245700079 ER PT J AU Li, Z Ban, C Chernova, NA Wu, Z Upreti, S Dillon, A Whittingham, MS AF Li, Zheng Ban, Chunmei Chernova, Natasha A. Wu, Zhuangchun Upreti, Shailesh Dillon, Anne Whittingham, M. Stanley TI Towards understanding the rate capability of layered transition metal oxides LiNiyMnyCo1-2yO2 SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium-ion battery; Rate capability; Lithium diffusion; Electronic conductivity ID CHARGE COMPENSATION MECHANISM; ELECTRICAL ENERGY-STORAGE; LITHIUM ION BATTERIES; OHMIC POTENTIAL DROP; DIFFUSION-COEFFICIENTS; PHYSICAL-PROPERTIES; CATHODE MATERIALS; HIGH-POWER; SYSTEM; INTERCALATION AB This work attempts to understand the rate capability of layered transition metal oxides LiNiyMnyCo1-2yO2 (0.33 <= y <= 0.5). The rate capability of LiNiyMnyCo1-2yO2 increase with increasing Co in the compounds and with increasing amount of carbon additives in the electrodes. The lithium diffusion coefficients and electronic conductivities of LixNiyMnyCo1-2yO2 are investigated and compared. The 333 compound has higher diffusivity and electronic conductivity and thus better rate performance than 550. Chemical diffusion coefficients for both delithiation and lithiation of LixNiyMnyCo1-2yO2 investigated by GITT and PITT experiments are calculated to be around 10(-10) cm(2) s(-1), lower than that of LixCoO2. The electronic conductivity of LixNiyMnyCo1-2yO2 is inferior compared to LixCoO2 at same temperature and delithiation stage. However, the LixNiyMnyCo1-2yO2 are able to deliver 55%-80% of theoretical capacity at 5 C with good electronic wiring in the composite electrode that make them very promising candidates for electric propulsion in terms of rate capability. (C) 2014 Elsevier B.V. All rights reserved. C1 [Li, Zheng; Chernova, Natasha A.; Upreti, Shailesh; Whittingham, M. Stanley] SUNY Binghamton, Inst Mat Res, Binghamton, NY 13902 USA. [Ban, Chunmei; Wu, Zhuangchun; Dillon, Anne] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Whittingham, MS (reprint author), SUNY Binghamton, Inst Mat Res, Binghamton, NY 13902 USA. EM stanwhit@binghamton.edu RI wu, zhuangchun/E-8046-2012 OI wu, zhuangchun/0000-0003-3362-0882 FU Office of Vehicle Technologies of the U.S. Department of Energy under the Batteries for Advanced Transportation Technologies (BAIT) Program [DE-AC02-05CH11231, 6807148, DE-AC-36-08GO28308] FX This work at Binghamton and NREL was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract No. 6807148 and DE-AC-36-08GO28308 respectively under the Batteries for Advanced Transportation Technologies (BAIT) Program. NR 44 TC 9 Z9 11 U1 3 U2 98 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 5 PY 2014 VL 268 BP 106 EP 112 DI 10.1016/j.jpowsour.2014.05.142 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA AN0ZF UT WOS:000340311800016 ER PT J AU Kim, SU Albertus, P Cook, D Monroe, CW Christensen, J AF Kim, Sun Ung Albertus, Paul Cook, David Monroe, Charles W. Christensen, Jake TI Thermoelectrochemical simulations of performance and abuse in 50-Ah automotive cells SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium ion battery; Dualfoil model; Mathematical modeling; Lithium plating; Thermal runaway ID LITHIUM-ION BATTERIES; CAPACITY FADE; INSERTION CELL; POWER FADE; TEMPERATURE; DISCHARGE; STORAGE; MODEL; LIFE AB The performance and thermal response of large-scale GS-Yuasa LEV50 50-Ah NMC automotive battery cells were investigated via simulation. To evaluate local transient temperature distributions, the Dualfoil model was coupled to local energy-balance equations. At similar C rates the difference between maximum and minimum temperature in the LEV50 was found to be higher than that in an 18650 cell with identical chemistry. Unlike thinner prismatic lithium ion batteries, the temperature variation through the cell thickness in the large-format cell was not negligible (-5 degrees C at 4C discharge). Because of the non-uniform temperature distribution within the jellyroll, the risk of lithium plating at high charging rates and low ambient temperatures may be greater toward the jellyroll exterior. Simulations of thermal abuse (oven test) of the large cell showed a delayed thermal response relative to the 18650, but also indicated a lower onset temperature for thermal runaway. (C) 2014 Elsevier B.V. All rights reserved. C1 [Kim, Sun Ung; Albertus, Paul; Cook, David; Christensen, Jake] Robert Bosch LLC, Res & Technol Ctr, Palo Alto, CA 94304 USA. [Kim, Sun Ung; Monroe, Charles W.] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA. [Kim, Sun Ung] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. RP Kim, SU (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 70R 01088, Berkeley, CA 94720 USA. EM sunung1979@gmail.com NR 33 TC 7 Z9 8 U1 9 U2 60 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 5 PY 2014 VL 268 BP 625 EP 633 DI 10.1016/j.jpowsour.2014.06.080 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA AN0ZF UT WOS:000340311800080 ER PT J AU Cao, WJ Li, YX Fitch, B Shih, J Doung, T Zheng, J AF Cao, Wanjun Li, Yangxing Fitch, Brian Shih, Jonathan Doung, Tien Zheng, Jim TI Strategies to optimize lithium-ion supercapacitors achieving high-performance: Cathode configurations, lithium loadings on anode, and types of separator SO JOURNAL OF POWER SOURCES LA English DT Article DE Li-ion capacitor; Activated carbon; Hard carbon; Cathode binder; SLMP loadings; Types of separator ID DOUBLE-LAYER CAPACITOR; HYBRID ELECTROCHEMICAL CAPACITOR; ENERGY DENSITY; NEGATIVE ELECTRODES; CYCLE PERFORMANCE; CARBON CATHODE; CELLS; IMPROVEMENT; GRAPHITE; SLMP AB The Li-ion capacitor (LIC) is composed of a lithium-doped carbon anode and an activated carbon cathode, which is a half Li-ion battery (LIB) and a half electrochemical double-layer capacitor (EDLC). LICs can achieve much more energy density than EDLC without sacrificing the high power performance advantage of capacitors over batteries. LIC pouch cells were assembled using activated carbon (AC) cathode and hard carbon (HC) + stabilized lithium metal power (SLMP (R)) anode. Different cathode configurations, various SLMP loadings on HC anode, and two types of separators were investigated to achieve the optimal electrochemical performance of the LIC. Firstly, the cathode binders study suggests that the PTFE binder offers improved energy and power performances for LIC in comparison to PVDF. Secondly, the mass ratio of SLMP to HC is at 1:7 to obtain the optimized electrochemical performance for LIC among all the various studied mass ratios between lithium loading amounts and active anode material. Finally, compared to the separator Celgard PP 3501, cellulose based TF40-30 is proven to be a preferred separator for LIC. (C) 2014 Elsevier B.V. All rights reserved. C1 [Cao, Wanjun; Shih, Jonathan; Zheng, Jim] Florida A&M Univ, Dept Elect & Comp Engn, Tallahassee, FL 32310 USA. [Cao, Wanjun; Shih, Jonathan; Zheng, Jim] Florida State Univ, Tallahassee, FL 32310 USA. [Cao, Wanjun; Shih, Jonathan; Zheng, Jim] Florida State Univ, Aeroprop Mechatron & Energy AME Ctr, Tallahassee, FL 32310 USA. [Zheng, Jim] Florida State Univ, CAPS, Tallahassee, FL 32310 USA. [Li, Yangxing; Fitch, Brian] FMC Lithium Div, Bessemer City, NC 28016 USA. [Doung, Tien] US DOE, Off Vehicle Technol, Annandale, VA 22003 USA. RP Li, YX (reprint author), FMC Lithium Div, Highway 161, Bessemer City, NC 28016 USA. EM Yangxing.li@fmc.com NR 37 TC 16 Z9 16 U1 19 U2 203 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 5 PY 2014 VL 268 BP 841 EP 847 DI 10.1016/j.jpowsour.2014.06.090 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA AN0ZF UT WOS:000340311800108 ER PT J AU Chen, G Kishimoto, H Yamaji, K Kuramoto, K Gong, MY Liu, XB Hackett, G Gerdes, K Horita, T AF Chen, Gang Kishimoto, Haruo Yamaji, Katsuhiko Kuramoto, Koji Gong, Mingyang Liu, Xingbo Hackett, Gregory Gerdes, Kirk Horita, Teruhisa TI Chemical reaction mechanisms between Y2O3 stabilized ZrO2 and Gd doped CeO2 with PH3 in coal syngas SO JOURNAL OF POWER SOURCES LA English DT Article DE Integrated coal gasification combined cycle; Solid oxide fuel cell; PH3; Y2O3 stabilized ZrO2; Gd doped CeO2; Coal syngas ID OXIDE FUEL-CELLS; SOFC ANODES; PERFORMANCE; PHOSPHORUS; SYSTEM; GAS; CONDUCTIVITY; DEGRADATION; MONAZITE AB To clarify the chemical stability of the key materials exposed to coal syngas (CSG) containing PH3 contaminant atmosphere, exposure tests of Y2O3 8 mol.% stabilized ZrO2 (YSZ) and Gd doped CeO2 (GDC) are carried out in simulated CSG with different concentrations of PH3. Significant reaction between YSZ and 10 ppm PH3 in CSG atmosphere is confirmed, and no obvious reaction is detected on the surface of YSZ after exposed in CSG with 1 ppm PH3. YPO4, Zr-2.2 (PO4)(3) and monoclinic Y partial stabilized ZrO2 (nPSZ) are identified on the YSZ pellet surface after exposed in CSG with 10 ppm PH3. GDC reacted with PH3 even at 1 ppm concentration. A (Ce0.9Gd0.1)PO4 layer is formed on the surface of GDC pellet after exposure in CSG with 10 ppm PH3. Possible reaction mechanisms between YSZ and GDC with PH3 in CSG are clarified. Compared with GDC, YSZ exhibits sufficient phosphorus resistance for devices directly exposed to a coal syngas atmosphere containing low concentration of PH3. (C) 2014 Elsevier B.V. All rights reserved. C1 [Chen, Gang; Kishimoto, Haruo; Yamaji, Katsuhiko; Kuramoto, Koji; Horita, Teruhisa] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki, Japan. [Gong, Mingyang; Liu, Xingbo] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. [Hackett, Gregory; Gerdes, Kirk] Natl Energy Technol Lab, Morgantown, WV USA. RP Chen, G (reprint author), Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki, Japan. EM chen-gang@aist.go.jp FU Japan-U.S. Collaboration on Clean Energy Technology FX This study was supported by Japan-U.S. Collaboration on Clean Energy Technology. The authors thank Prof. Dr. Harumi Yokokawa at National Institute of Advanced Industrial Science and Technology of Japan for his helpful discussions and advice. NR 34 TC 3 Z9 3 U1 4 U2 91 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 5 PY 2014 VL 268 BP 904 EP 910 DI 10.1016/j.jpowsour.2014.06.120 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA AN0ZF UT WOS:000340311800116 ER PT J AU Brooks, KP Semelsberger, TA Simmons, KL van Hassel, B AF Brooks, Kriston P. Semelsberger, Troy A. Simmons, Kevin L. van Hassel, Bart TI Slurry-based chemical hydrogen storage systems for automotive fuel cell applications SO JOURNAL OF POWER SOURCES LA English DT Article DE Chemical hydrogen storage; Fuel cell vehicle; System design; Ammonia borane; Alane slurries ID AMMONIA-BORANE; THERMAL-DECOMPOSITION; KINETICS AB In this paper, the system designs for hydrogen storage using chemical hydrogen materials in an 80-kWe fuel cell, light-duty vehicle are described. Ammonia borane and alane are used for these designs to represent the general classes of exothermic and endothermic materials. The designs are then compared to the USDRIVE/DOE-developed set of system-level targets for onboard storage. While most DOE targets are predicted to be achieved based on the modeling, the system gravimetric and volumetric densities were more challenging and became the focus of this work. The resulting system evaluation determined that the slurry accounts for the majority of the system mass. Only modest reductions in the system mass can be expected with improvements in the balance-of-plant components. Most of the gravimetric improvements will require developing materials with higher inherent storage capacity or by increasing the solids loading of the chemical hydrogen storage material in the slurry. (C) 2014 Elsevier BV and United Technologies Corporation. Published by Elsevier B.V. All rights reserved. C1 [Brooks, Kriston P.; Simmons, Kevin L.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Semelsberger, Troy A.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [van Hassel, Bart] United Technol Res Ctr, E Hartford, CT 06108 USA. RP Brooks, KP (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99352 USA. EM Kriston.brooks@pnnl.gov; troy@lanl.gov; kevin.simmons@pnnl.gov; vanHasBA@utrc.utc.com RI Van Hassel, Bart/F-2676-2016; OI Van Hassel, Bart/0000-0001-6551-7025; van Hassel, Bart/0000-0001-6129-4880 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office [21252-24100] FX This material is based upon work supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office (21252-24100). The authors would like to thank all members of the HSECoE for stimulating discussions and Jesse Adams, Ned Stetson, and Bob Bowman for their outstanding support. NR 20 TC 11 Z9 11 U1 0 U2 102 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 5 PY 2014 VL 268 BP 950 EP 959 DI 10.1016/j.jpowsour.2014.05.145 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA AN0ZF UT WOS:000340311800121 ER PT J AU Duan, JB Shi, JX Fiorentino, A Leites, C Chen, XN Moy, W Chen, JC Alexandrov, BS Usheva, A He, DL Freda, J O'Brien, NL McQuillin, A Sanders, AR Gershon, ES DeLisi, LE Bishop, AR Gurling, HMD Pato, MT Levinson, DF Kendler, KS Pato, CN Gejman, PV AF Duan, Jubao Shi, Jianxin Fiorentino, Alessia Leites, Catherine Chen, Xiangning Moy, Winton Chen, Jingchun Alexandrov, Boian S. Usheva, Anny He, Deli Freda, Jessica O'Brien, Niamh L. McQuillin, Andrew Sanders, Alan R. Gershon, Elliot S. DeLisi, Lynn E. Bishop, Alan R. Gurling, Hugh M. D. Pato, Michele T. Levinson, Douglas F. Kendler, Kenneth S. Pato, Carlos N. Gejman, Pablo V. CA MGS GPC TI A Rare Functional Noncoding Variant at the GWAS-Implicated MIR137/MIR2682 Locus Might Confer Risk to Schizophrenia and Bipolar Disorder SO AMERICAN JOURNAL OF HUMAN GENETICS LA English DT Article ID GENOME-WIDE ASSOCIATION; INFLAMMATORY-BOWEL-DISEASE; MACULAR DEGENERATION; COMMON VARIANTS; PSYCHIATRIC-DISORDERS; TRANSCRIPTION FACTOR; REGULATORY ELEMENTS; LOW-FREQUENCY; STEM-CELLS; MIR137 AB Schizophrenia (SZ) genome-wide association studies (GWASs) have identified common risk variants in >100 susceptibility loci; however, the contribution of rare variants at these loci remains largely unexplored. One of the strongly associated loci spans MIR137 (miR137) and M1R2682 (miR2682), two microRNA genes important for neuronal function. We sequenced -6.9 kb MIR137/MIR2682 and upstream regulatory sequences in 2,610 SZ cases and 2,611 controls of European ancestry. We identified 133 rare variants with minor allele frequency (MAF) <0.5%. The rare variant burden in promoters and enhancers, but not insulators, was associated with SZ (p = 0.021 for MAF < 0.5%, p = 0.003 for MAF < 0.1%). A rare enhancer SNP, 1:g.98515539A>T, presented exclusively in 11 SZ cases (nominal p = 4.8 x 10(-4) ). We further identified its risk allele Tin 2 of 2,434 additional SZ cases, 11 of 4,339 bipolar (BP) cases, and 3 of 3,572 SZ/BP study controls and 1,688 population controls; yielding combined p values of 0.0007, 0.0013, and 0.0001 for SZ, BP, and SZ/BP, respectively. The risk allele T of 1:g.98515539A>T reduced enhancer activity of its flanking sequence by >50% in human neuroblastoma cells, predicting lower expression of MIR137/MIR2682. Both empirical and computational analyses showed weaker transcription factor (YY1) binding by the risk allele. Chromatin conformation capture (3C) assay further indicated that 1:g.98515539A>T influenced MIR137/MIR2682, but not the nearby DPYD or LOC729987. Our results suggest that rare noncoding risk variants are associated with SZ and BP at MIR137/MIR2682 locus, with risk alleles decreasing MIR137/MIR2682 expression. C1 [Duan, Jubao; Leites, Catherine; Moy, Winton; He, Deli; Freda, Jessica; Sanders, Alan R.; Gejman, Pablo V.] NorthShore Univ HealthSyst, Dept Psychiat & Behav Sci, Ctr Psychiat Genet, Evanston, IL 60201 USA. [Duan, Jubao; Sanders, Alan R.; Gershon, Elliot S.; Gejman, Pablo V.] Univ Chicago, Dept Psychiat & Behav Neurosci, Chicago, IL 60637 USA. [Shi, Jianxin] NCI, Biostat Branch, Div Canc Epidemiol & Genet, Bethesda, MD 20892 USA. [Fiorentino, Alessia; O'Brien, Niamh L.; McQuillin, Andrew; Gurling, Hugh M. D.] UCL, Mol Psychiat Lab, Div Psychiat, London WC1E 6JJ, England. [Chen, Xiangning; Chen, Jingchun; Kendler, Kenneth S.] Virginia Commonwealth Univ, Virginia Inst Psychiat & Behav Genet, Richmond, VA 23298 USA. [Alexandrov, Boian S.; Usheva, Anny] Harvard Univ, Sch Med, Boston, MA 02115 USA. [Alexandrov, Boian S.; Bishop, Alan R.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [DeLisi, Lynn E.] Harvard Univ, Sch Med, VA Boston Healthcare Syst, Brockton, MA 02301 USA. [Pato, Michele T.; Pato, Carlos N.] Univ So Calif, Keck Sch Med, Dept Psychiat & Behav Sci, Los Angeles, CA 90033 USA. [Levinson, Douglas F.] Stanford Univ, Sch Med, Dept Psychiat & Behav Sci, Palo Alto, CA 94305 USA. RP Duan, JB (reprint author), NorthShore Univ HealthSyst, Dept Psychiat & Behav Sci, Ctr Psychiat Genet, Evanston, IL 60201 USA. EM jduan@uchicago.edu RI Macciardi, Fabio/N-3768-2014; McQuillin, Andrew/C-1623-2008 OI Nicolini, Humberto/0000-0003-2494-0067; Alexandrov, Boian/0000-0001-8636-4603; Macciardi, Fabio/0000-0003-0537-4266; McQuillin, Andrew/0000-0003-1567-2240 FU Wellcome Trust [WT091310]; NIH [R01MH067257, R01MH059588, R01MH059565, R01MH059587, R01MH060870, R01MH059566, R01MH059586, R01MH061675, R01MH060879, U01MH046276, U01MH079470]; MRC [G1000708]; National Nuclear Security Administration of the US Department of Energy; LANL, LDRD [20110516ECR]; National Institutes of Health (NIH) [R21MH102685]; NorthShore University HealthSystem Research Career Development Award; [R01MH059571]; [R01MH081800]; [U01MH079469]; [MH085548]; [MH085542] FX We thank the study participants of MGS, CNG, ICCSS, ISHDSF, UCL, GPC, NIME-BP collections. This study also makes use of whole-genome sequencing data (TwinsUK) generated by the UK10K Consortium. A full list of the investigators who contributed to the generation of the data is available from UK10K Project homepage. Wellcome Trust award WT091310 provided funding for UK10K. We also thank K. Fang and N. Park (Illinois Mathematics and Science Academy) for their technical help with the 3C experiment. This work was primarily supported by R01MH059571, R01MH081800, and U01MH079469 (to P.V.G.) and other NIH grants for MGS (R01MH067257 to N.G.B., R01MH059588 to B.J.M., R01MH059565 to R.F., R01MH059587 to F.A., R01MH060870 to W.F.B., R01MH059566 to D.W.B., R01MH059586 to J.M.S., R01MH061675 to D.F.L., R01MH060879 to C.R.C., U01MH046276 to C.R.C., and U01MH079470 to D.F.L). GPC was supported by MH085548 and MH085542 (to C.N.P and M.T.P). UCL genotyping was supported by MRC grant G1000708 (to H.M.D.G. and A.M.). The computational modeling of transcription factor binding at Los Alamos National Laboratory was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy and was supported by the LANL, LDRD, 20110516ECR grant (to B.S.A.). This work was also partially supported by National Institutes of Health (NIH) grant R21MH102685 and NorthShore University HealthSystem Research Career Development Award (to J.D.). NR 76 TC 17 Z9 17 U1 1 U2 21 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0002-9297 EI 1537-6605 J9 AM J HUM GENET JI Am. J. Hum. Genet. PD DEC 4 PY 2014 VL 95 IS 6 BP 744 EP 753 DI 10.1016/j.ajhg.2014.11.001 PG 10 WC Genetics & Heredity SC Genetics & Heredity GA AX0DH UT WOS:000346623100011 PM 25434007 ER PT J AU Dean, MPM James, AJA Walters, AC Bisogni, V Jarrige, I Hucker, M Giannini, E Fujita, M Pelliciari, J Huang, YB Konik, RM Schmitt, T Hill, JP AF Dean, M. P. M. James, A. J. A. Walters, A. C. Bisogni, V. Jarrige, I. Huecker, M. Giannini, E. Fujita, M. Pelliciari, J. Huang, Y. B. Konik, R. M. Schmitt, T. Hill, J. P. TI Itinerant effects and enhanced magnetic interactions in Bi-based multilayer cuprates SO PHYSICAL REVIEW B LA English DT Article ID COPPER-OXIDE SUPERCONDUCTORS; SPIN EXCITATIONS; T-C; TEMPERATURE; DEPENDENCE; SCATTERING; LA2CUO4; LAYER AB The cuprate high temperature superconductors exhibit a pronounced trend in which the superconducting transition temperature T-c increases with the number of CuO2 planes n in the crystal structure. We compare the magnetic excitation spectrum of Bi2+xSr2-xCuO6+delta (Bi-2201) and Bi(2)Sr(2)Ca(2)Cu3O(10+delta) (Bi-2223), with n = 1 and 3, respectively, using Cu L-3-edge resonant inelastic x-ray scattering. Near the antinodal zone boundary we find the paramagnon energy in Bi-2223 is substantially higher than that in Bi-2201, indicating that multilayer cuprates host stronger effective magnetic exchange interactions, providing a possible explanation for the T-c vs n scaling. In contrast, the nodal direction exhibits very strongly damped, almost nondispersive excitations. We argue that this implies that the magnetism in the doped cuprates is partially itinerant in nature. C1 [Dean, M. P. M.; James, A. J. A.; Huecker, M.; Konik, R. M.; Hill, J. P.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [James, A. J. A.] UCL, London Ctr Nanotechnol, London WC1E 6BT, England. [Walters, A. C.] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England. [Bisogni, V.; Jarrige, I.] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Bisogni, V.; Pelliciari, J.; Huang, Y. B.; Schmitt, T.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Giannini, E.] Univ Geneva, Dept Phys Mat Condensee, CH-1211 Geneva 4, Switzerland. [Fujita, M.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Huang, Y. B.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Huang, Y. B.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. RP Dean, MPM (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM mdean@bnl.gov; Hill@bnl.gov RI Fujita, Masaki/D-8430-2013; Dean, Mark/B-4541-2011; Schmitt, Thorsten/A-7025-2010; Konik, Robert/L-8076-2016; Jarrige, Ignace/M-6371-2016; OI Dean, Mark/0000-0001-5139-3543; Konik, Robert/0000-0003-1209-6890; Jarrige, Ignace/0000-0002-1043-5695; James, Andrew/0000-0001-8454-6219; James, Andrew/0000-0003-3069-4579 FU Center for Emergent Superconductivity, an Energy Frontier Research Center - U.S. DOE, Office of Basic Energy Sciences [AC02-98CH1088 2010-BNL-PM015]; Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy [DEAC02-98CH10886]; Engineering and Physical Sciences Research Council [EP/L010623/1] FX This research is primarily supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. DOE, Office of Basic Energy Sciences under Award No. AC02-98CH1088 2010-BNL-PM015. This includes leading the project planning, x-ray scattering experiments, theoretical calculations, data analysis and paper writing. Support during the x-ray scattering was provided under the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy under Award No. DEAC02-98CH10886. A.J.A.J. would also like to acknowledge the Engineering and Physical Sciences Research Council (Grant No. EP/L010623/1). The experiment was performed at the ADRESS beamline of the Swiss Light Source at the Paul Scherrer Institut. NR 54 TC 13 Z9 13 U1 3 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD DEC 4 PY 2014 VL 90 IS 22 AR 220506 DI 10.1103/PhysRevB.90.220506 PG 5 WC Physics, Condensed Matter SC Physics GA AW6HK UT WOS:000346370200001 ER PT J AU Abelev, B Adam, J Adamova, D Aggarwal, MM Rinella, GA Agnello, M Agostinelli, A Agrawal, N Ahammed, Z Ahmad, N Ahmed, I Ahn, SU Ahn, SA Aimo, I Aiola, S Ajaz, M Akindinov, A Alam, SN Aleksandrov, D Alessandro, B Alexandre, D Alici, A Alkin, A Alme, J Alt, T Altinpinar, S Altsybeev, I Prado, CAG Andrei, C Andronic, A Anguelov, V Anielski, J Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshaeuser, H Arcelli, S Armesto, N Arnaldi, R Aronsson, T Arsene, IC Arslandok, M Augustinus, A Averbeck, R Awes, TC Azmi, MD Bach, M Badala, A Baek, YW Bagnasco, S Bailhache, R Bala, R Baldisseri, A Pedrosa, FBD Baral, RC Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartke, J Basile, M Bastid, N Basu, S Bathen, B Batigne, G Batyunya, B Batzing, PC Baumann, C Bearden, IG Beck, H Bedda, C Behera, NK Belikov, I Bellini, F Bellwied, R Belmont-Moreno, E Belmont, R Belyaev, V Bencedi, G Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Berger, ME Bertens, RA Berzano, D Betev, L Bhasin, A Bhat, IR Bhati, AK Bhattacharjee, B Bhom, J Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Bjelogrlic, S Blanco, F Blau, D Blume, C Bock, F Bogdanov, A Boggild, H Bogolyubsky, M Bohmer, FV Boldizsar, L Bombara, M Book, J Borel, H Borissov, A Bossu, F Botje, M Botta, E Bottger, S Braun-Munzinger, P Bregant, M Breitner, T Broker, TA Browning, TA Broz, M Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Buncic, P Busch, O Buthelezi, Z Caffarri, D Cai, X Caines, H Diaz, LC Caliva, A Villar, EC Camerini, P Carena, F Carena, W Castellanos, JC Casula, EAR Catanescu, V Cavicchioli, C Sanchez, CC Cepila, J Cerello, P Chang, B Chapeland, S Charvet, JL Chattopadhyay, S Chattopadhyay, S Chelnokov, V Cherney, M Cheshkov, C Cheynis, B Barroso, VC Chinellato, DD Chochula, P Chojnacki, M Choudhury, S Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chung, SU Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Colamaria, F Colella, D Collu, A Colocci, M Balbastre, GC del Valle, ZC Connors, ME Contreras, JG Cormier, TM Morales, YC Cortese, P Maldonado, IC Cosentino, MR Costa, F Crochet, P Albino, RC Cuautle, E Cunqueiro, L Dainese, A Dang, R Danu, A Das, D Das, I Das, K Das, S Dash, A Dash, S De, S Delagrange, H Deloff, A Denes, E D'Erasmo, G De Caro, A de Cataldo, G de Cuveland, J De Falco, A De Gruttola, D De Marco, N De Pasquale, S de Rooij, R Corchero, MAD Dietel, T Dillenseger, P Divia, R Di Bari, D Di Liberto, S Di Mauro, A Di Nezza, P Djuvsland, O Dobrin, A Dobrowolski, T Gimenez, DD Donigus, B Dordic, O Dorheim, S Dubey, AK Dubla, A Ducroux, L Dupieux, P Majumdar, AKD Hilden, TE Ehlers, RJ Elia, D Engel, H Erazmus, B Erdal, HA Eschweiler, D Espagnon, B Esposito, M Estienne, M Esumi, S Evans, D Evdokimov, S Fabris, D Faivre, J Falchieri, D Fantoni, A Fasel, M Fehlker, D Feldkamp, L Felea, D Feliciello, A Feofilov, G Ferencei, J Tellez, AF Ferreiro, EG Ferretti, A Festanti, A Figiel, J Figueredo, MAS Filchagin, S Finogeev, D Fionda, FM Fiore, EM Floratos, E Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Francescon, A Frankenfeld, U Fuchs, U Furget, C Girard, MF Gaardhoje, JJ Gagliardi, M Gago, AM Gallio, M Gangadharan, DR Ganoti, P Garabatos, C Garcia-Solis, E Gargiulo, C Garishvili, I Gerhard, J Germain, M Gheata, A Gheata, M Ghidini, B Ghosh, P Ghosh, SK Gianotti, P Giubellino, P Gladysz-Dziadus, E Glassel, P Ramirez, AG Gonzalez-Zamora, P Gorbunov, S Gorlich, L Gotovac, S Graczykowski, LK Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Grosse-Oetringhaus, JF Grossiord, JY Grosso, R Guber, F Guernane, R Guerzoni, B Guilbaud, M Gulbrandsen, K Gulkanyan, H Gumbo, M Gunji, T Gupta, A Gupta, R Khan, KH Haake, R Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Hanratty, LD Hansen, A Harris, JW Hartmann, H Harton, A Hatzifotiadou, D Hayashi, S Heckel, ST Heide, M Helstrup, H Herghelegiu, A Corral, GH Hess, BA Hetland, KF Hippolyte, B Hladky, J Hristov, P Huang, M Humanic, TJ Hussain, N Hutter, D Hwang, DS Ilkaev, R Ilkiv, I Inaba, M Innocenti, GM Ionita, C Ippolitov, M Irfan, M Ivanov, M Ivanov, V Jacholkowski, A Jacobs, PM Jahnke, C Jang, HJ Janik, MA Jayarathna, PHSY Jena, C Jena, S Bustamante, RTJ Jones, PG Jung, H Jusko, A Kadyshevskiy, V Kalcher, S Kalinak, P Kalweit, A Kamin, J Kang, JH Kaplin, V Kar, S Uysal, AK Karavichev, O Karavicheva, T Karpechev, E Kebschull, U Keidel, R Keijdener, DLD Khan, MM Khan, P Khan, SA Khanzadeev, A Kharlov, Y Kileng, B Kim, B Kim, DW Kim, DJ Kim, JS Kim, M Kim, M Kim, S Kim, T Kirsch, S Kisel, I Kiselev, S Kisiel, A Kiss, G Klay, JL Klein, J Klein-Bosing, C Kluge, A Knichel, ML Knospe, AG Kobdaj, C Kofarago, M Kohler, MK Kollegger, T Kolojvari, A Kondratiev, V Kondratyeva, N Konevskikh, A Kovalenko, V Kowalski, M Kox, S Meethaleveedu, GK Kral, J Kralik, I Kravcakova, A Krelina, M Kretz, M Krivda, M Krizek, F Kryshen, E Krzewicki, M Kucera, V Kucheriaev, Y Kugathasan, T Kuhn, C Kuijer, PG Kulakov, I Kumar, J Kurashvili, P Kurepin, A Kurepin, AB Kuryakin, A Kushpil, S Kweon, MJ Kwon, Y de Guevara, PL Fernandes, CL Lakomov, I Langoy, R Lara, C Lardeux, A Lattuca, A La Pointe, SL La Rocca, P Lea, R Leardini, L Lee, GR Legrand, I Lehnert, J Lemmon, RC Lenti, V Leogrande, E Leoncino, M Monzon, IL Levai, P Li, S Lien, J Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Ljunggren, HM Lodato, DF Loenne, PI Loggins, VR Loginov, V Lohner, D Loizides, C Lopez, X Torres, EL Lu, XG Luettig, P Lunardon, M Luparello, G Luzzi, C Ma, R Maevskaya, A Mager, M Mahapatra, DP Mahmood, SM Maire, A Majka, RD Malaev, M Cervantes, IM Malinina, L Mal'Kevich, D Malzacher, P Mamonov, A Manceau, L Manko, V Manso, F Manzari, V Marchisone, M Mares, J Margagliotti, GV Margotti, A Marin, A Markert, C Marquard, M Martashvili, I Martin, NA Martinengo, P Martinez, MI Garca, GM Blanco, JM Martynov, Y Mas, A Masciocchi, S Masera, M Masoni, A Massacrier, L Mastroserio, A Matyja, A Mayer, C Mazer, J Mazzoni, MA Meddi, F Menchaca-Rocha, A Meninno, E Perez, JM Meres, M Miake, Y Mikhaylov, K Milano, L Milosevic, J Mischke, A Mishra, AN Miskowiec, D Mitra, J Mitu, CM Mlynarz, J Mohammadi, N Mohanty, B Molnar, L Zetina, LM Montes, E Morando, M De Godoy, DAM Moretto, S Morreale, A Morsch, A Muccifora, V Mudnic, E Muhlheim, D Muhuri, S Mukherjee, M Muller, H Munhoz, MG Murray, S Musa, L Musinsky, J Nandi, BK Nania, R Nappi, E Nattrass, C Nayak, K Nayak, TK Nazarenko, S Nedosekin, A Nicassio, M Niculescu, M Nielsen, BS Nikolaev, S Nikulin, S Nikulin, V Nilsen, BS Noferini, F Nomokonov, P Nooren, G Norman, J Nyanin, A Nystrand, J Oeschler, H Oh, S Oh, SK Okatan, A Olah, L Oleniacz, J Da Silva, ACO Onderwaater, J Oppedisano, C Velasquez, AO Oskarsson, A Otwinowski, J Oyama, K Ozdemir, M Sahoo, P Pachmayer, Y Pachr, M Pagano, P Paic, G Painke, F Pajares, C Pal, SK Palmeri, A Pant, D Papikyan, V Pappalardo, GS Pareek, P Park, WJ Parmar, S Passfeld, A Patalakha, DI Paticchio, V Paul, B Pawlak, T Peitzmann, T Da Costa, HP De Oliveira, EP De Oliveira, EP Peresunko, D Lara, CEP Pesci, A Peskov, V Pestov, Y Petracek, V Petran, M Petris, M Petrovici, M Petta, C Piano, S Pikna, M Pillot, P Pinazza, O Pinsky, L Piyarathna, DB Ploskon, M Planinic, M Pluta, J Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Pohjoisaho, EHO Polichtchouk, B Poljak, N Pop, A Porteboeuf-Houssais, S Porter, J Potukuchi, B Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puddu, G Pujahari, P Punin, V Putschke, J Qvigstad, H Rachevski, A Raha, S Rak, J Rakotozafindrabe, A Ramello, L Raniwala, R Raniwala, S Rasanen, SS Rascanu, BT Rathee, D Rauf, AW Razazi, V Read, KF Real, JS Redlich, K Reed, RJ Rehman, A Reichelt, P Reicher, M Reidt, F Renfordt, R Reolon, AR Reshetin, A Rettig, F Revol, JP Reygers, K Riabov, V Ricci, RA Richert, T Richter, M Riedler, P Riegler, W Riggi, F Rivetti, A Rocco, E Cahuantzi, MR Manso, AR Roed, K Rogochaya, E Rohni, S Rohr, D Rohrich, D Romita, R Ronchetti, F Ronflette, L Rosnet, P Rossi, A Roukoutakis, F Roy, A Roy, C Roy, P Montero, AJR Rui, R Russo, R Ryabinkin, E Ryabov, Y Rybicki, A Sadovsky, S Safarik, K Sahlmuller, B Sahoo, R Sahu, PK Saini, J Sakai, S Salgado, CA Salzwedel, J Sambyal, S Samsonov, V Castro, XS Rodriguez, FJS Sandor, L Sandoval, A Sano, M Santagati, G Sarkar, D Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schuchmann, S Schukraft, J Schulc, M Schuster, T Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, R Segato, G Seger, JE Sekiguchi, Y Selyuzhenkov, I Seo, J Serradilla, E Sevcenco, A Shabetai, A Shabratova, G Shahoyan, R Shangaraev, A Sharma, N Sharma, S Shigaki, K Shtejer, K Sibiriak, Y Siddhanta, S Siemiarczuk, T Silvermyr, D Silvestre, C Simatovic, G Singaraju, R Singh, R Singha, S Singhal, V Sinha, BC Sinha, T Sitar, B Sitta, M Skaali, TB Skjerdal, K Slupecki, M Smirnov, N Snellings, RJM Sogaard, C Soltz, R Song, J Song, M Soramel, F Sorensen, S Spacek, M Spiriti, E Sputowska, I Spyropoulou-Stassinaki, M Srivastava, BK Stachel, J Stan, I Stefanek, G Steinpreis, M Stenlund, E Steyn, G Stiller, JH Stocco, D Stolpovskiy, M Strmen, P Suaide, AAP Sugitate, T Suire, C Suleymanov, M Sultanov, R Sumbera, M Susa, T Symons, TJM Szabo, A de Toledo, AS Szarka, I Szczepankiewicz, A Szymanski, M Takahashi, J Tangaro, MA Takaki, JDT Peloni, AT Martinez, AT Tarzila, MG Tauro, A Munoz, GT Telesca, A Terrevoli, C Thader, J Thomas, D Tieulent, R Timmins, AR Toia, A Trubnikov, V Trzaska, WH Tsuji, T Tumkin, A Turrisi, R Tveter, TS Ullaland, K Uras, A Usai, GL Vajzer, M Vala, M Palomo, LV Vallero, S Vyvre, PV Van der Maarel, J Van Hoorne, JW van Leeuwen, M Vargas, A Vargyas, M Varma, R Vasileiou, M Vasiliev, A Vechernin, V Veldhoen, M Velure, A Venaruzzo, M Vercellin, E Limon, SV Vernet, R Verweij, M Vickovic, L Viesti, G Viinikainen, J Vilakazi, Z Baillie, OV Vinogradov, A Vinogradov, L Vinogradov, Y Virgili, T Viyogi, YP Vodopyanov, A Volkl, MA Voloshin, K Voloshin, SA Volpe, G von Haller, B Vorobyev, I Vranic, D Vrlakova, J Vulpescu, B Vyushin, A Wagner, B Wagner, J Wagner, V Wang, M Wang, Y Watanabe, D Weber, M Wessels, JP Westerhoff, U Wiechula, J Wikne, J Wilde, M Wilk, G Wilkinson, J Williams, MCS Windelband, B Winn, M Yaldo, CG Yamaguchi, Y Yang, H Yang, P Yang, S Yano, S Yasnopolskiy, S Yi, J Yin, Z Yoo, IK Yushmanov, I Zaccolo, V Zach, C Zaman, A Zampolli, C Zaporozhets, S Zarochentsev, A Zavada, P Zaviyalov, N Zbroszczyk, H Zgura, IS Zhalov, M Zhang, H Zhang, X Zhang, Y Zhao, C Zhigareva, N Zhou, D Zhou, F Zhou, Y Zhou, Z Zhu, H Zhu, J Zhu, X Zichichi, A Zimmermann, A Zimmermann, MB Zinovjev, G Zoccarato, Y Zyzak, M AF Abelev, B. Adam, J. Adamova, D. Aggarwal, M. M. Rinella, G. Aglieri Agnello, M. Agostinelli, A. Agrawal, N. Ahammed, Z. Ahmad, N. Ahmed, I. Ahn, S. U. Ahn, S. A. Aimo, I. Aiola, S. Ajaz, M. Akindinov, A. Alam, S. N. Aleksandrov, D. Alessandro, B. Alexandre, D. Alici, A. Alkin, A. Alme, J. Alt, T. Altinpinar, S. Altsybeev, I. Alves Garcia Prado, C. Andrei, C. Andronic, A. Anguelov, V. Anielski, J. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaeuser, H. Arcelli, S. Armesto, N. Arnaldi, R. Aronsson, T. Arsene, I. C. Arslandok, M. Augustinus, A. Averbeck, R. Awes, T. C. Azmi, M. D. Bach, M. Badala, A. Baek, Y. W. Bagnasco, S. Bailhache, R. Bala, R. Baldisseri, A. Pedrosa, F. Baltasar Dos Santos Baral, R. C. Barbera, R. Barile, F. Barnafoldi, G. G. Barnby, L. S. Barret, V. Bartke, J. Basile, M. Bastid, N. Basu, S. Bathen, B. Batigne, G. Batyunya, B. Batzing, P. C. Baumann, C. Bearden, I. G. Beck, H. Bedda, C. Behera, N. K. Belikov, I. Bellini, F. Bellwied, R. Belmont-Moreno, E. Belmont, R., III Belyaev, V. Bencedi, G. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Berger, M. E. Bertens, R. A. Berzano, D. Betev, L. Bhasin, A. Bhat, I. R. Bhati, A. K. Bhattacharjee, B. Bhom, J. Bianchi, L. Bianchi, N. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Bjelogrlic, S. Blanco, F. Blau, D. Blume, C. Bock, F. Bogdanov, A. Boggild, H. Bogolyubsky, M. Bohmer, F. V. Boldizsar, L. Bombara, M. Book, J. Borel, H. Borissov, A. Bossu, F. Botje, M. Botta, E. Bottger, S. Braun-Munzinger, P. Bregant, M. Breitner, T. Broker, T. A. Browning, T. A. Broz, M. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Buncic, P. Busch, O. Buthelezi, Z. Caffarri, D. Cai, X. Caines, H. Diaz, L. Calero Caliva, A. Calvo Villar, E. Camerini, P. Carena, F. Carena, W. Castellanos, J. Castillo Casula, E. A. R. Catanescu, V. Cavicchioli, C. Ceballos Sanchez, C. Cepila, J. Cerello, P. Chang, B. Chapeland, S. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Chelnokov, V. Cherney, M. Cheshkov, C. Cheynis, B. Barroso, V. Chibante Chinellato, D. D. Chochula, P. Chojnacki, M. Choudhury, S. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Colamaria, F. Colella, D. Collu, A. Colocci, M. Balbastre, G. Conesa del Valle, Z. Conesa Connors, M. E. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Cortese, P. Cortes Maldonado, I. Cosentino, M. R. Costa, F. Crochet, P. Cruz Albino, R. Cuautle, E. Cunqueiro, L. Dainese, A. Dang, R. Danu, A. Das, D. Das, I. Das, K. Das, S. Dash, A. Dash, S. De, S. Delagrange, H. Deloff, A. Denes, E. D'Erasmo, G. De Caro, A. de Cataldo, G. de Cuveland, J. De Falco, A. De Gruttola, D. De Marco, N. De Pasquale, S. de Rooij, R. Corchero, M. A. Diaz Dietel, T. Dillenseger, P. Divia, R. Di Bari, D. Di Liberto, S. Di Mauro, A. Di Nezza, P. Djuvsland, O. Dobrin, A. Dobrowolski, T. Domenicis Gimenez, D. Doenigus, B. Dordic, O. Dorheim, S. Dubey, A. K. Dubla, A. Ducroux, L. Dupieux, P. Majumdar, A. K. Dutta Hilden, T. E. Ehlers, R. J. Elia, D. Engel, H. Erazmus, B. Erdal, H. A. Eschweiler, D. Espagnon, B. Esposito, M. Estienne, M. Esumi, S. Evans, D. Evdokimov, S. Fabris, D. Faivre, J. Falchieri, D. Fantoni, A. Fasel, M. Fehlker, D. Feldkamp, L. Felea, D. Feliciello, A. Feofilov, G. Ferencei, J. Fernandez Tellez, A. Ferreiro, E. G. Ferretti, A. Festanti, A. Figiel, J. Figueredo, M. A. S. Filchagin, S. Finogeev, D. Fionda, F. M. Fiore, E. M. Floratos, E. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Francescon, A. Frankenfeld, U. Fuchs, U. Furget, C. Girard, M. Fusco Gaardhoje, J. J. Gagliardi, M. Gago, A. M. Gallio, M. Gangadharan, D. R. Ganoti, P. Garabatos, C. Garcia-Solis, E. Gargiulo, C. Garishvili, I. Gerhard, J. Germain, M. Gheata, A. Gheata, M. Ghidini, B. Ghosh, P. Ghosh, S. K. Gianotti, P. Giubellino, P. Gladysz-Dziadus, E. Glaessel, P. Ramirez, A. Gomez Gonzalez-Zamora, P. Gorbunov, S. Goerlich, L. Gotovac, S. Graczykowski, L. K. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Grosse-Oetringhaus, J. F. Grossiord, J. -Y. Grosso, R. Guber, F. Guernane, R. Guerzoni, B. Guilbaud, M. Gulbrandsen, K. Gulkanyan, H. Gumbo, M. Gunji, T. Gupta, A. Gupta, R. Khan, K. H. Haake, R. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Hanratty, L. D. Hansen, A. Harris, J. W. Hartmann, H. Harton, A. Hatzifotiadou, D. Hayashi, S. Heckel, S. T. Heide, M. Helstrup, H. Herghelegiu, A. Herrera Corral, G. Hess, B. A. Hetland, K. F. Hippolyte, B. Hladky, J. Hristov, P. Huang, M. Humanic, T. J. Hussain, N. Hutter, D. Hwang, D. S. Ilkaev, R. Ilkiv, I. Inaba, M. Innocenti, G. M. Ionita, C. Ippolitov, M. Irfan, M. Ivanov, M. Ivanov, V. Jacholkowski, A. Jacobs, P. M. Jahnke, C. Jang, H. J. Janik, M. A. Jayarathna, P. H. S. Y. Jena, C. Jena, S. Jimenez Bustamante, R. T. Jones, P. G. Jung, H. Jusko, A. Kadyshevskiy, V. Kalcher, S. Kalinak, P. Kalweit, A. Kamin, J. Kang, J. H. Kaplin, V. Kar, S. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karpechev, E. Kebschull, U. Keidel, R. Keijdener, D. L. D. Khan, M. M. Khan, P. Khan, S. A. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, B. Kim, D. W. Kim, D. J. Kim, J. S. Kim, M. Kim, M. Kim, S. Kim, T. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Kiss, G. Klay, J. L. Klein, J. Klein-Boesing, C. Kluge, A. Knichel, M. L. Knospe, A. G. Kobdaj, C. Kofarago, M. Koehler, M. K. Kollegger, T. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Konevskikh, A. Kovalenko, V. Kowalski, M. Kox, S. Meethaleveedu, G. Koyithatta Kral, J. Kralik, I. Kravcakova, A. Krelina, M. Kretz, M. Krivda, M. Krizek, F. Kryshen, E. Krzewicki, M. Kucera, V. Kucheriaev, Y. Kugathasan, T. Kuhn, C. Kuijer, P. G. Kulakov, I. Kumar, J. Kurashvili, P. Kurepin, A. Kurepin, A. B. Kuryakin, A. Kushpil, S. Kweon, M. J. Kwon, Y. Ladron de Guevara, P. Fernandes, C. Lagana Lakomov, I. Langoy, R. Lara, C. Lardeux, A. Lattuca, A. La Pointe, S. L. La Rocca, P. Lea, R. Leardini, L. Lee, G. R. Legrand, I. Lehnert, J. Lemmon, R. C. Lenti, V. Leogrande, E. Leoncino, M. Leon Monzon, I. Levai, P. Li, S. Lien, J. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Ljunggren, H. M. Lodato, D. F. Loenne, P. I. Loggins, V. R. Loginov, V. Lohner, D. Loizides, C. Lopez, X. Lopez Torres, E. Lu, X. -G. Luettig, P. Lunardon, M. Luparello, G. Luzzi, C. Ma, R. Maevskaya, A. Mager, M. Mahapatra, D. P. Mahmood, S. M. Maire, A. Majka, R. D. Malaev, M. Maldonado Cervantes, I. Malinina, L. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manceau, L. Manko, V. Manso, F. Manzari, V. Marchisone, M. Mares, J. Margagliotti, G. V. Margotti, A. Marin, A. Markert, C. Marquard, M. Martashvili, I. Martin, N. A. Martinengo, P. Martinez, M. I. Garcia, G. Martinez Blanco, J. Martin Martynov, Y. Mas, A. Masciocchi, S. Masera, M. Masoni, A. Massacrier, L. Mastroserio, A. Matyja, A. Mayer, C. Mazer, J. Mazzoni, M. A. Meddi, F. Menchaca-Rocha, A. Meninno, E. Perez, J. Mercado Meres, M. Miake, Y. Mikhaylov, K. Milano, L. Milosevic, J. Mischke, A. Mishra, A. N. Miskowiec, D. Mitra, J. Mitu, C. M. Mlynarz, J. Mohammadi, N. Mohanty, B. Molnar, L. Montano Zetina, L. Montes, E. Morando, M. De Godoy, D. A. Moreira Moretto, S. Morreale, A. Morsch, A. Muccifora, V. Mudnic, E. Muehlheim, D. Muhuri, S. Mukherjee, M. Mueller, H. Munhoz, M. G. Murray, S. Musa, L. Musinsky, J. Nandi, B. K. Nania, R. Nappi, E. Nattrass, C. Nayak, K. Nayak, T. K. Nazarenko, S. Nedosekin, A. Nicassio, M. Niculescu, M. Nielsen, B. S. Nikolaev, S. Nikulin, S. Nikulin, V. Nilsen, B. S. Noferini, F. Nomokonov, P. Nooren, G. Norman, J. Nyanin, A. Nystrand, J. Oeschler, H. Oh, S. Oh, S. K. Okatan, A. Olah, L. Oleniacz, J. Da Silva, A. C. Oliveira Onderwaater, J. Oppedisano, C. Ortiz Velasquez, A. Oskarsson, A. Otwinowski, J. Oyama, K. Ozdemir, M. Sahoo, P. Pachmayer, Y. Pachr, M. Pagano, P. Paic, G. Painke, F. Pajares, C. Pal, S. K. Palmeri, A. Pant, D. Papikyan, V. Pappalardo, G. S. Pareek, P. Park, W. J. Parmar, S. Passfeld, A. Patalakha, D. I. Paticchio, V. Paul, B. Pawlak, T. Peitzmann, T. Da Costa, H. Pereira Pereira De Oliveira Filho, E. Pereira De Oliveira Filho, E. Peresunko, D. Lara, C. E. Perez Pesci, A. Peskov, V. Pestov, Y. Petracek, V. Petran, M. Petris, M. Petrovici, M. Petta, C. Piano, S. Pikna, M. Pillot, P. Pinazza, O. Pinsky, L. Piyarathna, D. B. Ploskon, M. Planinic, M. Pluta, J. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Pohjoisaho, E. H. O. Polichtchouk, B. Poljak, N. Pop, A. Porteboeuf-Houssais, S. Porter, J. Potukuchi, B. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puddu, G. Pujahari, P. Punin, V. Putschke, J. Qvigstad, H. Rachevski, A. Raha, S. Rak, J. Rakotozafindrabe, A. Ramello, L. Raniwala, R. Raniwala, S. Rasanen, S. S. Rascanu, B. T. Rathee, D. Rauf, A. W. Razazi, V. Read, K. F. Real, J. S. Redlich, K. Reed, R. J. Rehman, A. Reichelt, P. Reicher, M. Reidt, F. Renfordt, R. Reolon, A. R. Reshetin, A. Rettig, F. Revol, J. -P. Reygers, K. Riabov, V. Ricci, R. A. Richert, T. Richter, M. Riedler, P. Riegler, W. Riggi, F. Rivetti, A. Rocco, E. Rodriguez Cahuantzi, M. Manso, A. Rodriguez Roed, K. Rogochaya, E. Rohni, S. Rohr, D. Rohrich, D. Romita, R. Ronchetti, F. Ronflette, L. Rosnet, P. Rossi, A. Roukoutakis, F. Roy, A. Roy, C. Roy, P. Rubio Montero, A. J. Rui, R. Russo, R. Ryabinkin, E. Ryabov, Y. Rybicki, A. Sadovsky, S. Safarik, K. Sahlmuller, B. Sahoo, R. Sahu, P. K. Saini, J. Sakai, S. Salgado, C. A. Salzwedel, J. Sambyal, S. Samsonov, V. Castro, X. Sanchez Snchez Rodriguez, F. J. Sandor, L. Sandoval, A. Sano, M. Santagati, G. Sarkar, D. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schuchmann, S. Schukraft, J. Schulc, M. Schuster, T. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, R. Segato, G. Seger, J. E. Sekiguchi, Y. Selyuzhenkov, I. Seo, J. Serradilla, E. Sevcenco, A. Shabetai, A. Shabratova, G. Shahoyan, R. Shangaraev, A. Sharma, N. Sharma, S. Shigaki, K. Shtejer, K. Sibiriak, Y. Siddhanta, S. Siemiarczuk, T. Silvermyr, D. Silvestre, C. Simatovic, G. Singaraju, R. Singh, R. Singha, S. Singhal, V. Sinha, B. C. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Skjerdal, K. Slupecki, M. Smirnov, N. Snellings, R. J. M. Sogaard, C. Soltz, R. Song, J. Song, M. Soramel, F. Sorensen, S. Spacek, M. Spiriti, E. Sputowska, I. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Stan, I. Stefanek, G. Steinpreis, M. Stenlund, E. Steyn, G. Stiller, J. H. Stocco, D. Stolpovskiy, M. Strmen, P. Suaide, A. A. P. Sugitate, T. Suire, C. Suleymanov, M. Sultanov, R. Sumbera, M. Susa, T. Symons, T. J. M. Szabo, A. Szanto de Toledo, A. Szarka, I. Szczepankiewicz, A. Szymanski, M. Takahashi, J. Tangaro, M. A. Takaki, J. D. Tapia Peloni, A. Tarantola Martinez, A. Tarazona Tarzila, M. G. Tauro, A. Tejeda Munoz, G. Telesca, A. Terrevoli, C. Thaeder, J. Thomas, D. Tieulent, R. Timmins, A. R. Toia, A. Trubnikov, V. Trzaska, W. H. Tsuji, T. Tumkin, A. Turrisi, R. Tveter, T. S. Ullaland, K. Uras, A. Usai, G. L. Vajzer, M. Vala, M. Palomo, L. Valencia Vallero, S. Vyvre, P. Vande Van der Maarel, J. Van Hoorne, J. W. van Leeuwen, M. Vargas, A. Vargyas, M. Varma, R. Vasileiou, M. Vasiliev, A. Vechernin, V. Veldhoen, M. Velure, A. Venaruzzo, M. Vercellin, E. Vergara Limon, S. Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Viinikainen, J. Vilakazi, Z. Baillie, O. Villalobos Vinogradov, A. Vinogradov, L. Vinogradov, Y. Virgili, T. Viyogi, Y. P. Vodopyanov, A. Voelkl, M. A. Voloshin, K. Voloshin, S. A. Volpe, G. von Haller, B. Vorobyev, I. Vranic, D. Vrlakova, J. Vulpescu, B. Vyushin, A. Wagner, B. Wagner, J. Wagner, V. Wang, M. Wang, Y. Watanabe, D. Weber, M. Wessels, J. P. Westerhoff, U. Wiechula, J. Wikne, J. Wilde, M. Wilk, G. Wilkinson, J. Williams, M. C. S. Windelband, B. Winn, M. Yaldo, C. G. Yamaguchi, Y. Yang, H. Yang, P. Yang, S. Yano, S. Yasnopolskiy, S. Yi, J. Yin, Z. Yoo, I. -K. Yushmanov, I. Zaccolo, V. Zach, C. Zaman, A. Zampolli, C. Zaporozhets, S. Zarochentsev, A. Zavada, P. Zaviyalov, N. Zbroszczyk, H. Zgura, I. S. Zhalov, M. Zhang, H. Zhang, X. Zhang, Y. Zhao, C. Zhigareva, N. Zhou, D. Zhou, F. Zhou, Y. Zhou, Z. Zhu, H. Zhu, J. Zhu, X. Zichichi, A. Zimmermann, A. Zimmermann, M. B. Zinovjev, G. Zoccarato, Y. Zyzak, M. CA ALICE Collaboration TI Measurement of Prompt D-Meson Production in p-Pb Collisions at root s(NN)=5.02 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID RANGE ANGULAR-CORRELATIONS; QUARK-GLUON PLASMA; LONG-RANGE; CGC PREDICTIONS; PLUS; LHC; MODEL; COLLABORATION; PERSPECTIVE; SIDE AB The p(T)-differential production cross sections of the prompt charmed mesons D-0, D+, D*(-), and D-s(+) and their charge conjugate in the rapidity interval -0.96 < y(cms) < 0.04 were measured in p-Pb collisions at a center-of-mass energy root s(NN) = 5.02 TeV with the ALICE detector at the LHC. The nuclear modification factor R-pPb, quantifying the D-meson yield in p-Pb collisions relative to the yield in pp collisions scaled by the number of binary nucleon-nucleon collisions, is compatible within the 15%-20% uncertainties with unity in the transverse momentum interval 1 < p(T) < 24 GeV/c. No significant difference among the R-pPb of the four D-meson species is observed. The results are described within uncertainties by theoretical calculations that include initial-state effects. The measurement adds experimental evidence that the modification of the momentum spectrum of D mesons observed in Pb-Pb collisions with respect to pp collisions is due to strong final-state effects induced by hot partonic matter. C1 [Abelev, B.; Garishvili, I.; Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Adam, J.; Bielcik, J.; Broz, M.; Cepila, J.; Contreras, J. G.; Krelina, M.; Pachr, M.; Petracek, V.; Petran, M.; Schulc, M.; Spacek, M.; Wagner, V.; Zach, C.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Adamova, D.; Bielcikova, J.; Ferencei, J.; Krizek, F.; Kucera, V.; Kushpil, S.; Sumbera, M.; Vajzer, M.] Acad Sci Czech Republic, Inst Nucl Phys, Prague, Czech Republic. [Aggarwal, M. M.; Bhati, A. K.; Parmar, S.; Rathee, D.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Rinella, G. Aglieri; Augustinus, A.; Pedrosa, F. Baltasar Dos Santos; Betev, L.; Buncic, P.; Caffarri, D.; Carena, W.; Cavicchioli, C.; Chapeland, S.; Barroso, V. Chibante; Chochula, P.; Costa, F.; Cunqueiro, L.; Divia, R.; Di Mauro, A.; Erazmus, B.; Esposito, M.; Floris, M.; Francescon, A.; Fuchs, U.; Gargiulo, C.; Gheata, A.; Gheata, M.; Giubellino, P.; Grigoras, A.; Grigoras, C.; Grosse-Oetringhaus, J. F.; Grosso, R.; Hristov, P.; Ionita, C.; Kalweit, A.; Kluge, A.; Kobdaj, C.; Kofarago, M.; Kryshen, E.; Kugathasan, T.; Legrand, I.; Luzzi, C.; Mager, M.; Martinengo, P.; Milano, L.; Morsch, A.; Mueller, H.; Musa, L.; Niculescu, M.; Pinazza, O.; Poghosyan, M. G.; Reidt, F.; Revol, J. -P.; Riedler, P.; Rossi, A.; Safarik, K.; Schukraft, J.; Schutz, Y.; Shahoyan, R.; Szczepankiewicz, A.; Martinez, A. Tarazona; Tauro, A.; Telesca, A.; Vyvre, P. Vande; Van Hoorne, J. W.; Volpe, G.; von Haller, B.; Vranic, D.; Weber, M.; Zimmermann, M. B.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Agnello, M.; Aimo, I.; Alessandro, B.; Arnaldi, R.; Bagnasco, S.; Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Bruna, E.; Bufalino, S.; Cerello, P.; Morales, Y. Corrales; De Marco, N.; Feliciello, A.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Lattuca, A.; La Pointe, S. L.; Leoncino, M.; Manceau, L.; Marchisone, M.; Masera, M.; Oppedisano, C.; Prino, F.; Rivetti, A.; Russo, R.; Scomparin, E.; Shtejer, K.; Vallero, S.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Agnello, M.; Aimo, I.; Bedda, C.] Politecn Torino, Turin, Italy. [Agostinelli, A.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Colocci, M.; Falchieri, D.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Agostinelli, A.; Alici, A.; Antonioli, P.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Cindolo, F.; Colocci, M.; Falchieri, D.; Guerzoni, B.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pesci, A.; Pinazza, O.; Preghenella, R.; Scapparone, E.; Scioli, G.; Williams, M. C. S.; Zampolli, C.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Agrawal, N.; Behera, N. K.; Dash, S.; Meethaleveedu, G. Koyithatta; Kumar, J.; Nandi, B. K.; Pant, D.; Varma, R.] Indian Inst Technol Bombay IIT, Bombay, Maharashtra, India. [Ahammed, Z.; Alam, S. N.; Basu, S.; Chattopadhyay, S.; Choudhury, S.; De, S.; Dubey, A. K.; Ghosh, P.; Kar, S.; Khan, S. A.; Mitra, J.; Mohanty, B.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Pal, S. K.; Saini, J.; Sarkar, D.; Singaraju, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Ahmad, N.; Azmi, M. D.; Irfan, M.; Khan, M. M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Ahmed, I.; Ajaz, M.; Khan, K. H.; Rauf, A. W.; Suleymanov, M.; Zaman, A.] COMSATS Inst Informat Technol, Islamabad, Pakistan. [Ahn, S. U.; Ahn, S. A.; Jang, H. J.; Kim, D. W.] Korea Inst Sci & Technol Informat, Taejon, South Korea. [Aiola, S.; Aronsson, T.; Caines, H.; Connors, M. E.; Ehlers, R. J.; Harris, J. W.; Ma, R.; Majka, R. D.; Oh, S.; Reed, R. J.; Schuster, T.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Akindinov, A.; Kiselev, S.; Mal'Kevich, D.; Mikhaylov, K.; Nedosekin, A.; Sultanov, R.; Voloshin, K.; Zhigareva, N.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Kucheriaev, Y.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yasnopolskiy, S.; Yushmanov, I.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Alexandre, D.; Barnby, L. S.; Evans, D.; Hanratty, L. D.; Jones, P. G.; Jusko, A.; Krivda, M.; Lee, G. R.; Lietava, R.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Preghenella, R.; Zichichi, A.] Ctr Fermi, Museo Storico Fis, Rome, Italy. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Preghenella, R.; Zichichi, A.] Ctr Studi & Ric Enrico Fermi, Rome, Italy. [Alkin, A.; Chelnokov, V.; Grinyov, B.; Martynov, Y.; Trubnikov, V.; Zinovjev, G.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Alme, J.; Erdal, H. A.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Alt, T.; Bach, M.; de Cataldo, G.; Eschweiler, D.; Gerhard, J.; Gorbunov, S.; Hartmann, H.; Hutter, D.; Kalcher, S.; Kirsch, S.; Kisel, I.; Kollegger, T.; Kretz, M.; Krzewicki, M.; Lindenstruth, V.; Painke, F.; Rettig, F.; Rohr, D.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60054 Frankfurt, Germany. [Altinpinar, S.; Djuvsland, O.; Fehlker, D.; Haaland, O.; Huang, M.; Loenne, P. I.; Nystrand, J.; Rehman, A.; Rohrich, D.; Skjerdal, K.; Ullaland, K.; Velure, A.; Wagner, B.; Yang, S.; Zhou, Z.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Altsybeev, I.; Feofilov, G.; Kolojvari, A.; Kondratiev, V.; Kovalenko, V.; Vechernin, V.; Vinogradov, L.; Vorobyev, I.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg 199034, Russia. [Alves Garcia Prado, C.; Bregant, M.; Cosentino, M. R.; Domenicis Gimenez, D.; Jahnke, C.; Fernandes, C. Lagana; De Godoy, D. A. Moreira; Munhoz, M. G.; Da Silva, A. C. Oliveira; Pereira De Oliveira Filho, E.; Suaide, A. A. P.; Szanto de Toledo, A.] Univ Sao Paulo, Sao Paulo, Brazil. [Andrei, C.; Berceanu, I.; Catanescu, V.; Herghelegiu, A.; Petris, M.; Petrovici, M.; Pop, A.; Schiaua, C.; Tarzila, M. G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Andronic, A.; Arsene, I. C.; Averbeck, R.; Braun-Munzinger, P.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivanov, M.; Knichel, M. L.; Koehler, M. K.; Krzewicki, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Otwinowski, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.; Wagner, J.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, Darmstadt, Germany. [Andronic, A.; Arsene, I. C.; Averbeck, R.; Braun-Munzinger, P.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivanov, M.; Knichel, M. L.; Koehler, M. K.; Krzewicki, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Otwinowski, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.; Wagner, J.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, Darmstadt, Germany. [Anguelov, V.; Bock, F.; Busch, O.; Fasel, M.; Glaessel, P.; Klein, J.; Kweon, M. J.; Leardini, L.; Lohner, D.; Lu, X. -G.; Maire, A.; Perez, J. Mercado; Oeschler, H.; Oyama, K.; Pachmayer, Y.; Reygers, K.; Schicker, R.; Stachel, J.; Stiller, J. H.; Vallero, S.; Voelkl, M. A.; Wang, Y.; Wilkinson, J.; Windelband, B.; Winn, M.; Zimmermann, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Anielski, J.; Bathen, B.; Dietel, T.; Feldkamp, L.; Haake, R.; Heide, M.; Klein-Boesing, C.; Muehlheim, D.; Passfeld, A.; Wessels, J. P.; Westerhoff, U.; Wilde, M.; Zimmermann, M. B.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Anticic, T.; Planinic, M.; Poljak, N.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Antinori, F.; Caffarri, D.; Dainese, A.; Fabris, D.; Festanti, A.; Francescon, A.; Jena, C.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Segato, G.; Soramel, F.; Toia, A.; Turrisi, R.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [Aphecetche, L.; Batigne, G.; Delagrange, H.; Erazmus, B.; Estienne, M.; Germain, M.; Lardeux, A.; Garcia, G. Martinez; Blanco, J. Martin; Mas, A.; Massacrier, L.; Morreale, A.; Pillot, P.; Ronflette, L.; Schutz, Y.; Shabetai, A.; Stocco, D.; Wang, M.] Univ Nantes, CNRS, IN2P3, SUBATECH,Ecole Mines Nantes, Nantes, France. [Appelshaeuser, H.; Arslandok, M.; Bailhache, R.; Baumann, C.; Beck, H.; Blume, C.; Book, J.; Broker, T. A.; Buesching, H.; Dillenseger, P.; Doenigus, B.; Heckel, S. T.; Kamin, J.; Kulakov, I.; Lehnert, J.; Luettig, P.; Marquard, M.; Ozdemir, M.; Peskov, V.; Rascanu, B. T.; Reichelt, P.; Renfordt, R.; Sahlmuller, B.; Schuchmann, S.; Peloni, A. Tarantola; Toia, A.; Zyzak, M.] Goethe Univ Frankfurt, Inst Kernphys, Frankfurt, Germany. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Arsene, I. C.; Batzing, P. C.; Dordic, O.; Lindal, S.; Mahmood, S. M.; Milosevic, J.; Qvigstad, H.; Richter, M.; Roed, K.; Skaali, T. B.; Tveter, T. S.; Wikne, J.; Zhao, C.] Univ Oslo, Dept Phys, Oslo, Norway. [Awes, T. C.; Cormier, T. M.; Ganoti, P.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Azmi, M. D.; Cleymans, J.; Dietel, T.; Gumbo, M.; Murray, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Badala, A.; Palmeri, A.; Pappalardo, G. S.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Baek, Y. W.; Jung, H.; Kim, D. W.; Kim, J. S.; Kim, M.; Oh, S. K.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Baek, Y. W.; Barret, V.; Bastid, N.; Crochet, P.; Dupieux, P.; Li, S.; Lopez, X.; Manso, F.; Marchisone, M.; Porteboeuf-Houssais, S.; Rosnet, P.; Palomo, L. Valencia; Vulpescu, B.] Univ Clermont Ferrand, Univ Blaise Pascal, CNRS, Phys Corpusculaire Lab,IN2P3, Clermont Ferrand, France. [Bala, R.; Bhasin, A.; Bhat, I. R.; Gupta, A.; Gupta, R.; Potukuchi, B.; Rohni, S.; Sambyal, S.; Sharma, S.; Singh, R.] Univ Jammu, Dept Phys, Jammu 180004, India. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Da Costa, H. Pereira; Rakotozafindrabe, A.] IRFU, Commissariat Energie Atom, Saclay, France. [Baral, R. C.; Mahapatra, D. P.; Sahu, P. K.] Inst Phys, Bhubaneswar 751007, Orissa, India. [Barbera, R.; Jacholkowski, A.; La Rocca, P.; Petta, C.; Riggi, F.; Santagati, G.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy. [Barbera, R.; Jacholkowski, A.; La Rocca, P.; Petta, C.; Riggi, F.; Santagati, G.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; D'Erasmo, G.; Di Bari, D.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Mastroserio, A.; Tangaro, M. A.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; D'Erasmo, G.; de Cataldo, G.; Di Bari, D.; Elia, D.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Lenti, V.; Manzari, V.; Mastroserio, A.; Nappi, E.; Paticchio, V.; Tangaro, M. A.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Barnafoldi, G. G.; Bencedi, G.; Berenyi, D.; Boldizsar, L.; Denes, E.; Hamar, G.; Kiss, G.; Levai, P.; Olah, L.; Pochybova, S.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary. [Bartke, J.; Figiel, J.; Gladysz-Dziadus, E.; Goerlich, L.; Kowalski, M.; Matyja, A.; Mayer, C.; Otwinowski, J.; Rybicki, A.; Sputowska, I.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Batyunya, B.; Grigoryan, S.; Kadyshevskiy, V.; Malinina, L.; Mikhaylov, K.; Nomokonov, P.; Rogochaya, E.; Shabratova, G.; Vala, M.; Vodopyanov, A.; Zaporozhets, S.] Joint Inst Nucl Res, Dubna, Russia. [Bearden, I. G.; Bilandzic, A.; Boggild, H.; Chojnacki, M.; Christensen, C. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Hansen, A.; Nielsen, B. S.; Zaccolo, V.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Belikov, I.; Hippolyte, B.; Kuhn, C.; Maire, A.; Molnar, L.; Roy, C.; Castro, X. Sanchez] Univ Strasbourg, CNRS, IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Bellwied, R.; Chinellato, D. D.; Jayarathna, P. H. S. Y.; Jena, S.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.; Weber, M.] Univ Houston, Houston, TX USA. [Belmont-Moreno, E.; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Belmont, R., III; Borissov, A.; Cormier, T. M.; Loggins, V. R.; Mlynarz, J.; Prasad, S. K.; Pruneau, C. A.; Pujahari, P.; Putschke, J.; Reed, R. J.; Verweij, M.; Voloshin, S. A.; Yaldo, C. G.] Wayne State Univ, Detroit, MI USA. [Belyaev, V.; Bogdanov, A.; Grigoriev, V.; Kaplin, V.; Kondratyeva, N.; Loginov, V.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Lattuca, A.; Leoncino, M.; Marchisone, M.; Masera, M.; Russo, R.; Shtejer, K.; Vallero, S.; Vercellin, E.] Univ Turin, Dipartimento Fis, Turin, Italy. [Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Malaev, M.; Nikulin, V.; Riabov, V.; Ryabov, Y.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Berger, M. E.; Bohmer, F. V.; Dorheim, S.] Tech Univ Munich, Dept Phys, D-80290 Munich, Germany. [Bertens, R. A.; Bianchin, C.; Bjelogrlic, S.; Caliva, A.; de Rooij, R.; Dobrin, A.; Dubla, A.; Grelli, A.; Keijdener, D. L. D.; La Pointe, S. L.; Leogrande, E.; Lodato, D. F.; Luparello, G.; Mischke, A.; Mohammadi, N.; Nooren, G.; Peitzmann, T.; Reicher, M.; Rocco, E.; Snellings, R. J. M.; Thomas, D.; Van der Maarel, J.; van Leeuwen, M.; Veldhoen, M.; Yang, H.; Zhou, Y.] Univ Utrecht, Inst Subat Phys, Utrecht, Netherlands. [Bhattacharjee, B.; Hussain, N.] Gauhati Univ, Dept Phys, Gauhati, India. [Bhom, J.; Chujo, T.; Esumi, S.; Inaba, M.; Miake, Y.; Sano, M.; Watanabe, D.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Bianchi, N.; Diaz, L. Calero; Cunqueiro, L.; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.; Sakai, S.; Spiriti, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Blanco, F.; Corchero, M. A. Diaz; Gonzalez-Zamora, P.; Montes, E.; Rubio Montero, A. J.; Serradilla, E.] CIEMAT, Ctr Invest Energet Medioambient & Tecnol, E-28040 Madrid, Spain. [Bock, F.; Gangadharan, D. R.; Jacobs, P. M.; Loizides, C.; Ploskon, M.; Porter, J.; Sakai, S.; Symons, T. J. M.; Zhang, X.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bogolyubsky, M.; Evdokimov, S.; Kharlov, Y.; Patalakha, D. I.; Polichtchouk, B.; Sadovsky, S.; Shangaraev, A.; Stolpovskiy, M.] NRC Kurchatov Inst, SSC IHEP, Protvino, Russia. [Bombara, M.; Kravcakova, A.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Borissov, A.; Chung, S. U.; Seo, J.; Song, J.; Yi, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Bossu, F.; Buthelezi, Z.; Foertsch, S.; Steyn, G.; Vilakazi, Z.] Natl Res Fdn, iThemba LABS, Somerset West, South Africa. [Botje, M.; Christakoglou, P.; Kuijer, P. G.; Lara, C. E. Perez; Manso, A. Rodriguez] Natl Inst Subat Phys, Nikhef, Amsterdam, Netherlands. [Bottger, S.; Breitner, T.; Engel, H.; Ramirez, A. Gomez; Kebschull, U.; Lara, C.] Goethe Univ Frankfurt, Inst Informat, D-60054 Frankfurt, Germany. [Browning, T. A.; Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. [Budnikov, D.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Punin, V.; Tumkin, A.; Vinogradov, Y.; Vyushin, A.; Zaviyalov, N.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Caffarri, D.; Festanti, A.; Francescon, A.; Jena, C.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Segato, G.; Soramel, F.; Viesti, G.] Univ Padua, Dipartimento Fis & Astron, Padua, Italy. [Cai, X.; Dang, R.; Li, S.; Wang, M.; Yang, P.; Yin, Z.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhou, D.; Zhou, F.; Zhu, H.] Cent China Normal Univ, Wuhan, Peoples R China. [Calvo Villar, E.; Gago, A. M.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [Camerini, P.; Lea, R.; Luparello, G.; Margagliotti, G. V.; Rui, R.; Venaruzzo, M.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Camerini, P.; Fragiacomo, E.; Grion, N.; Lea, R.; Luparello, G.; Margagliotti, G. V.; Piano, S.; Rachevski, A.; Rui, R.; Venaruzzo, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Casula, E. A. R.; Collu, A.; De Falco, A.; Puddu, G.; Razazi, V.; Terrevoli, C.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy. [Casula, E. A. R.; Cicalo, C.; Collu, A.; De Falco, A.; Masoni, A.; Puddu, G.; Razazi, V.; Siddhanta, S.; Terrevoli, C.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Ceballos Sanchez, C.; Lopez Torres, E.] Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba. [Chang, B.; Kim, D. J.; Kral, J.; Rak, J.; Slupecki, M.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J.] Univ Jyvaskyla, Jyvaskyla, Finland. [Chattopadhyay, S.; Das, D.; Das, K.; Majumdar, A. K. Dutta; Khan, P.; Paul, B.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Cherney, M.; Nilsen, B. S.; Poghosyan, M. G.; Seger, J. E.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J. -Y.; Guilbaud, M.; Tieulent, R.; Uras, A.; Zoccarato, Y.] Univ Lyon 1, CNRS, IN2P3, IPN Lyon, F-69622 Villeurbanne, France. [Chinellato, D. D.; Dash, A.; Takahashi, J.] Univ Estadual Campinas, UNICAMP, Campinas, Brazil. [Christiansen, P.; Ljunggren, H. M.; Ortiz Velasquez, A.; Oskarsson, A.; Richert, T.; Sogaard, C.; Stenlund, E.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Kox, S.; Real, J. S.; Silvestre, C.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [del Valle, Z. Conesa; Das, I.; Espagnon, B.; Hadjidakis, C.; Lakomov, I.; Suire, C.; Takaki, J. D. Tapia] Univ Paris 11, CNRS, IN2P3, Inst Phys Nucl Orsay, Orsay, France. [Contreras, J. G.; Cruz Albino, R.; Herrera Corral, G.; Montano Zetina, L.] CINVESTAV, Ctr Invest & Estudios Avanzados, Mexico City 14000, DF, Mexico. [Cortese, P.; Ramello, L.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & Innovaz Tecnol, Alessandria, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Ist Nazl Fis Nucl, Grp Collegato, Alessandria, Italy. [Cortes Maldonado, I.; Fernandez Tellez, A.; Martinez, M. I.; Rodriguez Cahuantzi, M.; Tejeda Munoz, G.; Vargas, A.; Vergara Limon, S.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Cuautle, E.; Jimenez Bustamante, R. T.; Ladron de Guevara, P.; Maldonado Cervantes, I.; Ortiz Velasquez, A.; Paic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Danu, A.; Felea, D.; Gheata, A.; Haiduc, M.; Mitu, C. M.; Niculescu, M.; Sevcenco, A.; Stan, I.; Zgura, I. S.] Inst Space Sci, Bucharest, Romania. [Das, S.; Ghosh, S. K.; Prasad, S. K.; Raha, S.] Bose Inst, Dept Phys, Kolkata, India. [Das, S.; Ghosh, S. K.; Prasad, S. K.; Raha, S.] Bose Inst, Ctr Astroparticle Phys & Space Sci, Kolkata, India. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kurashvili, P.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Natl Ctr Nucl Studies, Warsaw, Poland. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84100 Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] Ist Nazl Fis Nucl, Grp Collegato, Salerno, Italy. [Di Liberto, S.; Mazzoni, M. A.; Meddi, F.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Hilden, T. E.; Pohjoisaho, E. H. O.; Rasanen, S. S.] Helsinki Inst Phys, Helsinki, Finland. [Figueredo, M. A. S.; Norman, J.; Romita, R.] Univ Liverpool, Liverpool, Merseyside, England. [Finogeev, D.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskikh, A.; Kurepin, A.; Kurepin, A. B.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Floratos, E.; Ganoti, P.; Roukoutakis, F.; Spyropoulou-Stassinaki, M.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Gangadharan, D. R.; Humanic, T. J.; Lisa, M. A.; Salzwedel, J.; Steinpreis, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Garcia-Solis, E.; Harton, A.] Chicago State Univ, Chicago, IL USA. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Graczykowski, L. K.; Janik, M. A.; Kisiel, A.; Oleniacz, J.; Pawlak, T.; Pluta, J.; Szymanski, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Grigoryan, A.; Gulkanyan, H.; Papikyan, V.] Yerevan Phys Inst Fdn, AI Alikhanyan Natl Sci Lab, Yerevan, Armenia. [Gunji, T.; Hamagaki, H.; Hayashi, S.; Sekiguchi, Y.; Tsuji, T.; Yamaguchi, Y.] Univ Tokyo, Tokyo, Japan. [Hess, B. A.; Schmidt, H. R.; Wiechula, J.] Univ Tubingen, Tubingen, Germany. [Hladky, J.; Mares, J.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Hwang, D. S.; Kim, S.] Sejong Univ, Dept Phys, Seoul, South Korea. [Kalinak, P.; Kralik, I.; Krivda, M.; Musinsky, J.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Kang, J. H.; Kim, B.; Kim, M.; Kwon, Y.; Song, M.] Yonsei Univ, Seoul 120749, South Korea. [Uysal, A. Karasu; Okatan, A.] KTO Karatay Univ, Konya, Turkey. [Keidel, R.] Fachhsch Worms, Zentrum Technol Transfer & Telekommunikat, Worms, Germany. [Khan, M. M.] Aligarh Muslim Univ, Dept Appl Phys, Aligarh, Uttar Pradesh, India. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Knospe, A. G.; Markert, C.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Kobdaj, C.] Suranaree Univ Technol, Nakhon Ratchasima, Thailand. [Kweon, M. J.] Inha Univ, Inchon, South Korea. [Langoy, R.; Lien, J.] Vestfold Univ Coll, Tonsberg, Norway. [Lemmon, R. C.; Romita, R.] STFC Daresbury Lab, Nucl Phys Grp, Daresbury, Halton, England. [Leon Monzon, I.; Podesta-Lerma, P. L. M.; Snchez Rodriguez, F. J.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Malinina, L.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Martashvili, I.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.; Sharma, N.; Sorensen, S.] Univ Tennessee, Knoxville, TN USA. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szabo, A.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Milosevic, J.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Milosevic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Mishra, A. N.; Sahoo, P.; Pareek, P.; Roy, A.; Sahoo, R.] Indian Inst Technol Indore, Indore, Madhya Pradesh, India. [Mohanty, B.; Nayak, K.; Singha, S.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Oh, S. K.] Konkuk Univ, Seoul, South Korea. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Planinic, M.; Poljak, N.; Simatovic, G.] Univ Zagreb, Zagreb 41000, Croatia. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Redlich, K.] Univ Wroclaw, Inst Theoret Phys, PL-50138 Wroclaw, Poland. [Ricci, R. A.; Venaruzzo, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Shigaki, K.; Sugitate, T.; Yano, S.] Hiroshima Univ, Hiroshima, Japan. [Takaki, J. D. Tapia] Univ Kansas, Lawrence, KS 66045 USA. [Vernet, R.] Ctr Calcul, IN2P3, Villeurbanne, France. RP Abelev, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Zarochentsev, Andrey/J-6253-2013; Altsybeev, Igor/K-6687-2013; Vinogradov, Leonid/K-3047-2013; Kondratiev, Valery/J-8574-2013; Vechernin, Vladimir/J-5832-2013; Janik, Malgorzata/O-7520-2015; Graczykowski, Lukasz/O-7522-2015; feofilov, grigory/A-2549-2013; Adamova, Dagmar/G-9789-2014; Christensen, Christian/D-6461-2012; Mitu, Ciprian/E-6733-2011; Sevcenco, Adrian/C-1832-2012; Ahmed, Ijaz/E-9144-2015; Usai, Gianluca/E-9604-2015; Salgado, Carlos A./G-2168-2015; Bregant, Marco/I-7663-2012; Barnby, Lee/G-2135-2010; Barbera, Roberto/G-5805-2012; Bruna, Elena/C-4939-2014; Karasu Uysal, Ayben/K-3981-2015; HAMAGAKI, HIDEKI/G-4899-2014; Pshenichnov, Igor/A-4063-2008; Guber, Fedor/I-4271-2013; Vajzer, Michal/G-8469-2014; Wagner, Vladimir/G-5650-2014; Sumbera, Michal/O-7497-2014; Peitzmann, Thomas/K-2206-2012; Takahashi, Jun/B-2946-2012; Kovalenko, Vladimir/C-5709-2013; Felea, Daniel/C-1885-2012; Barnafoldi, Gergely Gabor/L-3486-2013; Kharlov, Yuri/D-2700-2015; Kucera, Vit/G-8459-2014; Krizek, Filip/G-8967-2014; Bielcikova, Jana/G-9342-2014; De Pasquale, Salvatore/B-9165-2008; Chinellato, David/D-3092-2012; de Cuveland, Jan/H-6454-2016; Kurepin, Alexey/H-4852-2013; Jena, Deepika/P-2873-2015; Jena, Satyajit/P-2409-2015; Akindinov, Alexander/J-2674-2016; Nattrass, Christine/J-6752-2016; Cosentino, Mauro/L-2418-2014; Suaide, Alexandre/L-6239-2016; Castillo Castellanos, Javier/G-8915-2013; Inst. of Physics, Gleb Wataghin/A-9780-2017; Ferreiro, Elena/C-3797-2017; Armesto, Nestor/C-4341-2017; Ferretti, Alessandro/F-4856-2013; Martinez Hernandez, Mario Ivan/F-4083-2010; Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; OI Zarochentsev, Andrey/0000-0002-3502-8084; Altsybeev, Igor/0000-0002-8079-7026; Vinogradov, Leonid/0000-0001-9247-6230; Kondratiev, Valery/0000-0002-0031-0741; Vechernin, Vladimir/0000-0003-1458-8055; Janik, Malgorzata/0000-0002-3356-3438; feofilov, grigory/0000-0003-3700-8623; Christensen, Christian/0000-0002-1850-0121; Sevcenco, Adrian/0000-0002-4151-1056; Usai, Gianluca/0000-0002-8659-8378; Salgado, Carlos A./0000-0003-4586-2758; Barnby, Lee/0000-0001-7357-9904; Barbera, Roberto/0000-0001-5971-6415; Bruna, Elena/0000-0001-5427-1461; Karasu Uysal, Ayben/0000-0001-6297-2532; Pshenichnov, Igor/0000-0003-1752-4524; Guber, Fedor/0000-0001-8790-3218; Sumbera, Michal/0000-0002-0639-7323; Peitzmann, Thomas/0000-0002-7116-899X; Takahashi, Jun/0000-0002-4091-1779; Kovalenko, Vladimir/0000-0001-6012-6615; Felea, Daniel/0000-0002-3734-9439; De Pasquale, Salvatore/0000-0001-9236-0748; Chinellato, David/0000-0002-9982-9577; de Cuveland, Jan/0000-0003-0455-1398; Kurepin, Alexey/0000-0002-1851-4136; Jena, Deepika/0000-0003-2112-0311; Jena, Satyajit/0000-0002-6220-6982; Akindinov, Alexander/0000-0002-7388-3022; Nattrass, Christine/0000-0002-8768-6468; Cosentino, Mauro/0000-0002-7880-8611; Suaide, Alexandre/0000-0003-2847-6556; Castillo Castellanos, Javier/0000-0002-5187-2779; Paticchio, Vincenzo/0000-0002-2916-1671; Scarlassara, Fernando/0000-0002-4663-8216; Turrisi, Rosario/0000-0002-5272-337X; D'Erasmo, Ginevra/0000-0003-3407-6962; Beole', Stefania/0000-0003-4673-8038; Fernandez Tellez, Arturo/0000-0001-5092-9748; Ferreiro, Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783; Ferretti, Alessandro/0000-0001-9084-5784; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; Riggi, Francesco/0000-0002-0030-8377; Dainese, Andrea/0000-0002-2166-1874 FU Worldwide LHC Computing Grid (WLCG) Collaboration; State Committee of Science; World Federation of Scientists (WFS); Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; European Research Council under the European Community's Seventh Framework Program; Helsinki Institute of Physics; Academy of Finland; French CNRS-IN2P3; Region Pays de Loire; Region Alsace; Region Auvergne; CEA, France; German BMBF; Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA; National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN); Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi," Italy; MEXT, Japan; Joint Institute for Nuclear Research, Dubna, Russia; National Research Foundation of Korea (NRF); CONACYT; DGAPA, Mexico; ALFA-EC; EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education, National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics and CNCS-UEFISCDI, Romania; Ministry of Education and Science of Russian Federation; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations; Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT; EELA; Ministerio de Economia y Competitividad (MINECO) of Spain; Xunta de Galicia (Conselleria de Educacion); CEADEN; Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Swedish Research Council (VR); Knut and Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); United States Department of Energy; United States National Science Foundation; State of Texas; State of Ohio FX The ALICE Collaboration thanks all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration thanks M. Cacciari for providing the pQCD predictions used for the feed-down correction and the energy scaling and I. Vitev, H. Fujii, and K. Watanabe for making available their predictions for the nuclear modification factor. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centers and the Worldwide LHC Computing Grid (WLCG) Collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS), and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE), and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation, and the Danish National Research Foundation; the European Research Council under the European Community's Seventh Framework Program; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the "Region Pays de Loire," "Region Alsace," "Region Auvergne," and CEA, France; German BMBF and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi," Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna, Russia; National Research Foundation of Korea (NRF); CONACYT, DGAPA, Mexico, ALFA-EC, and the EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education, National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics and CNCS-UEFISCDI, Romania; Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations, and the Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT, EELA, Ministerio de Economia y Competitividad (MINECO) of Spain; Xunta de Galicia (Conselleria de Educacion), CEADEN, Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut and Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); the United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio. NR 57 TC 29 Z9 29 U1 3 U2 56 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 4 PY 2014 VL 113 IS 23 AR 232301 DI 10.1103/PhysRevLett.113.232301 PG 11 WC Physics, Multidisciplinary SC Physics GA AW6JH UT WOS:000346375300002 PM 25526119 ER PT J AU Jones, D Bhattacharyya, D Turton, R Zitney, SE AF Jones, Dustin Bhattacharyya, Debangsu Turton, Richard Zitney, Stephen E. TI Plant-wide control system design: Primary controlled variable selection SO COMPUTERS & CHEMICAL ENGINEERING LA English DT Article DE Primary controlled variable; Self-optimizing; Parallelized branch and bound; AGR; IGCC AB The work is focused on the development of a rigorous, model-based approach for the selection of primary controlled variables as part of a plant-wide control system design methodology. Controlled variables should be selected for their self-optimizing control performance and controllability while ensuring satisfactory performance in terms of dead-time and closed loop interactions. This work has considered both-self-optimizing and control performance as well as has addressed issues related to loop-interactions and superstructure constraints. The new three-stage approach developed in this work results in a large-scale, constrained, mixed-integer multi-objective optimization problem. For solving this problem, a parallelized, bi-directional branch and bound algorithm with dynamic search strategies has been developedto solve the problem on large computer clusters. The proposed approach is then applied to an acid gas removal unit as part of an integrated gasification combined cycle power plant with CO2 capture. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Jones, Dustin; Bhattacharyya, Debangsu; Turton, Richard] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. [Zitney, Stephen E.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Bhattacharyya, D (reprint author), W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. EM Debangsu.Bhattacharyya@mail.wvu.edu FU RES [DE-FE0004000] FX As part of the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, this technical effort was performed under the RES contract DE-FE0004000. NR 26 TC 5 Z9 5 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-1354 EI 1873-4375 J9 COMPUT CHEM ENG JI Comput. Chem. Eng. PD DEC 4 PY 2014 VL 71 BP 220 EP 234 DI 10.1016/j.compchemeng.2014.08.004 PG 15 WC Computer Science, Interdisciplinary Applications; Engineering, Chemical SC Computer Science; Engineering GA AW1SL UT WOS:000346070100017 ER PT J AU Jones, D Bhattacharyya, D Turton, R Zitney, SE AF Jones, Dustin Bhattacharyya, Debangsu Turton, Richard Zitney, Stephen E. TI Plant-wide control system design: Secondary controlled variable selection SO COMPUTERS & CHEMICAL ENGINEERING LA English DT Article DE Secondary controlled variable; IAE; Parallelized branch and bound; AGR; IGCC AB This work is focused on the development of a rigorous, model-based approach for the selection of secondary controlled variables as part of a plant-wide control system design methodology. Secondary controlled variables should be easy to measure, easy to control, fast to respond to changes in the input variables, and lead to automatic, indirect control of the primary controlled variables. While much of the work on this subject has been based upon ad hoc approaches, here a systematic three-stage approach is proposed that addresses issues of controllability and economic performance of the control system. The first stage involves the generation of an initial set of candidate secondary controlled variables and the generation of selection constraints that are used to determine if manipulated variables can be used for control of candidate controlled variables. During the second stage, secondary controlled variables are selected to minimize integral absolute errors (IAEs) of the primary controlled variables subject to minimal loop interactions as determined by a relative gain array analysis. Finally, during the third stage, control performance of the secondary controlled variables is evaluated at off-design operations using a nonlinear process model. The proposed approach is then applied, as ongoing work in the application of plant-wide control, to an acid gas removal unit as part of an integrated gasification combined cycle power plant with CO2 capture. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Jones, Dustin; Bhattacharyya, Debangsu; Turton, Richard] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. [Zitney, Stephen E.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Bhattacharyya, D (reprint author), W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. EM Debangsu.Bhattacharyya@mail.wvu.edu OI Zitney, Stephen/0000-0002-2854-4304 FU RES [DE-FE0004000] FX As part of the National Energy Technology Laboratory's RegionalUniversity Alliance (NETL-RUA), a collaborative initiative of the NETL, this technical effort was performed under the RES contract DE-FE0004000. NR 14 TC 1 Z9 1 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-1354 EI 1873-4375 J9 COMPUT CHEM ENG JI Comput. Chem. Eng. PD DEC 4 PY 2014 VL 71 BP 253 EP 262 DI 10.1016/j.compchemeng.2014.08.007 PG 10 WC Computer Science, Interdisciplinary Applications; Engineering, Chemical SC Computer Science; Engineering GA AW1SL UT WOS:000346070100020 ER PT J AU Gunaratne, KDD Johnson, GE Andersen, A Du, D Zhang, WY Prabhakaran, V Lin, YH Laskin, J AF Gunaratne, K. Don D. Johnson, Grant E. Andersen, Amity Du, Dan Zhang, Weiying Prabhakaran, Venkateshkumar Lin, Yuehe Laskin, Julia TI Controlling the Charge State and Redox Properties of Supported Polyoxometalates via Soft Landing of Mass-Selected Ions SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ASSEMBLED MONOLAYER SURFACES; TREATED METAL-SURFACES; LANDED PEPTIDE IONS; ALKANETHIOL MONOLAYERS; KEGGIN-STRUCTURE; GAS-PHASE; VIBRATIONAL INVESTIGATIONS; ELECTROCHEMICAL PROPERTIES; ELECTROSPRAY-IONIZATION; ELECTRONIC-PROPERTIES AB We investigate the controlled deposition of Keggin polyoxometalate (POM) anions, PMo12O403 and PMo12O402, onto different self-assembled monolayer (SAM) surfaces via soft landing of mass-selected ions. Utilizing in situ infrared reflection absorption spectroscopy (IRRAS), ex situ cyclic voltammetry (CV), and electronic structure calculations, we examine the structure and charge retention of supported multiply charged POM anions and characterize the redox properties of the modified surfaces. SAMs of alkylthiol (HSAM), perfluorinated alkylthiol (FSAM), and alkylthiol terminated with NH3+ functional groups (NH(3)(+)SAM) are chosen as model substrates for soft landing to examine the factors that influence the immobilization and charge retention of multiply charged anionic molecules. The distribution of charge states of POMs on different SAM surfaces is determined by comparing the IRRAS spectra with vibrational spectra calculated using density functional theory. In contrast with the results obtained previously for multiply charged cations, soft-landed anions are found to retain charge on all three SAM surfaces. This charge retention is attributed to the substantial electron binding energy of the POM anions. Investigation of redox properties by CV reveals that while surfaces prepared by soft landing exhibit similar features to those prepared by adsorption of POM from solution, the soft-landed POM2 has a pronounced shift in oxidation potential compared with POM3 for one of the redox couples. These results demonstrate that ion soft landing is uniquely suited for precisely controlled preparation of substrates with specific electronic and chemical properties that cannot be achieved using conventional deposition techniques C1 [Gunaratne, K. Don D.; Johnson, Grant E.; Andersen, Amity; Du, Dan; Zhang, Weiying; Prabhakaran, Venkateshkumar; Lin, Yuehe; Laskin, Julia] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Laskin, J (reprint author), Pacific NW Natl Lab, Div Phys Sci, POB 999,MSIN K8-88, Richland, WA 99352 USA. EM Julia.Laskin@pnnl.gov RI Laskin, Julia/H-9974-2012; Du, Dan (Annie)/G-3821-2012; Prabhakaran, Venkateshkumar/C-5023-2009; Lin, Yuehe/D-9762-2011 OI Laskin, Julia/0000-0002-4533-9644; Prabhakaran, Venkateshkumar/0000-0001-6692-6488; Lin, Yuehe/0000-0003-3791-7587 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; DOE's Office of Biological and Environmental Research and located at PNNL FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. This work was performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the U.S. DOE. NR 101 TC 11 Z9 11 U1 2 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 4 PY 2014 VL 118 IS 48 BP 27611 EP 27622 DI 10.1021/jp505050m PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AU9DN UT WOS:000345891900001 ER PT J AU Barile, CJ Barile, EC Zavadil, KR Nuzzo, RG Gewirth, AA AF Barile, Christopher J. Barile, Elizabeth C. Zavadil, Kevin R. Nuzzo, Ralph G. Gewirth, Andrew A. TI Electrolytic Conditioning of a Magnesium Aluminum Chloride Complex for Reversible Magnesium Deposition SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID LI-ION BATTERIES; TETRAHYDROFURAN; DISSOLUTION; EFFICIENCY; CHALLENGE; SYSTEMS AB We describe in this report the electrochemistry of Mg deposition and dissolution from the magnesium aluminum chloride complex (MACC). The results define the requirements for reversible Mg deposition and definitively establish that voltammetric cycling of the electrolyte significantly alters its composition and performance. Elemental analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy (SEM-EDS) results demonstrate that irreversible Mg and Al deposits form during early cycles. Electrospray ionization mass spectrometry (ESI-MS) data show that inhibitory oligomers develop in THF-based solutions. These oligomers form via the well-established mechanism of a cationic ring-opening polymerization of THF during the initial synthesis of the MACC and under resting conditions. In contrast, MACC solutions in 1,2-dimethoxyethane (DME), an acyclic solvent, do not evolve as dramatically at open circuit potential. From these results, we propose a mechanism describing how the conditioning process of the MACC in THF improves its performance by both tuning the Mg:Al stoichiometry and eliminating oligomers. C1 [Barile, Christopher J.; Barile, Elizabeth C.; Nuzzo, Ralph G.; Gewirth, Andrew A.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Zavadil, Kevin R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Gewirth, AA (reprint author), Univ Illinois, Dept Chem, 1209 W Calif St, Urbana, IL 61801 USA. EM agewirth@illinois.edu FU Joint Center for Energy Storage Research, an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences; National Science Foundation [NSF DGE-1144245]; Springborn Fellowship FX This work was supported as part of the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. C.J.B. acknowledges a National Science Foundation Graduate Research Fellowship (No. NSF DGE-1144245) and a Springborn Fellowship. This work was carried out in part in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois at Urbana-Champaign. We acknowledge Dr. Nathan Hahn and David Wetzel for helpful discussions and Edmund Chun Ming Tse for help with the MS. NR 21 TC 28 Z9 28 U1 14 U2 91 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 4 PY 2014 VL 118 IS 48 BP 27623 EP 27630 DI 10.1021/jp506951b PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AU9DN UT WOS:000345891900002 ER PT J AU Liu, ZG Wu, ZL Peng, XH Binder, A Chai, SH Dai, S AF Liu, Zhigang Wu, Zili Peng, Xihong Binder, Andrew Chai, Songhai Dai, Sheng TI Origin of Active Oxygen in a Ternary CuOx/Co3O4-CeO2 Catalyst for CO Oxidation SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CARBON-MONOXIDE OXIDATION; AREA CUO-CEO2 CATALYSTS; PREFERENTIAL OXIDATION; LOW-TEMPERATURE; COMPOSITE CATALYSTS; EXCESS HYDROGEN; MIXED OXIDES; SURFACE; CO3O4-CEO2; VACANCIES AB We have studied CO oxidation over a ternary CuOx/Co3O4CeO2 catalyst and employed the techniques of N-2 adsorption/desporption, XRD, TPR, TEM, in situ DRIFTS, and QMS (quadrupole mass spectrometry) to explore the origin of active oxygen. DRIFTS-QMS results with labeled O-18(2) indicate that the origin of active oxygens in CuOx/Co3O4CeO2 obeys a model, called a queue mechanism. Namely gas-phase molecular oxygens are dissociated to atomic oxygens and then incorporated in oxygen vacancies located at the interface of Co3O4CeO2 to form active crystalline oxygens, and these active oxygens diffuse to the COCu+ sites thanks to the oxygen vacancy concentration magnitude and react with the activated CO to form CO2. This process, obeying a queue rule, provides active oxygens to form CO2 from gas-phase O-2 via oxygen vacancies and crystalline oxygen at the interface of Co3O4CeO2. C1 [Liu, Zhigang] Hunan Univ, Sch Chem & Chem Engn, Changsha 410082, Hunan, Peoples R China. [Wu, Zili; Chai, Songhai; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Binder, Andrew; Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Peng, Xihong] Arizona State Univ, Sch Letters & Sci, Mesa, AZ 85212 USA. RP Liu, ZG (reprint author), Hunan Univ, Sch Chem & Chem Engn, Changsha 410082, Hunan, Peoples R China. EM liuzhigang@hnu.edu.cn; wuzl@ornl.gov; dais@ornl.gov RI Peng, Xihong/C-8065-2011; Chai, Song-Hai/A-9299-2012; Dai, Sheng/K-8411-2015; Wu, Zili/F-5905-2012 OI Chai, Song-Hai/0000-0002-4152-2513; Dai, Sheng/0000-0002-8046-3931; Wu, Zili/0000-0002-4468-3240 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; Scientific User Facilities Division, Office of Basic Energy Science, U.S. Department of Energy; Natural Science Foundation of China [21103045, 1210040, 1103312]; Fundamental Research Funds for the Central Universities; Heavy Oil State Key Laboratory in China FX This research is sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. Part of the work including DRIFTS was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Science, U.S. Department of Energy. The research (Z. G. Liu) is also supported partly by Natural Science Foundation of China (No. 21103045, 1210040, and 1103312), the Fundamental Research Funds for the Central Universities and the Heavy Oil State Key Laboratory in China. Andrew Copple is acknowledged for the critical review of the manuscript. NR 33 TC 7 Z9 7 U1 14 U2 84 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 4 PY 2014 VL 118 IS 48 BP 27870 EP 27877 DI 10.1021/jp508487x PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AU9DN UT WOS:000345891900031 ER PT J AU Dejoie, C Martinetto, P Tamura, N Kunz, M Porcher, F Bordat, P Brown, R Dooryhee, E Anne, M McCusker, LB AF Dejoie, Catherine Martinetto, Pauline Tamura, Nobumichi Kunz, Martin Porcher, Florence Bordat, Patrice Brown, Ross Dooryhee, Eric Anne, Michel McCusker, Lynne B. TI Crystal Structure of an Indigo@Silicalite Hybrid Related to the Ancient Maya Blue Pigment SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NEUTRON POWDER DIFFRACTION; HOST-GUEST INTERACTIONS; X-RAY-DIFFRACTION; SINGLE-CRYSTAL; ZEOLITE H-ZSM-5; FRAMEWORK STRUCTURE; ORTHORHOMBIC FRAMEWORK; P-DICHLOROBENZENE; WHITE-BEAM; LOCATION AB The structure of the indigo@silicalite pigment, an analog of ancient Maya Blue, has been determined by combining X-ray Laue microdiffraction and powder diffraction techniques. After the adsorption of indigo into the calcined (monoclinic) silicalite sample, the powder diffraction pattern contained peaks from both orthorhombic (major phase) and monoclinic (minor phase) silicalite. Assuming that the orthorhombic phase was induced by the adsorption of indigo, Laue microdiffraction was used to map the unit cell changes (and thereby the indigo distribution) within a single crystal. It was found to be highly heterogeneous with empty monoclinic and indigo-induced orthorhombic domains. The Laue diffraction data indicated that the space group of the orthorhombic domains was Pnma rather than P2(1)2(1)2(1). With this information, the indigo@silicalite structure could be solved and refined from the powder diffraction data. The starting positions for two independent indigo molecules, described as rigid bodies, were obtained by simulated annealing, with a first molecule positioned in the straight channel and the second one in the sinusoidal channel. The positions and occupancies of these molecules and the positions of the framework atoms were then refined using the Rietveld method. Approximately four indigo molecules per unit cell were found, two per independent site, and possible local arrangements are suggested. The size of the indigo molecule prevents the structure from being fully ordered. C1 [Dejoie, Catherine; McCusker, Lynne B.] ETH, Crystallog Lab, CH-8093 Zurich, Switzerland. [Martinetto, Pauline; Anne, Michel] CNRS, Inst Neel UPR2940, F-38042 Grenoble, France. [Tamura, Nobumichi; Kunz, Martin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Porcher, Florence] CEA, LLB, CNRS, UMR 12, F-91191 Gif Sur Yvette, France. [Porcher, Florence] CNRS, Lab Cristallog Resonnance Magnet & Modelisat UHP, F-54506 Vandoeuvre Les Nancy, France. [Bordat, Patrice; Brown, Ross] CNRS, Inst Sci Analyt & Physicochim Environm & Mat, F-64053 Pau, France. [Bordat, Patrice; Brown, Ross] Univ Pau & Pays Adour, F-64053 Pau, France. [Dooryhee, Eric] Brookhaven Natl Lab, NSLS 2, Upton, NY 11973 USA. RP Dejoie, C (reprint author), ETH, Crystallog Lab, CH-8093 Zurich, Switzerland. EM c.dejoie@mat.ethz.ch; pauline.martinetto@grenoble.cnrs.fr RI d2am, beamline/I-6445-2015; OI McCusker, Lynne/0000-0003-0074-1733 FU Swiss National Science Foundation; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the U.S. Department of Energy [DE-AC02-05CH11231]; Region Rhone-Alpes (France) FX The authors thank Stef Smeets from the Lab. of Crystallography at ETH Zurich for his assistance with the TOPAS software and Christian Baerlocher from the same institution for helpful discussions. C.D. gratefully acknowledges funding from the Swiss National Science Foundation. The Advanced Light Source at the Lawrence Berkeley National Laboratory is supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the U.S. Department of Energy under contract No. DE-AC02-05CH11231. The project "Colorants Hybrides" was supported by the Region Rhone-Alpes (France) through the CIBLE programme and the "Materials for Sustainable Development" (MACODEV) consortium. NR 60 TC 9 Z9 9 U1 5 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 4 PY 2014 VL 118 IS 48 BP 28032 EP 28042 DI 10.1021/jp509969z PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AU9DN UT WOS:000345891900049 ER PT J AU Crane, CC Tao, J Wang, F Zhu, YM Chen, JY AF Crane, Cameron C. Tao, Jing Wang, Feng Zhu, Yimei Chen, Jingyi TI Mask-Assisted Seeded Growth of Segmented Metallic Heteronanostructures SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID BIMETALLIC PAIR SITES; CONTROLLED OVERGROWTH; GOLD NANOPARTICLES; INITIAL-STAGES; PD; NANORODS; SILICA; AU; NANOSTRUCTURES; NANOCRYSTALS AB Controlling the deposition of exotic metals in the seeded growth of multimetal nanostructures is challenging. This work describes a seeded growth method assisted by a mask for synthesis of segmented binary or ternary metal nanostructures. Silica is used as a mask to partially block the surface of a seed and a second metal is subsequently deposited on the exposed area, forming a bimetallic heterodimer. The initial demonstration was carried out on a Au seed, followed by deposition of Pd or Pt on the seed. It was found that Pd tended to spread out laterally on the seed while Pt inclined to grow vertically into branched topology on Au. Without removal of the SiO2 mask, Pt could be further deposited on the unblocked Pd of the Pd-Au dimer to form a Pt-Pd-Au trimer. Mask-assisted seeded growth provides a general strategy to construct segmented metallic nanoarchitectures. C1 [Crane, Cameron C.; Wang, Feng; Chen, Jingyi] Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA. [Tao, Jing; Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Chen, JY (reprint author), Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA. EM chenj@uark.edu RI Wang, Feng/J-8583-2014; Chen, Jingyi/E-7168-2010 OI Wang, Feng/0000-0002-2740-3534; Chen, Jingyi/0000-0003-0012-9640 FU Ralph E. Powe Jr. Faculty Enhancement Award; Arkansas Bioscience Institute; University of Arkansas; U.S. Department of Energy, Basic Energy Sciences; Materials Sciences and Engineering Division [DE-AC02-98CH10886] FX This work was supported in part by the Ralph E. Powe Jr. Faculty Enhancement Award, funds from Arkansas Bioscience Institute, and startup funds from the University of Arkansas to J.C. The work done at Brookhaven National Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, by the Materials Sciences and Engineering Division under Contract DE-AC02-98CH10886. NR 53 TC 8 Z9 8 U1 4 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 4 PY 2014 VL 118 IS 48 BP 28134 EP 28142 DI 10.1021/jp5094433 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AU9DN UT WOS:000345891900060 ER PT J AU Shi, W Hong, L Damodaran, K Nulwala, HB Luebke, DR AF Shi, Wei Hong, Lei Damodaran, Krishnan Nulwala, Hunaid B. Luebke, David R. TI Molecular Simulation and Experimental Study of CO2 Absorption in Ionic Liquid Reverse Micelle SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID CARBON-DIOXIDE; DYNAMICS SIMULATION; PHASE-BEHAVIOR; DIFFUSION MEASUREMENTS; NONIONIC SURFACTANTS; STIMULATED ECHO; FIELD GRADIENT; NMR-DIFFUSION; FORCE-FIELD; MICROEMULSIONS AB The structure and dynamics for CO2 absorption in ionic liquid reverse micelle (ILRM) were studied using molecular simulations. The ILRM consisted of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) ionic liquid (IL) as the micelle core, the benzylhexadecyldimethylammonium ([BHD](+)) chloride ([Cl](-)) was the cationic surfactant, and benzene was used as the continuous solvent phase in this study. The diffusivity values of this ILRM system were also experimentally determined. Simulations indicate that there is ion exchange between the IL anion ([BF4](-)) and the surfactant anion ([Cl](-)). It was also found that the [bmim][BF4] IL exhibits small local density at the interface region between the IL core and the [BHD](+) surfactant cation layer, which leads to a smaller density for the [bmim][BF4] IL inside the reverse micelle (RM) compared with the neat IL. These simulation findings are consistent with experimental results. Both our simulations and experimental results show that [bmim][BF4] inside the RM diffuses 5-26 times faster than the neat IL, which is partly due to the fast particle diffusion for the ILRM nanodroplet (IL and surfactant) as a whole in benzene solvent compared with neat [bmim][BF4] diffusion. Additionally, it was found that [bmim][BF4] IL solved in benzene diffuses 2 orders of magnitude faster than the neat IL. Lastly, simulations show that CO2 molecules are absorbed in four different regions of the ILRM system, that is, (I) in the IL inner core, (II) in the [BHD](+) surfactant cation layer, (III) at the interface between the [BHD](+) surfactant cation layer and benzene solvent, and (IV) in the benzene solvent. The CO2 solubility was found to decrease in the order II > III similar to IV > I, while the CO2 diffusivity and permeability decrease in the following order: IV > III > II > I. C1 [Shi, Wei; Hong, Lei; Luebke, David R.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Shi, Wei; Hong, Lei] URS Corp, South Pk, PA 15129 USA. [Shi, Wei] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. [Damodaran, Krishnan] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. [Nulwala, Hunaid B.] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA. RP Shi, W (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM shiw@netl.doe.gov OI Nulwala, Hunaid/0000-0001-7481-3723 FU Department of Energy, National Energy Technology Laboratory; United States Government, through URS Energy & Construction, Inc. FX This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with URS Energy & Construction, Inc. Neither the United States Government nor any agency thereof, nor any of their employees, nor URS Energy & Construction, Inc., nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 64 TC 1 Z9 1 U1 7 U2 92 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD DEC 4 PY 2014 VL 118 IS 48 BP 13870 EP 13881 DI 10.1021/jp509282h PG 12 WC Chemistry, Physical SC Chemistry GA AU9DJ UT WOS:000345891500010 PM 25382316 ER PT J AU Rice, WD McDaniel, H Klimov, VI Crooker, SA AF Rice, William D. McDaniel, Hunter Klimov, Victor I. Crooker, Scott A. TI Magneto-Optical Properties of CuInS2 Nanocrystals SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID QUANTUM DOTS; OPTICAL-PROPERTIES; EXCHANGE INTERACTIONS; CATION-EXCHANGE; SOLAR-CELLS; TERNARY; LUMINESCENCE; PHOTOLUMINESCENCE; SEMICONDUCTORS; EMISSION AB We compare the absorption, photoluminescence, and magneto-optical properties of colloidal CuInS2 (CIS) nanocrystals with two closely related and well-understood binary analogs: Cu-doped ZnSe nanocrystals and CdSe nanocrystals. In contrast with conventional CdSe, both CIS and Cu-doped ZnSe nanocrystals exhibit a substantial energy separation between emission and absorption peaks (Stokes shift) and a marked asymmetry in the polarization-resolved low-temperature magneto-photoluminescence, both of which point to the role of localized dopant/defect states in the forbidden gap. Surprisingly, we find evidence in CIS nanocrystals of spin-exchange coupling between paramagnetic moments in the nanocrystal and the conduction/valence bands of the host lattice, a behavior also observed in Cu-doped ZnSe nanocrystals, where the copper atoms incorporate as paramagnetic Cu2+ ions. C1 [Rice, William D.; Crooker, Scott A.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [McDaniel, Hunter; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Crooker, SA (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, POB 1663, Los Alamos, NM 87545 USA. EM klimov@lanl.gov; crooker@lanl.gov OI Klimov, Victor/0000-0003-1158-3179 FU Los Alamos LDRD program; Chemical Sciences, Biosciences, and Geosciences Division of the Office of Science, U.S. DOE FX W.D.R and S.A.C were supported by the Los Alamos LDRD program and H.M. and V.I.K. were supported by the Chemical Sciences, Biosciences, and Geosciences Division of the Office of Science, U.S. DOE. NR 38 TC 15 Z9 15 U1 2 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD DEC 4 PY 2014 VL 5 IS 23 BP 4105 EP 4109 DI 10.1021/jz502154m PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AU9DU UT WOS:000345892600007 PM 26278940 ER PT J AU Jeyachandran, YL Meyer, F Nagarajan, S Benkert, A Bar, M Blum, M Yang, WL Reinert, F Heske, C Weinhardt, L Zharnikov, M AF Jeyachandran, Yekkoni L. Meyer, Frank Nagarajan, Sankaranarayanan Benkert, Andreas Baer, Marcus Blum, Monika Yang, Wanli Reinert, Friedrich Heske, Clemens Weinhardt, Lothar Zharnikov, Michael TI Ion-Solvation-Induced Molecular Reorganization in Liquid Water Probed by Resonant Inelastic Soft X-ray Scattering SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID HYDROGEN-BOND-NETWORK; EMISSION-SPECTROSCOPY; ELECTRONIC-STRUCTURE; ABSORPTION; DYNAMICS; SPECTRUM; ORIGIN; SALTS AB The molecular structure of liquid water is susceptible to changes upon admixture of salts due to ionic solvation, which provides the basis of many chemical and biochemical processes. Here we demonstrate how the local electronic structure of aqueous potassium chloride (KCl) solutions can be studied by resonant inelastic soft X-ray scattering (RIXS) to monitor the effects of the ion solvation on the hydrogen-bond (HB) network of liquid water. Significant changes in the oxygen K-edge emission spectra are observed with increasing KCl concentration. These changes can be attributed to modifications in the proton dynamics, caused by a specific coordination structure around the salt ions. Analysis of the spectator decay spectra reveals a spectral signature that could be characteristic of this structure. C1 [Jeyachandran, Yekkoni L.; Nagarajan, Sankaranarayanan; Zharnikov, Michael] Heidelberg Univ, D-69120 Heidelberg, Germany. [Meyer, Frank; Benkert, Andreas; Reinert, Friedrich] Univ Wurzburg, D-97074 Wurzburg, Germany. [Benkert, Andreas; Heske, Clemens; Weinhardt, Lothar] KIT, Inst Photon Sci & Synchrotron Radiat, D-76344 Eggenstein Leopoldshafen, Germany. [Baer, Marcus] Helmholtz Zentrum Berlin Mat & Energie GmbH, Solar Energy Res, D-14109 Berlin, Germany. [Baer, Marcus] Brandenburg Tech Univ Cottbus Senftenberg, Inst Phys & Chem, D-03046 Cottbus, Germany. [Baer, Marcus; Blum, Monika; Heske, Clemens; Weinhardt, Lothar] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Yang, Wanli] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Heske, Clemens; Weinhardt, Lothar] KIT, ANKA Synchrotron Radiat Facil, D-76344 Eggenstein Leopoldshafen, Germany. [Heske, Clemens; Weinhardt, Lothar] KIT, Inst Chem Technol & Polymer Chem, D-76128 Karlsruhe, Germany. RP Zharnikov, M (reprint author), Heidelberg Univ, Neuenheimer Feld 253, D-69120 Heidelberg, Germany. EM l.weinhardt@kit.edu; Michael.Zharnikov@urz.uni-heidelberg.de RI Yang, Wanli/D-7183-2011 OI Yang, Wanli/0000-0003-0666-8063 FU Deutsche Forschungsgemeinschaft [ZH 63/16-1, RE 1469/7-1]; Impuls- und Vernetzungsfonds of the Helmholtz-Association [VH-NG-423]; Department of Energy, Basic Energy Sciences [DE-AC02-05CH11231] FX This work was supported by the Deutsche Forschungsgemeinschaft (Project Nos. ZH 63/16-1 and RE 1469/7-1). M.B. acknowledges financial support by the Impuls- und Vernetzungsfonds of the Helmholtz-Association (VH-NG-423). The ALS is supported by the Department of Energy, Basic Energy Sciences, Contract No. DE-AC02-05CH11231. NR 43 TC 8 Z9 8 U1 6 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD DEC 4 PY 2014 VL 5 IS 23 BP 4143 EP 4148 DI 10.1021/jz502186a PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AU9DU UT WOS:000345892600013 PM 26278946 ER PT J AU Zhao, YX Zhu, K AF Zhao, Yixin Zhu, Kai TI Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID HOLE-CONDUCTOR-FREE; ORGANOMETAL HALIDE PEROVSKITES; FORMAMIDINIUM LEAD TRIHALIDE; PLANAR-HETEROJUNCTION; CHARGE-TRANSPORT; PHOTOVOLTAIC PERFORMANCE; SEQUENTIAL DEPOSITION; BROMIDE PEROVSKITE; LOW-COST; ONE-STEP AB Organic and inorganic hybrid perovskites (e.g., CH3NH3PbI3) have emerged as a revolutionary class of light-absorbing semiconductors that has demonstrated a rapid increase in efficiency within a few years of active research. Controlling perovskite morphology and composition has been found critical to developing high-performance perovskite solar cells. The recent development of solution chemistry engineering has led to fabrication of greater than 15-17%-efficiency solar cells by multiple groups, with the highest certified 17.9% efficiency that has significantly surpassed the best-reported perovskite solar cell by vapor-phase growth. In this Perspective, we review recent progress on solution chemistry engineering processes and various control parameters that are critical to the success of solution growth of high-quality perovskite films. We discuss the importance of understanding the impact of solution-processing parameters and perovskite film architectures on the fundamental charge carrier dynamics in perovskite solar cells. The cost and stability issues of perovskite solar cells will also be discussed. C1 [Zhao, Yixin] Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, Shanghai 200240, Peoples R China. [Zhu, Kai] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. RP Zhao, YX (reprint author), Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China. EM yixin.zhao@sjtu.edu.cn; Kai.Zhu@nrel.gov RI Zhao, Yixin/D-2949-2012 FU NSFC [51372151]; U.S. Department of Energy/National Renewable Energy Laboratory's Laboratory Directed Research and Development (LDRD) program [DE-AC36-08GO28308] FX Y.Z. is thankful for the support of the NSFC (Grant 51372151). K.Z. acknowledges the support by the U.S. Department of Energy/National Renewable Energy Laboratory's Laboratory Directed Research and Development (LDRD) program under Contract No. DE-AC36-08GO28308. NR 98 TC 108 Z9 109 U1 28 U2 412 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD DEC 4 PY 2014 VL 5 IS 23 BP 4175 EP 4186 DI 10.1021/jz501983v PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AU9DU UT WOS:000345892600018 PM 26278951 ER PT J AU Wang, YT Pochet, P Jenkins, CA Arenholz, E Bukalis, G Gemming, S Helm, M Zhou, SQ AF Wang, Yutian Pochet, Pascal Jenkins, Catherine A. Arenholz, Elke Bukalis, Gregor Gemming, Sibylle Helm, Manfred Zhou, Shengqiang TI Defect-induced magnetism in graphite through neutron irradiation SO PHYSICAL REVIEW B LA English DT Article ID ROOM-TEMPERATURE FERROMAGNETISM; ORIENTED PYROLYTIC-GRAPHITE; RAMAN-SPECTROSCOPY; POINT-DEFECTS; DISORDER AB We have investigated the variation in the magnetization of highly ordered pyrolytic graphite (HOPG) after neutron irradiation, which introduces defects in the bulk sample and consequently gives rise to a large magnetic signal. We observe strong paramagnetism in HOPG, increasing with the neutron fluence. The induced paramagnetism can be well correlated with structural defects by comparison with density-functional theory calculations. In addition to the in-plane vacancies, the transplanar defects also contribute to the magnetization. The lack of any magnetic order between the local moments is possibly due to the absence of hydrogen/nitrogen chemisorption, or the magnetic order cannot be established at all in the bulk form. C1 [Wang, Yutian; Gemming, Sibylle; Helm, Manfred; Zhou, Shengqiang] Helmholtz Zentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany. [Wang, Yutian; Helm, Manfred] Tech Univ Dresden, D-01062 Dresden, Germany. [Pochet, Pascal] Univ Grenoble Alpes, INAC SP2M, F-38000 Grenoble, France. [Pochet, Pascal] CEA, INAC SP2M, Atomist Simulat Lab, F-38000 Grenoble, France. [Jenkins, Catherine A.; Arenholz, Elke] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Bukalis, Gregor] Helmholtz Zentrum Berlin Mat & Energie, D-14109 Berlin, Germany. [Gemming, Sibylle] Tech Univ Chemnitz, Fac Sci, D-09107 Chemnitz, Germany. [Gemming, Sibylle; Helm, Manfred] Tech Univ Dresden, Ctr Adv Elect Dresden, D-01314 Dresden, Germany. RP Zhou, SQ (reprint author), Helmholtz Zentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, POB 510119, D-01314 Dresden, Germany. EM s.zhou@hzdr.de RI Zhou, Shengqiang/C-1497-2009; Pochet, Pascal/B-2380-2009 OI Zhou, Shengqiang/0000-0002-4885-799X; Pochet, Pascal/0000-0002-1521-973X FU Helmholtz-Association [VH-NG-713, VH-VI-442]; China Scholarship Council [2010675001]; International Science and Technology Cooperation Program of China [2012DFA51430]; US Department of Energy [DE-AC02-05CH11231]; GENCI-CCRT [6194] FX The work was financially supported by the Helmholtz-Association (Grants No. VH-NG-713 and No. VH-VI-442). Y.W. thanks the China Scholarship Council (File No. 2010675001) for supporting his stay at HZDR. The authors also acknowledge the support by the International Science and Technology Cooperation Program of China (Grant No. 2012DFA51430). The Advanced Light Source is supported by the US Department of Energy under Contract No. DE-AC02-05CH11231. Calculations were performed using French HPC resources from the GENCI-CCRT (Grant No. 6194). NR 62 TC 8 Z9 8 U1 2 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 3 PY 2014 VL 90 IS 21 AR 214435 DI 10.1103/PhysRevB.90.214435 PG 9 WC Physics, Condensed Matter SC Physics GA CA9RE UT WOS:000349261700004 ER PT J AU Flores-Mendieta, R Goity, JL AF Flores-Mendieta, Ruben Goity, Jose L. TI Baryon vector current in the chiral and 1/N-c expansions SO PHYSICAL REVIEW D LA English DT Article ID FORM-FACTORS; PERTURBATION-THEORY; AXIAL CURRENTS; QCD; BREAKING; ELEMENTS; MATRIX AB The baryon vector current is computed at one-loop order in large-N-c baryon chiral perturbation theory, where N-c is the number of colors. Loop graphs with octet and decuplet intermediate states are systematically incorporated into the analysis and the effects of the decuplet-octet mass difference and SUd(3) flavor symmetry breaking are accounted for, giving the full result to order O(p(2)) in the chiral expansion. There are large-N-c cancellations between different one-loop graphs as a consequence of the large-N-c spin-flavor symmetry of QCD baryons. The results are compared against the available experimental data through several fits in order to extract information about the unknown parameters. The large-N-c baryon chiral perturbation theory predictions are in very good agreement both with the expectations from the 1/N-c expansion and with the experimental data. The effect of SU(3) flavor symmetry breaking for the vertical bar Delta S vertical bar = 1 vector current form factors f(1)(0) results in a reduction by a few percent with respect to the corresponding SU(3) symmetric values. C1 [Flores-Mendieta, Ruben; Goity, Jose L.] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. [Goity, Jose L.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. RP Flores-Mendieta, R (reprint author), Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. FU DOE [DE-AC05-06OR23177]; National Science Foundation (USA) [PHY-1307413]; Consejo Nacional de Ciencia y Tecnologia and Fondo de Apoyo a la Investigacion (Universidad Autonoma de San Luis Potosi), Mexico FX This work was supported in part by DOE Contract No. DE-AC05-06OR23177 under which Jefferson Science Associates (JSA) operates the Thomas Jefferson National Accelerator Facility (R. F. M. and J. L. G.), and by the National Science Foundation (USA) through Grant No. PHY-1307413 (J. L. G.), and by Consejo Nacional de Ciencia y Tecnologia and Fondo de Apoyo a la Investigacion (Universidad Autonoma de San Luis Potosi), Mexico (R. F. M.). NR 35 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 3 PY 2014 VL 90 IS 11 AR 114008 DI 10.1103/PhysRevD.90.114008 PG 34 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CB1UK UT WOS:000349413300004 ER PT J AU Tufts, JAM Meyer, KM Calfee, MW Lee, SD AF Tufts, Jenia A. M. Meyer, Kathryn M. Calfee, Michael Worth Lee, Sang Don TI Composite Sampling of a Bacillus anthracis Surrogate with Cellulose Sponge Surface Samplers from a Nonporous Surface SO PLOS ONE LA English DT Article ID FOODBORNE PATHOGENS; STAINLESS-STEEL; SPORES; SURVIVAL AB A series of experiments was conducted to explore the utility of composite-based collection of surface samples for the detection of a Bacillus anthracis surrogate using cellulose sponge samplers on a nonporous stainless steel surface. Two composite-based collection approaches were evaluated over a surface area of 3716 cm(2) (four separate 929 cm(2) areas), larger than the 645 cm(2) prescribed by the standard Centers for Disease Control (CDC) and Prevention cellulose sponge sampling protocol for use on nonporous surfaces. The CDC method was also compared to a modified protocol where only one surface of the sponge sampler was used for each of the four areas composited. Differences in collection efficiency compared to positive controls and the potential for contaminant transfer for each protocol were assessed. The impact of the loss of wetting buffer from the sponge sampler onto additional surface areas sampled was evaluated. Statistical tests of the results using ANOVA indicate that the collection of composite samples using the modified sampling protocol is comparable to the collection of composite samples using the standard CDC protocol (p = 0.261). Most of the surface-bound spores are collected on the first sampling pass, suggesting that multiple passes with the sponge sampler over the same surface may be unnecessary. The effect of moisture loss from the sponge sampler on collection efficiency was not significant (p = 0.720) for both methods. Contaminant transfer occurs with both sampling protocols, but the magnitude of transfer is significantly greater when using the standard protocol than when the modified protocol is used (p<0.001). The results of this study suggest that composite surface sampling, by either method presented here, could successfully be used to increase the surface area sampled per sponge sampler, resulting in reduced sampling times in the field and decreased laboratory processing cost and turn-around times. C1 [Tufts, Jenia A. M.; Meyer, Kathryn M.] Oak Ridge Inst Sci & Educ, Res Triangle Pk, NC USA. [Tufts, Jenia A. M.; Meyer, Kathryn M.; Calfee, Michael Worth; Lee, Sang Don] US EPA, Natl Homeland Secur Res Ctr, Off Res & Dev, Res Triangle Pk, NC 27711 USA. RP Calfee, MW (reprint author), US EPA, Natl Homeland Secur Res Ctr, Off Res & Dev, Res Triangle Pk, NC 27711 USA. EM calfee.worth@epa.gov FU US EPA through an Interagency Agreement; US Department of Energy's ORISE program; US EPA; ORISE FX This work was funded by the US EPA through an Interagency Agreement with the US Department of Energy's ORISE program. Authors MWC and SDL received salary funds from the US EPA; JAT and KM received fellowship stipends through ORISE. NR 15 TC 3 Z9 3 U1 0 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD DEC 3 PY 2014 VL 9 IS 12 AR e114082 DI 10.1371/journal.pone.0114082 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CA7WS UT WOS:000349128700068 PM 25470365 ER PT J AU Yabuta, H Uesugi, M Naraoka, H Ito, M Kilcoyne, ALD Sandford, SA Kitajima, F Mita, H Takano, Y Yada, T Karouji, Y Ishibashi, Y Okada, T Abe, M AF Yabuta, Hikaru Uesugi, Masayuki Naraoka, Hiroshi Ito, Motoo Kilcoyne, A. L. David Sandford, Scott A. Kitajima, Fumio Mita, Hajime Takano, Yoshinori Yada, Toru Karouji, Yuzuru Ishibashi, Yukihiro Okada, Tatsuaki Abe, Masanao TI X-ray absorption near edge structure spectroscopic study of Hayabusa category 3 carbonaceous particles SO EARTH PLANETS AND SPACE LA English DT Article DE Hayabusa; Category 3 carbonaceous particles; STXM; XANES; Organic macromolecule ID INTERPLANETARY DUST PARTICLES; ISOTOPIC COMPOSITIONS; ITOKAWA REGOLITH; ORGANIC-MATTER; SAMPLES; ORIGIN; XANES; SPECTROMICROSCOPY; EVOLUTION; CHONDRITES AB Analyses with a scanning transmission x-ray microscope (STXM) using x-ray absorption near edge structure (XANES) spectroscopy were applied for the molecular characterization of two kinds of carbonaceous particles of unknown origin, termed category 3, which were collected from the Hayabusa spacecraft sample catcher. Carbon-XANES spectra of the category 3 particles displayed typical spectral patterns of heterogeneous organic macromolecules; peaks corresponding to aromatic/olefinic carbon, heterocyclic nitrogen and/or nitrile, and carboxyl carbon were all detected. Nitrogen-XANES spectra of the particles showed the presence of N-functional groups such as imine, nitrile, aromatic nitrogen, amide, pyrrole, and amine. An oxygen-XANES spectrum of one of the particles showed a ketone group. Differences in carbon-and nitrogen-XANES spectra of the category 3 particles before and after transmission electron microscopic (TEM) observations were observed, which demonstrates that the carbonaceous materials are electron beam sensitive. Calcium-XANES spectroscopy and elemental contrast mapping identified a calcium carbonate grain from one of the category 3 particles. No fluorine-containing molecular species were detected in fluorine-XANES spectra of the particles. The organic macromolecular features of the category 3 particles were distinct from commercial and/or biological 'fresh (non degraded)' polymers, but the category 3 molecular features could possibly reflect degradation of contaminant polymer materials or polymer materials used on the Hayabusa spacecraft. However, an extraterrestrial origin for these materials cannot currently be ruled out. C1 [Yabuta, Hikaru] Osaka Univ, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan. [Uesugi, Masayuki; Yada, Toru; Karouji, Yuzuru; Ishibashi, Yukihiro; Okada, Tatsuaki; Abe, Masanao] Japan Aerosp Explorat Agcy JAXA, ISAS, Sagamihara, Kanagawa 2525210, Japan. [Naraoka, Hiroshi; Kitajima, Fumio] Kyushu Univ, Fac Sci, Dept Earth & Planetary Sci, Fukuoka 8128581, Japan. [Ito, Motoo] Japan Agcy Marine Earth Sci Technol JAMSTEC, Kochi Inst Core Sample Res, Nankoku, Kochi 7838502, Japan. [Kilcoyne, A. L. David] Adv Light Source, Berkeley, CA 94720 USA. [Sandford, Scott A.] NASA, Ames Res Ctr Moffett Field, Mountain View, CA 94035 USA. [Mita, Hajime] Fukuoka Inst Technol, Fukuoka 8110295, Japan. [Takano, Yoshinori] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Dept Biogeochem, Yokosuka, Kanagawa 2370061, Japan. RP Yabuta, H (reprint author), Osaka Univ, Dept Earth & Space Sci, 1-1 Machikaneyama, Toyonaka, Osaka 5600043, Japan. EM hyabuta@ess.sci.osaka-u.ac.jp RI U-ID, Kyushu/C-5291-2016; Yabuta, Hikaru/M-9041-2014; Kilcoyne, David/I-1465-2013 OI Yabuta, Hikaru/0000-0002-4625-5362; FU Office of Science, Office of Basic Energy Sciences, and the US Department of Energy [DE-AC02-05CH11231] FX We appreciate Daniel Glavin, an anonymous reviewer, and official editor Michael Zolensky for their constructive comments, attentive corrections, and helpful editorial assistance. The STXM at the beam line 5.3.2.2 ALS facility is supported by the Director, Office of Science, Office of Basic Energy Sciences, and the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 36 TC 3 Z9 3 U1 1 U2 10 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1880-5981 J9 EARTH PLANETS SPACE JI Earth Planets Space PD DEC 3 PY 2014 VL 66 AR 156 DI 10.1186/s40623-014-0156-0 PG 8 WC Geosciences, Multidisciplinary SC Geology GA AZ7IY UT WOS:000348394000001 ER PT J AU Brunecky, R Hobdey, SE Taylor, LE Tao, L Tucker, MP Himmel, ME Decker, SR AF Brunecky, Roman Hobdey, Sarah E. Taylor, Larry E., II Tao, Ling Tucker, Melvin P. Himmel, Michael E. Decker, Stephen R. TI High temperature pre-digestion of corn stover biomass for improved product yields SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Biomass; Pretreatment; Enzymatic hydrolysis; CelA; E1; Caldicellulosiruptor bescii; Acidothermus cellulolyticus; Thermotoga maritima ID ACIDOTHERMUS-CELLULOLYTICUS; ETHANOL-PRODUCTION; BETA-GLUCOSIDASE; HYDROLYSIS; CELA; SSF; E1 AB Introduction: The efficient conversion of lignocellulosic feedstocks remains a key step in the commercialization of biofuels. One of the barriers to cost-effective conversion of lignocellulosic biomass to sugars remains the enzymatic saccharification process step. Here, we describe a novel hybrid processing approach comprising enzymatic pre-digestion with newly characterized hyperthermophilic enzyme cocktails followed by conventional saccharification with commercial enzyme preparations. Dilute acid pretreated corn stover was subjected to this new procedure to test its efficacy. Thermal tolerant enzymes from Acidothermus cellulolyticus and Caldicellulosiruptor bescii were used to pre-digest pretreated biomass at elevated temperatures prior to saccharification by the commercial cellulase formulation. Results: We report that pre-digestion of biomass with these enzymes at elevated temperatures prior to addition of the commercial cellulase formulation increased conversion rates and yields when compared to commercial cellulase formulation alone under low solids conditions. Conclusion: Our results demonstrating improvements in rates and yields of conversion point the way forward for hybrid biomass conversion schemes utilizing catalytic amounts of hyperthermophilic enzymes. C1 [Brunecky, Roman; Hobdey, Sarah E.; Taylor, Larry E., II; Himmel, Michael E.; Decker, Stephen R.] Natl Renewable Energy Lab, Chem Biosci Ctr, Golden, CO 80401 USA. [Tao, Ling; Tucker, Melvin P.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Brunecky, R (reprint author), Natl Renewable Energy Lab, Chem Biosci Ctr, 15013 Denver,West Pkwy, Golden, CO 80401 USA. EM Roman.brunecky@nrel.gov FU US Department of Energy [DE-AC36-08GO28308]; DOE Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office FX This work was supported by the US Department of Energy under Contract No. DE-AC36-08GO28308. Funding for the work was provided by the DOE Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office. NR 16 TC 3 Z9 3 U1 3 U2 22 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD DEC 3 PY 2014 VL 7 AR 170 DI 10.1186/s13068-014-0170-2 PG 7 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA AZ4WA UT WOS:000348220000001 PM 25489338 ER PT J AU Athenes, M Bulatov, VV AF Athenes, Manuel Bulatov, Vasily V. TI Path Factorization Approach to Stochastic Simulations SO PHYSICAL REVIEW LETTERS LA English DT Article ID MONTE-CARLO SIMULATION; MARKOV-CHAINS; ALGORITHMS; DIFFUSION AB The computational efficiency of stochastic simulation algorithms is notoriously limited by the kinetic trapping of the simulated trajectories within low energy basins. Here we present a new method that overcomes kinetic trapping while still preserving exact statistics of escape paths from the trapping basins. The method is based on path factorization of the evolution operator and requires no prior knowledge of the underlying energy landscape. The efficiency of the new method is demonstrated in simulations of anomalous diffusion and phase separation in a binary alloy, two stochastic models presenting severe kinetic trapping. C1 [Athenes, Manuel] CEA, DEN, Serv Rech Met Phys, F-91191 Gif Sur Yvette, France. [Bulatov, Vasily V.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Athenes, M (reprint author), CEA, DEN, Serv Rech Met Phys, F-91191 Gif Sur Yvette, France. FU Defi NEEDS (Project MathDef); Lawrence Livermore National Laboratory's LDRD office [09-ERD-005]; GENCI-[CCRT/CINES] [x2013096973]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported by Defi NEEDS (Project MathDef) and Lawrence Livermore National Laboratory's LDRD office (Project No. 09-ERD-005) and utilized HPC resources from GENCI-[CCRT/CINES] (Grant No. x2013096973). This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. The authors wish to express their gratitude to T. Opplestrup, F. Soisson, E. Clouet, J.-L. Bocquet, G. Adjanor, and A. Donev for fruitful discussions. NR 33 TC 3 Z9 3 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 3 PY 2014 VL 113 IS 23 AR 230601 DI 10.1103/PhysRevLett.113.230601 PG 5 WC Physics, Multidisciplinary SC Physics GA AZ3NH UT WOS:000348133700002 PM 25526107 ER PT J AU Hershberger, MT Hupalo, M Thiel, PA Wang, CZ Ho, KM Tringides, MC AF Hershberger, M. T. Hupalo, M. Thiel, P. A. Wang, C. Z. Ho, K. M. Tringides, M. C. TI Nonclassical "Explosive" Nucleation in Pb/Si(111) at Low Temperatures SO PHYSICAL REVIEW LETTERS LA English DT Article ID GROWTH; PB; NANOSTRUCTURES; EVOLUTION; SI(111); LAYERS AB Classically, the onset of nucleation is defined in terms of a critical cluster of the condensed phase, which forms from the gradual aggregation of randomly diffusing adatoms. Experiments in Pb/Si(111) at low temperature have discovered a dramatically different type of nucleation, with perfect crystalline islands emerging "explosively" out of the compressed wetting layer after a critical coverage Theta(c) = 1.22 ML is reached. The unexpectedly high island growth rates, the directional correlations in the growth of neighboring islands and the persistence in time of where mass is added in individual islands, suggest that nucleation is a result of the highly coherent motion of the wetting layer, over mesoscopic distances. C1 [Hershberger, M. T.; Hupalo, M.; Thiel, P. A.; Wang, C. Z.; Ho, K. M.; Tringides, M. C.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Hershberger, M. T.; Ho, K. M.; Tringides, M. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Thiel, P. A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Thiel, P. A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Tringides, MC (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM mctringi@iastate.edu FU Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy (U.S. DOE) [DE-AC02-07CH11358]; U.S. Department of Energy FX This work was supported by the Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy (U.S. DOE), under Contract No. DE-AC02-07CH11358 with the U.S. Department of Energy. NR 30 TC 6 Z9 6 U1 3 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 3 PY 2014 VL 113 IS 23 AR 236101 DI 10.1103/PhysRevLett.113.236101 PG 5 WC Physics, Multidisciplinary SC Physics GA AZ3NH UT WOS:000348133700013 PM 25526139 ER PT J AU Clarkson, SM Hamilton-Brehm, SD Giannone, RJ Engle, NL Tschaplinski, TJ Hettich, RL Elkins, JG AF Clarkson, Sonya M. Hamilton-Brehm, Scott D. Giannone, Richard J. Engle, Nancy L. Tschaplinski, Timothy J. Hettich, Robert L. Elkins, James G. TI A comparative multidimensional LC-MS proteomic analysis reveals mechanisms for furan aldehyde detoxification in Thermoanaerobacter pseudethanolicus 39E SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Thermophiles; Lignocellulosic; Biofuels; Proteomics; Inhibitor; Pretreatment; Furfural; 5-hydroxymethylfurfural; Butanol dehydrogenase ID ETHANOLOGENIC ESCHERICHIA-COLI; SECONDARY-ALCOHOL DEHYDROGENASE; YELLOWSTONE-NATIONAL-PARK; SACCHAROMYCES-CEREVISIAE; CLOSTRIDIUM-THERMOCELLUM; QUANTITATIVE PROTEOMICS; LIGNOCELLULOSIC BIOMASS; THERMOPHILIC BACTERIUM; DEGRADATION-PRODUCTS; HYDROGEN-PRODUCTION AB Background: Chemical and physical pretreatment of lignocellulosic biomass improves substrate reactivity for increased microbial biofuel production, but also restricts growth via the release of furan aldehydes, such as furfural and 5-hydroxymethylfurfural (5-HMF). The physiological effects of these inhibitors on thermophilic, fermentative bacteria are important to understand; especially as cellulolytic strains are being developed for consolidated bioprocessing (CBP) of lignocellulosic feedstocks. Identifying mechanisms for detoxification of aldehydes in naturally resistant strains, such as Thermoanaerobacter spp., may also enable improvements in candidate CBP microorganisms. Results: Thermoanaerobacter pseudethanolicus 39E, an anaerobic, saccharolytic thermophile, was found to grow readily in the presence of 30 mM furfural and 20 mM 5-HMF and reduce these aldehydes to their respective alcohols in situ. The proteomes of T. pseudethanolicus 39E grown in the presence or absence of 15 mM furfural were compared to identify upregulated enzymes potentially responsible for the observed reduction. A total of 225 proteins were differentially regulated in response to the 15 mM furfural treatment with 152 upregulated versus 73 downregulated. Only 87 proteins exhibited a twofold or greater change in abundance in either direction. Of these, 54 were upregulated in the presence of furfural and 33 were downregulated. Two oxidoreductases were upregulated at least twofold by furfural and were targeted for further investigation. Teth39_1597 encodes a predicted butanol dehydrogenase (BdhA) and Teth39_ 1598, a predicted aldo/keto reductase (AKR). Both genes were cloned from T. pseudethanolicus 39E, with the respective enzymes overexpressed in E. coli and specific activities determined against a variety of aldehydes. Overexpressed BdhA showed significant activity with all aldehydes tested, including furfural and 5-HMF, using NADPH as the cofactor. Cell extracts with AKR also showed activity with NADPH, but only with four-carbon butyraldehyde and isobutyraldehyde. Conclusions: T. pseudethanolicus 39E displays intrinsic tolerance to the common pretreatment inhibitors furfural and 5-HMF. Multidimensional proteomic analysis was used as an effective tool to identify putative mechanisms for detoxification of furfural and 5-HMF. T. pseudethanolicus was found to upregulate an NADPH-dependent alcohol dehydrogenase 6.8-fold in response to furfural. In vitro enzyme assays confirmed the reduction of furfural and 5-HMF to their respective alcohols. C1 [Clarkson, Sonya M.; Hamilton-Brehm, Scott D.; Giannone, Richard J.; Engle, Nancy L.; Tschaplinski, Timothy J.; Hettich, Robert L.; Elkins, James G.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Clarkson, Sonya M.; Hamilton-Brehm, Scott D.; Engle, Nancy L.; Tschaplinski, Timothy J.; Elkins, James G.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Giannone, Richard J.; Hettich, Robert L.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Elkins, JG (reprint author), Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. EM elkinsjg@ornl.gov RI Elkins, James/A-6199-2011; Hettich, Robert/N-1458-2016; OI Elkins, James/0000-0002-8052-5688; Hettich, Robert/0000-0001-7708-786X; Tschaplinski, Timothy/0000-0002-9540-6622; Engle, Nancy/0000-0003-0290-7987 FU BioEnergy Science Center (BESC); Office of Biological and Environmental Research in the DOE Office of Science, Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC05-00OR22725] FX We thank Sarah Kaufmann for laboratory assistance and Adam M. Guss for providing helpful comments on the manuscript. This work was supported by the BioEnergy Science Center (BESC), which is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science, Oak Ridge National Laboratory. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC, under Contract DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains, and the publisher by accepting the article for publication acknowledges, that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 57 TC 8 Z9 8 U1 5 U2 28 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD DEC 3 PY 2014 VL 7 AR 165 DI 10.1186/s13068-014-0165-z PG 14 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA AY1MX UT WOS:000347358200001 PM 25506391 ER PT J AU Elgowainy, A Reddi, K Sutherland, E Joseck, F AF Elgowainy, Amgad Reddi, Krishna Sutherland, Erika Joseck, Fred TI Tube-trailer consolidation strategy for reducing hydrogen refueling station costs SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen refueling; Station modeling; Tube trailers; Consolidation; Gaseous refueling; Refueling cost AB The rollout of hydrogen fuel cell electric vehicles (FCEVs) requires the initial deployment of an adequate network of hydrogen refueling stations (HRSs). Such deployment has proven to be challenging because of the high initial capital investment, the risk associated with such an investment, and the underutilization of HRSs in early FCEV markets. Because the compression system at an HRS represents about half of the station's initial capital cost, novel concepts that would reduce the cost of compression are needed. Argonne National Laboratory with support from the U.S. Department of Energy's (DOE) Fuel Cell Technologies Office (FCTO) has evaluated the potential for delivering hydrogen in high-pressure tube-trailers as a way of reducing HRS compression and capital costs. This paper describes a consolidation strategy for a high-pressure (250-bar) tube-trailer capable of reducing the compression cost at an HRS by about 60% and the station's initial capital investment by about 40%. The consolidation of tube-trailers at pressures higher than 250 bar (e.g., 500 bar) can offer even greater HRS cost-reduction benefits. For a typical hourly fueling-demand profile and for a given compression capacity, consolidating hydrogen within the pressure vessels of a tube-trailer can triple the station's capacity for fueling FCEVs. The high-pressure tube-trailer consolidation concept could play a major role in enabling the early, widespread deployment of HRSs because it lowers the required HRS capital investment and distributes the investment risk among the market segments of hydrogen production, delivery, and refueling. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Elgowainy, Amgad; Reddi, Krishna] Argonne Natl Lab, Argonne, IL 60439 USA. [Sutherland, Erika; Joseck, Fred] US DOE, Fuel Cell Technol Off, Washington, DC 20585 USA. RP Reddi, K (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kreddi@anl.gov FU Fuel Cell Technologies Office of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357] FX This research effort was supported by the Fuel Cell Technologies Office of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC02-06CH11357. NR 13 TC 2 Z9 2 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD DEC 3 PY 2014 VL 39 IS 35 BP 20197 EP 20206 DI 10.1016/j.ijhydene.2014.10.030 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA AX6EY UT WOS:000347017200036 ER PT J AU Petitpas, G Aceves, SM AF Petitpas, G. Aceves, S. M. TI The isentropic expansion energy of compressed and cryogenic hydrogen SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE H-2 safety; Burst energy; Cryogenics; Onboard storage ID PRESSURE-VESSELS; STORAGE AB Pressure is often perceived as the single most important parameter when considering the safety of a storage system, for example when calculating the pneumatic energy that could be released in the event of a sudden accidental failure (or burst energy). In this paper, we investigate the role of temperature as another degree of freedom for minimizing the burst energy. Results are first presented for ideal gases, for which the relationship between burst energy as a function of initial and final volumes, temperature and pressures can be expressed analytically. Similar analysis is then derived for the specific case of H-2 using real gas equations of state. Assuming the expansion is isentropic, which holds for an adiabatic and sudden release as in a burst, it is shown that the energy released during a sudden burst is a weak function of pressure, revealing that the effect of increasing pressure is negligible beyond a certain value (similar to 100 bar); whereas the burst energy is a linear function of temperature. This suggests that temperature controls the burst energy in a much greater way. This analysis is carried out in the frame of onboard H-2 storage systems, for which it is shown that the use of cryogenic temperature for hydrogen vehicles, where risks of collision and impact on the surroundings are high, appears as a safety feature since burst energy is up to 18 times less than room temperature, high pressure storage. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Petitpas, G.; Aceves, S. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Petitpas, G (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-792, Livermore, CA 94550 USA. EM petitpas1@llnl.gov FU DOE, Office of Fuel Cell Technologies; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This project was funded by DOE, Office of Fuel Cell Technologies, Ned Stetson, Erika Sutherland, and Jason Marcinkoski, Technology Development Managers. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 11 TC 0 Z9 0 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD DEC 3 PY 2014 VL 39 IS 35 BP 20319 EP 20323 DI 10.1016/j.ijhydene.2014.10.031 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA AX6EY UT WOS:000347017200047 ER PT J AU Ruggles, AJ Ekoto, IW AF Ruggles, A. J. Ekoto, I. W. TI Experimental investigation of nozzle aspect ratio effects on underexpanded hydrogen jet release characteristics SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Dispersion; High pressure; Underexpanded jet; Slot nozzles; Axes switching ID HIGH-PRESSURE; LEAK AB Most experimental investigations of underexpanded hydrogen jets have been limited to circular nozzles in an attempt to better understand the fundamental jet-exit flow physics and model this behaviour with pseudo source models. However, realistic compressed storage leak exit geometries are not always expected to be circular. In the present study, jet dispersion characteristics from rectangular slot nozzles with aspect ratios from 2 to 8 were investigated and compared with an equivalent circular nozzle. Schlieren imaging was used to observe the jet-exit shock structure while quantitative Planar Laser Rayleigh Scattering was used to measure downstream dispersion characteristics. These results provide physical insight and much needed model validation data for model development. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Ruggles, A. J.; Ekoto, I. W.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Ruggles, AJ (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM ajruggl@sandia.gov FU United States Department of Energy Fuel Cell Technologies Office; U.S. DOE [DE-AC04-94-AL8500] FX This research was supported by the United States Department of Energy Fuel Cell Technologies Office, under the Safety, Codes, and Standards subprogram element managed by Will James. Sandia is operated by the Sandia Corporation, a Lockheed Martin Company, for the U.S. DOE under contract No. DE-AC04-94-AL8500. NR 22 TC 1 Z9 1 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD DEC 3 PY 2014 VL 39 IS 35 BP 20331 EP 20338 DI 10.1016/j.ijhydene.2014.04.143 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA AX6EY UT WOS:000347017200050 ER PT J AU Weiner, SC AF Weiner, S. C. TI Advancing the hydrogen safety knowledge base SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen safety; Risk assessment; Incidents and near-misses; Hydrogen sensors; Computational fluid dynamics AB The International Energy Agency's Hydrogen Implementing Agreement (IEA HIA) was established in 1977 to pursue collaborative hydrogen research and development and information exchange among its member countries. Information and knowledge dissemination is a key aspect of the work within IEA HIA tasks, and case studies, technical reports and presentations/publications often result from the collaborative efforts. The work conducted in hydrogen safety under Task 31 and its predecessor, Task 19, can positively impact the objectives of national programs even in cases for which a specific task report is not published. The interactions within Task 31 illustrate how technology information and knowledge exchange among participating hydrogen safety experts serve the objectives intended by the IEA HIA. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 Pacific NW Natl Lab, Washington, DC 20024 USA. RP Weiner, SC (reprint author), Pacific NW Natl Lab, Washington, DC 20024 USA. EM sc.weiner@pnnl.gov NR 29 TC 4 Z9 4 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD DEC 3 PY 2014 VL 39 IS 35 BP 20357 EP 20361 DI 10.1016/j.ijhydene.2014.08.001 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA AX6EY UT WOS:000347017200053 ER PT J AU Keller, JO Gresho, M Harris, A Tchouvelev, AV AF Keller, J. O. Gresho, M. Harris, A. Tchouvelev, A. V. TI What is an explosion? SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE RCS; Explosion; Flame; Deflagration; Detonation; Hazard; Combustion; Flammability limits; Explosion limits AB In this paper we focus on the term "Explosion", and its definitions from a societal, regulatory and scientific perspective. The experts involved in developing Regulations, Codes and Standards (RCS) are typically not combustion scientists. Conversely, combustion scientists are typically not involved in development of RCS. Yet, both sets of experts develop literature applicable to explosions. There are aspects, particularly related to the definitions associated with explosions, where improved consistency would be beneficial. We will demonstrate that these definitions are inconsistent. Of particular interest is how these definitions affect hydrogen technologies. This manuscript has its roots in combustion science and examines how the unique behavior of hydrogen in many circumstances motivates a closer look at relevant RCS definitions and terminology. We will point out ambiguities and how these lead to confusion in supporting definitions, and to overly restrictive RCS for hydrogen applications. We will then suggest internally self-consistent terminology which can serve as a starting point to develop consistent RCS definitions and requirements. These will, in turn, improve public and first responder safety, protect capital investment, and enable cost effective deployment of hydrogen technologies. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Keller, J. O.] Zero Carbon Energy Solut Inc, Oakland, CA USA. [Harris, A.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Keller, JO (reprint author), Zero Carbon Energy Solut Inc, Oakland, CA USA. EM Jay.Keller@ZCES-Inc.com OI Tchouvelev, Andrei/0000-0002-3730-2083 FU Zero Carbon Energy Solutions, Inc.; FP2FIRE, Inc.; Department of Energy, Fuel Cell Technology Office, Safety Codes and Standards Program; A.V. Tchouvelev & Associates Inc. FX We thank Daniel Keller for his assistance in clarifying the notion and language for "explosion". We appreciate the financial support of Zero Carbon Energy Solutions, Inc., FP2FIRE, Inc., Department of Energy, Fuel Cell Technology Office, Safety Codes and Standards Program and A.V. Tchouvelev & Associates Inc. in producing this manuscript. NR 22 TC 1 Z9 1 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD DEC 3 PY 2014 VL 39 IS 35 BP 20426 EP 20433 DI 10.1016/j.ijhydene.2014.04.199 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA AX6EY UT WOS:000347017200062 ER PT J AU Marchi, CS Somerday, BP Nibur, KA AF Marchi, Chris San Somerday, Brian P. Nibur, Kevin A. TI Development of methods for evaluating hydrogen compatibility and suitability SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen embrittlement; Codes and standards; Mechanical testing; High-pressure gaseous hydrogen AB The embrittlement of metals exposed to hydrogen environments is well documented. With the deployment of hydrogen fuel cell vehicles in the consumer sector, there is a need to improve the engineering basis for the selection of materials of construction for equipment that stores and distributes high-pressure gaseous hydrogen. This brief overview summarizes publicly available guidance for evaluating materials compatibility with high-pressure gaseous hydrogen. Additionally, a new standard for measuring engineering data in gaseous hydrogen and evaluating materials suitability for service in gaseous hydrogen is introduced: the CHMC1 standard provides a general framework for qualifying materials for hydrogen service. The CHCM1 standard is unique in its broad scope and performance-based strategy for quantitatively assessing materials in their service environment and for the intended structural requirements. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Marchi, Chris San; Somerday, Brian P.] Sandia Natl Labs, Livermore, CA 94550 USA. [Nibur, Kevin A.] Hy Performance Mat Testing LLC, Bend, OR USA. RP Marchi, CS (reprint author), Sandia Natl Labs, 7011 East Ave, Livermore, CA 94550 USA. EM cwsanma@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 16 TC 12 Z9 12 U1 3 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD DEC 3 PY 2014 VL 39 IS 35 BP 20434 EP 20439 DI 10.1016/j.ijhydene.2014.03.234 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA AX6EY UT WOS:000347017200063 ER PT J AU Buttner, WJ Burgess, R Rivkin, C Post, MB Boon-Brett, L Palmisano, V Moretto, P AF Buttner, W. J. Burgess, R. Rivkin, C. Post, M. B. Boon-Brett, L. Palmisano, V. Moretto, P. TI An assessment on the quantification of hydrogen releases through oxygen displacement using oxygen sensors SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen sensors; Safety; Codes and standards; Global technical regulation; Oxygen sensors AB Gas sensors that respond directly to hydrogen are typically used to detect and quantify unintended hydrogen releases. However, alternative means to quantify or mitigate hydrogen releases are sometimes proposed. One recently explored approach has been to use oxygen sensors. This method is based on the assumption that a hydrogen release will displace oxygen, which can be quantified using oxygen sensors. The use of oxygen sensors to monitor ambient hydrogen concentration has drawbacks, which are explored in the current study. It was shown that this approach may not have adequate accuracy for safety applications and may give misleading results under certain conditions for other applications. Despite its shortcomings, the Global Technical Regulation (GTR) for Hydrogen and Fuel Cell Vehicles has explicitly endorsed this method to verify hydrogen vehicles' fuel system integrity. Experimental evaluations designed to impartially assess the ability of oxygen and hydrogen sensors to reliably measure hydrogen concentration changes are presented. Specific limitations on the use of oxygen sensors for hydrogen measurements are identified and alternative sensor technologies that meet the requirements for several applications, including those of the GTR, are proposed. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Buttner, W. J.; Burgess, R.; Rivkin, C.; Post, M. B.] Natl Renewable Energy Lab, Transportat & Hydrogen Syst Ctr, Golden, CO 80401 USA. [Boon-Brett, L.; Palmisano, V.; Moretto, P.] Joint Res Ctr, Inst Energy & Transport, Cleaner Energy Unit, NL-1755 ZG Petten, Netherlands. RP Buttner, WJ (reprint author), Natl Renewable Energy Lab, Transportat & Hydrogen Syst Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM william.buttner@nrel.gov RI Palmisano, Valerio/N-9727-2016; OI Palmisano, Valerio/0000-0003-1080-3096; Post, Matthew/0000-0002-2855-8394 NR 9 TC 0 Z9 0 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD DEC 3 PY 2014 VL 39 IS 35 BP 20484 EP 20490 DI 10.1016/j.ijhydene.2014.03.252 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA AX6EY UT WOS:000347017200070 ER PT J AU Palmisano, V Boon-Brett, L Bonato, C Harskamp, F Buttner, WJ Post, MB Burgess, R Rivkin, C AF Palmisano, V. Boon-Brett, L. Bonato, C. Harskamp, F. Buttner, W. J. Post, M. B. Burgess, R. Rivkin, C. TI Evaluation of selectivity of commercial hydrogen sensors SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen sensor; Selectivity; Interferant; Cross-sensitivity; Hydrogen safety ID GAS SENSORS AB The development of reliable hydrogen sensors is crucial for the safe use of hydrogen. One of the main concerns of end users is sensor reliability in the presence of species other than the target gas, which can lead to false alarms or undetected harmful situations. To assess the selectivity of commercial-off-the-shelf hydrogen sensors, a number of sensors of different technology types were exposed to various interferent gas species. Cross-sensitivity tests were performed in accordance with the recommendations of ISO 26142:2010, using the hydrogen sensor testing facilities of the National Renewable Energy Laboratory and the Joint Research Centre Institute for Energy and Transport. Most of the sensor platform tested are unaffected by the exposure to the interferents. The metal-oxide and the thermal conductivity platform show a remarkable sensitivity to CH4. None of the platforms tested were permanently affected by the exposure to the cross-sensitive species. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Palmisano, V.; Boon-Brett, L.; Bonato, C.; Harskamp, F.] European Commiss, DG Joint Res Ctr, Inst Energy & Transport, Cleaner Energy Unit, NL-1755 ZG Petten, Netherlands. [Buttner, W. J.; Post, M. B.; Burgess, R.; Rivkin, C.] Natl Renewable Energy Lab, Transportat & Hydrogen Syst Ctr, Golden, CO 80401 USA. RP Palmisano, V (reprint author), European Commiss, DG Joint Res Ctr, Inst Energy & Transport, Cleaner Energy Unit, Westerduintueg 3,POB 2, NL-1755 ZG Petten, Netherlands. EM valerio.palmisano@ec.europa.eu RI Palmisano, Valerio/N-9727-2016; OI Palmisano, Valerio/0000-0003-1080-3096; Post, Matthew/0000-0002-2855-8394 NR 14 TC 3 Z9 3 U1 3 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD DEC 3 PY 2014 VL 39 IS 35 BP 20491 EP 20496 DI 10.1016/j.ijhydene.2014.03.251 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA AX6EY UT WOS:000347017200071 ER PT J AU Ekoto, IW Ruggles, AJ Creitz, LW Li, JX AF Ekoto, I. W. Ruggles, A. J. Creitz, L. W. Li, J. X. TI Updated jet flame radiation modeling with buoyancy corrections SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Flame radiation; Flame integral model; Hydrogen flame ID HIGH-PRESSURE JETS; NATURAL-GAS; UNINTENDED RELEASES; THERMAL-RADIATION; HYDROGEN; FIRES; HAZARDS; FLARES; DECAY AB Radiative heat fluxes from small to medium-scale hydrogen jet flames (<10 m) compare favorably to theoretical predictions provided the product species thermal emittance and optical flame thickness are corrected for. However, recent heat flux measurements from two large-scale horizontally orientated hydrogen flames (17.4 and 45.9 m respectively) revealed that current methods underpredicted the flame radiant fraction by 40% or more. Newly developed weighted source flame radiation models have demonstrated substantial improvement in the heat flux predictions, particularly in the near-field, and allow for a sensible way to correct potential ground surface reflective irradiance. These updated methods are still constrained by the fact that the flame is assumed to have a linear trajectory despite buoyancy effects that can result in significant flame deformation. The current paper discusses a method to predict flame centerline trajectories via a one-dimensional flame integral model, which enables optimized placement of source emitters for weighted multi-source heat flux prediction methods. Flame shape prediction from choked releases was evaluated against flame envelope imaging and found to depend heavily on the notional nozzle model formulation used to compute the density weighted effective nozzle diameter. Nonetheless, substantial improvement in the prediction of downstream radiative heat flux values occurred when emitter placement was corrected by the flame integral model, regardless of the notional nozzle model formulation used. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Ekoto, I. W.; Ruggles, A. J.] Sandia Natl Labs, Livermore, CA 94551 USA. [Creitz, L. W.; Li, J. X.] Air Prod & Chem Inc, Allentown, PA 18105 USA. RP Ekoto, IW (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM iekoto@sandia.gov; ajruggl@sandia.gov FU United States Department of Energy Fuel Cell Technologies Office; U.S. DOE [DE-AC04-94-AL8500] FX This research was supported by the United States Department of Energy Fuel Cell Technologies Office, under the Safety, Codes, and Standards subprogram element managed by Will James. Sandia is operated by the Sandia Corporation, a Lockheed Martin Company, for the U.S. DOE under contract No. DE-AC04-94-AL8500. The authors gratefully acknowledge Michael Acton from GL Noble Denton and Barbara Lowesmith from Hazard Analysis Ltd. for acquisition and analysis of the original datasets along with productive discussions regarding follow-on interpretation of experimental results. NR 34 TC 3 Z9 3 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD DEC 3 PY 2014 VL 39 IS 35 BP 20570 EP 20577 DI 10.1016/j.ijhydene.2014.03.235 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA AX6EY UT WOS:000347017200082 ER PT J AU Hughes, LA Somerday, BP Balch, DK Marchi, CS AF Hughes, Lauren A. Somerday, Brian P. Balch, Dorian K. Marchi, Chris San TI Hydrogen compatibility of austenitic stainless steel tubing and orbital tube welds SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen embrittlement; Austenitic stainless steel; Tubing ID LOW-TEMPERATURES; ENVIRONMENT EMBRITTLEMENT; ASSISTED CRACKING; BEHAVIOR AB Refueling infrastructure for use in gaseous hydrogen powered vehicles requires extensive manifolding for delivering the hydrogen from the stationary fuel storage at the refueling station to the vehicle as well as from the mobile storage on the vehicle to the fuel cell or combustion engine. Manifolds for gas handling often use welded construction (as opposed to compression fittings) to minimize gas leaks. Therefore, it is important to understand the effects of hydrogen on tubing and tubing welds. This paper provides a brief overview of ongoing studies on the effects of hydrogen precharging on the tensile properties of austenitic stainless tubing and orbital tube welds. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Hughes, Lauren A.; Somerday, Brian P.; Balch, Dorian K.; Marchi, Chris San] Sandia Natl Labs, Livermore, CA 94550 USA. [Hughes, Lauren A.] Univ Calif Davis, Davis, CA USA. RP Marchi, CS (reprint author), Sandia Natl Labs, 7011 East Ave, Livermore, CA 94550 USA. EM cwsanma@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 16 TC 3 Z9 3 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD DEC 3 PY 2014 VL 39 IS 35 BP 20585 EP 20590 DI 10.1016/j.ijhydene.2014.03.229 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA AX6EY UT WOS:000347017200084 ER PT J AU Udovic, TJ Matsuo, M Tang, WS Wu, H Stavila, V Soloninin, AV Skoryunov, RV Babanova, OA Skripov, AV Rush, JJ Unemoto, A Takamura, H Orimo, S AF Udovic, Terrence J. Matsuo, Motoaki Tang, Wan Si Wu, Hui Stavila, Vitalie Soloninin, Alexei V. Skoryunov, Roman V. Babanova, Olga A. Skripov, Alexander V. Rush, John J. Unemoto, Atsushi Takamura, Hitoshi Orimo, Shin-ichi TI Exceptional Superionic Conductivity in Disordered Sodium Decahydro-closo-decaborate SO ADVANCED MATERIALS LA English DT Article ID GLASS-CERAMIC ELECTROLYTES; ANION REORIENTATIONS; NEUTRON-SCATTERING; PHASE-TRANSITION; NA2B12H12; LI2B12H12; BATTERIES; SYSTEM; TRENDS; NA C1 [Udovic, Terrence J.; Tang, Wan Si; Wu, Hui; Rush, John J.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Matsuo, Motoaki; Orimo, Shin-ichi] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Tang, Wan Si; Wu, Hui; Rush, John J.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Stavila, Vitalie] Sandia Natl Labs, Livermore, CA 94551 USA. [Soloninin, Alexei V.; Skoryunov, Roman V.; Babanova, Olga A.; Skripov, Alexander V.] Russian Acad Sci, Ural Branch, Inst Met Phys, Ekaterinburg 620990, Russia. [Unemoto, Atsushi; Orimo, Shin-ichi] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Takamura, Hitoshi] Tohoku Univ, Grad Sch Engn, Sendai, Miyagi 9808579, Japan. RP Udovic, TJ (reprint author), NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. EM udovic@nist.gov; orimo@imr.tohoku.ac.jp RI Babanova, Olga/J-4821-2013; ORIMO, Shin-ichi/A-4971-2011; Wu, Hui/C-6505-2008; Takamura, Hitoshi/B-9514-2014; Unemoto, Atsushi/D-3051-2013; Skripov, Alexander/K-4525-2013; Soloninin, Alexey/J-8580-2013 OI Babanova, Olga/0000-0002-2422-3263; Skoryunov, Roman/0000-0001-6158-9056; ORIMO, Shin-ichi/0000-0002-4216-0446; Wu, Hui/0000-0003-0296-5204; Takamura, Hitoshi/0000-0002-4841-4582; Skripov, Alexander/0000-0002-0610-5538; Soloninin, Alexey/0000-0001-7127-9641 FU DOE EERE [DE-EE0002978, DE-AC04-94AL85000]; Russian Foundation for Basic Research [12-03-00078]; U.S. Civilian Research & Development Foundation [RUP17076- EK-12]; National Science Foundation (NSF) [OISE-9531011]; Integrated Materials Research Center for the Low-Carbon Society (LC-IMR), Tohoku University; Japan Science and Technology Agency (JST); JSPS [25220911, 26820311]; NSF [0944772] FX This work was performed, in part, in collaboration between members of IEA HIA Task 32- Hydrogen-based Energy Storage. The authors gratefully acknowledge support from DOE EERE through Grant Nos. DE-EE0002978 and DE-AC04-94AL85000; the Russian Foundation for Basic Research under Grant No. 12-03-00078; the U.S. Civilian Research & Development Foundation (CRDF Global) under Award No. RUP17076- EK-12; the National Science Foundation (NSF) under Cooperative Agreement No. OISE-9531011; the Integrated Materials Research Center for the Low-Carbon Society (LC-IMR), Tohoku University; the Advanced Low Carbon Technology Research and Development Program (ALCA) from the Japan Science and Technology Agency (JST); and JSPS KAKENHI under Grant Nos. 25220911 and 26820311. This work utilized facilities supported in part by the NSF under Agreement No. DMR-0944772. The authors also thank Dr. Nina Verdal for assistance with the QENS measurements. NR 18 TC 36 Z9 36 U1 17 U2 86 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD DEC 3 PY 2014 VL 26 IS 45 BP 7622 EP 7626 DI 10.1002/adma.201403157 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AW0GO UT WOS:000345969400013 PM 25312377 ER PT J AU Wei, XL Xu, W Vijayakumar, M Cosimbescu, L Liu, TB Sprenkle, V Wang, W AF Wei, Xiaoliang Xu, Wu Vijayakumar, Murugesan Cosimbescu, Lelia Liu, Tianbiao Sprenkle, Vincent Wang, Wei TI TEMPO-Based Catholyte for High-Energy Density Nonaqueous Redox Flow Batteries SO ADVANCED MATERIALS LA English DT Article ID ORGANIC ELECTRODE MATERIALS; RESEARCH-AND-DEVELOPMENT; NITROXIDE POLYMERS; STORAGE; PROGRESS C1 [Wei, Xiaoliang; Xu, Wu; Vijayakumar, Murugesan; Cosimbescu, Lelia; Liu, Tianbiao; Sprenkle, Vincent; Wang, Wei] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Xu, W (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM wu.xu@pnnl.gov; wei.wang@pnnl.gov RI Wang, Wei/F-4196-2010; Liu, Tianbiao/A-3390-2011; OI Wang, Wei/0000-0002-5453-4695; Xu, Wu/0000-0002-2685-8684 FU U.S. Department of Energy's (DOE's) Office of Electricity Delivery and Energy Reliability (OE) [57558] FX The authors would like to acknowledge financial support from the U.S. Department of Energy's (DOE's) Office of Electricity Delivery and Energy Reliability (OE) (under Contract No. 57558). The ESR characterization was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Offi ce of Biological and Environmental Research and located at Pacifi c Northwest National Laboratory (PNNL). The authors thank Dr. Eric Walter for his help in the setup of ESR measurements. PNNL is a multi- program national laboratory operated by Battelle for DOE under Contract DE-AC05-76RL01830. NR 34 TC 55 Z9 55 U1 10 U2 104 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD DEC 3 PY 2014 VL 26 IS 45 BP 7649 EP 7653 DI 10.1002/adma.201403746 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AW0GO UT WOS:000345969400018 PM 25327755 ER PT J AU Lei, SD Sobhani, A Wen, FF George, A Wang, QZ Huang, YH Dong, P Li, B Najmaei, S Bellah, J Gupta, G Mohite, AD Ge, LH Lou, J Halas, NJ Vajtai, R Ajayan, P AF Lei, Sidong Sobhani, Ali Wen, Fangfang George, Antony Wang, Qizhong Huang, Yihan Dong, Pei Li, Bo Najmaei, Sina Bellah, James Gupta, Gautam Mohite, Aditya D. Ge, Liehui Lou, Jun Halas, Naomi J. Vajtai, Robert Ajayan, Pulickel TI Ternary CuIn7Se11 : Towards Ultra-Thin Layered Photodetectors and Photovoltaic Devices SO ADVANCED MATERIALS LA English DT Article ID CU-IN-SE; PHASE-TRANSITION; HIGH-PERFORMANCE; MONOLAYER MOS2; SOLAR-CELLS; GRAPHENE; NANOSHEETS; FILMS; HETEROSTRUCTURES; PHOTORESPONSE C1 [Lei, Sidong; George, Antony; Wang, Qizhong; Dong, Pei; Li, Bo; Najmaei, Sina; Bellah, James; Ge, Liehui; Lou, Jun; Vajtai, Robert; Ajayan, Pulickel] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA. [Sobhani, Ali; Halas, Naomi J.] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA. [Wen, Fangfang; Halas, Naomi J.] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Huang, Yihan; Halas, Naomi J.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Gupta, Gautam; Mohite, Aditya D.] Los Alamos Natl Lab, MPA Mat Synth & Integrated Devices 11, Los Alamos, NM 87545 USA. RP Ge, LH (reprint author), Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA. EM lg20@rice.edu; halas@rice.edu; ajayan@rice.edu RI Halas, Naomi/D-2935-2011; Ge, Liehui/N-7881-2015; Lei, Sidong/A-8600-2016; Dong, Pei/G-4405-2012; OI Lei, Sidong/0000-0001-9129-2202; George, Antony/0000-0002-9317-5920; Ge, Liehui/0000-0002-1990-5681 FU MURI ARO [W911NF-11-1-0362]; MARCO; DARPA; Netherlands organization for scientific research (NWO) [680-50-1205]; Robert A. Welch Foundation [C-1220]; National Security Science and Engineering Faculty Fellowship (NSSEFF) [N00244-09-1-0067]; Office of Naval Research [N00014-10-1-0989] FX This work was supported by the MURI ARO program, grant number W911NF-11-1-0362, by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA, and by Netherlands organization for scientific research (NWO) under the framework of Rubicon program (project number 680-50-1205). This work was also supported by the Robert A. Welch Foundation under Grants C-1220, the National Security Science and Engineering Faculty Fellowship (NSSEFF) N00244-09-1-0067, and the Office of Naval Research N00014-10-1-0989. NR 37 TC 10 Z9 10 U1 4 U2 59 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD DEC 3 PY 2014 VL 26 IS 45 BP 7666 EP 7672 DI 10.1002/adma.201403342 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AW0GO UT WOS:000345969400021 PM 25332191 ER PT J AU Stallings, JD Ippolito, DL Rakesh, V Baer, CE Dennis, WE Helwig, BG Jackson, DA Leon, LR Lewis, JA Reifman, J AF Stallings, Jonathan D. Ippolito, Danielle L. Rakesh, Vineet Baer, Christine E. Dennis, William E. Helwig, Bryan G. Jackson, David A. Leon, Lisa R. Lewis, John A. Reifman, Jaques TI Patterns of gene expression associated with recovery and injury in heat-stressed rats SO BMC GENOMICS LA English DT Article DE Heat stress; Transcriptomics; Proteomics; Systems biology; Protein aggregation ID ENDOPLASMIC-RETICULUM STRESS; UNFOLDED PROTEIN RESPONSE; ACTIVATING TRANSCRIPTION FACTOR-3; SHOCK PROTEINS; EXTRACELLULAR HEAT-SHOCK-PROTEIN-72; CROSS-TOLERANCE; MESSENGER-RNA; CELL-SURVIVAL; AUTOPHAGY; COMPLEX AB Background: The in vivo gene response associated with hyperthermia is poorly understood. Here, we perform a global, multiorgan characterization of the gene response to heat stress using an in vivo conscious rat model. Results: We heated rats until implanted thermal probes indicated a maximal core temperature of 41.8 degrees C (T-C,T- Max). We then compared transcriptomic profiles of liver, lung, kidney, and heart tissues harvested from groups of experimental animals at Tc, Max, 24 hours, and 48 hours after heat stress to time-matched controls kept at an ambient temperature. Cardiac histopathology at 48 hours supported persistent cardiac injury in three out of six animals. Microarray analysis identified 78 differentially expressed genes common to all four organs at Tc, Max. Self-organizing maps identified gene-specific signatures corresponding to protein-folding disorders in heat-stressed rats with histopathological evidence of cardiac injury at 48 hours. Quantitative proteomics analysis by iTRAQ (isobaric tag for relative and absolute quantitation) demonstrated that differential protein expression most closely matched the transcriptomic profile in heat-injured animals at 48 hours. Calculation of protein supersaturation scores supported an increased propensity of proteins to aggregate for proteins that were found to be changing in abundance at 24 hours and in animals with cardiac injury at 48 hours, suggesting a mechanistic association between protein misfolding and the heat-stress response. Conclusions: Pathway analyses at both the transcript and protein levels supported catastrophic deficits in energetics and cellular metabolism and activation of the unfolded protein response in heat-stressed rats with histopathological evidence of persistent heat injury, providing the basis for a systems-level physiological model of heat illness and recovery. C1 [Stallings, Jonathan D.; Dennis, William E.; Leon, Lisa R.] US Army Ctr Environm Hlth Res, Environm Hlth Program, Ft Detrick, MD 21702 USA. [Ippolito, Danielle L.] Oak Ridge Inst Sci & Educ, Ft Detrick, MD USA. [Rakesh, Vineet; Reifman, Jaques] US Army Med Res & Mat Command, DoD Biotechnol High Performance Comp Software App, Telemed & Adv Technol Res Ctr, Ft Detrick, MD USA. [Baer, Christine E.] Excet Inc, Ft Detrick, MD USA. [Helwig, Bryan G.; Leon, Lisa R.] US Army Res Inst Environm Med, Thermal Mt Med Div, Natick, MA USA. [Jackson, David A.] US Army Ctr Environm Hlth Res, Pulm Hlth Program, Ft Detrick, MD 21702 USA. RP Stallings, JD (reprint author), US Army Ctr Environm Hlth Res, Environm Hlth Program, Bldg 568 Doughten Dr, Ft Detrick, MD 21702 USA. EM jonathan.d.stallings.mil@mail.mil OI Stallings, Jonathan/0000-0002-6430-5888 FU Research Participation Program at the US Army Center for Environmental Health Research; Military Operational Medicine Research Program, US Army Medical Research and Materiel Command, Fort Detrick, Maryland; U.S. Department of Energy; MRMC; USACEHR FX We would like to thank Dr. Roy Vigneulle (Military Operational Medicine Research Program), CAPT Carroll D. Forcino (Director, Military Operational Medicine Research Program), COL Richard P. Duncan (former Commander, USACEHR), and COL Thomas C. Timmes (current Commander, USACEHR) for their programmatic support, encouragement, and insightful discussion. We also thank J. Ward, S. Dineen, M. Blaha, and R. Duran for technical support with the rat heat-stress experiments. We thank Gian G. Tartaglia and Michele Vendruscolo (University of Cambridge and Northwestern University) for batch calculation of the zagg and zaggSC used to calculate the sigmaf scores reported in this paper. This research was supported in part by an appointment to the Research Participation Program at the US Army Center for Environmental Health Research administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and MRMC and USACEHR. The research was supported by the Military Operational Medicine Research Program, US Army Medical Research and Materiel Command, Fort Detrick, Maryland. NR 95 TC 8 Z9 9 U1 1 U2 11 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD DEC 3 PY 2014 VL 15 AR 1058 DI 10.1186/1471-2164-15-1058 PG 19 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA AW6OF UT WOS:000346388000001 PM 25471284 ER PT J AU Bai, RP Zhang, GH Yi, H Huang, ZL Qi, XT Liu, C Miller, JT Kropf, AJ Bunel, EE Lan, Y Lei, AW AF Bai, Ruopeng Zhang, Guanghui Yi, Hong Huang, Zhiliang Qi, Xiaotian Liu, Chao Miller, Jeffrey T. Kropf, A. Jeremy Bunel, Emilio E. Lan, Yu Lei, Aiwen TI Cu(II)-Cu(I) Synergistic Cooperation to Lead the Alkyne C-H Activation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CROSS-COUPLING REACTIONS; MECHANISTIC INSIGHTS; EFFICIENT SYNTHESIS; TERMINAL ALKYNES; OXIME ACETATES; COPPER; ACETYLENES; ALKYNYLATION; COMPLEXES; ROOTS AB An efficient alkyne C-H activation and homocoupling procedure has been studied which indicates that a Cu(II)/Cu(I) synergistic cooperation might be involved. In situ Raman spectroscopy was employed to study kinetic behavior, drawing the conclusion that Cu(I) rather than Cu(II) participates in the rate-determining step. IR, EPR, and X-ray absorption spectroscopy evidence were provided for structural information, indicating that Cu(I) has a stronger interaction with alkyne than Cu(II) in the C-H activation step. Kinetics study showed Cu(II) plays a role as oxidant in C-C bond construction step, which was a fast step in the reaction. X-band EPR spectroscopy showed that the coordination environment of CuCl2(TMEDA) was affected by Cu(I). A putative mechanism with Cu(I)-Cu(II) synergistic cooperation procedure is proposed for the reaction. C1 [Bai, Ruopeng; Zhang, Guanghui; Yi, Hong; Huang, Zhiliang; Liu, Chao; Lei, Aiwen] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China. [Zhang, Guanghui; Huang, Zhiliang; Miller, Jeffrey T.; Kropf, A. Jeremy; Bunel, Emilio E.; Lei, Aiwen] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Qi, Xiaotian; Lan, Yu] Chongqing Univ, Sch Chem & Chem Engn, Chongqing 400030, Peoples R China. RP Lan, Y (reprint author), Chongqing Univ, Sch Chem & Chem Engn, Chongqing 400030, Peoples R China. EM lanyu@cqu.edu.cn; aiwenlei@whu.edu.cn RI Zhang, Guanghui/C-4747-2008; ID, MRCAT/G-7586-2011; Lan, Yu/A-8146-2016; OI Zhang, Guanghui/0000-0002-5854-6909; Lan, Yu/0000-0002-2328-0020; Lei, Aiwen/0000-0001-8417-3061; Bai, Ruopeng/0000-0002-1097-8526 FU "973" Program from the MOST of China [2012CB725302]; National Natural Science Foundation of China [21390400, 21025206, 21272180, 21302148, 21372266]; Research Fund for the Doctoral Program of Higher Education of China [20120141130002]; Program for Changjiang Scholars and Innovative Research Team in University [IRT1030]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy; Chemical Sciences, Geosciences and Bioscience Division, U.S. Department of Energy [DE-AC0-06CH11357]; Chemical Sciences and Engineering Division at Argonne National Laboratory FX This work was supported by the "973" Program from the MOST of China (2012CB725302), the National Natural Science Foundation of China (21390400, 21025206, 21272180 21302148 and 21372266), the Research Fund for the Doctoral Program of Higher Education of China (20120141130002), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT1030). The Program of Introducing Talents of Discipline to Universities of China (111 Program) is also appreciated. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. Partial funding for J.T.M. was provided by the Chemical Sciences, Geosciences and Bioscience Division, U.S. Department of Energy, under contract no. DE-AC0-06CH11357. This work was also funded by the Chemical Sciences and Engineering Division at Argonne National Laboratory. NR 31 TC 19 Z9 19 U1 15 U2 135 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 3 PY 2014 VL 136 IS 48 BP 16760 EP 16763 DI 10.1021/ja5097489 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA AU9AI UT WOS:000345883900016 PM 25383800 ER PT J AU He, DQ Sheng, X Yang, J Chen, LP Zhu, K Feng, XJ AF He, Dongqing Sheng, Xia Yang, Jie Chen, Liping Zhu, Kai Feng, Xinjian TI [10(1)over-bar0] Oriented Multichannel ZnO Nanowire Arrays with Enhanced Optoelectronic Device Performance SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SENSITIZED SOLAR-CELLS; CHARGE-TRANSPORT; GROWTH; NANORODS; OXIDE; RECOMBINATION; EFFICIENCY; CONVERSION; NANOTUBES AB Crystallographic orientation and microstructure of metal oxide nanomaterials have great impact on their properties and applications. Here, we report [10 (1) over bar0] oriented ZnO nanowire (NW) arrays with a multichannel mesostructure. The NW has a preferential growth of low energy (10 (1) over bar0) crystal plane and exhibits 2-3 orders of magnitude faster electron transport rate than that in nanoparticle (NP) films. Furthermore, the surface area of the as-prepared NW arrays is about 5 times larger than that of conventional NW arrays with similar thickness. These lead to the highest power conversion efficiency of ZnO NW array-based sensitized solar cells. We anticipate that the unique crystallographic orientation and mesostructure will endow ZnO NW arrays new properties and expand their application fields. C1 [He, Dongqing; Sheng, Xia; Yang, Jie; Chen, Liping; Feng, Xinjian] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Peoples R China. [Zhu, Kai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Zhu, K (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM kai.zhu@nrel.gov; xjfeng2011@sinano.ac.cn FU National Natural Science Foundation of China [21371178]; Chinese Thousand Youth Talents Program [YZBQF11001]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Depatiment of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX X. F. acknowledges financial support from the National Natural Science Foundation of China (21371178) and the Chinese Thousand Youth Talents Program (YZBQF11001). K. Z. acknowledges the support by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Depatiment of Energy, under contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 32 TC 10 Z9 10 U1 6 U2 94 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 3 PY 2014 VL 136 IS 48 BP 16772 EP 16775 DI 10.1021/ja5101195 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA AU9AI UT WOS:000345883900019 PM 25411922 ER PT J AU Sutter, EA Sutter, PW AF Sutter, Eli A. Sutter, Peter W. TI Determination of Redox Reaction Rates and Orders by In Situ Liquid Cell Electron Microscopy of Pd and Au Solution Growth SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID NANOPARTICLE DYNAMICS; TRANSMISSION; WATER; BEAM AB In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important, as they provide direct insight into processes in liquids, such as solution growth of nanoparticles, among others. In liquid cell TEM/STEM redox reaction experiments, the hydrated electrons e(-)aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e(aq)(-) generated by the electron beam during in situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the rate of Pd deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e(aq)(-)]. By comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e(aq)(-)] but also the rate of reduction of a metal-ion complex to zerovalent metal atoms in solution. C1 [Sutter, Eli A.; Sutter, Peter W.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, EA (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM esutter@bnl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This research has been carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 23 TC 15 Z9 15 U1 6 U2 64 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 3 PY 2014 VL 136 IS 48 BP 16865 EP 16870 DI 10.1021/ja508279v PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA AU9AI UT WOS:000345883900032 PM 25407028 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Ochesanu, S Roland, B Rougny, R Van De Klundert, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Daci, N Heracleous, N Keaveney, J Lowette, S Maes, M Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Caillol, C Clerbaux, B De Lentdecker, G Dobur, D Favart, L Gay, APR Grebenyuk, A Leonard, A Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Vander Velde, CV Vanlaer, P Wang, J Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Crucy, S Dildick, S Fagot, A Garcia, G Mccartin, J Rios, AAO Ryckbosch, D Diblen, SS Sigamani, M Strobbe, N Thyssen, F Tytgat, M Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jafari, A Komm, PJM Lemaitre, V Nuttens, C Pagano, D Perrini, L Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alda, WL Alves, GA Brito, L Martins, MC Martins, TDR Herrera, CM Pol, ME Carvalho, W Chinellato, J Custodio, A Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santaolalla, J Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Novaes, SF Padula, SS Aleksandrov, A Genchev, V Iaydjiev, P Marinov, A Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Vutova, M Dimitrov, A Glushkov, I Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Chen, M Du, R Jiang, CH Liang, S Plestina, R Tao, J Wang, X Wang, Z Asawatangtrakuldee, C Ban, Y Guo, Y Li, Q Liu, S Mao, Y Qian, SJ Teng, H Wang, D Zou, W Avila, C Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Mekterovic, D Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Bodlak, M Finger, M Finger, M Assran, Y Kamel, AE Mahmoud, MA Radi, A Kadastik, M Murumaa, M Raidal, M Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Busson, P Charlot, C Dahms, T Dalchenko, M Dobrzynski, L Filipovic, N Florent, A Cassagnac, RG Mastrolorenzo, L Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Regnard, S Salerno, R Sauvan, JB Sirois, Y Veelken, C Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Chabert, EC Collard, C Conte, E Fontaine, JC Gele, D Goerlach, U Goetzmann, C Le Bihan, AC Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Bouvier, E Brochet, S Montoya, CAC Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Guichardant, C Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Alvarez, JDR Sabes, D Sgandurra, L Sordini, V Donckt, MV Verdier, P Viret, S Xiao, H Tsamalaidze, Z Autermann, C Beranek, S Bontenackels, M Edelhoff, M Feld, L Hindrichs, O Klein, K Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Weber, H Wittmer, B Zhukov, V Ata, M Brodski, M Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Mer-Schmeyer, M Meyer, A Millet, P Olschewski, M Padeken, K Papacz, P Reithler, H Schmitz, SA Sonnenschein, L Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Heister, A Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bell, AJ Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choud-Hury, S Costanza, F Pardos, CD Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Garcia, JG Geiser, A Gunnellini, P Hauk, J Hempel, M Horton, D Jung, H Kalogeropoulos, A Kasemann, M Katsas, P Kieseler, J Kleinwort, C Krucker, D Lange, W Leonard, J Lipka, K Lobanov, A Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Naumann-Emme, S Nayak, A Novgorodova, O Ntomari, E Perrey, H Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Ron, E Sahin, MO Salfeld-Nebgen, J Saxena, P Schmidt, R Schoerner-Sadenius, T Schroder, M Seitz, C Spannagel, S Trevino, ADRV Walsh, R Wissing, C Martin, MA Blobel, V Vignali, MC Draeger, AR Erfle, J Garutti, E Goebel, K Gorner, M Haller, J Hoffmann, M Hoing, RS Kirschenmann, H Klanner, R Kogler, R Lange, J Lapsien, T Lenz, T Marchesini, I Ott, J Peiffer, T Pietsch, N Poehlsen, J Poehlsen, T Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Seidel, M Sola, V Stadie, H Steinbruck, G Troendle, D Usai, E Vanelderen, L Vanhoefer, A Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Frensch, F Giffels, M Hartmann, F Hauth, T Husemann, U Katkov, I Kornmayer, A Kuznetsova, E Pardo, PL Mozer, MU Muller, T Nurnberg, A Quast, G Rabbertz, K Ratnikov, F Rocker, S Simonis, J Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Markou, A Markou, C Psallidas, A Topsis-Giotis, I Agapitos, A Kesisoglou, S Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Kokkas, P Manthos, N Papadopoulos, I Paradas, E Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Palinkas, J Szillasi, Z Raics, P Trocsanyi, ZL Ujvari, B Swain, SK Beri, SB Bhatnagar, V Gupta, R Bhawandeep, U Kalsi, AK Kaur, M Mittal, M Nishu, N Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, V Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Bhowmik, S Chatterjee, RM Dewanjee, RK Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Goldouzian, R Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, P Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Ferretti, R Ferro, F Lo Vetere, M Robutti, E Tosi, S Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Di Guida, S Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bisello, D Branca, A Carlin, R Checchia, P Dall'Osso, M Galanti, M Gasparini, F Gasparini, U Giubilato, P Gozzelino, A Kanishchev, K Meneguzzo, AT Montecassiano, F Passaseo, M Pazzini, J Pegoraro, M Pozzobon, N Simonetto, F Torassa, E Tosi, M Triossi, A Ventura, S Zotto, P Zucchetta, A Zumerle, G Gabusi, M Ratti, SP Riccardi, C Salvini, P Vitulo, P Biasini, M Bilei, GM Ciangottini, D Fano, L Lariccia, P Mantovani, G Menichelli, M Romeo, F Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fiori, F Foa, L Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Moon, CS Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F D'imperio, G Del Re, D Diemoz, M Grassi, M Jorda, C Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Rovelli, C Santanastasio, F Soffi, L Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Degano, A Demaria, N Finco, L Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Ortona, G Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Montanino, D Schizzi, A Umer, T Zanetti, A Chang, S Kropivnitskaya, A Nam, SK Kim, DH Kim, GN Kim, MS Kong, DJ Lee, S Oh, YD Park, H Sakharov, A Son, DC Kim, TJ Kim, JY Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, KS Park, SK Roh, Y Choi, M Kim, JH Park, IC Park, S Ryu, G Ryu, MS Choi, Y Choi, YK Goh, J Kim, D Kwon, E Lee, J Seo, H Yu, I Juodagalvis, A Komaragiri, JR Ali, MABM Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Sanchez-Hernandez, A Moreno, SC Valencia, FV Pedraza, I Ibarguen, HAS Linares, EC Pineda, AM Krofcheck, D Butler, PH Reucroft, S Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khalid, S Khan, WA Khurshid, T Shah, MA Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Wolszczak, W Bargassa, P Silva, CBDE Faccioli, P Parracho, PGF Gallinaro, M Nguyen, F Antunes, JR Seixas, J Varela, J Vischia, P Afanasiev, S Bunin, P Golutvin, I Gorbunov, I Karjavin, V Konoplyanikov, V Kozlov, G Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Shulha, S Skatchkov, N Smirnov, V Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Kaminskiy, A Klyukhin, V Kodolova, O Lokhtin, I Obraztsov, S Petrushanko, S Savrin, V Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Ekmedzic, M Milosevic, J Rekovic, V Maestre, J Battilana, C Calvo, E Cerrada, M Llatas, M Colino, N De la Cruz, B Peris, A Vazquez, DD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Albajar, C de Troconiz, JF Missiroli, M Moran, D Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Cifuentes, JAB Cabrillo, IJ Calderon, A Campderros, JD Fernandez, M Gomez, G Graziano, A Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A David, A De Guio, F De Roeck, A De Visscher, S Dobson, M Dordevic, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Franzoni, G Funk, W Gigi, D Gill, K Giordano, D Girone, M Glege, F Guida, R Gundacker, S Guthoff, M Hammer, J Hansen, M Harris, P Hegeman, J Innocente, V Janot, P Kousouris, K Krajczar, K Lecoq, P Lourenco, C Magini, N Malgeri, L Mannelli, M Marrouche, J Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Musella, P Orsini, L Pape, L Perez, E Perrozzi, L Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Pimia, M Piparo, D Plagge, M Racz, A Rolandi, G Rovere, M Sakulin, H Schafer, C Schwick, C Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Steggemann, J Stieger, B Stoye, M Takahashi, Y Treille, D Tsirou, A Veres, GI Vlimant, JR Wardle, N Wohri, HK Wollny, H Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Grab, C Hits, D Lustermann, W Mangano, B Marini, AC del Arbol, PMR Meister, D Mohr, N Nageli, C Nessi-Tedaldi, F Pandolfi, F Pauss, F Peruzzi, M Quittnat, M Rebane, L Rossini, M Starodumov, A Takahashi, M Theofilatos, K Wallny, R Weber, HA Amsler, C Canelli, MF Chiochia, V De Cosa, A Hinzmann, A Hreus, T Kilminster, B Lange, C Mejias, BM Ngadiuba, J Robmann, P Ronga, FJ Taroni, S Verzetti, M Yang, Y Cardaci, M Chen, KH Ferro, C Kuo, CM Lin, W Lu, YJ Volpe, R Yu, SS Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Grundler, U Hou, WS Kao, KY Lei, YJ Liu, YF Lu, RS Majumder, D Petrakou, E Tzeng, YM Wilken, R Asavapibhop, B Srimanobhas, N Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Bilin, B Bilmis, S Gamsizkan, H Karapinar, G Ocalan, K Sekmen, S Surat, UE Yalvac, M Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Cankocak, K Vardarli, FI Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Senkin, S Smith, VJ Williams, T Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Dunne, P Ferguson, W Fulcher, J Futyan, D Gilbert, A Hall, G Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Malik, S Mathias, B Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Tapper, A Acosta, MV Virdee, T Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Lawson, P Richardson, C Rohlf, J St John, J Sulak, L Alimena, J Berry, E Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Dhingra, N Ferapontov, A Garabedian, A Heintz, U Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Swanson, J Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Lander, R Miceli, T Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Searle, M Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Farrell, C Hauser, J Ignatenko, M Rakness, G Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Rikova, MI Jandir, P Kennedy, E Lacroix, F Long, OR Luthra, A Malberti, M Nguyen, H Negrete, MO Shrinivas, A Sumowidagdo, S Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Evans, D Holzner, A Kelley, R Klein, D Lebourgeois, M Letts, J Macneill, I Olivito, D Padhi, S Palmer, C Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Welke, C Wurthwein, F Yagil, A Yoo, J Barge, D Bradmiller-Feld, J Campagnari, C Danielson, T Dishaw, A Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Incandela, J Justus, C Mccoll, N Richman, J Stuart, D To, W West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Mott, A Newman, HB Pena, C Rogan, C Spiropulu, M Timciuc, V Wilkinson, R Xie, S Zhu, RY Azzolini, V Calamba, A Carlson, B Ferguson, T Iiyama, Y Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Ford, WT Gaz, A Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Chu, J Dittmer, S Eggert, N Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Skinnari, L Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hanlon, J Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kaadze, K Klima, B Kreis, B Kwan, S Linacre, J Lincoln, D Lipton, R Liu, T Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Nahn, S Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Soha, A Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitbeck, A Whitmore, J Yang, F Acosta, D Avery, P Bortignon, P Bourilkov, D Carver, M Cheng, T Curry, D Das, S De Gruttola, M Di Giovanni, GP Field, RD Fisher, M Furic, IK Hugon, J Konigsberg, J Korytov, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Rinkevicius, A Shchutska, L Snowball, M Sperka, D Yelton, J Zakaria, M Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Diamond, B Haas, J Hagopian, S Hagopian, V Baarmand, MM Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Moon, DH O'Brien, C Silkworth, C Turner, P Varelas, N Albayrak, EA Bilki, B Clarida, W Dilsiz, K Duru, F Haytmyradov, M Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Rahmat, R Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Gritsan, AV Maksimovic, P Martin, C Osherson, M Swartz, M Xin, Y Baringer, P Bean, A Benelli, G Bruner, C Kenny, RP Malek, M Murray, M Noonan, D Sanders, S Sekaric, J Stringer, R Wang, Q Wood, JS Barfuss, AF Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Saini, LK Shrestha, S Skhirtladze, N Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Belloni, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Skuja, A Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Bauer, G Busza, W Cali, IA Chan, M Di Matteo, L Dutta, V Ceballos, GG Goncharov, M Gulhan, D Klute, M Lai, YS Lee, YJ Levin, A Luckey, PD Ma, T Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stockli, F Sumorok, K Velicanu, D Veverka, J Wyslouch, B Yang, M Zanetti, M Zhukova, V Dahmes, B Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Singovsky, A Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Suarez, RG Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Malik, S Meier, F Snow, GR Dolen, J Godshalk, A Iashvili, I Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Massironi, A Morse, DM Nash, D Orimoto, T Trocino, D Wang, RJ Wood, D Zhang, J Hahn, KA Kubik, A Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Brinkerhoff, A Chan, KM Drozdetskiy, A Hildreth, M Jessop, C Karmgard, DJ Kellams, N Lannon, K Luo, W Lynch, S Marinelli, N Pearson, T Planer, M Ruchti, R Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Winer, BL Wolfe, H Wulsin, HW Driga, O Elmer, P Hebda, P Hunt, A Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Brownson, E Mendez, H Vargas, JER Barnes, VE Benedetti, D Bolla, G Bortoletto, D De Mattia, M Hu, Z Jha, MK Jones, M Jung, K Kress, M Leonardo, N Pegna, DL Maroussov, V Merkel, P Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Shipsey, I Silvers, D Svyatkovskiy, A Wang, F Xie, W Xu, L Yoo, HD Zablocki, J Zheng, Y Parashar, N Stupak, J Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Michlin, B Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Khukhunaishvili, A Petrillo, G Vishnevskiy, D Ciesielski, R Demortier, L Goulianos, K Lungu, G Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Kaplan, S Lath, A Panwalkar, S Park, M Patel, R Salur, S Schnetzer, S Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Rose, K Spanier, S York, A Bouhali, O Hernandez, AC Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Krutelyov, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Rose, A Safonov, A Sakuma, T Suarez, I Tatarinov, A Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kovitanggoon, K Kunori, S Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Wood, J Clarke, C Harr, R Karchin, PE Don, CKK Lamichhane, P Sturdy, J Belknap, DA Carlsmith, D Cepeda, M Dasu, S Dodd, L Duric, S Friis, E Hall-Wilton, R Herndon, M Herve, A Klabbers, P Lanaro, A Lazaridis, C Levine, A Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Sarangi, T Savin, A Smith, WH Taylor, D Vuosalo, C Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Ochesanu, S. Roland, B. Rougny, R. Van De Klundert, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Daci, N. Heracleous, N. Keaveney, J. Lowette, S. Maes, M. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Caillol, C. Clerbaux, B. De Lentdecker, G. Dobur, D. Favart, L. Gay, A. P. R. Grebenyuk, A. Leonard, A. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Crucy, S. Dildick, S. Fagot, A. Garcia, G. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Diblen, S. Salva Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jafari, A. Komm, P. Jez M. Lemaitre, V. Nuttens, C. Pagano, D. Perrini, L. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alda Junior, W. L. Alves, G. A. Brito, L. Correa Martins Junior, M. Dos Reis Martins, T. Mora Herrera, C. Pol, M. E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santaolalla, J. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Bernardes, C. A. Dogra, S. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Aleksandrov, A. Genchev, V. Iaydjiev, P. Marinov, A. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Vutova, M. Dimitrov, A. Glushkov, I. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Du, R. Jiang, C. H. Liang, S. Plestina, R. Tao, J. Wang, X. Wang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, Q. Liu, S. Mao, Y. Qian, S. J. Teng, H. Wang, D. Zou, W. Avila, C. Sierra, L. F. Chaparro Florez, C. Gomez, J. P. Moreno, B. Gomez Sanabria, J. C. Godinovic, N. Lelas, D. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Mekterovic, D. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Bodlak, M. Finger, M. Finger, M., Jr. Assran, Y. Kamel, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Murumaa, M. Raidal, M. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Busson, P. Charlot, C. Dahms, T. Dalchenko, M. Dobrzynski, L. Filipovic, N. Florent, A. de Cassagnac, R. Granier Mastrolorenzo, L. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Regnard, S. Salerno, R. Sauvan, J. B. Sirois, Y. Veelken, C. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Le Bihan, A. -C. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Bouvier, E. Brochet, S. Montoya, C. A. Carrillo Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Guichardant, C. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Alvarez, J. D. Ruiz Sabes, D. Sgandurra, L. Sordini, V. Donckt, M. Vander Verdier, P. Viret, S. Xiao, H. Tsamalaidze, Z. Autermann, C. Beranek, S. Bontenackels, M. Edelhoff, M. Feld, L. Hindrichs, O. Klein, K. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Mer-Schmeyer, M. Meyer, A. Millet, P. Olschewski, M. Padeken, K. Papacz, P. Reithler, H. Schmitz, S. A. Sonnenschein, L. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Heister, A. Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bell, A. J. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Garcia, J. Garay Geiser, A. Gunnellini, P. Hauk, J. Hempel, M. Horton, D. Jung, H. Kalogeropoulos, A. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Kruecker, D. Lange, W. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Naumann-Emme, S. Nayak, A. Novgorodova, O. Ntomari, E. Perrey, H. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Ron, E. Sahin, M. Oe. Salfeld-Nebgen, J. Saxena, P. Schmidt, R. Schoerner-Sadenius, T. Schroeder, M. Seitz, C. Spannagel, S. Trevino, A. D. R. Vargas Walsh, R. Wissing, C. Martin, M. Aldaya Blobel, V. Vignali, M. Centis Draeger, A. R. Erfle, J. Garutti, E. Goebel, K. Goerner, M. Haller, J. Hoffmann, M. Hoeing, R. S. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Lapsien, T. Lenz, T. Marchesini, I. Ott, J. Peiffer, T. Pietsch, N. Poehlsen, J. Poehlsen, T. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Seidel, M. Sola, V. Stadie, H. Steinbrueck, G. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Frensch, F. Giffels, M. Hartmann, F. Hauth, T. Husemann, U. Katkov, I. Kornmayer, A. Kuznetsova, E. Pardo, P. Lobelle Mozer, M. U. Mueller, Th. Nuernberg, A. Quast, G. Rabbertz, K. Ratnikov, F. Roecker, S. Simonis, J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Psallidas, A. Topsis-Giotis, I. Agapitos, A. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Palinkas, J. Szillasi, Z. Raics, P. Trocsanyi, Z. L. Ujvari, B. Swain, S. K. Beri, S. B. Bhatnagar, V. Gupta, R. Bhawandeep, U. Kalsi, A. K. Kaur, M. Mittal, M. Nishu, N. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Bhowmik, S. Chatterjee, R. M. Dewanjee, R. K. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Goldouzian, R. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, P. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Ferretti, R. Ferro, F. Lo Vetere, M. Robutti, E. Tosi, S. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dall'Osso, M. Galanti, M. Gasparini, F. Gasparini, U. Giubilato, P. Gozzelino, A. Kanishchev, K. Meneguzzo, A. T. Montecassiano, F. Passaseo, M. Pazzini, J. Pegoraro, M. Pozzobon, N. Simonetto, F. Torassa, E. Tosi, M. Triossi, A. Ventura, S. Zotto, P. Zucchetta, A. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Salvini, P. Vitulo, P. Biasini, M. Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Moon, C. S. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. D'imperio, G. Del Re, D. Diemoz, M. Grassi, M. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Santanastasio, F. Soffi, L. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Degano, A. Demaria, N. Finco, L. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Ortona, G. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Montanino, D. Schizzi, A. Umer, T. Zanetti, A. Chang, S. Kropivnitskaya, A. Nam, S. K. Kim, D. H. Kim, G. N. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Sakharov, A. Son, D. C. Kim, T. J. Kim, J. Y. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, I. C. Park, S. Ryu, G. Ryu, M. S. Choi, Y. Choi, Y. K. Goh, J. Kim, D. Kwon, E. Lee, J. Seo, H. Yu, I. Juodagalvis, A. Komaragiri, J. R. Ali, M. A. B. Md Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Sanchez-Hernandez, A. Moreno, S. Carrillo Valencia, F. Vazquez Pedraza, I. Ibarguen, H. A. Salazar Linares, E. Casimiro Pineda, A. Morelos Krofcheck, D. Butler, P. H. Reucroft, S. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Shah, M. A. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Wolszczak, W. Bargassa, P. Beirao Da Cruz E Silva, C. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Nguyen, F. Rodrigues Antunes, J. Seixas, J. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Golutvin, I. Gorbunov, I. Karjavin, V. Konoplyanikov, V. Kozlov, G. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Shulha, S. Skatchkov, N. Smirnov, V. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Kaminskiy, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Obraztsov, S. Petrushanko, S. Savrin, V. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Ekmedzic, M. Milosevic, J. Rekovic, V. Alcaraz Maestre, J. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De la Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. Albajar, C. de Troconiz, J. F. Missiroli, M. Moran, D. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Duarte Campderros, J. Fernandez, M. Gomez, G. Graziano, A. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. David, A. De Guio, F. De Roeck, A. De Visscher, S. Dobson, M. Dordevic, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Franzoni, G. Funk, W. Gigi, D. Gill, K. Giordano, D. Girone, M. Glege, F. Guida, R. Gundacker, S. Guthoff, M. Hammer, J. Hansen, M. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Magini, N. Malgeri, L. Mannelli, M. Marrouche, J. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Musella, P. Orsini, L. Pape, L. Perez, E. Perrozzi, L. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Plagge, M. Racz, A. Rolandi, G. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Takahashi, Y. Treille, D. Tsirou, A. Veres, G. I. Vlimant, J. R. Wardle, N. Woehri, H. K. Wollny, H. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Grab, C. Hits, D. Lustermann, W. Mangano, B. Marini, A. C. del Arbol, P. Martinez Ruiz Meister, D. Mohr, N. Naegeli, C. Nessi-Tedaldi, F. Pandolfi, F. Pauss, F. Peruzzi, M. Quittnat, M. Rebane, L. Rossini, M. Starodumov, A. Takahashi, M. Theofilatos, K. Wallny, R. Weber, H. A. Amsler, C. Canelli, M. F. Chiochia, V. De Cosa, A. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Mejias, B. Millan Ngadiuba, J. Robmann, P. Ronga, F. J. Taroni, S. Verzetti, M. Yang, Y. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Grundler, U. Hou, W. -S. Kao, K. Y. Lei, Y. J. Liu, Y. F. Lu, R. -S. Majumder, D. Petrakou, E. Tzeng, Y. M. Wilken, R. Asavapibhop, B. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Bilin, B. Bilmis, S. Gamsizkan, H. Karapinar, G. Ocalan, K. Sekmen, S. Surat, U. E. Yalvac, M. Zeyrek, M. Guelmez, E. Isildak, B. Kaya, M. Kaya, O. Cankocak, K. Vardarli, F. I. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Senkin, S. Smith, V. J. Williams, T. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Dunne, P. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Hall, G. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Mathias, B. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Tapper, A. Acosta, M. Vazquez Virdee, T. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Lawson, P. Richardson, C. Rohlf, J. St John, J. Sulak, L. Alimena, J. Berry, E. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Dhingra, N. Ferapontov, A. Garabedian, A. Heintz, U. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Swanson, J. Breedon, R. Breto, G. Sanchez, M. Calderon De la Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Lander, R. Miceli, T. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Searle, M. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Rakness, G. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Rikova, M. Ivova Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Luthra, A. Malberti, M. Nguyen, H. Negrete, M. Olmedo Shrinivas, A. Sumowidagdo, S. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Evans, D. Holzner, A. Kelley, R. Klein, D. Lebourgeois, M. Letts, J. Macneill, I. Olivito, D. Padhi, S. Palmer, C. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Welke, C. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bradmiller-Feld, J. Campagnari, C. Danielson, T. Dishaw, A. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Incandela, J. Justus, C. Mccoll, N. Richman, J. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Mott, A. Newman, H. B. Pena, C. Rogan, C. Spiropulu, M. Timciuc, V. Wilkinson, R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Carlson, B. Ferguson, T. Iiyama, Y. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Gaz, A. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Chu, J. Dittmer, S. Eggert, N. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Skinnari, L. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gruenendahl, S. Gutsche, O. Hanlon, J. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kaadze, K. Klima, B. Kreis, B. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Nahn, S. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Soha, A. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitbeck, A. Whitmore, J. Yang, F. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Carver, M. Cheng, T. Curry, D. Das, S. De Gruttola, M. Di Giovanni, G. P. Field, R. D. Fisher, M. Furic, I. K. Hugon, J. Konigsberg, J. Korytov, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Rinkevicius, A. Shchutska, L. Snowball, M. Sperka, D. Yelton, J. Zakaria, M. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Baarmand, M. M. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Moon, D. H. O'Brien, C. Silkworth, C. Turner, P. Varelas, N. Albayrak, E. A. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Haytmyradov, M. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Rahmat, R. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Gritsan, A. V. Maksimovic, P. Martin, C. Osherson, M. Swartz, M. Xin, Y. Baringer, P. Bean, A. Benelli, G. Bruner, C. Kenny, R. P., III Malek, M. Murray, M. Noonan, D. Sanders, S. Sekaric, J. Stringer, R. Wang, Q. Wood, J. S. Barfuss, A. F. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Shrestha, S. Skhirtladze, N. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Belloni, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Skuja, A. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Bauer, G. Busza, W. Cali, I. A. Chan, M. Di Matteo, L. Dutta, V. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Klute, M. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Ma, T. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Velicanu, D. Veverka, J. Wyslouch, B. Yang, M. Zanetti, M. Zhukova, V. Dahmes, B. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Singovsky, A. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Suarez, R. Gonzalez Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, F. Snow, G. R. Dolen, J. Godshalk, A. Iashvili, I. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. Trocino, D. Wang, R. -J. Wood, D. Zhang, J. Hahn, K. A. Kubik, A. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Brinkerhoff, A. Chan, K. M. Drozdetskiy, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Pearson, T. Planer, M. Ruchti, R. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Winer, B. L. Wolfe, H. Wulsin, H. W. Driga, O. Elmer, P. Hebda, P. Hunt, A. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Brownson, E. Mendez, H. Vargas, J. E. Ramirez Barnes, V. E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Hu, Z. Jha, M. K. Jones, M. Jung, K. Kress, M. Leonardo, N. Pegna, D. Lopes Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Shipsey, I. Silvers, D. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Stupak, J. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Khukhunaishvili, A. Petrillo, G. Vishnevskiy, D. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Kaplan, S. Lath, A. Panwalkar, S. Park, M. Patel, R. Salur, S. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Rose, K. Spanier, S. York, A. Bouhali, O. Hernandez, A. Castaneda Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Krutelyov, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Rose, A. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kovitanggoon, K. Kunori, S. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Wood, J. Clarke, C. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sturdy, J. Belknap, D. A. Carlsmith, D. Cepeda, M. Dasu, S. Dodd, L. Duric, S. Friis, E. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Lazaridis, C. Levine, A. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Sarangi, T. Savin, A. Smith, W. H. Taylor, D. Vuosalo, C. Woods, N. CA CMS Collaboration TI Identification techniques for highly boosted W bosons that decay into hadrons SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Jets; Jet physics; Hadron-Hadron Scattering ID COLLISIONS; TEV AB In searches for new physics in the energy regime of the LHC, it is becoming increasingly important to distinguish single-jet objects that originate from the merging of the decay products of W bosons produced with high transverse momenta from jets initiated by single partons. Algorithms are defined to identify such W jets for different signals of interest, using techniques that are also applicable to other decays of bosons to hadrons that result in a single jet, such as those from highly boosted Z and Higgs bosons. The efficiency for tagging W jets is measured in data collected with the CMS detector at a center-of-mass energy of 8TeV, corresponding to an integrated luminosity of 19.7 fb(-1). The performance of W tagging in data is compared with predictions from several Monte Carlo simulators. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Austrian Acad Sci, Inst Hochenergiephys, OeAW, A-1050 Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Leonard, A.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Komm, P. Jez M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan] Catholic Univ Louvain, Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alda Junior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Mora Herrera, C.; Pol, M. E.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Caudron, A.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dogra, S.; Fernandez Perez Tomei, T. R.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, S.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Sierra, L. F. Chaparro; Florez, C.; Gomez, J. P.; Moreno, B. Gomez; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, CY-1678 Nicosia, Cyprus. [Bodlak, M.; Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Zabi, A.; Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Van Hove, P.] Univ Strasbourg, Univ Haute Alsace Mulhouse, CNRS IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Gadrat, S.] CNRS, IN2P3, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Guichardant, C.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Mer-Schmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Inst Phys A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Heister, A.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Horton, D.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Kruecker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Novgorodova, O.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Ron, E.; Sahin, M. Oe.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schroeder, M.; Seitz, C.; Spannagel, S.; Trevino, A. D. R. Vargas; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Martin, M. Aldaya; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Goerner, M.; Haller, J.; Hoffmann, M.; Hoeing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrueck, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.] Univ Hamburg, D-20146 Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Pardo, P. Lobelle; Mozer, M. U.; Mueller, Th.; Nuernberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Roecker, S.; Simonis, J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys INPP, Aghia Paraskevi, Greece. [Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res, ATOMKI, H-4001 Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Mittal, M.; Nishu, N.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. CSFNSM, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Ferretti, R.; Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, Naples, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Ventura, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Dall'Osso, M.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.] Univ Trent, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Salvini, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Romeo, F.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Donato, S.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; D'imperio, G.; Del Re, D.; Grassi, M.; Longo, E.; Margaroli, F.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Degano, A.; Finco, L.; Migliore, E.; Monaco, V.; Ortona, G.; Pacher, L.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.] Univ Trieste, Trieste, Italy. [Chang, S.; Kropivnitskaya, A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, T. J.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, I. C.; Park, S.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.] Vilnius Univ, Vilnius, Lithuania. [Komaragiri, J. R.; Ali, M. A. B. Md] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Mexico City, DF, Mexico. [Moreno, S. Carrillo; Valencia, F. Vazquez] Univ Iberoamer, Mexico City, DF, Mexico. [Pedraza, I.; Ibarguen, H. A. Salazar] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Linares, E. Casimiro; Pineda, A. Morelos] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Reucroft, S.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Bargassa, P.; Beirao Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Afanasiev, S.; Bunin, P.; Golutvin, I.; Gorbunov, I.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Nucl Res Inst, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, Gatchina, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.] Univ Belgrade, Fac Phys, YU-11001 Belgrade, Serbia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Dobson, M.; Dordevic, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wardle, N.; Woehri, H. K.; Wollny, H.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Meister, D.; Mohr, N.; Naegeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Mejias, B. Millan; Ngadiuba, J.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, TR-06531 Ankara, Turkey. [Guelmez, E.; Isildak, B.; Kaya, M.; Kaya, O.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.; Vardarli, F. I.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Ukrainian Acad Sci, Inst Phys & Technol, Ctr Nat Sci, UA-310108 Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; St John, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Rikova, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Negrete, M. Olmedo; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Klein, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gruenendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Cheng, T.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Swartz, M.; Xin, Y.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Skhirtladze, N.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, University, MS 38677 USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R. -J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Driga, O.; Elmer, P.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Petrillo, G.; Vishnevskiy, D.] Univ Rochester, Rochester, NY 14627 USA. [Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN USA. [Bouhali, O.; Hernandez, A. Castaneda; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Vuosalo, C.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Rabady, D.; Genchev, V.; Boudoul, G.; Contardo, D.; Lingemann, J.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Abdulsalam, A.; Mohanty, A. K.; Radogna, R.; Silvestris, L.; Masetti, G.; Giordano, F.; Gori, V.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Lucchini, M. T.; Di Guida, S.; Meola, S.; Paolucci, P.; Spiezia, A.; Palla, F.; Vernieri, C.; Micheli, F.; Soffi, L.; Argiro, S.; Casasso, S.; Obertino, M. M.; Schizzi, A.; Stickland, D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Beluffi, C.] Univ Haute Alsace Mulhouse, Univ Strasbourg, CNRS, IN2P3,Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Giammanco, A.] NICPB, Tallinn, Estonia. [Popov, A.; Zhukov, V.; Katkov, I.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Bernet, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Finger, M., Jr.; Tsamalaidze, Z.] Dubna Joint Nucl Res Inst, Dubna 141980, Russia. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Radi, A.] Sultan Qaboos Univ, Muscat, Oman. [Agram, J. -L.; Conte, E.; Fontaine, J. -C.; Benaglia, A.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Horvath, D.] ATOMKI, Inst Nucl Res, Debrecen, Hungary. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Karancsi, J.] Univ Debrecen, Debrecen, Hungary. [Bhowmik, S.; Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Gurtu, A.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Ctr Rech Phys Plasmas, Sci & Res Branch, Tehran, Iran. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, I-53100 Siena, Italy. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Savoy-Navarro, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Heredia-de La Cruz, I.] Univ Michoacana, Morelia, Michoacan, Mexico. [Matveev, V.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Kim, V.] St Petersburg State Polytechn Univ, St Petersburg, Russia. [Dubinin, M.] CALTECH, Pasadena, CA 91125 USA. [Kaminskiy, A.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Kaminskiy, A.] Univ Padua, Padua, Italy. [Kaminskiy, A.] Univ Trento, Padua, Italy. [Adzic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Milenovic, P.] Univ Belgrade, Fac Phys & Vinca, Inst Sci Nucl, Belgrade, Serbia. [Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Bouhali, O.] Texas A&M Univ, Doha, Qatar. Kyungpook Natl Univ, Taegu, South Korea. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Perez-Calero Yzquierdo, Antonio/F-2235-2013; Novaes, Sergio/D-3532-2012; Della Ricca, Giuseppe/B-6826-2013; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Stahl, Achim/E-8846-2011; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Seixas, Joao/F-5441-2013; Sznajder, Andre/L-1621-2016; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; Matorras, Francisco/I-4983-2015; TUVE', Cristina/P-3933-2015; Dudko, Lev/D-7127-2012; KIM, Tae Jeong/P-7848-2015; Paganoni, Marco/A-4235-2016; Azarkin, Maxim/N-2578-2015; de Jesus Damiao, Dilson/G-6218-2012; Calvo Alamillo, Enrique/L-1203-2014; Flix, Josep/G-5414-2012; Cerrada, Marcos/J-6934-2014; Popov, Andrey/E-1052-2012; Ligabue, Franco/F-3432-2014; Montanari, Alessandro/J-2420-2012; Hernandez Calama, Jose Maria/H-9127-2015; ciocci, maria agnese /I-2153-2015; My, Salvatore/I-5160-2015; Benussi, Luigi/O-9684-2014; Lo Vetere, Maurizio/J-5049-2012; Ragazzi, Stefano/D-2463-2009; Grandi, Claudio/B-5654-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; D'Alessandro, Raffaello/F-5897-2015; Petrushanko, Sergey/D-6880-2012; Wulz, Claudia-Elisabeth/H-5657-2011; Belyaev, Alexander/F-6637-2015; Manganote, Edmilson/K-8251-2013; Bernardes, Cesar Augusto/D-2408-2015; Trocsanyi, Zoltan/A-5598-2009; Raidal, Martti/F-4436-2012; Calderon, Alicia/K-3658-2014; VARDARLI, Fuat Ilkehan/B-6360-2013; Lokhtin, Igor/D-7004-2012; Sen, Sercan/C-6473-2014; Menasce, Dario Livio/A-2168-2016; Rolandi, Luigi (Gigi)/E-8563-2013; Sguazzoni, Giacomo/J-4620-2015; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Dahms, Torsten/A-8453-2015; Vilela Pereira, Antonio/L-4142-2016; Da Silveira, Gustavo Gil/N-7279-2014; Mora Herrera, Maria Clemencia/L-3893-2016; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Konecki, Marcin/G-4164-2015; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; OI Martelli, Arabella/0000-0003-3530-2255; Abbiendi, Giovanni/0000-0003-4499-7562; Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538; Goldstein, Joel/0000-0003-1591-6014; Heath, Helen/0000-0001-6576-9740; Grassi, Marco/0000-0003-2422-6736; Perez-Calero Yzquierdo, Antonio/0000-0003-3036-7965; Novaes, Sergio/0000-0003-0471-8549; Della Ricca, Giuseppe/0000-0003-2831-6982; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Stahl, Achim/0000-0002-8369-7506; Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre David/0000-0001-5854-7699; Seixas, Joao/0000-0002-7531-0842; Sznajder, Andre/0000-0001-6998-1108; Matorras, Francisco/0000-0003-4295-5668; TUVE', Cristina/0000-0003-0739-3153; Dudko, Lev/0000-0002-4462-3192; KIM, Tae Jeong/0000-0001-8336-2434; Paganoni, Marco/0000-0003-2461-275X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Calvo Alamillo, Enrique/0000-0002-1100-2963; Flix, Josep/0000-0003-2688-8047; Cerrada, Marcos/0000-0003-0112-1691; Barbieri, Richard/0000-0002-7945-005X; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Staiano, Amedeo/0000-0003-1803-624X; Ciulli, Vitaliano/0000-0003-1947-3396; Tonelli, Guido Emilio/0000-0003-2606-9156; Androsov, Konstantin/0000-0003-2694-6542; Fiorendi, Sara/0000-0003-3273-9419; Popov, Andrey/0000-0002-1207-0984; da Cruz e silva, Cristovao/0000-0002-1231-3819; Casarsa, Massimo/0000-0002-1353-8964; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Margaroli, Fabrizio/0000-0002-3869-0153; Landsberg, Greg/0000-0002-4184-9380; Rizzi, Andrea/0000-0002-4543-2718; Gershtein, Yuri/0000-0002-4871-5449; Tricomi, Alessia Rita/0000-0002-5071-5501; Malik, Sudhir/0000-0002-6356-2655; Blekman, Freya/0000-0002-7366-7098; Martinez Ruiz del Arbol, Pablo/0000-0002-7737-5121; Montanari, Alessandro/0000-0003-2748-6373; Hernandez Calama, Jose Maria/0000-0001-6436-7547; ciocci, maria agnese /0000-0003-0002-5462; My, Salvatore/0000-0002-9938-2680; Benussi, Luigi/0000-0002-2363-8889; Lo Vetere, Maurizio/0000-0002-6520-4480; Ragazzi, Stefano/0000-0001-8219-2074; Grandi, Claudio/0000-0001-5998-3070; Rovelli, Tiziano/0000-0002-9746-4842; D'Alessandro, Raffaello/0000-0001-7997-0306; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Belyaev, Alexander/0000-0002-1733-4408; Trocsanyi, Zoltan/0000-0002-2129-1279; Sen, Sercan/0000-0001-7325-1087; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Gerosa, Raffaele/0000-0001-8359-3734; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Costa, Salvatore/0000-0001-9919-0569; Kasemann, Matthias/0000-0002-0429-2448; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Sguazzoni, Giacomo/0000-0002-0791-3350; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Dahms, Torsten/0000-0003-4274-5476; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Marzocchi, Badder/0000-0001-6687-6214; Baarmand, Marc/0000-0002-9792-8619; Vilela Pereira, Antonio/0000-0003-3177-4626; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Konecki, Marcin/0000-0001-9482-4841; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; ORTONA, Giacomo/0000-0001-8411-2971; Giubilato, Piero/0000-0003-4358-5355; Gallinaro, Michele/0000-0003-1261-2277; Ulrich, Ralf/0000-0002-2535-402X; Reis, Thomas/0000-0003-3703-6624; Luukka, Panja/0000-0003-2340-4641; Jacob, Jeson/0000-0001-6895-5493 FU Austrian Federal Ministry of Science, Research and Economy; Austrian Science Fund; Belgian Fonds de la Recherche Scientifique; Fonds voor Wetenschappelijk Onderzoek; CNPq; CAPES; FAPERJ; FAPESP; Bulgarian Ministry of Education and Science; CERN; Chinese Academy of Sciences; Ministry of Science and Technology; National Natural Science Foundation of China; Colombian Funding Agency (COLCIENCIAS); Croatian Ministry of Science, Education and Sport; Croatian Science Foundation; Research Promotion Foundation, Cyprus; Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT236]; European Regional Development Fund, Estonia; Academy of Finland; Finnish Ministry of Education and Culture; Helsinki Institute of Physics; Institut National de Physique Nucleaire et de Physique des Particules / CNRS; Commissariat a l'Energie Atomique et auxEnergies Alternatives / CEA, France; Bundesministerium fur Bildung und Forschung, Germany; Deutsche Forschungsgemeinschaft, Germany; Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; General Secretariat for Research and Technology, Greece; National Scientific Research Foundation; National Innovation Office, Hungary; Department of Atomic Energy; Department of Science and Technology, India; Institute for Studies in Theoretical Physics and Mathematics, Iran; Science Foundation, Ireland; Istituto Nazionale di Fisica Nucleare, Italy; Korean Ministry of Education, Science and Technology; World Class University program of NRF, Republic of Korea; Lithuanian Academy of Sciences; Ministry of Education; University of Malaya (Malaysia); CINVESTAV; CONACYT; SEP; UASLP-FAI; Ministry of Business, Innovation and Employment, New Zealand; Pakistan Atomic Energy Commission; Ministry of Science and Higher Education; National Science Centre, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; Ministry of Education and Science of the Russian Federation; Federal Agency of Atomic Energy of the Russian Federation; Russian Academy of ScienceS; Russian Foundation for Basic Research; Ministry of Education, Science and Technological Development of Serbia; Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio; ETH Board; ETH Zurich; PSI; SNF; UniZH; Canton; Ministry of Science and Technology, Taipei; Thailand Center of Excellence in Physics; Institute for the Promotion of Teaching Science and Technology of Thailand; Special Task Force for Activating Research; National Science and Technology Development Agency of Thailand; Scientific and Technical Research Council of Turkey; Turkish Atomic Energy Authority; National Academy of Sciences of Ukraine; State Fund for Fundamental Researches, Ukraine; Science and Technology Facilities Council, U.K.; US Department of Energy; US National Science Foundation; Marie-Curie programme; European Research Council; EPLANET (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Council of Science and Industrial Research, India; HOMING PLUS programme of Foundation for Polish Science; European Union; Regional Development Fund; Compagnia di San Paolo (Torino); Consorzio per la Fisica (Trieste); MIUR project (Italy) [20108T4XTM]; Thalis and Aristeia programmes; EU-ESF; NSRF; National Priorities Research Program by Qatar National Research Fund FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses.; Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT236 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat a l'Energie Atomique et auxEnergies Alternatives / CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, U.K.; the US Department of Energy, and the US National Science Foundation.; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Research Fund. NR 66 TC 3 Z9 3 U1 8 U2 59 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD DEC 2 PY 2014 IS 12 AR 017 DI 10.1007/JHEP12(2014)017 PG 46 WC Physics, Particles & Fields SC Physics GA CB4LU UT WOS:000349600000001 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Almond, J Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Baas, AE Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Bessner, MF Besana, MI Besjes, GJ Bessidskaia, O Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, J Boek, J Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buescher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakira, O Calafiura, P Calandri, A Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, RC Camarda Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cuciuc, CM Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, JA Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Dias, FA Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimic, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franconi, L Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Guan, L Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hageboeck, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hann, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, M Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Heng, Y Henderson, RCW Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Hopkins, WH Horii, Y Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Belenguer, MJ Jina, S Jinarua, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, A Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Kareem, MJ Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miucci, A Miyagawa, PS Mjooernmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negri, G Negrini, M Nektarijevic, S Nellist, C Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, J O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, FX Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrella, S Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrania, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfonea, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T Spurlock, B St Denis, RD Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, A Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadzea, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Den Wollenberg, W Van der Deijl, PC van der Geer, R van der Graaf, H Van Der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogel, M Voka, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigell, P Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Almond, J. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arguin, J. -F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Baas, A. E. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batley, J. R. Battaglia, M. Battistin, M. Bauer, F. Bawa, H. S. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Bessner, M. F. Besana, M. I. Besjes, G. J. Bessidskaia, O. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boddy, C. R. Boehler, M. Boek, J. Boek, J. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Cabrera Urban, S. Caforio, D. Cakira, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cuciuc, C. -M. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. A. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimic, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franconi, L. Franklin, M. Franz, S. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstroem, P. Grahn, K. -J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Groth-Jensen, J. Grout, Z. J. Guan, L. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Gunther, J. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hann, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Heng, Y. Henderson, R. C. W. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hopkins, W. H. Horii, Y. Hostachy, J. -Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jina, S. Jinarua, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Kareem, M. J. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lopez Paz, I. Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maier, A. A. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J. -P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjoernmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Fr Pastore Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, L. E. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrella, S. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Portell Bueso, X. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F. -W. Sadykov, R. Tehrania, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfonea, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadzea, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Den Wollenberg, W. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. Van Der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogel, M. Voka, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigell, P. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W. -M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI A measurement of the ratio of the production cross sections for W and Z bosons in association with jets with the ATLAS detector SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID PARTON DISTRIBUTIONS; PAIR PRODUCTION; MONTE-CARLO; COLLISIONS AB The ratio of the production cross sections for W and Z bosons in association with jets has been measured in proton-proton collisions at root s = 7 TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is based on the entire 2011 dataset, corresponding to an integrated luminosity of 4.6 fb(-1). Inclusive and differential cross-section ratios for massive vector bosons decaying to electrons and muons are measured in association with jets with transverse momentum p(T) > 30 GeV and jet rapidity vertical bar y vertical bar < 4.4. The measurements are compared to next-to-leading-order perturbative QCD calculations and to predictions from different Monte Carlo generators implementing leading-order matrix elements supplemented by parton showers. C1 [Jackson, P.; Lee, L.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakira, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Bansil, H. S.; Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Korolkov, I.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Korolkov, I.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Cirkovic, P.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin Dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W. -M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W. -M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Stamm, S.; van der Graaf, H.; Van Der Leeuw, R.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Heinemann, B.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I; Massa, L; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] INFN Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I; Massa, L; Mengarelli, A.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeeck, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinarua, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jina, S.; Lu, F.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Li, Y.] Nanjing Univ, Dept Phys, Nanjing 210008, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China. [Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Photochim Mol & Macromol Lab, CNRS, IN2P3, F-63177 Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfonea, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Grp Collegato Cosenza, I-00044 Frascati, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfonea, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K. -J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K. -J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys, Dortmund, Germany. [Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Coniavitis, E.; Consorti, V.; Dao, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ronzani, M.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nikolics, K.; Picazio, A.; Pohl, M.; Rosbach, K.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadzea, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Endner, O. C.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kareem, M. J.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J. -Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Hofmann, J. I.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Prell, S.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Le Dortz, O.; Vazquez, J. G. Panduro; Fr Pastore; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fys Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Bogdanchikov, A. G.; Borri, M.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Gonzalez, B. Alvarez; Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.] Univ Melbourne, Sch Phys, Parkville, Vic 3052, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Levin, D.; Liu, L.; Long, J. D.; Lu, N.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Schwarz, T. A.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J. -F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Konig, A. C.; Salvucci, A.; Strubig, A.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Qureshi, A.; Salek, D.; Valencic, N.; Van Den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Qureshi, A.; Salek, D.; Valencic, N.; Van Den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, AL; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Gan, K. K.; Ishmukhametov, R.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Tannenwald, B. B.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nelson, T. K.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bogdanchikov, A. G.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Lounis, A.; Makovec, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Lounis, A.; Makovec, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Bogdanchikov, A. G.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C. -L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Meyer, C.; Ospanov, R.; Saxon, J.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Beccherle, R.; Bertolucci, F.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Do Valle Wemans, A.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] Lab Instrumentacao Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Do Valle Wemans, A.] Univ Nova Lisboa, Fac Ciencias Tecnol, Dept Fis, Caparica, Portugal. [Do Valle Wemans, A.] Univ Nova Lisboa, Fac Ciencias Tecnol, CEFITEC, Caparica, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Voka, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrania, F. Safai; Sidoti, A.; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Res Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimic, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Della Pietra, M.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Grabas, H. M. X.; Guyot, C.; Hann, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J. -P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay Commissariat Energie Atom & Energies A, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F. -W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Ibragimov, I.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ikematsu, K.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nef, P. D.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Hamity, G. N.; Hsu, C.; March, L.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bessidskaia, O.; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bessidskaia, O.; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Kataoka, Y.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Fortin, D.; Koutsman, A.; Oram, C. J.; Codina, E. Perez; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] INFN, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Alhroob, M.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] CSIC, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Castillo, L. R. Flores; Hard, A. S.; Heng, Y.; Ji, H.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Redelbach, A.; Schreyer, M.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Ju, X.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anisenkov, A. V.; Bobrovnikov, V. S.; Chen, S.; Konoplich, R.; Korol, A. A.; Maximov, D. A.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Apolle, R.; Davies, E.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Chen, L.; Gao, J.] Aix Marseille Univ, CPPM, Marseille, France. [Chen, L.; Gao, J.] CNRS, IN2P3, Marseille, France. [Conventi, F.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Victoria, BC, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Castillo, L. R. Flores] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. [Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Martinez, M.] ICREA, Barcelona, Spain. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Jenni, P.] CERN, Geneva, Switzerland. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. Manhattan Coll, New York, NY USA. [Li, B.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Li, Y.] Univ Paris 11, LAL, Orsay, France. [Li, Y.] CNRS, IN2P3, F-91405 Orsay, France. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Liu, K.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Liu, K.] Univ Paris Diderot, Paris, France. [Liu, K.] CNRS, IN2P3, Paris, France. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Messina, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pinamonti, M.] SISSA, I-34014 Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tikhomirov, V. O.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vickey, T.] Univ Oxford, Dept Phys, Oxford, England. [Wang, C.] Nanjing Univ, Dept Phys, Nanjing 210008, Jiangsu, Peoples R China. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Xu, L.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Fullana Torregrosa, Esteban/A-7305-2016; Korol, Aleksandr/A-6244-2014; Joergensen, Morten/E-6847-2015; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Smirnova, Oxana/A-4401-2013; Mitsou, Vasiliki/D-1967-2009; Mir, Lluisa-Maria/G-7212-2015; Villa, Mauro/C-9883-2009; White, Ryan/E-2979-2015; Brooks, William/C-8636-2013; Di Domenico, Antonio/G-6301-2011; Connell, Simon/F-2962-2015; Bosman, Martine/J-9917-2014; Fabbri, Laura/H-3442-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Yang, Haijun/O-1055-2015; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Garcia, Jose /H-6339-2015; Juste, Aurelio/I-2531-2015; Grinstein, Sebastian/N-3988-2014; Snesarev, Andrey/H-5090-2013; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; Nevski, Pavel/M-6292-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Mindur, Bartosz/A-2253-2017; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Wemans, Andre/A-6738-2012; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Zhukov, Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Warburton, Andreas/N-8028-2013; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; De, Kaushik/N-1953-2013; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Marti-Garcia, Salvador/F-3085-2011; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; Doyle, Anthony/C-5889-2009; spagnolo, stefania/A-6359-2012; Tassi, Enrico/K-3958-2015; Ciubancan, Liviu Mihai/L-2412-2015; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Fassi, Farida/F-3571-2016; la rotonda, laura/B-4028-2016; OI Leonidopoulos, Christos/0000-0002-7241-2114; Troncon, Clara/0000-0002-7997-8524; Chen, Hucheng/0000-0002-9936-0115; Qian, Jianming/0000-0003-4813-8167; Nisati, Aleandro/0000-0002-5080-2293; Fullana Torregrosa, Esteban/0000-0003-3082-621X; Vari, Riccardo/0000-0002-2814-1337; Gray, Heather/0000-0002-5293-4716; Dell'Asta, Lidia/0000-0002-9601-4225; Korol, Aleksandr/0000-0001-8448-218X; Belanger-Champagne, Camille/0000-0003-2368-2617; Joergensen, Morten/0000-0002-6790-9361; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Smirnova, Oxana/0000-0003-2517-531X; Mitsou, Vasiliki/0000-0002-1533-8886; Mir, Lluisa-Maria/0000-0002-4276-715X; Villa, Mauro/0000-0002-9181-8048; White, Ryan/0000-0003-3589-5900; Brooks, William/0000-0001-6161-3570; Di Domenico, Antonio/0000-0001-8078-2759; Connell, Simon/0000-0001-6000-7245; Bosman, Martine/0000-0002-7290-643X; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Sawyer, Lee/0000-0001-8295-0605; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; Mincer, Allen/0000-0002-6307-1418; Grinstein, Sebastian/0000-0002-6460-8694; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611; Veneziano, Stefano/0000-0002-2598-2659; Vazquez Schroeder, Tamara/0000-0002-9780-099X; Chen, Chunhui /0000-0003-1589-9955; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Terzo, Stefano/0000-0003-3388-3906; Smirnov, Sergei/0000-0002-6778-073X; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Weber, Michele/0000-0002-2770-9031; Wang, Kuhan/0000-0002-6151-0034; Grohsjean, Alexander/0000-0003-0748-8494; La Rosa, Alessandro/0000-0001-6291-2142; Beck, Hans Peter/0000-0001-7212-1096; Prokofiev, Kirill/0000-0002-2177-6401; Lacasta, Carlos/0000-0002-2623-6252; Coccaro, Andrea/0000-0003-2368-4559; Cristinziani, Markus/0000-0003-3893-9171; Haas, Andrew/0000-0002-4832-0455; Galhardo, Bruno/0000-0003-0641-301X; Arratia, Miguel/0000-0001-6877-3315; Della Volpe, Domenico/0000-0001-8530-7447; Castro, Nuno/0000-0001-8491-4376; Pina, Joao /0000-0001-8959-5044; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Wemans, Andre/0000-0002-9669-9500; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Tikhomirov, Vladimir/0000-0002-9634-0581; Warburton, Andreas/0000-0002-2298-7315; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; De, Kaushik/0000-0002-5647-4489; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Riu, Imma/0000-0002-3742-4582; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; Doyle, Anthony/0000-0001-6322-6195; spagnolo, stefania/0000-0001-7482-6348; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Giordani, Mario/0000-0002-0792-6039; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Fassi, Farida/0000-0002-6423-7213; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Giorgi, Filippo Maria/0000-0003-1589-2163 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, The Netherlands; NWO, The Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Leverhulme Trust, United Kingdom; Royal Society, United Kingdom; DOE, United States of America; NSF, United States of America FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, The Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (The Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide. NR 49 TC 6 Z9 6 U1 8 U2 89 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD DEC 2 PY 2014 VL 74 IS 12 AR 3168 DI 10.1140/epjc/s10052-014-3168-9 PG 31 WC Physics, Particles & Fields SC Physics GA AX9HM UT WOS:000347214200001 ER PT J AU Trivedi, N Ramahi, JS Karakaya, M Howell, D Kerekes, RA Solecki, DJ AF Trivedi, Niraj Ramahi, Joseph S. Karakaya, Mahmut Howell, Danielle Kerekes, Ryan A. Solecki, David J. TI Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons SO NEURAL DEVELOPMENT LA English DT Article ID MICROTUBULE-ORGANIZING CENTER; MYOSIN-II; GOLGI-APPARATUS; CELL-MIGRATION; F-ACTIN; IN-VITRO; CEREBRAL-CORTEX; PRIMARY CILIUM; AXON FORMATION; QUAIL OVIDUCT AB Background: During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e. g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Results: We show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia are motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. Conclusions: We propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides. C1 [Trivedi, Niraj; Ramahi, Joseph S.; Howell, Danielle; Solecki, David J.] St Jude Childrens Res Hosp, Dept Dev Neurobiol, Memphis, TN 38105 USA. [Karakaya, Mahmut; Kerekes, Ryan A.] Oak Ridge Natl Lab, Imaging Signals & Machine Learning Grp, Oak Ridge, TN 37831 USA. RP Kerekes, RA (reprint author), Oak Ridge Natl Lab, Imaging Signals & Machine Learning Grp, Oak Ridge, TN 37831 USA. EM kerekesra@ornl.gov; david.solecki@stjude.org FU American Lebanese Syrian Associated Charities (ALSAC); March of Dimes [1-FY12-455]; National Institute of Neurological Disorders (NINDS) [1R01NS066936] FX We thank Atsushi Miyawaki for sharing the Venus cDNA, Franck Polleux for providing the Lifeact constructs, Graham Warren for providing GalNAcT2-YFP and Robert Adelstein for providing the MCHiiB cDNA. Sharon Naron provided expert editorial support. The Solecki Laboratory is funded by the American Lebanese Syrian Associated Charities (ALSAC), by grant #1-FY12-455 from the March of Dimes, and by grant 1R01NS066936 from the National Institute of Neurological Disorders (NINDS). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NINDS or the NIH. The authors declare that they have no conflict of interest. NR 79 TC 1 Z9 1 U1 1 U2 4 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1749-8104 J9 NEURAL DEV JI Neural Dev. PD DEC 2 PY 2014 VL 9 AR 26 DI 10.1186/1749-8104-9-26 PG 19 WC Developmental Biology; Neurosciences SC Developmental Biology; Neurosciences & Neurology GA AX5AD UT WOS:000346938800001 PM 25467954 ER PT J AU Li, DL Ma, QL Wang, SG Ward, RCC Hesjedal, T Zhang, XG Kohn, A Amsellem, E Yang, G Liu, JL Jiang, J Wei, HX Han, XF AF Li, D. L. Ma, Q. L. Wang, S. G. Ward, R. C. C. Hesjedal, T. Zhang, X. -G. Kohn, A. Amsellem, E. Yang, G. Liu, J. L. Jiang, J. Wei, H. X. Han, X. F. TI Controlling spin-dependent tunneling by bandgap tuning in epitaxial rocksalt MgZnO films SO SCIENTIFIC REPORTS LA English DT Article ID THIN INSULATING FILM; ROOM-TEMPERATURE; JUNCTIONS; MGO; MAGNETORESISTANCE AB Widespread application of magnetic tunnel junctions (MTJs) for information storage has so far been limited by the complicated interplay between tunnel magnetoresistance (TMR) ratio and the product of resistance and junction area (RA). An intricate connection exists between TMR ratio, RA value and the bandgap and crystal structure of the barrier, a connection that must be unravelled to optimise device performance and enable further applications to be developed. Here, we demonstrate a novel method to tailor the bandgap of an ultrathin, epitaxial Zn-doped MgO tunnel barrier with rocksalt structure. This structure is attractive due to its good Delta(1) spin filtering effect, and we show that MTJs based on tunable MgZnO barriers allow effective balancing of TMR ratio and RA value. In this way spin-dependent transport properties can be controlled, a key challenge for the development of spintronic devices. C1 [Li, D. L.; Ma, Q. L.; Wang, S. G.; Yang, G.; Liu, J. L.; Jiang, J.; Wei, H. X.; Han, X. F.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China. [Ward, R. C. C.; Hesjedal, T.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Zhang, X. -G.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Zhang, X. -G.] Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA. [Zhang, X. -G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhang, X. -G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Kohn, A.; Amsellem, E.] Ben Gurion Univ Negev, Ilse Katz Inst Nanoscale Sci & Technol, Dept Mat Engn, IL-84105 Beer Sheva, Israel. RP Wang, SG (reprint author), Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China. EM sgwang@iphy.ac.cn RI Yang, Guang/G-4095-2015; Liu, Jialong/G-4221-2015; Hesjedal, Thorsten/C-6853-2014; Wang, Shouguo/D-5710-2016; Ma, Qinli/H-2508-2011 OI Yang, Guang/0000-0002-1242-7269; Liu, Jialong/0000-0001-5607-9027; Hesjedal, Thorsten/0000-0001-7947-3692; Wang, Shouguo/0000-0002-4488-2645; FU National Basic Research Program of China [2015CB921401]; Natural Science Foundation of China [51431009, 51471183, 11274371, 11222432, 11174341]; National Instrumentation Program of China [2012YQ120048]; Instrument Development Program of Chinese Academy of Sciences [YZ201345]; China-Israel joint project [2013DFG13020]; John Fell Oxford University Press FX This work was supported by the National Basic Research Program of China (No. 2015CB921401), the Natural Science Foundation of China (No. 51431009, 51471183, 11274371, 11222432, and 11174341), the National Instrumentation Program of China (No. 2012YQ120048), the Instrument Development Program of Chinese Academy of Sciences (No. YZ201345), and China-Israel joint project (No. 2013DFG13020). This publication arises from research funded by the John Fell Oxford University Press Research Fund. We thank A. A. Baker for critically reading the manuscript. NR 36 TC 9 Z9 9 U1 1 U2 31 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 2 PY 2014 VL 4 AR 7277 DI 10.1038/srep07277 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AW4NZ UT WOS:000346259100005 PM 25451163 ER PT J AU Wang, W Wei, H Alahuhta, M Chen, XW Hyman, D Johnson, DK Zhang, M Himmel, ME AF Wang, Wei Wei, Hui Alahuhta, Markus Chen, Xiaowen Hyman, Deborah Johnson, David K. Zhang, Min Himmel, Michael E. TI Heterologous Expression of Xylanase Enzymes in Lipogenic Yeast Yarrowia lipolytica SO PLOS ONE LA English DT Article ID SACCHAROMYCES-CEREVISIAE; BETA-XYLOSIDASE; PROTEIN EXPRESSION; CLONING; XLND; TRANSFORMATION; SECRETION AB To develop a direct microbial sugar conversion platform for the production of lipids, drop-in fuels and chemicals from cellulosic biomass substrate, we chose Yarrowia lipolytica as a viable demonstration strain. Y. lipolytica is known to accumulate lipids intracellularly and is capable of metabolizing sugars to produce lipids; however, it lacks the lignocellulose-degrading enzymes needed to break down biomass directly. While research is continuing on the development of a Y. lipolytica strain able to degrade cellulose, in this study, we present successful expression of several xylanases in Y. lipolytica. The XynII and XlnD expressing Yarrowia strains exhibited an ability to grow on xylan mineral plates. This was shown by Congo Red staining of halo zones on xylan mineral plates. Enzymatic activity tests further demonstrated active expression of XynII and XlnD in Y. lipolytica. Furthermore, synergistic action in converting xylan to xylose was observed when XlnD acted in concert with XynII. The successful expression of these xylanases in Yarrowia further advances us toward our goal to develop a direct microbial conversion process using this organism. C1 [Wang, Wei; Wei, Hui; Alahuhta, Markus; Johnson, David K.; Himmel, Michael E.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80045 USA. [Chen, Xiaowen; Hyman, Deborah; Zhang, Min] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO USA. RP Wang, W (reprint author), Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80045 USA. EM wei.wang@nrel.gov; Hui.Wei@nrel.gov; Min.Zhang@nrel.gov FU U.S. Department of Energy's Bioenergy Technology Office (DOE-BETO) [DE-AC36-08-GO28308] FX Authors gratefully acknowledge support from the U.S. Department of Energy's Bioenergy Technology Office (DOE-BETO) under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 30 TC 10 Z9 10 U1 1 U2 20 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD DEC 2 PY 2014 VL 9 IS 12 AR e111443 DI 10.1371/journal.pone.0111443 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AU8TQ UT WOS:000345869700006 PM 25462572 ER PT J AU Wong, KK Shi, JR Gao, HJ Zheteyeva, YA Lane, K Copeland, D Hendricks, J McMurray, L Sliger, K Rainey, JJ Uzicanin, A AF Wong, Karen K. Shi, Jianrong Gao, Hongjiang Zheteyeva, Yenlik A. Lane, Kimberly Copeland, Daphne Hendricks, Jennifer McMurray, LaFrancis Sliger, Kellye Rainey, Jeanette J. Uzicanin, Amra TI Why Is School Closed Today? Unplanned K-12 School Closures in the United States, 2011-2013 SO PLOS ONE LA English DT Article ID INFLUENZA-A H1N1; PANDEMIC INFLUENZA; OUTBREAK; LESSONS; SANDY AB Introduction: We describe characteristics of unplanned school closures (USCs) in the United States over two consecutive academic years during a non-pandemic period to provide context for implementation of school closures during a pandemic. Methods: From August 1, 2011 through June 30, 2013, daily systematic internet searches were conducted for publicly announced USCs lasting >= 1 day. The reason for closure and the closure dates were recorded. Information on school characteristics was obtained from the National Center for Education Statistics. Results: During the two-year study period, 20,723 USCs were identified affecting 27,066,426 students. Common causes of closure included weather (79%), natural disasters (14%), and problems with school buildings or utilities (4%). Only 771 (4%) USCs lasted >= 4 school days. Illness was the cause of 212 (1%) USCs; of these, 126 (59%) were related to respiratory illnesses and showed seasonal variation with peaks in February 2012 and January 2013. Conclusions: USCs are common events resulting in missed school days for millions of students. Illness causes few USCs compared with weather and natural disasters. Few communities have experience with prolonged closures for illness. C1 [Wong, Karen K.; Shi, Jianrong; Gao, Hongjiang; Zheteyeva, Yenlik A.; Copeland, Daphne; Rainey, Jeanette J.; Uzicanin, Amra] Ctr Dis Control & Prevent, Div Global Migrat & Quarantine, Atlanta, GA 30333 USA. [Lane, Kimberly] Chenega Govt Consulting, Chesapeake, VA USA. [Hendricks, Jennifer; McMurray, LaFrancis; Sliger, Kellye] Oak Ridge Associated Univ, Oak Ridge, TN USA. RP Uzicanin, A (reprint author), Ctr Dis Control & Prevent, Div Global Migrat & Quarantine, Atlanta, GA 30333 USA. EM auzicanin@cdc.gov FU United States Centers for Disease Control and Prevention FX This study was supported by the United States Centers for Disease Control and Prevention (http://www.cdc.gov/). Several co-authors are or were employees (KW HG YZ DC JR AU) or contractors (JS KL) of the US CDC at the time of the study, and their roles in the study design, data collection and analysis, decision to publish, and preparation of the manuscript are described in the Author Contributions. NR 29 TC 0 Z9 0 U1 0 U2 4 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD DEC 2 PY 2014 VL 9 IS 12 AR e113755 DI 10.1371/journal.pone.0113755 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AU8TQ UT WOS:000345869700049 PM 25463353 ER PT J AU Cheng, JS Han, YJ Deng, L Guo, SJ AF Cheng, Jiashun Han, Yajing Deng, Liu Guo, Shaojun TI Carbon Nanotube-Bilirubin Oxidase Bioconjugate as a New Biofuel Cell Label for Self-Powered Immunosensor SO ANALYTICAL CHEMISTRY LA English DT Article ID GLUCOSE-OXIDASE; SENSOR; INHIBITION; MULTILAYER; BIOSENSOR; SYSTEMS AB We demonstrated a biofuel cells (BFCs)-based self-powered sensing system for the detection of N epsilon-(carboxymethyl)lysine (CML), in which the bilirubin oxidase (BOD)-carbon nanotube (CNT) bioconjugate modified with antibody acted as a biocatalyst for enhancing O-2 reduction in the biocathode, as well as the transducing enzyme for signaling magnification. With an increase in the concentration of CML, the amount of BOD labels on biocathode surface increases, thus leading to the higher output of the as-prepared BFCs. This novel BFCs-based self-powered sensor showed a wide linear range for analyzing CML from 1 nM to 100 mu M with a detection limit of 0.2 nM, which was 50 times more sensitive than that determined from the conventional ELISA. Most importantly, our new self-powered sensing platform can determine the level of CML in serum samples from multiple healthy donors and multiple sclerosis patients, being well in accordance with that from the commercial ELISA analysis. C1 [Cheng, Jiashun; Han, Yajing; Deng, Liu] Cent S Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China. [Guo, Shaojun] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Deng, L (reprint author), Cent S Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China. EM dengliu@csu.edu.cn; shaojun.guo.nano@gmail.com RI Guo, Shaojun/A-8449-2011 OI Guo, Shaojun/0000-0002-5941-414X FU National Natural Science Foundation of China [21105126, 21076232, 21276285]; China Postdoctoral Science Foundation [2011M500126, 2012T50656] FX We are grateful to the National Natural Science Foundation of China (Nos. 21105126, 21076232, and 21276285) and the China Postdoctoral Science Foundation (Nos. 2011M500126, 2012T50656) for support. NR 31 TC 10 Z9 10 U1 8 U2 76 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD DEC 2 PY 2014 VL 86 IS 23 BP 11782 EP 11788 DI 10.1021/ac503277w PG 7 WC Chemistry, Analytical SC Chemistry GA AU7TK UT WOS:000345803300046 PM 25371137 ER PT J AU Wallace, RA Charlton, JJ Kirchner, TB Lavrik, NV Datskos, PG Sepaniak, MJ AF Wallace, Ryan A. Charlton, Jennifer J. Kirchner, Teresa B. Lavrik, Nickolay V. Datskos, Panos G. Sepaniak, Michael J. TI Superhydrophobic Analyte Concentration Utilizing Colloid-Pillar Array SERS Substrates SO ANALYTICAL CHEMISTRY LA English DT Article ID SURFACE-ENHANCED RAMAN; QUANTITATIVE-ANALYSIS; SIGNAL ENHANCEMENT; OPTICAL-PROPERTIES; WATER DROPLETS; SCATTERING; SILVER; CHROMATOGRAPHY; SPECTROSCOPY; NANOPARTICLE AB The ability to detect a few molecules present in a large sample is of great interest for the detection of trace components in both medicinal and environmental samples. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. The following work involves superhydrophobic surfaces that have as a framework deterministic or stochastic silicon pillar arrays formed by lithographic or metal dewetting protocols, respectively. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added to the functionalized pillar array system via soaking. Native pillars and pillars with hydrophobic modification are used. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A(3) 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 x 10(-12) M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up uses in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated. C1 [Wallace, Ryan A.; Charlton, Jennifer J.; Kirchner, Teresa B.; Sepaniak, Michael J.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Charlton, Jennifer J.] Analyt Chem Org, Oak Ridge, TN 37830 USA. [Lavrik, Nickolay V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. [Datskos, Panos G.] Oak Ridge Natl Lab, Engn Technol Div, Oak Ridge, TN 37830 USA. RP Sepaniak, MJ (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM msepaniak@utk.edu RI Lavrik, Nickolay/B-5268-2011 OI Lavrik, Nickolay/0000-0002-9543-5634 FU National Science Foundation [CHE-1144947]; University of Tennessee; Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy, SunShot Program of the Office Energy Efficiency and Renewable Energy FX This material is based on work supported in part by the National Science Foundation under Grant CHE-1144947 with the University of Tennessee. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. A portion of this work was supported by the U.S. Department of Energy, SunShot Program of the Office Energy Efficiency and Renewable Energy. NR 48 TC 7 Z9 7 U1 11 U2 93 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD DEC 2 PY 2014 VL 86 IS 23 BP 11819 EP 11825 DI 10.1021/ac5033947 PG 7 WC Chemistry, Analytical SC Chemistry GA AU7TK UT WOS:000345803300051 PM 25368983 ER PT J AU Strzalka, J AF Strzalka, Joseph TI Cellular Diffraction: Scanning X-Ray Nanodiffraction from Living Cells SO BIOPHYSICAL JOURNAL LA English DT News Item C1 Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Strzalka, J (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM strzalka@aps.anl.gov NR 6 TC 0 Z9 0 U1 2 U2 10 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD DEC 2 PY 2014 VL 107 IS 11 BP 2489 EP 2489 DI 10.1016/j.bpj.2014.10.028 PG 1 WC Biophysics SC Biophysics GA AU8PU UT WOS:000345859500007 PM 25468326 ER PT J AU Eckhert, E Rangamani, P Davis, AE Oster, G Berleman, JE AF Eckhert, Erik Rangamani, Padmini Davis, Annie E. Oster, George Berleman, James E. TI Dual Biochemical Oscillators May Control Cellular Reversals in Myxococcus xanthus SO BIOPHYSICAL JOURNAL LA English DT Article ID GLIDING MOTILITY; RESPONSE REGULATOR; PROTEIN-PHOSPHORYLATION; 3-DIMENSIONAL MODEL; SIGNAL-TRANSDUCTION; SMALL GTPASES; MYXOBACTERIA; FRZCD; LOCALIZATION; MOVEMENT AB Myxococcus xanthus is a Gram-negative, soil-dwelling bacterium that glides on surfaces, reversing direction approximately once every 6 min. Motility in M. xanthus is governed by the Che-like Frz pathway and the Ras-like Mgl pathway, which together cause the cell to oscillate back and forth. Previously, Igoshin et al. (2004) suggested that the cellular oscillations are caused by cyclic changes in concentration of active Frz proteins that govern motility. In this study, we present a computational model that integrates both the Frz and Mgl pathways, and whose downstream components can be read as motor activity governing cellular reversals. This model faithfully reproduces wildtype and mutant behaviors by simulating individual protein knockouts. In addition, the model can be used to examine the impact of contact stimuli on cellular reversals. The basic model construction relies on the presence of two nested feedback circuits, which prompted us to reexamine the behavior of M. xanthus cells. We performed experiments to test the model, and this cell analysis challenges previous assumptions of 30 to 60 min reversal periods in frzCD, frzF, frzE, and frzZ mutants. We demonstrate that this average reversal period is an artifact of the method employed to record reversal data, and that in the absence of signal from the Frz pathway, Mgl components can occasionally reverse the cell near wildtype periodicity, but frz-cells are otherwise in a long nonoscillating state. C1 [Eckhert, Erik] Univ Calif Berkeley, Univ Calif San Francisco, Joint Med Program, Berkeley, CA 94720 USA. [Eckhert, Erik; Davis, Annie E.; Oster, George; Berleman, James E.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Rangamani, Padmini] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Berleman, James E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Berleman, James E.] St Marys Coll, Dept Biol, Moraga, CA 94575 USA. RP Berleman, JE (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM jeb8@stmarys-ca.edu FU National Institutes of Health [R01GM104979]; University of California at Berkeley; Faculty Development funds from St. Mary's College FX We would like to thank Drs. Beiyan Nan, Christine Kaimer, Albert Goldbeter, and David Zusman for the their edits, advice, and support of this work. In addition, we would like to thank Dr. Kaimer for her assistance with microscopy. We acknowledge funding from the National Institutes of Health (Grant No. R01GM104979) to G. O., the University of California at Berkeley Chancellor's Postdoctoral Fellowship to P. R., and Faculty Development funds from St. Mary's College to J. E. B. NR 54 TC 2 Z9 2 U1 0 U2 4 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD DEC 2 PY 2014 VL 107 IS 11 BP 2700 EP 2711 DI 10.1016/j.bpj.2014.09.046 PG 12 WC Biophysics SC Biophysics GA AU8PU UT WOS:000345859500030 PM 25468349 ER PT J AU Legg, BA Zhu, MQ Comolli, LR Gilbert, B Banfield, JF AF Legg, Benjamin A. Zhu, Mengqiang Comolli, Luis R. Gilbert, Benjamin Banfield, Jillian F. TI Impacts of Ionic Strength on Three-Dimensional Nanoparticle Aggregate Structure and Consequences for Environmental Transport and Deposition SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SATURATED POROUS-MEDIA; FERRIHYDRITE NANOPARTICLES; SYSTEMS; CONTAMINANTS; GROUNDWATER; ADSORPTION; COLLOIDS; SOIL AB The transport of nanoparticles through aqueous systems is a complex process with important environmental policy ramifications. Ferrihydrite nanoparticles commonly form aggregates, with structures that depend upon solution chemistry. The impact of aggregation state on transport and deposition is not fully understood. In this study, small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM) were used to directly observe the aggregate structure of ferrihydrite nanoparticles and show how the aggregate structure responds to changing ionic strength. These results were correlated with complementary studies on ferrihydrite transport through saturated quartz sand columns. Within deionized water, nanoparticles form stable suspensions of low-density fractal aggregates that are resistant to collapse. The particles subsequently show limited deposition on sand grain surfaces. Within sodium nitrate solutions the aggregates collapse into denser clusters, and nanoparticle deposition increases dramatically by forming thick, localized, and mechanically unstable deposits. Such deposits limit nanoparticle transport and make transport less predictable. The action of ionic strength is distinct from simpler models of colloidal stability and transport, in that salt not only drives aggregation or attachment but also alters the behavior of preexisting aggregates by triggering their collapse. C1 [Legg, Benjamin A.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Zhu, Mengqiang; Gilbert, Benjamin; Banfield, Jillian F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Comolli, Luis R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Legg, BA (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Benjamin.Legg@pnnl.gov RI Gilbert, Benjamin/E-3182-2010 FU Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Timothy Teague, for support with SEM aquisition, Alexander Hexemer, Steven A. Alvarez, and Eric Schaible for the support with SAXS, and Jonathon Ajo Franklin, for support tomography data at ALS beamline 8.3.2. SAXS and tomography experiments were performed at the Advanced Light Source, a user facility at Lawrence Berkeley National Laboratory. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 37 TC 13 Z9 13 U1 10 U2 92 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD DEC 2 PY 2014 VL 48 IS 23 BP 13703 EP 13710 DI 10.1021/es502654q PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AU7TN UT WOS:000345803800018 PM 25380400 ER PT J AU Whitman, T Zhu, ZH Lehmann, J AF Whitman, Thea Zhu, Zihua Lehmann, Johannes TI Carbon Mineralizability Determines Interactive Effects on Mineralization of Pyrogenic Organic Matter and Soil Organic Carbon SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID BLACK CARBON; BIOCHAR; NITROGEN; DECOMPOSITION; STABILITY AB Soil organic carbon (SOC) is a critical and active pool in the global C cycle, and the addition of pyrogenic organic matter (PyOM) has been shown to change SOC cycling, increasing or decreasing mineralization rates (often referred to as priming). We adjusted the amount of easily mineralizable C in the soil, through 1-day and 6-month preincubations, and in PyOM made from maple wood at 350 degrees C, through extraction. We investigated the impact of these adjustments on C mineralization interactions, excluding pH and nutrient effects and minimizing physical effects. We found short-term increases (+20-30%) in SOC mineralization with PyOM additions in the soil preincubated for 6 months. Over the longer term, both the 6-month and 1-day preincubated soils experienced net similar to 10% decreases in SOC mineralization with PyOM additions. Additionally, the duration of preincubation affected interactions, indicating that there may be no optimal preincubation time for SOC mineralization studies. We show conclusively that mineralizability of SOC in relation to PyOM-C is an important determinant of the effect of PyOM additions on SOC mineralization. C1 [Whitman, Thea; Lehmann, Johannes] Cornell Univ, Dept Crop & Soil Sci, Ithaca, NY 14853 USA. [Zhu, Zihua] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Lehmann, Johannes] Cornell Univ, Atkinson Ctr Sustainable Future, Ithaca, NY 14853 USA. RP Lehmann, J (reprint author), Cornell Univ, Dept Crop & Soil Sci, Ithaca, NY 14853 USA. EM CL273@cornell.edu RI Zhu, Zihua/K-7652-2012 FU NSERC PGS-D; Cornell biogeochemistry program; Cornell Crop and Soil Science Department; Cornell Atkinson Center for a Sustainable Future; Environmental Molecular Sciences Laboratory FX We are grateful for the financial support by awards from NSERC PGS-D, Cornell biogeochemistry program, Cornell Crop and Soil Science Department, the Cornell Atkinson Center for a Sustainable Future, and the Environmental Molecular Sciences Laboratory. Many thanks to Joe Yavitt and Tim Fahey for generously allowing access to the 13C-labelled maple twigs. Kim Sparks and the Cornell Stable Isotope Laboratory were very helpful assisting with sample analyses. Thanks to Seung Han Woo for advice on the CO2 flux measurement methods. Thanks to Dan Buckley and Christy Goodale for helpful discussion of priming effects and their myriad possible mechanisms. We thank the anonymous reviewers and editor, who provided important feedback. NR 37 TC 12 Z9 12 U1 9 U2 99 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD DEC 2 PY 2014 VL 48 IS 23 BP 13727 EP 13734 DI 10.1021/es503331y PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AU7TN UT WOS:000345803800021 PM 25361379 ER PT J AU Kurosaki, H Kaplan, DI Clark, SB AF Kurosaki, Hiromu Kaplan, Daniel I. Clark, Sue B. TI Impact of Environmental Curium on Plutonium Migration and Isotopic Signatures SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SAVANNA RIVER SITE; GROUNDWATER; TRANSPORT; MOBILITY; SYSTEMS; WATER AB Plutonium (Pu), americium (Am), and curium (Cm) activities were measured in sediments from a former radioactive waste disposal basin located on the Savannah River Site, South Carolina, and in subsurface aquifer sediments collected downgradient from the basin. In situ K-d values (Pu concentration ratio of sediment/groundwater) derived from this field data and previously reported groundwater concentration data compared well to laboratory K-d values reported in the literature. Pu isotopic signatures confirmed multiple sources of Pu contamination. The ratio of Pu-240/Pu-239 was appreciably lower for sediment samples compared to the associated groundwater. This isotopic ratio difference may be explained by the following: (1) Pu-240 produced by decay of Cm-244 may exist predominantly in high oxidation states ((PuO2+)-O-V and (PuO22+)-O-VI) compared to Pu derived from the disposed waste effluents, and (2) oxidized forms of Pu sorb less to sediments than reduced forms of Pu. Isotope-specific Kd values calculated from measured Pu activities in the sediments and groundwater indicated that Pu-240, which is derived primarily from the decay of Cm-244, had a value of 10 +/- 2 mL g(-1), whereas Pu-239 originating from the waste effluents discharged at the site had a value of 101 +/- 8 mL g(-1). One possible explanation for the isotope-specific sorption behavior is that Pu-240 likely existed in the weaker sorbing oxidation states, +5 or +6, than Pu-239, which likely existed in the +3 or +4 oxidation states. Consequently, remediation strategies for radioactively contaminated systems must consider not only the discharged contaminants but also their decay products. In this case, mitigation of Cm as well as Pu will be required to completely address Pu migration from the source term. C1 [Kurosaki, Hiromu; Clark, Sue B.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Kaplan, Daniel I.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Clark, SB (reprint author), Washington State Univ, Dept Chem, POB 644630, Pullman, WA 99164 USA. EM s_clark@wsu.edu FU United States Department of Energy, Basic Energy Science [DE-FG02-06ERI15782]; United States Department of Homeland Security, Academic Research Initiative [2009DN077-ARI03302]; Department of Energy's Subsurface Biogeochemistry Research Program within the Office of Science [SCW-0083] FX The authors acknowledge Dr. Evgeny Taskev of Eckert & Ziegler Analytics for providing 244Cm standard solution. This project was funded by the United States Department of Energy, Basic Energy Science (DE-FG02-06ERI15782). Sue B. Clark also acknowledges support from the United States Department of Homeland Security, Academic Research Initiative (Contract 2009DN077-ARI03302). Daniel I. Kaplan received funding from the Department of Energy's Subsurface Biogeochemistry Research Program within the Office of Science (Contract SCW-0083). NR 21 TC 3 Z9 3 U1 1 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD DEC 2 PY 2014 VL 48 IS 23 BP 13985 EP 13991 DI 10.1021/es500968n PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AU7TN UT WOS:000345803800052 PM 25350948 ER PT J AU Hatzell, MC Raju, M Watson, VJ Stack, AG van Duin, ACT Logan, BE AF Hatzell, Marta C. Raju, Muralikrishna Watson, Valerie J. Stack, Andrew G. van Duin, Adri C. T. Logan, Bruce E. TI Effect of Strong Acid Functional Groups on Electrode Rise Potential in Capacitive Mixing by Double Layer Expansion SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID PRESSURE-RETARDED OSMOSIS; REACTIVE FORCE-FIELD; SALINITY-GRADIENT POWER; REVERSE ELECTRODIALYSIS; CONCENTRATED BRINES; POROUS-ELECTRODES; ACTIVATED CARBON; ENERGY; PERFORMANCE; EXTRACTION AB The amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10(-5)) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g(-1)) had a positive rise potential of 59 +/- 4 mV in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g(-1)) had a negative rise potential (-31 +/- 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 +/- 2 mV (unaltered) to -6 +/- 0.5 mV (oxidized), producing a whole cell potential (53 +/- 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 +/- 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. These results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons. C1 [Hatzell, Marta C.; van Duin, Adri C. T.] Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA. [Raju, Muralikrishna] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Watson, Valerie J.; Logan, Bruce E.] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA. [Stack, Andrew G.] Oak Ridge Natl Lab, Div Chem Sci, Geochem & Interfacial Sci Grp, Oak Ridge, TN 37831 USA. RP Logan, BE (reprint author), Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA. EM blogan@psu.edu FU National Science Foundation [(NSF) DGE1255832]; King Abdullah University of Science and Technology (KAUST) [KUS-I1-003-13]; Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program to M.C.H. under Grant No. (NSF) DGE1255832, and a grant from the King Abdullah University of Science and Technology (KAUST) (Award KUS-I1-003-13). A.C.T.V.D. and M.R. conducted reactive force field modeling with support from the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. A.G.S. conducted metadynamics modeling with support from the Division of Chemical Sciences, Geosciences and Biosciences, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy. NR 38 TC 8 Z9 8 U1 6 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD DEC 2 PY 2014 VL 48 IS 23 BP 14041 EP 14048 DI 10.1021/es5043782 PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AU7TN UT WOS:000345803800059 PM 25365360 ER PT J AU Small, LJ Hibbs, MR Wheeler, DR AF Small, Leo J. Hibbs, Michael R. Wheeler, David R. TI Spontaneous Aryldiazonium Film Formation on 440C Stainless Steel in Nonaqueous Environments SO LANGMUIR LA English DT Article ID DIAZONIUM SALTS; ORGANIC LAYERS; ELECTROCHEMICAL REDUCTION; CHEMICAL-COMPOSITION; PASSIVE FILMS; SURFACES; CARBON; XPS; ELECTRODES; STABILITY AB The ability of three aryldiazonium salts to spontaneously assemble onto the surface of type 440C stainless steel is investigated in acetonitrile (ACN) and the model hydraulic fluids tributyl phosphate (TBP) and hexamethyldisiloxane (HMDS). Competition between native oxide formation and organic film growth at different diazonium salt concentrations is monitored by electrochemical impedance spectroscopy. At 1 mM diazonium salt, 70% of total assembly is complete within 10 min, though total surface coverage by organics is limited to approximate to 0.15 monolayers. Adding HCl to the electrolyte renders native oxide formation unfavorable, yet the diazonium molecules are still unable to the increase surface coverage over 1 M-10 mu M HCl in solution. X-ray photoelectron spectroscopy confirms preferential bonding of organic molecules to iron over chromium, while secondary ion mass spectroscopy reveals the ability of these films to self-heal when mechanically removed or damaged. Aging the diazonium salts in these nonaqueous environments demonstrates that up to 90% of the original diazonium salt concentration remains after 21 days at room temperature, while increasing the temperature beyond 50 degrees C results in complete decomposition within 24 h, regardless of solvent-salt combination. It is concluded that the investigated diazonium molecules will not spontaneously form a continuous monolayer on 440C stainless steel immersed in ACN, TBP, or HMDS. C1 [Small, Leo J.; Hibbs, Michael R.; Wheeler, David R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Small, LJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ljsmall@sandia.gov OI Small, Leo/0000-0003-0404-6287 FU Boeing Corp.; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Dr. Michael Brumbach for help acquiring XPS data and Tony Olhassen for TOF-SIMs imaging. This work was supported by Boeing Corp. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 34 TC 2 Z9 2 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD DEC 2 PY 2014 VL 30 IS 47 BP 14212 EP 14218 DI 10.1021/la503630f PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AU7TL UT WOS:000345803500013 PM 25379686 ER PT J AU Wang, N Wen, YH Chen, LQ AF Wang, Nan Wen, Youhai Chen, Long-Qing TI Pinning of grain boundary migration by a coherent particle SO PHILOSOPHICAL MAGAZINE LETTERS LA English DT Article DE coherent precipitate; grain boundary pinning; grain growth; phase-field ID FINITE-ELEMENT SIMULATION; PHASE-FIELD SIMULATIONS; DISPERSED 2ND-PHASE PARTICLES; COMPUTER-SIMULATION; 2-DIMENSIONAL SYSTEMS; ZENER DRAG; GROWTH; INHIBITION; EVOLUTION; DYNAMICS AB We studied single-particle pinning of grain boundary (GB) migration during grain growth. A phase-field model was formulated to simulate the pinning by a coherent particle and validated quantitatively by comparison with analytical prediction. A study of GB migration velocity using this model revealed that second-phase coherent particles have a previously unknown restraining effect over the whole of the GB-particle interaction range, which is qualitatively different from the interaction between GB and incoherent particles. C1 [Wang, Nan; Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Wen, Youhai] Natl Energy Technol Lab, Albany, OR 97321 USA. RP Wang, N (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM nxw13@psu.edu FU Strategic Center for Coal, NETL FX The authors would like to acknowledge the Strategic Center for Coal, NETL, for supporting this activity through the Innovative Process Technologies Program, and in particular Robert Romanosky as technology manager, Patricia Rawls as project manager and David Alman as ORD technical team coordinator. NR 36 TC 3 Z9 3 U1 2 U2 20 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0950-0839 EI 1362-3036 J9 PHIL MAG LETT JI Philos. Mag. Lett. PD DEC 2 PY 2014 VL 94 IS 12 BP 794 EP 802 DI 10.1080/09500839.2014.978408 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA AW6DA UT WOS:000346358400007 ER PT J AU Hocker, D Brif, C Grace, MD Donovan, A Ho, TS Tibbetts, KM Wu, RB Rabitz, H AF Hocker, David Brif, Constantin Grace, Matthew D. Donovan, Ashley Ho, Tak-San Tibbetts, Katharine Moore Wu, Rebing Rabitz, Herschel TI Characterization of control noise effects in optimal quantum unitary dynamics SO PHYSICAL REVIEW A LA English DT Article ID SYSTEMS AB This work develops measures for quantifying the effects of field noise upon targeted unitary transformations. Robustness to noise is assessed in the framework of the quantum control landscape, which is the mapping from the control to the unitary transformation performance measure (quantum gate fidelity). Within that framework, a geometric interpretation of stochastic noise effects naturally arises, where more robust optimal controls are associated with regions of small overlap between landscape curvature and the noise correlation function. Numerical simulations of this overlap in the context of quantum information processing reveal distinct noise spectral regimes that better support robust control solutions. This perspective shows the dual importance of both noise statistics and the control form for robustness, thereby opening up new avenues of investigation on how to mitigate noise effects in quantum systems. C1 [Hocker, David; Donovan, Ashley; Ho, Tak-San; Tibbetts, Katharine Moore; Rabitz, Herschel] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Brif, Constantin; Grace, Matthew D.] Sandia Natl Labs, Dept Scalable & Secure Syst Res, Livermore, CA 94550 USA. [Grace, Matthew D.] Univ New Mexico, Ctr Quantum Informat & Control, Albuquerque, NM 87131 USA. [Tibbetts, Katharine Moore] Temple Univ, Dept Chem, Philadelphia, PA 19122 USA. [Wu, Rebing] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China. [Wu, Rebing] TNList, Ctr Quantum Informat Sci & Technol, Beijing 100084, Peoples R China. RP Rabitz, H (reprint author), Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. EM hrabitz@princeton.edu RI Wu, Rebing/A-3647-2013; OI Wu, Rebing/0000-0003-3545-8700; Tibbetts, Katharine/0000-0001-8853-5656 FU National Science Foundation Graduate Research Fellowship Program [DGE 1148900]; National Science Foundation [CHE-1058644]; ARO-MURI [W911NF-11-1-2068]; Laboratory Directed Research and Development program at Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; NSFC [61374091, 61134008] FX This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE 1148900, National Science Foundation under Grant No. CHE-1058644, and ARO-MURI under Grant No. W911NF-11-1-2068. This work is also supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. R.B.W. acknowledges support from the NSFC under Grants No. 61374091 and No. 61134008). NR 49 TC 8 Z9 8 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD DEC 2 PY 2014 VL 90 IS 6 AR 062309 DI 10.1103/PhysRevA.90.062309 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA AU8UF UT WOS:000345871100004 ER PT J AU Kamburov, D Mueed, MA Jo, I Liu, Y Shayegan, M Pfeiffer, LN West, KW Baldwin, KW Lee, JJD Winkler, R AF Kamburov, D. Mueed, M. A. Jo, I. Liu, Yang Shayegan, M. Pfeiffer, L. N. West, K. W. Baldwin, K. W. Lee, J. J. D. Winkler, R. TI Determination of Fermi contour and spin polarization of nu=3/2 composite fermions via ballistic commensurability measurements SO PHYSICAL REVIEW B LA English DT Article ID LANDAU-LEVEL; MAGNETIC-FIELD; SURFACE; SUPERLATTICES; POTENTIALS; TRANSPORT AB We report ballistic transport commensurability minima in the magnetoresistance of nu = 3/2 composite fermions (CFs). The CFs are formed in high-quality two-dimensional electron systems confined to wide GaAs quantum wells and subjected to an in-plane, unidirectional periodic potential modulation. We observe a slight asymmetry of the CF commensurability positions with respect to nu = 3/2, which we explain quantitatively by comparing three CF density models and concluding that the nu = 3/2 CFs are likely formed by the minority carriers in the upper energy spin state of the lowest Landau level. Our data also allow us to probe the shape and size of the CF Fermi contour. At a fixed electron density of similar or equal to 1.8x10(11) cm(-2), as the quantum well width increases from 30 to 60 nm, the CFs show increasing spin polarization. We attribute this to the enhancement of the Zeeman energy relative to the Coulomb energy in wider wells where the latter is softened because of the larger electron layer thickness. The application of an additional parallel magnetic field (B-parallel to) leads to a significant distortion of the CF Fermi contour as B-parallel to couples to the CFs' out-of-plane orbital motion. The distortion is much more severe compared to the nu = 1/2 CF case at comparable B-parallel to. Moreover, the applied B-parallel to further spin-polarizes the nu = 3/2 CFs as deduced from the positions of the commensurability minima. C1 [Kamburov, D.; Mueed, M. A.; Jo, I.; Liu, Yang; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Lee, J. J. D.] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. [Winkler, R.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Winkler, R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kamburov, D (reprint author), Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. FU Gordon and Betty Moore Foundation [GBMF4420]; National Science Foundation [DMR-1157490]; State of Florida; US Department of Energy; DOE BES [DE-AC02-06CH11357] FX We acknowledge support through the DOE BES (DE-FG02-00-ER45841) for measurements, and the Gordon and Betty Moore Foundation (Grant GBMF4420), Keck Foundation, NSF (ECCS-1001719, DMR-1305691, and MRSEC DMR-0819860) for sample fabrication and characterization. A portion of this work was performed at the National High Magnetic Field Laboratory which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490, the State of Florida, and the US Department of Energy. Work at Argonne was supported by DOE BES under Contract No. DE-AC02-06CH11357. We thank S. Hannahs, T. Murphy, and A. Suslov at NHMFL for valuable technical support during the measurements. We also express gratitude to Tokoyama Corporation for supplying the negative e-beam resist TEBN-1 used to make the samples. NR 33 TC 3 Z9 3 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 2 PY 2014 VL 90 IS 23 AR 235108 DI 10.1103/PhysRevB.90.235108 PG 11 WC Physics, Condensed Matter SC Physics GA AU8WO UT WOS:000345874500003 ER PT J AU Kantsyrev, VL Chuvatin, AS Rudakov, LI Velikovich, AL Shrestha, IK Esaulov, AA Safronova, AS Shlyaptseva, VV Osborne, GC Astanovitsky, AL Weller, ME Stafford, A Schultz, KA Cooper, MC Cuneo, ME Jones, B Vesey, RA AF Kantsyrev, V. L. Chuvatin, A. S. Rudakov, L. I. Velikovich, A. L. Shrestha, I. K. Esaulov, A. A. Safronova, A. S. Shlyaptseva, V. V. Osborne, G. C. Astanovitsky, A. L. Weller, M. E. Stafford, A. Schultz, K. A. Cooper, M. C. Cuneo, M. E. Jones, B. Vesey, R. A. TI Compact hohlraum configuration with parallel planar-wire-array x-ray sources at the 1.7-MA Zebra generator SO PHYSICAL REVIEW E LA English DT Article ID DESIGN AB A compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources is experimentally demonstrated in a configuration with a central target and tailored shine shields at a 1.7-MA Zebra generator. Driving in parallel two magnetically decoupled compact double-planar-wire Z pinches has demonstrated the generation of synchronized x-ray bursts that correlated well in time with x-ray emission from a central reemission target. Good agreement between simulated and measured hohlraum radiation temperature of the central target is shown. The advantages of compact hohlraum design applications for multi-MA facilities are discussed. C1 [Kantsyrev, V. L.; Shrestha, I. K.; Esaulov, A. A.; Safronova, A. S.; Shlyaptseva, V. V.; Osborne, G. C.; Astanovitsky, A. L.; Weller, M. E.; Stafford, A.; Schultz, K. A.; Cooper, M. C.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Chuvatin, A. S.] Ecole Polytech, Plasma Phys Lab, F-91128 Palaiseau, France. [Rudakov, L. I.] Icarus Res Inc, Bethesda, MD 20824 USA. [Velikovich, A. L.] US Navy, Res Lab, Div Plasma Phys, Washington, DC 20375 USA. [Cuneo, M. E.; Jones, B.; Vesey, R. A.] Sandia Natl Labs, Albuquerque, NM 87110 USA. RP Kantsyrev, VL (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. FU DOE/NNSA [DE-NA0001984, DE-FC52-06NA27586]; DOE/SNL [681371]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL8500]; [DE-NA0002075] FX This work was supported by the DOE/NNSA under Cooperative Agreements No. DE-NA0001984 and No. DE-FC52-06NA27586, and in part by Agreement No. DE-NA0002075 and a DOE/SNL Grant No. 681371. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL8500. NR 13 TC 2 Z9 2 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD DEC 2 PY 2014 VL 90 IS 6 AR 063101 DI 10.1103/PhysRevE.90.063101 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA AU9PX UT WOS:000345928200007 PM 25615200 ER PT J AU Karamouzas, I Skinner, B Guy, SJ AF Karamouzas, Ioannis Skinner, Brian Guy, Stephen J. TI Universal Power Law Governing Pedestrian Interactions SO PHYSICAL REVIEW LETTERS LA English DT Article ID SOCIAL FORCE MODEL; BEHAVIOR; DYNAMICS; DISTANCE; BOTTLENECKS; AVOIDANCE; MOTION; CROWDS; FLOW AB Human crowds often bear a striking resemblance to interacting particle systems, and this has prompted many researchers to describe pedestrian dynamics in terms of interaction forces and potential energies. The correct quantitative form of this interaction, however, has remained an open question. Here, we introduce a novel statistical-mechanical approach to directly measure the interaction energy between pedestrians. This analysis, when applied to a large collection of human motion data, reveals a simple power-law interaction that is based not on the physical separation between pedestrians but on their projected time to a potential future collision, and is therefore fundamentally anticipatory in nature. Remarkably, this simple law is able to describe human interactions across a wide variety of situations, speeds, and densities. We further show, through simulations, that the interaction law we identify is sufficient to reproduce many known crowd phenomena. C1 [Karamouzas, Ioannis; Guy, Stephen J.] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA. [Skinner, Brian] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Karamouzas, I (reprint author), Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA. OI Skinner, Brian/0000-0003-0774-3563 FU Intel; University of Minnesota's MnDRIVE Initiative on Robotics, Sensors, and Advanced Manufacturing; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We would like to thank Anne-Helene Olivier, Alex Kamenev, Julien Pettre, Igor Aranson, Dinesh Manocha, and Leo Kadanoff for helpful discussions. We also acknowledge support from Intel and from University of Minnesota's MnDRIVE Initiative on Robotics, Sensors, and Advanced Manufacturing. Work at Argonne National Laboratory is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. NR 43 TC 26 Z9 26 U1 8 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 2 PY 2014 VL 113 IS 23 AR 238701 DI 10.1103/PhysRevLett.113.238701 PG 5 WC Physics, Multidisciplinary SC Physics GA AU9QK UT WOS:000345929600022 PM 25526171 ER PT J AU Sun, P Yuan, CP Yuan, F AF Sun, Peng Yuan, C. -P. Yuan, Feng TI Soft Gluon Resummations in Dijet Azimuthal Angular Correlations in Hadronic Collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID TRANSVERSE-MOMENTUM; JETS; QCD AB We derive all order soft gluon resummation in dijet azimuthal angular correlation in hadronic collisions at the next-to-leading logarithmic level. The relevant coefficients for the Sudakov resummation factor, the soft and hard factors, are calculated. The theory predictions agree well with the experimental data from D0 Collaboration at the Tevatron. This provides a benchmark calculation for the transverse momentum dependent QCD resummation for jet productions in hadron collisions. C1 [Sun, Peng; Yuan, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Yuan, C. -P.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. RP Sun, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-05CH11231]; U.S. National Science Foundation [PHY-0855561, PHY-1417326] FX We thank Al Mueller, Jianwei Qiu, Werner Vogelsang, and Bowen Xiao for interesting discussions. We also thank Andrea Banfi and Mrinal Dasgupta for communications concerning their results in Ref. [11]. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-05CH11231, and by the U.S. National Science Foundation under Grants No. PHY-0855561 and No. PHY-1417326. NR 32 TC 6 Z9 6 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 2 PY 2014 VL 113 IS 23 AR 232001 DI 10.1103/PhysRevLett.113.232001 PG 5 WC Physics, Multidisciplinary SC Physics GA AU9QK UT WOS:000345929600007 PM 25526118 ER PT J AU Hurley, JM Dasgupta, A Emerson, JM Zhou, XY Ringelberg, CS Knabe, N Lipzen, AM Lindquist, EA Daum, CG Barry, KW Grigoriev, IV Smith, KM Galagan, JE Bell-Pedersen, D Freitag, M Cheng, C Loros, JJ Dunlap, JC AF Hurley, Jennifer M. Dasgupta, Arko Emerson, Jillian M. Zhou, Xiaoying Ringelberg, Carol S. Knabe, Nicole Lipzen, Anna M. Lindquist, Erika A. Daum, Christopher G. Barry, Kerrie W. Grigoriev, Igor V. Smith, Kristina M. Galagan, James E. Bell-Pedersen, Deborah Freitag, Michael Cheng, Chao Loros, Jennifer J. Dunlap, Jay C. TI Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE circadian; RNA-Seq; transcription; Neurospora; clock-controlled genes ID CIRCADIAN CLOCK; TRANSCRIPTION FACTORS; CRASSA; EXPRESSION; LIGHT; FREQUENCY; SYSTEM; SEQ; LUCIFERASE; DROSOPHILA AB Neurospora crassa has been for decades a principal model for filamentous fungal genetics and physiology as well as for understanding the mechanism of circadian clocks. Eukaryotic fungal and animal clocks comprise transcription-translation-based feedback loops that control rhythmic transcription of a substantial fraction of these transcriptomes, yielding the changes in protein abundance that mediate circadian regulation of physiology and metabolism: Understanding circadian control of gene expression is key to understanding eukaryotic, including fungal, physiology. Indeed, the isolation of clock-controlled genes (ccgs) was pioneered in Neurospora where circadian output begins with binding of the core circadian transcription factor WCC to a subset of ccg promoters, including those of many transcription factors. High temporal resolution (2-h) sampling over 48 h using RNA sequencing (RNA-Seq) identified circadianly expressed genes in Neurospora, revealing that from similar to 10% to as much 40% of the transcriptome can be expressed under circadian control. Functional classifications of these genes revealed strong enrichment in pathways involving metabolism, protein synthesis, and stress responses; in broad terms, daytime metabolic potential favors catabolism, energy production, and precursor assembly, whereas night activities favor biosynthesis of cellular components and growth. Discriminative regular expression motif elicitation (DREME) identified key promoter motifs highly correlated with the temporal regulation of ccgs. Correlations between ccg abundance from RNA-Seq, the degree of ccg-promoter activation as reported by ccg-promoter-luciferase fusions, and binding of WCC as measured by ChIP-Seq, are not strong. Therefore, although circadian activation is critical to ccg rhythmicity, posttranscriptional regulation plays a major role in determining rhythmicity at the mRNA level. CELL BIOLOGY INAUGURAL ARTICLE C1 [Hurley, Jennifer M.; Dasgupta, Arko; Emerson, Jillian M.; Zhou, Xiaoying; Ringelberg, Carol S.; Knabe, Nicole; Cheng, Chao; Loros, Jennifer J.; Dunlap, Jay C.] Geisel Sch Med, Dept Genet, Hanover, NH 03755 USA. [Lipzen, Anna M.; Lindquist, Erika A.; Daum, Christopher G.; Barry, Kerrie W.; Grigoriev, Igor V.] US Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. [Smith, Kristina M.; Freitag, Michael] Oregon State Univ, Ctr Genome Res & Biocomp, Dept Biochem & Biophys, Corvallis, OR 97331 USA. [Galagan, James E.] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA. [Galagan, James E.] Boston Univ, Dept Microbiol, Boston, MA 02215 USA. [Bell-Pedersen, Deborah] Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA. [Loros, Jennifer J.] Geisel Sch Med, Dept Biochem, Hanover, NH 03755 USA. RP Dunlap, JC (reprint author), Geisel Sch Med, Dept Genet, Hanover, NH 03755 USA. EM jay.c.dunlap@dartmouth.edu RI Bell-Pedersen, Deborah/H-8012-2016; Dunlap, Jay/L-6232-2013 OI Bell-Pedersen, Deborah/0000-0002-1639-8215; Dunlap, Jay/0000-0003-1577-0457 FU NIH-National Institute of General Medical Sciences [GM083336, GM34985, GM068087]; US Department of Energy [DE-AC02-05CH11231] FX We thank the Fungal Genetics Stock Center at the University of Missouri for Neurospora strains. This work is supported by NIH-National Institute of General Medical Sciences Grants GM083336 (to J. J. L.), GM34985 and GM068087 (to J. C. D.), and DE-AC02-05CH11231 (US Department of Energy). NR 60 TC 23 Z9 23 U1 0 U2 25 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 2 PY 2014 VL 111 IS 48 BP 16995 EP 17002 DI 10.1073/pnas.1418963111 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AU9NN UT WOS:000345920800020 PM 25362047 ER PT J AU Yao, YX Fu, Q Zhang, YY Weng, XF Li, H Chen, MS Jin, L Dong, AY Mu, RT Jiang, P Liu, L Bluhm, H Liu, Z Zhang, SB Bao, XH AF Yao, Yunxi Fu, Qiang Zhang, Y. Y. Weng, Xuefei Li, Huan Chen, Mingshu Jin, Li Dong, Aiyi Mu, Rentao Jiang, Peng Liu, Li Bluhm, Hendrik Liu, Zhi Zhang, S. B. Bao, Xinhe TI Graphene cover-promoted metal-catalyzed reactions SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE graphene; interface catalysis; confinement effect; CO oxidation; platinum ID CHEMICAL-VAPOR-DEPOSITION; DENSITY-FUNCTIONAL THEORY; CO OXIDATION; PHOTOELECTRON-SPECTROSCOPY; EPITAXIAL GRAPHENE; SURFACE SCIENCE; PT(111); PLATINUM; CARBON; ADSORPTION AB Graphitic overlayers on metals have commonly been considered as inhibitors for surface reactions due to their chemical inertness and physical blockage of surface active sites. In this work, however, we find that surface reactions, for instance, CO adsorption/desorption and CO oxidation, can take place on Pt(111) surface covered by monolayer graphene sheets. Surface science measurements combined with density functional calculations show that the graphene overlayer weakens the strong interaction between CO and Pt and, consequently, facilitates the CO oxidation with lower apparent activation energy. These results suggest that interfaces between graphitic overlayers and metal surfaces act as 2D confined nano-reactors, in which catalytic reactions are promoted. The finding contrasts with the conventional knowledge that graphitic carbon poisons a catalyst surface but opens up an avenue to enhance catalytic performance through coating of metal catalysts with controlled graphitic covers. C1 [Yao, Yunxi; Fu, Qiang; Jin, Li; Dong, Aiyi; Mu, Rentao; Jiang, Peng; Bao, Xinhe] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China. [Yao, Yunxi; Liu, Li] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. [Zhang, Y. Y.; Zhang, S. B.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Weng, Xuefei; Li, Huan; Chen, Mingshu] Xiamen Univ, Dept Chem, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China. [Liu, Li] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. [Bluhm, Hendrik] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Fu, Q (reprint author), Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China. EM qfu@dicp.ac.cn RI li, haobo/P-5373-2014; Yao, Yunxi/F-3451-2013; Zhang, Shengbai/D-4885-2013; Zhang, Yu-Yang/F-2078-2011; Liu, Zhi/B-3642-2009; Liu, Li/E-8959-2013; Jin, Li/H-3383-2011; Fu, Qiang/E-7109-2015 OI li, haobo/0000-0002-9215-3754; Yao, Yunxi/0000-0002-0814-6675; Zhang, Shengbai/0000-0003-0833-5860; Zhang, Yu-Yang/0000-0002-9548-0021; Liu, Zhi/0000-0002-8973-6561; Liu, Li/0000-0002-4852-1580; Fu, Qiang/0000-0001-5316-6758 FU National Natural Science Foundation of China [21222305, 21373208, 21033009]; Ministry of Science and Technology of China [2011CB932704, 2013CB834603]; Key Research Program of the Chinese Academy of Sciences; US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-FG02-95ER-14511]; US DOE, Office of Basic Energy Sciences [DE-SC0002623]; National Energy Research Scientific Computing Center [DE-AC02-05CH11231]; Extreme Science and Engineering Discovery Environment Science Gateways Program; National Science Foundation [ACI-1053575]; Center for Computational Innovations at Rensselaer Polytechnic Institute; Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the US DOE [DE-AC02-05CH11231] FX We thank the fruitful discussions with Dr. Fan Yang. This work was financially supported by the National Natural Science Foundation of China (Grants 21222305, 21373208, and 21033009), Ministry of Science and Technology of China (Grants 2011CB932704 and 2013CB834603), and the Key Research Program of the Chinese Academy of Sciences. The work at Texas A&M University was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences (Grant DE-FG02-95ER-14511). Y.Y.Z. and S.B.Z. were supported by the US DOE, Office of Basic Energy Sciences (Grant DE-SC0002623). The supercomputer time was provided by National Energy Research Scientific Computing Center under Grant DE-AC02-05CH11231; the Extreme Science and Engineering Discovery Environment Science Gateways Program, which is supported by National Science Foundation Grant ACI-1053575; and Center for Computational Innovations at Rensselaer Polytechnic Institute. The Advanced Light Source and beamline 11.0.2 are supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the US DOE under Contracts DE-AC02-05CH11231. NR 58 TC 45 Z9 45 U1 27 U2 177 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 2 PY 2014 VL 111 IS 48 BP 17023 EP 17028 DI 10.1073/pnas.1416368111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AU9NN UT WOS:000345920800024 PM 25404332 ER PT J AU Cohen, AE Soltis, SM Gonzalez, A Aguila, L Alonso-Mori, R Barnes, CO Baxter, EL Brehmer, W Brewster, AS Brunger, AT Calero, G Chang, JF Chollet, M Ehrensberger, P Eriksson, TL Feng, YP Hattne, J Hedman, B Hollenbeck, M Holton, JM Keable, S Kobilka, BK Kovaleva, EG Kruse, AC Lemke, HT Lin, GW Lyubimov, AY Manglik, A Mathews, II McPhillips, SE Nelson, S Peters, JW Sauter, NK Smith, CA Song, JH Stevenson, HP Tsai, YS Uervirojnangkoorn, M Vinetsky, V Wakatsuki, S Weis, WI Zadvornyy, OA Zeldin, OB Zhu, DL Hodgson, KO AF Cohen, Aina E. Soltis, S. Michael Gonzalez, Ana Aguila, Laura Alonso-Mori, Roberto Barnes, Christopher O. Baxter, Elizabeth L. Brehmer, Winnie Brewster, Aaron S. Brunger, Axel T. Calero, Guillermo Chang, Joseph F. Chollet, Matthieu Ehrensberger, Paul Eriksson, Thomas L. Feng, Yiping Hattne, Johan Hedman, Britt Hollenbeck, Michael Holton, James M. Keable, Stephen Kobilka, Brian K. Kovaleva, Elena G. Kruse, Andrew C. Lemke, Henrik T. Lin, Guowu Lyubimov, Artem Y. Manglik, Aashish Mathews, Irimpan I. McPhillips, Scott E. Nelson, Silke Peters, John W. Sauter, Nicholas K. Smith, Clyde A. Song, Jinhu Stevenson, Hilary P. Tsai, Yingssu Uervirojnangkoorn, Monarin Vinetsky, Vladimir Wakatsuki, Soichi Weis, William I. Zadvornyy, Oleg A. Zeldin, Oliver B. Zhu, Diling Hodgson, Keith O. TI Goniometer-based femtosecond crystallography with X-ray free electron lasers SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE femtosecond diffraction; crystallography; XFEL; structural biology ID CRYSTAL-STRUCTURE; PROTEIN CRYSTALS; DIFFRACTION DATA; DAMAGE; METALLOPROTEIN; RADIATION; RESOLUTION; SYSTEM AB The emerging method of femtosecond crystallography (FX) may extend the diffraction resolution accessible from small radiationsensitive crystals and provides a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzymes. Automated goniometer-based instrumentation developed for use at the Linac Coherent Light Source enabled efficient and flexible FX experiments to be performed on a variety of sample types. In the case of rod-shaped Cpl hydrogenase crystals, only five crystals and about 30 min of beam time were used to obtain the 125 still diffraction patterns used to produce a 1.6-angstrom resolution electron densi map. For smaller crystals, high-density grids were used to increase sample throughput; 930 myoglobin crystals mounted at random orientation inside 32 grids were exposed, demonstrating the utility of this approach. Screening results from cryocooled crystals of beta(2)-adrenoreceptor and an RNA polymerase II complex indicate the potential to extend the diffraction resolution obtainable from very radiation-sensitive samples beyond that possible with undulator-based synchrotron sources. C1 [Cohen, Aina E.; Soltis, S. Michael; Gonzalez, Ana; Aguila, Laura; Baxter, Elizabeth L.; Brehmer, Winnie; Chang, Joseph F.; Ehrensberger, Paul; Eriksson, Thomas L.; Hedman, Britt; Hollenbeck, Michael; Kovaleva, Elena G.; Mathews, Irimpan I.; McPhillips, Scott E.; Smith, Clyde A.; Song, Jinhu; Tsai, Yingssu; Vinetsky, Vladimir; Hodgson, Keith O.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Alonso-Mori, Roberto; Chollet, Matthieu; Feng, Yiping; Lemke, Henrik T.; Nelson, Silke; Zhu, Diling] Stanford Univ, SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Wakatsuki, Soichi] Stanford Univ, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Barnes, Christopher O.; Calero, Guillermo; Lin, Guowu; Stevenson, Hilary P.] Univ Pittsburgh, Sch Med, Dept Biol Struct, Pittsburgh, PA 15261 USA. [Baxter, Elizabeth L.; Tsai, Yingssu; Hodgson, Keith O.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Brunger, Axel T.; Kobilka, Brian K.; Kruse, Andrew C.; Lyubimov, Artem Y.; Manglik, Aashish; Uervirojnangkoorn, Monarin; Weis, William I.; Zeldin, Oliver B.] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA. [Wakatsuki, Soichi; Weis, William I.] Stanford Univ, Dept Biol Struct, Stanford, CA 94305 USA. [Brunger, Axel T.; Lyubimov, Artem Y.; Uervirojnangkoorn, Monarin; Zeldin, Oliver B.] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA. [Brewster, Aaron S.; Hattne, Johan; Holton, James M.; Sauter, Nicholas K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Holton, James M.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA. [Keable, Stephen; Peters, John W.; Zadvornyy, Oleg A.] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59715 USA. RP Cohen, AE (reprint author), Stanford Univ, SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. EM acohen@slac.stanford.edu; HodgsonK@stanford.edu RI Sauter, Nicholas/K-3430-2012; Lemke, Henrik Till/N-7419-2016; OI Lemke, Henrik Till/0000-0003-1577-8643; Brunger, Axel/0000-0001-5121-2036; Peters, John/0000-0001-9117-9568 FU US Department of Energy, Office of Basic Energy Sciences; Use of the Stanford Synchrotron Radiation Lightsource (SSRL); SLAC National Accelerator Laboratory; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; US Department of Energy Office of Biological and Environmental Research; National Institutes of Health (NIH); National Institute of General Medical Sciences [P41GM103393]; Howard Hughes Medical Institute Collaborative Innovation Award; NIH [GM095887, GM102520, GM073210, GM082250, GM094625]; Biological and Electron Transfer; Catalysis EFRC; US Department of Energy, Office of Science [DE-SC0012518] FX Portions of this research were carried out at the Linac Coherent Light Source (LCLS), a National User Facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The XPP and CXI instruments were funded through the LCLS Ultrafast Science Instruments project funded by the US Department of Energy, Office of Basic Energy Sciences. Use of the Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the US Department of Energy Office of Biological and Environmental Research, and by the National Institutes of Health (NIH), National Institute of General Medical Sciences (including P41GM103393). A. T. B., A. Y. L., M. U., O. B. Z., and W. I. W. were supported in part by a Howard Hughes Medical Institute Collaborative Innovation Award that also provided funds for the purchase of the microdiffractometer. N. K. S. acknowledges the support of NIH Grants GM095887 and GM102520 for data-processing methods. J. M. H. was supported by NIH Grants GM073210, GM082250, and GM094625. This work is supported as a part of the Biological and Electron Transfer and Catalysis EFRC, an Energy Frontiers Research Center funded by the US Department of Energy, Office of Science (DE-SC0012518). NR 38 TC 36 Z9 36 U1 2 U2 35 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 2 PY 2014 VL 111 IS 48 BP 17122 EP 17127 DI 10.1073/pnas.1418733111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AU9NN UT WOS:000345920800042 PM 25362050 ER PT J AU Myers, K Wiel, SV AF Myers, Kary Wiel, Scott Vander TI Discussion of 'Data Science: An Action Plan for Expanding the Technical Areas of the Field of Statistics' SO STATISTICAL ANALYSIS AND DATA MINING LA English DT Editorial Material C1 [Myers, Kary; Wiel, Scott Vander] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. RP Myers, K (reprint author), Los Alamos Natl Lab, Stat Sci Grp, POB 1663, Los Alamos, NM 87545 USA. EM kary@lanl.gov OI Myers, Kary/0000-0002-5642-959X NR 3 TC 0 Z9 0 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-1864 EI 1932-1872 J9 STAT ANAL DATA MIN JI Stat. Anal. Data Min. PD DEC PY 2014 VL 7 IS 6 BP 420 EP 422 DI 10.1002/sam.11245 PG 3 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Statistics & Probability SC Computer Science; Mathematics GA CV3UX UT WOS:000364193000004 ER PT J AU Cleveland, WS Hafen, R AF Cleveland, William S. Hafen, Ryan TI Divide and Recombine (D&R): Data Science for Large Complex Data SO STATISTICAL ANALYSIS AND DATA MINING LA English DT Editorial Material C1 [Cleveland, William S.] Purdue, Stat Dept, W Lafayette, IN 47907 USA. [Hafen, Ryan] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Cleveland, WS (reprint author), Purdue, Stat Dept, W Lafayette, IN 47907 USA. EM wsc@bell-labs.com NR 14 TC 0 Z9 0 U1 2 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-1864 EI 1932-1872 J9 STAT ANAL DATA MIN JI Stat. Anal. Data Min. PD DEC PY 2014 VL 7 IS 6 BP 425 EP 433 DI 10.1002/sam.11242 PG 9 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Statistics & Probability SC Computer Science; Mathematics GA CV3UX UT WOS:000364193000006 ER PT J AU Costanza, R Chichakly, K Dale, V Farber, S Finnigan, D Grigg, K Heckbert, S Kubiszewski, I Lee, H Liu, S Magnuszewski, P Maynard, S McDonald, N Mills, R Ogilvy, S Pert, PL Renz, J Wainger, L Young, M Ziegler, CR AF Costanza, Robert Chichakly, Karim Dale, Virginia Farber, Steve Finnigan, David Grigg, Kat Heckbert, Scott Kubiszewski, Ida Lee, Harry Liu, Shuang Magnuszewski, Piotr Maynard, Simone McDonald, Neal Mills, Richard Ogilvy, Sue Pert, Petina L. Renz, Jochen Wainger, Lisa Young, Mike Ziegler, C. Richard TI Simulation games that integrate research, entertainment, and learning around ecosystem services SO ECOSYSTEM SERVICES LA English DT Article DE Computer games; Choice modeling; Valuation ID UNITED-STATES; COOPERATION; MANAGEMENT; SYSTEM; MODEL AB Humans currently spend over 3 billion person-hours per week playing computer games. Most of these games are purely for entertainment, but use of computer games for education has also expanded dramatically. At the same time, experimental games have become a staple of social science research but have depended on relatively small sample sizes and simple, abstract situations, limiting their range and applicability. If only a fraction of the time spent playing computer games could be harnessed for research, it would open up a huge range of new opportunities. We review the use of games in research, education, and entertainment and develop ideas for integrating these three functions around the idea of ecosystem services valuation. This approach to valuation can be seen as a version of choice modeling that allows players to generate their own scenarios taking account of the trade-offs embedded in the game, rather than simply ranking pre-formed scenarios. We outline a prototype game called "Lagom Island" to test the proposition that gaming can be used to reveal the value of ecosystem services. Our prototype provides a potential pathway and functional building blocks for approaching the relatively untapped potential of games in the context of ecosystem services research. (C) 2014 Elsevier B.V. All rights reserved, C1 [Costanza, Robert; Kubiszewski, Ida; Ogilvy, Sue] Australian Natl Univ, Crawford Sch Publ Policy, Canberra, ACT 0200, Australia. [Dale, Virginia; Mills, Richard] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Farber, Steve] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Grigg, Kat] Univ Queensland, Brisbane, Qld 4072, Australia. [Maynard, Simone] Australian Natl Univ, Fenner Sch Environm & Soc, Canberra, ACT 0200, Australia. [Wainger, Lisa] Univ Maryland, Ctr Environm Sci, College Pk, MD 20742 USA. [Pert, Petina L.] James Cook Univ, Sch Earth & Environm Sci, Ctr Trop Environm & Sustainabil Sci, Cairns, Qld, Australia. [Renz, Jochen] Australian Natl Univ, Res Sch Comp Sci, Canberra, ACT 0200, Australia. [McDonald, Neal] Univ Maryland, Baltimore, MD 21201 USA. [Young, Mike] Univ Adelaide, Adelaide, SA 5005, Australia. [Young, Mike] Harvard Univ, Cambridge, MA 02138 USA. RP Costanza, R (reprint author), Australian Natl Univ, Crawford Sch Publ Policy, Canberra, ACT 0200, Australia. EM Robert.Costanza@anu.edu.au RI Pert, Petina/F-5211-2010; Liu, Shuang/C-1951-2008; Kubiszewski, Ida/A-5146-2012; OI Pert, Petina/0000-0002-7738-7691; Liu, Shuang/0000-0002-8749-3607; Kubiszewski, Ida/0000-0003-3264-7899; Wainger, Lisa/0000-0002-3983-8850 FU Keck Foundation via NAFKI (National Academy Keck Futures Initiative) FX This paper is one of the results of workshops held at the National Socio-Environmental Synthesis Center (SESYNC) at Annapolis, Maryland on June 25-28, 2013, and at the Australian Center for Ecological Analysis and Synthesis (ACEAS) on Dec. 9-12, 2013. Seed funding was provided by a grant from the Keck Foundation via NAFKI (National Academy Keck Futures Initiative), The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the United States Environmental Protection Agency. We thank the following two anonymous reviewers for helpful comments on earlier drafts. NR 29 TC 3 Z9 3 U1 7 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2212-0416 J9 ECOSYST SERV JI Ecosyst. Serv. PD DEC PY 2014 VL 10 SI SI BP 195 EP 201 DI 10.1016/j.ecoser.2014.10.001 PG 7 WC Ecology; Environmental Sciences; Environmental Studies SC Environmental Sciences & Ecology GA CU6SD UT WOS:000363662700022 ER PT J AU Schwartz, SE Charlson, RJ Kahn, R Rodhe, H AF Schwartz, Stephen E. Charlson, Robert J. Kahn, Ralph Rodhe, Henning TI Earth's Climate Sensitivity: Apparent Inconsistencies in Recent Assessments SO EARTHS FUTURE LA English DT Article DE climate sensitivity; forcing; global mean surface temperature ID CMIP5 AB Earth's equilibrium climate sensitivity (ECS) and forcing of Earth's climate system over the industrial era have been re-examined in two new assessments: the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and a study by Otto et al. (2013). The ranges of these quantities given in these assessments and also in the Fourth (2007) IPCC Assessment are analyzed here within the framework of a planetary energy balance model, taking into account the observed increase in global mean surface temperature over the instrumental record together with best estimates of the rate of increase of planetary heat content. This analysis shows systematic differences among the several assessments and apparent inconsistencies within individual assessments. Importantly, the likely range of ECS to doubled CO2 given in AR5, 1.5-4.5 K/(3.7 W m(-2)) exceeds the range inferred from the assessed likely range of forcing, 1.2-2.9 K/(3.7 W m(-2)), where 3.7 W m(-2) denotes the forcing for doubled CO2. Such differences underscore the need to identify their causes and reduce the underlying uncertainties. Explanations might involve underestimated negative aerosol forcing, overestimated total forcing, overestimated climate sensitivity, poorly constrained ocean heating, limitations of the energy balance model, or a combination of effects. C1 [Schwartz, Stephen E.] Brookhaven Natl Lab, Biol Environm & Climate Sci Dept, Upton, NY 11973 USA. [Charlson, Robert J.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Kahn, Ralph] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rodhe, Henning] Stockholm Univ, Dept Meteorol, S-10691 Stockholm, Sweden. RP Schwartz, SE (reprint author), Brookhaven Natl Lab, Biol Environm & Climate Sci Dept, Upton, NY 11973 USA. EM ses@bnl.gov RI Schwartz, Stephen/C-2729-2008 OI Schwartz, Stephen/0000-0001-6288-310X FU U.S. Department of Energy's Atmospheric System Research Program (Office of Science, OBER) [DE-AC02-98CH10886] FX We thank several referees for valuable comments and Editor Guy Brasseur for encouragement. SES was supported by the U.S. Department of Energy's Atmospheric System Research Program (Office of Science, OBER) under Contract No. DE-AC02-98CH10886. All data and sources are given in Supporting Information. NR 16 TC 5 Z9 5 U1 1 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2328-4277 J9 EARTHS FUTURE JI Earth Future PD DEC PY 2014 VL 2 IS 12 BP 601 EP 605 DI 10.1002/2014EF000273 PG 5 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA CN0XG UT WOS:000358137300002 ER PT J AU Wang, LW AF Wang, Lin-Wang TI Divide-and-conquer quantum mechanical material simulations with exascale supercomputers SO NATIONAL SCIENCE REVIEW LA English DT Review DE O(N) method; electronic structure calculations; exascale supercomputing; density functional theory; LS3DF ID ELECTRONIC-STRUCTURE CALCULATIONS; DENSITY-FUNCTIONAL THEORY; MOLECULAR-DYNAMICS SIMULATION; INFREQUENT EVENTS; SYSTEMS; APPROXIMATION; ENERGY; STATES; SCALE AB Recent developments in large-scale materials science simulations, especially under the divide-and-conquer method, are reviewed. The pros and cons of the divide-and-conquer method are discussed. It is argued that the divide-and-conquer method, such as the linear-scaling 3D fragment method, is an ideal approach to take advantage of the heterogeneous architectures of modern-day supercomputers despite their relatively large prefactors among linear-scaling methods. Some developments in graphics processing unit (GPU) electronic structure calculations are also reviewed. The accelerators like GPU could be an essential part for the future exascale supercomputing. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wang, LW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, One Cyclotron Rd,Mail Stop 66, Berkeley, CA 94720 USA. EM lwwang@lbl.gov FU Office of Science, Office of Basic Energy Science, Materials Science and Engineering Division, of the US Department of Energy through Theory of Materials program at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX The author is grateful for the support by the Director, Office of Science, Office of Basic Energy Science, Materials Science and Engineering Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231 through the Theory of Materials program at Lawrence Berkeley National Laboratory. NR 80 TC 1 Z9 1 U1 2 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 2095-5138 EI 2053-714X J9 NATL SCI REV JI Natl. Sci. Rev. PD DEC PY 2014 VL 1 IS 4 BP 604 EP 617 DI 10.1093/nsr/nwu060 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CL3OQ UT WOS:000356860000021 ER PT J AU Reed, BW Chung, FR Wang, MJ LaGrange, T Koski, KJ AF Reed, Bryan W. Chung, Frank R. Wang, Mengjing LaGrange, Thomas Koski, Kristie J. TI Temperature-driven disorder-order transitions in 2D copper-intercalated MoO3 revealed using dynamic transmission electron microscopy SO 2D MATERIALS LA English DT Article DE MoO3; copper intercalation; 2D layered nanomaterials; charge density waves; dynamic transmission electron microscopy; superlattice; disorder-order transitions ID CHARGE-DENSITY WAVES; CHEMICAL INTERCALATION; METAL DICHALCOGENIDES; BI2SE3 NANORIBBONS; NANOMATERIALS AB We demonstrate two different classes of disorder-order phase transitions in two-dimensional layered nanomaterial MoO3 intercalated with similar to 9-15 atomic percent zero-valent copper using conventional in situ electron diffraction and dynamic transmission electron microscopy. Heating to similar to 325 degrees C on a time scale of minutes produces a superlattice consistent with the formation of a charge density wave stabilized by nanometer-scale ordering of the copper intercalant. Unlike conventional purely electronic charge-density-wave states which form, reform, and disappear on picosecond scales as the temperature is changed, once it forms the observed structure in Cu-MoO3 is stable indefinitely over a very large temperature range (30 degrees C to the decomposition temperature of 450 degrees C). Nanosecond-scale heating to similar to 380-400 degrees C produced a completely different structure, replacing the disordered as-fabricated Cu-MoO3 with a much more crystallographically ordered metastable state that, according to a precession electron diffraction reconstruction, resembles the original MoO3 lattice apart from an asymmetric distortion that appears to expand parts of the van der Waals gaps to accommodate the copper intercalant. Control experiments in Cu-free material exhibited neither transformation, thus it appears the copper is a necessary part of the phase dynamics. This work shows how the combination of high-density metal atom intercalation and heat treatment over a wide range of time scales can produce nanomaterials of high crystalline quality in unique structural states that cannot be accessed through other methods. C1 [Reed, Bryan W.; LaGrange, Thomas] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. [Chung, Frank R.; Wang, Mengjing; Koski, Kristie J.] Brown Univ, Dept Chem, Providence, RI 02912 USA. RP Reed, BW (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. EM koski@brown.edu FU Brown University; NASA R1 Space Grant Fellowship; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; FWP [SCW0974]; US-DOE OBES, Division of Materials Science Engineering [SCW0939] FX KJK acknowledges support from Brown University startup funds. FRC acknowledges support for a NASA R1 Space Grant Fellowship. This work was performed in part under the auspices of the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. BWR, TL, and the DTEM instrument were supported by FWP SCW0974. TEM precession diffraction based orientation mapping was enabled through a US-DOE OBES, Division of Materials Science & Engineering funded project at LLNL (FWP #SCW0939). The authors would like to thank Philip Zucker for his invaluable assistance in collecting this data. NR 29 TC 1 Z9 1 U1 9 U2 32 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2053-1583 J9 2D MATER JI 2D Mater. PD DEC PY 2014 VL 1 IS 3 AR 035001 DI 10.1088/2053-1583/1/3/035001 PG 16 WC Materials Science, Multidisciplinary SC Materials Science GA CI7ZQ UT WOS:000354986900008 ER PT J AU Grafe, M Klauber, C Gan, B Tappero, RV AF Graefe, Markus Klauber, Craig Gan, Bee Tappero, Ryan V. TI Synchrotron X-ray microdiffraction (mu XRD) in minerals and environmental research SO POWDER DIFFRACTION LA English DT Article; Proceedings Paper CT Australian -X-ray -Analytical -Association Workshops, Conference, and Exhibition CY FEB 09-13, 2014 CL Perth, AUSTRALIA DE X-ray fluorescence microscopy; synchrotron X-rays; mineralogy; transmission geometry; carnotite; mu XRD; mu XANES ID SPECTROSCOPY AB A number of synchrotron X-ray fluorescence microprobes (XFMs) around the world offer synchrotron X-ray microdiffraction (mu XRD) to enhance mineral phase identification in geological and other environmental samples. Synchrotron mu XRD can significantly enhance micro X-ray fluorescence and micro X-ray absorption fine structure measurements by providing direct structural information on the identity of minerals, their crystallinity, and potential impurities in crystal structures. The information is useful to understand the sequestration of metals in mineral deposits, mineral processing residues, soils, or sediments. Synchrotron mu XRD was employed to characterize a surficial calcrete uranium (U) ore sample and to illustrate its usefulness in conjunction with U LIII mu XANES analysis. mu XRD and U LIII mu XANES revealed that the mineral carnotite [K-2(UO2)(2)(V2O8)center dot nH(2)O, n=0, 1, 2, or 3] was not the sole U bearing mineral phase present and that surface complexes and or an amorphous precipitate were present as well. Unit-cell analysis from the mu XRD patterns revealed that the interlayer spacing of carnotite was not uniform and that significant unit-cell volume expansions occurred likely because of variable cations (K+, Rb+, and Sr2+) and variably hydrated interlayer cations being present in the interlayer. Oriented specimen, single crystal effects, and the fixed orientation of the sample relative to the incident beam and the charge-coupled device camera limit the number of visible reflections and complicate mineral phase identification. With careful analysis of multiple structural analysis tools available at XFMs, however, a strong link between X-ray amorphous and X-ray crystalline materials in geologic and environmental samples can be established. (C) 2014 International Centre for Diffraction Data. C1 [Graefe, Markus; Klauber, Craig; Gan, Bee] CSIRO Mineral Resources Flagship, Waterford, WA 6152, Australia. [Graefe, Markus] Amer Univ, Fac Ingn & Ciencias Agr, Ctr Invest Estudios & Desarrollo Ingn, Quito, Ecuador. [Tappero, Ryan V.] Brookhaven Natl Lab, Photon Sci Dept, Upton, NY 11973 USA. RP Grafe, M (reprint author), CSIRO Mineral Resources Flagship, 7 Conlon St, Waterford, WA 6152, Australia. EM mgrafe@udla.edu.ec FU U.S. Department of Energy (DOE) - Geosciences [DE-FG02-92ER14244]; DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; International Synchrotron Access Program (ISAP); Australian Government FX Portions of this work were performed at Beamline X27A, National Synchrotron Light Source (NSLS), Brookhaven National Laboratory (BNL). X27A is supported in part by the U.S. Department of Energy (DOE) - Geosciences (DE-FG02-92ER14244 to The University of Chicago CARS). Use of the NSLS was supported by the DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The authors acknowledge travel funding provided by the International Synchrotron Access Program (ISAP) managed by the Australian Synchrotron and funded by the Australian Government. NR 12 TC 3 Z9 3 U1 1 U2 10 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 EI 1945-7413 J9 POWDER DIFFR JI Powder Diffr. PD DEC PY 2014 VL 29 SU 1 BP S64 EP S72 DI 10.1017/S0885715614001031 PG 9 WC Materials Science, Characterization & Testing SC Materials Science GA CG8ME UT WOS:000353561300013 ER PT J AU Whitfield, PS AF Whitfield, Pamela S. TI Diffraction studies from minerals to organics: lessons learned from materials analyses SO POWDER DIFFRACTION LA English DT Article; Proceedings Paper CT Australian -X-ray -Analytical -Association Workshops, Conference, and Exhibition CY FEB 09-13, 2014 CL Perth, AUSTRALIA DE structure solution; microstructure; minerals; battery materials ID RAY-POWDER DIFFRACTION; CRYSTAL-STRUCTURE; AUSTRALIA AB In many ways, studies of materials and minerals by powder-diffraction techniques are complementary, with techniques honed in one field equally applicable to the other. Many of the example techniques described within this paper were developed for analysis of functional materials and subsequently applied to minerals. However, in a couple of cases, the study of new minerals was the initiation into techniques later used in materials-based studies. Hopefully they will show that the study of new minerals structures can provide opportunities to add new methodologies and approaches to future problems. In keeping with the Australian X-ray Analytical Association many of the examples have an Australian connection, the materials ranging from organics to battery materials. (C) 2014 International Centre for Diffraction Data. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Whitfield, PS (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM whitfieldps@ornl.gov RI Whitfield, Pamela/P-1885-2015 OI Whitfield, Pamela/0000-0002-6569-1143 FU Scientific User Facility Office Division, Office of Basic Energy Sciences, US Department of Energy FX The painstaking efforts of Stuart Mills (ex of University of British Columbia and now Museums Victoria) and Sasha Wilson (ex of University of British Columbia and now Monash University) in preparing many of the mineral samples mentioned in this paper cannot be emphasized enough. The author also thanks Ron Peterson of Queens University for materials relating to cranswickite, Peter Stephens for attempting in vain to collect synchrotron data on a sample of angastonite, and Bob Von Dreele for the 11BM jadarite data. A portion of this research at the ORNL's Spallation Neutron Source was sponsored by the Scientific User Facility Office Division, Office of Basic Energy Sciences, US Department of Energy. NR 21 TC 0 Z9 0 U1 0 U2 2 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 EI 1945-7413 J9 POWDER DIFFR JI Powder Diffr. PD DEC PY 2014 VL 29 SU 1 BP S2 EP S7 DI 10.1017/S0885715614001146 PG 6 WC Materials Science, Characterization & Testing SC Materials Science GA CG8ME UT WOS:000353561300002 ER PT J AU Ayer, VM Miguez, S Toby, BH AF Ayer, Vidya M. Miguez, Sheila Toby, Brian H. TI Why scientists should learn to program in Python SO POWDER DIFFRACTION LA English DT Article DE software; Python; numerical analysis; programming AB The importance of software continues to grow for all areas of scientific research, no less for powder diffraction. Knowing how to program a computer is a basic and useful skill for scientists. This paper explains the three approaches for programming languages and why scripting languages are preferred for non-expert programmers. The Python-scripting language is extremely efficient for science and its use by scientists is growing. Python is also one of the easiest languages to learn. The language is introduced, as well as a few of the many add-on packages available that extend its capabilities, for example, for numerical computations, scientific graphics, and graphical user interface programming. Resources for learning Python are also provided. (C) 2014 International Centre for Diffraction Data. C1 [Ayer, Vidya M.] Svaksha Com, Bangalore, Karnataka, India. [Miguez, Sheila] Chicagopythonworkshop Org, Chicago, IL USA. [Toby, Brian H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Toby, BH (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM toby@anl.gov RI Toby, Brian/F-3176-2013 OI Toby, Brian/0000-0001-8793-8285 FU US DOE [DE-AC02-06CH11357] FX Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract no. DE-AC02-06CH11357. The authors of this manuscript have never met in person and all collaboration was done exclusively via the internet text services (e-mail, git DVCS, bug tracking, etc.). Text formatting was done using the Markdown protocol and drafts were tracked using Git for version control. The authors thank the websites CloudHost.io (now defunct) and GitLab.com for providing the DVCS web services that made this manuscript a reality. NR 0 TC 2 Z9 2 U1 1 U2 8 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 EI 1945-7413 J9 POWDER DIFFR JI Powder Diffr. PD DEC PY 2014 VL 29 SU 2 BP S48 EP S64 DI 10.1017/S0885715614000931 PG 17 WC Materials Science, Characterization & Testing SC Materials Science GA CG8MV UT WOS:000353563000009 ER PT J AU Toby, BH Von Dreele, RB AF Toby, Brian H. Von Dreele, Robert B. TI What's new in GSAS-II SO POWDER DIFFRACTION LA English DT Article DE Powder diffraction; Crystallographic analysis; Rietveld analysis; Software ID CRYSTALLOGRAPHY; REFINEMENT; CIF AB The General Structure and Analysis Software II (GSAS-II) package is an all-new crystallographic analysis package written to replace and extend the capabilities of the universal and widely used GSAS and EXPGUI packages. GSAS-II was described in a 2013 article, but considerable work has been completed since then. This paper describes the advances, which include: rigid body fitting and structure solution modules; improved treatment for parametric refinements and equation of state fitting; and small-angle scattering data reduction and analysis. GSAS-II offers versatile and extensible modules for import and export of data and results. Capabilities are provided for users to select any version of the code. Code documentation has reached 150 pages and 17 web-tutorials are offered. (C) 2014 International Centre for Diffraction Data. C1 [Toby, Brian H.; Von Dreele, Robert B.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Toby, BH (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM toby@anl.gov RI Toby, Brian/F-3176-2013 OI Toby, Brian/0000-0001-8793-8285 FU US DOE [DE-AC02-06CH11357] FX The authors thank the many users who have taken the time to let the authors know when GSAS-II has not worked properly for them and provided the authors with enough detail to track down their problems. Many users have also provided valuable suggestions on how GSAS-II could be more useful for their work or could be more convenient; not all good suggestions have yet been followed, but in time the authors hope to get to them. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract no. DE-AC02-06CH11357. NR 20 TC 0 Z9 0 U1 2 U2 22 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 EI 1945-7413 J9 POWDER DIFFR JI Powder Diffr. PD DEC PY 2014 VL 29 SU 2 BP S2 EP S6 DI 10.1017/S0885715614000736 PG 5 WC Materials Science, Characterization & Testing SC Materials Science GA CG8MV UT WOS:000353563000002 ER PT J AU Alushin, G Lander, G Kellogg, E Zhang, R Baker, D Nogales, E AF Alushin, G. Lander, G. Kellogg, E. Zhang, R. Baker, D. Nogales, E. TI Structural Studies into the Mechanistic Origin of Microtubule Dynamic Instability. SO MOLECULAR BIOLOGY OF THE CELL LA English DT Meeting Abstract CT ASCB/IFCB Meeting CY DEC 06-10, 2014 CL Philadelphia, PA SP Amer Soc Cell Biol, Int Federat Cell Biol C1 [Alushin, G.] NHLBI, Cell Biol & Physiol Ctr, Bethesda, MD 20892 USA. [Lander, G.] Scripps, Integrat Struct & Computat Biol, San Diego, CA USA. [Kellogg, E.] Univ Calif Berkeley, HHMI, Berkeley, CA USA. [Zhang, R.] LBNL, LSD, Berkeley, CA USA. [Baker, D.] Univ Washington, Seattle, WA 98195 USA. [Nogales, E.] Univ Calif Berkeley, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 3 U2 4 PU AMER SOC CELL BIOLOGY PI BETHESDA PA 8120 WOODMONT AVE, STE 750, BETHESDA, MD 20814-2755 USA SN 1059-1524 EI 1939-4586 J9 MOL BIOL CELL JI Mol. Biol. Cell PD DEC PY 2014 VL 25 MA S7 PG 1 WC Cell Biology SC Cell Biology GA CE8LP UT WOS:000352094106122 ER PT J AU Brownfield, DG Treutlein, B Krasnow, M Quake, S Espinoza, H Desai, T Wu, A Neff, NF Mantalas, G AF Brownfield, D. G. Treutlein, B. Krasnow, M. Quake, S. Espinoza, H. Desai, T. Wu, A. Neff, N. F. Mantalas, G. TI Reconstructing alveolar epithelial development using single-cell RNA-seq. SO MOLECULAR BIOLOGY OF THE CELL LA English DT Meeting Abstract CT ASCB/IFCB Meeting CY DEC 06-10, 2014 CL Philadelphia, PA SP Amer Soc Cell Biol, Int Federat Cell Biol C1 [Brownfield, D. G.; Espinoza, H.] Stanford Univ, Biochem, Stanford, CA 94305 USA. [Brownfield, D. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA. [Brownfield, D. G.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Treutlein, B.; Quake, S.; Wu, A.; Mantalas, G.] Stanford Univ, Bioengn, Stanford, CA 94305 USA. [Krasnow, M.] Stanford Univ, Sch Med, HHMI, Stanford, CA 94305 USA. [Desai, T.] Stanford Sch Med, Internal Med, Stanford, CA USA. [Neff, N. F.] Stanford Univ, Sch Med, Stanford, CA 94305 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC CELL BIOLOGY PI BETHESDA PA 8120 WOODMONT AVE, STE 750, BETHESDA, MD 20814-2755 USA SN 1059-1524 EI 1939-4586 J9 MOL BIOL CELL JI Mol. Biol. Cell PD DEC PY 2014 VL 25 MA P27 PG 2 WC Cell Biology SC Cell Biology GA CE8LP UT WOS:000352094100028 ER PT J AU Cerchiari, A Garbe, J Jee, N Todhunter, M Desai, T LaBarge, MA Thomson, M Gartner, ZJ AF Cerchiari, A. Garbe, J. Jee, N. Todhunter, M. Desai, T. LaBarge, M. A. Thomson, M. Gartner, Z. J. TI A strategy for tissue self-organization that is robust to cellular heterogeneity and plasticity. SO MOLECULAR BIOLOGY OF THE CELL LA English DT Meeting Abstract CT ASCB/IFCB Meeting CY DEC 06-10, 2014 CL Philadelphia, PA SP Amer Soc Cell Biol, Int Federat Cell Biol C1 [Cerchiari, A.] UCSF, UC Berkeley, Bioengn, San Francisco, CA USA. [Garbe, J.; LaBarge, M. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Jee, N.; Todhunter, M.; Gartner, Z. J.] Univ Calif San Francisco, Pharmaceut Chem, San Francisco, CA 94143 USA. [Todhunter, M.] Univ Calif San Francisco, Tetrad Grad Program, San Francisco, CA 94143 USA. [Desai, T.] Univ Calif San Francisco, Bioengn & Therapeut Sci, San Francisco, CA 94143 USA. [Thomson, M.; Gartner, Z. J.] Univ Calif San Francisco, Ctr Syst & Synthet Biol, San Francisco, CA 94143 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC CELL BIOLOGY PI BETHESDA PA 8120 WOODMONT AVE, STE 750, BETHESDA, MD 20814-2755 USA SN 1059-1524 EI 1939-4586 J9 MOL BIOL CELL JI Mol. Biol. Cell PD DEC PY 2014 VL 25 MA P2231 PG 2 WC Cell Biology SC Cell Biology GA CE8LP UT WOS:000352094105261 ER PT J AU Furuta, S Bissell, MJ AF Furuta, S. Bissell, M. J. TI Nitric oxide plays a role in transmitting biochemical signal from the extracellular matrix for mammary epithelial morphogenesis. SO MOLECULAR BIOLOGY OF THE CELL LA English DT Meeting Abstract CT ASCB/IFCB Meeting CY DEC 06-10, 2014 CL Philadelphia, PA SP Amer Soc Cell Biol, Int Federat Cell Biol C1 [Furuta, S.; Bissell, M. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC CELL BIOLOGY PI BETHESDA PA 8120 WOODMONT AVE, STE 750, BETHESDA, MD 20814-2755 USA SN 1059-1524 EI 1939-4586 J9 MOL BIOL CELL JI Mol. Biol. Cell PD DEC PY 2014 VL 25 MA P2404 PG 2 WC Cell Biology SC Cell Biology GA CE8LP UT WOS:000352094105252 ER PT J AU Good, MC Vahey, MD Fletcher, DA Heald, R AF Good, M. C. Vahey, M. D. Fletcher, D. A. Heald, R. TI Adaptability of Intracellular Structures to Variations in Cell Size SO MOLECULAR BIOLOGY OF THE CELL LA English DT Meeting Abstract CT ASCB/IFCB Meeting CY DEC 06-10, 2014 CL Philadelphia, PA SP Amer Soc Cell Biol, Int Federat Cell Biol C1 [Good, M. C.; Heald, R.] Univ Calif Berkeley, Mol & Cell Biol, Berkeley, CA 94720 USA. [Vahey, M. D.] Univ Calif Berkeley, Bioengn, Berkeley, CA 94720 USA. [Fletcher, D. A.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Fletcher, D. A.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Fletcher, D. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC CELL BIOLOGY PI BETHESDA PA 8120 WOODMONT AVE, STE 750, BETHESDA, MD 20814-2755 USA SN 1059-1524 EI 1939-4586 J9 MOL BIOL CELL JI Mol. Biol. Cell PD DEC PY 2014 VL 25 MA P193 PG 2 WC Cell Biology SC Cell Biology GA CE8LP UT WOS:000352094100194 ER PT J AU Hoban, K Apel, AR Chuartzman, S Schuldiner, M Wendland, B AF Hoban, K. Apel, A. Reider Chuartzman, S. Schuldiner, M. Wendland, B. TI Defining the adaptor function of endocytic protein Syp1. SO MOLECULAR BIOLOGY OF THE CELL LA English DT Meeting Abstract CT ASCB/IFCB Meeting CY DEC 06-10, 2014 CL Philadelphia, PA SP Amer Soc Cell Biol, Int Federat Cell Biol C1 [Hoban, K.; Wendland, B.] Johns Hopkins Univ, Dept Biol, Baltimore, MD 21218 USA. [Apel, A. Reider] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Chuartzman, S.; Schuldiner, M.] Weizmann Inst Sci, Dept Mol Genet, IL-76100 Rehovot, Israel. [Schuldiner, M.] Weizmann Inst Sci, Mol Genet, IL-76100 Rehovot, Israel. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC CELL BIOLOGY PI BETHESDA PA 8120 WOODMONT AVE, STE 750, BETHESDA, MD 20814-2755 USA SN 1059-1524 EI 1939-4586 J9 MOL BIOL CELL JI Mol. Biol. Cell PD DEC PY 2014 VL 25 MA P2029 PG 2 WC Cell Biology SC Cell Biology GA CE8LP UT WOS:000352094105058 ER PT J AU Jreij, P Bieling, P Li, T Mullins, RD Fletcher, DA AF Jreij, P. Bieling, P. Li, T. Mullins, R. D. Fletcher, D. A. TI Dendritic actin network growth in the absence of symmetry breaking. SO MOLECULAR BIOLOGY OF THE CELL LA English DT Meeting Abstract CT ASCB/IFCB Meeting CY DEC 06-10, 2014 CL Philadelphia, PA SP Amer Soc Cell Biol, Int Federat Cell Biol C1 [Jreij, P.; Bieling, P.; Li, T.; Fletcher, D. A.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Bieling, P.; Mullins, R. D.] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94143 USA. [Fletcher, D. A.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Fletcher, D. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC CELL BIOLOGY PI BETHESDA PA 8120 WOODMONT AVE, STE 750, BETHESDA, MD 20814-2755 USA SN 1059-1524 EI 1939-4586 J9 MOL BIOL CELL JI Mol. Biol. Cell PD DEC PY 2014 VL 25 MA P78 PG 1 WC Cell Biology SC Cell Biology GA CE8LP UT WOS:000352094100079 ER PT J AU Ng, W Webster, KD Stefani, C Lemichez, E Bassereau, P Fletcher, DA AF Ng, W. Webster, K. D. Stefani, C. Lemichez, E. Bassereau, P. Fletcher, D. A. TI Formation of transcellular tunnels by mechanical force. SO MOLECULAR BIOLOGY OF THE CELL LA English DT Meeting Abstract CT ASCB/IFCB Meeting CY DEC 06-10, 2014 CL Philadelphia, PA SP Amer Soc Cell Biol, Int Federat Cell Biol C1 [Ng, W.] Univ Calif Berkeley, Grad Program Bioengn, Berkeley, CA 94720 USA. [Ng, W.; Webster, K. D.] Univ Calif Berkeley, Bioengn, Berkeley, CA 94720 USA. [Webster, K. D.; Fletcher, D. A.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Stefani, C.; Lemichez, E.] Fac Med Nice, INSERM, F-06034 Nice, France. [Bassereau, P.] Inst Curie, PhysicoChim Curie, Paris, France. [Fletcher, D. A.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Fletcher, D. A.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC CELL BIOLOGY PI BETHESDA PA 8120 WOODMONT AVE, STE 750, BETHESDA, MD 20814-2755 USA SN 1059-1524 EI 1939-4586 J9 MOL BIOL CELL JI Mol. Biol. Cell PD DEC PY 2014 VL 25 MA P1419 PG 2 WC Cell Biology SC Cell Biology GA CE8LP UT WOS:000352094103270 ER PT J AU Ricca, BL Venugopalan, G Tanner, K Furata, S Orellana, W Reber, C Brownfield, DG Bissell, MJ Fletcher, DA AF Ricca, B. L. Venugopalan, G. Tanner, K. Furata, S. Orellana, W. Reber, C. Brownfield, D. G. Bissell, M. J. Fletcher, D. A. TI Transient external force induces phenotypic reversion of malignant epithelial structures via nitric oxide Signaling. SO MOLECULAR BIOLOGY OF THE CELL LA English DT Meeting Abstract CT ASCB/IFCB Meeting CY DEC 06-10, 2014 CL Philadelphia, PA SP Amer Soc Cell Biol, Int Federat Cell Biol C1 [Ricca, B. L.; Venugopalan, G.; Reber, C.; Brownfield, D. G.; Fletcher, D. A.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Tanner, K.; Furata, S.; Orellana, W.; Brownfield, D. G.; Bissell, M. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA. [Tanner, K.; Orellana, W.] NCI, Ctr Canc Res, NIH, Bethesda, MD 20892 USA. [Brownfield, D. G.] Stanford Univ, Biochem, Stanford, CA 94305 USA. [Fletcher, D. A.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Fletcher, D. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC CELL BIOLOGY PI BETHESDA PA 8120 WOODMONT AVE, STE 750, BETHESDA, MD 20814-2755 USA SN 1059-1524 EI 1939-4586 J9 MOL BIOL CELL JI Mol. Biol. Cell PD DEC PY 2014 VL 25 MA P1915 PG 1 WC Cell Biology SC Cell Biology GA CE8LP UT WOS:000352094104362 ER PT J AU Schmid, EM Bakalar, MH Choudhuri, K Weichsel, J Ann, H Geissler, PL Dustin, ML Fletcher, DA AF Schmid, E. M. Bakalar, M. H. Choudhuri, K. Weichsel, J. Ann, H. Geissler, P. L. Dustin, M. L. Fletcher, D. A. TI Physical mechanisms of protein segregation at membrane interfaces. SO MOLECULAR BIOLOGY OF THE CELL LA English DT Meeting Abstract CT ASCB/IFCB Meeting CY DEC 06-10, 2014 CL Philadelphia, PA SP Amer Soc Cell Biol, Int Federat Cell Biol C1 [Schmid, E. M.; Bakalar, M. H.; Ann, H.] Univ Calif Berkeley, Bioengn, Berkeley, CA 94720 USA. [Choudhuri, K.] NYU Med Ctr, Dept Pathol, New York, NY 10016 USA. [Weichsel, J.; Geissler, P. L.] Univ Calif Berkeley, Chem, Berkeley, CA 94720 USA. [Dustin, M. L.] Univ Oxford, Kennedy Inst Rheumatol, NDORMS, Headington, England. [Fletcher, D. A.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Fletcher, D. A.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Fletcher, D. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 1 U2 2 PU AMER SOC CELL BIOLOGY PI BETHESDA PA 8120 WOODMONT AVE, STE 750, BETHESDA, MD 20814-2755 USA SN 1059-1524 EI 1939-4586 J9 MOL BIOL CELL JI Mol. Biol. Cell PD DEC PY 2014 VL 25 MA M27 PG 1 WC Cell Biology SC Cell Biology GA CE8LP UT WOS:000352094106076 ER PT J AU Tyagi, S Vandelinder, V Banterle, N Fuertes, G Milles, S Agez, M Lemke, E AF Tyagi, S. Vandelinder, V. Banterle, N. Fuertes, G. Milles, S. Agez, M. Lemke, E. TI Continuous throughput and long-term observation of single-molecule FRET without immobilization. SO MOLECULAR BIOLOGY OF THE CELL LA English DT Meeting Abstract CT ASCB/IFCB Meeting CY DEC 06-10, 2014 CL Philadelphia, PA SP Amer Soc Cell Biol, Int Federat Cell Biol C1 [Tyagi, S.; Banterle, N.; Fuertes, G.; Milles, S.; Agez, M.; Lemke, E.] EMBL, Struct & Computat Biol Unit, Heidelberg, Germany. [Vandelinder, V.] Sandia Natl Labs, Albuquerque, NM 87185 USA. NR 1 TC 0 Z9 0 U1 2 U2 3 PU AMER SOC CELL BIOLOGY PI BETHESDA PA 8120 WOODMONT AVE, STE 750, BETHESDA, MD 20814-2755 USA SN 1059-1524 EI 1939-4586 J9 MOL BIOL CELL JI Mol. Biol. Cell PD DEC PY 2014 VL 25 MA P18 PG 2 WC Cell Biology SC Cell Biology GA CE8LP UT WOS:000352094100019 ER PT J AU Vahey, MD Fletcher, DA AF Vahey, M. D. Fletcher, D. A. TI Reconstituting membrane budding with influenza A virus matrix protein SO MOLECULAR BIOLOGY OF THE CELL LA English DT Meeting Abstract CT ASCB/IFCB Meeting CY DEC 06-10, 2014 CL Philadelphia, PA SP Amer Soc Cell Biol, Int Federat Cell Biol C1 [Vahey, M. D.] Univ Calif Berkeley, Bioengn, Berkeley, CA 94720 USA. [Fletcher, D. A.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Fletcher, D. A.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Fletcher, D. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC CELL BIOLOGY PI BETHESDA PA 8120 WOODMONT AVE, STE 750, BETHESDA, MD 20814-2755 USA SN 1059-1524 EI 1939-4586 J9 MOL BIOL CELL JI Mol. Biol. Cell PD DEC PY 2014 VL 25 MA M123 PG 2 WC Cell Biology SC Cell Biology GA CE8LP UT WOS:000352094106220 ER PT J AU Yakubova, G Wielopolski, L Kavetskiy, A Torbert, HA Prior, SA AF Yakubova, Galina Wielopolski, Lucian Kavetskiy, Aleksandr Torbert, H. Allen Prior, Stephen A. TI Field Testing a Mobile Inelastic Neutron Scattering System to Measure Soil Carbon SO SOIL SCIENCE LA English DT Article DE Carbon; soil analysis; inelastic neutron scattering; thermo-neutron capture; neutron generator ID GAMMA-RAY SPECTROSCOPY; SPECTRA AB Cropping history in conjunction with soil management practices can have a major impact on the amount of organic carbon stored in soil. Current methods of assessing soil carbon based on soil coring and subsequent processing procedures before laboratory analysis are labor intensive and time-consuming. Development of alternative methods that can make in situ field measurements of soil carbon is needed to successfully evaluate management practices in a timely manner. The robust design, field testing procedure, and results of measuring soil carbon in situ using a mobile inelastic neutron scattering (MINS) system are described. A method of MINS spectra data processing that gives more accurate peak area determination compared with the traditional "trapezoidal" method is described. The MINS reliable autonomous operation for 29 h per charge cycle was demonstrated in the field. For comparison, soil cores were also collected for laboratory carbon analysis using the dry combustion technique. Soil carbon assessments by dry combustion technique and MINS demonstrated a linear correlation between the two methods in the 0- to 30-cm soil layer. Based on the developed theoretical model of MINS measurement, we demonstrated that accurate soil carbon determination by this method depends on carbon distribution within the soil and MINS signal errors. C1 [Yakubova, Galina; Kavetskiy, Aleksandr; Torbert, H. Allen; Prior, Stephen A.] USDA ARS, Natl Soil Dynam Lab, Auburn, AL 36832 USA. [Wielopolski, Lucian] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. RP Yakubova, G (reprint author), USDA ARS, Natl Soil Dynam Lab, 411 South Donahue Dr, Auburn, AL 36832 USA. EM galina.yakubova@ars.usda.gov NR 15 TC 4 Z9 4 U1 2 U2 8 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0038-075X EI 1538-9243 J9 SOIL SCI JI Soil Sci. PD DEC PY 2014 VL 179 IS 12 BP 529 EP 535 DI 10.1097/SS.0000000000000099 PG 7 WC Soil Science SC Agriculture GA CE2TL UT WOS:000351671400001 ER PT J AU Kim, J Moridis, GJ AF Kim, Jihoon Moridis, George J. TI Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability SO SPE JOURNAL LA English DT Article ID SEQUENTIAL-METHODS; POROSITY MATERIALS; 3-PHASE FLOW; FLUID-FLOW; HEAT-FLOW; SIMULATION; FORMULATION; STABILITY; MODEL; ALGORITHMS AB We investigate coupled flow and geomechanics in gas production from extremely low-permeability reservoirs such as tight-and shale-gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every timestep. We consider gas reservoirs with the vertical and horizontal primary fractures, using the single-and dynamic double-porosity (dual-continuum) models. We modify the multiple-porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that the production of gas causes redistribution of the effective-stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates the generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which, in turn, causes a change in the distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, a high Biot's coefficient, and low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double-porosity model is used, we observe a faster evolution of the enhanced-permeability areas than that obtained from the single-porosity model, mainly because of a higher permeability of the fractures in the double-porosity model. These complicated physics for stress-sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and, thus, tightly coupled flow and geomechanical models are highly recommended to describe accurately the reservoir behavior during gas production in tight-and shale-gas reservoirs and to design production scenarios smartly. C1 [Kim, Jihoon; Moridis, George J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Kim, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. FU US Environmental Protection Agency, Office of Water; US Department of Energy at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; RPSEA through the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program [08122-45]; US Environmental Protection Agency [DW-89-92235901-C] FX This study was supported by the US Environmental Protection Agency, Office of Water, under an Interagency Agreement with the US Department of Energy at the Lawrence Berkeley National Laboratory through Contract No. DE-AC02-05CH11231, and by RPSEA (Contract No. 08122-45) through the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program as authorized by the US Energy Policy Act of 2005. The research described in this article was funded wholly (or in part) by the US Environmental Protection Agency through Interagency Agreement (DW-89-92235901-C) to the Lawrence Berkeley National Laboratory. The views expressed in this article are those of the author(s) and do not necessarily reflect the views or policies of the Environmental Protection Agency. NR 49 TC 3 Z9 3 U1 3 U2 11 PU SOC PETROLEUM ENG PI RICHARDSON PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA SN 1086-055X EI 1930-0220 J9 SPE J JI SPE J. PD DEC PY 2014 VL 19 IS 6 BP 1110 EP 1125 PG 16 WC Engineering, Petroleum SC Engineering GA CE7JU UT WOS:000352016300010 ER PT J AU Esposito, A Augustine, C AF Esposito, Ariel Augustine, Chad TI Results of Reservoir Modeling of the Operation and Production of a Recompleted Gas Well in a Geopressured/Geothermal Reservoir in the Wilcox Formation, Texas, for Electricity Generation SO SPE JOURNAL LA English DT Article ID HYDRAULIC CONDUCTIVITY; POROUS-MEDIA; EQUATION AB Reservoir modeling of production of hot geothermal fluid and natural gas from a geopressured reservoir in the Wilcox formation, Texas, for geothermal-electricity generation is carried out primarily on the basis of well-log data. The reservoir modeling takes into account operational considerations such as a constant target flow rate, a 30-year reservoir lifetime, and minimum wellhead pressure as well as uncertainty in reservoir parameters such as gas saturation and reservoir volume. The results of the reservoir modeling are presented and their relevance to other similar geopressured/geothermal wells with the potential for natural-gas production is discussed. Geopressured/geothermal reservoirs are found throughout the Texas and Louisiana Gulf coast region, generally starting at depths below 8,000 ft, and are characterized by high-temperature/high-pressure, brine-saturated layers of interbedded shales and sandstones with correspondingly large quantities of dissolved natural gas. The temperature of the brine from these formations is high enough that it could be used to run organic Rankine cycle or binary power plants to generate electricity, whereas the dissolved natural gas in the brine could be simultaneously collected and used to generate additional electricity or be sold as a byproduct. However, there is uncertainty about whether these reservoirs can maintain adequate production over the 30-plus-year lifetime of the power plant, and about what the natural-gas-production profiles would look like over this lifetime to supplement revenue from the geothermal-electricity production. This paper uses reservoir modeling to simulate the operation and production of a recompleted gas well in a geopressured/geothermal reservoir in the Wilcox formation, Texas, to assess the feasibility of the use of such reservoirs to produce a constant flow rate of high-temperature brine over a 30-year production lifetime for electricity generation. Reservoir modeling is a tool that can help predict fluid-flow rate and natural-gas production from complex reservoirs over a long-term time frame. Multiphase-flow reservoir modeling is used in this study to provide insight on the viability of recovering hot geothermal brine for electricity production over a time frame of 30 years by use of an existing natural-gas well. For this study, data from an abandoned gas well in the Wilcox formation in Texas, including a well log and fluid-chemistry data, are used to create a reservoir model with multiple layers of sandstone and shale with properties inferred from the well log and flow tests. The modeling also considers the impact of the well-operation limitations for the abandoned well after it is recompleted, such as a maximum frictional pressure drop in the well, on the geothermal-brine- and methane-production profiles. To assess the impact of key reservoir characteristics such as reservoir volume and gas saturation on the flow rate of geothermal brine and natural gas over the long term, a parametric-sensitivity analysis is completed by use of a range of reasonable values for these key reservoir parameters. For all the reservoir volumes considered (1.42 x 10(7) to 5.90 x 10(7) acre-ft), the flow rate of both geothermal brine and natural gas is sustained over the 30-year production period and it is determined that reservoir longevity is not an issue for electricity production. The free-phase-gas saturation has an observable impact on flow, with a higher free-gas saturation leading to lower geothermal-brine-and methane-flow rates caused by gas choking the flow in the near-well region. Overall, the multiphase reservoir modeling results indicate that for the reservoir considered, the well can be operated so that production of hot geothermal brine can be maintained over the lifetime of a binary power plant close to the target flow rates and that the quantities of natural gas produced would be significant for the overall power-plant-project economics. C1 [Esposito, Ariel; Augustine, Chad] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Esposito, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. FU Department of Energy Geothermal Technologies Office (GTO) [24627] FX This study was funded by the Department of Energy Geothermal Technologies Office (GTO), under Contract Agreement No. 24627. The authors would like to thank GTO staff, especially Arlene Anderson, for their guidance and contributions to this work. NR 22 TC 0 Z9 0 U1 2 U2 7 PU SOC PETROLEUM ENG PI RICHARDSON PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA SN 1086-055X EI 1930-0220 J9 SPE J JI SPE J. PD DEC PY 2014 VL 19 IS 6 BP 1151 EP 1161 PG 11 WC Engineering, Petroleum SC Engineering GA CE7JU UT WOS:000352016300012 ER PT J AU Alexopoulos, T Leontsinis, S AF Alexopoulos, Theodoros Leontsinis, Stefanos TI Benford's Law in Astronomy SO JOURNAL OF ASTROPHYSICS AND ASTRONOMY LA English DT Article DE Benford's law; Universe; stars; galaxies; significant digit ID EXPANDING PHOTOSPHERE METHOD; LARGE-MAGELLANIC-CLOUD; II PLATEAU SUPERNOVAE; QUANTITATIVE SPECTROSCOPIC ANALYSIS; EXTRAGALACTIC DISTANCE SCALE; STANDARDIZED CANDLE METHOD; SN 1987A; SPECTRAL-ANALYSIS; P SUPERNOVAE; PROGENITOR AB Benford's law predicts the occurrence of the n-th digit of numbers in datasets originating from various sources all over the world, ranging from financial data to atomic spectra. It is intriguing that although many features of Benford's law have been proven, it is still not fully understood mathematically. In this paper we investigate the distances of galaxies and stars by comparing the first, second and third significant digit probabilities with Benford's predictions. It is found that the distances of galaxies follow the first digit law reasonable well, and that the star distances agree very well with the first, second and third significant digit. C1 [Alexopoulos, Theodoros; Leontsinis, Stefanos] Natl Tech Univ Athens, Dept Phys, GR-15780 Athens, Greece. [Leontsinis, Stefanos] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Alexopoulos, T (reprint author), Natl Tech Univ Athens, Dept Phys, 9 Heroon Polytechniou St, GR-15780 Athens, Greece. EM Theodoros.Alexopoulos@cern.ch; Stefanos.Leontsinis@cern.ch FU European Union; Greek national funds through the Operational Program Education and Lifelong Learning of the National Strategic Reference Framework (NSRF) [2007-1013 ARISTEIA-1893-ATLAS MICROMEGAS] FX We would like to thank I. P. Karananas for lengthy discussions on this subject. We would also like to thank Emeritus Professor Anastasios Filippas, and the reviewer for valuable comments and suggestions. The present work was co-funded by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program Education and Lifelong Learning of the National Strategic Reference Framework (NSRF) 2007-1013 ARISTEIA-1893-ATLAS MICROMEGAS. NR 86 TC 2 Z9 2 U1 1 U2 3 PU INDIAN ACAD SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0250-6335 EI 0973-7758 J9 J ASTROPHYS ASTRON JI J. Astrophys. Astron. PD DEC PY 2014 VL 35 IS 4 BP 639 EP 648 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD5HI UT WOS:000351118200005 ER PT J AU Kashinath, K Waugh, IC Juniper, MP AF Kashinath, Karthik Waugh, Iain C. Juniper, Matthew P. TI Nonlinear self-excited thermoacoustic oscillations of a ducted premixed flame: bifurcations and routes to chaos SO JOURNAL OF FLUID MECHANICS LA English DT Article DE instability; nonlinear dynamical systems; reacting flows ID COMBUSTION INSTABILITIES; ACOUSTIC-OSCILLATIONS; DYNAMICAL-SYSTEMS; TIME-SERIES; TURBULENCE; FLOW; CONVECTION; ATTRACTORS; TRANSITION; NONNORMALITY AB Thermoacoustic systems can oscillate self-excitedly, and often non-periodically, owing to coupling between unsteady heat release and acoustic waves. We study a slot-stabilized two-dimensional premixed flame in a duct via numerical simulations of a G-equation flame coupled with duct acoustics. We examine the bifurcations and routes to chaos for three control parameters: (i) the flame position in the duct, (ii) the length of the duct and (iii) the mean flow velocity. We observe period-1, period-2, quasi-periodic and chaotic oscillations. For certain parameter ranges, more than one stable state exists, so mode switching is possible. At intermediate times, the system is attracted to and repelled from unstable states, which are also identified. Two routes to chaos are established for this system: the period-doubling route and the Ruelle-Takens-Newhouse route. These are corroborated by analyses of the power spectra of the acoustic velocity. Instantaneous flame images reveal that the wrinkles on the flame surface and pinch-off of flame pockets are regular for periodic oscillations, while they are irregular and have multiple time and length scales for quasi-periodic and aperiodic oscillations. This study complements recent experiments by providing a reduced-order model of a system with approximately 5000 degrees of freedom that captures much of the elaborate nonlinear behaviour of ducted premixed flames observed in the laboratory. C1 [Kashinath, Karthik; Waugh, Iain C.; Juniper, Matthew P.] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England. RP Kashinath, K (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Climate Sci Dept, 1 Cyclotron Rd,MS74R316C, Berkeley, CA 94720 USA. EM karthikkashinath@gmail.com OI Kashinath, Karthik/0000-0002-9311-5215; Juniper, Matthew/0000-0002-8742-9541 FU European Research Council [ALORS 2590620]; EPSRC; Rolls Royce via the Dorothy Hodgkin Postgraduate Award; IMechE FX This work was supported through funding from the European Research Council via the project ALORS 2590620, from the EPSRC and Rolls Royce via the Dorothy Hodgkin Postgraduate Award and from the IMechE. NR 82 TC 18 Z9 18 U1 1 U2 15 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD DEC PY 2014 VL 761 DI 10.1017/jfm.2014.601 PG 32 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA CD5NE UT WOS:000351134000010 ER PT J AU Muller, LI Hackworth, AM Giffen, NR Evans, JW Henning, J Hickling, GJ Allen, P AF Muller, Lisa I. Hackworth, Amanda M. Giffen, Neil R. Evans, James W. Henning, Jason Hickling, Graham J. Allen, Phillip TI Spatial and Temporal Relationships Between Deer Harvest and Deer-Vehicle Collisions at Oak Ridge Reservation, Tennessee SO WILDLIFE SOCIETY BULLETIN LA English DT Article DE deer-vehicle collisions; moon phase; Oak Ridge; Odocoileus virginianus; Tennessee; white-tailed deer ID WHITE-TAILED DEER; LANDSCAPE; LOCATIONS; MORTALITY; COUNTY; IOWA AB White-tailed deer (Odocoileus virginianus)-vehicle collisions (DVCs) are increasing as human and deer populations continue to grow. Deer harvest was implemented at Oak Ridge Reservation, Tennessee (ORR) in 1985 to reduce DVCs. We assessed the relationship between DVCs at ORR to deer harvest, road type, and habitat features (forest, field, water, and developed cover types) during 1986-2008 using Poisson regression analysis and Akaike Information Criterion modeling. We also evaluated DVC numbers for the city of Oak Ridge and ORR during 1975-2008 to examine the effects of moon phase, employee work-shift timing, and season on DVCs. From 1975 to 2008, 4,637 DVCs occurred in Oak Ridge and ORR, with monthly DVCs peaking each November. Most DVCs occurred at the start of the workday. Annual DVC totals peaked at 273 in 1985; deer harvest was then implemented and DVCs declined. No harvest occurred in 2001 and DVCs increased for the next 2 years. A model including harvest, road type and distance, development, and water features received full support for explaining DVC occurrence. Harvest in the previous year was positively related to DVCs, likely reflecting higher hunter success with higher deer density. Higher traffic volume and speed were positively related to DVCs. There was no effect of moon phase for all records combined; however, analysis by season and gender showed a positive relationship to collisions for male deer during the gestation period (1 Jan-14 May), which may have been associated with dispersal. We recommend continued deer harvest and driver education to reduce DVCs. (C) 2014 The Wildlife Society. C1 [Muller, Lisa I.; Hackworth, Amanda M.; Henning, Jason; Hickling, Graham J.] Univ Tennessee, Dept Forestry Fisheries & Wildlife, Knoxville, TN 37996 USA. [Giffen, Neil R.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Evans, James W.] Tennessee Wildlife Resources Agcy, Oak Ridge, TN 37831 USA. [Allen, Phillip] Univ Tennessee, Dept Biosyst Engn, Knoxville, TN 37996 USA. RP Muller, LI (reprint author), Univ Tennessee, Dept Forestry Fisheries & Wildlife, Knoxville, TN 37996 USA. EM lmuller@utk.edu OI Muller, Lisa/0000-0001-7833-2273 FU Department of Energy FX We thank the Department of Energy for providing funding. We also thank P. Parr (Oak Ridge National Laboratory Natural Resources Manager) and D. Page from the Department of Energy for their support. A special thanks to A. Froschauer for reviewing and entering the historical data sets. We also thank L. George and N. McCracken for data entry. NR 44 TC 0 Z9 0 U1 10 U2 28 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1938-5463 J9 WILDLIFE SOC B JI Wildl. Soc. Bull. PD DEC PY 2014 VL 38 IS 4 BP 812 EP 820 DI 10.1002/wsb.446 PG 9 WC Biodiversity Conservation SC Biodiversity & Conservation GA CD9RA UT WOS:000351434500020 ER PT J AU Gulliver, DM Lowry, GV Gregory, KB AF Gulliver, Djuna M. Lowry, Gregory V. Gregory, Kelvin B. TI Effect of CO2(aq) Exposure on a Freshwater Aquifer Microbial Community from Simulated Geologic Carbon Storage Leakage SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS LA English DT Article ID SHALE GAS; GEN. NOV.; BACTERIA; TEMPERATURE; DIVERSITY; OXIDATION; SEDIMENTS; ECOSYSTEM; SOIL AB Geological carbon storage is likely to be part of a comprehensive strategy to minimize the atmospheric release of carbon dioxide (CO2), raising concerns that injected CO2 will leak into overlying freshwater aquifers. While a high concentration of CO2 is toxic to bacteria and causes large community changes, little is known about how exposure to low concentrations of CO2 may impact bacterial communities in aquifers. Microbial communities in aquifers provide important functionality through carbon and nutrient cycling in aquifer and connected aqueous ecosystems. The impact of in situ CO2(aq) it exposure on the microbial community in a freshwater aquifer was examined. CO2(aq) was introduced into the formation to simulate leakage from a geologic carbon storage unit. On the basis of the 16S rRNA genes recovered from subsurface samples, the population numbers were unaffected by CO2(aq) up to 1.53 g of CO2(aq)/L, but diversity decreased with an increased CO2(aq) concentration, suggesting at least short-term disruption of ecosystem functions may occur. C1 [Gulliver, Djuna M.; Lowry, Gregory V.; Gregory, Kelvin B.] Natl Energy Technol Lab, Off Res & Dev, Pittsburgh, PA 15236 USA. [Gulliver, Djuna M.; Lowry, Gregory V.; Gregory, Kelvin B.] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. RP Gregory, KB (reprint author), Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. EM kelvin@cmu.edu RI Gulliver, Djuna/H-8182-2014 OI Gulliver, Djuna/0000-0003-4219-5849 FU National Energy Technology Laboratory, Department of Energy FX This work was funded by National Energy Technology Laboratory, Department of Energy. This project is part of a collaborative research endeavor by Robert C. Trautz at Electric Power Research Institute, John D. Pugh at Southern Company Services, and Charuleka Varadharajan at Lawrence Berkeley National Laboratory. NR 35 TC 3 Z9 3 U1 3 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2328-8930 J9 ENVIRON SCI TECH LET JI Environ. Sci. Technol. Lett. PD DEC PY 2014 VL 1 IS 12 BP 479 EP 483 DI 10.1021/ez500337v PG 5 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CD1JS UT WOS:000350831800003 ER PT J AU He, F Zhao, WR Liang, LY Gu, BH AF He, Feng Zhao, Weirong Liang, Liyuan Gu, Baohua TI Photochemical Oxidation of Dissolved Elemental Mercury by Carbonate Radicals in Water SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS LA English DT Article ID NATURAL ORGANIC-MATTER; HYDROXYL RADICALS; GASEOUS MERCURY; PHOTOINDUCED OXIDATION; AQUATIC ENVIRONMENTS; ANOXIC ENVIRONMENTS; INORGANIC RADICALS; RATE CONSTANTS; OAK-RIDGE; METHYLMERCURY AB Photochemical oxidation of dissolved elemental mercury, Hg(0), affects mercury chemical speciation and its transfer at the water-air interface in the aquatic environment. The mechanisms and factors that control Hg(0) photooxidation, however, are not completely understood, especially concerning the role of dissolved organic matter (DOM) and carbonate (CO32-) in natural freshwaters. Here, we evaluate Hg(0) photooxidation rates affected by reactive ionic species (e.g., DOM, CO32-, and NO3-) and free radicals in creek water and a phosphate buffer solution (pH 8) under simulated solar irradiation. The Hg(0) photooxidation rate (k = 1.44 h(-1)) is much higher in the presence of both CO32- and NO3- than in the presence of CO32-, NO3-, or DOM alone (k = 0.1-0.17 h(-1)). Using scavengers and enhancers for singlet oxygen (O-1(2)) and hydroxyl (HO center dot) radicals, as well as electron paramagnetic resonance spectroscopy, we found that carbonate radicals (CO3 center dot-) primarily drive Hg(0) photooxidation. The addition of DOM to the solution of CO32- and NO3- decreased the oxidation rate by half. This study identifies an unrecognized pathway of Hg(0) photooxidation by CO3 center dot- radicals and the inhibitory effect of DOM, which could be important in assessing Hg transformation and the fate of Hg in water containing carbonate such as hard water and seawater. C1 [He, Feng; Liang, Liyuan; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [He, Feng] Zhejiang Univ Technol, Coll Biol & Environm Engn, Hangzhou 310014, Zhejiang, Peoples R China. [Zhao, Weirong] Zhejiang Univ, Dept Environm Engn, Hangzhou 310058, Zhejiang, Peoples R China. RP He, F (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM fenghe@zjut.edu.cn; gub1@ornl.gov RI He, Feng/B-9444-2012; Gu, Baohua/B-9511-2012 OI He, Feng/0000-0001-5702-4511; Gu, Baohua/0000-0002-7299-2956 FU Office of Biological and Environmental Research, U.S. Department of Energy (DOE), Mercury Science Focus Area (SEA) Program at ORNL [DE-AC05-00OR22725] FX We thank X. Yin and Y. Qian at Oak Ridge National Laboratory (ORNL) for technical assistance and H. P. Xi at Zhejiang University for EPR analysis. This research was sponsored in part by the Office of Biological and Environmental Research, U.S. Department of Energy (DOE), as part of the Mercury Science Focus Area (SEA) Program at ORNL, which is managed by UT-Battelle LLC for DOE under Contract DE-AC05-00OR22725. NR 44 TC 3 Z9 3 U1 5 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2328-8930 J9 ENVIRON SCI TECH LET JI Environ. Sci. Technol. Lett. PD DEC PY 2014 VL 1 IS 12 BP 499 EP 503 DI 10.1021/ez500322f PG 5 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CD1JS UT WOS:000350831800007 ER PT J AU Kenney, JL Solberg, OD Langevin, SA Brault, AC AF Kenney, Joan L. Solberg, Owen D. Langevin, Stanley A. Brault, Aaron C. TI Characterization of a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of arthropod cells with medically important flaviviruses SO JOURNAL OF GENERAL VIROLOGY LA English DT Article ID WEST-NILE-VIRUS; NATURAL MOSQUITO POPULATION; POLYMERASE-CHAIN-REACTION; TICK-BORNE FLAVIVIRUSES; 3 UNTRANSLATED REGION; KAMITI RIVER VIRUS; FUSING AGENT VIRUS; CULEX FLAVIVIRUS; DIRECT REPEATS; GENETIC-CHARACTERIZATION AB In the past decade, there has been an upsurge in the number of newly described insect-specific flaviviruses isolated pan-globally. We recently described the isolation of a novel flavivirus (tentatively designated 'Nhumirim virus'; NHUV) that represents an example of a unique subset of apparently insect-specific viruses that phylogenetically affiliate with dual-host mosquito-borne flaviviruses despite appearing to be limited to replication in mosquito cells. We characterized the in vitro growth potential and 3' untranslated region (UTR) sequence homology with alternative flaviviruses, and evaluated the virus's capacity to suppress replication of representative Culex spp.-vectored pathogenic flaviviruses in mosquito cells. Only mosquito cell lines were found to support NHUV replication, further reinforcing the insect-specific phenotype of this virus. Analysis of the sequence and predicted RNA secondary structures of the 3' UTR indicated NHUV to be most similar to viruses within the yellow fever serogroup and Japanese encephalitis serogroup, and viruses in the tick-borne flavivirus clade. NHUV was found to share the fewest conserved sequence elements when compared with traditional insect-specific flaviviruses. This suggests that, despite apparently being insect specific, this virus probably diverged from an ancestral mosquito-borne flavivirus. Co-infection experiments indicated that prior or concurrent infection of mosquito cells with NHUV resulted in a significant reduction in virus production of West Nile virus (WNV), St Louis encephalitis virus (SLEV) and Japanese encephalitis virus. The inhibitory effect was most effective against WNV and SLEV with over a 10(6)-fold and 10(4)-fold reduction in peak titres, respectively. C1 [Kenney, Joan L.; Brault, Aaron C.] Ctr Dis Control & Prevent, Div Vector Borne Dis, Ft Collins, CO 80521 USA. [Solberg, Owen D.; Langevin, Stanley A.] Sandia Natl Labs, Livermore, CA USA. RP Brault, AC (reprint author), Ctr Dis Control & Prevent, Div Vector Borne Dis, Ft Collins, CO 80521 USA. EM abrault@cdc.gov FU ASM/CDC postdoctoral fellowship; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We would like to thank Alex Pauvolid-Correa and Nick Komar for providing the isolate and for their helpful discussions in the preparation of this manuscript. We would like to thank Robert Tesh for providing the amphibian cell line, Nisha Duggal and Goro Kuno for reviewing the manuscript and Tamara Gritsun for advice on the 3' UTR analysis. J. L. K. was supported by an ASM/CDC postdoctoral fellowship. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 71 TC 20 Z9 21 U1 0 U2 10 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 0022-1317 EI 1465-2099 J9 J GEN VIROL JI J. Gen. Virol. PD DEC PY 2014 VL 95 BP 2796 EP 2808 DI 10.1099/vir.0.068031-0 PN 12 PG 13 WC Biotechnology & Applied Microbiology; Virology SC Biotechnology & Applied Microbiology; Virology GA CD2YB UT WOS:000350943800023 PM 25146007 ER PT J AU Cornell, SD Duner, S Garcia-Sciveres, M Haber, C Lehmann, N Pirrami, L Ropraz, E Wang, H AF Cornell, S. Diez Duner, S. Garcia-Sciveres, M. Haber, C. Lehmann, N. Pirrami, L. Ropraz, E. Wang, H. TI Development of a Fast Cluster Finding self-seeded trigger demonstrator SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Trigger concepts and systems (hardware and software); Trigger detectors; Data acquisition concepts; Particle tracking detectors AB The ABC 130 chip developed for the high luminosity LHC(HL-LHC) upgrade of the ATLAS silicon strip tracker implements a Fast Cluster Finder (FCF). The FCF is capable of reading out certain track cluster information serially with a clock rate up to 640 MHz, sufficient to output the location within the 40 MHz collision frequency. An external correlator circuit can be used to find the position coincidence of clusters at two adjacent layers of silicon sensor. The coincidence offset is related to the transverse momentum of the track, and therefore it provides information which may contribute to a Level-1 trigger decision. These circuit elements have been implemented in a sensor doublet configuration coupled to an FPGA which executes the correlator algorithm. Design and test results of this system are presented. C1 [Cornell, S. Diez; Garcia-Sciveres, M.; Haber, C.] Lawrence Berkeley Natl Lab, Berkeley, CA 94530 USA. [Duner, S.; Pirrami, L.; Ropraz, E.; Wang, H.] Univ Appl Sci Fribourg, Fribourg, Switzerland. [Lehmann, N.] Ecole Polytech Fed Lausanne, Lausanne, Switzerland. RP Wang, H (reprint author), Univ Appl Sci Fribourg, Fribourg, Switzerland. EM haichenwang@lbl.gov FU Office of Science, Offices of High Energy and Nuclear Physics of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors acknowledge their colleagues in the ATLAS collaboration and in the ATLAS upgrade working groups for many important discussions and contributions to the development of the stave based tracker concept for the HL-LHC and for ideas about triggering and readout at high luminosity. This work was supported by the Director, Office of Science, Offices of High Energy and Nuclear Physics of the U.S. Department of Energy under the Contracts DE-AC02-05CH11231. NR 6 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD DEC PY 2014 VL 9 AR C12022 DI 10.1088/1748-0221/9/12/C12022 PG 7 WC Instruments & Instrumentation SC Instruments & Instrumentation GA CD8KE UT WOS:000351342900006 ER PT J AU Luo, C Tobias, BJ Gao, B Zhu, Y Xie, J Domier, CW Luhmann, NC Lan, T Liu, A Li, H Yu, C Liu, W AF Luo, C. Tobias, B. J. Gao, B. Zhu, Y. Xie, J. Domier, C. W. Luhmann, N. C. Lan, T. Liu, A. Li, H. Yu, C. Liu, W. TI Quasi-optics design of the dual-array ECE imaging system on the EAST Tokamak SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Nuclear instruments and methods for hot plasma diagnostics; Plasma diagnostics - interferometry, spectroscopy and imaging AB A novel large aperture quasi-optical imaging system is designed for the new dual-array electron cyclotron emission (ECE) imaging (ECEI) instrument on the EAST tokamak. The zoom doublet scheme is used in the microwave imaging system on a super-conducting tokamak for the first time, and the focal plane can reach the high magnetic field side region even in the narrowest zoom configuration. The best spatial resolution in the vertical direction is 1.1 cm and the maximum vertical coverage can reach 80 cm. The field curvature is largely reduced in the narrow zoom configuration by the parabolic correction of a single lens surface. The imaging performance is fully characterized in the laboratory, and the characterized beam patterns show good agreements with the Gaussian beam specifications in the simulation results of the design. C1 [Luo, C.; Gao, B.; Zhu, Y.; Xie, J.; Lan, T.; Liu, A.; Li, H.; Yu, C.; Liu, W.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Tobias, B. J.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Domier, C. W.; Luhmann, N. C.] Univ Calif Davis, Davis, CA 95616 USA. RP Xie, J (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. EM jlxie@ustc.edu.cn FU National Magnetic Confinement Fusion Energy Program of China [2009GB107001, 2014GB109002] FX This work is supported by National Magnetic Confinement Fusion Energy Program of China under contract Nos. 2009GB107001 and 2014GB109002. NR 14 TC 4 Z9 5 U1 2 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD DEC PY 2014 VL 9 AR P12014 DI 10.1088/1748-0221/9/12/P12014 PG 17 WC Instruments & Instrumentation SC Instruments & Instrumentation GA CD8KE UT WOS:000351342900046 ER PT J AU Morales-Valdes, P Flores-Tlacuahuac, A Zavala, VM AF Morales-Valdes, Pilar Flores-Tlacuahuac, Antonio Zavala, Victor M. TI Analyzing the effects of comfort relaxation on energy demand flexibility of buildings: A multiobjective optimization approach SO ENERGY AND BUILDINGS LA English DT Article DE Multiobjective optimization; Optimal control; HVAC systems; Comfort relaxation; energy flexibility ID MODEL-PREDICTIVE CONTROL; INDOOR AIR-QUALITY; THERMAL COMFORT; HVAC SYSTEM; STRATEGIES; IMPLEMENTATION; ENVIRONMENT; MANAGEMENT AB We present a multiobjective optimization framework to evaluate the effects of comfort relaxation on the energy demands of buildings. This work is motivated by recent interest in understanding demand elasticity available for real-time electricity market operations and demand response events. We analyze the flexibility provided by an economics-based control architecture that directly minimizes total energy and by a traditional tracking control system that minimizes deviations from reference temperature and relative humidity set-points. Our study provides the following insights: (i) using percentage mean vote (PMV) and predicted percentage dissatisfied (PPD) constraints within an economics-based system consistently gives the most flexibility as comfort is relaxed, (ii) using PMV and PPD penalization objectives results in high comfort volatility, (iii) using temperature and relative humidity bounds severely overestimates flexibility, and (iv) tracking control offers limited flexibility even if used with optimal set-back conditions. We present a strategy to approximate nonlinear comfort regions using linear polyhedral regions, and we demonstrate that this reduces the computational complexity of optimal control formulations. (C) 2014 Published by Elsevier B.V. C1 [Morales-Valdes, Pilar; Flores-Tlacuahuac, Antonio] Univ Iberoamer, Dept Ingn & Ciencias Quim, Mexico City 01210, DF, Mexico. [Zavala, Victor M.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Zavala, VM (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vzavala@mcs.anl.gov FU U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. NR 33 TC 4 Z9 4 U1 4 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD DEC PY 2014 VL 85 BP 416 EP 426 DI 10.1016/j.enbuild.2014.09.040 PG 11 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA CA4NI UT WOS:000348880900041 ER PT J AU Raftery, P Lee, E Webster, T Hoyt, T Bauman, F AF Raftery, Paul Lee, Edwin Webster, Tom Hoyt, Tyler Bauman, Fred TI Effects of furniture and contents on peak cooling load SO ENERGY AND BUILDINGS LA English DT Article DE Cooling load; Internal mass; Furniture; Simulation; EnergyPlus ID THERMAL MASS; PERFORMANCE; ENERGYPLUS; BUILDINGS; ENVELOPE; RADIANT; SYSTEMS; MODELS AB We assess the impact that furniture and contents (i.e. internal mass) have on zone peak cooling loads using a perimeter zone model in EnergyPlus across 5400 parametric simulation runs. The zone parameters were HVAC system type (overhead, underfloor, and thermally activated building system (TABS)), orientation, Window to wall ratio, and building envelope mass. The internal mass parameters were the amount, area, and the material type used. We also evaluated a new internal mass modeling method, which models direct solar radiation on the internal mass surface, an effect that is missing in current methods. We show how each of these parameters affect peak cooling load, highlighting previously unpublished effects. Overall, adding internal mass changed peak cooling load by a median value of -2.28% (-5.45% and -0.67% lower and upper quartiles respectively) across the studied parameter space. Though the median is quite low, this study highlights the range of effects that internal mass can have on peak cooling loads depending on the parameters used, and the discussion highlights the lack of guidance on selecting reasonable values for internal mass parameters. Based on this we recommend conducting an experimental study to answer outstanding questions regarding improved specification of internal mass parameters. (C) 2014 Elsevier B.V. All rights reserved. C1 [Raftery, Paul; Webster, Tom; Hoyt, Tyler; Bauman, Fred] Univ Calif Berkeley, Ctr Built Environm, Berkeley, CA 94720 USA. [Lee, Edwin] Natl Renewable Energy Lab, Golden, CO USA. RP Raftery, P (reprint author), Univ Calif Berkeley, Ctr Built Environm, 390 Wurster Hall, Berkeley, CA 94720 USA. EM p.raftery@berkeley.edu FU Advanced Integrated Systems Technology Development (CEC) [500-08-044] FX The California Energy Commission PIER Buildings Program provided the funding for this research as part of the Advanced Integrated Systems Technology Development (CEC Contract 500-08-044). NR 28 TC 1 Z9 1 U1 1 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD DEC PY 2014 VL 85 BP 445 EP 457 DI 10.1016/j.enbuild.2014.09.081 PG 13 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA CA4NI UT WOS:000348880900044 ER PT J AU Balan, N Skoug, R Ram, ST Rajesh, PK Shiokawa, K Otsuka, Y Batista, IS Ebihara, Y Nakamura, T AF Balan, N. Skoug, R. Ram, S. Tulasi Rajesh, P. K. Shiokawa, K. Otsuka, Y. Batista, I. S. Ebihara, Y. Nakamura, T. TI CME front and severe space weather SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID CORONAL MASS EJECTION; GEOMAGNETICALLY INDUCED CURRENTS; SOLAR-WIND; OCTOBER 2003; MAGNETIC STORMS; ELECTRIC-FIELDS; RING CURRENT; EVENTS; IONOSPHERE; RECONNECTION AB Thanks to the work of a number of scientists who made it known that severe space weather can cause extensive social and economic disruptions in the modern high-technology society. It is therefore important to understand what determines the severity of space weather and whether it can be predicted. We present results obtained from the analysis of coronal mass ejections (CMEs), solar energetic particle (SEP) events, interplanetary magnetic field (IMF), CME-magnetosphere coupling, and geomagnetic storms associated with the major space weather events since 1998 by combining data from the ACE and GOES satellites with geomagnetic parameters and the Carrington event of 1859, the Quebec event of 1989, and an event in 1958. The results seem to indicate that (1) it is the impulsive energy mainly due to the impulsive velocity and orientation of IMF B-z at the leading edge of the CMEs (or CME front) that determine the severity of space weather. (2) CMEs having high impulsive velocity (sudden nonfluctuating increase by over 275 km s(-1) over the background) caused severe space weather (SvSW) in the heliosphere (failure of the solar wind ion mode of Solar Wind Electron Proton Alpha Monitor in ACE) probably by suddenly accelerating the high-energy particles in the SEPs ahead directly or through the shocks. (3) The impact of such CMEs which also show the IMF B-z southward from the leading edge caused SvSW at the Earth including extreme geomagnetic storms of mean Dst(MP) < -250 nT during main phases, and the known electric power outages happened during some of these SvSW events. (4) The higher the impulsive velocity, the more severe the space weather, like faster weather fronts and tsunami fronts causing more severe damage through impulsive action. (5) The CMEs having IMF B-z northward at the leading edge do not seem to cause SvSW on Earth, although, later when the IMF B-z turns southward, they can lead to super geomagnetic storms of intensity (Dst(min)) less than even -400 nT. C1 [Balan, N.; Shiokawa, K.; Otsuka, Y.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Balan, N.; Rajesh, P. K.] Natl Cheng Kung Univ, Dept Phys, Tainan 70101, Taiwan. [Balan, N.; Ebihara, Y.] Kyoto Univ, RISH, Uji, Kyoto, Japan. [Skoug, R.] Los Alamos Natl Lab, Los Alamos, NM USA. [Ram, S. Tulasi] Indian Inst Geomagnetism, Navi Mumbai, India. [Batista, I. S.] INPE, Sao Paulo, Brazil. [Nakamura, T.] NIPR, Tachikawa, Tokyo, Japan. RP Balan, N (reprint author), Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. EM b.nanan@sheffield.ac.uk RI Batista, Inez/F-2899-2012; Ebihara, Yusuke/D-1638-2013; OI Ebihara, Yusuke/0000-0002-2293-1557; Sudarsanam, Tulasiram/0000-0002-9530-6752 FU Department of Science and Technology (India) [GITA/DST/TWN/P-47/2013]; U.S. Department of Energy; NASA ACE program; Japan Society for the Promotion of Science [25247080] FX We thank the ACE, GOES, and IMP science and engineering teams, Kyoto World Data team, and authors of the excellent space weather literature for the data and information used. The CME and IMF data are obtained using ACE (http://www.srl.caltech.edu/ACE/ASC/) and IMP (http://cdaweb.gsfc.nasa.gov/pre_istp/) satellites; SEP data used are obtained using GOES satellite (http://cdaweb.gsfc.nasa.gov/cgi-bin/eval2.cgi) (OMNI_HRO_5MIN), and Dst and AE data are obtained from Kyoto WDC (http://wdc.kugi.kyoto-u.ac.jp/dstdir/). We also thank A. Viljanen for the reprints and discussion and the referees for critical comments and good suggestions. N. Balan thanks Nagoya University and National Cheng Kung University for Visiting Professor Positions. The work of Tulasi Ram is partially supported by the Department of Science and Technology (India) under the project GITA/DST/TWN/P-47/2013. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, with support from the NASA ACE program. This work was supported by Grants-in-Aid for Scientific Research (25247080) from the Japan Society for the Promotion of Science. NR 77 TC 6 Z9 6 U1 2 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC PY 2014 VL 119 IS 12 DI 10.1002/2014JA020151 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA8IG UT WOS:000349161100049 ER PT J AU Jaynes, AN Li, X Schiller, QG Blum, LW Tu, W Turner, DL Ni, B Bortnik, J Baker, DN Kanekal, SG Blake, JB Wygant, J AF Jaynes, A. N. Li, X. Schiller, Q. G. Blum, L. W. Tu, W. Turner, D. L. Ni, B. Bortnik, J. Baker, D. N. Kanekal, S. G. Blake, J. B. Wygant, J. TI Evolution of relativistic outer belt electrons during an extended quiescent period SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ALLEN RADIATION BELTS; ACCELERATION; STORMS; SOLAR AB To effectively study loss due to hiss-driven precipitation of relativistic electrons in the outer radiation belt, it is useful to isolate this loss by studying a time of relatively quiet geomagnetic activity. We present a case of initial enhancement and slow, steady decay of 700 keV-2 MeV electron populations in the outer radiation belt during an extended quiescent period from similar to 15 December 2012 to 13 January 2013. We incorporate particle measurements from a constellation of satellites, including the Colorado Student Space Weather Experiment (CSSWE) CubeSat, the Van Allen Probes twin spacecraft, and Time History of Events and Macroscale Interactions during Substorms (THEMIS), to understand the evolution of the electron populations across pitch angle and energy. Additional data from calculated phase space density, as well as hiss and chorus wave data from Van Allen Probes, help complete the picture of the slow precipitation loss of relativistic electrons during a quiet time. Electron loss to the atmosphere during this event is quantified through use of the Loss Index Method, utilizing CSSWE measurements at low Earth orbit. By comparing these results against equatorial Van Allen Probes electron flux data, we conclude the net precipitation loss of the outer radiation belt content to be greater than 92%, suggesting no significant acceleration during this period, and resulting in faster electron loss rates than have previously been reported. C1 [Jaynes, A. N.; Li, X.; Schiller, Q. G.; Blum, L. W.; Baker, D. N.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Tu, W.] Los Alamos Natl Lab, Los Alamos, NM USA. [Turner, D. L.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Ni, B.; Bortnik, J.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA. [Ni, B.] Wuhan Univ, Sch Elect Informat, Dept Space Phys, Wuhan 430072, Hubei, Peoples R China. [Kanekal, S. G.] NASA, Goddard Space Flight Ctr, Div Heliophys, Greenbelt, MD 20771 USA. [Blake, J. B.] Aerosp Corp, El Segundo, CA USA. [Wygant, J.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. RP Jaynes, AN (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. EM a.jaynes@unh.edu RI Tu, Weichao/B-6507-2011; OI Tu, Weichao/0000-0003-4547-3269; Blum, Lauren/0000-0002-4797-5476 FU RBSP-ECT through JHU/APL [967399]; RBSP-ECT under prime NASA [NAS5-01072]; CSSWE CubeSat through NSF [AGSW 0940277]; RBSP-EFW through NASA [NAS5-01072]; NASA [NAS5-02099, NNXX12AJ55G]; EC's FP7 MAARBLE project; NSFC [41204120]; Fundamental Research Funds for the Central Universities [2042014kf0251] FX The research presented here was supported by RBSP-ECT funding through JHU/APL contract 967399 (under prime NASA contract NAS5-01072) and CSSWE CubeSat funding through NSF grant AGSW 0940277. Additionally, support was provided by RBSP-EFW funding through NASA award NAS5-01072. D.L. Turner is thankful for funding from NASA (contract NAS5-02099 and grant NNXX12AJ55G) and the EC's FP7 MAARBLE project. B.N. also acknowledges the support from the NSFC grant 41204120 and from the Fundamental Research Funds for the Central Universities grant 2042014kf0251. OMNI Web solar wind data were obtained from GSFC CDAWeb online database. NR 31 TC 4 Z9 4 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC PY 2014 VL 119 IS 12 DI 10.1002/2014JA020125 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA8IG UT WOS:000349161100018 ER PT J AU Liu, YH Birn, J Daughton, W Hesse, M Schindler, K AF Liu, Yi-Hsin Birn, Joachim Daughton, William Hesse, Michael Schindler, Karl TI Onset of reconnection in the near magnetotail: PIC simulations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID THIN CURRENT SHEETS; COLLISIONLESS MAGNETIC RECONNECTION; ION KINK INSTABILITY; EARTH PLASMA SHEET; NEUTRAL SHEETS; LINEAR-THEORY; SMALL-SCALE; STABILITY; CLUSTER; TAIL AB Using 2.5-dimensional particle-in-cell (PIC) simulations of magnetotail dynamics, we investigate the onset of reconnection in two-dimensional tail configurations with finite B-z. Reconnection onset is preceded by a driven phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a relaxation phase, during which the configuration continues to respond to the driving. We found a clear distinction between stable and unstable cases, dependent on deformation amplitude and ion/electron mass ratio. The threshold appears consistent with electron tearing. The evolution prior to onset, as well as the evolution of stable cases, are largely independent of the mass ratio, governed by integral flux tube entropy conservation as imposed in MHD. This suggests that ballooning instability in the tail should not be expected prior to the onset of tearing and reconnection. The onset time and other onset properties depend on the mass ratio, consistent with expectations for electron tearing. At onset, we found electron anisotropies T-perpendicular to/T-parallel to = 1.1-1.3, raising growth rates and wave numbers. Our simulations have provided a quantitative onset criterion that is easily evaluated in MHD simulations, provided the spatial resolution is sufficient. The evolution prior to onset and after the formation of a neutral line does not depend on the electron physics, which should permit an approximation by MHD simulations with appropriate dissipation terms. C1 [Liu, Yi-Hsin; Hesse, Michael] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Birn, Joachim; Daughton, William] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Birn, Joachim] Space Sci Inst, Boulder, CO USA. [Schindler, Karl] Ruhr Univ Bochum, Inst Theoret Phys, Bochum, Germany. RP Birn, J (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM jbirn@spacescience.org RI Daughton, William/L-9661-2013; NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU NSF's GEM; NASA; NSF [OCI 07-25070]; state of Illinois FX Part of this work was performed at Los Alamos under the auspices of the U.S. Department of Energy, supported by the NSF's GEM and by NASA's MMS/SMART Theory and Modeling, SR&T, and Heliophysics Theory Programs. The simulations were performed using resources from the Los Alamos Institutional Computing Program, with further resources from the Blue Waters sustained-petascale computing project, which is supported by the NSF (OCI 07-25070) and the state of Illinois. NR 73 TC 10 Z9 10 U1 2 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC PY 2014 VL 119 IS 12 DI 10.1002/2014JA020492 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA8IG UT WOS:000349161100032 ER PT J AU Su, ZP Zhu, H Xiao, FL Zheng, HN Wang, YM Zong, QG He, ZG Shen, C Zhang, M Wang, S Kletzing, CA Kurth, WS Hospodarsky, GB Spence, HE Reeves, GD Funsten, HO Blake, JB Baker, DN AF Su, Zhenpeng Zhu, Hui Xiao, Fuliang Zheng, Huinan Wang, Yuming Zong, Q. -G. He, Zhaoguo Shen, Chao Zhang, Min Wang, Shui Kletzing, C. A. Kurth, W. S. Hospodarsky, G. B. Spence, H. E. Reeves, G. D. Funsten, H. O. Blake, J. B. Baker, D. N. TI Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID VAN ALLEN PROBES; WHISTLER-MODE WAVES; ART. NO. 1004; ENERGETIC PARTICLE; GEOMAGNETIC STORMS; MAGNETIC STORM; PITCH-ANGLE; OCTOBER 9; ACCELERATION; DIFFUSION AB We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by Radiation Belt Storm Probes and Time History of Events and Macroscale Interactions during Substorms satellites and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L > 6.07 over about 6 h, with up to 4 orders of magnitude enhancement in the 30 keV to 5 MeV electron fluxes at L = 6. The observations show that the substorm injection can cause 100% and 20% of the total subrelativistic (similar to 0.1 MeV) and relativistic (2-5 MeV) electron flux enhancements within a few minutes. The data-driven simulation supports that the strong chorus waves can yield 60%-80% of the total energetic (0.2-5.0 MeV) electron flux enhancement within about 6 h. Some simple analyses are further given for the other two events on 2 and 29 June 2013, in which the contributions of substorm injections and chorus waves are shown to be qualitatively comparable to those for the first event. These results clearly illustrate the respective importance of substorm injections and chorus waves for the evolution of radiation belt electrons at different energies on a relatively short timescale. C1 [Su, Zhenpeng; Zhu, Hui; Zheng, Huinan; Wang, Yuming; Zhang, Min; Wang, Shui] Univ Sci & Technol China, Dept Geophys & Planetary Sci, CAS Key Lab Geospace Environm, Hefei 230026, Peoples R China. [Su, Zhenpeng; Zhu, Hui; Zheng, Huinan] Chinese Acad Sci, State Key Lab Space Weather, Beijing, Peoples R China. [Zhu, Hui] Univ Sci & Technol China, Sch Earth & Space Sci, Mengcheng Natl Geophys Observ, Hefei 230026, Peoples R China. [Xiao, Fuliang] Changsha Univ Sci & Technol, Sch Phys & Elect Sci, Changsha, Peoples R China. [Zong, Q. -G.] Peking Univ, Inst Space Phys & Appl Technol, Beijing 100871, Peoples R China. [He, Zhaoguo] Chinese Acad Sci, Ctr Space Sci & Appl Res, Beijing, Peoples R China. [Shen, Chao] Chinese Acad Sci, Ctr Space Sci & Appl Res, State Key Lab Space Weather, Beijing, Peoples R China. [Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Reeves, G. D.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM USA. [Funsten, H. O.] Los Alamos Natl Lab, ISR Div, Los Alamos, NM USA. [Blake, J. B.] Aerosp Corp, Los Angeles, CA 90009 USA. [Baker, D. N.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. RP Su, ZP (reprint author), Univ Sci & Technol China, Dept Geophys & Planetary Sci, CAS Key Lab Geospace Environm, Hefei 230026, Peoples R China. EM szpe@mail.ustc.edu.cn RI Xiao, Fuliang/B-9245-2011; Wang, Yuming/A-8968-2012; Su, Zhenpeng/E-1641-2011; Reeves, Geoffrey/E-8101-2011; OI Funsten, Herbert/0000-0002-6817-1039; Xiao, Fuliang/0000-0003-1487-6620; Wang, Yuming/0000-0002-8887-3919; Su, Zhenpeng/0000-0001-5577-4538; Reeves, Geoffrey/0000-0002-7985-8098; Kurth, William/0000-0002-5471-6202; Hospodarsky, George/0000-0001-9200-9878; Kletzing, Craig/0000-0002-4136-3348 FU National Natural Science Foundation of China [41274169, 41274174, 41174125, 41131065, 41121003, 41074120, 41231066, 41304134]; Chinese Academy of Sciences [KZCX2-EW-QN510, KZZD-EW-01-4]; National Key Basic Research Special Foundation of China [2011CB811403]; Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences [XDA04060201]; Fundamental Research Funds for the Central Universities [WK2080000031]; JHU/APL under NASA [921647, 967399, NAS5-01072] FX The interplanetary parameters, geomagnetic indices, and THEMIS data are obtained at the CDAWeb (http://cdaweb.gsfc.nasa.gov/cdaweb/istp_public/). The RBSP data are available at the websites (http://emfisis.physics.uiowa.edu/Flight/ for EMFISIS and http://www.rbsp-ect.lanl.gov/data_pub/ for ECT). We acknowledge J.H. King, N. Papatashvilli, and CDAWeb for the use of interplanetary parameters and magnetospheric indices and acknowledge V. Angelopoulos, J.W. Bonnell, F.S. Mozer, A. Roux, R.E. Ergun, U. Auster, K.H. Glassmeier, W. Baumjohann, and SSCWeb for the use of THEMIS data. This work was supported by the National Natural Science Foundation of China grants 41274169, 41274174, 41174125, 41131065, 41121003, 41074120, 41231066, and 41304134, the Chinese Academy of Sciences grants KZCX2-EW-QN510 and KZZD-EW-01-4, the National Key Basic Research Special Foundation of China grant 2011CB811403, the Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences grant XDA04060201, and the Fundamental Research Funds for the Central Universities WK2080000031. This work was also supported from JHU/APL contracts 921647 and 967399 under NASA Prime contract NAS5-01072. NR 83 TC 10 Z9 10 U1 1 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC PY 2014 VL 119 IS 12 DI 10.1002/2014JA020709 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA8IG UT WOS:000349161100048 ER PT J AU Wang, CP Xing, XY Nakamura, TKM Lyons, LR Angelopoulos, V AF Wang, Chih-Ping Xing, Xiaoyan Nakamura, T. K. M. Lyons, Larry R. Angelopoulos, Vassilis TI Source and structure of bursty hot electron enhancements in the tail magnetosheath: Simultaneous two-probe observation by ARTEMIS SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID KELVIN-HELMHOLTZ VORTICES; MAGNETOSPHERIC IONS; DAYSIDE MAGNETOPAUSE; ENERGETIC PROTON; PLASMA; LEAKAGE; RECONNECTION; MAGNETOTAIL; INSTABILITY; DEPENDENCE AB Bursty enhancements of hot electrons (greater than or similar to 0.5 keV) with duration of minutes sometimes occur in the tail magnetosheath. In this study we used the unique simultaneous measurements from the two Acceleration Reconnection Turbulence and Electrodynamics of Moon's Interaction with the Sun probes to investigate the likely sources, spatial structures, and responsible processes for these hot electron enhancements. The enhancements can be seen at any distance across the magnetosheath, but those closer to the magnetopause are more often accompanied by magnetosheath density and flow magnitudes changing to more magnetosphere-like values. From simultaneous measurements with the two probes being on either side of magnetopause or both in the magnetosheath, it is evident that these hot electrons come from the magnetosphere near the current sheet without further energization and that the enhancements are a result of bursty lateral magnetosphere intrusion into the magnetosheath, the enhancements and changes in the magnetosheath properties becoming smaller with increasing outward distance from the intrusion. From limited events having specific separation distances and alignments between the probes, we estimated that a single isolated enhancement can have a thin and elongated structure as narrow as 2 R-E wide in the X direction, as long as over 7 R-E in the Y direction, and as thin as 1 R-E in the Z direction. We propose that Kelvin-Helmholtz perturbations at the magnetopause and subsequent magnetosphere-magnetosheath particle mixing due to reconnection or diffusion can plausibly play an important role in generating the bursty magnetosphere intrusion into the magnetosheath and the hot electron enhancements. C1 [Wang, Chih-Ping; Xing, Xiaoyan; Lyons, Larry R.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Nakamura, T. K. M.] Los Alamos Natl Lab, Los Alamos, NM USA. [Angelopoulos, Vassilis] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. RP Wang, CP (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. EM cat@atmos.ucla.edu FU NASA [NNX11AJ12G, NNX12AD11G, NAS5-02099]; NSF [ATM-1003595]; DLR [50 OC 0302] FX The work by C.-P. Wang and L.R. Lyons has been supported by NASA grant NNX11AJ12G and NSF grant ATM-1003595. The work by X. Xing has been supported by NASA grant NNX12AD11G. We acknowledge NASA contract NAS5-02099 for ARTEMIS, C.W. Carlson and J.P. McFadden for the use of ESA data, and K.H. Glassmeier, U. Auster, and W. Baumjohann for the use of FGM data provided under DLR contract 50 OC 0302. The ARTEMIS data are available online (http://artemis.ssl.berkeley.edu/) for free. We thank J.H. King and N. Papatashvilli at AdnetSystems, NASA GSFC, and CDAWeb for providing the OMNI data. NR 29 TC 1 Z9 1 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC PY 2014 VL 119 IS 12 DI 10.1002/2014JA020603 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA8IG UT WOS:000349161100039 ER PT J AU Lim, YW Haynes, M Furlan, M Robertson, CE Harris, JK Rohwer, F AF Lim, Yan Wei Haynes, Matthew Furlan, Mike Robertson, Charles E. Harris, J. Kirk Rohwer, Forest TI Purifying the Impure: Sequencing Metagenomes and Metatranscriptomes from Complex Animal-associated Samples SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Molecular Biology; Issue 94; virome; microbiome; metagenomics; metatranscriptomics; cystic fibrosis; mucosal-surface ID CYSTIC FIBROSIS INDIVIDUALS; 16S RIBOSOMAL-RNA; VIRAL COMMUNITIES; DNA VIRUSES; SPUTUM; GENE; ALIGNMENT; PROJECT; TOOLS; GUT AB The accessibility of high-throughput sequencing has revolutionized many fields of biology. In order to better understand host-associated viral and microbial communities, a comprehensive workflow for DNA and RNA extraction was developed. The workflow concurrently generates viral and microbial metagenomes, as well as metatranscriptomes, from a single sample for next-generation sequencing. The coupling of these approaches provides an overview of both the taxonomical characteristics and the community encoded functions. The presented methods use Cystic Fibrosis (CF) sputum, a problematic sample type, because it is exceptionally viscous and contains high amount of mucins, free neutrophil DNA, and other unknown contaminants. The protocols described here target these problems and successfully recover viral and microbial DNA with minimal human DNA contamination. To complement the metagenomics studies, a metatranscriptomics protocol was optimized to recover both microbial and host mRNA that contains relatively few ribosomal RNA (rRNA) sequences. An overview of the data characteristics is presented to serve as a reference for assessing the success of the methods. Additional CF sputum samples were also collected to (i) evaluate the consistency of the microbiome profiles across seven consecutive days within a single patient, and (ii) compare the consistency of metagenomic approach to a 16S ribosomal RNA gene-based sequencing. The results showed that daily fluctuation of microbial profiles without antibiotic perturbation was minimal and the taxonomy profiles of the common CF-associated bacteria were highly similar between the 16S rDNA libraries and metagenomes generated from the hypotonic lysis (HL)-derived DNA. However, the differences between 16S rDNA taxonomical profiles generated from total DNA and HL-derived DNA suggest that hypotonic lysis and the washing steps benefit in not only removing the human-derived DNA, but also microbial-derived extracellular DNA that may misrepresent the actual microbial profiles. C1 [Lim, Yan Wei; Furlan, Mike; Rohwer, Forest] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. [Haynes, Matthew] DOE Joint Genome Inst, Walnut Creek, CA USA. [Robertson, Charles E.] Univ Colorado, Dept Mol Cellular & Dev Biol, Boulder, CO 80309 USA. [Harris, J. Kirk] Univ Colorado, Sch Med, Dept Pediat, Boulder, CO 80309 USA. RP Lim, YW (reprint author), San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. EM ywlim.s@gmail.com OI ROBERTSON, CHARLES/0000-0002-4136-4121 FU National Institute of Health [1 R01 GM095384-01] FX This work was supported by the National Institute of Health (1 R01 GM095384-01) awarded to Forest Rohwer. We thank Epicentre, an Illumina company for providing early access to Ribo-Zero Epidemiology kits. We thank Mark Hatay for the design and production of the ultracentrifugation tube holder. We thank Andreas Haas and Benjamin Knowles for critical readings and discussions of the manuscript, and Lauren Paul for assisting the filming process. NR 54 TC 1 Z9 1 U1 1 U2 21 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD DEC PY 2014 IS 94 AR e52117 DI 10.3791/52117 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CB1AE UT WOS:000349358000028 ER PT J AU Suratwala, T Steele, R Feit, M Dylla-Spears, R Desjardin, R Mason, D Wong, L Geraghty, P Miller, P Shen, N AF Suratwala, Tayyab Steele, Rusty Feit, Michael Dylla-Spears, Rebecca Desjardin, Richard Mason, Dan Wong, Lana Geraghty, Paul Miller, Phil Shen, Nan TI Convergent Polishing: A Simple, Rapid, Full Aperture Polishing Process of High Quality Optical Flats & Spheres SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Physics; Issue 94; optical fabrication; pad polishing; fused silica glass; optical flats; optical spheres; ceria slurry; pitch button blocking; HF etching; scratches ID CHEMICAL-MECHANICAL PLANARIZATION; ABRASIVE SIZE DISTRIBUTION; FUSED-SILICA; MATERIAL REMOVAL; DAMAGE AB Convergent Polishing is a novel polishing system and method for finishing flat and spherical glass optics in which a workpiece, independent of its initial shape (i.e., surface figure), will converge to final surface figure with excellent surface quality under a fixed, unchanging set of polishing parameters in a single polishing iteration. In contrast, conventional full aperture polishing methods require multiple, often long, iterative cycles involving polishing, metrology and process changes to achieve the desired surface figure. The Convergent Polishing process is based on the concept of workpiece-lap height mismatch resulting in pressure differential that decreases with removal and results in the workpiece converging to the shape of the lap. The successful implementation of the Convergent Polishing process is a result of the combination of a number of technologies to remove all sources of non-uniform spatial material removal (except for workpiece-lap mismatch) for surface figure convergence and to reduce the number of rogue particles in the system for low scratch densities and low roughness. The Convergent Polishing process has been demonstrated for the fabrication of both flats and spheres of various shapes, sizes, and aspect ratios on various glass materials. The practical impact is that high quality optical components can be fabricated more rapidly, more repeatedly, with less metrology, and with less labor, resulting in lower unit costs. In this study, the Convergent Polishing protocol is specifically described for fabricating 26.5 cm square fused silica flats from a fine ground surface to a polished similar to N2 surface figure after polishing 4 hr per surface on a 81 cm diameter polisher. C1 [Suratwala, Tayyab; Steele, Rusty; Feit, Michael; Dylla-Spears, Rebecca; Desjardin, Richard; Mason, Dan; Wong, Lana; Geraghty, Paul; Miller, Phil; Shen, Nan] Lawrence Livermore Natl Lab, Lasers Opt & Targets Natl Ignit Facil, Livermore, CA 94550 USA. RP Suratwala, T (reprint author), Lawrence Livermore Natl Lab, Lasers Opt & Targets Natl Ignit Facil, Livermore, CA 94550 USA. EM suratwala1@llnl.gov RI Feit, Michael/A-4480-2009 FU U.S. Department of Energy by Lawrence Livermore National Laboratory within the LDRD program [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 within the LDRD program. NR 26 TC 2 Z9 2 U1 2 U2 11 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD DEC PY 2014 IS 94 AR e51965 DI 10.3791/51965 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CB1AE UT WOS:000349358000013 ER PT J AU Morokuma, T Tominaga, N Tanaka, M Mori, K Matsumoto, E Kikuchi, Y Shibata, T Sako, S Aoki, T Doi, M Kobayashi, N Maehara, H Matsunaga, N Mito, H Miyata, T Nakada, Y Soyano, T Tarusawa, K Miyazaki, S Nakata, F Okada, N Sarugaku, Y Richmond, MW Akitaya, H Aldering, G Arimatsu, K Contreras, C Hortiuchi, T Hsiao, EY Itoh, R Iwata, I Kawabata, KS Kawai, N Kitagawa, Y Kokubo, M Kuroda, D Mazzali, P Misawa, T Moritani, Y Morrell, N Okamoto, R Pavlyuk, N Phillips, MM Pian, E Sahu, D Saito, Y Sano, K Stritzinger, MD Tachibana, Y Taddia, F Takaki, K Tateuchi, K Tomita, A Tsvetkov, D Ui, T Ukita, N Urata, Y Walker, ES Yoshii, T AF Morokuma, Tomoki Tominaga, Nozomu Tanaka, Masaomi Mori, Kensho Matsumoto, Emiko Kikuchi, Yuki Shibata, Takumi Sako, Shigeyuki Aoki, Tsutomu Doi, Mamoru Kobayashi, Naoto Maehara, Hiroyuki Matsunaga, Noriyuki Mito, Hiroyuki Miyata, Takashi Nakada, Yoshikazu Soyano, Takao Tarusawa, Ken'ichi Miyazaki, Satoshi Nakata, Fumiaki Okada, Norio Sarugaku, Yuki Richmond, Michael W. Akitaya, Hiroshi Aldering, Greg Arimatsu, Ko Contreras, Carlos Hortiuchi, Takashi Hsiao, Eric Y. Itoh, Ryosuke Iwata, Ikuru Kawabata, Koji S. Kawai, Nobuyuki Kitagawa, Yutaro Kokubo, Mitsuru Kuroda, Daisuke Mazzali, Paolo Misawa, Toru Moritani, Yuki Morrell, Nidia Okamoto, Rina Pavlyuk, Nikolay Phillips, Mark M. Pian, Elena Sahu, Devendra Saito, Yoshihiko Sano, Kei Stritzinger, Maximilian D. Tachibana, Yutaro Taddia, Francesco Takaki, Katsutoshi Tateuchi, Ken Tomita, Akihiko Tsvetkov, Dmitry Ui, Takahiro Ukita, Nobuharu Urata, Yuji Walker, Emma S. Yoshii, Taketoshi TI Kiso Supernova Survey (KISS): Survey strategy SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE cosmology: observations; supernovae: general; surveys ID MULTICOLOR IMAGING TELESCOPES; EXTRAGALACTIC LEGACY SURVEY; ACTIVE GALACTIC NUCLEI; SEYFERT 1 GALAXY; SKY SURVEY; SHOCK BREAKOUT; IA SUPERNOVAE; II-PLATEAU; MONSTROUS EXPLOSIONS; OPTICAL VARIABILITY AB lThe Kiso Supernova Survey (KISS) is a high-cadence optical wide-field supernova (SN) survey. The primary goal of the survey is to catch the very early light of a SN, during the shock breakout phase. Detection of SN shock breakouts combined with multi-band photometry obtained with other facilities would provide detailed physical information on the progenitor stars of SNe. The survey is performed using a 2 degrees.2 x 2 degrees.2 field-of-view instrument on the 1.05-m Kiso Schmidt telescope, the Kiso Wide Field Camera (KWFC). We take a 3-min exposure in g-band once every hour in our survey, reaching magnitude g similar to 20-21. About 100 nights of telescope time per year have been spent on the survey since 2012 April. The number of the shock breakout detections is estimated to be of the order of 1 during our three-year project. This paper summarizes the KISS project including the KWFC observing setup, the survey strategy, the data reduction system, and CBET-reported SNe discovered so far by KISS. C1 [Morokuma, Tomoki; Kikuchi, Yuki; Sako, Shigeyuki; Doi, Mamoru; Kobayashi, Naoto; Miyata, Takashi; Nakada, Yoshikazu; Kitagawa, Yutaro; Kokubo, Mitsuru; Tateuchi, Ken] Univ Tokyo, Grad Sch Sci, Inst Astron, Mitaka, Tokyo 1810015, Japan. [Tominaga, Nozomu; Matsumoto, Emiko; Shibata, Takumi] Konan Univ, Dept Phys, Fac Sci & Engn, Kobe, Hyogo 6588501, Japan. [Tominaga, Nozomu] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan. [Tanaka, Masaomi; Miyazaki, Satoshi; Okada, Norio] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Mori, Kensho; Itoh, Ryosuke; Takaki, Katsutoshi; Ui, Takahiro] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Aoki, Tsutomu; Maehara, Hiroyuki; Mito, Hiroyuki; Soyano, Takao; Tarusawa, Ken'ichi] Univ Tokyo, Grad Sch Sci, Inst Astron, Kiso Observ, Nagano 3970101, Japan. [Doi, Mamoru] Univ Tokyo, Grad Sch Sci, Res Ctr Early Universe, Bunkyo Ku, Tokyo 113003, Japan. [Matsunaga, Noriyuki; Arimatsu, Ko; Sano, Kei] Univ Tokyo, Grad Sch Sci, Dept Astron, Tokyo 1130033, Japan. [Nakata, Fumiaki; Iwata, Ikuru] Subaru Telescope, Hilo, HI 96720 USA. [Sarugaku, Yuki; Arimatsu, Ko; Sano, Kei] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Richmond, Michael W.] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA. [Akitaya, Hiroshi; Kawabata, Koji S.; Moritani, Yuki] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Aldering, Greg] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Contreras, Carlos; Hsiao, Eric Y.; Morrell, Nidia; Phillips, Mark M.] Las Campanas Observ, Carnegie Observ, Colina El Pino 601, Casilla, Chile. [Contreras, Carlos; Hsiao, Eric Y.; Stritzinger, Maximilian D.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Hortiuchi, Takashi; Okamoto, Rina] Shinshu Univ, Dept Phys, Fac Sci, Matsumoto, Nagano 3908621, Japan. [Kawai, Nobuyuki; Saito, Yoshihiko; Tachibana, Yutaro; Yoshii, Taketoshi] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Kuroda, Daisuke; Ukita, Nobuharu] Natl Astron Observ Japan, Okayama Astrophys Observ, Kamogatacho, Okayama 7190232, Japan. [Mazzali, Paolo] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool L3 5RF, Merseyside, England. [Mazzali, Paolo] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Mazzali, Paolo] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Misawa, Toru] Shinshu Univ, Sch Gen Educ, Matsumoto, Nagano 3908621, Japan. [Pavlyuk, Nikolay; Tsvetkov, Dmitry] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow 119234, Russia. [Pian, Elena] Scuola Normale Super Pisa, I-56126 Pisa, Italy. [Pian, Elena] INAF Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy. [Sahu, Devendra] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Taddia, Francesco] Stockholm Univ, Dept Astron, Oskar Klein Ctr, AlbaNova, SE-10691 Stockholm, Sweden. [Tomita, Akihiko] Wakayama Univ, Fac Educ, Wakayama 6408510, Japan. [Urata, Yuji] Natl Cent Univ, Inst Astron, Chungli 32054, Taiwan. [Walker, Emma S.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. RP Morokuma, T (reprint author), Univ Tokyo, Grad Sch Sci, Inst Astron, 2-21-1 Osawa, Mitaka, Tokyo 1810015, Japan. EM tmorokuma@ioa.s.u-tokyo.ac.jp OI Pian, Elena/0000-0001-8646-4858; stritzinger, maximilian/0000-0002-5571-1833 FU Ministry of Education, Science, Culture, and Sport [23740143, 25800103, 23740157, 24740117, 25103515]; RFBR-JSPS bilateral program (RFBR) [13-02-92119]; National Science Foundation [AST-1008343]; FUND::::INAF PRIN; PRIN MIUR; Optical & Near-Infrared Astronomy Inter-University Cooperation Program by the MEXT of Japan FX This work has been partly supported by the Grants-in-Aid of the Ministry of Education, Science, Culture, and Sport [23740143, 25800103 (TM), 23740157 (NT), 24740117,25103515 (MT)], by the RFBR-JSPS bilateral program (RFBR grant No. 13-02-92119), the National Science Foundation under Grant No. AST-1008343, FUND::::INAF PRIN 2011 and PRIN MIUR 2010/2011, and Optical & Near-Infrared Astronomy Inter-University Cooperation Program, supported by the MEXT of Japan. NR 111 TC 9 Z9 9 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD DEC PY 2014 VL 66 IS 6 AR 114 DI 10.1093/pasj/psu105 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA7KJ UT WOS:000349095900017 ER PT J AU Nguyen, VV Poudyal, N Liu, XB Liu, JP Sun, KW Kramer, MJ Cui, J AF Van Vuong Nguyen Poudyal, Narayan Liu, Xubo Liu, J. Ping Sun, Kewei Kramer, Matt J. Cui, Jun TI High-Performance MnBi Alloy Prepared Using Profiled Heat Treatment SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article DE MnBi; permanent magnet; profiled heat treatment (PHT) ID MAGNETIC-PROPERTIES; PHASE AB The profiled heat treatment (PHT) method has been used to synthesize MnBi alloys with high-purity low-temperature phase (LTP). In the PHT method, the arc-melted MnBi alloy was remelted then slowly cooled by a pseudo-equilibrium solidification process to promote the formation of LTP phase. The PHT-treated MnBi alloys had an LTP phase up to 94 wt.% and a magnetization of 73 emu/g under a field of 9 T. Scanning electron microscopy showed that there exist some micrometer-sized Mn-rich inclusions in the LTP matrix of the PHT MnBi alloy. The PHT MnBi alloys were crushed into powders with an average size of similar to 3 mu m by low-energy ball milling. These MnBi powders were aligned in an 18 kOe field and warm compacted into a bulk magnet at 300 degrees C for 30 min. The magnet had a density of 8.2 g/cm(3) and magnetic properties of M-s = 6.7 kG, M-r = 5.3 kGs, (i) H-c = 5 kOe, and (BH)(max) = 6.1 MGOe. C1 [Van Vuong Nguyen; Poudyal, Narayan; Liu, Xubo; Liu, J. Ping] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Sun, Kewei; Kramer, Matt J.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Cui, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Liu, JP (reprint author), Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. EM pliu@uta.edu RI Liu, Xubo/A-1883-2008 OI Liu, Xubo/0000-0002-2558-0959 FU U.S. Department of Energy (U.S. DOE)/Advanced Research Projects Agency-Energy [REACT 0472-1526]; Center for Nanostructured Materials and Characterization Center for Materials and Biology, University of Texas at Arlington, Arlington, TX, USA; U.S. DOE, Iowa State University, Ames, IA, USA [DE-AC02-07CH11358] FX This work was supported in part by the U.S. Department of Energy (U.S. DOE)/Advanced Research Projects Agency-Energy under Grant REACT 0472-1526, and in part by the Center for Nanostructured Materials and Characterization Center for Materials and Biology, University of Texas at Arlington, Arlington, TX, USA. The work of M. J. Kramer and K. Sun was supported by the U.S. DOE, Iowa State University, Ames, IA, USA, under Contract DE-AC02-07CH11358, which was performed at the Ames Laboratory for the TEM characterization and magnetometry. NR 11 TC 4 Z9 4 U1 5 U2 28 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 EI 1941-0069 J9 IEEE T MAGN JI IEEE Trans. Magn. PD DEC PY 2014 VL 50 IS 12 AR 2105506 DI 10.1109/TMAG.2014.2341659 PG 6 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA CB2GQ UT WOS:000349445500003 ER PT J AU Wehner, MF Reed, KA Li, FY Prabhat Bacmeister, J Chen, CT Paciorek, C Gleckler, PJ Sperber, KR Collins, WD Gettelman, A Jablonowski, C AF Wehner, Michael F. Reed, Kevin A. Li, Fuyu Prabhat Bacmeister, Julio Chen, Cheng-Ta Paciorek, Christopher Gleckler, Peter J. Sperber, Kenneth R. Collins, William D. Gettelman, Andrew Jablonowski, Christiane TI The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1 SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article DE soil texture; soil hydraulic parameters; global land surface modeling; soil moisture; organic carbon AB We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25 degrees, 1 degrees, and 2 degrees is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations reveals both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model. C1 [Wehner, Michael F.; Li, Fuyu; Prabhat; Collins, William D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Reed, Kevin A.; Bacmeister, Julio; Gettelman, Andrew] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Chen, Cheng-Ta] Natl Taiwan Normal Univ, Dept Earth Sci, Taipei, Taiwan. [Chen, Cheng-Ta] Natl Taiwan Normal Univ, Inst Marine Environm Sci & Technol, Taipei, Taiwan. [Paciorek, Christopher] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA. [Gleckler, Peter J.; Sperber, Kenneth R.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Jablonowski, Christiane] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Wehner, MF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM mfwehner@lbl.gov RI Collins, William/J-3147-2014; Jablonowski, Christiane/I-9068-2012; Sperber, Kenneth/H-2333-2012; Reed, Kevin/C-4466-2012 OI Collins, William/0000-0002-4463-9848; Jablonowski, Christiane/0000-0003-0407-0092; Reed, Kevin/0000-0003-3741-7080 FU Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the U.S. Department of Energy Office of Science [DE-AC02-05CH11231]; Office of Science (BER), U.S. Department of Energy through Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Department of Energy's SciDAC program [DE-SC0006684]; U.S. Government FX This work was supported by the Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the U.S. Department of Energy Office of Science under contract DE-AC02-05CH11231. K. R. Sperber and P. J. Gleckler were supported by the Office of Science (BER), U.S. Department of Energy through Lawrence Livermore National Laboratory contract DE-AC52-07NA27344. C. Jablonowski was supported by the U.S. Department of Energy's SciDAC program, grant DE-SC0006684. Calculations were performed at the National Energy Research Supercomputing Center (NERSC) at the Lawrence Berkeley National Laboratory where the data from these simulations are archived and available from the authors. This document was prepared as an account of work sponsored by the U.S. Government. While this document is believed to contain correct information, neither the U.S. Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof or the Regents of the University of California. NR 0 TC 37 Z9 38 U1 2 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD DEC PY 2014 VL 6 IS 4 BP 980 EP 997 DI 10.1002/2013MS000276 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CA7FP UT WOS:000349083400002 ER PT J AU Zhang, CZ Wang, MH Morrison, H Somerville, RCJ Zhang, K Liu, XH Li, JLF AF Zhang, Chengzhu Wang, Minghuai Morrison, Hugh Somerville, Richard C. J. Zhang, Kai Liu, Xiaohong Li, Jui-Lin F. TI Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article DE high resolution; global atmospheric modeling; extreme precipitation; tropical cyclones ID COMMUNITY ATMOSPHERE MODEL; GENERAL-CIRCULATION MODEL; TROPICAL CYCLONE CLIMATOLOGY; VOLUME DYNAMICAL CORE; PRECIPITATION EXTREMES; INTERCOMPARISON PROJECT; HORIZONTAL RESOLUTION; GRIDDED PRECIPITATION; VERSION 3; SIMULATIONS AB In this study, an aerosol-dependent ice nucleation scheme has been implemented in an aerosol-enabled Multiscale Modeling Framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10-100/L) at cirrus temperatures. The new model simulates the observed shift of the ice supersaturation PDF toward higher values at low temperatures following the homogeneous nucleation threshold. The MMF model predicts a higher frequency of midlatitude supersaturation in the Southern Hemisphere and winter hemisphere, which is consistent with previous satellite and in situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to simulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation scheme and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 mu m for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement with the satellite-retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value. C1 [Zhang, Chengzhu; Somerville, Richard C. J.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Wang, Minghuai; Zhang, Kai] Pacific NW Natl Lab, Richland, WA 99352 USA. [Morrison, Hugh] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Liu, Xiaohong] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. [Li, Jui-Lin F.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Zhang, CZ (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. EM c5zhang@ucsd.edu RI Liu, Xiaohong/E-9304-2011; Wang, Minghuai/E-5390-2011; Zhang, Kai/F-8415-2010 OI Liu, Xiaohong/0000-0002-3994-5955; Wang, Minghuai/0000-0002-9179-228X; Zhang, Kai/0000-0003-0457-6368 FU Center for Multiscale Modeling of Atmospheric Processes (CMMAP), a National Science Foundation (NSF) Science and Technology Center [ATM-0425247]; DOE Office of Science, Decadal and Regional Climate Prediction Earth System Models (EaSM) program; DOE [DE-AC06-76RLO 1830]; U.S. Department of Energy Atmospheric System Research Program; National Science Foundation [OCI-1053575]; National Science Foundation FX This research was supported by the Center for Multiscale Modeling of Atmospheric Processes (CMMAP), a National Science Foundation (NSF) Science and Technology Center managed by Colorado State University under Cooperative Agreement ATM-0425247. C. Zhang wants to thank Gabe Kooperman and Mike Pritchard for insightful discussions. M. Wang was supported by the DOE Office of Science, Decadal and Regional Climate Prediction using Earth System Models (EaSM) program. PNNL is operated by Battelle for the DOE under Contract DE-AC06-76RLO 1830. K. Zhang acknowledges the support from the U.S. Department of Energy Atmospheric System Research Program. We thank the anonymous reviewers for their extremely conscientious and constructive comments and suggestions, which greatly improved the manuscript. Our research used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575. We also would like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation. The original PNNL MMF model is available through the NCAR CESM repository at: https://svn-ccsmrelease.cgd.ucar.edu/model_development_releases/spcam2_0 -cesm1_1_1. The model with updated ice nucleation is available upon request to C. Zhang. NR 72 TC 2 Z9 2 U1 1 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD DEC PY 2014 VL 6 IS 4 BP 998 EP 1015 DI 10.1002/2014MS000343 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CA7FP UT WOS:000349083400003 ER PT J AU Fang, YL Liu, CX Huang, MY Li, HY Leung, LR AF Fang, Yilin Liu, Chongxuan Huang, Maoyi Li, Hongyi Leung, L. Ruby TI Steady state estimation of soil organic carbon using satellite-derived canopy leaf area index SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article DE hurricanes; tropical cyclones ID EARTH SYSTEM MODELS; NET PRIMARY PRODUCTION; IN-SITU MEASUREMENTS; MODIS LAND-COVER; ECOSYSTEM PRODUCTION; USE EFFICIENCY; ENERGY FLUXES; FOREST SITES; WATER-VAPOR; VERSION 4 AB Estimation of soil organic carbon (SOC) stock using models typically requires long term spin-up of the carbon-nitrogen (CN) models, which has become a bottleneck for global modeling. We report a new numerical approach to estimate global SOC stock that can alleviate long spin-up. The approach uses satellite-based canopy leaf area index (LAI) and takes advantage of a reaction-based biogeochemical module-Next Generation BioGeoChemical Module (NGBGC) that was recently developed and incorporated in version 4 of the Community Land Model (CLM4). Although NGBGC uses the same CN mechanisms as in CLM4CN, it can be easily configured to run prognostic or steady state simulations. The new approach was applied at point and global scales and compared with SOC derived from spin-up by running NGBGC in the prognostic mode, and SOC from the Harmonized World Soil Database (HWSD). The steady state solution is comparable to the spin-up value when the satellite LAI is close to that from the spin-up solution, and largely captured the global variability of the HWSD SOC across the different dominant plant functional types (PFTs). The correlation between the simulated and HWSD SOC was, however, weak at both point and global scales, suggesting the needs for improving the biogeochemical processes described in CLM4 and updating HWSD. Besides SOC, the steady state solution also includes all other state variables simulated by a spin-up run, which makes the tested approach a promising tool to efficiently estimate global SOC distribution and evaluate and compare multiple aspects simulated by different CN mechanisms in the model. C1 [Fang, Yilin; Li, Hongyi] Pacific NW Natl Lab, Hydrol Grp, Energy & Environm Directorate, Richland, WA 99352 USA. [Liu, Chongxuan] Pacific NW Natl Lab, Geochem Grp, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Huang, Maoyi; Leung, L. Ruby] Pacific NW Natl Lab, Climate Phys Grp, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Fang, YL (reprint author), Pacific NW Natl Lab, Hydrol Grp, Energy & Environm Directorate, Richland, WA 99352 USA. EM yilin.fang@pnnl.gov RI Huang, Maoyi/I-8599-2012; Liu, Chongxuan/C-5580-2009; Fang, Yilin/J-5137-2015; Li, Hong-Yi/C-9143-2014 OI Huang, Maoyi/0000-0001-9154-9485; Li, Hong-Yi/0000-0001-5690-3610 FU Pacific Northwest National Laboratory's Laboratory Directed Research and Development Program; U.S. Department of Energy [DE-AC05-76RL01830] FX This research has been accomplished through funding support from Pacific Northwest National Laboratory's Laboratory Directed Research and Development Program. We are grateful to the North American Carbon Program Site-Level Interim Synthesis team, the Large Scale Biosphere-Atmosphere Experiment in Amazonia Model Intercomparison Project team, and the site investigators for collecting, organizing, and distributing the data required for this analysis. We are also grateful to the soil database HWSD established by the Food and Agriculture Organization of the United Nations, the International Institute for Applied Systems Analysis, International Soil Reference and Information Centre, Institute of Soil Science-Chinese Academy of Sciences, and Joint Research Centre of the European Commission. A portion of this research was performed using PNNL Institutional Computing at Pacific Northwest National Laboratory. PNNL is operated by Battelle for the U.S. Department of Energy under contract DE-AC05-76RL01830. The valuable comments from two anonymous reviewers are greatly appreciated. NR 70 TC 2 Z9 2 U1 4 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD DEC PY 2014 VL 6 IS 4 BP 1049 EP 1064 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CA7FP UT WOS:000349083400006 ER PT J AU Shaevitz, DA Camargo, SJ Sobel, AH Jonas, JA Kim, D Kumar, A LaRow, TE Lim, YK Murakami, H Reed, KA Roberts, MJ Scoccimarro, E Vidale, PL Wang, H Wehner, MF Zhao, M Henderson, N AF Shaevitz, Daniel A. Camargo, Suzana J. Sobel, Adam H. Jonas, Jeffrey A. Kim, Daehyun Kumar, Arun LaRow, Timothy E. Lim, Young-Kwon Murakami, Hiroyuki Reed, Kevin A. Roberts, Malcolm J. Scoccimarro, Enrico Vidale, Pier Luigi Wang, Hui Wehner, Michael F. Zhao, Ming Henderson, Naomi TI Characteristics of tropical cyclones in high-resolution models in the present climate SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article ID WESTERN NORTH PACIFIC; MADDEN-JULIAN OSCILLATION; INTERDECADAL VARIABILITY; EL-NINO; INTERANNUAL VARIABILITY; HURRICANE INTENSITY; DECADAL VARIATIONS; GENESIS LOCATION; STORM FORMATION; ENSO AB The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) fields in two types of experiments, using climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models. C1 [Shaevitz, Daniel A.; Sobel, Adam H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Camargo, Suzana J.; Sobel, Adam H.; Kim, Daehyun; Henderson, Naomi] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Sobel, Adam H.] Columbia Univ, Dept Earth & Environm Sci, New York, NY USA. [Jonas, Jeffrey A.] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Jonas, Jeffrey A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Kumar, Arun; Wang, Hui] NOAA NWS NCEP, Climate Predict Ctr, College Pk, MD USA. [LaRow, Timothy E.] Florida State Univ, Ctr Ocean Atmospher Predict Studies, Tallahassee, FL 32306 USA. [Lim, Young-Kwon] NASA, Goddard Space Flight Ctr, GMAO, Greenbelt, MD 20771 USA. [Lim, Young-Kwon] IM Syst Grp, Goddard Earth Sci Technol & Res, Greenbelt, MD USA. [Murakami, Hiroyuki] Univ Hawaii Manoa, Int Pacific Res Ctr, Honolulu, HI 96822 USA. [Reed, Kevin A.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Roberts, Malcolm J.] Met Off, Hadley Ctr, Exeter, Devon, England. [Scoccimarro, Enrico] Ist Nazl Geofis & Vulcanol, Bologna, Italy. [Scoccimarro, Enrico] Ctr Euromediterraneosui Cambiamenti Climatici, Bologna, Italy. [Vidale, Pier Luigi] Univ Reading, NCAS Climate, Reading, Berks, England. [Wehner, Michael F.] Lawrence Livermore Natl Lab, Berkeley, CA USA. [Zhao, Ming] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. RP Camargo, SJ (reprint author), Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. EM suzana@ldeo.columbia.edu RI Camargo, Suzana/C-6106-2009; Reed, Kevin/C-4466-2012; Sobel, Adam/K-4014-2015; Murakami, Hiroyuki/L-5745-2015; Zhao, Ming/C-6928-2014; OI Camargo, Suzana/0000-0002-0802-5160; Reed, Kevin/0000-0003-3741-7080; Sobel, Adam/0000-0003-3602-0567; Vidale, Pier Luigi/0000-0002-1800-8460 FU NSF AGS [1143959]; NASA [NNX09AK34G]; Italian Ministry of Education, University and Research; Italian Ministry of Environment, Land and Sea under the GEMINA project; Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy as part of their Regional and Global Climate Modeling Program [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank all members of the U.S. CLIVAR Hurricane Working Group for their contribution to this significant effort. We also would like to thank Naomi Henderson for making the model data available for the working group and managing the data set. D.A.S., S.J.C., and A.H.S. acknowledge support of NSF AGS 1143959. S.J.C., A.H.S., and D.K. acknowledge support for the GISS model runs and analysis from NASA grant NNX09AK34G. E.S. acknowledges support from the Italian Ministry of Education, University and Research and the Italian Ministry of Environment, Land and Sea under the GEMINA project. M.W. was supported by the Director, Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy under contract DE-AC02-05CH11231 as part of their Regional and Global Climate Modeling Program. CAM5 simulations used resources of the National Energy Research Scientific Computing Center (NERSC), also supported by the Office of Science of the U.S. Department of Energy, under contract DE-AC02-05CH11231. The model data used in this paper are part of the U.S. CLIVAR Hurricane Working Group data set. Currently, the data are only available for Working Group members, in a near future, the data will be made available for the scientific community. NR 59 TC 21 Z9 21 U1 2 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD DEC PY 2014 VL 6 IS 4 BP 1154 EP 1172 DI 10.1002/2014MS000372 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CA7FP UT WOS:000349083400011 ER PT J AU Gustafson, WI Ma, PL Singh, B AF Gustafson, William I., Jr. Ma, Po-Lun Singh, Balwinder TI Precipitation characteristics of CAM5 physics at mesoscale resolution during MC3E and the impact of convective timescale choice SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article ID MIXED-LAYER MODEL; MARINE STRATOCUMULUS; STRATIFORM CLOUDS; ENTRAINMENT; FEEDBACKS; DYNAMICS; CLIMATE AB The physics suite of the Community Atmosphere Model version 5 (CAM5) has recently been implemented in the Weather Research and Forecasting (WRF) model to explore the behavior of the parameterization suite at high resolution and within the controlled setting of a limited area model. The initial paper documenting this capability characterized the behavior for a northern high-latitude region. This paper characterizes the precipitation characteristics for continental, midlatitude, springtime conditions during the Midlatitude Continental Convective Clouds Experiment (MC3E) over the central United States. This period exhibited a range of convective conditions from those driven strongly by large-scale synoptic regimes to more locally driven convection. The study focuses on the precipitation behavior at 32 km grid spacing to better anticipate how the physics will behave in a global model when used at similar grid spacing in the coming years. Importantly, one change to the Zhang-McFarlane deep convective parameterization when implemented in WRF was to make the convective timescale parameter an explicit function of grid spacing. This study examines the sensitivity of the precipitation to the default value of the convective timescale in WRF, which is 600 s for 32 km grid spacing, to the value of 3600 s used for 2 degrees grid spacing in CAM5. For comparison, a 1200 s and an infinite convective timescale are also used. The results show that the 600 s timescale gives the most accurate precipitation amount over the central United States. However, this setting has the worst precipitation diurnal cycle, with the convection too tightly linked to the daytime surface heating. Longer timescales greatly improve the diurnal cycle but result in less precipitation and produce a low bias. An analysis of rain rates shows the accurate precipitation amount with the shorter timescale is assembled from an over abundance of drizzle combined with too few heavy rain events. With longer timescales, one can improve the frequency distribution, particularly for the extreme rain rates. Ultimately, without changing other aspects of the physics, one must decide between accurate diurnal timing and rain amount when choosing an appropriate convective timescale. C1 [Gustafson, William I., Jr.; Ma, Po-Lun; Singh, Balwinder] Atmospher Sci & Global Change Div, Pacific Northwest Natl Lab, Richland, WA 99352 USA. RP Gustafson, WI (reprint author), Atmospher Sci & Global Change Div, Pacific Northwest Natl Lab, Richland, WA 99352 USA. EM William.Gustafson@pnnl.gov RI Ma, Po-Lun/G-7129-2015; Gustafson, William/A-7732-2008; Measurement, Global/C-4698-2015 OI Ma, Po-Lun/0000-0003-3109-5316; Gustafson, William/0000-0001-9927-1393; FU U.S. Department of Energy (DOE); DOE's Office of Science/Biological and Environmental Research through the Earth System Modeling Program; Aerosol Climate Initiative within the Laboratory Directed Research and Development (LDRD) program at the Pacific Northwest National Laboratory (PNNL); PNNL [DE-AC05-76RL01830]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division FX The authors thank Matus Martini, Yun Qian, Philip Rasch, Heng Xiao, and the reviewers for their input on this manuscript and Huiping Yan for sharing code to calculate precipitation diurnal cycle. Funding for this work has been provided by a U.S. Department of Energy (DOE) Early Career grant awarded to Dr. Gustafson with additional funding from DOE's Office of Science/Biological and Environmental Research, through the Earth System Modeling Program ("Interactions of Aerosol, Clouds, and Precipitation in the Climate System" Science Focus Area) and the Aerosol Climate Initiative within the Laboratory Directed Research and Development (LDRD) program at the Pacific Northwest National Laboratory (PNNL). A portion of the research was performed using PNNL Institutional Computing. Battelle Memorial Institute operates PNNL under contract DE-AC05-76RL01830. NLDAS-2 data used in this study were acquired as part of the mission of NASA's Earth Science Division and archived and distributed by the Goddard Earth Sciences Data and Information Services Center. CSSEFARMBE data were provided by Laura Riihimaki at PNNL and is also available from the Earth System Grid Federation via http://dev.esg.anl.gov/esgf-web-fe/live. GFS analyses were obtained from the National Climatic Data Center at http://nomads.ncdc.noaa.gov/data.php-hires_weather_datasets. Additional data were obtained from the Atmospheric Radiation Measurement (ARM) Program sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division. NR 35 TC 4 Z9 4 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD DEC PY 2014 VL 6 IS 4 BP 1271 EP 1287 DI 10.1002/2014MS000334 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CA7FP UT WOS:000349083400018 ER PT J AU Miyazaki, M Sakai, S Ritalahti, KM Saito, Y Yamanaka, Y Saito, Y Tame, A Uematsu, K Loffler, FE Takai, K Imachi, H AF Miyazaki, Masayuki Sakai, Sanae Ritalahti, Kirsti M. Saito, Yayoi Yamanaka, Yuko Saito, Yumi Tame, Akihiko Uematsu, Katsuyuki Loeffler, Frank E. Takai, Ken Imachi, Hiroyuki TI Sphaerochaeta multiformis sp nov.; an anaerobic, psychrophilic bacterium isolated from subseafloor sediment, and emended description of the genus Sphaerochaeta SO INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY LA English DT Article ID MICROBIAL COMMUNITY; DIVERSITY; SPIROCHETE; OIL; ANTARCTICA; CHEMOTAXIS; RESERVOIR; GENETICS; MOTILITY; HINDGUT AB An anaerobic, psychrophilic bacterium, strain MO-SPC2(T), was isolated from a methanogenic microbial community in a continuous-flow bioreactor that was established from subseafloor sediments collected from off the Shimokita Peninsula of Japan in the north-western Pacific Ocean. Cells were pleomorphic: spherical, annular, curved rod, helical and coccoid cell morphologies were observed. Motility only occurred in helical cells. Strain MO-SPC2(T) grew at 0-17 degrees C (optimally at 9 degrees C), at pH 6.0-8.0 (optimally at pH 6.8-7.2) and in 20-40 g NaCl l(-1) (optimally at 20-30 NaCl (l-1)). The strain grew chemo-organotrophically with mono-, di- and polysaccharides. The major end products of glucose fermentation were acetate, ethanol, hydrogen and carbon dioxide. The abundant polar lipids of strain MO-SPC2T were phosphatidylglycolipids, phospholipids and glycolipids. The major cellular fatty acids were C-14:0, C-16:0 and C-16:1 omega 9. lsoprenoid quinones were not detected. The G+C content of the DNA was 32.3 molok. 16S rRNA gene-based phylogenetic analysis showed that strain MO-SPC2(T) was affiliated with the genus Sphaerochaeta within the phylum Spirochaetes, and its closest relatives were Sphaerochaeta pleomorpha Grapes(T) (88.4% sequence identity), Sphaerochaeta globosa BuddyT (86.7%) and Sphaerochaeta coccoides SPN1(T) (85.4%). Based on phenotypic characteristics and phylogenetic traits, strain MO-SPC2(T) is considered to represent a novel species of the genus Sphaerocha eta, for which the name Sphaerochaeta multiformis sp. nov. is proposed. The type strain is MO-SPC2T (=JCM 17281(T)= DSM 23952(T)). An emended description of the genus Sphaerochaeta is also proposed. C1 [Miyazaki, Masayuki; Sakai, Sanae; Saito, Yayoi; Yamanaka, Yuko; Saito, Yumi; Takai, Ken; Imachi, Hiroyuki] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Dept Subsurface Geobiol Anal & Res D SUGAR, Yokosuka, Kanagawa 2370061, Japan. [Ritalahti, Kirsti M.; Loeffler, Frank E.] Univ Tennessee, Dept Microbiol, Dept Civil & Environm Engn, Ctr Environm Biotechnol, Knoxville, TN 37996 USA. [Ritalahti, Kirsti M.; Loeffler, Frank E.] Oak Ridge Natl Lab, JIBS, Oak Ridge, TN 37831 USA. [Ritalahti, Kirsti M.; Loeffler, Frank E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Saito, Yayoi] Nagaoka Univ Technol, Dept Environm Syst Engn, Nagaoka, Niigata 9402188, Japan. [Tame, Akihiko; Uematsu, Katsuyuki] Marine Works Japan Ltd, Sect Geochem Oceanog 1, Off Marine Res, Dept Marine Sci, Yokosuka, Kanagawa 2370061, Japan. RP Imachi, H (reprint author), Japan Agcy Marine Earth Sci & Technol JAMSTEC, Dept Subsurface Geobiol Anal & Res D SUGAR, Yokosuka, Kanagawa 2370061, Japan. EM imachi@jamstec.go.jp FU Japan Society for the Promotion of Science; Ministry of Education, Culture, Sports, Science and Technology, Japan; US National Science Foundation [0919251] FX We thank Dr Fumio Inagaki and Professor Takashi Yamaguchi for their continuous encouragement, and Dr Eiji Tasumi and Ken Aoi, Ai Miyashita, Yuto Yashiro, Masayuki Ehara and Masataka Aoki for assistance with the bioreactor operation. We also thank the shipboard scientists and crew of the D/V Chikyu Shakedown Expedition CK06-06 for their help in collecting marine sediment core samples. This study was partially supported by grants from the Japan Society for the Promotion of Science and by the Ministry of Education, Culture, Sports, Science and Technology, Japan. K. M. R. and F. E. L. acknowledge support from the US National Science Foundation (award 0919251). NR 36 TC 4 Z9 4 U1 3 U2 11 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 1466-5026 EI 1466-5034 J9 INT J SYST EVOL MICR JI Int. J. Syst. Evol. Microbiol. PD DEC PY 2014 VL 64 BP 4147 EP 4154 DI 10.1099/ijs.0.068148-0 PN 12 PG 8 WC Microbiology SC Microbiology GA CA0QO UT WOS:000348622000035 PM 25249566 ER PT J AU McLerran, L AF McLerran, Larry TI A PHENOMENOLOGICAL MODEL OF THE GLASMA AND PHOTON PRODUCTION SO ACTA PHYSICA POLONICA B LA English DT Article ID BOSE-EINSTEIN CONDENSATION; GLUON DISTRIBUTION-FUNCTIONS; HEAVY-ION COLLISIONS; TRANSVERSE-MOMENTUM; LARGE NUCLEI; PLASMA; QUARK; THERMALIZATION; MULTIPLICITY; EVOLUTION AB I discuss a phenomenological model for the Glasma. I introduce over-occupied distributions for gluons, and compute their time evolution. I use this model to estimate the ratio of quarks to gluons and the entropy production as functions of time. I then discuss photon production at the RHIC and LHC, and how geometric scaling and the Glasma might explain generic features of such production. C1 [McLerran, Larry] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [McLerran, Larry] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [McLerran, Larry] Cent China Normal Univ, Dept Phys, Wuhan, Peoples R China. RP McLerran, L (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. FU U.S. Department of Energy [DE-AC02-98CH10886] FX I thank Michal Praszalowicz for organizing this wonderful meeting. I also thank the Theoretical Physics Institute at the University of Heidleberg where L. McLerran is a Hans Jensen Professor of physics, and where this talk was written up. The research of L. McLerran is supported under the U.S. Department of Energy Contract No. DE-AC02-98CH10886. NR 44 TC 1 Z9 1 U1 1 U2 3 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD DEC PY 2014 VL 45 IS 12 BP 2307 EP 2317 DI 10.5506/APhysPolB.45.2307 PG 11 WC Physics, Multidisciplinary SC Physics GA AZ9CJ UT WOS:000348508600005 ER PT J AU Agapov, RL Boreyko, JB Briggs, DP Srijanto, BR Retterer, ST Collier, CP Lavrik, NV AF Agapov, Rebecca L. Boreyko, Jonathan B. Briggs, Dayrl P. Srijanto, Bernadeta R. Retterer, Scott T. Collier, C. Patrick Lavrik, Nickolay V. TI Length Scale Selects Directionality of Droplets on Vibrating Pillar Ratchet SO ADVANCED MATERIALS INTERFACES LA English DT Article ID CONTACT-ANGLE HYSTERESIS; OMNIPHOBIC SURFACES; TRANSPORT; WATER; WETTABILITY; NANOSTRUCTURES; FABRICATION; TEXTURES; MOTION; DROPS AB Directional control of droplet motion at room temperature is of interest for applications such as microfluidic devices, self-cleaning coatings, and directional adhesives. Here, arrays of tilted pillars ranging in height from the nanoscale to the microscale are used as structural ratchets to directionally transport water at room temperature. Water droplets deposited onto vibrating chips with a nanostructured ratchet move preferentially in the direction of the feature tilt while the opposite directionality is observed in the case of micro-structured ratchets. This remarkable switch in directionality is consistent with changes in the contact angle hysteresis. To glean further insights into the length scale dependent asymmetric contact angle hysteresis, the contact lines formed by a nonvolatile room temperature ionic liquid placed onto the tilted pillar arrays were visualized and analyzed in situ in a scanning electron microscope. The ability to tune droplet directionality by merely changing the length scale of surface features all etched at the same tilt angle would be a versatile tool for manipulating multiphase flows and for selecting droplet directionality in other lap-on-chip applications. C1 [Agapov, Rebecca L.; Boreyko, Jonathan B.; Briggs, Dayrl P.; Srijanto, Bernadeta R.; Retterer, Scott T.; Collier, C. Patrick; Lavrik, Nickolay V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Boreyko, Jonathan B.] Univ Tennessee, Bredesen Ctr Interdisciplinary Res, Knoxville, TN 37996 USA. [Srijanto, Bernadeta R.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Agapov, RL (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM lavriknv@ornl.gov RI Lavrik, Nickolay/B-5268-2011; Retterer, Scott/A-5256-2011; Srijanto, Bernadeta/D-4213-2016; Collier, Charles/C-9206-2016 OI Lavrik, Nickolay/0000-0002-9543-5634; Retterer, Scott/0000-0001-8534-1979; Srijanto, Bernadeta/0000-0002-1188-1267; Collier, Charles/0000-0002-8198-793X FU Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy FX This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. NR 50 TC 0 Z9 1 U1 13 U2 44 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2196-7350 J9 ADV MATER INTERFACES JI Adv. Mater. Interfaces PD DEC PY 2014 VL 1 IS 9 AR 1400337 DI 10.1002/admi.201400337 PG 8 WC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AZ5UN UT WOS:000348286400011 ER PT J AU Cooper, WJ Albertson, RC Jacob, RE Westneat, MW AF Cooper, W. James Albertson, R. Craig Jacob, Richard E. Westneat, Mark W. TI Re-description and Reassignment of the Damselfish Abudefduf luridus (Cuvier, 1830) Using Both Traditional and Geometric Morphometric Approaches SO COPEIA LA English DT Article ID MOLECULAR SYSTEMATICS; CORAL-REEFS; POMACENTRIDAE; TELEOSTEI; MITOCHONDRIAL; BIOGEOGRAPHY; PERCIFORMES; PHYLOGENY; RADIATION; SEQUENCES AB Here we present a re-description of Abudefduf luridus and reassign it to the genus Similiparma. We supplement traditional diagnoses and descriptions of this species with quantitative anatomical data collected from a family-wide geometric morphometric analysis of head morphology (44 species representing all 30 damselfish genera) and data from cranial micro-CT scans of fishes in the genus Similiparma. The use of geometric morphometric analyses (and other methods of shape analysis) permits detailed comparisons between the morphology of specific taxa and the anatomical diversity that has arisen in an entire lineage. This provides a particularly useful supplement to traditional description methods and we recommend the use of such techniques by systematists. Similiparma and its close relatives constitute a branch of the damselfish phylogenetic tree that predominantly inhabits rocky reefs in the Atlantic and Eastern Pacific, as opposed to the more commonly studied damselfishes that constitute a large portion of the ichthyofauna on all coralreef communities. C1 [Cooper, W. James] Washington State Univ Tricities, Sch Biol Sci, Richland, WA 99354 USA. [Albertson, R. Craig] Univ Massachusetts, Dept Biol, Amherst, MA 01003 USA. [Jacob, Richard E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Westneat, Mark W.] Field Museum Nat Hist, Dept Zool, Chicago, IL 60605 USA. RP Cooper, WJ (reprint author), Washington State Univ Tricities, Sch Biol Sci, 2710 Crimson Way, Richland, WA 99354 USA. EM jim.cooper@wsu.edu; albertson@bio.umass.edu; richard.jacob@pnnl.gov; mwestneat@fieldmuseum.org FU WSU FX The authors would like to thank the governments of Spain and Cape Verde for issuing scientific collecting permits. We would also like to thank J. Friel for reading an early draft of the manuscript. The authors are deeply indebted to G. Allen for his extensive and detailed work on damselfish taxonomy. W. Cooper would like to tender his profuse thanks to W. Davis and A. Davis for introducing him to formal ichthyology. This work was supported with start-up funding from WSU. NR 31 TC 2 Z9 2 U1 4 U2 10 PU AMER SOC ICHTHYOLOGISTS & HERPETOLOGISTS PI MIAMI PA MAUREEN DONNELLY, SECRETARY FLORIDA INT UNIV BIOLOGICAL SCIENCES, 11200 SW 8TH STREET, MIAMI, FL 33199 USA SN 0045-8511 EI 1938-5110 J9 COPEIA JI Copeia PD DEC PY 2014 IS 3 BP 473 EP 480 DI 10.1643/CI-13-074 PG 8 WC Zoology SC Zoology GA AZ9ET UT WOS:000348516300002 ER PT J AU Ahmed, T La-o-Vorakiat, C Salim, T Lam, YM Chia, EEM Zhu, JX AF Ahmed, Towfiq La-o-Vorakiat, C. Salim, T. Lam, Y. M. Chia, Elbert E. M. Zhu, Jian-Xin TI Optical properties of organometallic perovskite: An ab initio study using relativistic GW correction and Bethe-Salpeter equation SO EPL LA English DT Article ID SOLAR-CELL APPLICATIONS; ABSORPTION-SPECTRA; GREENS-FUNCTION; CH3NH3PBI3; ELECTRON; TRANSITION; CRYSTAL; PSEUDOPOTENTIALS; SEMICONDUCTORS; APPROXIMATION AB In the development of highly efficient photovoltaic cells, solid perovskite systems have demonstrated unprecedented promise, with the figure of merit exceeding nineteen percent of efficiency. In this paper, we investigate the optical and vibrational properties of organometallic cubic perovskite CH3NH3PbI3 using first-principles calculations. For accurate theoretical description, we go beyond conventional density functional theory (DFT), and calculate optical conductivity using relativistic quasi-particle (GW) correction. Incorporating these many-body effects, we further solve Bethe-Salpeter equations (BSE) for excitons, and found enhanced optical conductivity near the gap edge. Due to the presence of organic methylammonium cations near the center of the perovskite cell, the system is sensitive to low-energy vibrational modes. We estimate the phonon modes of CH3NH3PbI3 using a small displacement approach, and further calculate the infrared (IR) absorption spectra. Qualitatively, our calculations of low-energy phonon frequencies are in good agreement with our terahertz measurements. Therefore, for both energy scales (around 1.5 eV and 0-20 meV), our calculations reveal the importance of many-body effects and their contributions to the desirable optical properties in the cubic organometallic perovskites system. Copyright (C) EPLA, 2014 C1 [Ahmed, Towfiq; Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [La-o-Vorakiat, C.; Chia, Elbert E. M.] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore. [Salim, T.; Lam, Y. M.] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore. [Zhu, Jian-Xin] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Ahmed, T (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM atowfiq@lanl.gov; ElbertChia@ntu.edu.sg; jxzhu@lanl.gov RI Chia, Elbert/B-6996-2011; Yambo, MBPT Code/O-4564-2015; Lam, Yeng Ming/A-2230-2011 OI Chia, Elbert/0000-0003-2066-0834; Lam, Yeng Ming/0000-0001-9390-8074 FU U.S. DOE at LANL [DE-AC52-06NA25396]; LANL LDRD Program; Singapore Ministry of Education AcRF Tier 1 [RG13/12, 2014-T1-001-056]; EEMC; Danish Council for Strategic Research; Center for Integrated Nanotechnologies, U.S. DOE BES FX We thank M. J. GRAF, AMANDA NUEKIRCH, CARL GREEF, DAVIDE SANGALLI, A. WALSH, AND B. XIAO for useful discussions. This work was supported by U.S. DOE at LANL under Contract No. DE-AC52-06NA25396 and the LANL LDRD Program (TA and J-XZ), and Singapore Ministry of Education AcRF Tier 1 (RG13/12 and 2014-T1-001-056) and EEMC, and the Danish Council for Strategic Research (YML). The work was supported in part by the Center for Integrated Nanotechnologies, a U.S. DOE BES user facility. NR 50 TC 11 Z9 11 U1 9 U2 63 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD DEC PY 2014 VL 108 IS 6 AR 67015 DI 10.1209/0295-5075/108/67015 PG 6 WC Physics, Multidisciplinary SC Physics GA AZ4PI UT WOS:000348204400027 ER PT J AU Diaz, LES Cortes-Morales, EC Li, X Chen, WR Medina-Noyola, M AF Sanchez Diaz, L. E. Cortes-Morales, E. C. Li, X. Chen, Wei-Ren Medina-Noyola, M. TI Dynamics of a suspension of interacting yolk-shell particles SO EPL LA English DT Article ID CONCENTRATED COLLOIDAL DISPERSIONS; CORES AB In this work we study the self-diffusion properties of a liquid of hollow spherical particles (shells) bearing a smaller solid sphere in their interior (yolks). We model this system using purely repulsive hard-body interactions between all (shell and yolk) particles, but assume the presence of a background ideal solvent such that all the particles execute free Brownian motion between collisions, characterized by short-time self-diffusion coefficients D-s(0) for the shells and D-y(0) for the yolks. Using a softened version of these interparticle potentials we perform Brownian dynamics simulations to determine the mean squared displacement and intermediate scattering function of the yolk-shell complex. These results can be understood in terms of a set of effective Langevin equations for the N interacting shell particles, pre-averaged over the yolks' degrees of freedom, from which an approximate self-consistent description of the simulated self-diffusion properties can be derived. Here we compare the theoretical and simulated results between them, and with the results for the same system in the absence of yolks. We find that the yolks, which have no effect on the shell-shell static structure, influence the dynamic properties in a predictable manner, fully captured by the theory. Copyright (C) EPLA, 2014 C1 [Sanchez Diaz, L. E.; Li, X.; Chen, Wei-Ren] Biol & Soft Matter Div, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Cortes-Morales, E. C.; Medina-Noyola, M.] Univ Autonoma San Luis Potosi, Inst Fis Manuel Sandoval Vallarta, San Luis Potosi 78000, Mexico. RP Diaz, LES (reprint author), Biol & Soft Matter Div, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Consejo Nacional de Ciencia y Tecnologia (CONACYT, Mexico) [132540, 182132] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. This research at the SNS at Oak Ridge National Laboratory was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This work was also supported by the Consejo Nacional de Ciencia y Tecnologia (CONACYT, Mexico), through Grants No. 132540 and No. 182132. NR 35 TC 0 Z9 0 U1 4 U2 10 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD DEC PY 2014 VL 108 IS 6 AR 68007 DI 10.1209/0295-5075/108/68007 PG 6 WC Physics, Multidisciplinary SC Physics GA AZ4PI UT WOS:000348204400034 ER PT J AU Siegel, J Person, M Dugan, B Cohen, D Lizarralde, D Gable, C AF Siegel, Jacob Person, Mark Dugan, Brandon Cohen, Denis Lizarralde, Daniel Gable, Carl TI Influence of late Pleistocene glaciations on the hydrogeology of the continental shelf offshore Massachusetts, USA SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE Pleistocene; hydrogeology; continental shelf; glaciation; freshwater resources ID ICE-SHEET; NEW-ENGLAND; GROUNDWATER-FLOW; NANTUCKET-ISLAND; MICHIGAN BASIN; CLIMATE-CHANGE; ORIGIN; SHALE; OVERPRESSURE; CHRONOLOGY AB Multiple late Pleistocene glaciations that extended onto the continental shelf offshore Massachusetts, USA, may have emplaced as much as 100 km(3) of freshwater (salinity <5 ppt) in continental shelf sediments. To estimate the volume and extent of offshore freshwater, we developed a three-dimensional, variable-density model that couples fluid flow and heat and solute transport for the continental shelf offshore Massachusetts. The stratigraphy for our model is based on high-resolution, multichannel seismic data. The model incorporates the last 3 Ma of climate history by prescribing boundary conditions of sea level change and ice sheet extent and thickness. We incorporate new estimates of the maximum extent of a late Pleistocene ice sheet to near the shelf-slope break. Model results indicate that this late Pleistocene ice sheet was responsible for much of the emplaced freshwater. We predict that the current freshwater distribution may reach depths up to 500 meters below sea level and up to 30 km beyond Martha's Vineyard. The freshwater distribution is strongly dependent on the three-dimensional stratigraphy and ice sheet history. Our predictions improve our understanding of the distribution of offshore freshwater, a potential nonrenewable resource for coastal communities along recently glaciated margins. C1 [Siegel, Jacob; Dugan, Brandon] Rice Univ, Dept Earth Sci, Houston, TX 77005 USA. [Person, Mark] New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. [Cohen, Denis] Iowa State Univ, Dept Geol & Atmospher Sci, Ames, IA USA. [Lizarralde, Daniel] Woods Hole Oceanog Inst, Dept Geol & Geophys, Woods Hole, MA 02543 USA. [Gable, Carl] Los Alamos Natl Lab, Los Alamos, NM USA. RP Dugan, B (reprint author), Rice Univ, Dept Earth Sci, Houston, TX 77005 USA. EM dugan@rice.edu RI Cohen, Denis/P-2015-2016; OI Cohen, Denis/0000-0002-8262-9798; Gable, Carl/0000-0001-7063-0815 FU [NSF-OCE-0824368] FX This work was funded by NSF-OCE-0824368. Seismic data were collected on the R/V Endeavor (cruise EN465) using Scripps Institution of Oceanography's portable seismic system. All seismic data are available from the Marine Geoscience Data System (http://www.ig.utexas.edu/sdc/). Original model input and output files can be requested by contacting Brandon Dugan (dugan@rice.edu). We thank the Scripps technicians and the crew of the R/V Endeavor for their assistance in collecting the data. This paper benefited from constructive comments by Tom McKenna and one anonymous reviewer. NR 64 TC 2 Z9 2 U1 0 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD DEC PY 2014 VL 15 IS 12 BP 4651 EP 4670 DI 10.1002/2014GC005569 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AZ2JZ UT WOS:000348061300005 ER PT J AU Kerkar, PB Horvat, K Jones, KW Mahajan, D AF Kerkar, Prasad B. Horvat, Kristine Jones, Keith W. Mahajan, Devinder TI Imaging methane hydrates growth dynamics in porous media using synchrotron X-ray computed microtomography SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE methane hydrate; microcomputed tomography; pore-scale hydrate growth dynamics; sediment hosted hydrates ID GULF-OF-MEXICO; STRATIGRAPHIC TEST WELL; ALASKA NORTH SLOPE; MARINE-SEDIMENTS; DEEP-WATER; EXPLORATION; STATE; MODEL; HABIT; LOGS AB Commercial-scale methane (CH4) extraction from natural hydrate deposits remains a challenge due to, among other factors, a poor understanding of hydrate-host sediment interactions under low-temperature and high-pressure conditions that are conducive to their existence. We report the use of synchrotron X-ray computed microtomography (CMT) to image, for the first time, time-resolved pore-scale methane CH4 hydrate growth from an aqueous solution containing 5 wt % barium chloride (BaCl2) and pressurized CH4 hosted in glass beads, all contained in an aluminum cell with an effective volume of 3.5 mL. Multiple two-dimensional (2-D) cross-sectional images show CH4 hydrates, with 7.5 mu m resolution, distributed in patches throughout the system without dependence on distance from the cell walls. The time-resolved three-dimensional (3-D) images, constructed from the 2-D slices, exhibited pore-filling hydrate formation from dissolved CH4 gas, similar to natural CH4 hydrates (sI) in the marine environment. Furthermore, the 3-D images show that the aqueous phase was the wetting phase of the glass beads, i.e., the host and the formed hydrate were separated by an aqueous layer. These results provide some fundamental understanding of the nucleation phenomenon of gas hydrate formation at the pore scale. Pore-filling CH4 hydrate growth is likely to result in a reduced bulk modulus, and thus, could affect seafloor stability during the reverse phenomenon, i.e., dissociation of natural hydrate deposits. C1 [Kerkar, Prasad B.; Horvat, Kristine; Mahajan, Devinder] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Jones, Keith W.; Mahajan, Devinder] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Mahajan, D (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM dmahajan@bnl.gov FU U.S. Department of Energy [DE-AC02-98CH10886]; Office of Vice Presidential Research (OVPR), Stony Brook University FX The work was supported, in part, by the U.S. Department of Energy under contract DE-AC02-98CH10886. The U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences supported the use of the National Synchrotron Light Source (NSLS). Partial support from the Office of Vice Presidential Research (OVPR), Stony Brook University is also acknowledged. The experimental work was performed as a part of doctoral dissertation of P. Kerkar at Stony Brook University. The authors express special thanks to Robert L. Kleinberg, Schlumberger, the reviewers, and the Associate Editor for their helpful reviews of this manuscript. The authors also thank S. Bennett and L. Fareria for their invaluable assistance in the operation of the beam line at the NSLS. The data for this paper are available by contacting the corresponding author. NR 28 TC 7 Z9 7 U1 3 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD DEC PY 2014 VL 15 IS 12 BP 4759 EP 4768 DI 10.1002/2014GC005373 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AZ2JZ UT WOS:000348061300010 ER PT J AU Dehouck, E McLennan, SM Meslin, PY Cousin, A AF Dehouck, Erwin McLennan, Scott M. Meslin, Pierre-Yves Cousin, Agnes TI Constraints on abundance, composition, and nature of X-ray amorphous components of soils and rocks at Gale crater, Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE X-ray amorphous materials; mineralogy; geochemistry; Gale crater; Mars ID CHEMCAM INSTRUMENT SUITE; SCIENCE; SPECTROMETER; CALIBRATION; MINERALOGY; CHROMIUM; DEPOSITS; ORIGIN; SILICA; SYSTEM AB X-ray diffraction patterns of the three samples analyzed by Curiosity's Chemistry and Mineralogy (CheMin) instrument during the first year of the Mars Science Laboratory missionthe Rocknest sand, and the John Klein and Cumberland drill fines, both extracted from the Sheepbed mudstoneshow evidence for a significant amorphous component of unclear origin. We developed a mass balance calculation program that determines the range of possible chemical compositions of the crystalline and amorphous components of these samples within the uncertainties of mineral abundances derived from CheMin data. In turn, the chemistry constrains the minimum abundance of amorphous component required to have realistic compositions (all oxides 0wt %): 21-22wt % for Rocknest and 15-20wt % for Cumberland, in good agreement with estimates derived from the diffraction patterns (27 and 31wt %, respectively). Despite obvious differences between the Rocknest sand and the Sheepbed mudstone, the amorphous components of the two sites are chemically very similar, having comparable concentrations of SiO2, TiO2, Al2O3, Cr2O3, FeOT, CaO, Na2O, K2O, and P2O5. MgO tends to be lower in Rocknest, although it may also be comparable between the two samples depending on the exact composition of the smectite in Sheepbed. The only unambiguous difference is the SO3 content, which is always higher in Rocknest. The observed similarity suggests that the two amorphous components share a common origin or formation process. The individual phases possibly present within the amorphous components include: volcanic (or impact) glass, hisingerite (or silica+ferrihydrite), amorphous sulfates (or adsorbed SO42-), and nanophase ferric oxides. C1 [Dehouck, Erwin; McLennan, Scott M.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Meslin, Pierre-Yves] Univ Toulouse 3, CNRS, Inst Rech Astrophys & Planetol, F-31062 Toulouse, France. [Cousin, Agnes] Los Alamos Natl Lab, Los Alamos, NM USA. RP Dehouck, E (reprint author), SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. EM erwin.dehouck@stonybrook.edu FU National Aeronautics and Space Administration; Jet Propulsion Laboratory, California Institute of Technology FX The authors thank Brad Jolliff and one anonymous reviewer for their comments and suggestions, which improved the quality of the manuscript. We also thank Liz Rampe, Joel Hurowitz, and William Rapin for fruitful discussions, as well as Melanie Drilleau for her help with the program. We are also grateful to the MSL Science and Engineering teams for the collection of data presented in this paper. This research was funded by the National Aeronautics and Space Administration through a contract with the Jet Propulsion Laboratory, California Institute of Technology. Data used in this paper can be found in previous publications (and associated supporting information) by Bish et al. [2013], Blake et al. [2013], and Vaniman et al. [2014]. NR 47 TC 15 Z9 15 U1 2 U2 39 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD DEC PY 2014 VL 119 IS 12 BP 2640 EP 2657 DI 10.1002/2014JE004716 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AZ8GJ UT WOS:000348453000013 ER PT J AU Cleveland, KM Ammon, CJ Lay, T AF Cleveland, K. Michael Ammon, Charles J. Lay, Thorne TI Large earthquake processes in the northern Vanuatu subduction zone SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE earthquake; subduction zone; Vanuatu ID ISLANDS; PLATE; DOUBLETS; WAVES AB The northern Vanuatu (formerly New Hebrides) subduction zone (11 degrees S to 14 degrees S) has experienced large shallow thrust earthquakes with M-w >7 in 1966 (M-S 7.9, 7.3), 1980 (M-w 7.5, 7.7), 1997 (M-w 7.7), 2009 (M-w 7.7, 7.8, 7.4), and 2013 (M-w 8.0). We analyze seismic data from the latter four earthquake sequences to quantify the rupture processes of these large earthquakes. The 7 October 2009 earthquakes occurred in close spatial proximity over about 1 h in the same region as the July 1980 doublet. Both sequences activated widespread seismicity along the northern Vanuatu subduction zone. The focal mechanisms indicate interplate thrusting, but there are differences in waveforms that establish that the events are not exact repeats. With an epicenter near the 1980 and 2009 events, the 1997 earthquake appears to have been a shallow intraslab rupture below the megathrust, with strong southward directivity favoring a steeply dipping plane. Some triggered interplate thrusting events occurred as part of this sequence. The 1966 doublet ruptured north of the 1980 and 2009 events and also produced widespread aftershock activity. The 2013 earthquake rupture propagated southward from the northern corner of the trench with shallow slip that generated a substantial tsunami. The repeated occurrence of large earthquake doublets along the northern Vanuatu subduction zone is remarkable considering the doublets likely involved overlapping, yet different combinations of asperities. The frequent occurrence of large doublet events and rapid aftershock expansion in this region indicate the presence of small, irregularly spaced asperities along the plate interface. C1 [Cleveland, K. Michael; Ammon, Charles J.] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. [Cleveland, K. Michael] Los Alamos Natl Lab, Los Alamos, NM USA. [Lay, Thorne] Univ Calif Santa Cruz, Earth & Planetary Sci Dept, Santa Cruz, CA 95064 USA. RP Cleveland, KM (reprint author), Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. EM mike.cleveland@gmail.com FU Defense Threat Reduction Agency [HDTRA1-11-1-0027]; Department of Energy [DE-AC52-06NA25396]; NSF [EAR1245717]; GEO Directorate through the Instrumentation and Facilities Program of the NSF [EAR-1063471] FX We thank the Defense Threat Reduction Agency for partial support under Award HDTRA1-11-1-0027 (K.M.C.). K.M.C. performed revisions of this work under the auspices of the Department of Energy for the Los Alamos National Laboratory under the contract DE-AC52-06NA25396. T.L. is supported by NSF grant EAR1245717. We acknowledge the staff and support provided to the IRIS/USGS GSN and Global Centroid Moment Tensor (CMT). Global Seismographic Network (GSN) is a cooperative scientific facility operated jointly by the Incorporated Research Institutions for Seismology (IRIS), the United States Geological Survey (USGS), and the National Science Foundation (NSF). The facilities of the IRIS Data Management System, and specifically the IRIS Data Management Center, were used for access to waveform and metadata required in this study. The IRIS DMS is funded through the NSF and specifically the GEO Directorate through the Instrumentation and Facilities Program of the NSF under Cooperative Agreement EAR-1063471. Waveform data used in this study are available through the IRIS Data Management System. Earthquake event information is found in NEIC and GCMT earthquake catalogs. We also thank all those who openly share large earthquake data recorded on their seismic networks. Thanks also to the developers of SAC [Goldstein et al., 2003] and GMT [Wessel and Smith, 1998]. Finally, we thank the two reviewers for their constructive criticism that greatly improved this paper. NR 30 TC 0 Z9 0 U1 2 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD DEC PY 2014 VL 119 IS 12 BP 8866 EP 8883 DI 10.1002/2014JB011289 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AZ8GC UT WOS:000348452200016 ER PT J AU Li, JK Gao, ZH Zhang, J Miao, P AF Li, Jinkai Gao, Zihan Zhang, Jin Miao, Pei TI ISSUES OF THE MEDICAL SYSTEM REFORM IN CHINESE TRADITIONAL RURAL AREAS-TAKING BIYANG COUNTY AS AN EXAMPLE SO JOURNAL OF INVESTIGATIVE MEDICINE LA English DT Meeting Abstract CT 2nd International Conference on Biomedicine and Pharmaceutics (ICBP) CY OCT 17-19, 2014 CL Zhuhai, PEOPLES R CHINA C1 [Li, Jinkai] Henan Univ Econ & Law, Henan Collaborat Innovat Ctr Coordinated Dev, Beijing 450001, Henan, Peoples R China. [Li, Jinkai; Gao, Zihan] Peking Univ, Guanghua Sch Management, Beijing 100028, Peoples R China. [Zhang, Jin] Henan Normal Univ, Xinlian Coll, Xinxiang 450001, Henan, Peoples R China. [Miao, Pei] Lawrence Berkeley Natl Lab, Berkeley, CA USA. EM gaozihan222@126.com NR 0 TC 0 Z9 0 U1 1 U2 4 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 1081-5589 EI 1708-8267 J9 J INVEST MED JI J. Invest. Med. PD DEC PY 2014 VL 62 IS 8 SU S MA 228 BP S117 EP S117 PG 1 WC Medicine, General & Internal; Medicine, Research & Experimental SC General & Internal Medicine; Research & Experimental Medicine GA AZ3IU UT WOS:000348121600224 ER PT J AU Coser, A Beria, M Brandino, GP Konik, RM Mussardo, G AF Coser, A. Beria, M. Brandino, G. P. Konik, R. M. Mussardo, G. TI Truncated conformal space approach for 2D Landau-Ginzburg theories SO JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT LA English DT Article DE conformal field theory (theory); other numerical approaches; quantum phase transitions (theory) ID QUANTUM-FIELD-THEORY; SINE-GORDON MODEL; ISING-MODEL; QUANTIZATION; DIMENSIONS; EQUATION; STATES AB We study the spectrum of Landau-Ginzburg theories in 1 + 1 dimensions using the truncated conformal space approach employing a compactified boson. We study these theories both in their broken and unbroken phases. We first demonstrate that we can reproduce the expected spectrum of a Phi(2) theory (i.e. a free massive boson) in this framework. We then turn to Phi(4) in its unbroken phase and compare our numerical results with the predictions of two-loop perturbation theory, finding excellent agreement. We then analyze the broken phase of Phi(4) where kink excitations together with their bound states are present. We confirm the semiclassical predictions for this model on the number of stable kink-antikink bound states. We also test the semiclassics in the double well phase of Phi(6) Landau-Ginzburg theory, again finding agreement. C1 [Coser, A.; Beria, M.; Mussardo, G.] Scuola Int Super Studi Avanzati, SISSA, I-34136 Trieste, Italy. [Coser, A.; Beria, M.; Mussardo, G.] Ist Nazl Fis Nucl, Sez Trieste, I-34136 Trieste, Italy. [Brandino, G. P.] Univ Amsterdam, Inst Theoret Phys, NL-1090 GL Amsterdam, Netherlands. [Konik, R. M.] Brookhaven Natl Lab, CMPMS Dept Bldg 734, Upton, NY 11973 USA. [Mussardo, G.] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy. RP Coser, A (reprint author), Scuola Int Super Studi Avanzati, SISSA, Via Bonomea 265, I-34136 Trieste, Italy. EM acoser@sissa.it RI Konik, Robert/L-8076-2016; OI Konik, Robert/0000-0003-1209-6890; mussardo, giuseppe/0000-0001-5730-9963 FU CMPMS Department, Brookhaven National Laboratory - US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; National Science Foundation [PHY 1208521]; Netherlands Organization for Scientific Research (NWO); Foundation for Fundamental Research on Matter (FOM); IRSES Grant QICFT FX The research herein was supported by the CMPMS Department, Brookhaven National Laboratory, in turn funded by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886 (RMK), by the National Science Foundation under grant no. PHY 1208521 (RMK), and by the Netherlands Organization for Scientific Research (NWO) and the Foundation for Fundamental Research on Matter (FOM) (GPB). This research is also supported by the IRSES Grant QICFT. NR 37 TC 5 Z9 5 U1 2 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1742-5468 J9 J STAT MECH-THEORY E JI J. Stat. Mech.-Theory Exp. PD DEC PY 2014 AR P12010 DI 10.1088/1742-5468/2014/12/P12010 PG 37 WC Mechanics; Physics, Mathematical SC Mechanics; Physics GA CA1ZX UT WOS:000348709800010 ER PT J AU Collett, TS Boswell, R Cochran, JR Kumar, P Lall, M Mazumdar, A Ramana, MV Ramprasad, T Riedel, M Sain, K Sathe, AV Vishwanath, K AF Collett, Timothy S. Boswell, Ray Cochran, James R. Kumar, Pushpendra Lall, Malcolm Mazumdar, Aninda Ramana, Mangipudi Venkata Ramprasad, Tammisetti Riedel, Michael Sain, Kalachand Sathe, Arun Vasant Vishwanath, Krishna CA NGHP Expedition 01 Sci Party TI Geologic implications of gas hydrates in the offshore of India: Results of the National Gas Hydrate Program Expedition 01 SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Gas hydrate; Gas; Resources; India; Krishna-Godavari Basin; Mahanadi Basin; Andaman Sea; Kerala-Konkan Basin ID WESTERN CONTINENTAL-MARGIN; GULF-OF-MEXICO; OCCURRENCES AB The Indian National Gas Hydrate Program Expedition 01 (NGHP-01) is designed to study the occurrence of gas hydrate along the passive continental margin of the Indian Peninsula and in the Andaman convergent margin, with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. The NGHP-01 expedition established the presence of gas hydrates in the Krishna-Godavari and Mahanadi Basins, and the Andaman Sea. The expedition discovered in the Krishna-Godavari Basin one of the thickest gas hydrate accumulations ever documented, in the Andaman Sea one of the thickest and deepest gas hydrate stability zones in the world, and established the existence of a fully developed gas hydrate petroleum system in all three basins. The primary goal of NGHP-01 was to conduct scientific ocean drilling/coring, logging, and analytical activities to assess the geologic occurrence, regional context, and characteristics of gas hydrate deposits along the continental margins of India. This was done in order to meet the long-term goal of exploiting gas hydrate as a potential energy resource in a cost effective and safe manner. During its 113.5-day voyage, the D/V JOIDES Resolution cored and/or drilled 39 holes at 21 sites (1 site in Kerala-Konkan, 15 sites in Krishna-Godavari, 4 sites in Mahanadi, and 1 site in the Andaman deep offshore area), penetrated more than 9250 m of sedimentary section, and recovered nearly 2850 m of core. Twelve holes were logged with logging-while-drilling (LWD) tools and an additional 13 holes were wireline logged. The science team utilized extensive on-board laboratory facilities to examine and prepare preliminary reports on the physical properties, geochemistry, and sedimentology of all the data collected prior to the end of the expedition. Samples were also analyzed in additional post-expedition shore-based studies conducted in leading laboratories around the world. One of the specific objectives of this expedition was to test gas hydrate formation models and constrain model parameters, especially those that account for the formation of concentrated gas hydrate accumulations. The necessary data for characterizing the occurrence of in situ gas hydrate, such as interstitial water chlorinities, core-derived gas chemistry, physical and sedimentological properties, thermal images of the recovered cores, and downhole measured logging data (LWD and/or conventional wireline log data), were obtained from most of the drill sites established during NGHP-01. Almost all of the drill sites yielded evidence for the occurrence of gas hydrate; however, the inferred in situ concentration of gas hydrate varied substantially from site to site. For the most part, the interpretation of downhole logging data, core thermal images, interstitial water analyses, and pressure core images from the sites drilled during NGHP-01 indicate that the occurrence of concentrated gas hydrate is mostly associated with the presence of fractures in the sediments, and in some limited cases, by coarser grained (mostly sand-rich) sediments. Published by Elsevier Ltd. C1 [Collett, Timothy S.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Boswell, Ray] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Cochran, James R.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Kumar, Pushpendra] Oil & Nat Gas Corp Ltd, Inst Engn & Ocean Technol, Panvel 410221, Navi Mumbai, India. [Lall, Malcolm; Vishwanath, Krishna] Directorate Gen Hydrocarbons, Noida, India. [Mazumdar, Aninda; Ramprasad, Tammisetti] CSIR Natl Inst Oceanog, Donapaula 403004, Goa, India. [Ramana, Mangipudi Venkata] Mauritius Oceanog Inst, Grand Port 2304274434, Quatre Bornes, Mauritius. [Riedel, Michael] Nat Resources Canada, Sidney, BC V8L 4B2, Canada. [Sain, Kalachand] CSIR Natl Geophys Res Inst, Hyderabad 500007, Andhra Pradesh, India. [Sathe, Arun Vasant] Oil & Nat Gas Corp Ltd, KDM Inst Petr Explorat, Dehra Dun 248195, Uttaranchal, India. RP Collett, TS (reprint author), US Geol Survey, Denver Fed Ctr, MS 939,Box 25046, Denver, CO 80225 USA. EM tcollett@usgs.gov OI Boswell, Ray/0000-0002-3824-2967 FU Oil Industry Development Board; Oil and Natural Gas Corporation; GAIL; OIL India; NGHP: MOPNG; DGH; ONGC; OIL; NIO; NIOT; RIL; U.S. Geological Survey Energy Resources Program; U.S. Department of Energy [DE-AI21-92MC29214] FX The editors wish to thank those that contributed to the success of the Indian National Gas Hydrate Program Expedition 01 (NGHP-01). NGHP-01 was planned and managed through collaboration between the Directorate General of Hydrocarbons (DGH) under the Ministry of Petroleum and Natural Gas (India), the U.S. Geological Survey (USGS), and the Consortium for Scientific Methane Hydrate Investigations (CSMHI) led by Overseas Drilling Limited (ODL) and FUGRO McClelland Marine Geosciences (FUGRO). The platform for the drilling operation was the research D/V JOIDES Resolution, operated by ODL. Much of the drilling/coring equipment used was provided by the Integrated Ocean Drilling Program (IODP) through a loan agreement with the U.S. National Science Foundation. Wireline pressure coring systems and supporting laboratories were provided by IODP/Texas A&M University (TAMU), FUGRO, USGS, U.S. Department of Energy (USDOE) and HYACINTH/GeoTek. Downhole logging operational and technical support was provided by Lamont-Doherty Earth Observatory (LDEO) of Columbia University. The financial support for the NGHP-01, from the Oil Industry Development Board, Oil and Natural Gas Corporation, GAIL, and OIL India is gratefully acknowledged. We also acknowledge the support extended by all the participating organizations of the NGHP: MOP&NG, DGH, ONGC, GAIL, OIL, NIO, NIOT, and RIL. The authors and editors are thankful to the Management of the National Gas Hydrate Program, DGH and ONGC for permission to publish this report in the Journal of Marine and Petroleum Geology.; This report was funded in part by the U.S. Geological Survey Energy Resources Program and the U.S. Department of Energy under Interagency Agreement No. DE-AI21-92MC29214. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 58 TC 1 Z9 1 U1 1 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 EI 1873-4073 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD DEC PY 2014 VL 58 BP 3 EP 28 DI 10.1016/j.marpetgeo.2014.07.021 PN A PG 26 WC Geosciences, Multidisciplinary SC Geology GA AY4WY UT WOS:000347577000002 ER PT J AU Kumar, P Collett, TS Boswell, R Cochran, JR Lall, M Mazumdar, A Ramana, MV Ramprasad, T Riedel, M Sain, K Sathe, AV Vishwanath, K Yadav, US AF Kumar, Pushpendra Collett, Timothy S. Boswell, Ray Cochran, James R. Lall, Malcolm Mazumdar, Aninda Ramana, Mangipudi Venkata Ramprasad, Tammisetti Riedel, Michael Sain, Kalachand Sathe, Arun Vasant Vishwanath, Krishna Yadav, U. S. CA NGHP Expedition 01 Sci Party TI Geologic implications of gas hydrates in the offshore of India: Krishna-Godavari Basin, Mahanadi Basin, Andaman Sea, Kerala-Konkan Basin SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Gas hydrate; Gas; Resources; India; Krishna-Godavari Basin; Mahanadi Basin; Andaman Sea; Kerala-Konkan Basin ID MULTIDISCIPLINARY INVESTIGATIONS; METHANE HYDRATE; EAST-COAST; OCEAN; HISTORY; BENGAL; BAY; SEDIMENTS; EVOLUTION AB Gas hydrate resource assessments that indicate enormous global volumes of gas present within hydrate accumulations have been one of the primary driving forces behind the growing interest in gas hydrates. Gas hydrate volumetric estimates in recent years have focused on documenting the geologic parameters in the "gas hydrate petroleum system" that control the occurrence of gas hydrates in nature. The primary goals of this report are to review our present understanding of the geologic controls on the occurrence of gas hydrate in the offshore of India and to document the application of the petroleum system approach to the study of gas hydrates. National Gas Hydrate Program of India executed the National Gas Hydrate Program Expedition 01 (NGHP-01) in 2006 in four areas located on the eastern and western margins of the Indian Peninsula and in the Andaman Sea. These areas have experienced very different tectonic and depositional histories. The peninsular margins are passive continental margins resulting from a series of rifting episodes during the breakup and dispersion of Gondwanaland to form the present Indian Ocean. The Andaman Sea is bounded on its western side by a convergent margin where the Indian plate lithosphere is being subducted beneath southeast Asia. NGHP-01 drilled, logged, and/or cored 15 sites (31 holes) in the Krishna-Godavari Basin, 4 sites (5 holes) in the Mahanadi Basin, 1 site (2 holes) in the Andaman Sea, and 1 site (1 hole) in the Kerala-Konkan Basin. Holes were drilled using standard drilling methods for the purpose of logging-while-drilling and dedicated wireline logging; as well as through the use of a variety of standard coring systems and specialized pressure coring systems. NGHP-01 yielded evidence of gas hydrate from downhole log and core data obtained from all the sites in the Krishna-Godavari Basin, the Mahanadi Basin, and in the Andaman Sea. The site drilled in the Kerala-Konkan Basin during NGHP-01 did not yield any evidence of gas hydrate. Most of the downhole log-inferred gas hydrate and core-recovered gas hydrate were characterized as either fracture-filling in clay-dominated sediments or as pore-filling or grain-displacement particles disseminated in both fine-and coarse-grained sediments. Geochemical analyses of gases obtained from sediment cores recovered during NGHP-01 indicated that the gas in most all of the hydrates in the offshore of India is derived from microbial sources; only one site in the Andaman Sea exhibited limited evidence of a thermogenic gas source. The gas hydrate petroleum system concept has been used to effectively characterize the geologic controls on the occurrence of gas hydrates in the offshore of India. Published by Elsevier Ltd. C1 [Kumar, Pushpendra; Sathe, Arun Vasant; Yadav, U. S.] Oil & Nat Gas Corp Ltd, KDM Inst Petr Explorat, Dehra Dun 248195, Uttarakhand, India. [Collett, Timothy S.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Boswell, Ray] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Cochran, James R.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Lall, Malcolm; Vishwanath, Krishna] Directorate Gen Hydrocarbons, Noida, India. [Mazumdar, Aninda; Ramprasad, Tammisetti] Natl Inst Oceanog, Donapaula 403004, Goa, India. [Ramana, Mangipudi Venkata] Mauritius Oceanog Inst, Grand Port, Quatre Bornes, Mauritius. [Riedel, Michael] Nat Resources Canada, Sidney, BC V8L 4B2, Canada. [Sain, Kalachand] Natl Geophys Res Inst, Hyderabad 500007, Andhra Pradesh, India. RP Collett, TS (reprint author), US Geol Survey, Denver Fed Ctr, MS 939,Box 25046, Denver, CO 80225 USA. EM tcollett@usgs.gov OI Boswell, Ray/0000-0002-3824-2967 FU Oil Industry Development Board; Oil and Natural Gas Corporation Ltd.; GAIL (India) Ltd.; Oil India Ltd.; NGHP: MOPNG; DGH; ONGC; GAIL; OIL; NIO; NIOT; RIL; U.S. Geological Survey Energy Resources Program; U.S. Department of Energy [DE-AI21-92MC29214] FX The editors wish to thank those that contributed to the success of the National Gas Hydrate Program Expedition 01 (NGHP-01). NGHP-01 was planned and managed through collaboration between the Directorate General of Hydrocarbons (DGH) under the Ministry of Petroleum and Natural Gas (India), the U.S. Geological Survey (USGS), and the Consortium for Scientific Methane Hydrate Investigations (CSMHI) led by Overseas Drilling Limited (ODL) and FUGRO McClelland Marine Geosciences (FUGRO). The platform for the drilling operation was the research D/V JOIDES Resolution, operated by ODL. Much of the drilling/coring equipment used was provided by the Integrated Ocean Drilling Program (IODP) through a loan agreement with the U.S. National Science Foundation. Wireline pressure coring systems and supporting laboratories were provided by IODP/Texas A&M University (TAMU), FUGRO, USGS, U.S. Department of Energy (USDOE) and HYACINTH/GeoTek. Downhole logging operational and technical support was provided by Lamont-Doherty Earth Observatory (LDEO) of Columbia University. The financial support for the NGHP-01 from the Oil Industry Development Board, Oil and Natural Gas Corporation Ltd., GAIL (India) Ltd. and Oil India Ltd. is gratefully acknowledged. We also acknowledge the support extended by all the participating organizations of the NGHP: MOP&NG, DGH, ONGC, GAIL, OIL, NIO, NIOT, and RIL. The authors and editors are thankful to the Management of the National Gas Hydrate Program, DGH and ONGC for permission to publish this report in the Journal of Marine and Petroleum Geology.; This contribution was funded in part by the U.S. Geological Survey Energy Resources Program and the U.S. Department of Energy under Interagency Agreement No. DE-AI21-92MC29214. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 47 TC 3 Z9 3 U1 0 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 EI 1873-4073 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD DEC PY 2014 VL 58 BP 29 EP 98 DI 10.1016/j.marpetgeo.2014.07.031 PN A PG 70 WC Geosciences, Multidisciplinary SC Geology GA AY4WY UT WOS:000347577000003 ER PT J AU Rose, KK Johnson, JE Torres, ME Hong, WL Giosan, L Solomon, EA Kastner, M Cawthern, T Long, PE Schaef, HT AF Rose, Kelly K. Johnson, Joel E. Torres, Marta E. Hong, Wei-Li Giosan, Liviu Solomon, Evan A. Kastner, Miriam Cawthern, Thomas Long, Philip E. Schaef, H. Todd TI Anomalous porosity preservation and preferential accumulation of gas hydrate in the Andaman accretionary wedge, NGHP-01 site 17A SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Porosity; Permeability; Grain size; Indian Ocean; Gas hydrate; Saturation; Volcanic ash; Carbonate ID GULF-OF-MEXICO; STRATIGRAPHIC TEST WELL; ALASKA NORTH SLOPE; NORTHEASTERN INDIAN-OCEAN; MARINE-SEDIMENTS; METHANE HYDRATE; FORE-ARC; SEA; PERMEABILITY; TECTONICS AB In addition to well established properties that control the presence or absence of the hydrate stability zone, such as pressure, temperature, and salinity, additional parameters appear to influence the concentration of gas hydrate in host sediments. The stratigraphic record at Site 17A in the Andaman Sea, eastern Indian Ocean, illustrates the need to better understand the role pore-scale phenomena play in the distribution and presence of marine gas hydrates in a variety of subsurface settings. In this paper we integrate field-generated datasets with newly acquired sedimentology, physical property, imaging and geochemical data with mineral saturation and ion activity products of key mineral phases such as amorphous silica and calcite, to document the presence and nature of secondary precipitates that contributed to anomalous porosity preservation at Site 17A in the Andaman Sea. This study demonstrates the importance of grain-scale subsurface heterogeneities in controlling the occurrence and distribution of concentrated gas hydrate accumulations in marine sediments, and document the importance that increased permeability and enhanced porosity play in supporting gas concentrations sufficient to support gas hydrate formation. The grain scale relationships between porosity, permeability, and gas hydrate saturation documented at Site 17A likely offer insights into what may control the occurrence and distribution of gas hydrate in other sedimentary settings. Published by Elsevier Ltd. C1 [Rose, Kelly K.] US DOE, Natl Energy Technol Lab, Albany, OR 97321 USA. [Rose, Kelly K.; Torres, Marta E.; Hong, Wei-Li] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR USA. [Johnson, Joel E.; Cawthern, Thomas] Univ New Hampshire, Dept Earth Sci, Durham, NH 03824 USA. [Giosan, Liviu] Woods Hole Oceanog Inst, Dept Geol & Geophys, Woods Hole, MA 02543 USA. [Solomon, Evan A.] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. [Kastner, Miriam] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Long, Philip E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Schaef, H. Todd] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Rose, KK (reprint author), US DOE, Natl Energy Technol Lab, Off Res & Dev, 1450 Queen Ave SW, Albany, OR 97321 USA. EM Kelly.rose@netl.doe.gov RI Giosan, Liviu/F-1809-2010; Long, Philip/F-5728-2013; OI Giosan, Liviu/0000-0001-6769-5204; Long, Philip/0000-0003-4152-5682; Johnson, Joel/0000-0002-5671-7209 FU Oil Industry Development Board; Oil and Natural Gas Corporation Ltd.; GAIL (India) Ltd.; Oil India Ltd.; NGHP: MoPNG; DGH; ONGC; GAIL; OIL; NIO; NIOT; RIL FX The author(s) wish to thank those that contributed to the success of the National Gas Hydrate Program Expedition 01 (NGHP01). NGHP01 was planned and managed through collaboration between the Directorate General of Hydrocarbons (DGH) under the Ministry of Petroleum and Natural Gas (India), the U.S. Geological Survey (USGS), and the Consortium for Scientific Methane Hydrate Investigations (CSMHI) led by Overseas Drilling Limited (ODL) and FUGRO McClelland Marine Geosciences (FUGRO). The platform for the drilling operation was the research drill ship JOIDES Resolution, operated by ODL. Much of the drilling/coring equipment used was provided by the Integrated Ocean Drilling Program (IODP) through a loan agreement with the US National Science Foundation. Wireline pressure coring systems and supporting laboratories were provided by IODP/Texas A&M University (TAMU), FUGRO, USGS, U.S. Department of Energy (USDOE) and HYACINTH/GeoTek. Downhole logging operational and technical support was provided by Lamont-Doherty Earth Observatory (LDEO) of Columbia University. The financial support for the NGHP01, from the Oil Industry Development Board, Oil and Natural Gas Corporation Ltd., GAIL (India) Ltd. and Oil India Ltd. is gratefully acknowledged. We also acknowledge the support extended by all the participating organizations of the NGHP: MoP&NG, DGH, ONGC, GAIL, OIL, NIO, NIOT, and RIL. NR 77 TC 7 Z9 7 U1 1 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 EI 1873-4073 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD DEC PY 2014 VL 58 BP 99 EP 116 DI 10.1016/j.marpetgeo.2014.04.009 PN A PG 18 WC Geosciences, Multidisciplinary SC Geology GA AY4WY UT WOS:000347577000004 ER PT J AU Phillips, SC Johnson, JE Underwood, MB Guo, JH Giosan, L Rose, K AF Phillips, Stephen C. Johnson, Joel E. Underwood, Michael B. Guo, Junhua Giosan, Liviu Rose, Kelly TI Long-timescale variation in bulk and clay mineral composition of Indian continental margin sediments in the Bay of Bengal, Arabian Sea, and Andaman Sea SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE X-ray diffraction; Indian Ocean; Gas hydrate; Deccan basalt; Illite; Smectite; Chlorite; Kaolinite ID KRISHNA-GODAVARI BASIN; METHANE HYDRATE FORMATION; MAHANADI RIVER BASIN; EASTERN GHATS BELT; X-RAY-DIFFRACTION; GAS HYDRATE; SURFACE SEDIMENTS; MARINE-SEDIMENTS; SHELF SEDIMENTS; PALEOCLIMATIC INTERPRETATION AB This study documents X-ray diffraction results from bulk powders and oriented clay-size aggregates using samples from sites drilled and cored during the Indian National Gas Hydrate Expedition 01 (NGHP01). These sites are located in the Krishna-Godavari Basin, Mahanadi Basin, and Andaman accretionary wedge of the Bay of Bengal, and the Kerala-Konkan Basin of the Arabian Sea. Calcite is more abundant at the pelagic sites of the Andaman Sea and Kerala-Konkan Basin, which is consistent with previous studies of biological productivity and dilution by lithogenous influx. Hemipelagic sediments in the Krishna-Godavari Basin and Mahanadi Basin are comprised primarily of smectite-rich and illite-rich clay mineral assemblages, respectively. We attribute those contrasts to differences in detrital sources between the Deccan basalts (smectite sources) and Precambrian rocks of the Eastern Ghats Belt; those sources remained consistent over the entire history of sedimentation (0-9 Ma). Higher quartz content in the Mahanadi Basin and higher feldspar content at the Krishna-Godavari Basin reinforce these interpretations of detrital provenance. Smectite is the most abundant clay mineral in the Andaman Sea sediments likely due to weathering of volcanic sources along the Sunda Arc. Strata from the Kerala-Konkan Basin show a shift at 23 Ma from a smectite-kaolinite clay mineral assemblage to an increasingly illite-rich assemblage. We also see steady decreases in kaolinite and increases in chlorite and quartz over the 30-Myr record, which indicates increasing influences of material derived from physical weathering. The higher abundance of fully hydrated smectite in the Krishna-Godavari Basin may play a minor role in gas hydrate formation by sustaining higher permeabilities at any given value of mudstone porosity or void ratio. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Phillips, Stephen C.; Johnson, Joel E.] Univ New Hampshire, Dept Earth Sci, Durham, NH 03824 USA. [Underwood, Michael B.; Guo, Junhua] Univ Missouri, Dept Geol Sci, Columbia, MO 65211 USA. [Giosan, Liviu] Woods Hole Oceanog Inst, Dept Geol & Geophys, Woods Hole, MA 02543 USA. [Rose, Kelly] Natl Energy Technol Lab, Off Res & Dev, Albany, OR 97321 USA. RP Phillips, SC (reprint author), Univ New Hampshire, Dept Earth Sci, 56 Coll Rd, Durham, NH 03824 USA. EM phillips.stephen.c@gmail.com RI Phillips, Stephen/F-7239-2016; OI Phillips, Stephen/0000-0003-0858-4701; Underwood, Michael/0000-0002-8511-399X; Johnson, Joel/0000-0002-5671-7209 FU Oil Industry Development Board; Oil and Natural Gas Corporation Ltd.; GAIL (India) Ltd.; Oil India Ltd.; NGHP: MoPNG; DGH; ONGC; GAIL; OIL; NIO; NIOT; RIL; U.S. Geological Survey [07CRSA0708]; Norman Smith Opportunities for Excellence Endowment FX The authors wish to thank those that contributed to the success of the National Gas Hydrate Program Expedition 01 (NGHP01). NGHP01 was planned and managed through collaboration between the Directorate General of Hydrocarbons (DGH) under the Ministry of Petroleum and Natural Gas (India), the U.S. Geological Survey (USGS), and the Consortium for Scientific Methane Hydrate Investigations (CSMHI) led by Overseas Drilling Limited (ODL) and FUGRO McClelland Marine Geosciences (FUGRO). The platform for the drilling operation was the research drill ship JOIDES Resolution, operated by ODL. Much of the drilling/coring equipment used was provided by the Integrated Ocean Drilling Program (IODP) through a loan agreement with the US National Science Foundation. Wireline pressure coring systems and supporting laboratories were provided by IODP/Texas A&M University (TAMU), FUGRO, USGS, U.S. Department of Energy (USDOE) and HYACINTH/GeoTek. Downhole logging operational and technical support was provided by Lamont-Doherty Earth Observatory (LDEO) of Columbia University. The financial support for the NGHP01, from the Oil Industry Development Board, Oil and Natural Gas Corporation Ltd., GAIL (India) Ltd. and Oil India Ltd. is gratefully acknowledged. We also acknowledge the support extended by all the participating organizations of the NGHP: MoP&NG, DGH, ONGC, GAIL, OIL, NIO, NIOT, and RIL. We greatly appreciate the efforts of the NGHP01 shipboard scientific party for the collection and initial interpretation of these cores. This research was also supported by the U.S. Geological Survey (Contract #07CRSA0708). Funding at the University of Missouri included the Norman Smith Opportunities for Excellence Endowment. Hitoshi Banno and Jacob Hahn assisted with sample preparation. We thank Nathalie Fagel, an anonymous reviewer, and editor Tim Collett for their helpful comments. NR 141 TC 6 Z9 9 U1 6 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 EI 1873-4073 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD DEC PY 2014 VL 58 BP 117 EP 138 DI 10.1016/j.marpetgeo.2014.06.018 PN A PG 22 WC Geosciences, Multidisciplinary SC Geology GA AY4WY UT WOS:000347577000005 ER PT J AU Winters, WJ Wilcox-Cline, RW Long, P Dewri, SK Kumar, P Stern, L Kerr, L AF Winters, W. J. Wilcox-Cline, R. W. Long, P. Dewri, S. K. Kumar, P. Stern, L. Kerr, L. TI Comparison of the physical and geotechnical properties of gas-hydrate-bearing sediments from offshore India and other gas-hydrate-reservoir systems SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Physical properties; Gas hydrate; Porosity; Atterberg limits; Consolidation; Permeability; Shear strength; Scanning electron microscopy ID GULF-OF-MEXICO; STRATIGRAPHIC TEST WELL; ALASKA NORTH SLOPE; MARINE-SEDIMENTS; KEATHLEY CANYON; FLUID EXPULSION; METHANE HYDRATE; CASCADIA; SEA; PROGRAM AB The sediment characteristics of hydrate-bearing reservoirs profoundly affect the formation, distribution, and morphology of gas hydrate. The presence and type of gas, porewater chemistry, fluid migration, and subbottom temperature may govern the hydrate formation process, but it is the host sediment that commonly dictates final hydrate habit, and whether hydrate may be economically developed. In this paper, the physical properties of hydrate-bearing regions offshore eastern India (Krishna-Godavari and Mahanadi Basins) and the Andaman Islands, determined from Expedition NGHP-01 cores, are compared to each other, well logs, and published results of other hydrate reservoirs. Properties from the hydrate-free Kerala-Konkan basin off the west coast of India are also presented. Coarser-grained reservoirs (permafrost-related and marine) may contain high gas-hydrate-pore saturations, while finer-grained reservoirs may contain low-saturation disseminated or more complex gas-hydrates, including nodules, layers, and high-angle planar and rotational veins. However, even in these fine-grained sediments, gas hydrate preferentially forms in coarser sediment or fractures, when present. The presence of hydrate in conjunction with other geologic processes may be responsible for sediment porosity being nearly uniform for almost 500 m off the Andaman Islands. Properties of individual NGHP-01 wells and regional trends are discussed in detail. However, comparison of marine and permafrost-related Arctic reservoirs provides insight into the inter-relationships and common traits between physical properties and the morphology of gas-hydrate reservoirs regardless of location. Extrapolation of properties from one location to another also enhances our understanding of gas-hydrate reservoir systems. Grain size and porosity effects on permeability are critical, both locally to trap gas and regionally to provide fluid flow to hydrate reservoirs. Index properties corroborate more advanced consolidation and triaxial strength test results and can be used for predicting behavior in other NGHP-01 regions. Pseudo-overconsolidation is present near the seafloor and is underlain by underconsolidation at depth at some NGHP-01 locations. Published by Elsevier Ltd. C1 [Winters, W. J.; Wilcox-Cline, R. W.] US Geol Survey, Woods Hole, MA 02543 USA. [Long, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Dewri, S. K.; Kumar, P.] Oil & Nat Gas Corp Ltd, Panvel 410221, Navi Mumbai, India. [Stern, L.] US Geol Survey, Menlo Pk, CA 94025 USA. [Kerr, L.] Marine Biol Lab, Woods Hole, MA 02543 USA. RP Winters, WJ (reprint author), US Geol Survey, 384 Woods Hole Rd, Woods Hole, MA 02543 USA. EM hydrates92@comcast.net RI Long, Philip/F-5728-2013 OI Long, Philip/0000-0003-4152-5682 FU Oil Industry Development Board; Oil and Natural Gas Corporation Ltd.; GAIL (India) Ltd.; Oil India Ltd.; NGHP: MoPNG; DGH; ONGC; GAIL; OIL; NIO; NIOT; RIL; Coastal and Marine Geology, and Energy Programs of the U.S. Geological Survey; USGS Gas Hydrates Project [DE-FE0002911]; U.S. Department of Energy's Methane Hydrates RD Program [DE-FE0002911] FX The authors wish to thank those that contributed to the success of the National Gas Hydrate Program Expedition 01 (NGHP01). NGHP01 was planned and managed through collaboration between the Directorate General of Hydrocarbons (DGH) under the Ministry of Petroleum and Natural Gas (India), the U.S. Geological Survey (USGS), and the Consortium for Scientific Methane Hydrate Investigations (CSMHI) led by Overseas Drilling Limited (ODL) and FUGRO McClelland Marine Geosciences (FUGRO). The platform for the drilling operation was the research drill ship JOIDES Resolution, operated by ODL. Much of the drilling/coring equipment used was provided by the Integrated Ocean Drilling Program (IODP) through a loan agreement with the US National Science Foundation. Wireline pressure coring systems and supporting laboratories were provided by IODP/Texas A&M University (TAMU), FUGRO, USGS, U.S. Department of Energy (USDOE) and HYACINTH/GeoTek. Downhole logging operational and technical support was provided by Lamont-Doherty Earth Observatory (LDEO) of Columbia University. The financial support for the NGHP01, from the Oil Industry Development Board, Oil and Natural Gas Corporation Ltd., GAIL (India) Ltd. and Oil India Ltd. is gratefully acknowledged. We also acknowledge the support extended by all the participating organizations of the NGHP: MoP&NG, DGH, ONGC, GAIL, OIL, NIO, NIOT, and RIL.; Carolyn Ruppel and two anonymous reviewers provided helpful comments. Robert Cannata, Maya Gomes, Kate McMullen, and Rebecca Sorell performed the grain-size analyses. Geotechnical tests for NGHP-01 and IODP X311 samples were performed at GeoTesting Express, Inc., Boxboro, MA by Nancy Hubbard under the supervision of Gary Torosian and Joe Tomei. Mike Driscoll also performed some of the constant-rate-of-strain consolidation tests. H. Todd Schaef performed and processed infrared measurements at sea. Wylie Poag and Jason Chaytor helped interpret SEM images. The drillers and various field staff are thanked for obtaining cores, performing logging runs, and providing logistical support under adverse conditions. Dave Mason fabricated the pressure hoses and prepared other physical-property-related supplies used at sea. The NGHP-01 and other programs discussed in this paper would never have been possible without the leadership and assistance of Tim Collett. This work was supported by the Coastal and Marine Geology, and Energy Programs of the U.S. Geological Survey. Partial support for this research was provided by Interagency Agreement DE-FE0002911 between the USGS Gas Hydrates Project and the U.S. Department of Energy's Methane Hydrates R&D Program. NR 120 TC 3 Z9 3 U1 0 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 EI 1873-4073 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD DEC PY 2014 VL 58 BP 139 EP 167 DI 10.1016/j.marpetgeo.2014.07.024 PN A PG 29 WC Geosciences, Multidisciplinary SC Geology GA AY4WY UT WOS:000347577000006 ER PT J AU Dai, S Santamarina, JC AF Dai, Sheng Santamarina, J. Carlos TI Sampling disturbance in hydrate-bearing sediment pressure cores: NGHP-01 expedition, Krishna-Godavari Basin example SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Sampling effect; Pressure core; Mandel-Cryer effect; Fine sediment; Anomalous preservation ID PURE METHANE HYDRATE; GAS HYDRATE; ANOMALOUS PRESERVATION; PHYSICAL-PROPERTIES; SHEAR-STRENGTH; CELL-ENVELOPE; CLAYS; INDIA; SOIL; ICE AB Sampling natural sediments causes unavoidable disturbance as recovered sediments experience changes in stress and strain during drilling, core recovery, transportation, handling, and early stages of testing. In hydrate-bearing sediments, the potential for sampling disturbance may be aggravated, since pressure and temperature changes can lead to hydrate dissociation and gas exsolution. Pressure core technology attempts to recover and characterize hydrate-bearing sediments while preserving them under in situ pressure and temperature conditions, which is an essential requirement to assess the mechanical, physical, chemical, and biological properties of natural hydrate-bearing sediments. Previous studies on near-surface sampling effects are extended in this study to evaluate additional sampling disturbances relevant to hydrate-bearing sediments: (1) hydrate dissociation due to mechanical extension, (2) negative pore pressure generation during unloading (Mandel-Cryer effect), (3) secondary hydrate formation, (4) changes in hydrate mass as a function of changes in pressure and temperature within the stability field, (5) hydrate anomalous preservation and its benefits for pressure core handling and testing, and (6) relaxation/aging following sampling. Results provide valuable insight to sampler design, coring and operation procedures, high pressure chamber design, and pressure core testing techniques. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Dai, Sheng] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Santamarina, J. Carlos] Georgia Inst Technol, Atlanta, GA 30332 USA. RP Dai, S (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM dais@netl.doe.gov; jcs@gatech.edu OI Dai, Sheng/0000-0003-0221-3993 FU Department of Energy/JIP; Goizueta Foundation FX This research was supported by the Department of Energy/JIP project for methane hydrate, administered by Chevron. Additional funding is provided by the Goizueta Foundation. NR 74 TC 4 Z9 4 U1 4 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 EI 1873-4073 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD DEC PY 2014 VL 58 BP 178 EP 186 DI 10.1016/j.marpetgeo.2014.07.013 PN A PG 9 WC Geosciences, Multidisciplinary SC Geology GA AY4WY UT WOS:000347577000008 ER PT J AU Johnson, JE Phillips, SC Torres, ME Pinero, E Rose, KK Giosan, L AF Johnson, Joel E. Phillips, Stephen C. Torres, Marta E. Pinero, Elena Rose, Kelly K. Giosan, Liviu TI Influence of total organic carbon deposition on the inventory of gas hydrate in the Indian continental margins SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE TOC; C/N; Organic carbon isotopes; Bay of Bengal; Krishna-Godavari; Mahanadi; Andaman accretionary wedge; Kerala-Konkan ID KRISHNA-GODAVARI BASIN; CRETACEOUS-TERTIARY BOUNDARY; DECCAN FLOOD BASALTS; MARINE-SEDIMENTS; METHANE HYDRATE; ANDAMAN SEA; FORE-ARC; TECTONIC EVOLUTION; NORTHERN CASCADIA; THERMOGENIC GAS AB Total organic carbon (TOC) content of marine sediments represents residual carbon, originally derived from terrestrial and marine sources, which has survived seafloor and shallow subseafloor diagenesis. Ultimately, its preservation below the sulfate reduction zone in marine sediments drives methanogenesis. Within the gas hydrate stability zone (GHSZ), methane production along continental margins can supersaturate pore fluids and lead to the formation of gas hydrate. In this paper we examine the inventory and sources of TOC in sediments collected from four regions within the GHSZ along the Indian continental margins. The recovered sediments vary in age from Oligocene to recent. Mean TOC abundance is greatest in the Krishna-Godavari (K-G) Basin and decreases progressively to the Mahanadi basin, Andaman wedge, and Kerala-Konkan (K-K) Basin. This decrease in TOC is matched by a progressive increase in biogenic CaCO3 and increasing distance from terrestrial sources of organic matter and lithogenic materials. Organic carbon sources inferred from C/N and delta C-13(TOC) range from terrestrial (K-G Basin) to mixed marine and terrestrial (Mahanadi Basin), to marine dominant (Andaman wedge and K-K Basin). In the K-G Basin, variation in the bulk delta C-13(TOC) is consistent with changes in C-3 and C-4 vegetation driven by monsoon variability on glacial-interglacial timescales, whereas in the Mahanadi Basin a shift in the delta C-13(TOC) likely reflects the onset of C-4 plant deposition in the Late Miocene. A large shift the delta C-13(TOC) in the K-K basin is consistent with a change from C-3 to C-4 dominated plants during the middle Miocene. We observe a close relationship between TOC content and gas hydrate saturation, but consider the role of sedimentation rates on the preservation of TOC in the zone of methanogenesis and advective flow of methane from depth. Although TOC contents are sufficient for in situ methanogenesis at all the sites where gas hydrates were observed or inferred from proxy data, seismic, borehole log, pressure core, and gas composition data coupled with relatively high observed gas hydrate saturations suggest that advective gas transport may also play a role in the saturation of methane and the formation of gas hydrates in these regions. Although TOC content may be a first order indicator for gas hydrate potential, the structural and stratigraphic geologic environment along a margin will most likely dictate where the greatest gas hydrate saturations will occur. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Johnson, Joel E.; Phillips, Stephen C.] Univ New Hampshire, Dept Earth Sci, Durham, NH 03824 USA. [Torres, Marta E.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA. [Pinero, Elena] Helmholtz Ctr Ocean Res Kiel, GEOMAR, D-24148 Kiel, Germany. [Rose, Kelly K.] Natl Energy Technol Lab, Off Res & Dev, Albany, OR USA. [Giosan, Liviu] Woods Hole Oceanog Inst, Dept Geol & Geophys, Woods Hole, MA 02543 USA. RP Johnson, JE (reprint author), Univ New Hampshire, Dept Earth Sci, 56 Coll Rd, Durham, NH 03824 USA. EM joel.johnson@unh.edu RI Giosan, Liviu/F-1809-2010; Pinero, Elena/I-1952-2015; Phillips, Stephen/F-7239-2016; OI Giosan, Liviu/0000-0001-6769-5204; Pinero, Elena/0000-0001-8627-4093; Phillips, Stephen/0000-0003-0858-4701; Johnson, Joel/0000-0002-5671-7209 FU Oil Industry Development Board; Oil and Natural Gas Corporation Ltd.; GAIL (India) Ltd.; Oil India Ltd.; NGHP: MoPNG; DGH; ONGC; GAIL; OIL; NIO; NIOT; RIL; Directorate General of Hydrocarbons (DGH) India; U.S. Geological Survey [07CRSA0708]; Institute for Advanced Study (HWK), Delmenhorst, Germany FX The authors wish to thank those that contributed to the success of the National Gas Hydrate Program Expedition 01 (NGHP01). NGHP01 was planned and managed through collaboration between the Directorate General of Hydrocarbons (DGH) under the Ministry of Petroleum and Natural Gas (India), the U.S. Geological Survey (USGS), and the Consortium for Scientific Methane Hydrate Investigations (CSMHI) led by Overseas Drilling Limited (ODL) and FUGRO McClelland Marine Geosciences (FUGRO). The platform for the drilling operation was the research drill ship JOIDES Resolution, operated by ODL. Much of the drilling/coring equipment used was provided by the Integrated Ocean Drilling Program (IODP) through a loan agreement with the US National Science Foundation. Wireline pressure coring systems and supporting laboratories were provided by IODP/Texas A&M University (TAMU), FUGRO, USGS, U.S. Department of Energy (USDOE) and HYACINTH/GeoTek. Downhole logging operational and technical support was provided by Lamont-Doherty Earth Observatory (LDEO) of Columbia University. The financial support for the NGHP01, from the Oil Industry Development Board, Oil and Natural Gas Corporation Ltd., GAIL (India) Ltd. and Oil India Ltd. is gratefully acknowledged. We also acknowledge the support extended by all the participating organizations of the NGHP: MoP&NG, DGH, ONGC, GAIL, OIL, NIO, NIOT, and RIL. We greatly appreciate the efforts of the NGHP01 shipboard scientific party for the collection and initial interpretation of these cores. This research was funded by the Directorate General of Hydrocarbons (DGH) India and the U.S. Geological Survey (Contract # 07CRSA0708). M.E.T. acknowledges support from a fellowship from the Institute for Advanced Study (HWK), Delmenhorst, Germany. Additional thanks to Madison Myers, Misty Cawthern, and Kristen Bulpett for onshore preparation of samples for CHN analysis. We thank Andy Ouimette, and Eduardo Miranda for assistance with C isotopic measurements. Constructive comments and suggestions from John Pohlman and two anonymous reviewers greatly improved this manuscript. NR 117 TC 1 Z9 2 U1 1 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 EI 1873-4073 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD DEC PY 2014 VL 58 BP 406 EP 424 DI 10.1016/j.marpetgeo.2014.08.021 PN A PG 19 WC Geosciences, Multidisciplinary SC Geology GA AY4WY UT WOS:000347577000024 ER PT J AU Teichert, BMA Johnson, JE Solomon, EA Giosan, L Rose, K Kocherla, M Connolly, EC Torres, ME AF Teichert, B. M. A. Johnson, J. E. Solomon, E. A. Giosan, L. Rose, K. Kocherla, M. Connolly, E. C. Torres, M. E. TI Composition and origin of authigenic carbonates in the Krishna-Godavari and Mahanadi Basins, eastern continental margin of India SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Krishna-Godavari Basin; Mahanadi Basin; Authigenic carbonate; Methane seep; Anaerobe oxidation of methane ID HYDRATE RIDGE; BENTHIC FORAMINIFERA; ANAEROBIC OXIDATION; METHANE FLUXES; RIVER-BASIN; C-14 DATA; SEA; SEDIMENTS; ISOTOPE; ENVIRONMENTS AB The mineralogical and stable isotopic composition of authigenic carbonates from the Krishna-Godavari (KG) and Mahanadi Basin provide a deeper insight into the processes inducing carbonate formation in the sediments of the eastern continental margin of India in the Bay of Bengal. Authigenic carbonate cements, (micro) nodules, bioturbation casts and tubes from 12 core locations drilled during the Indian National Gas Hydrate Program (NGHP) Expedition 01 were investigated for this study. Three main processes responsible for authigenic carbonate precipitation are identified: organoclastic sulfate reduction, anaerobic oxidation of methane and methanogenesis. Evidence of vigorous methane seepage is indicated in carbonates recovered at Sites 7, 10, 12 (KG Basin) and 19 (Mahanadi Basin). These methane-derived carbonates display typical paragenetic carbonate mineralogies (aragonite, high-Mg calcite with >15 Mol% MgCO3, Ca-rich dolomite). Two separate horizons of methane derived-carbonates are correlated between 4 drill holes (up to similar to 16 km apart). The upper horizon has been dated with C-14 (40,100-51,600 a BP 1950) and clearly indicates that methane seepage has been much more vigorous in the past, possibly due to the effect of lower sea level on the gas hydrate stability zone across the margin. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Teichert, B. M. A.] Univ Munster, Inst Geol & Palaontol, D-48149 Munster, Germany. [Johnson, J. E.; Connolly, E. C.] Univ New Hampshire, Dept Earth Sci, Durham, NH 03824 USA. [Solomon, E. A.] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. [Giosan, L.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Rose, K.] US DOE, Natl Energy Technol Lab, Albany, OR USA. [Kocherla, M.] CSIR Natl Inst Oceanog, Panaji 403004, Goa, India. [Torres, M. E.] Oregon State Univ, Coll Ocean & Atmospher Sci, Corvallis, OR 97331 USA. RP Teichert, BMA (reprint author), Univ Munster, Inst Geol & Palaontol, Corrensstr 24, D-48149 Munster, Germany. EM barbara.teichert@uni-muenster.de RI Giosan, Liviu/F-1809-2010; OI Giosan, Liviu/0000-0001-6769-5204; Johnson, Joel/0000-0002-5671-7209 FU U.S. Geological Survey [07CRSA0708]; NSF [OCE-0753487]; Oil Industry Development Board; Oil and Natural Gas Corporation Ltd.; GAIL (India) Ltd.; Oil India Ltd.; NGHP: MoPNG; DGH; ONGC; GAIL; OIL; NIO; NIOT; RIL FX We would like to thank Jochen Erbacher and Andreas Luckge for support. Thanks to E. Muller and P. Melloh (both BGR Hannover) for sample preparation. Many thanks to R. Dohrmann and P. Weck (both BGR Hannover) for XRD analyses. Special thanks go to D. Klosa (BGR Hannover) for SEM work. We gratefully acknowledge the two anonymous reviewers who helped to improve the manuscript. This research was also supported by the U.S. Geological Survey (Contract #07CRSA0708) and by the NSF (OCE-0753487). The authors wish to thank those that contributed to the success of the National Gas Hydrate Program Expedition 01 (NGHP01). NGHP01 was planned and managed through collaboration between the Directorate General of Hydrocarbons (DGH) under the Ministry of Petroleum and Natural Gas (India), the U.S. Geological Survey (USGS), and the Consortium for Scientific Methane Hydrate Investigations (CSMHI) led by Overseas Drilling Limited (ODL) and FUGRO McClelland Marine Geosciences (FUGRO). The platform for the drilling operation was the research drill ship JOIDES Resolution, operated by ODL. Much of the drilling/coring equipment used was provided by the Integrated Ocean Drilling Program (IODP) through a loan agreement with the US National Science Foundation. Wireline pressure coring systems and supporting laboratories were provided by IODP/Texas A&M University (TAMU), FUGRO, USGS, U.S. Department of Energy (USDOE) and HYACINTH/GeoTek. Downhole logging operational and technical support was provided by Lamont-Doherty Earth Observatory (LDEO) of Columbia University. The financial support for the NGHP01, from the Oil Industry Development Board, Oil and Natural Gas Corporation Ltd., GAIL (India) Ltd. and Oil India Ltd. is gratefully acknowledged. We also acknowledge the support extended by all the participating organizations of the NGHP: MoP&NG, DGH, ONGC, GAIL, OIL, NIO, NIOT, and RIL. We greatly appreciate the efforts of the NGHP01 shipboard scientific party for the collection and initial interpretation of these cores. NR 63 TC 7 Z9 7 U1 1 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 EI 1873-4073 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD DEC PY 2014 VL 58 BP 438 EP 460 DI 10.1016/j.marpetgeo.2014.08.023 PN A PG 23 WC Geosciences, Multidisciplinary SC Geology GA AY4WY UT WOS:000347577000026 ER PT J AU Cawthern, T Johnson, JE Giosan, L Flores, JA Rose, K Solomon, E AF Cawthern, T. Johnson, J. E. Giosan, L. Flores, J. A. Rose, K. Solomon, E. TI A late Miocene-Early Pliocene biogenic silica crash in the Andaman Sea and Bay of Bengal SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Indian Ocean; Bay of Bengal; Indonesian Throughflow; NGHP-01; Biosilica ID EQUATORIAL INDIAN-OCEAN; SOUTH CHINA SEA; MALACCA STRAIT; ASIAN MONSOON; INTEROCEAN CIRCULATION; INDONESIAN THROUGHFLOW; TECTONIC EVOLUTION; NUMERICAL-MODEL; LATE QUATERNARY; PACIFIC-OCEAN AB Variations in the mass accumulation rate of biogenic silica (BSi) in continental margin sediments can be used to reconstruct relative changes in productivity through time in these settings. In the northern Bay of Bengal a lack of long sedimentary records has historically precluded this type of reconstruction. The acquisition of 21 new long sedimentary records during the 2006 Indian National Gas Hydrate Program (NGHP) Expedition-01 has made it possible for the first time to reconstruct paleoproductivity in this important region of the world that is dominated by intense changes in the geological and biological fluxes largely driven by tectonic and climate related mechanisms. In the research presented here, fluctuations in the mass accumulation rate of biogenic opal during the past similar to 9.4 Myrs are reconstructed using continental margin sediment cores from the Andaman Sea (Site NGHP-01-17A) and the northern Bay of Bengal (Site NGHP-01-19). Within these records, a biogenic silica crash is recorded at similar to 6 Ma and is consistent with previous geotectonic, geochemical and paleontological studies of the southern Indian Ocean and Pacific Ocean that suggest connectivity, and thus exchange of nutrient-rich water masses, between the eastern tropical Indian Ocean and western tropical Pacific Ocean was diminished as a result of the tectonic restriction of the northerly sector of the Indonesian Throughflow (ITF). The biogenic silica crash at Sites 17 and 19 is consistent with a decrease in surface water productivity that may have been driven by the reduction of nutrient-rich Pacific waters delivered to the Andaman Sea and Bay of Bengal via the northerly route of the ITF. Following the BSi crash at similar to 6 Ma, subsequent recovery of the BSi mass accumulation rates at Sites 17 and 19 occurred and was perhaps renewed by an enhanced supply of nutrient-rich freshwater from the nearby Irrawaddy and Mahanadi Rivers, which could have occurred during a documented increase in the intensity of the Indian monsoon at similar to 5 Ma. Although recovery is noted at both core locations, biogenic silica mass accumulation rates did not fully recover in the Andaman Sea. This could be explained by the restricted nature of the Andaman basin and its more distal location from a major source of nutrient-rich freshwater. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Cawthern, T.; Johnson, J. E.] Univ New Hampshire, Dept Earth Sci, Durham, NH 03824 USA. [Giosan, L.] Woods Hole Oceanog Inst, Dept Geol & Geophys, Woods Hole, MA 02543 USA. [Flores, J. A.] Univ Salamanca, Grp Geociencias Ocean, E-37008 Salamanca, Spain. [Rose, K.] US DOE, Natl Energy Technol Lab, Albany, OR 97321 USA. [Solomon, E.] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. RP Cawthern, T (reprint author), Salisbury Univ, Dept Geog & Geosci, 1101 Camden Ave, Salisbury, MD 21801 USA. EM trcawthern@salisbury.edu RI Giosan, Liviu/F-1809-2010; Flores, Jose-Abel/D-4218-2009; OI Giosan, Liviu/0000-0001-6769-5204; Flores, Jose-Abel/0000-0003-1909-293X; Johnson, Joel/0000-0002-5671-7209 FU U.S. Geological Survey (USGS) [07CRSA0708]; Oil Industry Development Board; Oil and Natural Gas Corporation Ltd.; GAIL (India) Ltd.; Oil India Ltd.; National Gas Hydrates Program of India; Ed Picou Fellowship Grant for Graduate Studies in Earth Sciences from the Gulf Coast Section of the Society for Sedimentary Geology; University of New Hampshire Department of Earth Sciences Research Award; Natural Resources and Earth Systems Science Program Research Award FX The authors wish to thank those that contributed to the success of the National Gas Hydrate Program Expedition 01 (NGHP-01). NGHP-01 was planned and managed through collaboration between the Directorate General of Hydrocarbons (DGH) under the Ministry of Petroleum and Natural Gas (India), the U.S. Geological Survey (Contract # 07CRSA0708) (USGS), and the Consortium for Scientific Methane Hydrate Investigations (CSMHI) led by Overseas Drilling Limited (ODL) and FUGRO McClelland Marine Geosciences. The platform for the drilling operation was the research drill ship JOIDES Resolution, operated by ODL. Much of the drilling/coring equipment used was provided by the Integrated Ocean Drilling Program (IODP) through a loan agreement with the US National Science Foundation. The financial support for NGHP-01, from the Oil Industry Development Board, Oil and Natural Gas Corporation Ltd., GAIL (India) Ltd., and the Oil India Ltd., is gratefully acknowledged. This research was supported by the National Gas Hydrates Program of India, the Ed Picou Fellowship Grant for Graduate Studies in Earth Sciences from the Gulf Coast Section of the Society for Sedimentary Geology, a University of New Hampshire Department of Earth Sciences Research Award and Natural Resources and Earth Systems Science Program Research Award. We thank the entire NGHP-01 Expedition shipboard science party and crew for the characterization of the stratigraphy and for the collection of the cores in 2006. The BSi measurements at UNH would not have been possible without the support of Linda Kalnejais and the generosity of Laurie Westover at the University of New Hampshire. NR 92 TC 3 Z9 3 U1 0 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 EI 1873-4073 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD DEC PY 2014 VL 58 BP 490 EP 501 DI 10.1016/j.marpetgeo.2014.07.026 PN A PG 12 WC Geosciences, Multidisciplinary SC Geology GA AY4WY UT WOS:000347577000029 ER PT J AU Phillips, SC Johnson, JE Giosan, L Rose, K AF Phillips, Stephen C. Johnson, Joel E. Giosan, Liviu Rose, Kelly TI Monsoon-influenced variation in productivity and lithogenic sediment flux since 110 ka in the offshore Mahanadi Basin, northern Bay of Bengal SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Mass accumulation rate; Indian Ocean; Grain size; Calcium carbonate; Organic carbon; C4 plant; Magnetic susceptibility; Zr/Rb ID LAST GLACIAL MAXIMUM; INDIAN-SUMMER MONSOON; GRAIN-SIZE ANALYSIS; DEEP-SEA SEDIMENTS; ORGANIC-CARBON PRESERVATION; EAST-ASIAN MONSOONS; GREENLAND ICE CORE; SOUTH CHINA SEA; ARABIAN SEA; MARINE-SEDIMENTS AB The Indian monsoon drives seasonal changes in precipitation and weathering across India as well as circulation and productivity in the northern Indian Ocean. Variation in paleo-monsoon intensity and its effect on productivity and lithogenic fluxes is poorly constrained in the Bay of Bengal. In this paper, we present analysis of a sediment record from the offshore Mahanadi Basin recovered during the Indian National Gas Hydrate Program Expedition 01 (Site NGHP-01-19B). We reconstruct variation in biogenic and lithogenic components during the last 110 kyr using measurements of total organic carbon (TOC), total nitrogen (TN), TOC/TN, CaCO3, biogenic silica (BSi), delta(TOC)-T-13, delta(TN)-T-15, bulk mineralogy from X-ray diffraction, bulk and lithogenic grain size distribution, magnetic susceptibility, bulk density, and Ca, Br, and Zr/Rb from x-ray fluorescence (XRF). The mass-accumulation rate (MAR) of CaCO3, a function of marine productivity, drastically increased between 70 and 10 ka and is correlated to previously-documented elevated Asian dust fluxes and increased Bay of Bengal salinity during a weakened south-west monsoon. Decreased freshwater input over this period likely diminished stratification, allowing for increased mixing and nutrient availability, thus enhancing productivity despite weaker southwest monsoon winds. The MAR of lithogenic material is highest during the Holocene suggesting that sediment supply driven by monsoon intensity is a stronger control on margin sedimentation than sea level at the Mahanadi Basin. Over the entire record, magnetic susceptibility and XRF Zr/Rb are strongly correlated with CaCO3, suggesting higher primary mineral input under a weakened southwest monsoon. TOC/TN and delta(TOC)-T-13 also increase under glacial conditions, suggesting higher relative input of terrestrial C4 organic matter. These results highlight the Mahanadi Basin as a supply-dominated margin where terrigenous sedimentation is strongly influenced by monsoon intensity, and that productivity is limited by variation in monsoon-driven stratification on glacial-interglacial timescales rather than a direct response to monsoon winds. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Phillips, Stephen C.; Johnson, Joel E.] Univ New Hampshire, Dept Earth Sci, Durham, NH 03824 USA. [Giosan, Liviu] Woods Hole Oceanog Inst, Dept Geol & Geophys, Woods Hole, MA 02543 USA. [Rose, Kelly] Natl Energy Technol Lab, Off Res & Dev, Albany, OR USA. RP Phillips, SC (reprint author), Univ New Hampshire, Dept Earth Sci, 56 Coll Rd, Durham, NH 03824 USA. EM phillips.stephen.c@gmail.com RI Giosan, Liviu/F-1809-2010; Phillips, Stephen/F-7239-2016; OI Giosan, Liviu/0000-0001-6769-5204; Phillips, Stephen/0000-0003-0858-4701; Johnson, Joel/0000-0002-5671-7209 FU Oil Industry Development Board; Oil and Natural Gas Corporation Ltd.; GAIL (India) Ltd.; Oil India Ltd.; NGHP: MoPNG; DGH; ONGC; GAIL; OIL; NIO; NIOT; RIL; DGH India; U.S. Geological Survey [07CRSA0708]; UNH Natural Resources and Earth System Science Program Student Support Fund FX The authors wish to thank those that contributed to the success of the National Gas Hydrate Program Expedition 01 (NGHP01). NGHP01 was planned and managed through collaboration between the Directorate General of Hydrocarbons (DGH) under the Ministry of Petroleum and Natural Gas (India), the U.S. Geological Survey (USGS), and the Consortium for Scientific Methane Hydrate Investigations (CSMHI) led by Overseas Drilling Limited (ODL) and FUGRO McClelland Marine Geosciences (FUGRO). The platform for the drilling operation was the research drill ship JOIDES Resolution, operated by ODL. Much of the drilling/coring equipment used was provided by the Integrated Ocean Drilling Program (IODP) through a loan agreement with the US National Science Foundation. Wireline pressure coring systems and supporting laboratories were provided by IODP/Texas A&M University (TAMU), FUGRO, USGS, U.S. Department of Energy (USDOE) and HYACINTH/GeoTek. Downhole logging operational and technical support was provided by Lamont-Doherty Earth Observatory (LDEO) of Columbia University. The financial support for the NGHP01, from the Oil Industry Development Board, Oil and Natural Gas Corporation Ltd., GAIL (India) Ltd. and Oil India Ltd. is gratefully acknowledged. We also acknowledge the support extended by all the participating organizations of the NGHP: MoP&NG, DGH, ONGC, GAIL, OIL, NIO, NIOT, and RIL. We greatly appreciate the efforts of the NGHP01 shipboard scientific party for the collection and initial interpretation of these cores. We thank Ellen Roosen for assistance with core curation and sampling at the WHOI Seafloor Samples Laboratory. We thank Andrew Ouimette and Rachel Mixon of the UNH Stable Isotope Laboratory for assistance with carbon and nitrogen isotope samples, and Kate Korotky Woolf for picking foraminifera used to develop the age model. We thank Lars Paulson and Emily Raterman for assistance with XRD sample preparation at the DOE National Energy Technology Lab in Albany, Oregon. We thank Corrine Disenhof (DOE NETL-URS Corp.) and Jake Setera (UNH) for assistance with the particle size analysis and Linda Kalnejais (UNH) for assistance with silica analysis. This project was supported by DGH India, U.S. Geological Survey (contract #07CRSA0708), and the UNH Natural Resources and Earth System Science Program Student Support Fund. The authors would like to thank two anonymous reviewers for their valuable comments. NR 253 TC 4 Z9 4 U1 3 U2 26 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 EI 1873-4073 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD DEC PY 2014 VL 58 BP 502 EP 525 DI 10.1016/j.marpetgeo.2014.05.007 PN A PG 24 WC Geosciences, Multidisciplinary SC Geology GA AY4WY UT WOS:000347577000030 ER PT J AU Kneafsey, TJ Moridis, GJ AF Kneafsey, Timothy J. Moridis, George J. TI X-Ray computed tomography examination and comparison of gas hydrate dissociation in NGHP-01 expedition (India) and Mount Elbert (Alaska) sediment cores: Experimental observations and numerical modeling SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE NGHP-01; Hydrate; Gas production; Mount Elbert; Experimental; TOUGH plus HYDRATE; X-ray; X-ray CT scanning ID STRATIGRAPHIC TEST WELL; NORTH SLOPE; DECOMPOSITION AB Natural gas from methane hydrate could provide a desireable resource. As part of a long-term investigation of producing gas from methane hydrate, lab-scale gas production tests have been performed using natural cores from India's Natural Gas Hydrate Program 01 Expedition (NGHP-01), and from the Mount Elbert Stratigraphic Well on the North Slope, of Alaska. Prior to performing the gas production tests, a number of cores from the NGHP-01 were scanned using X-ray computed tomography (CT) to examine the gas hydrate-bearing sediment structure, which guided the selection of the core for the gas production test. Disseminated gas hydrate, gas hydrate in veins, and gas hydrate in nodules were observed or inferred from the CT data. Data from numerous core segments are presented here and in the supplemental information. In our gas production test, the gas hydrate in the NGHP-01 core was dissociated by warming the core to above the stability point, and then depressurizing the sample. A preserved sample of gas hydrate-bearing sandstone from the Mount Elbert Test Well was dissociated by depressurization. In both tests, the internal temperature of the sample was monitored in two locations and the density changes at high spatial resolution were measured using X-ray CT scanning. Although there were indications of dissociation in the NGHP-01 core, no gas was produced. The Mount Elbert sample contained two distinct regions having different porosity and grain size distributions. The gas hydrate dissociation occurred initially throughout the sample as a result of lowering the pressure below methane hydrate stability conditions. This initial depressurization stage in the experiment reduced the temperature to the methane hydrate equilibrium point, and the pressure was controlled so that the temperature remained above the ice point. After that, dissociation occurred from the outside into the core sample as a result of heat transfer from the controlled temperature bath surrounding the pressure vessel. Numerical modeling of the laboratory test results using TOUGH + HYDRATE yielded a gas production curve that closely matches the experimentally measured curve. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Kneafsey, Timothy J.; Moridis, George J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Kneafsey, TJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM tjkneafsey@lbl.gov RI Kneafsey, Timothy/H-7412-2014 OI Kneafsey, Timothy/0000-0002-3926-8587 FU Oil Industry Development Board; Oil and Natural Gas Corporation Ltd.; GAIL (India) Ltd.; Oil India Ltd.; NGHP-01: MoPNG; DGH; ONGC; GAIL; OIL; NIO; NIOT; RIL; Office of Oil and Natural Gas, through the National Energy Technology Laboratory, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors wish to thank those that contributed to the success of the National Gas Hydrate Program Expedition 01 (NGHP-01). NGHP-01 was planned and managed through collaboration between the Directorate General of Hydrocarbons (DGH) under the Ministry of Petroleum and Natural Gas (India), the U.S. Geological Survey (USGS), and the Consortium for Scientific Methane Hydrate Investigations (CSMHI) led by Overseas Drilling Limited (ODL) and FUGRO McClelland Marine Geosciences (FUGRO). The platform for the drilling operation was the research drill ship JOIDES Resolution, operated by ODL. Much of the drilling/coring equipment used was provided by the Integrated Ocean Drilling Program (IODP) through a loan agreement with the US National Science Foundation. Wireline pressure coring systems and supporting laboratories were provided by IODP/Texas A&M University (TAMU), FUGRO, USGS, U.S. Department of Energy (USDOE) and HYACINTH/GeoTek. Downhole logging operational and technical support was provided by Lamont-Doherty Earth Observatory (LDEO) of Columbia University. The financial support for the NGHP-01, from the Oil Industry Development Board, Oil and Natural Gas Corporation Ltd., GAIL (India) Ltd. and Oil India Ltd. is gratefully acknowledged. We also acknowledge the support extended by all the participating organizations of the NGHP-01: MoP&NG, DGH, ONGC, GAIL, OIL, NIO, NIOT, and RIL. The authors also wish to acknowledge the many people, particularly William Winters of the USGS whose diligent efforts in both the NGHP-01 and Mount Elbert Projects made it possible to collect the samples discussed in this paper. The authors wish to thank the two anonymous reviewers and Tim Collett for critical reviews and comments improving this paper. This work was supported by the Assistant Secretary for Fossil Energy, Office of Oil and Natural Gas, through the National Energy Technology Laboratory, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Grain size distributions and mineralogy courtesy of Kyle Littlefield and Kelly Rose of the NETL. NR 33 TC 10 Z9 10 U1 7 U2 34 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 EI 1873-4073 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD DEC PY 2014 VL 58 BP 526 EP 539 DI 10.1016/j.marpetgeo.2014.06.016 PN A PG 14 WC Geosciences, Multidisciplinary SC Geology GA AY4WY UT WOS:000347577000031 ER PT J AU Wang, XN AF Wang, Xin-Nian TI What hard probes tell us about the quark-gluon plasma: Theory SO NUCLEAR PHYSICS A LA English DT Article DE Heavy-ion collisions; QGP; Hard probes; Jet quenching; EM emission AB In the study of quark-gluon plasma in high-energy heavy-ion collisions, hard and electromagnetic (EM) processes can be used to probe a wide range of properties of the hot and dense medium, from space-time profiles of the bulk matter, bulk transport coefficients to EM responses and the jet transport parameter. These medium properties, how they can be studied through hard and EM probes and the status of recent theoretical and phenomenological investigations are reviewed in this talk. (C) 2014 Elsevier B.V. All rights reserved. C1 [Wang, Xin-Nian] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Wang, Xin-Nian] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. [Wang, Xin-Nian] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94740 USA. RP Wang, XN (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, Mailstop 70R0319, Berkeley, CA 94740 USA. OI Wang, Xin-Nian/0000-0002-9734-9967 FU NSFC [11221504]; China MOST [2014DFG02050]; Major State Basic Research Development Program in China [2014CB845404]; U.S. Department of Energy [DE-AC02-05CH11231] FX This work is supported by the NSFC under Grant No. 11221504, China MOST under Grant No. 2014DFG02050, the Major State Basic Research Development Program in China (No. 2014CB845404), U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and within the framework of the JET Collaboration. NR 31 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2014 VL 932 BP 1 EP 8 DI 10.1016/j.nuclphysa.2014.09.065 PG 8 WC Physics, Nuclear SC Physics GA AY7WO UT WOS:000347766900003 ER PT J AU Steinberg, P AF Steinberg, Peter CA ATLAS Collaboration TI What have we learned about the quark-gluon plasma with the ATLAS detector at the LHC? SO NUCLEAR PHYSICS A LA English DT Article DE Heavy ion collisions; Proton-ion collisions; Large Hadron Collider; Jet quenching; Particle multiplicities; Nuclear suppression factors ID COLLISIONS; FLOW; TEV AB Recent results from lead lead and proton lead collisions, measured by the ATLAS experiment at the LHC, are presented. In lead lead collisions, electroweak bosons are found to be produced proportionally to the number of binary nucleon nucleon collisions, and to have rapidity distributions compatible with perturbative QCD calculations, suggesting no need for large nuclear PDF effects. Conversely, the large suppression of inclusive jets, the elliptic flow of hadrons at high P-T and the direct measurements of jet v(2) support the need for a path-length-dependent energy loss in the hot, dense medium. Proton lead measurements provide new insights into particle production in small, longitudinally asymmetric systems, but require further insights into the fluctuating nature of proton proton collisions. The modification factors for charged hadrons show a non-trivial dependence on centrality and rapidity, with a "Cronin" peak appearing only in the most central events, and in the lead-going direction. Finally the measurements of inclusive jets in proton lead show a striking scaling in the R-CP suppression variable that is only a function of the jet momentum, while the suppression factor relative to PYTHIA jet cross sections shows an enhanced yield in peripheral events, and a suppressed yield in central events. (C) 2014 CERN. Published by Elsevier B.V. All rights reserved. C1 [Steinberg, Peter; ATLAS Collaboration] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Steinberg, P (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Pacheco Pages, Andres/C-5353-2011; Fabbri, Laura/H-3442-2012 OI Pacheco Pages, Andres/0000-0001-8210-1734; Fabbri, Laura/0000-0002-4002-8353 NR 15 TC 1 Z9 1 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2014 VL 932 BP 9 EP 16 DI 10.1016/j.nuclphysa.2014.07.010 PG 8 WC Physics, Nuclear SC Physics GA AY7WO UT WOS:000347766900004 ER PT J AU Buthelezi, Z Cleymans, J Dietel, T Fortsch, S Horowitz, WA Steinberg, P Weigert, H AF Buthelezi, Zinhle Cleymans, Jean Dietel, Tom Foertsch, Siegfried Horowitz, W. A. Steinberg, Peter Weigert, Heribert TI Preface SO NUCLEAR PHYSICS A LA English DT Editorial Material C1 [Buthelezi, Zinhle; Foertsch, Siegfried] IThemba LABS, Cape Town, South Africa. [Cleymans, Jean; Dietel, Tom; Horowitz, W. A.; Weigert, Heribert] Univ Cape Town, ZA-7700 Rondebosch, South Africa. [Steinberg, Peter] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Buthelezi, Z (reprint author), IThemba LABS, Cape Town, South Africa. NR 0 TC 0 Z9 0 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2014 VL 932 BP X EP XI DI 10.1016/S0375-9474(14)00594-6 PG 2 WC Physics, Nuclear SC Physics GA AY7WO UT WOS:000347766900001 ER PT J AU Stankus, P AF Stankus, Paul CA PHENIX Collaboration TI What have we learned (recently) from hard probes in PHENIX? SO NUCLEAR PHYSICS A LA English DT Article DE Quark-gluon plasma; Hard scattering; Asymmetric collisions AB We report recent results from the PHENIX experiment at RHIC, touching on both full-energy, symmetric collisions of large nuclei (Au+Au), the traditional arena for presumptive QGP creation; and also on the newer regime of smaller and asymmetric systems (Cu+Cu, Cu+Au, d+Au). We see a number of results that may complicate or challenge the standard picture of QGP formation and interaction. In particular, a wealth of recent d+Au results are suggestive of dense medium formation in very small systems. (C) 2014 CERN. Published by Elsevier B.V. All rights reserved. C1 [Stankus, Paul; PHENIX Collaboration] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Stankus, P (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 18 TC 0 Z9 0 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2014 VL 932 BP 25 EP 31 DI 10.1016/j.nuclphysa.2014.10.023 PG 7 WC Physics, Nuclear SC Physics GA AY7WO UT WOS:000347766900006 ER PT J AU Durham, JM AF Durham, J. Matthew CA Phenix Collaboration TI PHENIX results on heavy quarks at low x SO NUCLEAR PHYSICS A LA English DT Article DE PHENIX; Heavy quarks ID PROTON-NUCLEUS COLLISIONS; DETECTOR; J/PSI AB It is becoming increasingly clear that initial state effects inherent to collisions of nuclei play an important role in the interpretation of data from heavy ion collisions at RHIC and the LHC. Such effects are more apparent in kinematic regions where the gluon density is expected to be significantly modified in the nucleus. The PHENIX experiment has studied these effects through the production of heavy quarks at backwards, middle, and forward rapidity, where partonic interactions in the nucleus and changes in the gluon structure function influence heavy quark production in different ways. Comparisons between these different rapidities in d+Au collisions offer us a window into the dynamics of particle production and transport in the nucleus. In these proceedings, new PHENIX results on heavy quark production at low x values are discussed, in the context of A+A data from RHIC and the LHC. (C) 2014 CERN. Published by Elsevier B.V. All rights reserved. C1 [Durham, J. Matthew; Phenix Collaboration] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Durham, JM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM durham@lanl.gov OI Durham, J. Matthew/0000-0002-5831-3398 NR 21 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2014 VL 932 BP 81 EP 87 DI 10.1016/j.nuclphysa.2014.07.045 PG 7 WC Physics, Nuclear SC Physics GA AY7WO UT WOS:000347766900015 ER PT J AU Luo, T He, YY Wang, XN Zhu, Y AF Luo, Tan He, Yayun Wang, Xin-Nian Zhu, Yan TI Jet propagation within a Linearized Boltzmann Transport model SO NUCLEAR PHYSICS A LA English DT Article DE Jet quenching; Jet transport; Parton energy loss; Quark-gluon plasma ID COLLISIONS AB A Linearized Boltzmann Transport (LBT) model has been developed for the study of parton propagation inside quark-gluon plasma. Both leading and thermal recoiled partons are tracked in order to include the effect of jet-induced medium excitation. In this talk, we present a study within the LBT model in which we implement the complete set of elastic parton scattering processes. We investigate elastic parton energy loss and their energy and length dependence. We further investigate energy loss and transverse shape of reconstructed jets. Contributions from the recoiled thermal partons and jet-induced medium excitations are found to have significant influences on the jet energy loss and transverse profile. (C) 2014 Elsevier B.V. All rights reserved. C1 [Luo, Tan; He, Yayun; Wang, Xin-Nian] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. [Luo, Tan; He, Yayun; Wang, Xin-Nian] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Wang, Xin-Nian] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94740 USA. [Zhu, Yan] Univ Santiago de Compostela, Dept Fis Particulas, E-15706 Santiago De Compostela, Galicia, Spain. [Zhu, Yan] Univ Santiago de Compostela, IGFAE, E-15706 Santiago De Compostela, Galicia, Spain. RP Luo, T (reprint author), Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. OI He, Yayun/0000-0001-8202-3131; Wang, Xin-Nian/0000-0002-9734-9967 FU NSFC [11221504]; China MOST [2014DFG02050]; Major State Basic Research Development Program in China [2014CB845404]; U.S. Department of Energy [DE-AC02-05CH11231] FX This work is supported by the NSFC under Grant No. 11221504, China MOST under Grant No. 2014DFG02050, the Major State Basic Research Development Program in China (No. 2014CB845404), U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and within the framework of the JET Collaboration. NR 16 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2014 VL 932 BP 99 EP 104 DI 10.1016/j.nuclphysa.2014.09.052 PG 6 WC Physics, Nuclear SC Physics GA AY7WO UT WOS:000347766900018 ER PT J AU Bazavov, A Burnier, Y Petreczky, P AF Bazavov, A. Burnier, Y. Petreczky, P. TI Lattice calculation of the heavy quark potential at non-zero temperature SO NUCLEAR PHYSICS A LA English DT Article DE Quark-gluon plasma ID SPECTRAL FUNCTIONS AB We calculated the real and imaginary parts of the static quark-antiquark potential at T > 0 in 2 + 1 flavor QCD using correlators of Wilson lines in Coulomb gauge and lattices with temporal extent N-tau = 12. We find that the real part of the potential is larger than the singlet free energy but smaller than the zero temperature potential. The imaginary part of the potential is similar in size to the perturbative HTL result. (C) 2014 Elsevier B.V. All rights reserved. C1 [Bazavov, A.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Burnier, Y.] Ecole Polytech Fed Lausanne, Lab Particle Phys Cosmol, CH-1015 Lausanne, Switzerland. [Petreczky, P.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11793 USA. RP Petreczky, P (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11793 USA. RI EPFL, Physics/O-6514-2016; OI Burnier, Yannis/0000-0001-5774-368X FU U.S. Department of Energy [DE-AC02-98CH10886]; SNSF [PZ00P2-142524] FX This work was partly supported by through the Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Y.B. was supported by the SNSF under grant PZ00P2-142524. NR 25 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2014 VL 932 BP 117 EP 121 DI 10.1016/j.nuclphysa.2014.09.078 PG 5 WC Physics, Nuclear SC Physics GA AY7WO UT WOS:000347766900021 ER PT J AU Xu, JC Buzzatti, A Gyulassy, M AF Xu, Jiechen Buzzatti, Alessandro Gyulassy, Miklos TI The tricky azimuthal dependence of jet quenching at RHIC and LHC via CUJET2.0 SO NUCLEAR PHYSICS A LA English DT Article DE Heavy ion phenomenology; Jets ID PB-PB COLLISIONS; TRANSVERSE-MOMENTUM; ROOT-S(NN)=2.76 TEV; ENERGY-LOSS; FLOW AB High transverse momentum neutral pion and charged hadron suppression pattern with respect to reaction plane at RHIC and LHC energies in central and semi-peripheral AA collisions are studied in a perturbative QCD based model, CUJET2.0. CUJET2.0 has dynamical DGLV radiation kernel and Thoma-Gyulassy elastic energy loss, with both being generalized to including multi-scale running strong coupling as well as energy loss probability fluctuations, and the full jet path integration is performed in a low p(T) flow data constrained medium which has 2+1D viscous hydrodynamical expanding profile. We find that in CUJET2.0, with only one control parameter, alpha(max), the maximum coupling strength, fixed to be 0.26, the computed nuclear modification factor R-AA in central and semi-peripheral AA collisions are consistent with RHIC and LHC data at average chi(2)/d.o.f. < 1.5 level. Simultaneous agreements with high p(T) azimuthal anisotropy v(2) data are acquired given average alpha(max) over in-plane and out-of-plane paths varying as little as 10%, suggesting a non-trivial dependence of the high p(T) single particle v(2) on the azimuthally varied strong coupling. (C) 2014 Elsevier B.V. All rights reserved. C1 [Xu, Jiechen; Buzzatti, Alessandro; Gyulassy, Miklos] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Buzzatti, Alessandro; Gyulassy, Miklos] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Gyulassy, Miklos] HAS, Wigner RCP, Inst Particle & Nucl Phys, H-1121 Budapest, Hungary. RP Xu, JC (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. FU U.S. DOE Nuclear Science [DE-FG02-93ER40764, DE-AC02-05CH11231]; OTKA [NK106119] FX We thank Barbara Betz, Andrej Ficnar, Jinfeng Liao, Chun Shen and Xin-Nian Wang for many useful discussions. Support for this work under U.S. DOE Nuclear Science Grants Nos. DE-FG02-93ER40764 and DE-AC02-05CH11231 and OTKA grant NK106119 is gratefully acknowledged. NR 24 TC 2 Z9 2 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2014 VL 932 BP 128 EP 133 DI 10.1016/j.nuclphysa.2014.07.027 PG 6 WC Physics, Nuclear SC Physics GA AY7WO UT WOS:000347766900023 ER PT J AU Sakaguchi, T AF Sakaguchi, Takao CA Phenix Collaboration TI Detail study of the medium created in Au plus Au collisions with high p(T) probes by the PHENIX experiment at RHIC SO NUCLEAR PHYSICS A LA English DT Article DE QGP; High p(T) hadrons; Energy loss ID MOMENTUM; SPECTRA AB Recent results on high p(T) identified hadrons in Au + Au collisions from the PHENIX experiment are presented. The R-AA for pi(0) and eta are found to be consistent. The second and fourth order collective flow of pi(0)'s have been measured and found that v(4)/v(2)(2) is consistent with the one observed in the lower p(T) region. Assuming the suppression of the pi(0) yield at highest PT arises from energy loss of partons, we found that the energy loss is L-3 dependent, where L is the path length of the partons in the medium. The delta p(T)/p(T)'s of high p(T) hadrons which are computed from 39 GeV Au + Au over to 2.76 TeV Pb + Pb are found to vary by a factor of six. We have seen a smooth trend in delta p(T)/p(T) from RHIC Au + Au points to the most central LHC Pb + Pb point when plotting these against the charged multiplicity of the systems. (C) 2014 Elsevier B.V. All rights reserved. C1 [Sakaguchi, Takao; Phenix Collaboration] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Sakaguchi, T (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 14 TC 1 Z9 1 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2014 VL 932 BP 164 EP 168 DI 10.1016/j.nuclphysa.2014.08.017 PG 5 WC Physics, Nuclear SC Physics GA AY7WO UT WOS:000347766900029 ER PT J AU Wang, H Sorensen, P AF Wang, Hui Sorensen, Paul CA Star Collaboration TI Azimuthal anisotropy in U plus U collisions at STAR SO NUCLEAR PHYSICS A LA English DT Article DE QGP; Flow AB The azimuthal anisotropy of particle production is commonly used in high-energy nuclear collisions to study the early evolution of the expanding system. The prolate shape of uranium nuclei makes it possible to study how the geometry of the colliding nuclei affects final state anisotropies. It also provides a unique opportunity to understand how entropy is produced in heavy-ion collisions. In this paper, the two- and four-particle cumulant v(2) (v(2){2} and v(2){4}) from U+U collisions at root S-NN = 193 GeV and Au+Au collisions at root S-NN = 200 GeV for inclusive charged hadrons will be presented. The STAR Zero Degree Calorimeters are used to select very central collisions. Differences were observed between the multiplicity dependence of v(2){2} for most central Au+Au and U+U collisions. The multiplicity dependence of v(2){2} in central collisions was compared to Monte Carlo Glauber model predictions and it was seen that this model cannot explain the present results. (C) 2014 CERN. Published by Elsevier B.V. All rights reserved. C1 [Wang, Hui; Sorensen, Paul; Star Collaboration] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Wang, H (reprint author), Brookhaven Natl Lab, Dept Phys, Bldg 510A, Upton, NY 11973 USA. NR 9 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2014 VL 932 BP 169 EP 173 DI 10.1016/j.nuclphysa.2014.09.111 PG 5 WC Physics, Nuclear SC Physics GA AY7WO UT WOS:000347766900030 ER PT J AU Vujanovic, G Paquet, JF Denicol, GS Luzum, M Schenke, B Jeon, S Gale, C AF Vujanovic, Gojko Paquet, Jean-Francois Denicol, Gabriel S. Luzum, Matthew Schenke, Bjoern Jeon, Sangyong Gale, Charles TI Probing the early-time dynamics of relativistic heavy-ion collisions with electromagnetic radiation SO NUCLEAR PHYSICS A LA English DT Article DE Electromagnetic radiation; Relativistic viscous hydrodynamics; Transport coefficients of strongly interacting media; Initial conditions of relativistic heavy-ion collisions ID THERMODYNAMICS AB Using 3 + 1D viscous relativistic fluid dynamics, we show that electromagnetic probes are sensitive to the initial conditions and to the out-of-equilibrium features of relativistic heavy-ion collisions. Within the same approach, we find that hadronic observables show a much lesser sensitivity to these aspects. We conclude that electromagnetic observables allow access to dynamical regions that are beyond the reach of soft hadronic probes. (C) 2014 Elsevier B.V. All rights reserved. C1 [Vujanovic, Gojko; Paquet, Jean-Francois; Denicol, Gabriel S.; Luzum, Matthew; Jeon, Sangyong; Gale, Charles] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Luzum, Matthew] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Schenke, Bjoern] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Gale, Charles] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany. RP Vujanovic, G (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. RI Luzum, Matthew/C-4986-2015; Silveira Denicol, Gabriel/L-5048-2016 OI Luzum, Matthew/0000-0002-0367-7055; NR 19 TC 5 Z9 5 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2014 VL 932 BP 230 EP 234 DI 10.1016/j.nuclphysa.2014.08.053 PG 5 WC Physics, Nuclear SC Physics GA AY7WO UT WOS:000347766900040 ER PT J AU Lamont, MAC AF Lamont, Matthew A. C. TI Measuring the gluon distribution in nuclei at an electron-ion collider SO NUCLEAR PHYSICS A LA English DT Article DE Saturation; Electron-ion collider; Initial conditions AB Despite the successes of the HERA collider, where much information was gained on the structure of the nucleon, data on the structure of the nucleus at moderate-to-small x remains elusive, as only fixed-target high-x data currently exist. The small-x region, however, is of great interest. The nucleon structure in this region is dominated by gluons which show a rapid rise with decreasing x. At low-x, this growth must be tamed and the gluon distribution will be saturated. This saturation phenomena is expected to be universal, appearing in both nucleons and nuclei. A knowledge of this regime is of vital importance to understanding the underlying physics which governs the initial conditions of heavy-ion collisions at both the LHC and RHIC, where particle production is dominated by gluons from this unknown region. However, only tantalising hints of this have been observed so far. Therefore, the construction of an Electron-Ion Collider (EIC), colliding polarised electrons with polarised protons and also a wide variety of nuclei, will allow an exploration of the region of small-x in great detail (with luminosities 100x that of HERA), answering questions on both the spatial and momentum distributions of gluons and sea quarks in nuclei. In particular, the saturation region is more accessible in nuclei due to the amplification of the saturation scale with nuclear size (Q(S) proportional to A(1/3)). In this paper I present the current status of measuring the gluon distribution in nuclei in e + A collisions at an EIC. (C) 2014 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Lamont, MAC (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 7 TC 0 Z9 0 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2014 VL 932 BP 286 EP 290 DI 10.1016/j.nuclphysa.2014.09.047 PG 5 WC Physics, Nuclear SC Physics GA AY7WO UT WOS:000347766900050 ER PT J AU Perepelitsa, DV Collaboration, A AF Perepelitsa, Dennis V. Collaboration, A. T. L. A. S. TI Inclusive jet production in p plus Pb collisions at 5.02 TeV with the ATLAS detector at the LHC SO NUCLEAR PHYSICS A LA English DT Article DE Heavy ion physics; Nuclear parton; Distribution functions; Proton-nucleus collisions; Centrality AB Measurements of reconstructed jets in high-energy proton lead collisions over a wide rapidity and transverse momentum range can serve as a detailed probe of the partonic structure of nuclei over a large (x, Q(2)) range. Inclusive jet production may be sensitive to the nuclear modification of parton distribution functions and such effects as the energy loss of the initial state partons entering into the hard scattering. Furthermore, any modification of jet production in p + Pb collisions can provide context for the strong suppression observed in central 2.76 TeV Pb + Pb collisions which is attributed to the formation of a hot nuclear medium. We present a measurement of inclusive jet production in p + Pb collisions with the ATLAS detector at the LHC. While the jet rate in minimum bias p + Pb events is seen to be only slightly enhanced above the geometric expectation, the centrality-dependent yields are observed to be modified, with systematically stronger effects at higher PT and at more forward (proton-going) rapidities. (c) 2014 CERN. Published by Elsevier B.V. All rights reserved. C1 [Perepelitsa, Dennis V.; Collaboration, A. T. L. A. S.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Perepelitsa, DV (reprint author), Brookhaven Natl Lab, Phys Bldg 510C, Upton, NY 11973 USA. NR 11 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2014 VL 932 BP 437 EP 441 DI 10.1016/j.nuclphysa.2014.09.109 PG 5 WC Physics, Nuclear SC Physics GA AY7WO UT WOS:000347766900073 ER PT J AU Wang, XN Zhu, Y AF Wang, Xin-Nian Zhu, Yan TI Jet quenching and gamma-jet correlation in high-energy heavy-ion collisions SO NUCLEAR PHYSICS A LA English DT Article DE Jet quenching; gamma-jet; Azimuthal angle correlation; Jet fragmentation function AB Medium modification of gamma-tagged jets in high-energy heavy-ion collisions is investigated within a linearized Boltzmann transport model which includes both elastic parton scattering and induced gluon emission. In Pb + Pb collisions at root s = 2.76 TeV, a gamma-tagged jet is seen to lose 15% of its energy at 0-10% central collisions. Simulations also point to a sizable azimuthal angle broadening of gamma-tagged jets at the tail of a distribution which should be measurable when experimental errors are significantly reduced. An enhancement at large z(jet) = p(L)/E-jet in jet fragmentation function at the Large Hadron Collider (LHC) can be attributed to the dominance of leading particles in the reconstructed jet. A gamma-tagged jet fragmentation function is shown to be more sensitive to jet quenching, therefore a better probe of the jet transport parameter. (c) 2014 Elsevier B.V. All rights reserved. C1 [Wang, Xin-Nian] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. [Wang, Xin-Nian] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Wang, Xin-Nian] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94740 USA. [Zhu, Yan] Univ Santiago Compostela, Dept Fis Particulas, E-15706 Santiago De Compostela, Galicia, Spain. [Zhu, Yan] Univ Santiago Compostela, IGFAE, E-15706 Santiago De Compostela, Galicia, Spain. RP Zhu, Y (reprint author), Univ Santiago Compostela, Dept Fis Particulas, E-15706 Santiago De Compostela, Galicia, Spain. OI Wang, Xin-Nian/0000-0002-9734-9967 FU NSFC [11221504]; China MOST [2014DFG02050]; Major State Basic Research Development Program in China [2014CB845404]; U.S. DOE [DE-AC02-05CH11231]; JET Collaboration; Sofja Kovalevskaja program of the Alexander von Humboldt Foundation; DFG Graduate School Quantum Fields and Strongly Interacting Matter; European Research Council [HotLHC ERC-2001-StG-279579] FX This work is supported by the NSFC under Grant No. 11221504, China MOST under Grant No. 2014DFG02050, the Major State Basic Research Development Program in China (No. 2014CB845404), U.S. DOE under Contract No. DE-AC02-05CH11231 and within the framework of the JET Collaboration. Y.Z. was also supported by the Sofja Kovalevskaja program of the Alexander von Humboldt Foundation, the DFG Graduate School Quantum Fields and Strongly Interacting Matter, and European Research Council Grant No. HotLHC ERC-2001-StG-279579. NR 10 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2014 VL 932 BP 447 EP 452 DI 10.1016/j.nuclphysa.2014.07.018 PG 6 WC Physics, Nuclear SC Physics GA AY7WO UT WOS:000347766900075 ER PT J AU Vogt, R AF Vogt, R. TI Predictions for p plus Pb collisions at root S-NN=5 TeV: Expectations vs. data SO NUCLEAR PHYSICS A LA English DT Article DE Cold nuclear matter effects; Charged particle production; J/psi AB Recently a compilation of predictions for charged hadron, identified light hadron, quarkonium, photon, jet and gauge boson production in p + Pb collisions at root S-NN = 5 TeV was made 'available [1]. Here the predictions are compared to the data so far available. (c) 2014 Elsevier B.V. All rights reserved. C1 [Vogt, R.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. [Vogt, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Vogt, R (reprint author), Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. EM vogt@physics.ucdavis.edu FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; JET Collaboration FX I thank J. Albacete, F. Arleo, A. Dumitru, F. Jing, Z. Lin, A. Rezaeian, C. Roland, E. Scomparin, P. Steinberg, J. Velkovska, and X.-N. Wang for comments and contributions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported in part by the JET Collaboration. NR 10 TC 1 Z9 1 U1 2 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2014 VL 932 BP 494 EP 499 DI 10.1016/j.nuclphysa.2014.07.004 PG 6 WC Physics, Nuclear SC Physics GA AY7WO UT WOS:000347766900083 ER PT J AU Hu, XY Chen, HC Chen, K Mead, J Liu, SB An, Q AF Hu Xue-Ye Chen Hu-Cheng Chen Kai Mead, Joseph Liu Shu-Bin An Qi TI Development of COTS ADC SEE test system for the ATLAS LAr calorimeter upgrade SO NUCLEAR SCIENCE AND TECHNIQUES LA English DT Article DE COTS ADC; Total ionization dose; Single event effect; Single event upset; Single event functional interrupt AB Commercial off-the-shelf (COTS) ADCs (analog-to-digital converters) that are radiation-tolerant, high speed, high density and low power will be used in upgrading the LAr (liquid argon) calorimeter front end (FE) trigger readout electronics. Total ionization dose (TID) and single event effect (SEE) of the COTS ADCs should be characterized. In our initial TID test, 17 COTS ADCs from different manufacturers with dynamic range and sampling rate meeting requirements of the FE, electronics were checked, and the ADS5272 of Texas Instruments (TI) was the best performer of all. Another interesting feature of ADS5272 is its 6.5 clock cycles latency, which is the shortest of all the 17 candidates. Based on the TID performance, we designed an SEE evaluation system for ADS5272, which allows us to further assess its radiation tolerance. In this paper, we present a detailed design of ADS5272 SEE evaluation system and show the effectiveness of this system while evaluating ADS5272 SEE characteristics in multiple irradiation tests. According to TB) and SEE test results, ADS5272 was chosen to be implemented in the full-size LAr Trigger Digitizer Board (LTDB) demonstrator, which will be installed on ATLAS calorimeter during the 2014 Long Shutdown 1 (LS1). C1 [Hu Xue-Ye; Liu Shu-Bin; An Qi] Univ Sci & Technol China, State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China. [Hu Xue-Ye; Liu Shu-Bin; An Qi] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China. [Chen Hu-Cheng; Chen Kai] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Mead, Joseph] Brookhaven Natl Lab, Dept Instrumentat, Upton, NY 11973 USA. RP Hu, XY (reprint author), Univ Sci & Technol China, State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China. EM xueyehu@umich.edu FU Unites States Department of Energy [DE-AC02-98CH10886] FX Supported by the Unites States Department of Energy (No. DE-AC02-98CH10886) NR 9 TC 2 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1001-8042 EI 2210-3147 J9 NUCL SCI TECH JI Nucl. Sci. Tech. PD DEC PY 2014 VL 25 IS 6 AR 060403 PG 7 WC Nuclear Science & Technology; Physics, Nuclear SC Nuclear Science & Technology; Physics GA AZ7PS UT WOS:000348411100012 ER PT J AU Baumann, SM Hurst, BE Marciniak, MA Perram, GP AF Baumann, Sean M. Hurst, Benjamin E. Marciniak, Michael A. Perram, Glen P. TI Fiber laser heating and penetration of aluminum in shear flow SO OPTICAL ENGINEERING LA English DT Article DE laser melting; aluminum; shear flow; penetration rates ID RADIATION; SOLIDS AB Laser damage experiments were performed on painted and unpainted aluminum coupons using a 1.07-mu m fiber laser at irradiances ranging from 0.2 to 1.4 kW/cm(2) in a wind tunnel operating at Mach 0.1 to 0.9. Coupon penetration times of similar to 0.5 to 10 s were measured using a silicon photodiode viewing a Lambertian scatter plate placed behind the target. Despite the thin, 0.81 to 0.95 mm, samples and large laser spot diameters, 2 to 3 cm, the effects of radial heat conduction dominate for irradiances of <1 kW/cm(2). The fluence required to melt the back surface scales linearly with paint absorbance and the effects of paint aging have been observed. Penetration times for gray-painted aluminum at 287 W/cm(2) decrease by 45% as the airflow speed increases from M = 0.1 to M = 0.2, but remains constant for flow speeds up to M = 0.7. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Baumann, Sean M.; Hurst, Benjamin E.; Marciniak, Michael A.; Perram, Glen P.] Air Force Inst Technol, Dept Engn Phys, Wright Patterson AFB, OH 45433 USA. [Baumann, Sean M.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. RP Perram, GP (reprint author), Air Force Inst Technol, Dept Engn Phys, 2950 Hobson Way, Wright Patterson AFB, OH 45433 USA. EM glen.perram@afit.edu FU High Energy Laser Joint Technology Office; Air Force Office of Scientific Research FX This work was funded in part by a grant from the High Energy Laser Joint Technology Office and the Air Force Office of Scientific Research. The authors greatly appreciate the laboratory support of Cameron Keenan and the useful discussions on two-dimensional numerical heat transfer with Craig Walters and empirical scaling laws with Hart Legner. NR 19 TC 2 Z9 2 U1 0 U2 1 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD DEC PY 2014 VL 53 IS 12 AR 122510 DI 10.1117/1.OE.53.12.122510 PG 7 WC Optics SC Optics GA AY7EX UT WOS:000347725200025 ER PT J AU Field, E Bellum, J Kletecka, D AF Field, Ella Bellum, John Kletecka, Damon TI Impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories SO OPTICAL ENGINEERING LA English DT Article DE optical coatings; contamination; cleaning; laser damage ID SURFACE AB We have examined how three different cleaning processes affect the laser-induced damage threshold (LIDT) of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. Coatings that received cleaning exhibited the highest LIDTs compared to coatings that were not cleaned. In some cases, there is nearly a twofold increase in the LIDT between the cleaned and uncleaned coatings (19.4 J/cm(2) compared to 39.1 J/cm(2)). Higher LIDTs were realized after 4 months of aging. The most effective cleaning process involved washing the coated surface with mild detergent, and then soaking the optic in a mixture of ethyl alcohol and deionized water. Also, the laser damage results indicate that the presence of nonpropagating (NP) damage sites dominates the LIDTs of almost every optic, despite the cleaning process used. NP damage sites can be attributed to defects such as nodules in the coating or surface contamination, which suggests that pursuing further improvements to the deposition or cleaning processes are worthwhile to achieve even higher LIDTs. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. C1 [Field, Ella; Bellum, John; Kletecka, Damon] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Field, E (reprint author), Sandia Natl Labs, POB 5800 MS 1197, Albuquerque, NM 87185 USA. EM efield@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract AC04-94AL85000. NR 23 TC 3 Z9 3 U1 2 U2 12 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD DEC PY 2014 VL 53 IS 12 AR 122516 DI 10.1117/1.OE.53.12.122516 PG 8 WC Optics SC Optics GA AY7EX UT WOS:000347725200031 ER PT J AU Gruzdev, VE Shinn, MD AF Gruzdev, Vitaly E. Shinn, Michelle D. TI Laser Damage II SO OPTICAL ENGINEERING LA English DT Editorial Material C1 [Gruzdev, Vitaly E.] Univ Missouri, Dept Mech & Aerosp Engn, Columbia, MO 65211 USA. [Shinn, Michelle D.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Gruzdev, VE (reprint author), Univ Missouri, Dept Mech & Aerosp Engn, E2412 Lafferre Hall, Columbia, MO 65211 USA. EM gruzdevv@missouri.edu; shinn@jlab.org OI Gruzdev, Vitaly/0000-0003-1245-3704 NR 0 TC 0 Z9 0 U1 1 U2 3 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD DEC PY 2014 VL 53 IS 12 AR 122501 DI 10.1117/1.OE.53.12.122501 PG 1 WC Optics SC Optics GA AY7EX UT WOS:000347725200016 ER PT J AU Rubenchik, AM Wu, SSQ Kanz, VK LeBlanc, MM Lowdermilk, WH Rotter, MD Stanley, JR AF Rubenchik, Alexander M. Wu, Sheldon S. Q. Kanz, V. Keith LeBlanc, Mary M. Lowdermilk, W. Howard Rotter, Mark D. Stanley, Joel R. TI Temperature-dependent 780-nm laser absorption by engineering grade aluminum, titanium, and steel alloy surfaces SO OPTICAL ENGINEERING LA English DT Article DE thermal effects; laser arrays; metals ID OPTICAL-PROPERTIES; LIQUID ALUMINUM AB The modeling of laser interaction with metals for various applications requires a knowledge of absorption coefficients for real, commercially available materials with engineering grade (unpolished, oxidized) surfaces. However, most currently available absorptivity data pertain to pure metals with polished surfaces or vacuum-deposited thin films in controlled atmospheres. A simple laboratory setup is developed for the direct calorimetric absorptivity measurements using a diode-array laser emitting at 780 nm. A scheme eliminating the effect of convective and radiative losses is implemented. The obtained absorptivity results differ considerably from existing data for polished pure metals and are essential for the development of predictive laser-material interaction models. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Rubenchik, Alexander M.; Wu, Sheldon S. Q.; Kanz, V. Keith; LeBlanc, Mary M.; Lowdermilk, W. Howard; Rotter, Mark D.; Stanley, Joel R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Wu, SSQ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM wu31@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 9 TC 5 Z9 5 U1 5 U2 17 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD DEC PY 2014 VL 53 IS 12 AR 122506 DI 10.1117/1.OE.53.12.122506 PG 8 WC Optics SC Optics GA AY7EX UT WOS:000347725200021 ER PT J AU Santiago, F Bagwell, BE Pinon, V Krishna, S AF Santiago, Freddie Bagwell, Brett E. Pinon, Victor, III Krishna, Sanjay TI Adaptive polymer lens for rapid zoom shortwave infrared imaging applications SO OPTICAL ENGINEERING LA English DT Article DE polymer lens; zoom; tunable; optics; photonics AB This work demonstrates the use of adaptive polymer lenses (APLs) for short-wavelength infrared (SWIR) applications. First, we present a push-button adaptive optical zoom system for variable magnification with a SWIR focal plane array. We then present a push-button, variable divergence, SWIR laser system for pointing and illumination. Last, we outline a system that combines the two: an SWIR adaptive zoom coupled with an APL-enhanced designator/illuminator. The result would allow a user to toggle between different fields of view (magnification), while optimizing illumination (beam divergence) for each field of view. This could be critical for situational awareness and target identification/designation in tactical applications. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Santiago, Freddie] US Naval Res Lab, Washington, DC 20375 USA. [Bagwell, Brett E.; Pinon, Victor, III] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Krishna, Sanjay] UNM Ctr High Technol Mat, Albuquerque, NM 87106 USA. RP Santiago, F (reprint author), US Naval Res Lab, 4555 Overlook Ave SW, Washington, DC 20375 USA. EM freddie.santiago@nrl.navy.mil FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX SNL will like to acknowledge UTC Aerospace Systems, Sensors Unlimited, for their technical support on this effort, and Night Vision and Electronic Sensors Directorate for funding this research. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: 2014-4801 J. NR 4 TC 1 Z9 1 U1 1 U2 6 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD DEC PY 2014 VL 53 IS 12 AR 125101 DI 10.1117/1.OE.53.12.125101 PG 4 WC Optics SC Optics GA AY7EX UT WOS:000347725200060 ER PT J AU Yang, JD Worley, E Udvardi, M AF Yang, Jiading Worley, Eric Udvardi, Michael TI A NAP-AAO3 Regulatory Module Promotes Chlorophyll Degradation via ABA Biosynthesis in Arabidopsis Leaves SO PLANT CELL LA English DT Article ID SENESCENCE-ASSOCIATED GENES; ABSCISIC-ACID BIOSYNTHESIS; INDUCED LEAF SENESCENCE; STAY-GREEN PROTEIN; TRANSCRIPTION FACTOR; POSITIVE REGULATOR; DATA SETS; EXPRESSION; BREAKDOWN; THALIANA AB Chlorophyll degradation is an important part of leaf senescence, but the underlying regulatory mechanisms are largely unknown. Excised leaves of an Arabidopsis thaliana NAC-LIKE, ACTIVATED BY AP3/PI (NAP) transcription factor mutant (nap) exhibited lower transcript levels of known chlorophyll degradation genes, STAY-GREEN1 (SGR1), NON-YELLOW COLORING1 (NYC1), PHEOPHYTINASE (PPH), and PHEIDE a OXYGENASE (PaO), and higher chlorophyll retention than the wild type during dark-induced senescence. Transcriptome coexpression analysis revealed that abscisic acid (ABA) metabolism/signaling genes were disproportionately represented among those positively correlated with NAP expression. ABA levels were abnormally low in nap leaves during extended darkness. The ABA biosynthetic genes 9-CIS-EPOXYCAROTENOID DIOXYGENASE2, ABA DEFICIENT3, and ABSCISIC ALDEHYDE OXIDASE3 (AAO3) exhibited abnormally low transcript levels in dark-treated nap leaves. NAP transactivated the promoter of AAO3 in mesophyll cell protoplasts, and electrophoretic mobility shift assays showed that NAP can bind directly to a segment (-196 to -162 relative to the ATG start codon) of the AAO3 promoter. Exogenous application of ABA increased the transcript levels of SGR1, NYC1, PPH, and PaO and suppressed the stay-green phenotype of nap leaves during extended darkness. Overexpression of AAO3 in nap leaves also suppressed the stay-green phenotype under extended darkness. Collectively, the results show that NAP promotes chlorophyll degradation by enhancing transcription of AAO3, which leads to increased levels of the senescence-inducing hormone ABA. C1 [Yang, Jiading; Worley, Eric; Udvardi, Michael] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. [Yang, Jiading; Worley, Eric; Udvardi, Michael] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Udvardi, M (reprint author), Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. EM mudvardi@noble.org OI Udvardi, Michael/0000-0001-9850-0828 FU Office of Biological and Environmental Research of the U.S. Department of Energy via BioEnergy Science Center [DE-PS02-06ER64304] FX We thank Jianfei Yun for her technical assistance. T-DNA mutant lines were purchased from the ABRC at Ohio State University. This work was supported by the Office of Biological and Environmental Research of the U.S. Department of Energy via the BioEnergy Science Center (Grant DE-PS02-06ER64304). NR 67 TC 26 Z9 27 U1 5 U2 30 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 EI 1532-298X J9 PLANT CELL JI Plant Cell PD DEC PY 2014 VL 26 IS 12 BP 4862 EP 4874 DI 10.1105/tpc.114.133769 PG 13 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA CA1AW UT WOS:000348646000024 PM 25516602 ER PT J AU Freeman, JR Diwakar, PK Harilal, SS Hassanein, A AF Freeman, J. R. Diwakar, P. K. Harilal, S. S. Hassanein, A. TI Improvements in discrimination of bulk and trace elements in long-wavelength double pulse LIBS SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE Laser-induced breakdown spectroscopy; Double pulse LIBS; Optical emission spectroscopy; Laser-produced plasma ID INDUCED BREAKDOWN SPECTROSCOPY; LASER-PRODUCED PLASMA; SIGNAL ENHANCEMENT; AQUEOUS-SOLUTIONS; EMISSION; SAMPLES; CONFIGURATION; NANOSECOND; ABLATION; METALS AB In this work we study the effectiveness of long-wavelength heating in double pulse (DP) LIBS, quantitatively comparing figures of merit with those from traditional single pulse (SP) LIBS. The first laser pulse serves as the source of sample ablation, creating an aerosol-like plume that is subsequently reheated by the second laser pulse. At power densities used, the long-wavelength CO2 laser pulse does not ablate any of the solid sample in the atmospheric conditions investigated, meaning plasma emission and enhanced signal can be entirely attributed to the reheated plume rather than increased sample ablation. The signal discrimination was improved significantly using long-wavelength DP-LIBS. For bulk elemental analysis, DP-LIBS provided maximum enhancements of about 14 and 15 times for S/N and S/B, respectively, compared to SP-LIBS using the same quantity of ablated sample. For trace elemental analysis, maximum enhancements of about 7 and 4 times for S/N and S/B, respectively, were observed. These improvements are attributed to effective coupling between the second heating pulse and expanding plume and more efficient excitation of plume species than from the single pulse alone. Most significant improvements were observed in the case of low prepulse energy and minimal sample ablation. While bulk elemental analysis observed improvements for all prepulse energies studied, trace element discrimination only significantly improved for the lowest prepulse energy studied. (C) 2014 Elsevier B.V. All rights reserved. C1 [Freeman, J. R.; Diwakar, P. K.; Harilal, S. S.; Hassanein, A.] Purdue Univ, Sch Nucl Engn, Ctr Mat eXtreme Environm, W Lafayette, IN 47907 USA. RP Harilal, SS (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM freeman.justinr@gmail.com; pdiwakar@purdue.edu; hari@pnnl.gov; hassanein@purdue.edu RI Harilal, Sivanandan/B-5438-2014 OI Harilal, Sivanandan/0000-0003-2266-7976 FU US DOE National Nuclear Security Administration [DE-NA0001147]; NSF PIRE [1243490] FX This work is partially supported by US DOE National Nuclear Security Administration under award number DE-NA0001147 and NSF PIRE award number 1243490. NR 31 TC 5 Z9 5 U1 3 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD DEC 1 PY 2014 VL 102 BP 36 EP 41 DI 10.1016/j.sab.2014.10.008 PG 6 WC Spectroscopy SC Spectroscopy GA AY5HT UT WOS:000347604100006 ER PT J AU Stefano, G Hawes, C Brandizzi, F AF Stefano, Giovanni Hawes, Chris Brandizzi, Federica TI ER - the key to the highway SO CURRENT OPINION IN PLANT BIOLOGY LA English DT Review ID CORTICAL ENDOPLASMIC-RETICULUM; PLANT-CELLS; GOLGI-APPARATUS; EXIT SITES; COPII COAT; ARABIDOPSIS-THALIANA; DYNAMIC ORGANIZATION; MEMBRANE-PROTEINS; SECRETORY PATHWAY; PLASMA-MEMBRANE AB The endoplasmic reticulum (ER) is the key organelle at the start of the secretory pathway and the list of its functions is continually growing. The ER organization as a tubular/cisternal network at the cortex of plant cells has recently been shown to be governed by the membrane tubulation proteins of the reticulon family working alongside plant atlastin homologues, members of the RHD3 group of proteins. Such a network has intimate connections with other organelles such as peroxisomes via peroxules, chloroplasts, Golgi bodies and at the cell cortex to the plasma membrane with cytoskeleton at so called 'anchor/contact sites'. The ER network is by no means static displaying a range of different movements and acting as a subcellular highway supports the motility of organelles such as peroxisomes, mitochondria and Golgi bodies plus the transport of macromolecules such as viral movement proteins, nucleocapsid proteins and RNA. Here we highlight recent and exciting discoveries on the maintenance of the ER structure and its role on movement and biology of other organelles. C1 [Stefano, Giovanni; Brandizzi, Federica] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Stefano, Giovanni; Brandizzi, Federica] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Hawes, Chris] Oxford Brookes Univ, Dept Biol & Med Sci, Oxford OX3 0BP, England. RP Brandizzi, F (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. EM fb@msu.edu RI STEFANO, GIOVANNI/A-8264-2011 OI STEFANO, GIOVANNI/0000-0002-2744-0052 FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. DOE [DE-FG02-91ER20021]; National Institutes of Health [R01 GM101038]; NSF [MCB 1243792]; NASA [NNX12AN71G]; Leverhulme Trust [F/00 382/G] FX We apologize to the authors whose was not cited due to space limitations. This work was supported by grants from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. DOE (DE-FG02-91ER20021) for the infrastructure, National Institutes of Health (R01 GM101038), NSF (MCB 1243792), NASA (NNX12AN71G) and the Leverhulme Trust (F/00 382/G). NR 79 TC 14 Z9 14 U1 3 U2 37 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 1369-5266 EI 1879-0356 J9 CURR OPIN PLANT BIOL JI Curr. Opin. Plant Biol. PD DEC PY 2014 VL 22 BP 30 EP 38 DI 10.1016/j.pbi.2014.09.001 PG 9 WC Plant Sciences SC Plant Sciences GA AY5FK UT WOS:000347598200006 PM 25259957 ER PT J AU Lynn, RJ Haljasmaa, IV Shaffer, F Warzinski, RP Levine, JS AF Lynn, Ronald J. Haljasmaa, Igor V. Shaffer, Frank Warzinski, Robert P. Levine, Jonathan S. TI A Pitot tube system for obtaining water velocity profiles with millimeter resolution in devices with limited optical access SO FLOW MEASUREMENT AND INSTRUMENTATION LA English DT Article DE Miniature S-type Pitot tube; Water velocity profiles; Automation; High-pressure water tunnel; Fine spatial resolution; Low-pressure calibration system ID PRESSURE; PARTICLE; TUNNEL; FLOW AB An automated, miniature, S-type Pitot tube system was created to obtain fluid velocity profiles at low flows in equipment having limited optical access, which prevents the use of standard imaging techniques. Calibration of this non-standard Pitot tube at small differential pressures with a custom, low-pressure system is also described. Application of this system to a vertical, high-pressure, water tunnel facility (HWTF) is presented. The HWTF uses static flow conditioning elements to stabilize individual gaseous, liquid, or solid particles with water for optical viewing. Stabilization of these particles in the viewing section of the HWTF requires a specific flow field, created by a combination of a radially expanding test section and a special flow conditioner located upstream of the test section. Analysis of the conditioned flow field in the viewing section of the HWTF required measurements across its diameter at three locations at 1 mm spatial resolution. The custom S-type Pitot tube system resolved pressure differences of <100 Pa created by water flowing at 5-30 cm/s while providing a relatively low response time of similar to 300 s despite the small diameter (<1 mm) and long length (340 mm) of the Pitot tube needed to fit the HWTF geometry. Particle imaging velocimetry measurements in the central, viewable part of the HWTF confirmed the Pitot tube measurements in this region. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Lynn, Ronald J.; Haljasmaa, Igor V.] URS, South Pk, PA 15129 USA. [Shaffer, Frank; Warzinski, Robert P.; Levine, Jonathan S.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Levine, JS (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM Jonathan.Levine@netl.doe.gov FU Department of Energy Complementary Research Program; Department of Interior, Bureau of Safety and Environmental Enforcement [M11PG00053]; Oak Ridge Institute for Science and Education Postgraduate Research Program at NETL FX This work was supported by the Department of Energy Complementary Research Program under Section 999 of the Energy policy Act of 2005 and by the Department of Interior, Bureau of Safety and Environmental Enforcement under Interagency Agreement M11PG00053. Support for Jonathan Levine came through the Oak Ridge Institute for Science and Education Postgraduate Research Program at NETL. NR 12 TC 1 Z9 1 U1 1 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0955-5986 EI 1873-6998 J9 FLOW MEAS INSTRUM JI Flow Meas. Instrum. PD DEC PY 2014 VL 40 BP 50 EP 57 DI 10.1016/j.flowmeasinst.2014.08.008 PG 8 WC Engineering, Mechanical; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA AY4YZ UT WOS:000347582100006 ER PT J AU Stone, PA Congdon, JD Smith, CL AF Stone, Paul A. Congdon, Justin D. Smith, Chelsea L. TI CONSERVATION TRIAGE OF SONORAN MUD TURTLES (KINOSTERNON SONORIENSE) SO HERPETOLOGICAL CONSERVATION AND BIOLOGY LA English DT Article DE habitat restoration; siltation; Coronado National Forest ID ENDANGERED-SPECIES-ACT; ESTIVATION; DEMOGRAPHY; MOVEMENTS; RECOVERY; CONTEXT AB Conservation triage is a strategy that promotes allocation of resources to species with at least moderate probabilities of long-term recovery. In contrast, legislation like the Endangered Species Act mandates that conservation resources are dedicated to listed species even if recovery probability is low. Conservation triage has not been embraced by funding agencies, and efforts to protect unlisted species must rely on private funding and volunteer effort. The Sonoran Mud Turtle (Kinosternon sonoriense) is a good candidate for conservation triage because it remains relatively common yet faces addressable threats such as habitat degradation. Populations often occur at impoundments that are experiencing siltation or dam failures. Even though Sonoran Mud Turtles are not threatened or endangered, they may already be conservation reliant, and many populations could decline unless impoundments are restored. Our efforts to obtain funding for impoundment restoration failed, so we initiated restoration projects at three impoundments in the Coronado National Forest, New Mexico and Arizona, using our own resources. During 2012, we removed about 328 m(3) of silt from three impoundments and repaired one leaking dam. As a result, two of the restored impoundments increased in water volume and hydroperiod, capture rates of turtles increased at one impoundment, and the third impoundment completely silted in again within two months. We expect little change in funding patterns or conservation priorities but remain committed to habitat restoration in our study area. We hope our efforts help convince others to make similar investments aimed at the important goal of keeping common species common. C1 [Stone, Paul A.; Smith, Chelsea L.] Univ Cent Oklahoma, Dept Biol, Edmond, OK 73034 USA. [Congdon, Justin D.] Savannah River Ecol Lab, Aiken, SC 29802 USA. [Congdon, Justin D.] Bar Boot Ranch, Douglas, AZ 85608 USA. RP Stone, PA (reprint author), Univ Cent Oklahoma, Dept Biol, Edmond, OK 73034 USA. EM pstone@uco.edu FU University of Central Oklahoma Office of Research and Grants FX We thank Billie and Randy Green at Wild West Rods & Custom Inc. (Tucson, AZ) for help with fabrication of the new cleanout plate and Kevin St. Clair of the Bar Boot Ranch and Benjamin Faught of the sailing vessel Apogee for installing the new cleanout plate. Volunteers assisting with removal of sediment from Blackwater Hole include Garrett Dillon, Jan Dillon, Ryan Dillon, Trevor Hare, Susie Qashu, and William Stoller from the Sky Island Alliance and Kristen Bliss, Peter Drevets, Josiah Gillespie, Kenneth Locey, Jeremy Massengill, Brian Stanila, and Marie Stone from the University of Central Oklahoma. We thank Valer Austin and Josiah Austin for advice about the restoration and use of a tractor, Kevin St. Clair for operating the tractor during work at Jack's Tank, and Trevor Hare for supplying native seeds to stabilize removed sediment. Partial funding was provided by the University of Central Oklahoma Office of Research and Grants. Turtles were handled under permits issued by New Mexico Department of Game and Fish (2905), Arizona Game and Fish Department (SP609683), and U. S. Forest Service (SUP0080-01), and under an IACUC protocol from the University of Central Oklahoma. NR 24 TC 1 Z9 1 U1 6 U2 20 PU HERPETOLOGICAL CONSERVATION & BIOLOGY PI CORVALLIS PA C/O R BRUCE BURY, USGS FOREST & RANGELAND, CORVALLIS, OR 00000 USA SN 2151-0733 EI 1931-7603 J9 HERPETOL CONSERV BIO JI Herpetol. Conserv. Biol. PD DEC PY 2014 VL 9 IS 3 BP 448 EP 453 PG 6 WC Zoology SC Zoology GA AZ0DE UT WOS:000347915700002 ER PT J AU Bylinkin, AA Kharzeev, DE AF Bylinkin, Alexander A. Kharzeev, Dmitri E. TI The origin of thermal component in the transverse momentum spectra in high energy hadronic processes SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article DE Multiparticle production; hadron collisions; Unruh effect ID CHARGED-PARTICLES; COLLISIONS; QCD; DISTRIBUTIONS; TEV AB The transverse momentum spectra of hadrons produced in high energy collisions can be decomposed into two components: the exponential ("thermal") and the power ("hard") ones. Recently, the H1 Collaboration has discovered that the relative strength of these two components in Deep Inelastic Scattering (DIS) depends drastically upon the global structure of the event - namely, the exponential component is absent in the diffractive events characterized by a rapidity gap. We discuss the possible origin of this effect and speculate that it is linked to confinement. Specifically, we argue that the thermal component is due to the effective event horizon introduced by the confining string, in analogy to the Hawking-Unruh effect. In diffractive events, the t-channel exchange is color-singlet and there is no fragmenting string - so the thermal component is absent. The slope of the soft component of the hadron spectrum in this picture is determined by the saturation momentum that drives the deceleration in the color field, and thus the Hawking-Unruh temperature. We analyze the data on nondiffractive pp collisions and find that the slope of the thermal component of the hadron spectrum is indeed proportional to the saturation momentum. C1 [Bylinkin, Alexander A.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Bylinkin, Alexander A.] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia. [Kharzeev, Dmitri E.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kharzeev, Dmitri E.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Bylinkin, AA (reprint author), Inst Theoret & Expt Phys, Moscow 117218, Russia. EM dmitri.kharzeev@stonybrook.edu FU U. S. Department of Energy [DE-FG-88ER40388, DE-AC02-98CH10886] FX The work of D. K. was supported in part by the U. S. Department of Energy under Contract Nos. DE-FG-88ER40388 and DE-AC02-98CH10886. NR 28 TC 1 Z9 1 U1 1 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD DEC PY 2014 VL 23 IS 12 AR 1450083 DI 10.1142/S0218301314500839 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AZ4RU UT WOS:000348211200006 ER PT J AU Silbar, RR Goldman, T AF Silbar, Richard R. Goldman, T. TI A mesonic analog of the deuteron SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article DE Heavy meson; four-quark; relativistic; variational; pion-less ID HADRON-HADRON INTERACTION; COLOR SCREENING MODEL; STRING-FLIP MODEL; QUARK DELOCALIZATION; FORM-FACTORS; NUCLEON; SYMMETRY; STATES; DISTRIBUTIONS; CONFINEMENT AB Using the LAMP model for nuclear quark structure, we calculate the binding energy and quark structure of a B meson merging with a D meson. Our variational calculation shows that a molecular, deuteron-like state structure changes rather abruptly, as the separation between the two mesons decreases, and at a separation of about 0.14 fm, the hadronic system transforms into a four-quark bound state, although one maintaining an internal structure rather than that of a four- quark "bag." Unlike the deuteron, pion exchange does not provide any contribution to the approximate to 150MeV binding. C1 [Silbar, Richard R.; Goldman, T.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Goldman, T.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87501 USA. RP Silbar, RR (reprint author), Los Alamos Natl Lab, Div Theoret, MS-B283, Los Alamos, NM 87545 USA. EM silbar@lanl.gov; tgoldman@lanl.gov FU National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was carried out in part under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 45 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD DEC PY 2014 VL 23 IS 12 AR 1450091 DI 10.1142/S0218301314500918 PG 30 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AZ4RU UT WOS:000348211200014 ER PT J AU He, JC Wan, FR Sridharan, K Allen, TR Certain, A Shutthanandan, V Wu, YQ AF He, Jianchao Wan, Farong Sridharan, Kumar Allen, Todd R. Certain, A. Shutthanandan, V. Wu, Y. Q. TI Stability of nanoclusters in 14YWT oxide dispersion strengthened steel under heavy ion-irradiation by atom probe tomography SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID FERRITIC ALLOYS; PHASE-STABILITY; ODS STEEL; ENERGY; DPA AB 14YWT oxide dispersion strengthened (ODS) ferritic steel was irradiated with of 5 MeV Ni2+ ions, at 300 degrees C, 450 C, and 600 degrees C to a damage level of 100 dpa. The stability of Ti-Y-O nanoclusters was investigated by applying atom probe tomography (APT) in voltage mode, of the samples before and after irradiations. The average size and number density of the nanoclusters was determined using the maximum separation method. These techniques allowed for the imaging of nanoclusters to sizes well below the resolution limit of conventional transmission electron microscopy techniques. The most significant changes were observed for samples irradiated at 300 degrees C where the size (average Guinier radius) and number density of nanoclusters were observed to decrease from 1.1 nm to 0.8 nm and 12 x 10(23) to 3.6 x 10(23), respectively. In this study, the nanoclusters are more stable at higher temperature. (C) 2014 Elsevier B.V. All rights reserved. C1 [He, Jianchao; Wan, Farong] Univ Sci & Technol Beijing, Sch bf Mat Sci & Engn, Beijing 100083, Peoples R China. [He, Jianchao; Sridharan, Kumar; Allen, Todd R.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Allen, Todd R.] Idaho Natl Lab, Idaho Falls, ID USA. [Certain, A.; Shutthanandan, V.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wu, Y. Q.] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. [Wu, Y. Q.] Ctr Adv Energy Studies, Idaho Falls, ID USA. RP He, JC (reprint author), Univ Sci & Technol Beijing, Sch bf Mat Sci & Engn, Beijing 100083, Peoples R China. EM hjch1985@gmail.com OI Allen, Todd/0000-0002-2372-7259 FU National Magnetic Confinement Fusion Program of China [2011GB108002] FX The authors are grateful to Oak Ridge National Laboratory for supplying the 14YWT ferritic ODS steels used in this study. The Ni ion irradiations were performed using EMSL facilities at the Pacific Northwest National Laboratory. FIB sample preparation and preparation of APT analysis were performed at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho through the Advanced Test Reactor National Scientific User Facility (ATR NSUF). This work was performed in part using the NSF-supported shared facilities at the University of Wisconsin. This research is being performed using funding received from the DOE Office of Nuclear Energy's Nuclear Energy University Programs. This work was supported by the National Magnetic Confinement Fusion Program of China with Grant No. 2011GB108002 and the National Natural Science Foundation of China with Grant No. 50971030. NR 31 TC 14 Z9 14 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2014 VL 455 IS 1-3 BP 41 EP 45 DI 10.1016/j.jnucmat.2014.03.024 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AZ1MR UT WOS:000348003600010 ER PT J AU Dechaumphai, E Barton, JL Tesmer, JR Moon, J Wang, YQ Tynan, GR Doerner, RP Chen, RK AF Dechaumphai, Edward Barton, Joseph L. Tesmer, Joseph R. Moon, Jaeyun Wang, Yongqiang Tynan, George R. Doerner, Russell P. Chen, Renkun TI Near-surface thermal characterization of plasma facing components using the 3-omega method SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CONDUCTIVITY; FILM; ITER AB Near-surface regime plays an important role in thermal management of plasma facing components in fusion reactors. Here, we applied a technique referred to as the '3 omega' method to measure the thermal conductivity of near-surface regimes damaged by ion irradiation. By modulating the frequency of the heating current in a micro-fabricated heater strip, the technique enables the probing of near-surface thermal properties. The technique was applied to measure the thermal conductivity of a thin ion-irradiated layer on a tungsten substrate, which was found to decrease by nearly 60% relative to pristine tungsten for a Cu ion dosage of 0.2 dpa. (C) 2014 Elsevier B.V. All rights reserved. C1 [Dechaumphai, Edward; Barton, Joseph L.; Moon, Jaeyun; Tynan, George R.; Chen, Renkun] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Barton, Joseph L.; Tynan, George R.; Doerner, Russell P.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Tesmer, Joseph R.; Wang, Yongqiang] Los Alamos Natl Lab, Ion Beam Mat Lab, Los Alamos, NM USA. RP Chen, RK (reprint author), 9500 Gilman Dr,MC 0411, La Jolla, CA 92093 USA. EM rkchen@ucsd.edu FU University of California Office of President Research Fund [12-LR-237801] FX This work is sponsored by the University of California Office of President Research Fund under Award Number 12-LR-237801. NR 19 TC 9 Z9 10 U1 3 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2014 VL 455 IS 1-3 BP 56 EP 60 DI 10.1016/j.jnucmat.2014.03.059 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AZ1MR UT WOS:000348003600013 ER PT J AU Koyanagi, T Shimoda, K Kondo, S Hinoki, T Ozawa, K Katoh, Y AF Koyanagi, T. Shimoda, K. Kondo, S. Hinoki, T. Ozawa, K. Katoh, Y. TI Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID SELF-DIFFUSION; CERAMIC FIBERS; NITE PROCESS; COMPOSITES; TEMPERATURE; FABRICATION AB The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180 degrees C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. The apparent stress exponent of the irradiation creep slightly exceeded unity, and instantaneous creep coefficient at 380-790 degrees C was estimated to be similar to 1 x 10(-5) [MPa-1 dpa(-1)] at similar to 0.1 dpa and 1 x 10(-7) to 1 x 10(-6) [MPa-1 dpa(-1)] at similar to 1 dpa. The irradiation creep strain appeared greater than that for the high purity SiC. Microstructural observation and data analysis indicated that the grain-boundary sliding associated with the secondary phases contributes to the irradiation creep at 380-790 degrees C to 0.01-0.11 dpa. (C) 2014 Elsevier B.V. All rights reserved. C1 [Koyanagi, T.; Shimoda, K.; Kondo, S.; Hinoki, T.] Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan. [Koyanagi, T.; Ozawa, K.; Katoh, Y.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Koyanagi, T (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008, Oak Ridge, TN 37831 USA. EM koyanagit@ornl.gov RI Koyanagi, Takaaki/D-9841-2017 OI Koyanagi, Takaaki/0000-0001-7272-4049 FU Office of Fusion Energy Sciences, U.S. Department of Energy [DE-C05-00OR22725]; UT-Battelle, LLC; US-Japan TITAN Collaboration on Fusion Blanket Technology and Materials; High Flux Isotope Reactor - Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by Office of Fusion Energy Sciences, U.S. Department of Energy under contract DE-C05-00OR22725 with UT-Battelle, LLC, and US-Japan TITAN Collaboration on Fusion Blanket Technology and Materials. Research was supported in part by High Flux Isotope Reactor, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 29 TC 4 Z9 4 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2014 VL 455 IS 1-3 BP 73 EP 80 DI 10.1016/j.jnucmat.2014.04.018 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AZ1MR UT WOS:000348003600016 ER PT J AU Stoller, RE Osetsky, YN AF Stoller, R. E. Osetsky, Yu. N. TI An atomistic assessment of helium behavior in iron SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID EQUATION-OF-STATE; DEFECT PROPERTIES; BCC IRON; BUBBLES; FE; HE; DIFFUSION; PRESSURE; METALS AB High helium generation rates in irradiated materials leads to the formation of small He-vacancy clusters that can evolve into larger bubbles and voids. An equation of state that accurately reproduces their pressure-volume relationship is necessary to understand and predict the behaviour of these He-vacancy defects. Previous research has employed equations of state of varying complexity, including the ideal gas, van der Waals, and hard sphere models. We recently used ab initio calculations to determine the energetics of helium-vacancy clusters and applied the results to develop a new three-body interatomic potential that describes the behaviour of helium in iron. This potential was employed in molecular dynamics simulations to determine the conditions for mechanical equilibrium between small heliumstabilized bubbles and an iron matrix, and to systematically map the pressure-volume relationship for the bubbles at a range of temperatures. These atomistic results are compared to an existing equation of state and a modification is proposed for bubbles with high helium densities. (C) 2014 Elsevier B.V. All rights reserved. C1 [Stoller, R. E.; Osetsky, Yu. N.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Stoller, RE (reprint author), Oak Ridge Natl Lab, Bldg 4100,MS-6114,POB 2008, Oak Ridge, TN 37831 USA. EM rkn@ornl.gov OI Osetskiy, Yury/0000-0002-8109-0030 FU Office of Fusion Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC FX Research sponsored by the Office of Fusion Energy Sciences, U.S. Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. The authors would like to acknowledge M. T. Kirk of the U. S. Nuclear Regulatory Commission for his assistance with the Excel Solver feature. NR 19 TC 6 Z9 6 U1 2 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2014 VL 455 IS 1-3 BP 258 EP 262 DI 10.1016/j.jnucmat.2014.06.020 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AZ1MR UT WOS:000348003600050 ER PT J AU Muroga, T Chen, JM Chernov, VM Kurtz, RJ Le Flem, M AF Muroga, T. Chen, J. M. Chernov, V. M. Kurtz, R. J. Le Flem, M. TI Present status of vanadium alloys for fusion applications SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID V-4CR-4TI ALLOY; MECHANICAL-PROPERTIES; IMPACT PROPERTIES; V-4TI-4CR ALLOYS; DEMO PLANT; HYDROGEN; MICROSTRUCTURE; 1ST-PRINCIPLES; SOLUBILITY; COATINGS AB Vanadium alloys are advanced options for low activation structural materials. After more than two decades of research, V-4Cr-4Ti has been emerged as the leading candidate, and technological progress has been made in reducing the number of critical issues for application of vanadium alloys to fusion reactors. Notable progress has been made in fabricating alloy products and weld joints without degradation of properties. Various efforts are also being made to improve high temperature strength and creep-rupture resistance, low temperature ductility after irradiation, and corrosion resistance in blanket conditions. Future research should focus on clarifying remaining uncertainty in the operating temperature window of V-4Cr-4Ti for application to near to middle term fusion blanket systems, and on further exploration of advanced materials for improved performance for longer-term fusion reactor systems. (C) 2014 Elsevier B.V. All rights reserved. C1 [Muroga, T.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Chen, J. M.] Southwestern Inst Phys, Chengdu 610041, Peoples R China. [Chernov, V. M.] AA Bochvar High Technol Res Inst Inorgan Mat, Moscow 123060, Russia. [Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Le Flem, M.] CEA, DEN, DMN, F-91191 Gif Sur Yvette, France. RP Muroga, T (reprint author), Natl Inst Nat Sci, Natl Inst Fus Sci, 322-6 Oroshicho, Toki, Gifu 5095292, Japan. EM muroga@nifs.ac.jp NR 53 TC 26 Z9 27 U1 4 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2014 VL 455 IS 1-3 BP 263 EP 268 DI 10.1016/j.jnucmat.2014.06.025 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AZ1MR UT WOS:000348003600051 ER PT J AU Stork, D Agostini, P Boutard, JL Buckthorpe, D Diegele, E Dudarev, SL English, C Federici, G Gilbert, MR Gonzalez, S Ibarra, A Linsmeier, C Li Puma, A Marbach, G Morris, PF Packer, LW Raj, B Rieth, M Tran, MQ Ward, DJ Zinkle, SJ AF Stork, D. Agostini, P. Boutard, J. L. Buckthorpe, D. Diegele, E. Dudarev, S. L. English, C. Federici, G. Gilbert, M. R. Gonzalez, S. Ibarra, A. Linsmeier, Ch. Li Puma, A. Marbach, G. Morris, P. F. Packer, L. W. Raj, B. Rieth, M. Tran, M. Q. Ward, D. J. Zinkle, S. J. TI Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: The EU assessment SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID RESEARCH-AND-DEVELOPMENT; MARTENSITIC STEELS; NEUTRON-IRRADIATION; VANADIUM ALLOYS; MECHANICAL-PROPERTIES; REACTOR MATERIALS; RAFM STEELS; ODS STEELS; BEHAVIOR; ITER AB The findings of the EU 'Materials Assessment Group' (MAG), within the 2012 EU Fusion Roadmap exercise, are discussed. MAG analysed the technological readiness of structural, plasma facing and high heat flux materials for a DEMO concept to be constructed in the early 2030s, proposing a coherent strategy for R&D up to a DEMO construction decision. A DEMO phase I with a 'Starter Blanket' and 'Starter Divertor' is foreseen: the blanket being capable of withstanding >= 2 MW yr m(-2) fusion neutron fluence (similar to 20 dpa in the front-wall steel). A second phase ensues for DEMO with >= 5 MW yr m(-2) first wall neutron fluence. Technical consequences for the materials required and the development, testing and modelling programmes, are analysed using: a systems engineering approach, considering reactor operational cycles, efficient maintenance and inspection requirements, and interaction with functional materials/coolants; and a project-based risk analysis, with R&D to mitigate risks from material shortcomings including development of specific risk mitigation materials. The DEMO balance of plant constrains the blanket and divertor coolants to remain unchanged between the two phases. The blanket coolant choices (He gas or pressurised water) put technical constraints on the blanket steels, either to have high strength at higher temperatures than current baseline variants (above 650 degrees C for high thermodynamic efficiency from He-gas coolant), or superior radiation-embrittlement properties at lower temperatures (similar to 290-320 degrees C), for construction of water-cooled blankets. Risk mitigation proposed would develop these options in parallel, and computational and modelling techniques to shorten the cycle-time of new steel development will be important to achieve tight R&D timescales. The superior power handling of a water-cooled divertor target suggests a substructure temperature operating window (similar to 200-350 degrees C) that could be realised, as a baseline-concept, using tungsten on a copper-alloy substructure. The difficulty of establishing design codes for brittle tungsten puts great urgency on the development of a range of advanced ductile or strengthened tungsten and copper compounds. Lessons learned from Fission reactor material development have been included, especially in safety and licensing, fabrication/joining techniques and designing for in-vessel inspection. The technical basis of using the ITER licensing experience to refine the issues in nuclear testing of materials is discussed. Testing with 14 MeV neutrons is essential to Fusion Materials development, and the Roadmap requires acquisition of >= 30 dpa (steels) 14 MeV test data by 2026. The value and limits of pre-screening testing with fission neutrons on isotopically- or chemically-doped steels and with ion-beams are evaluated to help determine the minimum14 MeV testing programme requirements. (C) 2014 EURATION/CCFE. Published by Elsevier B.V. All rights reserved. C1 [Stork, D.; Dudarev, S. L.; Gilbert, M. R.; Packer, L. W.; Ward, D. J.] Euratom CCFE Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Agostini, P.] ENEA, Brasimone Res Ctr, I-40032 Bologna, Italy. [Boutard, J. L.; Marbach, G.] CEA, Cab HC, F-91191 Gif Sur Yvette, France. [Buckthorpe, D.] AMEC, Knutsford WA16 8QZ, Cheshire, England. [Diegele, E.; Rieth, M.] Karlsruhe Inst Technol, IMF I, D-7602 Karlsruhe, Germany. [English, C.] Natl Nucl Lab, Birchwood Pk WA3 6AE, England. [Federici, G.; Gonzalez, S.] EFDA Power Plant Phys & Technol, D-85748 Garching, Germany. [Ibarra, A.] CIEMAT, E-28040 Madrid, Spain. [Linsmeier, Ch.] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, EURATOM Assoc, D-52425 Julich, Germany. [Li Puma, A.] CEA, DEN, DM2S, SERMA, F-91191 Gif Sur Yvette, France. [Morris, P. F.] TATA Steel Europe, Swinden Technol Ctr, Rotherham S60 3AR, S Yorkshire, England. [Raj, B.] Indian Natl Acad Engn, New Delhi 110016, India. [Tran, M. Q.] Ecole Polytech Fed Lausanne, CRPP, Assoc Euratom Switzerland, CH-1015 Lausanne, Switzerland. [Zinkle, S. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Stork, D (reprint author), Techne Physis Ltd, Steventon OX13 6SJ, Oxon, England. EM derek.stork@btinternet.com RI EPFL, Physics/O-6514-2016; Rieth, Michael/E-4245-2017; OI Rieth, Michael/0000-0002-6231-6241; Zinkle, Steven/0000-0003-2890-6915; Linsmeier, Christian/0000-0003-0404-7191; Ibarra, Angel/0000-0002-2420-2497; Gilbert, Mark/0000-0001-8935-1744 NR 89 TC 26 Z9 27 U1 9 U2 59 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2014 VL 455 IS 1-3 BP 277 EP 291 DI 10.1016/j.jnucmat.2014.06.014 PG 15 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AZ1MR UT WOS:000348003600053 ER PT J AU Unocic, KA Pint, BA AF Unocic, K. A. Pint, B. A. TI Alloying and coating strategies for improved Pb-Li compatibility in DEMO-type fusion reactors SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DEGREES-C EMBRITTLEMENT; CORROSION BEHAVIOR; FLOWING PB-17LI; PERMEATION BARRIERS; COATED EUROFER; STEELS; ANTICORROSION; ENVIRONMENTS; TEMPERATURE; OXIDATION AB Two strategies were explored to improve the Pb-16Li compatibility of Fe-base alloys for a fusion energy blanket system. The use of thin (similar to 50 mu m) Al-rich diffusion coatings on Grade 92 (9Cr-2W) substrates significantly reduced the mass loss in static Pb-Li capsule tests for up to 5000 h at 600 degrees C and 700 degrees C. However, significant Al loss was observed at 700 degrees C. Thicker coatings with Fe-Al intermetallic layers partially spalled after exposure at 700 degrees C, suggesting that coating strategies are limited to lower temperatures. To identify compositions for further alloy development, model FeCrAlY alloys with 10-20 wt.%Cr and 3-5%Al were exposed for 1000 h at 700 degrees C. There was little effect on mass change of varying the Cr content, however, alloys with <5% Al showed mass losses in these experiments. For both coatings and FeCrAl alloys, the surface reaction product was LiAlO2 after exposure and cleaning. Published by Elsevier B.V. C1 [Unocic, K. A.; Pint, B. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Unocic, KA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM unocicka@ornl.gov RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 FU U.S. Department of Energy (DOE), Office of Fusion Energy Sciences, Fusion Energy Materials Program; Center for Nanophase Materials Sciences (CNMS); Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX Research sponsored by the U.S. Department of Energy (DOE), Office of Fusion Energy Sciences, Fusion Energy Materials Program and Research supported by the Center for Nanophase Materials Sciences (CNMS), which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. T.M. Lowe, M.S. Stephens, T.S. Geer, T.L. Jordan, L.R. Walker, K. Perry and D.N. Leonard assisted with the experimental work. S.J. Pawel and D.T. Hoelzer provided comments on the results and manuscript. NR 30 TC 5 Z9 6 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2014 VL 455 IS 1-3 BP 330 EP 334 DI 10.1016/j.jnucmat.2014.06.058 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AZ1MR UT WOS:000348003600062 ER PT J AU Mo, K Zhou, ZJ Miao, YB Yun, D Tung, HM Zhang, GM Chen, WY Almer, J Stubbins, JF AF Mo, Kun Zhou, Zhangjian Miao, Yinbin Yun, Di Tung, Hsiao-Ming Zhang, Guangming Chen, Weiying Almer, Jonathan Stubbins, James F. TI Synchrotron study on load partitioning between ferrite/martensite and nanoparticles of a 9Cr ODS steel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID X-RAY-DIFFRACTION; FERRITIC/MARTENSITIC STEEL; LATTICE STRAIN; COMPOSITES; EVOLUTION AB Oxide dispersion strengthened CODS) steels exhibit exceptional radiation resistance and high-temperature creep strength when compared to traditional ferritic and ferritic/martensitic (F/M) steels. Their excellent mechanical properties result from very fine nanoparticles dispersed within the matrix. In this work, we applied a high-energy synchrotron radiation X-ray to study the deformation process of a 9Cr ODS steel. The load partitioning between the ferrite/martensite and the nanoparticles was observed during sample yielding. During plastic deformation, the nanoparticles experienced a dramatic loading process, and the internal stress on the nanoparticles increased to a maximum value of 3.7 GPa, which was much higher than the maximum applied stress (similar to 986 MPa). After necking, the loading capacity of the nanoparticles was significantly decreased due to a debonding of the particles from the matrix, as indicated by a decline in lattice strain/internal stress. Due to the load partitioning, the ferrite/martensite slightly relaxed during early yielding, and slowly strained until failure. This study develops a better understanding of loading behavior for various phases in the ODS F/M steel. (C) 2014 Elsevier B.V. All rights reserved. C1 [Mo, Kun; Miao, Yinbin; Chen, Weiying; Stubbins, James F.] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. [Mo, Kun; Yun, Di; Almer, Jonathan] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Zhou, Zhangjian; Zhang, Guangming] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 10083, Peoples R China. [Tung, Hsiao-Ming] Atom Energy Council, Inst Nucl Energy Res, Taoyuan 325, Taiwan. RP Mo, K (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kunmo@anl.gov OI Miao, Yinbin/0000-0002-3128-4275 FU U.S. Department of Energy [973 DOE INL 120293, NEUP 09-516, DE-AC02-06CH11357, DE-FG02-07ER46453, DE-FG02-07ER46471] FX This work was supported by the U.S. Department of Energy under Grants 973 DOE INL 120293 and NEUP 09-516. Argonne National Laboratory's work was supported under U.S. Department of Energy contract DE-AC02-06CH11357. The authors would like to thank Dr. Meimei Li from the Argonne National Laboratory for technical assistance. The microstructural analysis was carried out in part in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois, which are partially supported by the U.S. Department of Energy under Grants: DE-FG02-07ER46453 and DE-FG02-07ER46471. NR 33 TC 18 Z9 18 U1 3 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2014 VL 455 IS 1-3 BP 376 EP 381 DI 10.1016/j.jnucmat.2014.06.060 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AZ1MR UT WOS:000348003600071 ER PT J AU Katoh, Y Snead, LL Henager, CH Nozawa, T Hinoki, T Ivekovic, A Novak, S de Vicente, SMG AF Katoh, Y. Snead, L. L. Henager, C. H., Jr. Nozawa, T. Hinoki, T. Ivekovic, A. Novak, S. de Vicente, S. M. Gonzalez TI Current status and recent research achievements in SiC/SiC composites SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CERAMIC-MATRIX COMPOSITES; COOLANT BLANKET CONCEPT; SILICON-CARBIDE FIBER; NEUTRON-IRRADIATION; STRUCTURAL APPLICATIONS; MECHANICAL-PROPERTIES; POWER-PLANT; COMPATIBILITY; INFILTRATION; TECHNOLOGY AB The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen a continual evolution from development a fundamental understanding of the material system and its behavior in a hostile irradiation environment to the current effort which is directed at a broad-based program of technology maturation program. In essence, over the past few decades this material system has steadily moved from a laboratory curiosity to an engineering material, both for fusion structural applications and other high performance application such as aerospace. This paper outlines the recent international scientific and technological achievements towards the development of SiC/SiC composite material technologies for fusion application and discusses future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and broader engineering applications. (C) 2014 Elsevier B.V. All rights reserved. C1 [Katoh, Y.; Snead, L. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Henager, C. H., Jr.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Nozawa, T.] Japan Atom Energy Agcy, Aomori, Japan. [Hinoki, T.] Kyoto Univ, Inst Adv Energy, Kyoto, Japan. [Ivekovic, A.; Novak, S.] Jozef Stefan Inst, Ljubljana, Slovenia. [de Vicente, S. M. Gonzalez] EFDA Close Support Unit, Garching, Germany. RP Katoh, Y (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM katohy@ornl.gov OI Henager, Chuck/0000-0002-8600-6803 FU Office of Fusion Energy Sciences, U.S. Department of Energy [DE-C05-00OR22725]; UT-Battelle, LLC FX The authors acknowledge helpful input from and discussion with M. Tillack, K. Terrani, M. Ferraris, A.G. Perez-Bergquist, K. Leonard, S. Kondo, T. Koyanagi, K. Yueh, K. Ozawa, B. Tsuchiya, T. Shikama, G. Samolyuk, R.E. Stoller, B.N. Nguyen, and S.T. Gonczy. Preparation of this manuscript was supported by Office of Fusion Energy Sciences, U.S. Department of Energy under contract DE-C05-00OR22725 with UT-Battelle, LLC. NR 80 TC 32 Z9 34 U1 17 U2 88 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2014 VL 455 IS 1-3 BP 387 EP 397 DI 10.1016/j.jnucmat.2014.06.003 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AZ1MR UT WOS:000348003600073 ER PT J AU Oka, H Hashimoto, N Muroga, T Kimura, A Sokolov, MA Yamamoto, T Ohnuki, S AF Oka, H. Hashimoto, N. Muroga, T. Kimura, A. Sokolov, M. A. Yamamoto, T. Ohnuki, S. TI Hardness distribution and tensile properties in an electron beam weldment of F82H irradiated in HFIR SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID MICROSTRUCTURE; BEHAVIOR; WELDS AB F82H-IEA and its EB-weld joint were irradiated at 573 and 773 K up to 9.6 dpa and the irradiation effect on its mechanical properties and microstructure were investigated. A hardness profile across the weld joint before irradiation showed the hardness in transformed region (TR) was high and especially that in the-edge of TR was the highest (high hardness region: HHR) compared to base metal (BM). These hardness distribution was correspond to grain size distribution. After irradiation, hardening in HHR was small compared to other region in the sample. In tensile test, the amount of hardening in yield strength and ultimate tensile strength of F82H EB-weld joint was almost similar to that of F82H-IEA but the fracture position of EB-weld joint was at the boundary of TR and BM. Therefore, the TR/BM boundary is the structural weak point in F82H EB-weld joint after irradiation. As the plastic instability was observed, the dislocation channeling deformation can be expected though the dislocation channel was not observed in this study. (C) 2014 Elsevier B.V. All rights reserved. C1 [Oka, H.; Hashimoto, N.; Ohnuki, S.] Hokkaido Univ, Sapporo, Hokkaido 0608628, Japan. [Muroga, T.] Natl Inst Fus Sci, Gifu, Japan. [Kimura, A.] Kyoto Univ, Uji, Kyoto, Japan. [Sokolov, M. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Yamamoto, T.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. RP Oka, H (reprint author), Hokkaido Univ, Fac Engn, Kita Ku, N-13,W-8, Sapporo, Hokkaido 0608628, Japan. EM hiroshi_oka@eng.hokudai.ac.jp FU US-Japan collaboration program TITAN FX This work was supported by US-Japan collaboration program TITAN. Authors are grateful to Janet Robertson, Pat Bishop and the 3025E operators, Daniel Lewis, Keith Leonard, Kiran, Marie Williams, Patricia Tedder, Kiyohiro Yabuuchi, Takashi Nozawa and Dai Hamaguchi for helping this research. NR 14 TC 0 Z9 0 U1 3 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2014 VL 455 IS 1-3 BP 454 EP 459 DI 10.1016/j.jnucmat.2014.07.076 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AZ1MR UT WOS:000348003600086 ER PT J AU Li, XC Shu, XL Tao, P Yu, Y Niu, GJ Xu, YP Gao, F Luo, GN AF Li, Xiao-Chun Shu, Xiaolin Tao, Peng Yu, Yi Niu, Guo-Jiang Xu, Yuping Gao, Fei Luo, Guang-Nan TI Molecular dynamics simulation of helium cluster diffusion and bubble formation in bulk tungsten SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID AB-INITIO CALCULATIONS; HE AB Molecular dynamics (MD) simulations have been performed to investigate the diffusion behavior of helium (He) clusters in tungsten (W), because their diffusion properties provide basic knowledge in understanding the He bubble formation. The binding energy between He and He cluster is shown to be positive, and thus, He is easy to form bubbles by self-trapping. The mean squared displacements (MSDs) were employed to determine the diffusivities of He clusters with different sizes at different temperatures. The He bubble formation at different temperatures with 1% He was also investigated. It is revealed that the formation of He bubbles is strongly associated with the temperature and the diffusivities of the He clusters in W. The results demonstrate the initial stage of the He bubble formation and growth in W. (C) 2014 Published by Elsevier B.V. C1 [Li, Xiao-Chun; Niu, Guo-Jiang; Xu, Yuping; Luo, Guang-Nan] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. [Shu, Xiaolin; Tao, Peng; Yu, Yi] Beihang Univ, Sch Phys & Nucl Energy Engn, Beijing 100191, Peoples R China. [Gao, Fei] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Luo, GN (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. EM gnluo@ipp.ac.cn FU National Magnetic Confinement Fusion Science Program [2011GB110003, 2013GB105001, 2013GB105002]; National Natural Science Foundation of China (NSFC) [11405201, 11075186, 11105180, 11205198, 11305213]; US Department of Energy, Office of Fusion Energy Science [DE-AC06-76RLO1830] FX This work was supported by National Magnetic Confinement Fusion Science Program Nos. 2011GB110003, 2013GB105001 and 2013GB105002, National Natural Science Foundation of China (NSFC) Grant Nos.11405201, 11075186, 11105180, 11205198 and 11305213. F. Gao is grateful for the support by the US Department of Energy, Office of Fusion Energy Science, under Contract DE-AC06-76RLO1830. NR 12 TC 9 Z9 9 U1 4 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2014 VL 455 IS 1-3 BP 544 EP 548 DI 10.1016/j.jnucmat.2014.08.028 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AZ1MR UT WOS:000348003600103 ER PT J AU Ding, F Luo, GN Pitts, RA Litnovsky, A Gong, XZ Ding, R Mao, HM Zhou, HS Wampler, WR Stangeby, PC Carpentier, S Hellwig, M Yan, R Ashikawa, N Fukumoto, M Katayama, K Wang, WZ Wang, HQ Chen, L Wu, J Chen, JL Liu, SL Xie, CY AF Ding, Fang Luo, Guang-Nan Pitts, Richard A. Litnovsky, Andrey Gong, Xianzu Ding, Rui Mao, Hongmin Zhou, Haishan Wampler, William R. Stangeby, Peter C. Carpentier, Sophie Hellwig, Maren Yan, Rong Ashikawa, Naoko Fukumoto, Masakatsu Katayama, Kazunari Wang, Wenzhang Wang, Huiqian Chen, Liang Wu, Jing Chen, Jinling Liu, Songlin Xie, Chunyi TI Overview of plasma-material interaction experiments on EAST employing MAPES SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID FACING COMPONENTS; DIII-D; CARBON; ITER; DEUTERIUM; DIVERTOR; PHYSICS; SYSTEM AB The Material and Plasma Evaluation System (MAPES) in the EAST tokamak has been built up and used to address a variety of plasma-material interaction (PMI) issues relevant to ITER in 2012 EAST campaign. The topics studied cover erosion/redeposition of plasma-facing materials and components, hydrogenic retention in the gaps of castellation structure, deterioration of diagnostic mirrors from impurity deposition and protective technique. An introduction of MAPES system and an overview of the recent experimental results are presented. (C) 2014 Elsevier B.V. All rights reserved. C1 [Ding, Fang; Luo, Guang-Nan; Gong, Xianzu; Ding, Rui; Mao, Hongmin; Zhou, Haishan; Yan, Rong; Wang, Wenzhang; Wang, Huiqian; Chen, Liang; Wu, Jing; Chen, Jinling; Liu, Songlin; Xie, Chunyi] Chinese Acad Sci, Inst Plasma Phys, Hefei, Peoples R China. [Pitts, Richard A.; Carpentier, Sophie] ITER Org, St Lez Druance, France. [Litnovsky, Andrey; Hellwig, Maren] Forschungszentrum Julich, Assoc EURATOM FZJ, Inst Energy & Climate Res Plasma Phys, D-52425 Julich, Germany. [Wampler, William R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Stangeby, Peter C.] Univ Toronto, Inst Aerosp Studies, Toronto, ON, Canada. [Ashikawa, Naoko] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Fukumoto, Masakatsu] Japan Atom Energy Agcy, Naka, Ibaraki, Japan. [Katayama, Kazunari] Kyushu Univ, Fukuoka 812, Japan. RP Luo, GN (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei, Peoples R China. EM gnluo@ipp.ac.cn FU National Magnetic Confinement Fusion Science Program of China [2011GB110003, 2013GB105001, 2013GB105002, 2013GB105003, 2013GB107004]; National Natural Science Foundation of China (NSFC) [11205198, 11075186, 11105180, 11375010, 11305213]; Joint Sino-Germany research project [GZ765] FX This work was supported by the National Magnetic Confinement Fusion Science Program of China under Contracts Nos. 2011GB110003, 2013GB105001, 2013GB105002, 2013GB105003 and 2013GB107004, the National Natural Science Foundation of China (NSFC) with Grant Nos. 11205198, 11075186, 11105180, 11375010 and 11305213, as well as the Joint Sino-Germany research project GZ765. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization. NR 25 TC 7 Z9 7 U1 5 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2014 VL 455 IS 1-3 BP 710 EP 716 DI 10.1016/j.jnucmat.2014.09.017 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AZ1MR UT WOS:000348003600135 ER PT J AU Hawley, ER Malfatti, SA Pagani, I Huntemann, M Chen, A Foster, B Copeland, A del Rio, TG Pati, A Jansson, JR Gilbert, JA Tringe, SG Lorenson, TD Hess, M AF Hawley, Erik R. Malfatti, Stephanie A. Pagani, Ioanna Huntemann, Marcel Chen, Amy Foster, Brian Copeland, Alexander del Rio, Tijana Glavina Pati, Amrita Jansson, Janet R. Gilbert, Jack A. Tringe, Susannah Green Lorenson, Thomas D. Hess, Matthias TI Metagenomes from two microbial consortia associated with Santa Barbara seep oil SO MARINE GENOMICS LA English DT Article DE Bioremediation; Hydrocarbon degradation; Marine ecosystem; Metagenomics; Natural oil seeps ID SEQUENCES; DATABASE AB The metagenomes from two microbial consortia associated with natural oils seeping into the Pacific Ocean offshore the coast of Santa Barbara (California, USA) were determined to complement already existing metagenomes generated from microbial communities associated with hydrocarbons that pollute the marine ecosystem. This genomics resource article is the first of two publications reporting a total of four new metagenomes from oils that seep into the Santa Barbara Channel. (C) 2014 Elsevier B.V. All rights reserved. C1 [Hawley, Erik R.; Hess, Matthias] Washington State Univ, Richland, WA 99354 USA. [Malfatti, Stephanie A.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA USA. [Pagani, Ioanna; Huntemann, Marcel; Chen, Amy; Foster, Brian; Copeland, Alexander; del Rio, Tijana Glavina; Pati, Amrita; Jansson, Janet R.; Tringe, Susannah Green; Hess, Matthias] DOE Joint Genome Inst, Walnut Creek, CA USA. [Jansson, Janet R.; Tringe, Susannah Green] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Gilbert, Jack A.] Argonne Natl Lab, Lemont, IL USA. [Gilbert, Jack A.] Univ Chicago, Chicago, IL 60637 USA. [Lorenson, Thomas D.] US Geol Survey, Menlo Pk, CA 94025 USA. [Hess, Matthias] Pacific NW Natl Lab, Chem & Biol Proc Dev Grp, Richland, WA 99352 USA. [Hess, Matthias] Environm Mol Sci Lab, Richland, WA USA. RP Hess, M (reprint author), Washington State Univ, Richland, WA 99354 USA. EM mhess@lbl.gov OI Tringe, Susannah/0000-0001-6479-8427 FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Dept. of Energy [DE-AC02-06CH11357] FX MHess and ERH and the work performed in the laboratory of MHess were funded by Washington State University. The work conducted by the U.S. Department of Energy Joint Genome Institute was supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Work conducted by JAG was supported by the U.S. Dept. of Energy under Contract No.DE-AC02-06CH11357. We are extremely thankful to our colleagues who provided letters of support for our Community Sequencing Program proposal. Additional thanks go to Matt Ashby and Ulrika Lidstrom at Taxon and staff members of the Chemical and Biological Process Development Group in particular David Culley, Jon Magnuson, Kenneth Bruno, Jim Collett and Scott Baker - and members of the Microbial Community Initiative in particular Allan Konopka, Jim Fredrickson and Steve Lindeman - at PNNL for scientific discussions throughout the project. NR 15 TC 1 Z9 1 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1874-7787 EI 1876-7478 J9 MAR GENOM JI Mar. Genom. PD DEC PY 2014 VL 18 BP 97 EP 99 DI 10.1016/j.margen.2014.06.003 PN B PG 3 WC Genetics & Heredity; Marine & Freshwater Biology SC Genetics & Heredity; Marine & Freshwater Biology GA AY4XO UT WOS:000347578600005 PM 24958360 ER PT J AU Fenter, P Lee, SS AF Fenter, Paul Lee, Sang Soo TI Hydration layer structure at solid-water interfaces SO MRS BULLETIN LA English DT Article ID X-RAY-REFLECTIVITY; ELECTROLYTE INTERFACE; ION ADSORPTION; SURFACE; DENSITY; DIFFRACTION; SCATTERING; SPECIATION; FORCES; ENERGY AB The solid-water interface is ubiquitous in natural and synthetic systems as the primary site for chemical reactions under near-ambient conditions. Examples include the interactions of contaminants with mineral-water interfaces in natural environments, electrochemical reactions at the electrode-electrolyte interface relevant to energy storage (e.g., ion adsorption/electrical double layer formation, ion insertion), and oxidation of structural materials (e.g., rust). Yet many of these phenomena remain largely mysterious at a mechanistic level. The x-ray reflectivity technique, using highly penetrating hard x-rays, directly probes the solid-water interfaces through in situ studies. This approach has provided new insights into the molecular-scale structures and processes that occur at these "wet" interfaces. In this article, we review recent advances in the understanding of these systems, focusing specifically on the organization of interfacial "hydration layers" and the important role of adsorbed ions at charged solid-liquid interfaces. C1 [Fenter, Paul; Lee, Sang Soo] Argonne Natl Lab, Argonne, IL 60439 USA. RP Fenter, P (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. EM fenter@anl.gov; sslee@anl.gov FU US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences (Geoscience subprogram); Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences; US Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The work described herein is the product of the contributions of many people over many years. Of particular note are the long-term collaborations with Neil C. Sturchio, Kathryn L. Nagy, David J. Wesolowski, and Michael J. Bedzyk, as well as the many current and past members of the Interfacial Processes Group at Argonne National Laboratory. This material is primarily based upon work supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences (Geoscience subprogram, Nicholas Woodward), with the work on TiO2 done through a multi-institutional collaboration led by Oak Ridge National Laboratory. Work on graphene-water interactions was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Measurements were performed at the Advanced Photon Source, a DOE Office of Science User Facility. The manuscript was created at UChicago Argonne, LLC, Operator of Argonne National Laboratory. Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract DE-AC02-06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 43 TC 11 Z9 11 U1 11 U2 73 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD DEC PY 2014 VL 39 IS 12 BP 1056 EP 1061 DI 10.1557/mrs.2014.252 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA AZ3LE UT WOS:000348128000013 ER PT J AU Meyers, D Middey, S Cheng, JG Mukherjee, S Gray, BA Cao, YW Zhou, JS Goodenough, JB Choi, YS Haskel, D Freeland, JW Saha-Dasgupta, T Chakhalian, J AF Meyers, D. Middey, S. Cheng, J. -G. Mukherjee, Swarnakamal Gray, B. A. Cao, Yanwei Zhou, J. -S. Goodenough, J. B. Choi, Yongseong Haskel, D. Freeland, J. W. Saha-Dasgupta, T. Chakhalian, J. TI Competition between heavy fermion and Kondo interaction in isoelectronic A-site-ordered perovskites SO NATURE COMMUNICATIONS LA English DT Article ID X-RAY-ABSORPTION; ELECTRONIC-STRUCTURE; HOLE CONCENTRATION; PHASE-DIAGRAM; OXIDES; MAGNETORESISTANCE; 1ST-PRINCIPLES; SPECTROSCOPY; TRANSITION; INTERFACE AB With current research efforts shifting towards the 4d and 5d transition metal oxides, understanding the evolution of the electronic and magnetic structure as one moves away from 3d materials is of critical importance. Here we perform X-ray spectroscopy and electronic structure calculations on A-site-ordered perovskites with Cu in the A-site and the B-sites descending along the ninth group of the periodic table to elucidate the emerging properties as d-orbitals change from partially filled 3d to 4d to 5d. The results show that when descending from Co to Ir, the charge transfers from the cuprate-like Zhang-Rice state on Cu to the t(2g) orbital of the B site. As the Cu d-orbital occupation approaches the Cu2+ limit, a mixed valence state in CaCu3Rh4O12 and heavy fermion state in CaCu3Ir4O12 are obtained. The investigated d-electron compounds are mapped onto the Doniach phase diagram of the competing RKKY and Kondo interactions developed for the f-electron systems. C1 [Meyers, D.; Middey, S.; Gray, B. A.; Cao, Yanwei; Chakhalian, J.] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. [Cheng, J. -G.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Cheng, J. -G.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Cheng, J. -G.; Zhou, J. -S.; Goodenough, J. B.] Univ Texas Austin, ETC 9 102, Texas Mat Inst, Austin, TX 78712 USA. [Mukherjee, Swarnakamal; Saha-Dasgupta, T.] SN Bose Natl Ctr Basic Sci, Dept Condensed Matter Phys & Mat Sci, Kolkata 700098, India. [Choi, Yongseong; Haskel, D.; Freeland, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Meyers, D (reprint author), Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. EM dmeyers@uark.edu; t.sahadasgupta@gmail.com RI Chakhalian, Jak/F-2274-2015; Cheng, Jinguang/A-8342-2012; Middey, Srimanta/D-9580-2013; OI Middey, Srimanta/0000-0001-5893-0946; Goodenough, John Bannister/0000-0001-9350-3034 FU DOD-ARO [0402-17291]; NSF [DMR-1122603]; CSIR; DST, India; US Department of Energy, Office of Science [DEAC02-06CH11357]; NSFC; MOST [11304371, 2014CB921500]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDB07000000] FX J.C. is supported by DOD-ARO Grant No. 0402-17291. J.-S.Z. and J.B.G. are supported by NSF Grant. No. DMR-1122603. T.S.-D. thank CSIR and DST, India, for funding. Work at the Advanced Photon Source, Argonne, is supported by the US Department of Energy, Office of Science under Grant No. DEAC02-06CH11357. J.-G.C. acknowledges the support from NSFC and MOST (Grant Nos. 11304371, 2014CB921500) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07000000). We thank Dr Shalinee Chikara and Professor Gang Cao for sharing data on reference samples Rh2O3 and Sr2RhO4. J. C. acknowledges useful discussions with D. Khomskii. NR 56 TC 4 Z9 4 U1 6 U2 69 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD DEC PY 2014 VL 5 AR 5818 DI 10.1038/ncomms6818 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AY5LS UT WOS:000347614200002 PM 25517129 ER PT J AU Theobald, W Solodov, AA Stoeckl, C Anderson, KS Beg, FN Epstein, R Fiksel, G Giraldez, EM Glebov, VY Habara, H Ivancic, S Jarrott, LC Marshall, FJ McKiernan, G McLean, HS Mileham, C Nilson, PM Patel, PK Perez, F Sangster, TC Santos, JJ Sawada, H Shvydky, A Stephens, RB Wei, MS AF Theobald, W. Solodov, A. A. Stoeckl, C. Anderson, K. S. Beg, F. N. Epstein, R. Fiksel, G. Giraldez, E. M. Glebov, V. Yu. Habara, H. Ivancic, S. Jarrott, L. C. Marshall, F. J. McKiernan, G. McLean, H. S. Mileham, C. Nilson, P. M. Patel, P. K. Perez, F. Sangster, T. C. Santos, J. J. Sawada, H. Shvydky, A. Stephens, R. B. Wei, M. S. TI Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion SO NATURE COMMUNICATIONS LA English DT Article ID OMEGA LASER; DIRECT-DRIVE; HYDRODYNAMICS; PERFORMANCE; IMPLOSION; FACILITY; TARGETS; SHELL; GAIN AB The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achieve areal densities in excess of 300 mg cm(-2) with a nanosecond-duration compression pulse-the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma. C1 [Theobald, W.; Solodov, A. A.; Stoeckl, C.; Anderson, K. S.; Epstein, R.; Fiksel, G.; Glebov, V. Yu.; Ivancic, S.; Marshall, F. J.; McKiernan, G.; Mileham, C.; Nilson, P. M.; Sangster, T. C.; Shvydky, A.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Theobald, W.; Solodov, A. A.; Stoeckl, C.; Anderson, K. S.; Epstein, R.; Fiksel, G.; Glebov, V. Yu.; Ivancic, S.; Marshall, F. J.; McKiernan, G.; Mileham, C.; Nilson, P. M.; Sangster, T. C.; Shvydky, A.] Univ Rochester, Fus Sci Ctr Extreme States Matter, Rochester, NY 14623 USA. [Beg, F. N.; Jarrott, L. C.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Giraldez, E. M.; Stephens, R. B.; Wei, M. S.] Gen Atom Co, San Diego, CA 92186 USA. [Habara, H.] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan. [McLean, H. S.; Patel, P. K.; Perez, F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Santos, J. J.] Univ Bordeaux, CEA, CNRS, CELIA Ctr Lasers Intenses & Applicat,UMR 5107, F-33405 Talence, France. [Sawada, H.] Univ Reno, Dept Phys, Reno, NV 89557 USA. RP Theobald, W (reprint author), Univ Rochester, Laser Energet Lab, 250 East River Rd, Rochester, NY 14623 USA. EM wthe@lle.rochester.edu RI Patel, Pravesh/E-1400-2011; Sawada, Hiroshi/Q-8434-2016; OI Sawada, Hiroshi/0000-0002-7972-9894; Stephens, Richard/0000-0002-7034-6141 FU Department of Energy National Nuclear Security Administration [DE-NA0001944]; OFES Fusion Science Center grant [DE-FC02-04ER54789]; OFES ACE Fast Ignition grant [DE-FG02-05ER54839]; DOE Laboratory Basic Science Program; University of Rochester; New York State Energy Research and Development Authority; French National Agency for Research (ANR); competitiveness cluster Alpha-Route des Lasers through project TERRE [ANR-2011-BS04-014] FX This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944, the OFES Fusion Science Center grant No. DE-FC02-04ER54789, the OFES ACE Fast Ignition grant No. DE-FG02-05ER54839, the DOE Laboratory Basic Science Program, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article. We thank R. Betti for discussions. J.J.S. participated in this work thanks to funding from the French National Agency for Research (ANR) and the competitiveness cluster Alpha-Route des Lasers through project TERRE ANR-2011-BS04-014. NR 38 TC 14 Z9 15 U1 3 U2 24 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD DEC PY 2014 VL 5 AR 5785 DI 10.1038/ncomms6785 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AY5LI UT WOS:000347613200006 PM 25503788 ER PT J AU Covo, MK AF Covo, Michel Kireeff TI Nondestructive synchronous beam current monitor SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID 88-INCH CYCLOTRON AB A fast current transformer is mounted after the deflectors of the Berkeley 88-Inch Cyclotron. The measured signal is amplified and connected to the input of a lock-in amplifier. The lock-in amplifier performs a synchronous detection of the signal at the cyclotron second harmonic frequency. The magnitude of the signal detected is calibrated against a Faraday cup and corresponds to the beam intensity. It has exceptional resolution, long term stability, and can measure the beam current leaving the cyclotron as low as 1 nA. (C) 2014 AIP Publishing LLC. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Covo, MK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mkireeffcovo@lbl.gov FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-05CH11231] FX The author would like to thank Brien Ninemire, Catherine R. Siero, Thomas Gimpel, and Scott M. Small for the cyclotron operation support, Adrian Hodgkinson, Thomas Perry, and John P. Garcia for the mechanical support, and Mark Regis and Brendan Ford for the electronic support. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-AC02-05CH11231. NR 11 TC 1 Z9 1 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2014 VL 85 IS 12 AR 125106 DI 10.1063/1.4902903 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AX8OL UT WOS:000347168500062 ER PT J AU Melnychuk, O Grassellino, A Romanenko, A AF Melnychuk, O. Grassellino, A. Romanenko, A. TI Error analysis for intrinsic quality factor measurement in superconducting radio frequency resonators SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB In this paper, we discuss error analysis for intrinsic quality factor (Q(0)) and accelerating gradient (E-acc) measurements in superconducting radio frequency (SRF) resonators. The analysis is applicable for cavity performance tests that are routinely performed at SRF facilities worldwide. We review the sources of uncertainties along with the assumptions on their correlations and present uncertainty calculations with a more complete procedure for treatment of correlations than in previous publications [T. Powers, in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27]. Applying this approach to cavity data collected at Vertical Test Stand facility at Fermilab, we estimated total uncertainty for both Q(0) and E-acc to be at the level of approximately 4% for input coupler coupling parameter beta(1) in the [0.5, 2.5] range. Above 2.5 (below 0.5) Q(0) uncertainty increases (decreases) with beta(1) whereas E-acc uncertainty, in contrast with results in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27], is independent of beta(1). Overall, our estimated Q(0) uncertainty is approximately half as large as that in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27]. (C) 2014 AIP Publishing LLC. C1 [Melnychuk, O.; Grassellino, A.; Romanenko, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Melnychuk, O (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM alexmelnitchouk@gmail.com OI Melnychuk, Oleksandr/0000-0002-2089-8685 FU (U.S.) Department of Energy (DOE) [DE-AC02-07CH11359] FX The authors would like to acknowledge help from Dmitri Sergatskov, Camille Ginsburg, Mohamed Hassan, Timergali Khabiboulline, Roger Nehring, Yuri Pischalnikov, Alexander Sukhanov, Joe Ozelis, and Tom Powers. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the (U.S.) Department of Energy (DOE). NR 19 TC 3 Z9 3 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2014 VL 85 IS 12 AR 124705 DI 10.1063/1.4903868 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AX8OL UT WOS:000347168500049 PM 25554312 ER PT J AU Pelliccione, CJ Timofeeva, EV Katsoudas, JP Segre, CU AF Pelliccione, C. J. Timofeeva, E. V. Katsoudas, J. P. Segre, C. U. TI Note: Sample chamber for in situ x-ray absorption spectroscopy studies of battery materials SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ELECTROCHEMICAL PROPERTIES; LITHIUM; ELECTRODE; COMPOSITE; CELL AB In situ x-ray absorption spectroscopy (XAS) provides element-specific characterization of both crystalline and amorphous phases and enables direct correlations between electrochemical performance and structural characteristics of cathode and anode materials. In situ XAS measurements are very demanding to the design of the experimental setup. We have developed a sample chamber that provides electrical connectivity and inert atmosphere for operating electrochemical cells and also accounts for x-ray interactions with the chamber and cell materials. The design of the sample chamber for in situ measurements is presented along with example XAS spectra from anode materials in operating pouch cells at the Zn and Sn K-edges measured in fluorescence and transmission modes, respectively. (C) 2014 AIP Publishing LLC. C1 [Pelliccione, C. J.; Katsoudas, J. P.; Segre, C. U.] IIT, Dept Phys, Chicago, IL 60616 USA. [Pelliccione, C. J.; Katsoudas, J. P.; Segre, C. U.] IIT, CSRRI, Chicago, IL 60616 USA. [Timofeeva, E. V.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Pelliccione, CJ (reprint author), IIT, Dept Phys, Chicago, IL 60616 USA. EM cpellic1@hawk.iit.edu RI Timofeeva, Elena/E-6391-2010; Segre, Carlo/B-1548-2009; BM, MRCAT/G-7576-2011; OI Segre, Carlo/0000-0001-7664-1574; Timofeeva, Elena V./0000-0001-7839-2727 FU Department of Education GAANN Fellowship [P200A090137]; US Department of Energy (DOE), Office of Basic Energy Science; Advanced Research Project Agency-Energy (ARPA-E) [AR-000387]; U.S. DOE [DE-AC02-06CH113] FX C. J. Pelliccione was supported by a Department of Education GAANN Fellowship, Award No. P200A090137. The project is supported by US Department of Energy (DOE), Office of Basic Energy Science and the Advanced Research Project Agency-Energy (ARPA-E) under Award No. AR-000387. MRCAT operations are supported by the DOE and the MRCAT member institutions. Use of the Argonne National Laboratory and Advanced Photon Source is supported by the U.S. DOE, under Contract No. DE-AC02-06CH113. NR 21 TC 2 Z9 2 U1 4 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2014 VL 85 IS 12 AR 126108 DI 10.1063/1.4904703 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AX8OL UT WOS:000347168500081 PM 25554344 ER PT J AU Rovang, DC Lamppa, DC Cuneo, ME Owen, AC McKenney, J Johnson, DW Radovich, S Kaye, RJ McBride, RD Alexander, CS Awe, TJ Slutz, SA Sefkow, AB Haill, TA Jones, PA Argo, JW Dalton, DG Robertson, GK Waisman, EM Sinars, DB Meissner, J Milhous, M Nguyen, DN Mielke, CH AF Rovang, D. C. Lamppa, D. C. Cuneo, M. E. Owen, A. C. McKenney, J. Johnson, D. W. Radovich, S. Kaye, R. J. McBride, R. D. Alexander, C. S. Awe, T. J. Slutz, S. A. Sefkow, A. B. Haill, T. A. Jones, P. A. Argo, J. W. Dalton, D. G. Robertson, G. K. Waisman, E. M. Sinars, D. B. Meissner, J. Milhous, M. Nguyen, D. N. Mielke, C. H. TI Pulsed-coil magnet systems for applying uniform 10-30 T fields to centimeter-scale targets on Sandia's Z facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB Sandia has successfully integrated the capability to apply uniform, high magnetic fields (10-30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1-3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2-7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept. (C) 2014 AIP Publishing LLC. C1 [Rovang, D. C.; Lamppa, D. C.; Cuneo, M. E.; Owen, A. C.; McKenney, J.; Johnson, D. W.; Radovich, S.; Kaye, R. J.; McBride, R. D.; Alexander, C. S.; Awe, T. J.; Slutz, S. A.; Sefkow, A. B.; Haill, T. A.; Jones, P. A.; Argo, J. W.; Dalton, D. G.; Robertson, G. K.; Waisman, E. M.; Sinars, D. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Meissner, J.; Milhous, M.] Milhous Co, Amherst, VA 24521 USA. [Nguyen, D. N.; Mielke, C. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Rovang, DC (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dcrovan@sandia.gov FU Sandia's Laboratory Directed Research and Development program [141537]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This project was funded in part by Sandia's Laboratory Directed Research and Development program 141537. Sandia National Laboratories is a Multi-Program Laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 29 TC 13 Z9 13 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2014 VL 85 IS 12 AR 124701 DI 10.1063/1.4902566 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AX8OL UT WOS:000347168500045 PM 25554308 ER PT J AU Volegov, PL Danly, CR Fittinghoff, DN Guler, N Merrill, FE Wilde, CH AF Volegov, P. L. Danly, C. R. Fittinghoff, D. N. Guler, N. Merrill, F. E. Wilde, C. H. TI Self characterization of a coded aperture array for neutron source imaging SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the stagnation stage of inertial confinement fusion implosions. Since the neutron source is small (similar to 100 mu m) and neutrons are deeply penetrating (> 3 cm) in all materials, the apertures used to achieve the desired 10-mu m resolution are 20-cm long, triangular tapers machined in gold foils. These gold foils are stacked to form an array of 20 apertures for pinhole imaging and three apertures for penumbral imaging. These apertures must be precisely aligned to accurately place the field of view of each aperture at the design location, or the location of the field of view for each aperture must be measured. In this paper we present a new technique that has been developed for the measurement and characterization of the precise location of each aperture in the array. We present the detailed algorithms used for this characterization and the results of reconstructed sources from inertial confinement fusion implosion experiments at NIF. (C) 2014 AIP Publishing LLC. C1 [Volegov, P. L.; Danly, C. R.; Guler, N.; Merrill, F. E.; Wilde, C. H.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Fittinghoff, D. N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Volegov, PL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM volegov@lanl.gov OI Merrill, Frank/0000-0003-0603-735X FU U.S. Department of Energy for NNSA Campaign 10 (Inertial Confinement Fusion) FX Additional credit goes to the dedicated staff and technicians of NIF, whose hard work and operational expertise resulted in the data that is shown here. The authors wish to acknowledge D. Jedlovec, M. A. Talison, O. Drury, D. Kalantar, and R. Wood for their hard work and expertise in fielding and aligning the neutron imaging system. This work has been performed under the auspices of the U.S. Department of Energy for NNSA Campaign 10 (Inertial Confinement Fusion) with Steve Batha as program manager. NR 16 TC 3 Z9 4 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2014 VL 85 IS 12 AR 123506 DI 10.1063/1.4902978 PG 13 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AX8OL UT WOS:000347168500029 PM 25554292 ER PT J AU Wang, HW Fanelli, VR Reiche, HM Larson, E Taylor, MA Xu, HW Zhu, JL Siewenie, J Page, K AF Wang, Hsiu-Wen Fanelli, Victor R. Reiche, Helmut M. Larson, Eric Taylor, Mark A. Xu, Hongwu Zhu, Jinlong Siewenie, Joan Page, Katharine TI Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID PAIR DISTRIBUTION FUNCTION; SUPERCRITICAL CARBON-DIOXIDE; INITIO MOLECULAR-DYNAMICS; NONCRYSTALLINE MATERIALS; TOTAL SCATTERING; DIFFRACTION; CO2; EVOLUTION; PRESSURE; ORDER AB This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H-2 and natural gas uptake/storage. (C) 2014 AIP Publishing LLC. C1 [Wang, Hsiu-Wen; Fanelli, Victor R.; Reiche, Helmut M.; Larson, Eric; Taylor, Mark A.; Zhu, Jinlong; Siewenie, Joan; Page, Katharine] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Xu, Hongwu] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Zhu, Jinlong] Univ Nevada, Dept Phys & Astron, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA. [Zhu, Jinlong] Chinese Acad Sci, Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. [Page, Katharine] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Page, K (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. EM pagekl@ornl.gov RI Page, Katharine/C-9726-2009; OI Page, Katharine/0000-0002-9071-3383; Xu, Hongwu/0000-0002-0793-6923; Wang, Hsiu-Wen/0000-0002-2802-4122 FU Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory; US DOE, Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396] FX This research was sponsored by the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory, and has benefited in part from the use of the NPDF beamline at the Lujan Center at Los Alamos Neutron Science Center, funded by the US DOE, Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. The authors would like to thank Jianzhong Zhang, Frances Aull, Melvin Borrego, and Charles Kelsey, Los Alamos National Laboratory, for assistance with safety and technical supports. NR 30 TC 0 Z9 0 U1 2 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2014 VL 85 IS 12 AR 125116 DI 10.1063/1.4902838 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AX8OL UT WOS:000347168500072 PM 25554335 ER PT J AU Bilionis, I Constantinescu, EM Anitescu, M AF Bilionis, Ilias Constantinescu, Emil M. Anitescu, Mihai TI Data-driven model for solar irradiation based on satellite observations SO SOLAR ENERGY LA English DT Article DE Insolation; Irradiance; Bayesian; Recursive Gaussian process; Dimensionality reduction; Dynamical system ID UNCERTAINTY QUANTIFICATION; GAUSSIAN PROCESS; EM ALGORITHMS; OPTIMIZATION; RADIATION; VARIABLES AB We construct a data-driven model for solar irradiation based on satellite observations. The model yields probabilistic estimates of the irradiation field every thirty minutes starting from two consecutive satellite measurements. The probabilistic nature of the model captures prediction uncertainties and can therefore be used by solar energy producers to quantify the operation risks. The model is simple to implement and can make predictions in realtime with minimal computational resources. To deal with the high-dimensionality of the satellite data, we construct a reduced representation using factor analysis. Then, we model the dynamics of the reduced representation as a discrete (30-min interval) dynamical system. In order to convey information about the movement of the irradiation field, the dynamical system has a two-step delay. The dynamics are represented in a nonlinear, nonparametric way by a recursive Gaussian process. The predictions of the model are compared with observed satellite data as well as with a similar model that uses only ground observations at the prediction site. We conclude that using satellite data in an area including the prediction site significantly improves the prediction compared with models using only ground observation site data. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Bilionis, Ilias; Constantinescu, Emil M.; Anitescu, Mihai] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Bilionis, I (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ibilion@purdue.edu; emconsta@mcs.anl.gov; anitescu@mcs.anl.gov FU U.S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. We gratefully acknowledge the use of the Blues cluster in the Laboratory Computing Resource Center at Argonne National Laboratory. We thank Christine Molling from the Cooperative Institute for Meteorological Satellite Studies, Space Science and Engineering Center, at the University of Wisconsin-Madison for providing access to CLAVRx Satellite data, and Edwin Campos, Research Meteorologist, Argonne National Laboratory for his help in interpreting them. We also acknowledge the Atmospheric Radiation Measurement (ARM) Program for providing access to the SOP ground irradiance measurements. NR 37 TC 3 Z9 3 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD DEC PY 2014 VL 110 BP 22 EP 38 DI 10.1016/j.solener.2014.09.009 PG 17 WC Energy & Fuels SC Energy & Fuels GA AY4XT UT WOS:000347579100004 ER PT J AU Blanc, P Espinar, B Geuder, N Gueymard, C Meyer, R Pitz-Paal, R Reinhardt, B Renne, D Sengupta, M Wald, L Wilbert, S AF Blanc, P. Espinar, B. Geuder, N. Gueymard, C. Meyer, R. Pitz-Paal, R. Reinhardt, B. Renne, D. Sengupta, M. Wald, L. Wilbert, S. TI Direct normal irradiance related definitions and applications: The circumsolar issue SO SOLAR ENERGY LA English DT Article DE Direct normal irradiance; Circumsolar irradiance; Circumsolar ratio; Pyrheliometer; Concentrating solar technologies ID RADIATIVE-TRANSFER; SKY RADIATION; BEAM; CONCENTRATORS; RADIOMETRY; APERTURE; SUNSHAPE AB The direct irradiance received on a plane normal to the sun, called direct normal irradiance (DNI), is of particular relevance to concentrated solar technologies, including concentrating solar thermal plants and concentrated photovoltaic systems. Following various standards from the International Organization for Standardization (ISO), the DNI definition is related to the irradiance from a small solid angle of the sky, centered on the position of the sun. Half-angle apertures of pyrheliometers measuring DNI have varied over time, up to approximate to 10 degrees. The current recommendation of the World Meteorological Organization (WMO) for this half-angle is 2.5 degrees. Solar concentrating collectors have an angular acceptance function that can be significantly narrower, especially for technologies with high concentration ratios. The disagreement between the various interpretations of DNI, from the theoretical definition used in atmospheric physics and radiative transfer modeling to practical definitions corresponding to specific measurements or conversion technologies is significant, especially in the presence of cirrus clouds or large concentration of aerosols. Under such sky conditions, the circumsolar radiation-i.e. the diffuse radiation coming from the vicinity of the sun-contributes significantly to the DNI ground measurement, although some concentrating collectors cannot utilize the bulk of it. These issues have been identified in the EU-funded projects MACC-II (Monitoring Atmospheric Composition and Climate-Interim Implementation) and SFERA (Solar Facilities for the European Research Area), and have been discussed within a panel of international experts in the framework of the Solar Heating and Cooling (SHC) program of the International Energy Agency's (IEA's) Task 46 "Solar Resource Assessment and Forecasting". In accordance with these discussions, the terms of reference related to DNI are specified here. The important role of circumsolar radiation is evidenced, and its potential contribution is evaluated for typical atmospheric conditions. For thorough analysis of performance of concentrating solar systems, it is recommended that, in addition to the conventional DNI related to 2.5 degrees half-angle of today's pyrheliometers, solar resource data sets also report the sunshape, the circumsolar contribution or the circumsolar ratio (CSR). (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). C1 [Blanc, P.; Espinar, B.; Wald, L.] MINES ParisTech, PSL Res Univ, OIE Ctr Observat, F-06904 Sophia Antipolis, France. [Geuder, N.] Stuttgart Univ Appl Sci, D-70174 Stuttgart, Germany. [Gueymard, C.] Solar Consulting Serv, Colebrook, NH 03576 USA. [Meyer, R.] Suntrace GmbH, D-20457 Hamburg, Germany. [Pitz-Paal, R.] DLR, Inst Solar Res, D-51170 Cologne, Germany. [Reinhardt, B.] DLR, Inst Atmospher Phys, Oberpfaffenhofen, Germany. [Reinhardt, B.] Univ Munich, Meteorol Inst, Munich, Germany. [Renne, D.; Sengupta, M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Wilbert, S.] DLR, Inst Solar Res, Tabernas 04200, Spain. RP Blanc, P (reprint author), MINES ParisTech, Ctr Observat, Energie OIE, CS 10207,Rue Claude Daunesse, F-06904 Sophia Antipolis, France. EM philippe.blanc@mines-paristech.fr RI Wald, Lucien/C-1284-2009; OI Wald, Lucien/0000-0002-2916-2391; Pitz-Paal, Robert/0000-0002-3542-3391; Wilbert, Stefan/0000-0003-3573-3004 FU European Union [283576, 228296] FX The research leading to these results has partly received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 283576 (MACC-II project, Monitoring Atmospheric Composition and Climate-Interim Implementation) and grant agreement no. 228296 (SFERA project, Solar Facilities for the European Research Area). The Cimel sun photometer at DLR was calibrated at AERONET-EUROPE, supported by the FP7-funded ACTRIS (Aerosols, Clouds, and Trace gases Research Infra Structure Network) project. The support provided by the AERONET, PHOTONS and RIMA staff with the sun photometer calibration and data evaluation is much appreciated. NR 90 TC 21 Z9 22 U1 1 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD DEC PY 2014 VL 110 BP 561 EP 577 DI 10.1016/j.solener.2014.10.001 PG 17 WC Energy & Fuels SC Energy & Fuels GA AY4XT UT WOS:000347579100052 ER PT J AU Marion, B Deceglie, MG Silverman, TJ AF Marion, Bill Deceglie, Michael G. Silverman, Timothy J. TI Analysis of measured photovoltaic module performance for Florida, Oregon, and Colorado locations SO SOLAR ENERGY LA English DT Article DE Photovoltaic; Yield; Performance; Angle-of-incidence; Irradiance AB A study was conducted to determine and compare the measured energy production of photovoltaic (PV) modules for three climatically diverse locations: Cocoa, Florida; Eugene, Oregon; and Golden, Colorado. The PIT modules were 2010 vintage and included single-crystalline silicon (x-Si), multi-crystalline silicon (m-Si), cadmium telluride (CdTe), copper indium gallium selenide (CIGS), amorphous silicon (a-Si) tandem and triple-junction, amorphous silicon/crystalline silicon or heterojunction with intrinsic thin-layer (HIT), and amorphous silicon/microcrystalline silicon (a-Si/mu x-Si). Annual performance metrics for reference yield, final PV yield, performance ratio, and the losses associated with angle-of-incidence (AOI), PIT module temperature, and low light or irradiance level were determined. Results showed considerable variation in energy production because of both the site-to-site differences in reference yield and the PV module characteristics; for example, the best-performing PV modules in Cocoa had final PV yield values nearly 60% greater than the lowest performing PV module in Eugene. In Cocoa, the final PIT yield of the a-Si/mu x-Si PV module was greater, after considering measurement uncertainty, than other PV modules in Cocoa, except for the CdTe PV module. In Eugene, more PV modules performed more similarly to each other. The final PIT yield values for the a-Si/mu x-Si and CdTe PV modules were not measurably greater than the final PV yield values for the HIT and a-Si PV modules. In Golden, the final PV yield values of the PIT modules varied the least, within measurement uncertainty, except for one PV module. Losses from AOI effects were from 21/2% to 3%; losses from PV module temperature were from 2.3% to 10.8%; and low-light-level effects ranged from a loss of 7.4% for a CIGS PV module deployed in Eugene to a gain of 0.3% for a CdTe PIT module deployed in Cocoa. Spectral effects also appeared to be present, with increased performance of the CdTe modules and a-Si PV module in Cocoa and decreased performance in Golden. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Marion, Bill; Deceglie, Michael G.; Silverman, Timothy J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Marion, B (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM bill.marion@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 27 TC 12 Z9 12 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD DEC PY 2014 VL 110 BP 736 EP 744 DI 10.1016/j.solener.2014.10.017 PG 9 WC Energy & Fuels SC Energy & Fuels GA AY4XT UT WOS:000347579100068 ER PT J AU Binotti, M Manzolini, G Zhu, GD AF Binotti, Marco Manzolini, Giampaolo Zhu, Guangdong TI An alternative methodology to treat solar radiation data for the optical efficiency estimate of different types of collectors SO SOLAR ENERGY LA English DT Article DE Solar collector; Optical efficiency methodology; Asymmetric Fresnel collector; DNI density map ID ALGORITHM AB An alternative methodology to calculate the yearly optical efficiency of a generic solar power collector/converter for any chosen location is here proposed. The innovation is in considering the yearly direct normal irradiation (DNI) not as a series of temporal data with hourly or minute resolution, but rather, as a map of physical positions assumed by the sun during the year in the sky vault. A MATLAB (R) suite was developed to convert the temporal DNI information, which is usually available for a chosen location, into spatial DNI information. The suite allows creating a yearly direct solar irradiation density map as function of a generic pair of independent angular coordinates (e.g., azimuth and zenith). The yearly DNI density map can then easily be multiplied by the collector efficiency map to obtain its yearly optical efficiency. The main advantages of the proposed approach compared to conventional temporal ones are (i) reduced magnitude of computational effort, and (ii) ease in conducting collector optical optimization. The approach is tested on three cases-a generic flat collector and two linear collectors-to show its generality and potentialities. The developed methodology is applied to optimize the yearly optical efficiency of a linear Fresnel collector with different orientations and mirror layouts. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Binotti, Marco; Manzolini, Giampaolo] Politecn Milan, Dipartimento Energia, I-20156 Milan, Italy. [Zhu, Guangdong] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Binotti, M (reprint author), Politecn Milan, Dipartimento Energia, Via Lambruschini 4, I-20156 Milan, Italy. EM marco.binotti@polimi.it RI Manzolini, Giampaolo/O-5387-2015; OI Manzolini, Giampaolo/0000-0001-6271-6942; Binotti, Marco/0000-0002-2535-7589 NR 18 TC 5 Z9 5 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD DEC PY 2014 VL 110 BP 807 EP 817 DI 10.1016/j.solener.2014.10.011 PG 11 WC Energy & Fuels SC Energy & Fuels GA AY4XT UT WOS:000347579100074 ER PT J AU Plampin, MR Lassen, RN Sakaki, T Porter, ML Pawar, RJ Jensen, KH Illangasekare, TH AF Plampin, Michael R. Lassen, Rune N. Sakaki, Toshihiro Porter, Mark L. Pawar, Rajesh J. Jensen, Karsten H. Illangasekare, Tissa H. TI Heterogeneity-enhanced gas phase formation in shallow aquifers during leakage of CO2-saturated water from geologic sequestration sites SO WATER RESOURCES RESEARCH LA English DT Article ID HEAVY OIL-RESERVOIRS; POROUS-MEDIA; SOLUTE DIFFUSION; BUBBLE-GROWTH; AIR BUBBLE; CO2; SIMULATION; EVOLUTION; DRIVE; SCALE AB A primary concern for geologic carbon storage is the potential for leakage of stored carbon dioxide (CO2) into the shallow subsurface where it could degrade the quality of groundwater and surface water. In order to predict and mitigate the potentially negative impacts of CO2 leakage, it is important to understand the physical processes that CO2 will undergo as it moves through naturally heterogeneous porous media formations. Previous studies have shown that heterogeneity can enhance the evolution of gas phase CO2 in some cases, but the conditions under which this occurs have not yet been quantitatively defined, nor tested through laboratory experiments. This study quantitatively investigates the effects of geologic heterogeneity on the process of gas phase CO2 evolution in shallow aquifers through an extensive set of experiments conducted in a column that was packed with layers of various test sands. Soil moisture sensors were utilized to observe the formation of gas phase near the porous media interfaces. Results indicate that the conditions under which heterogeneity controls gas phase evolution can be successfully predicted through analysis of simple parameters, including the dissolved CO2 concentration in the flowing water, the distance between the heterogeneity and the leakage location, and some fundamental properties of the porous media. Results also show that interfaces where a less permeable material overlies a more permeable material affect gas phase evolution more significantly than interfaces with the opposite layering. C1 [Plampin, Michael R.; Sakaki, Toshihiro; Illangasekare, Tissa H.] Colorado Sch Mines, Ctr Expt Study Subsurface Environm Proc, Golden, CO 80401 USA. [Lassen, Rune N.; Jensen, Karsten H.] Univ Copenhagen, Dept Geog & Geol, Copenhagen, Denmark. [Porter, Mark L.; Pawar, Rajesh J.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Plampin, MR (reprint author), Colorado Sch Mines, Ctr Expt Study Subsurface Environm Proc, Golden, CO 80401 USA. EM mikeplampin@gmail.com RI Jensen, Karsten/E-3469-2015; Porter, Mark/B-4417-2011; Plampin, Michael/K-9110-2016 OI Jensen, Karsten/0000-0003-4020-0050; Plampin, Michael/0000-0003-4068-5801 FU U.S. Department of Energy's Office of Fossil Energy through the National Energy Technology Laboratory's CO2 sequestration RD Program; U.S. Army Research Office [W911NF-04-1-0169]; Air Force Office of Scientific Research [FA9559-10-1-0139]; National Science Foundation [1045282] FX The authors would like to thank the U.S. Department of Energy's Office of Fossil Energy for providing funding for this research through the National Energy Technology Laboratory's CO2 sequestration R&D Program. We would also like to thank the U.S. Army Research Office who provided funding through award W911NF-04-1-0169, and the Air Force Office of Scientific Research who provided funding through award FA9559-10-1-0139. The National Science Foundation also deserves credit for providing funding for this research through award 1045282. Data supporting Table 5 and Figures 4 and 5 are available as supporting information Figures 01-40. NR 45 TC 2 Z9 2 U1 3 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD DEC PY 2014 VL 50 IS 12 BP 9251 EP 9266 DI 10.1002/2014WR015715 PG 16 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA AZ0FH UT WOS:000347921100009 ER PT J AU Li, HY Sivapalan, M Tian, FQ Harman, C AF Li, Hong-Yi Sivapalan, Murugesu Tian, Fuqiang Harman, Ciaran TI Functional approach to exploring climatic and landscape controls of runoff generation: 1. Behavioral constraints on runoff volume SO WATER RESOURCES RESEARCH LA English DT Article ID CATCHMENT WATER-BALANCE; SPACE-TIME VARIABILITY; HYDROLOGIC-RESPONSE; STORM RESPONSE; SIMILARITY; HILLSLOPE; MODEL; SCALE; VEGETATION; SOIL AB Inspired by the Dunne diagram, the climatic and landscape controls on the partitioning of annual runoff into its various components (Hortonian and Dunne overland flow and subsurface stormflow) are assessed quantitatively, from a purely theoretical perspective. A simple distributed hydrologic model has been built sufficient to simulate the effects of different combinations of climate, soil, and topography on the runoff generation processes. The model is driven by a sequence of simple hypothetical precipitation events, for a large combination of climate and landscape properties, and hydrologic responses at the catchment scale are obtained through aggregation of grid-scale responses. It is found, first, that the water balance responses, including relative contributions of different runoff generation mechanisms, could be related to a small set of dimensionless similarity parameters. These capture the competition between the wetting, drying, storage, and drainage functions underlying the catchment responses, and in this way, provide a quantitative approximation of the conceptual Dunne diagram. Second, only a subset of all hypothetical catchment/climate combinations is found to be "behavioral," in terms of falling sufficiently close to the Budyko curve, describing mean annual runoff as a function of climate aridity. Furthermore, these behavioral combinations are mostly consistent with the qualitative picture presented in the Dunne diagram, indicating clearly the commonality between the Budyko curve and the Dunne diagram. These analyses also suggest clear interrelationships amongst the "behavioral" climate, soil, and topography parameter combinations, implying these catchment properties may be constrained to be codependent in order to satisfy the Budyko curve. C1 [Li, Hong-Yi] Pacific NW Natl Lab, Hydrol Tech Grp, Richland, WA 99352 USA. [Sivapalan, Murugesu] Univ Illinois, Dept Civil & Environm Engn, Hydrosyst Lab, Urbana, IL USA. [Sivapalan, Murugesu] Univ Illinois, Dept Geog & Geog Informat Sci, Urbana, IL USA. [Tian, Fuqiang] Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China. [Harman, Ciaran] Johns Hopkins Univ, Dept Geog & Environm Engn, Baltimore, MD 21218 USA. RP Li, HY (reprint author), Pacific NW Natl Lab, Hydrol Tech Grp, Richland, WA 99352 USA. EM hongyi.li@pnnl.gov RI Harman, Ciaran/A-7974-2013; Li, Hong-Yi/C-9143-2014; Tian, Fuqiang/M-9958-2013 OI Harman, Ciaran/0000-0002-3185-002X; Li, Hong-Yi/0000-0001-5690-3610; Tian, Fuqiang/0000-0001-9414-7019 FU NSF [EAR-0635752]; Department of Energy Biological and Environmental Research (BER) Integrated Assessment Modeling (IAM) Program through the Integrated Earth System Modeling (iESM) project; U.S. Department of Energy [DE-AC06-76RLO1830]; National Science Foundation of China [NSFC 51190092] FX This research was supported in part by NSF grant EAR-0635752 and by the Department of Energy Biological and Environmental Research (BER) Integrated Assessment Modeling (IAM) Program through the Integrated Earth System Modeling (iESM) project. This support is gratefully acknowledged. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under contract DE-AC06-76RLO1830. The source code of the simple hydrology model (in Visual Basic 6.0) is available upon request. Fuqiang Tian would like to acknowledge the support from National Science Foundation of China (NSFC 51190092). NR 64 TC 8 Z9 8 U1 4 U2 27 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD DEC PY 2014 VL 50 IS 12 BP 9300 EP 9322 DI 10.1002/2014WR016307 PG 23 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA AZ0FH UT WOS:000347921100012 ER PT J AU Li, HY Sivapalan, M AF Li, Hong-Yi Sivapalan, Murugesu TI Functional approach to exploring climatic and landscape controls on runoff generation: 2 Timing of runoff storm response SO WATER RESOURCES RESEARCH LA English DT Article ID UNIT-HYDROGRAPH; CATCHMENT-SCALE; GEOMORPHOLOGICAL DISPERSION; KINEMATIC DISPERSION; HYDROLOGIC RESPONSE; NATURAL CATCHMENTS; RESIDENCE TIME; HILLSLOPE; WATER; VARIABILITY AB Hortonian overland flow, Dunne overland flow, and subsurface stormflow are the three most dominant mechanisms contributing to both the volume and timing of streamflow in headwater catchments. In this paper, guided by the Dunne diagram, we explore the impacts of climate, soil, and topography on estimated probability distributions of the travel times of each of these three runoff components. In each case, these are expressed in terms of the Connected Instantaneous Response Functions (CIRF) and account for the dynamics of their individual partial effective contributing areas that retain the connectivity to the outlet (instead of the whole catchment area). A spatially distributed hydrological model is used to derive the CIRFs numerically under multiple combinations of climate, soil, and topographic properties. The mean travel times and dimensionless forms of the CIRFs (i.e., scaled by their respective mean travel times) are used to examine both advective and dispersive aspects of catchment's runoff routing response. It is found that the CIRFs, upon nondimensionalization, collapsed to common characteristic shapes, which could be explained in terms of the relative contributions of hillslope and channel network flows, and the size of runoff contributing areas. The contributing areas, particularly for the Dunne overland flow, are themselves found to be governed by the competition between drainage of and recharge to the water table, and could be explained by a dimensionless drainage index which quantifies this competition. The study also reveals simple indicators based on landscape properties that can explain the magnitude of travel times in different catchments. C1 [Li, Hong-Yi] Pacific NW Natl Lab, Hydrol Tech Grp, Richland, WA 99352 USA. [Sivapalan, Murugesu] Univ Illinois, Hydrosyst Lab, Dept Civil & Environm Engn, Urbana, IL USA. [Sivapalan, Murugesu] Univ Illinois, Dept Geog & Geog Informat Sci, Champaign, IL USA. RP Li, HY (reprint author), Pacific NW Natl Lab, Hydrol Tech Grp, Richland, WA 99352 USA. EM hongyi.li@pnnl.gov RI Li, Hong-Yi/C-9143-2014 OI Li, Hong-Yi/0000-0001-5690-3610 FU NSF [EAR-0635752]; Department of Energy Biological and Environmental Research (BER) Integrated Assessment Modeling (IAM) Program through the Integrated Earth System Modeling (iESM) project; U.S. Department of Energy [DE-AC06-76RLO1830] FX The authors would like to thank Ciaran Harman, Ross Woods, Bettina Schaefli, and Praveen Kumar, amongst many others, for their valuable suggestions and comments on earlier versions of the manuscript. This research was supported in part by NSF Grant EAR-0635752 and by the Department of Energy Biological and Environmental Research (BER) Integrated Assessment Modeling (IAM) Program through the Integrated Earth System Modeling (iESM) project. These supports are gratefully acknowledged. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RLO1830. The source code of the simple hydrology model (in Visual Basic 6.0) is available upon request. NR 41 TC 3 Z9 3 U1 5 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD DEC PY 2014 VL 50 IS 12 BP 9323 EP 9342 DI 10.1002/2014WR016308 PG 20 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA AZ0FH UT WOS:000347921100013 ER PT J AU Chen, L Kang, QJ Viswanathan, HS Tao, WQ AF Chen, Li Kang, Qinjun Viswanathan, Hari S. Tao, Wen-Quan TI Pore-scale study of dissolution-induced changes in hydrologic properties of rocks with binary minerals SO WATER RESOURCES RESEARCH LA English DT Article ID LATTICE BOLTZMANN METHOD; MEMBRANE FUEL-CELL; POROUS-MEDIA; PERMEABILITY CHANGES; BOUNDARY-CONDITIONS; LIMESTONE FRACTURE; REACTIVE FLUID; MASS-TRANSPORT; FINITE-VOLUME; MODEL AB A pore-scale numerical model for reactive transport processes based on the Lattice Boltzmann method is used to study the dissolution-induced changes in hydrologic properties of a fractured medium and a porous medium. The solid phase of both media consists of two minerals, and a structure reconstruction method called quartet structure generation set is employed to generate the distributions of both minerals. Emphasis is put on the effects of undissolved minerals on the changes of permeability and porosity under different Peclet and Damkohler numbers. The simulation results show porous layers formed by the undissolved mineral remain behind the dissolution reaction front. Due to the large flow resistance in these porous layers, the permeability increases very slowly or even remains at a small value although the porosity increases by a large amount. Besides, due to the heterogeneous characteristic of the dissolution, the chemical, mechanical and hydraulic apertures are very different from each other. Further, simulations in complex porous structures demonstrate that the existence of the porous layers of the nonreactive mineral suppresses the wormholing phenomena observed in the dissolution of mono-mineralic rocks. C1 [Chen, Li; Tao, Wen-Quan] Xi An Jiao Tong Univ, Sch Energy & Power Engn, MOE, Key Lab Thermofluid Sci & Engn, Xian 710049, Shaanxi, Peoples R China. [Chen, Li; Kang, Qinjun; Viswanathan, Hari S.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Kang, QJ (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. EM qkang@lanl.gov RI Chen, Li/P-4886-2014; Kang, Qinjun/A-2585-2010 OI Chen, Li/0000-0001-7956-3532; Kang, Qinjun/0000-0002-4754-2240 FU LANL's LDRD Program; Institutional Computing Program; National Nature Science Foundation of China [51406145, 51320105004, 51136004]; National Basic Research Program of China (973 Program) [2013CB228304] FX The authors acknowledge the support of LANL's LDRD Program, Institutional Computing Program, and National Nature Science Foundation of China (51406145, 51320105004, and 51136004). W.Q. Tao thanks the support of National Basic Research Program of China (973 Program) (2013CB228304). The authors also thank L. Luquot from IDAEA, Geosciences, Barcelona, Spain for useful discussions. All data used for the plots were generated using our own computer codes. The data are available upon request. NR 51 TC 18 Z9 18 U1 9 U2 38 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD DEC PY 2014 VL 50 IS 12 BP 9343 EP 9365 DI 10.1002/2014WR015646 PG 23 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA AZ0FH UT WOS:000347921100014 ER PT J AU Scibelli, S Newberg, HJ Carlin, JL Yanny, B AF Scibelli, Samantha Newberg, Heidi Jo Carlin, Jeffrey L. Yanny, Brian TI CENSUS OF BLUE STARS IN SDSS DR8 SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE blue stragglers; Galaxy: stellar content; novae, cataclysmic variables; stars: AGB and post-AGB; stars: horizontal-branch; stars: statistics; subdwarfs; white dwarfs ID DIGITAL SKY SURVEY; SURVEY COMMISSIONING DATA; WHITE-DWARFS; CATACLYSMIC VARIABLES; OPEN CLUSTERS; MILKY-WAY; CATALOG; SEGUE; SPECTROSCOPY; VALIDATION AB We present a census of the 12,060 spectra of blue objects ((g-r)(0) < -0.25) in the Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8). As part of the data release, all of the spectra were cross-correlated with 48 template spectra of stars, galaxies, and QSOs to determine the best match. We compared the blue spectra by eye to the templates assigned in SDSS DR8. 10,856 of the objects matched their assigned template, 170 could not be classified due to low signal-to-noise ratio, and 1034 were given new classifications. We identify 7458 DA white dwarfs, 1145 DB white dwarfs, 273 rarer white dwarfs (including carbon, DZ, DQ, and magnetic), 294 subdwarf O stars, 648 subdwarf B stars, 679 blue horizontal branch stars, 1026 blue stragglers, 13 cataclysmic variables, 129 white dwarf-M dwarf binaries, 36 objects with spectra similar to DO white dwarfs, 179, quasi-stellar objects (QSOs), and 10 galaxies. We provide two tables of these objects, sample spectra that match the templates, figures showing all of the spectra that were grouped by eye, and diagnostic plots that show the positions, colors, apparent magnitudes, proper motions, etc., for each classification. Future surveys will be able to use templates similar to stars in each of the classes we identify to automatically classify blue stars, including rare types. C1 [Scibelli, Samantha] Burnt Hills Ballston Lake High Sch, Ballston, NY 12027 USA. [Scibelli, Samantha; Newberg, Heidi Jo; Carlin, Jeffrey L.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Yanny, Brian] Fermilab Natl Accelerator Lab, Expt Astrophys Grp, Batavia, IL 60510 USA. RP Scibelli, S (reprint author), Burnt Hills Ballston Lake High Sch, 88 Lake Hill Rd, Ballston, NY 12027 USA. EM heidi@rpi.edu OI Carlin, Jeffrey/0000-0002-3936-9628; Newberg, Heidi/0000-0001-8348-0983 FU National Science Foundation [AST 09-37523, AST 10-09670]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; University of Cambridge; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX S.S. thanks her high school science research teacher Mrs. Regina Reals, Dr. Larry Lewis of GE Global Research, Dudley Observatory of Schenectady, NY, her science research peers and her friends and family for helping her through the task of classifying more than 12,000 spectra by eye. This work was supported by the National Science Foundation, grants AST 09-37523 and AST 10-09670. We thank the anonymous referee for helpful comments.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III Web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 29 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD DEC PY 2014 VL 215 IS 2 AR 24 DI 10.1088/0067-0049/215/2/24 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AY4IX UT WOS:000347542500009 ER PT J AU Yang, JS Kwon, MJ Choi, J Baek, K O'Loughlin, EJ AF Yang, Jung-Seok Kwon, Man Jae Choi, Jaeyoung Baek, Kitae O'Loughlin, Edward J. TI The transport behavior of As, Cu, Pb, and Zn during electrokinetic remediation of a contaminated soil using electrolyte conditioning SO CHEMOSPHERE LA English DT Article DE Arsenic; Electrokinetics; Electromigration; Electroosmosis; Sequential extraction ID SEQUENTIAL EXTRACTION ANALYSIS; HEAVY-METALS; REMOVAL; SPECIATION; CERTIFICATION; SEDIMENT; CADMIUM AB Electrokinetic remediation (also known as electrokinetics) is a promising technology for removing metals from fine-grained soils. However, few studies have been conducted regarding the transport behavior of multi-metals during electrokinetics. We investigated the transport of As, Cu, Pb, and Zn from soils during electrokinetics, the metal fractionation before and after electrokinetics, the relationships between metal transport and fractionation, and the effects of electrolyte conditioning. The main transport mechanisms of the metals were electroosmosis and electromigration during the first two weeks and electromigration during the following weeks. The direction of electroosmotic flow was from the anode to the cathode, and the metals in the dissolved and reducible-oxides fractions were transported to the anode or cathode by electromigration according to the chemical speciation of the metal ions in the pore water. Moreover, a portion of the metals that were initially in the residual fraction transitioned to the reducible and soluble fractions during electrokinetic treatment. However, this alteration was slow and resulted in decreasing metal removal rates as the electrokinetic treatment progressed. In addition, the use of NaOH, H3PO4, and Na2SO4 as electrolytes resulted in conditions that favored the precipitation of metal hydroxides, phosphates, and sulfates in the soil. These results demOnstrated that metal removal was affected by the initial metal fractionation, metal speciation in the pore solution, and the physical-chemical parameters of the electrolytes, such as pH and electrolyte composition. Therefore, the treatment time, use of chemicals, and energy consumption could be reduced by optimizing pretreatment and by choosing appropriate electrolytes for the target metals. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Yang, Jung-Seok; Kwon, Man Jae; Choi, Jaeyoung] Korea Inst Sci & Technol, Gangneung Inst, Kangnung 210340, South Korea. [Baek, Kitae] Chonbuk Natl Univ, Dept Environm Engn, Jeonju 561756, Jeollabukdo, South Korea. [O'Loughlin, Edward J.] Argonne Natl Lab, Biosci Div, Lemont, IL 60439 USA. RP Yang, JS (reprint author), Korea Inst Sci & Technol, Gangneung Inst, Kangnung 210340, South Korea. EM inenviron@kist.re.kr RI Baek, Kitae/F-1515-2011; OI Baek, Kitae/0000-0002-7976-6484; O'Loughlin, Edward/0000-0003-1607-9529 FU KIST Institutional Program [2Z03540, 2Z03860]; Korea Environment Industry and Technology Institute (KEITI) through the GeoAdvanced Innovation Action Program [2013000540005] FX This work was partially supported by the KIST Institutional Program (2Z03540 and 2Z03860) and by the Korea Environment Industry and Technology Institute (KEITI) through the GeoAdvanced Innovation Action Program (2013000540005). NR 30 TC 16 Z9 16 U1 6 U2 72 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD DEC PY 2014 VL 117 BP 79 EP 86 DI 10.1016/j.chemosphere.2014.05.079 PG 8 WC Environmental Sciences SC Environmental Sciences & Ecology GA AY0BP UT WOS:000347263300013 PM 24972074 ER PT J AU Han, YS Tokunaga, TK AF Han, Young-Soo Tokunaga, Tetsu K. TI Calculating carbon mass balance from unsaturated soil columns treated with CaSO4-minerals: Test of soil carbon sequestration SO CHEMOSPHERE LA English DT Article DE Carbon sequestration; Terrestrial soil carbon; Soil organic carbon; Soil inorganic carbon; Secondary calcite precipitation; Gypsum ID RESPIRATION; CAPTURE; STORAGE; WASTES; CO2 AB Renewed interest in managing C balance in soils is motivated by increasing atmospheric concentrations of CO2 and consequent climate change. Here, experiments were conducted in soil columns to determine C mass balances with and without addition of CaSarminerals (anhydrite and gypsum), which were hypothesized to promote soil organic carbon (SOC) retention and soil inorganic carbon (SIC) precipitation as calcite under slightly alkaline conditions. Changes in C contents in three phases (gas, liquid and solid) were measured in unsaturated soil columns tested for one year and comprehensive C mass balances were determined. The tested soil columns had no C inputs, and only C utilization by microbial activity and C transformations were assumed in the C chemistry. The measurements showed that changes in C inventories occurred through two processes, SOC loss and SIC gain. However, the measured SOC losses in the treated columns were lower than their corresponding control columns, indicating that the amendments promoted SOC retention. The SOC losses resulted mostly from microbial respiration and loss of CO2 to the atmosphere rather than from chemical leaching. Microbial oxidation of SOC appears to have been suppressed by increased Ca2+ and SO42- from dissolution of CaSO4 minerals. For the conditions tested, SIC accumulation per m(2) soil area under CaSO4-treatment ranged from 130 to 260 g C m(-1) infiltrated water (20-120 g C m(-1) infiltrated water as net C benefit). These results demonstrate the potential for increasing C sequestration in slightly alkaline soils via CaSO4-treatment. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Han, Young-Soo; Tokunaga, Tetsu K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Han, Young-Soo] Korea Inst Geosci & Mineral Resources, Taejon, South Korea. RP Tokunaga, TK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, One Cyclotron Rd, Berkeley, CA 94720 USA. EM yshan@kigam.re.kr; tktokunaga@lbl.gov RI Tokunaga, Tetsu/H-2790-2014 OI Tokunaga, Tetsu/0000-0003-0861-6128 FU Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the Department of Energy Contract [DE-AC02-05CH11231]; Basic Research Porject of Korea Institute of Geoscience and Mineral Resources (KIGAM) - Minister of Science, ICT and Future Planning of South Korea FX This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the Department of Energy Contract No. DE-AC02-05CH11231. Also this work was partially supported by the Basic Research Porject of Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Minister of Science, ICT and Future Planning of South Korea. We thank Rohit Salve for his help on the experimental setup, and Mark Conrad for advising on 13C isotope geochemistiy. We thank the anonymous reviewers for their helpful comments. NR 27 TC 5 Z9 5 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD DEC PY 2014 VL 117 BP 87 EP 93 DI 10.1016/j.chemosphere.2014.05.084 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA AY0BP UT WOS:000347263300014 PM 24974014 ER PT J AU Im, J Prevatte, CW Lee, HG Campagna, SR Loffler, FE AF Im, Jeongdae Prevatte, Carson W. Lee, Hong Geun Campagna, Shawn R. Loeffler, Frank E. TI 4-Methylphenol produced in freshwater sediment microcosms is not a bisphenol A metabolite SO CHEMOSPHERE LA English DT Article DE Bisphenol A (BPA); Degradation; 4-Methylphenol; Sediment; Microcosm ID ENDOCRINE-DISRUPTING CHEMICALS; SULFATE-REDUCING BACTERIUM; ANAEROBIC DEGRADATION; RIVER WATER; PARA-CRESOL; OXIDATION; PHENOL; SOILS; FATE; XENOESTROGENS AB 4-Methylphenol (4-MP), a putative bisphenol A (BPA) degradation intermediate, was detected at concentrations reaching 2.1 mg L-1 in anoxic microcosms containing 10 mg L-1 BPA and 5 g of freshwater sediment material collected from four geographically distinct locations and amended with nitrate, nitrite, ferric iron, or bicarbonate as electron acceptors. 4-MP accumulation was transient, and 4-MP degradation was observed under all redox conditions tested. 4-MP was not detected in microcosms not amended with BPA. Unexpectedly, incubations with C-13-labeled BPA failed to produce C-13-labeled 4-MP suggesting that 4-MP was not derived from BPA. The detection of 4-MP in live microcosms amended with lactate, but not containing BPA corroborated that BPA was not the source of 4-MP. These findings demonstrate that the transient formation of 4-MP as a possible BPA degradation intermediate must be interpreted cautiously, as microbial activity in streambed microcosms may generate 4-MP from sediment-associated organic material. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Im, Jeongdae; Loeffler, Frank E.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Im, Jeongdae; Loeffler, Frank E.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA. [Prevatte, Carson W.; Campagna, Shawn R.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Lee, Hong Geun] MIT, Dept Chem, Cambridge, MA 02139 USA. [Loeffler, Frank E.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Loeffler, Frank E.] Oak Ridge Natl Lab, Univ Tennessee & Oak Ridge Natl Lab UT ORNL Joint, Oak Ridge, TN 37831 USA. [Loeffler, Frank E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Loffler, FE (reprint author), Univ Tennessee, Dept Microbiol, M409 Walters Life Sci Bldg, Knoxville, TN 37996 USA. EM frank.loeffler@utk.edu RI Im, Jeongdae/K-8500-2013 OI Im, Jeongdae/0000-0002-6871-5366 FU Polycarbonate/BPA Global Group of the American Chemistry Council (ACC), Washington, DC, USA FX This work was funded by the Polycarbonate/BPA Global Group of the American Chemistry Council (ACC), Washington, DC, USA. NR 34 TC 2 Z9 2 U1 2 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD DEC PY 2014 VL 117 BP 521 EP 526 DI 10.1016/j.chemosphere.2014.09.008 PG 6 WC Environmental Sciences SC Environmental Sciences & Ecology GA AY0BP UT WOS:000347263300073 PM 25268077 ER PT J AU Yan, S Chen, YH Xiang, W Bao, ZY Liu, CX Deng, BL AF Yan, Sen Chen, Yongheng Xiang, Wu Bao, Zhengyu Liu, Chongxuan Deng, Baolin TI Uranium(VI) reduction by nanoscale zero-valent iron in anoxic batch systems: The role of Fe(II) and Fe(III) SO CHEMOSPHERE LA English DT Article DE Uranium(VI); NanoFe(0); Fe(II); Fe(III); Electron shuttle ID MICROBIAL REDUCTION; ZEROVALENT IRON; REDOX PROCESSES; SORBED FE(II); REMOVAL; CONTAMINATION; MINERALS; SULFIDE; WATERS; U(VI) AB The role of Fe(II) and Fe(III) in U(VI) reduction by nanoscale zerovalent iron (nanoFe(0)) was investigated using two iron chelators 1,10-phenanthroline and triethanolamine (TEA) under a CO2-free anoxic condition. The results showed that U(VI) reduction was strongly inhibited by 1,10-phenanthroline and TEA in a pH range from 6.9 to 9.0. For instance, at pH 6.9 the observed U(VI) reduction rates decreased by 81% and 82% in the presence of 1,10-phenanthroline and TEA, respectively. The inhibition was attributed to the formation of stable complexes between 1,10-phenanthroline and Fe(II) or TEA and Fe(III). In the absence of iron chelators, U(VI) reduction can be enhanced by surface-bound Fe(II) on nanoFe(0). Our results suggested that Fe(III) and Fe(II) possibly acted as an electron shuttle to ferry the electrons from nanoFe to U(VI), therefore a combined system with Fe(II), Fe(III) and nanoFe could facilitate U(VI) reductive immobilization in the contaminated groundwater. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Yan, Sen; Xiang, Wu; Bao, Zhengyu] China Univ Geosci, Sch Earth Sci, State Key Lab Biogeol & Environm Geol, Wuhan 430074, Peoples R China. [Chen, Yongheng] Guangzhou Univ, Guangdong Prov & MOE Key Lab Water Safety & Prote, Guangzhou 5W006, Guangdong, Peoples R China. [Deng, Baolin] Univ Missouri, Dept Civil & Environm Engn, Columbia, MO 65211 USA. [Yan, Sen; Liu, Chongxuan] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yan, S (reprint author), China Univ Geosci, Sch Earth Sci, State Key Lab Biogeol & Environm Geol, Wuhan 430074, Peoples R China. EM yansen2007@gmail.com; dengb@missouri.edu RI Liu, Chongxuan/C-5580-2009; OI Deng, Baolin/0000-0001-6569-1808 FU National Natural Science Foundation of China [41303084, 40930743]; opening research fund of Guangdong Province & MOE Key Laboratory of Water Safety and Protection of Pearl River Delta [GZ201101]; U.S. Department of Energy's Joint EPA; NSF; DOE program on Nanotechnology in the Office of Biological and Environmental Research (BER); U.S. National Science Foundation [CBET-0828411] FX This study was financially supported by the National Natural Science Foundation of China (41303084 and 40930743), the opening research fund of Guangdong Province & MOE Key Laboratory of Water Safety and Protection of Pearl River Delta (GZ201101), the U.S. Department of Energy's Joint EPA, NSF, and DOE program on Nanotechnology in the Office of Biological and Environmental Research (BER), and the U.S. National Science Foundation (CBET-0828411). The experiments were partially conducted while the first author was a visiting Ph.D. student in the Department of Civil and Environmental Engineering, University of Missouri. We thank associate editor, Prof. Oliver J. Hao, and anonymous reviewer for their constructive comments and suggestions on this manuscript. NR 54 TC 8 Z9 8 U1 13 U2 59 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD DEC PY 2014 VL 117 BP 625 EP 630 DI 10.1016/j.chemosphere.2014.09.087 PG 6 WC Environmental Sciences SC Environmental Sciences & Ecology GA AY0BP UT WOS:000347263300088 PM 25461927 ER PT J AU Li, X Wu, D Zhou, YN Liu, L Yang, XQ Ceder, G AF Li, Xin Wu, Di Zhou, Yong-Ning Liu, Lei Yang, Xiao-Qing Ceder, Gerbrand TI O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O-2: A quaternary layered cathode compound for rechargeable Na ion batteries SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Na(Mn0.25Fe0.25Co0.25Ni0.25)O-2; Quaternary; Na(Ni0.5Mn0.5)O-2; Na(Fe0.3Co0.5)O-2; Sodium; Na-ion battery ID ELECTROCHEMICAL PROPERTIES; SODIUM-ION; INTERCALATION; ELECTRODE; IFEFFIT AB We report a new layered Na(Mn0.25Fe0.25Co0.25Ni0.25)O-2 compound with O3 oxygen stacking. It delivers 180 mAh/g initial discharge capacity and 578 Wh/kg specific energy density with good cycling capability at high cutoff voltage. In situ X-ray diffraction (XRD) shows a reversible structure evolution of O3-P3-O3'-O3 '' upon Na de-intercalation. The excellent capacity and cycling performance at high cutoff voltage make it an important model system for studying the general issue of capacity fading in layered Na cathode compounds. (C) 2014 The Authors. Published by Elsevier B.V. C1 [Li, Xin; Liu, Lei; Ceder, Gerbrand] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Wu, Di] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Zhou, Yong-Ning; Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Ceder, G (reprint author), MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. EM gceder@mit.edu RI liu, lei/M-6396-2016 OI liu, lei/0000-0003-3631-1874 FU Samsung Advanced Institute of Technology; U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies [DE-AC02-98CH10886] FX This work was supported by the Samsung Advanced Institute of Technology. The XAS work at Brookhaven National Laboratory was supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies under Contract No. DE-AC02-98CH10886. NR 19 TC 35 Z9 35 U1 12 U2 79 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 EI 1873-1902 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD DEC PY 2014 VL 49 BP 51 EP 54 DI 10.1016/j.elecom.2014.10.003 PG 4 WC Electrochemistry SC Electrochemistry GA AY0DX UT WOS:000347269000013 ER PT J AU Kumar, A Das, S Munusamy, P Self, W Baer, DR Sayle, DC Seal, S AF Kumar, Amit Das, Soumen Munusamy, Prabhakaran Self, William Baer, Donald R. Sayle, Dean C. Seal, Sudipta TI Behavior of nanoceria in biologically-relevant environments SO ENVIRONMENTAL SCIENCE-NANO LA English DT Review ID CERIUM OXIDE NANOPARTICLES; RECEPTOR-MEDIATED ENDOCYTOSIS; SPINAL-CORD NEURONS; OXIDATIVE STRESS; CELLULAR UPTAKE; INTRAVITREAL INJECTION; OFFER NEUROPROTECTION; ENDOTHELIAL-CELLS; CANCER CELLS; REDOX STATE AB Cerium oxide nanoparticles (nanoceria) have gained considerable attention in biological research due to their anti-oxidant like behaviour and regenerative nature. The current literature on nanoceria reports many successful attempts on harnessing the beneficial therapeutic properties in biology. However studies have also shown toxicity with some types of nanoceria. This article discusses issues associated with the behaviours of nanoceria in biological systems and identifies key knowledge gaps. We explore how salient physicochemical properties (size, surface chemistry, surface stabilizers) of nanoceria corresponds to its behaviour in biological relevant buffers and cell culture media, and this can provide guidelines for potential positive and negative aspects of nanoceria in biological systems. Based on variations of results reported in the literature, important issues need to be addressed. Are we really studying the same particles with slight variations in size and physico-chemical properties or do the particles being examined have fundamentally different behaviours? Are the variations observed the result of differences in the initial properties of the particles or the results of downstream effects that emerge as the particles are prepared for specific studies and they interact with biological or other environmental moieties? How should particles be appropriately prepared for relevant environmental/toxicology/safety studies? It is useful to recognize that nanoparticles encompass some of the same complexities and variability associated with biological components. C1 [Kumar, Amit] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. [Das, Soumen; Seal, Sudipta] Univ Cent Florida, NanoSci Technol Ctr, Orlando, FL 32816 USA. [Munusamy, Prabhakaran; Baer, Donald R.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Self, William] Univ Cent Florida, Burnett Sch Biomed Sci, Orlando, FL 32816 USA. [Sayle, Dean C.] Univ Kent, Sch Phys Sci, Canterbury CT2 7NZ, Kent, England. [Seal, Sudipta] Univ Cent Florida, Coll Med, Orlando, FL 32816 USA. RP Seal, S (reprint author), Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. EM Sudipta.Seal@ucf.edu RI Baer, Donald/J-6191-2013; Self, William/A-6704-2008; OI Baer, Donald/0000-0003-0875-5961; Sayle, Dean/0000-0001-7227-9010 FU NSF (NIRT) [CBET-0708172, EECS 0901503, CBET-1261956, CBET-1343638]; NIH [R01: AG031529-01]; NIEHS [U19 ES019544]; DOE-BER and located at PNNL; Sustainable Nanotechnology Organization; Tracy Farmer Institute for Sustainability; Environment, Department of Pharmaceutical Sciences, Office of the Vice President for Research; Associate Dean for Research of the College of Pharmacy, University of Kentucky FX Dr. Seal and Dr. Self acknowledge NSF (NIRT: CBET-0708172, EECS 0901503, CBET-1261956) and NIH support (R01: AG031529-01). Dr Baer acknowledges NIEHS support under Center grant U19 ES019544. Drs. Seal and Self acknowledge travel support from for presenting at the nanoceria workshop at SNO meeting, Santa Barbara. We thank Drs. S.V.N.T. Kuchibhatla and C.F. Windisch Jr. for providing the preliminary Raman data in Fig. 4b. A portion of this work was conducted in EMSL, a national scientific user facility sponsored by DOE-BER and located at PNNL. This article is a product of a workshop on nanoceria held November 2, 2013 at Fess Parker's Doubletree Resort, Santa Barbara, California which was made possible by financial support from the Sustainable Nanotechnology Organization; NSF grant CBET-1343638 to UCSB; and the Tracy Farmer Institute for Sustainability and the Environment, Department of Pharmaceutical Sciences, Office of the Vice President for Research, and Associate Dean for Research of the College of Pharmacy, University of Kentucky. NR 104 TC 22 Z9 22 U1 7 U2 39 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2051-8153 EI 2051-8161 J9 ENVIRON-SCI NANO JI Environ.-Sci. Nano PD DEC PY 2014 VL 1 IS 6 BP 516 EP 532 DI 10.1039/c4en00052h PG 17 WC Chemistry, Multidisciplinary; Environmental Sciences; Nanoscience & Nanotechnology SC Chemistry; Environmental Sciences & Ecology; Science & Technology - Other Topics GA AZ1BE UT WOS:000347974600002 ER PT J AU Capece, AM Polk, JE Shepherd, JE AF Capece, Angela M. Polk, James E. Shepherd, Joseph E. TI X-ray photoelectron spectroscopy study of BaWO4 and Ba2CaWO6 SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE XPS; Barium; Tungsten; Calcium; Tungstate ID NANORODS AB XPS reference spectra for Ba2CaWO6 and BaWO4 are presented, including high resolution spectra of the Ba 3d, W 4f, C 1s, Ca 2p, and O 1s lines. The peak locations and full widths at half maximum are also given. The binding energies of the Ba 3d and W 4f lines are 0.7 eV higher for BaWO4 than for Ba2CaWO6. The Ca 2p spectrum contains two sets of Ca 2p doublets that were attributed to Ba2CaWO6 and CaCO3. (C) 2014 Elsevier B.V. All rights reserved. C1 [Capece, Angela M.; Shepherd, Joseph E.] CALTECH, Pasadena, CA 91125 USA. [Polk, James E.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Capece, AM (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM acapece@pppl.gov RI Shepherd, Joseph/B-5997-2014 OI Shepherd, Joseph/0000-0003-3181-9310 FU National Aeronautics and Space Administration FX The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 11 TC 0 Z9 0 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD DEC PY 2014 VL 197 BP 102 EP 105 DI 10.1016/j.elspec.2014.10.001 PG 4 WC Spectroscopy SC Spectroscopy GA AY7SS UT WOS:000347759800016 ER PT J AU Zhang, H Wang, WC Glans, PA Liu, YS Kapilashrami, M Chen, JL Chang, CL Salmeron, M Escudero, C Pach, E Tuxen, A Chintapalli, M Carenco, S Sun, XH Guo, JH AF Zhang, Hui Wang, Wei-Cheng Glans, Per-Anders Liu, Yi-Sheng Kapilashrami, Mukes Chen, Jeng-Lung Chang, Chinglin Salmeron, Miquel Escudero, Carlos Pach, Elzbieta Tuxen, Anders Chintapalli, Mahati Carenco, Sophie Sun, Xuhui Guo, Jinghua TI Developing soft X-ray spectroscopy for in situ characterization of nanocatalysts in catalytic reactions SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE In situ/operando characterization; Soft X-ray spectroscopy; Electronic structure ID DARK CHANNEL FLUORESCENCE; FISCHER-TROPSCH SYNTHESIS; CRYSTAL VANADIUM LAYERS; ABSORPTION-SPECTROSCOPY; EMISSION-SPECTROSCOPY; ELECTRONIC-STRUCTURE; SYMMETRY-BREAKING; COBALT; LIQUID; CO AB Understanding the mechanisms of catalytic and reactions calls for in situ/operando spectroscopic characterization. Here we report the developments of in situ reaction cells at the Advanced Light Source for soft X-ray spectroscopic studies of nanoparticle catalysts during the catalytic reactions. The operation of these various cells and their capabilities are illustrated with examples from the studies of Co-based nanocatalysts. (C) 2014 Published by Elsevier B.V. C1 [Zhang, Hui; Sun, Xuhui] Soochow Univ, Inst Funct Nano & Soft Mat Lab FUNSOM, Suzhou 215123, Peoples R China. [Zhang, Hui; Wang, Wei-Cheng; Glans, Per-Anders; Liu, Yi-Sheng; Kapilashrami, Mukes; Chen, Jeng-Lung; Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Wang, Wei-Cheng; Chen, Jeng-Lung; Chang, Chinglin] Tamkang Univ, Dept Phys, Tamsui 251, Taiwan. [Salmeron, Miquel; Escudero, Carlos; Pach, Elzbieta; Tuxen, Anders; Chintapalli, Mahati; Carenco, Sophie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Div Sci, Berkeley, CA 94720 USA. [Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Guo, Jinghua] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. RP Guo, JH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM xhsun@suda.edu.cn; jguo@lbl.gov RI Carenco, Sophie/D-6512-2011; Glans, Per-Anders/G-8674-2016; Escudero, Carlos/F-8044-2011 OI Carenco, Sophie/0000-0002-6164-2053; Escudero, Carlos/0000-0001-8716-9391 FU Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, under U.S. Department of Energy [DEACO2-05CH11231] FX The presented in situ cells had its root in the gas cells and liquid cells originated from Nordgren's group in Uppsala University, in which the engineer, Carl-Johan Englund made the design and fabricated some of the in situ cells. Many Nordgren's group members and the users of BL6.3.1.2, BL7.0.1, and BL8.0.1 contributed significantly to the development over the years. The in situ cells made at the AIS have been benefited greatly from the engineers, Mark West and John Pepper. The work at the Advanced Light Source, M.S., M.C. and S.C. are supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, under U.S. Department of Energy Contract DEACO2-05CH11231. A.T. acknowledges the Danish Research Council for Independent Research I Natural Sciences (Det Frie Forskningsraad I Natur og Univers). The work at FUNSOM is supported by Natural Science Foundation of China (NSFC) (Grant No. 91333112, U1432249), the Priority Academic Program Development of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices and Collaborative Innovation Center of Suzhou Nano Science &Technology. NR 68 TC 0 Z9 0 U1 4 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD DEC PY 2014 VL 197 BP 118 EP 123 DI 10.1016/j.elspec.2014.11.001 PG 6 WC Spectroscopy SC Spectroscopy GA AY7SS UT WOS:000347759800019 ER PT J AU Chai, JS Ghergherehchi, M Hahn, KI Han, SY Jeong, IW Joo, KS Kim, EJ Kim, SG Kim, YK Kistenev, E Kwon, Y Lajoie, JG Li, Z Lee, JH Lim, KS Lim, SH Park, JM Park, KS Park, SY Song, HS Sue, DG Sukhanov, A AF Chai, J. -S. Ghergherehchi, M. Hahn, K. I. Han, S. Y. Jeong, I. W. Joo, K. S. Kim, E. J. Kim, S. G. Kim, Y. K. Kistenev, E. Kwon, Y. Lajoie, J. G. Li, Z. Lee, J. H. Lim, K. S. Lim, S. H. Park, J. M. Park, K. S. Park, S. Y. Song, H. S. Sue, D. G. Sukhanov, A. TI Effects of Damage Caused by Non-ionizing Energy Loss in Si Mini-Pad Sensors for the PHENIX MPC-EX SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article DE Si Mini-Pad; W/Si pre-shower; Non-ionizing energy loss; Damage to bulk ID NUCLEAR COLLISIONS; COLLABORATION; RADIATION AB The PHENIX MPC-EX is an W/Si pre-shower detector operating at small angles with respect to the beam in the Relativistic Heavy Ion Collider (RHIC). The Si Mini-Pad sensors are the active element of the detector. The expected hadron flux to the Si Mini-Pad sensors will generate significant non-ionizing energy loss in the sensors, which may damage the crystalline structure of the sensor's bulk material. We investigated the nature of the hadron flux to the Si Mini-Pad sensors through a full simulation and determined its effect on the sensor's characteristics based on a beam test. The investigation showed key issues in designing a preshower detector using silicon sensors and operating under a large neutron fluence and offered valuable information on the operation of the MPC-EX detector. C1 [Kistenev, E.; Li, Z.; Sukhanov, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Kim, E. J.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Kim, S. G.; Lee, J. H.; Park, J. M.; Park, K. S.] Elect & Telecommun Res Inst, Taejon 305700, South Korea. [Hahn, K. I.; Han, S. Y.; Park, S. Y.] Ewha Womans Univ, Seoul 120750, South Korea. [Kim, Y. K.] Hanyang Univ, Seoul 133792, South Korea. [Lajoie, J. G.] Iowa State Univ, Ames, IA 50011 USA. [Joo, K. S.; Lim, K. S.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Chai, J. -S.; Ghergherehchi, M.; Song, H. S.] Sungkyunkwan Univ, Suwon 440746, Kyonggido, South Korea. [Li, Z.] Xiangtan Univ, Xiangtan 411105, Hunan, Peoples R China. [Jeong, I. W.; Kwon, Y.; Lim, S. H.; Sue, D. G.] Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Chai, JS (reprint author), Sungkyunkwan Univ, Suwon 440746, Kyonggido, South Korea. EM ykwon@yonsei.ac.kr FU U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-98CH10886]; National Research Foundation of Korea [NRF-2011-0014045, NRF-2012M7A1A2055625, NRF-2013-R1A1A2011572, NRF-2011-0011774]; DOE [DE-FG02-10ER41719]; ICT R&D program of MSIP/KEIT [10043897]; Chinese 973 Program FX The authors would like to thank Topsil's silicon scientist Leif Jensen for providing the detailed wafer's characteristics, Kodis's chief technical engineer Sung Ho Lee for providing details on wafer dicing, and KIRAMS's staff members for their kind assistance in the irradiation process. We acknowledge support of the work at Brookhaven National Lab by the U.S. Department of Energy, Office of Nuclear Physics, under Prime Contract No. DE-AC02-98CH10886, at Chonbuk National University by the National Research Foundation of Korea NRF-2011-0014045, at Ewha Womans University by the National Research Foundation of Korea NRF-2012M7A1A2055625, at Iowa State University under DOE Grant DE-FG02-10ER41719, at Myongji University by the National Research Foundation of Korea NRF-2013-R1A1A2011572, at Sungkyunkwan University by the ICT R&D program of MSIP/KEIT 10043897, at Xiangtan University by the Chinese 973 Program, and at Yonsei University by the National Research Foundation of Korea NRF-2011-0011774. NR 18 TC 0 Z9 0 U1 0 U2 0 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 EI 1976-8524 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD DEC PY 2014 VL 65 IS 11 BP 1809 EP 1816 DI 10.3938/jkps.65.1809 PG 8 WC Physics, Multidisciplinary SC Physics GA AY2ZX UT WOS:000347455500011 ER PT J AU Barry, E McBride, SP Jaeger, HM Lin, XM AF Barry, Edward McBride, Sean P. Jaeger, Heinrich M. Lin, Xiao-Min TI Ion transport controlled by nanoparticle-functionalized membranes SO NATURE COMMUNICATIONS LA English DT Article ID GOLD NANOTUBULE MEMBRANES; NANOFILTRATION MEMBRANES; REVERSE-OSMOSIS; MECHANICAL-PROPERTIES; SURFACE-CHARGE; PORE STRUCTURE; SELECTIVITY; MONOLAYERS; NANOCRYSTALS; DESALINATION AB From proton exchange membranes in fuel cells to ion channels in biological membranes, the well-specified control of ionic interactions in confined geometries profoundly influences the transport and selectivity of porous materials. Here we outline a versatile new approach to control a membrane's electrostatic interactions with ions by depositing ligand-coated nanoparticles around the pore entrances. Leveraging the flexibility and control by which ligated nanoparticles can be synthesized, we demonstrate how ligand terminal groups such as methyl, carboxyl and amine can be used to tune the membrane charge density and control ion transport. Further functionality, exploiting the ligands as binding sites, is demonstrated for sulfonate groups resulting in an enhancement of the membrane charge density. We then extend these results to smaller dimensions by systematically varying the underlying pore diameter. As a whole, these results outline a previously unexplored method for the nanoparticle functionalization of membranes using ligated nanoparticles to control ion transport. C1 [Barry, Edward; Lin, Xiao-Min] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [McBride, Sean P.; Jaeger, Heinrich M.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Jaeger, Heinrich M.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Barry, E (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM edb@uchicago.edu FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF [DMR-1207204, DMR-0820054] FX We thank Qiti Guo for help with SEM, and Yifan Wang and Pongsakorn Kanjanaboos for useful discussions. Use of the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This research was supported in part by NSF through DMR-1207204. The Chicago MRSEC, supported by NSF DMR-0820054, is gratefully acknowledged for access to its shared experimental facilities. NR 50 TC 13 Z9 13 U1 10 U2 77 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD DEC PY 2014 VL 5 AR 5847 DI 10.1038/ncomms6847 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AY6NH UT WOS:000347682400001 PM 25517763 ER PT J AU Frandsen, BA Bozin, ES Hu, HF Zhu, YM Nozaki, Y Kageyama, H Uemura, YJ Yin, WG Billinge, SJL AF Frandsen, Benjamin A. Bozin, Emil S. Hu, Hefei Zhu, Yimei Nozaki, Yasumasa Kageyama, Hiroshi Uemura, Yasutomo J. Yin, Wei-Guo Billinge, Simon J. L. TI Intra-unit-cell nematic charge order in the titanium-oxypnictide family of superconductors SO NATURE COMMUNICATIONS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; T-C SUPERCONDUCTOR; PNICTIDE OXIDE; DENSITY-WAVE; PHYSICS; PHASE; BI2SR2CACU2O8+DELTA; DIFFRACTION; INSTABILITY; STATES AB Understanding the role played by broken-symmetry states such as charge, spin and orbital orders in the mechanism of emergent properties, such as high-temperature superconductivity, is a major current topic in materials research. That the order may be within one unit cell, such as nematic, was only recently considered theoretically, but its observation in the iron-pnictide and doped cuprate superconductors places it at the forefront of current research. Here, we show that the recently discovered BaTi2Sb2O superconductor and its parent compound BaTi2As2O form a symmetry-breaking nematic ground state that can be naturally explained as an intra-unit-cell nematic charge order with d-wave symmetry, pointing to the ubiquity of the phenomenon. These findings, together with the key structural features in these materials being intermediate between the cuprate and iron-pnictide hightemperature superconducting materials, render the titanium oxypnictides an important new material system to understand the nature of nematic order and its relationship to superconductivity. C1 [Frandsen, Benjamin A.; Uemura, Yasutomo J.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Bozin, Emil S.; Hu, Hefei; Zhu, Yimei; Yin, Wei-Guo; Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Nozaki, Yasumasa; Kageyama, Hiroshi] Kyoto Univ, Grad Sch Engn, Dept Energy & Hydrocarbon Chem, Nishikyo Ku, Kyoto 6158510, Japan. [Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Billinge, SJL (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM sb2896@columbia.edu RI Kageyama, Hiroshi/A-4602-2010; Yin, Weiguo/A-9671-2014 OI Yin, Weiguo/0000-0002-4965-5329 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. National Science Foundation (NSF) Partnership for International Research and Education (PIRE) Super-PIRE project [OISE-0968226]; NSF [DMR-1105961]; Japan Atomic Energy Agency Reimei project; Friends of Todai Inc; FIRST program; Japan Society of the Promotion of Science (JSPS); DOE Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396] FX Work at Brookhaven National Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract No. DE-AC02-98CH10886. Work at Columbia University was supported by the U.S. National Science Foundation (NSF) Partnership for International Research and Education (PIRE) Super-PIRE project (grant OISE-0968226). Y.J.U. also acknowledges support from NSF DMR-1105961, the Japan Atomic Energy Agency Reimei project, and the Friends of Todai Inc. The work at Kyoto University was supported by the FIRST program, Japan Society of the Promotion of Science (JSPS). Neutron scattering experiments were carried out on NPDF at LANSCE, funded by DOE Office of Basic Energy Sciences. LANL is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. NR 50 TC 6 Z9 6 U1 4 U2 40 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD DEC PY 2014 VL 5 AR 5761 DI 10.1038/ncomms6761 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AY5KU UT WOS:000347611800002 PM 25482113 ER PT J AU Tabis, W Li, Y Le Tacon, M Braicovich, L Kreyssig, A Minola, M Dellea, G Weschke, E Veit, MJ Ramazanoglu, M Goldman, AI Schmitt, T Ghiringhelli, G Barisic, N Chan, MK Dorow, CJ Yu, G Zhao, X Keimer, B Greven, M AF Tabis, W. Li, Y. Le Tacon, M. Braicovich, L. Kreyssig, A. Minola, M. Dellea, G. Weschke, E. Veit, M. J. Ramazanoglu, M. Goldman, A. I. Schmitt, T. Ghiringhelli, G. Barisic, N. Chan, M. K. Dorow, C. J. Yu, G. Zhao, X. Keimer, B. Greven, M. TI Charge order and its connection with Fermi-liquid charge transport in a pristine high-T-c cuprate SO NATURE COMMUNICATIONS LA English DT Article ID QUANTUM OSCILLATIONS; SUPERCONDUCTOR HGBA2CUO4+DELTA; COPPER OXIDES; INSTABILITIES; COMPETITION; SCATTERING; DENSITY; PHASE AB Electronic inhomogeneity appears to be an inherent characteristic of the enigmatic cuprate superconductors. Here we report the observation of charge-density-wave correlations in the model cuprate superconductor HgBa2CuO4+delta (T-c = 72 K) via bulk Cu L-3-edge-resonant X-ray scattering. At the measured hole-doping level, both the short-range charge modulations and Fermi-liquid transport appear below the same temperature of about 200 K. Our result points to a unifying picture in which these two phenomena are preceded at the higher pseudogap temperature by q = 0 magnetic order and the build-up of significant dynamic antiferromagnetic correlations. The magnitude of the charge modulation wave vector is consistent with the size of the electron pocket implied by quantum oscillation and Hall effect measurements for HgBa2CuO4+delta and with corresponding results for YBa2Cu3O6+delta, which indicates that charge-density-wave correlations are universally responsible for the low-temperature quantum oscillation phenomenon. C1 [Tabis, W.; Veit, M. J.; Barisic, N.; Chan, M. K.; Dorow, C. J.; Yu, G.; Zhao, X.; Greven, M.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Tabis, W.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Li, Y.] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China. [Li, Y.] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China. [Le Tacon, M.; Minola, M.; Keimer, B.] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. [Braicovich, L.; Dellea, G.; Ghiringhelli, G.] Politecn Milan, CNISM, CNR SPIN, I-20133 Milan, Italy. [Braicovich, L.; Dellea, G.; Ghiringhelli, G.] Politecn Milan, Dipartimento Fis, I-20133 Milan, Italy. [Kreyssig, A.; Ramazanoglu, M.; Goldman, A. I.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Kreyssig, A.; Ramazanoglu, M.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Weschke, E.] Helmholtz Zentrum Berlin Mat & Energie, D-12489 Berlin, Germany. [Ramazanoglu, M.] ITU, Dept Engn Phys, TR-34469 Istanbul, Turkey. [Schmitt, T.] Paul Scherrer Inst, Res Dept Synchrotron Radiat & Nanotechnol, CH-5232 Villigen, Switzerland. [Barisic, N.] CEA DSM IRAMIS, Serv Phys Etat Condense, F-91198 Gif Sur Yvette, France. [Barisic, N.] Vienna Univ Technol, Inst Solid State Phys, A-1040 Vienna, Austria. [Zhao, X.] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China. RP Greven, M (reprint author), Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. EM greven@physics.umn.edu RI Yu, Guichuan/K-4025-2014; Barisic, Neven/E-4246-2015; Ghiringhelli, Giacomo/D-1159-2014; Schmitt, Thorsten/A-7025-2010; Le Tacon, Mathieu/D-8023-2011 OI Ghiringhelli, Giacomo/0000-0003-0867-7748; Le Tacon, Mathieu/0000-0002-5838-3724 FU US Department of Energy, Office of Basic Energy Sciences; Marie Curie Fellowship; European Research Council; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; National Natural Science Foundation of China (NSFC) [11374024] FX We thank A. V. Chubukov, C. Proust, B. Vignolle and D. Vignolles for useful discussions. We thank V.N. Strocov and V. Bisogni for technical and user support at SLS, E. Schierle at BESSY-II and D. Robinson at APS. The work at the University of Minnesota was supported by the US Department of Energy, Office of Basic Energy Sciences. N.B. acknowledges support through a Marie Curie Fellowship and the European Research Council. A. K., M. R. and A. I. G. were supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the US Department of Energy by Iowa State University. This research used resources of the APS, US Department of Energy, Office of Science User Facility. Y.L. was supported by the National Natural Science Foundation of China (NSFC, No. 11374024). NR 37 TC 89 Z9 89 U1 10 U2 81 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD DEC PY 2014 VL 5 AR 5875 DI 10.1038/ncomms6875 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AY6OP UT WOS:000347685800001 PM 25522689 ER PT J AU Yang, YM Kravchenko, II Briggs, DP Valentine, J AF Yang, Yuanmu Kravchenko, Ivan I. Briggs, Dayrl P. Valentine, Jason TI All-dielectric metasurface analogue of electromagnetically induced transparency SO NATURE COMMUNICATIONS LA English DT Article ID FANO RESONANCES; METAMATERIAL AB Metasurface analogues of electromagnetically induced transparency (EIT) have been a focus of the nanophotonics field in recent years, due to their ability to produce high-quality factor ( Q-factor) resonances. Such resonances are expected to be useful for applications such as low-loss slow-light devices and highly sensitive optical sensors. However, ohmic losses limit the achievable Q-factors in conventional plasmonic EIT metasurfaces to values < similar to 10, significantly hampering device performance. Here we experimentally demonstrate a classical analogue of EIT using all-dielectric silicon-based metasurfaces. Due to extremely low absorption loss and coherent interaction of neighbouring meta-atoms, a Q-factor of 483 is observed, leading to a refractive index sensor with a figure-of-merit of 103. Furthermore, we show that the dielectric metasurfaces can be engineered to confine the optical field in either the silicon resonator or the environment, allowing one to tailor light-matter interaction at the nanoscale. C1 [Yang, Yuanmu] Vanderbilt Univ, Interdisciplinary Mat Sci Program, Nashville, TN 37212 USA. [Kravchenko, Ivan I.; Briggs, Dayrl P.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Valentine, Jason] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37212 USA. RP Valentine, J (reprint author), Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37212 USA. EM jason.g.valentine@vanderbilt.edu RI Kravchenko, Ivan/K-3022-2015; Yang, Yuanmu/J-3187-2012; Valentine, Jason/A-6121-2012 OI Kravchenko, Ivan/0000-0003-4999-5822; Yang, Yuanmu/0000-0002-5264-0822; FU Office of Naval Research [N00014-12-1-0571, N00014-14-1-0475]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This work was funded by the Office of Naval Research under programmes N00014-12-1-0571 and N00014-14-1-0475. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. A portion of this work was also performed at the Vanderbilt Institute of Nanoscale Science and Engineering, we thank the staff for their support. NR 39 TC 89 Z9 91 U1 50 U2 207 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD DEC PY 2014 VL 5 AR 5753 DI 10.1038/ncomms6753 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AY5KT UT WOS:000347611700002 PM 25511508 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Almond, J Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Baas, AE Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bessidskaia, O Bessner, M Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, R Calandri, A Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chance, S Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cuciuc, CM Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Dias, FA Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Pita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Wemans, AD Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franconi, L Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, R Galster, G Gan, KK Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Haguenauer, M Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, M Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hoffman, J Hoffmann, D Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Hopkins, WH Horii, Y Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelavana, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Kareem, MJ Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, R Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negri, G Negrini, M Nektarijevic, S Nellist, C Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrella, S Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidzewa, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanskan, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T Spurlock, B St Denis, RD Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC Van der Geer, R van der Graaf, H Van der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigell, P Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A Nedden, MZ Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Almond, J. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Baas, A. E. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batley, J. R. Battaglia, M. Battistin, M. Bauer, F. Bawa, H. S. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bessidskaia, O. Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boddy, C. R. Boehler, M. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, R. Calandri, A. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chance, S. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cuciuc, C. -M. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dionisi, C. Pita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Do Valle Wemans, A. Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franconi, L. Franklin, M. Franz, S. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, R. Galster, G. Gan, K. K. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Groth-Jensen, J. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Haguenauer, M. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hopkins, W. H. Horii, Y. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelavana, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Kareem, M. J. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lopez Paz, I. Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Machado Miguens, J. Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maier, A. A. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, R. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Oliver Garcia, E. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, L. E. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrella, S. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Portell Bueso, X. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidzewa, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanskan, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van den Wollenberg, W. Van der Deijl, P. C. Van der Geer, R. van der Graaf, H. Van der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigell, P. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. Nedden, M. zur Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurement of the total cross section from elastic scattering in pp collisions at root s=7 TeV with the ATLAS detector SO NUCLEAR PHYSICS B LA English DT Article ID INTERSECTING STORAGE-RINGS; ANGLE ANTIPROTON-PROTON; HIGH-ENERGY; LHC ENERGY; COLLIDER; AMPLITUDES; MODEL; INTERFERENCE; DIFFRACTION; PBARP AB A measurement of the total pp cross section at the LHC at root s = 7 TeV is presented. In a special run with high-beta* beam optics, an integrated luminosity of 80 mu b(-1) was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable t. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the vertical bar t vertical bar range from 0.01 GeV2 to 0.1 GeV2 to extrapolate to vertical bar t vertical bar --> 0, the total cross section, sigma(tot)(pp --> X), is measured via the optical theorem to be: sigma(tot)(pp --> X) = 95.35 +/- 0.38 (stat.) +/- 1.25 (exp.) +/- 0.37 (extr.) mb, where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to vertical bar t vertical bar --> 0. In addition, the slope of the elastic cross section at small vertical bar t vertical bar is determined to be B = 19.73 +/- 0.14 (stat.) +/- 0.26 (syst.) GeV-2. (C) 2014 The Authors. Published by Elsevier B.V. C1 [Jackson, P.; Lee, L.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Ahmadov, F.; Huseynov, N.; Javadov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis dAltes Energies, E-08193 Barcelona, Spain. [Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Cirkovic, P.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin Dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, R.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, R.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Stamm, S.; Wendland, D.; Nedden, M. zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Alberghi, G. L.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Velz, T.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE IF, BR-21945 Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz De Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Aloisio, A.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Jenni, P.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforov, A.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Lab Nazl Frascati, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartmento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Burmeister, I.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Coniavitis, E.; Consorti, V.; Dao, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ronzani, M.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, Freiburg, Germany. [Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, R.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Picazio, A.; Pohl, M.; Rosbach, K.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelavana, J.; Tskhadadze, E. G.] Tbilisi State Univ, E Andronikashvili Inst Phys, GE-380086 Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland. [Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kareem, M. J.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Djuvsland, J. I.; Dunford, M.; Hanke, P.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI, Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan. [Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanskan, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, J.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brenner, R.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Hu, X.; Levin, D.; Liu, L.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Schwarz, T. A.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Xu, L.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ, MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Weigell, P.; Zanzi, D.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidzewa, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Konig, A. C.; Salvucci, A.; Strubig, A.] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; Van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van den Wollenberg, W.; Van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Tannenwald, B. B.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Chance, S.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Haguenauer, M.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Chance, S.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Haguenauer, M.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Meyer, C.; Ospanov, R.; Saxon, J.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Do Valle Wemans, A.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] Lab Instrument & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Machado Miguens, J.; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Do Valle Wemans, A.] Univ Nova Lisboa, Dept Fis, P-1200 Lisbon, Portugal. [Do Valle Wemans, A.] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, P-1200 Lisbon, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, R.; Guenther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Sapienza Univ Roma, Dipartimento Fis, Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Techn Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [Cherkaoui El Moursli, R.; Fassi, F.; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Grabas, H. M. X.; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, Commiss Energie Atom & Energies Alternatives, DSM IRFU, Inst Rech Lois Fondament Univ, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nef, P. D.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Chen, X.; Hamity, G. N.; Hsu, C.; March, L.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bessidskaia, O.; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bessidskaia, O.; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Cheatham, S.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kouskoura, V.; Leisos, A.; Papageorgiou, K.; Hernandez, D. Paredes; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] Grp Collegato Udine, Ist Nazl Fis Nucl, Sez Trieste, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kuutmann, E. Bergeaas; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, IFIC, Inst Fis Corpuscular, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IBM CNM, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] CSIC, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Castillo, L. R. Flores; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Redelbach, A.; Schreyer, M.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Julius Maximilians Univ, Fak Phys & Astron, Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] IN2P3, Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London WC2R 2LS, England. [Anisenkov, A. V.; Bobrovnikov, V. S.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Fedin, O. L.] St Petersburg State Polytechn Univ, Dept Phys, St Petersburg, Russia. [Castillo, L. R. Flores] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] Inst Catalana Rec & Estudis Avancats, Barcelona, Spain. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelavana, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Pinamonti, M.] SISSA, Sch Adv Int Studies, I-34014 Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Toth, J.] Wigner Res Ctr Phys, Inst Nucl & Particle Phys, Budapest, Hungary. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Gauzzi, Paolo/D-2615-2009; Mindur, Bartosz/A-2253-2017; Fabbri, Laura/H-3442-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Peleganchuk, Sergey/J-6722-2014; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Garcia, Jose /H-6339-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; la rotonda, laura/B-4028-2016; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Kantserov, Vadim/M-9761-2015; Nevski, Pavel/M-6292-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Goncalo, Ricardo/M-3153-2016; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Wemans, Andre/A-6738-2012; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Pacheco Pages, Andres/C-5353-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Ciubancan, Liviu Mihai/L-2412-2015; Zhukov, Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Villa, Mauro/C-9883-2009; Chekulaev, Sergey/O-1145-2015; Warburton, Andreas/N-8028-2013; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Carvalho, Joao/M-4060-2013; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Marti-Garcia, Salvador/F-3085-2011; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; Doyle, Anthony/C-5889-2009; spagnolo, stefania/A-6359-2012; Tassi, Enrico/K-3958-2015; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Di Domenico, Antonio/G-6301-2011; Livan, Michele/D-7531-2012; De, Kaushik/N-1953-2013; Smirnova, Oxana/A-4401-2013; Brooks, William/C-8636-2013; Connell, Simon/F-2962-2015; Bosman, Martine/J-9917-2014; Joergensen, Morten/E-6847-2015; Mitsou, Vasiliki/D-1967-2009 OI Coccaro, Andrea/0000-0003-2368-4559; Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; la rotonda, laura/0000-0002-6780-5829; Amorim, Antonio/0000-0003-0638-2321; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Kantserov, Vadim/0000-0001-8255-416X; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Wemans, Andre/0000-0002-9669-9500; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Pacheco Pages, Andres/0000-0001-8210-1734; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Tikhomirov, Vladimir/0000-0002-9634-0581; Villa, Mauro/0000-0002-9181-8048; Warburton, Andreas/0000-0002-2298-7315; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Carvalho, Joao/0000-0002-3015-7821; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; Doyle, Anthony/0000-0001-6322-6195; spagnolo, stefania/0000-0001-7482-6348; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Di Domenico, Antonio/0000-0001-8078-2759; Livan, Michele/0000-0002-5877-0062; De, Kaushik/0000-0002-5647-4489; Smirnova, Oxana/0000-0003-2517-531X; Brooks, William/0000-0001-6161-3570; Connell, Simon/0000-0001-6000-7245; Bosman, Martine/0000-0002-7290-643X; Joergensen, Morten/0000-0002-6790-9361; Mitsou, Vasiliki/0000-0002-1533-8886 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia; ROSATOM; Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 77 TC 41 Z9 41 U1 8 U2 100 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD DEC PY 2014 VL 889 BP 486 EP 548 DI 10.1016/j.nuclphysb.2014.10.019 PG 63 WC Physics, Particles & Fields SC Physics GA AX6EU UT WOS:000347016900021 ER PT J AU Hentschinski, M Martinez, JDM Murdaca, B Vera, AS AF Hentschinski, M. Martinez, J. D. Madrigal Murdaca, B. Sabio Vera, A. TI The gluon-induced Mueller-Tang jet impact factor at next-to-leading order SO NUCLEAR PHYSICS B LA English DT Article ID ENERGY EFFECTIVE ACTION; COLOR-SINGLET EXCHANGE; CROSS-SECTIONS; RAPIDITY GAP; VECTOR-MESON; QCD; NLO; VERTEX; APPROXIMATION; SINGULARITY AB We complete the computation of the Mueller-Tang jet impact factor at next-to-leading order (NLO) initiated in [1] and presented in [2] by computing the real corrections associated with gluons in the initial state making use of Lipatov's effective action. NLO corrections for this effective vertex are an important ingredient for a reliable description of large rapidity gap phenomenology within the BFKL approach. (C) 2014 The Authors. Published by Elsevier B.V. C1 [Hentschinski, M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Martinez, J. D. Madrigal] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France. [Murdaca, B.] Ist Nazl Fis Nucl, Grp Collegiato Cosenza, I-87036 Cosenza, Italy. [Sabio Vera, A.] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, E-28049 Madrid, Spain. [Sabio Vera, A.] Univ Autonoma Madrid, Fac Ciencias, E-28049 Madrid, Spain. RP Martinez, JDM (reprint author), CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France. EM jose-daniel.madrigal-martinez@cea.fr RI Hentschinski, Martin/A-9708-2015; OI Hentschinski, Martin/0000-0003-2922-7308; Murdaca, Beatrice/0000-0002-1681-5998; Madrigal, Jose Daniel/0000-0002-2453-0706 FU Research Executive Agency (REA) of the European Union [PITN-GA-2010-264564]; Comunidad de Madrid through Proyecto HEPHACOS [ESP-1473]; MICINN [FPA2010-17747]; Spanish Government; EU ERDF funds [FPA2007-60323, FPA2011-23778, CSD2007-00042]; GV [PROMETEUII/2013/007]; U.S. Department of Energy [DE-AC02-98CH10886]; "BNL Laboratory Directed Research and Development" grant [LDRD 12-034]; European Research Council [ERC-AD-267258] FX We thank the participants of the Second Informal Meeting on Scattering Amplitudes & the Multi-Regge Limit, held in Madrid in February 2014, for stimulating discussions. We acknowledge partial support by the Research Executive Agency (REA) of the European Union under the Grant Agreement number PITN-GA-2010-264564 (LHCPhenoNet), the Comunidad de Madrid through Proyecto HEPHACOS ESP-1473, by MICINN (FPA2010-17747), by the Spanish Government and EU ERDF funds (grants FPA2007-60323, FPA2011-23778 and CSD2007-00042 Consolider Project CPAN) and by GV (PROMETEUII/2013/007). M.H. acknowledges support from the U.S. Department of Energy under contract number DE-AC02-98CH10886 and a "BNL Laboratory Directed Research and Development" grant (LDRD 12-034). The research of J.D.M. is supported by the European Research Council under the Advanced Investigator Grant ERC-AD-267258. NR 66 TC 4 Z9 4 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD DEC PY 2014 VL 889 BP 549 EP 579 DI 10.1016/j.nuclphysb.2014.10.026 PG 31 WC Physics, Particles & Fields SC Physics GA AX6EU UT WOS:000347016900022 ER PT J AU Casner, A Masse, L Delorme, B Martinez, D Huser, G Galmiche, D Liberatore, S Igumenshchev, I Olazabal-Loume, M Nicolai, PH Breil, J Michel, DT Froula, D Seka, W Riazuelo, G Fujioka, S Sunahara, A Grech, M Chicanne, C Theobald, M Borisenko, N Orekhov, A Tikhonchuk, VT Remington, B Goncharov, VN Smalyuk, VA AF Casner, A. Masse, L. Delorme, B. Martinez, D. Huser, G. Galmiche, D. Liberatore, S. Igumenshchev, I. Olazabal-Loume, M. Nicolai, P. H. Breil, J. Michel, D. T. Froula, D. Seka, W. Riazuelo, G. Fujioka, S. Sunahara, A. Grech, M. Chicanne, C. Theobald, M. Borisenko, N. Orekhov, A. Tikhonchuk, V. T. Remington, B. Goncharov, V. N. Smalyuk, V. A. TI Progress in indirect and direct-drive planar experiments on hydrodynamic instabilities at the ablation front SO PHYSICS OF PLASMAS LA English DT Article ID INERTIAL CONFINEMENT FUSION; LASER IMPRINT REDUCTION; PLASTIC TARGETS; BEAM; PERFORMANCE; WAVELENGTH; DISPERSION; GROWTH; LAYERS; MODEL AB Understanding and mitigating hydrodynamic instabilities and the fuel mix are the key elements for achieving ignition in Inertial Confinement Fusion. Cryogenic indirect-drive implosions on the National Ignition Facility have evidenced that the ablative Rayleigh-Taylor Instability (RTI) is a driver of the hot spot mix. This motivates the switch to a more flexible higher adiabat implosion design [O. A. Hurricane et al., Phys. Plasmas 21, 056313 (2014)]. The shell instability is also the main candidate for performance degradation in low-adiabat direct drive cryogenic implosions [Goncharov et al., Phys. Plasmas 21, 056315 (2014)]. This paper reviews recent results acquired in planar experiments performed on the OMEGA laser facility and devoted to the modeling and mitigation of hydrodynamic instabilities at the ablation front. In application to the indirect-drive scheme, we describe results obtained with a specific ablator composition such as the laminated ablator or a graded-dopant emulator. In application to the direct drive scheme, we discuss experiments devoted to the study of laser imprinted perturbations with special phase plates. The simulations of the Richtmyer-Meshkov phase reversal during the shock transit phase are challenging, and of crucial interest because this phase sets the seed of the RTI growth. Recent works were dedicated to increasing the accuracy of measurements of the phase inversion. We conclude by presenting a novel imprint mitigation mechanism based on the use of underdense foams. The foams induce laser smoothing by parametric instabilities thus reducing the laser imprint on the CH foil. (C) 2014 AIP Publishing LLC. C1 [Casner, A.; Masse, L.; Delorme, B.; Huser, G.; Galmiche, D.; Liberatore, S.; Riazuelo, G.] CEA, DAM, DIF, F-91297 Arpajon, France. [Delorme, B.; Olazabal-Loume, M.; Nicolai, P. H.; Breil, J.; Tikhonchuk, V. T.] Univ Bordeaux, CNRS, CEA, CELIA, F-33400 Talence, France. [Martinez, D.; Remington, B.; Smalyuk, V. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Igumenshchev, I.; Michel, D. T.; Froula, D.; Seka, W.; Goncharov, V. N.] Laser Energet Lab, Rochester, NY 14623 USA. [Fujioka, S.; Sunahara, A.] Osaka Univ, Inst Laser Engn, Suita, Osaka 565, Japan. [Grech, M.] Ecole Polytech, CNRS, LULI, CEA,UPMC, F-91128 Palaiseau, France. [Chicanne, C.; Theobald, M.] CEA, DAM, VALDUC, F-21120 Is Sur Tille, France. [Borisenko, N.; Orekhov, A.] RAS, PN Lebedev Phys Inst, Moscow 119991, Russia. RP Casner, A (reprint author), CEA, DAM, DIF, F-91297 Arpajon, France. EM alexis.casner@cea.fr RI Grech, Mickael/H-3587-2011; Fujioka, Shinsuke/J-5530-2015; CASNER, Alexis/B-7458-2014; Orekhov, Andrey/N-2232-2015; Borisenko, Nataliya/N-2688-2015; Masse, Laurent/F-1476-2016 OI Grech, Mickael/0000-0002-3351-0635; Fujioka, Shinsuke/0000-0001-8406-1772; CASNER, Alexis/0000-0003-2176-1389; SUNAHARA, ATSUSHI/0000-0001-7543-5226; NR 79 TC 4 Z9 4 U1 1 U2 23 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2014 VL 21 IS 12 AR 122702 DI 10.1063/1.4903331 PG 11 WC Physics, Fluids & Plasmas SC Physics GA AX8ME UT WOS:000347162700057 ER PT J AU Cohen, BI Dimits, AM Zimmerman, GB Wilks, SC AF Cohen, Bruce I. Dimits, Andris M. Zimmerman, George B. Wilks, Scott C. TI One-dimensional particle simulations of Knudsen-layer effects on D-T fusion SO PHYSICS OF PLASMAS LA English DT Article ID PLASMA SIMULATION; COLLISIONS AB Particle simulations are used to solve the fully nonlinear, collisional kinetic equation describing the interaction of a high-temperature, high-density, deuterium-tritium plasma with absorbing boundaries, a plasma source, and the influence of kinetic effects on fusion reaction rates. Both hydrodynamic and kinetic effects influence the end losses, and the simulations show departures of the ion velocity distributions from Maxwellian due to the reduction of the population of the highest energy ions (Knudsen-layer effects). The particle simulations show that the interplay between sources, plasma dynamics, and end losses results in temperature anisotropy, plasma cooling, and concomitant reductions in the fusion reaction rates. However, for the model problems and parameters considered, particle simulations show that Knudsen-layer modifications do not significantly affect the velocity distribution function for velocities most important in determining the fusion reaction rates, i.e., the thermal fusion reaction rates using the local densities and bulk temperatures give good estimates of the kinetic fusion reaction rates. (C) 2014 AIP Publishing LLC. C1 [Cohen, Bruce I.; Dimits, Andris M.; Zimmerman, George B.; Wilks, Scott C.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Cohen, BI (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank H. Whitley, J. Greenough, F. Graziani, D. Ryutov, K. Molvig, C. Bellei, and B. Albright for useful suggestions, insights, and encouragement. We also thank R. Procassini for developing his particle code ICEPIC and making it available. We are also grateful to the Referee whose comments and suggestions led to significant improvements in the paper. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 23 TC 5 Z9 5 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2014 VL 21 IS 12 AR 122701 DI 10.1063/1.4903323 PG 11 WC Physics, Fluids & Plasmas SC Physics GA AX8ME UT WOS:000347162700056 ER PT J AU Desforges, FG Paradkar, BS Hansson, M Ju, J Senje, L Audet, TL Persson, A Dobosz-Dufrenoy, S Lundh, O Maynard, G Monot, P Vay, JL Wahlstrom, CG Cros, B AF Desforges, F. G. Paradkar, B. S. Hansson, M. Ju, J. Senje, L. Audet, T. L. Persson, A. Dobosz-Dufrenoy, S. Lundh, O. Maynard, G. Monot, P. Vay, J. -L. Wahlstrom, C. -G. Cros, B. TI Dynamics of ionization-induced electron injection in the high density regime of laser wakefield acceleration SO PHYSICS OF PLASMAS LA English DT Article AB The dynamics of ionization-induced electron injection in high density (similar to 1.2 x 10(19) cm(-3)) regime of laser wakefield acceleration is investigated by analyzing the betatron X-ray emission. In such high density operation, the laser normalized vector potential exceeds the injection-thresholds of both ionization-injection and self-injection due to self-focusing. In this regime, direct experimental evidence of early on-set of ionization-induced injection into the plasma wave is given by mapping the X-ray emission zone inside the plasma. Particle-In-Cell simulations show that this early on-set of ionization-induced injection, due to its lower trapping threshold, suppresses the trapping of self-injected electrons. A comparative study of the electron and X-ray properties is performed for both self-injection and ionization-induced injection. An increase of X-ray fluence by at least a factor of two is observed in the case of ionization-induced injection due to increased trapped charge compared to self-injection mechanism. (C) 2014 AIP Publishing LLC. C1 [Desforges, F. G.; Paradkar, B. S.; Ju, J.; Audet, T. L.; Maynard, G.; Cros, B.] Univ Paris 11, CNRS, Lab Phys Gaz & Plasmas, F-91405 Orsay, France. [Hansson, M.; Senje, L.; Persson, A.; Lundh, O.; Wahlstrom, C. -G.] Lund Univ, Dept Phys, S-22100 Lund, Sweden. [Dobosz-Dufrenoy, S.; Monot, P.] CEA Saclay, Lab Interact Dynam & Lasers, F-91191 Gif Sur Yvette, France. [Vay, J. -L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Desforges, FG (reprint author), Univ Paris 11, CNRS, Lab Phys Gaz & Plasmas, F-91405 Orsay, France. EM bsparadkar@gmail.com; brigitte.cros@u-psud.fr FU Triangle de la Physique; Labex PALM; ARC; Swedish Research Council; Knut and Alice Wallenberg Foundation; Swedish Foundation for Strategic Research; Lund University X-ray Centre (LUXC); Laserlab-Europe/CHARPAC [284464]; EuCARD2/ANAC2 [312453]; US-DOE [DE-AC02-05CH11231]; Chinese Scholarship Council (CSC) FX This project has benefited from financial support from the Triangle de la Physique, the Labex PALM, ARC, the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the Swedish Foundation for Strategic Research, the Lund University X-ray Centre (LUXC), Laserlab-Europe/CHARPAC (Grant Agreement No. 284464, EC's 7th Framework Programme), EuCARD2/ANAC2 (Grant Agreement No. 312453, ECs 7th Framework Programme), and US-DOE (Contract No. DE-AC02-05CH11231). J. Ju acknowledges financial support from the Chinese Scholarship Council (CSC). NR 27 TC 6 Z9 6 U1 6 U2 30 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2014 VL 21 IS 12 AR 120703 DI 10.1063/1.4903845 PG 5 WC Physics, Fluids & Plasmas SC Physics GA AX8ME UT WOS:000347162700003 ER PT J AU Huang, S Zhu, K Lu, YR Wang, SZ Hershcovitch, A Yang, L Zhang, XY AF Huang, S. Zhu, K. Lu, Y. R. Wang, S. Z. Hershcovitch, A. Yang, L. Zhang, X. Y. TI Quantitative characterization of arc discharge as vacuum interface SO PHYSICS OF PLASMAS LA English DT Article ID WINDOWLESS GAS-TARGET; PLASMA WINDOW; NEUTRON-PRODUCTION; PRESSURE; ARGON; TORCH AB An arc discharge with channel diameters of 3 mm and 6 mm and lengths between 30 mm and 60 mm was experimentally investigated for its potential to function as plasma window, i.e., interface vacuum regions of different pressures. Electron temperature of the plasma channel measured spectroscopically varied in the range of 7000 K to 15 000 K, increasing with discharge current while decreasing with gas flow rate. That plasma window had a slightly positive I-V characteristics over the whole range of investigated current 30 A-70 A. Measurements of pressure separation capability, which were determined by input current, gas flow rate, discharge channel diameter, and length, were well explained by viscosity effect and "thermal-block" effect. The experimental results of global parameters including temperature, gas flow rate, and voltage had a good agreement with the simulation results calculated by an axis-symmetry Fluent-based magneto-hydrodynamic model. (C) 2014 AIP Publishing LLC. C1 [Huang, S.; Zhu, K.; Lu, Y. R.; Wang, S. Z.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Hershcovitch, A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Yang, L.; Zhang, X. Y.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. RP Huang, S (reprint author), Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. EM zhukun@pku.edu.cn FU National Natural Science Foundation of China [10805003, 91026012] FX This work was supported by National Natural Science Foundation of China (Grant Nos. 10805003 and 91026012). NR 36 TC 1 Z9 1 U1 3 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2014 VL 21 IS 12 AR 123511 DI 10.1063/1.4903462 PG 7 WC Physics, Fluids & Plasmas SC Physics GA AX8ME UT WOS:000347162700104 ER PT J AU Kaye, SM Guttenfelder, W Bell, RE Gerhardt, SP LeBlanc, BP Maingi, R AF Kaye, S. M. Guttenfelder, W. Bell, R. E. Gerhardt, S. P. LeBlanc, B. P. Maingi, R. TI Reduced model prediction of electron temperature profiles in microtearing-dominated National Spherical Torus eXperiment plasmas (vol 21, 082510, 2014) SO PHYSICS OF PLASMAS LA English DT Correction C1 [Kaye, S. M.; Guttenfelder, W.; Bell, R. E.; Gerhardt, S. P.; LeBlanc, B. P.; Maingi, R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Kaye, SM (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM kaye@pppl.gov NR 1 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2014 VL 21 IS 12 AR 129901 DI 10.1063/1.4903335 PG 1 WC Physics, Fluids & Plasmas SC Physics GA AX8ME UT WOS:000347162700117 ER PT J AU Lindl, JD Landen, OL Edwards, J Moses, EI Adams, J Amendt, PA Antipa, N Arnold, PA Atherton, LJ Azevedo, S Barker, D Barrios, MA Bass, I Baxamusa, SH Beeler, R Beeman, BV Bell, PM Benedetti, LR Bernstein, L Hopkins, LB Bhandarkar, SD Biesiada, T Bionta, RM Bleuel, DL Bond, EJ Borden, M Bowers, MW Bradley, DK Browning, D Brunton, GK Bude, J Burkhart, SC Burr, RF Butlin, B Caggiano, JA Callahan, DA Carpenter, AC Carr, CW Casey, DT Castro, C Celeste, J Celliers, PM Cerjan, CJ Chang, J Chiarappa-Zucca, M Choate, C Clancy, TJ Clark, DS Cohen, SJ Collins, GW Conder, A Cox, JR Datte, PS Deis, GA Dewald, EL Di Nicola, P Di Nicola, JM Divol, L Dixit, SN Doppner, T Draggoo, V Drury, O Dylla-Spears, R Dzenitis, EG Dzenitis, JM Eckart, MJ Eder, DC Eggert, JH Ehrlich, RB Erbert, GV Fair, J Farley, DR Fedorov, M Felker, B Finucane, R Fisher, A Fittinghoff, DN Folta, J Fortner, RJ Frazier, T Frieders, G Frieders, S Friedrich, S Fry, J Gaylord, J Glenn, SM Glenzer, SH Golick, B Gururangan, G Guss, G Haan, SW Haid, BJ Hammel, B Hamza, AV Hartouni, EP Hatarik, R Hatch, BW Hatchett, SP Hawley, R Haynam, C Heebner, J Heestand, G Hermann, MR Hernandez, VJ Hicks, DG Hinkel, DE Ho, DD Holder, JP Holunga, D Honig, J Horner, J House, RK Hutton, M Izumi, N Jackson, MC Jancaitis, KS Jedlovec, DR Johnson, MA Jones, OS Kalantar, DH Kauffman, RL Kegelmeyer, L Kerbel, G Key, M Khan, SF Kimbrough, JR Kirkwood, R Klingman, JJ Koch, JA Kohut, TR Koning, JM Knittel, KM Kozioziemski, BJ Krauter, GW Krauter, K Kritcher, A Kroll, J Kruer, WL LaCaille, G LaFortune, KN Lagin, LJ Land, TA Langdon, AB Langer, SH Larson, DW Latray, DA Laurence, T LePape, S Lerche, RA Liao, Z Liebman, J London, RA Lowe-Webb, RR Ma, T MacGowan, BJ MacKinnon, AJ MacPhee, AG Malsbury, TN Manes, K Manuel, AM Mapoles, ER Marinak, MM Marshall, CD Mason, D Masters, N Mathisen, DG Matthews, I McCarville, T McNaney, JM Meeker, DJ Meezan, NB Menapace, J Michel, P Miller, PE Milovich, JL Mintz, M Montesanti, R Monticelli, M Moody, JD Moran, MJ Moreno, JC Munro, DH Negres, RA Nelson, JR Norton, M Nostrand, M O'Brien, M Opachich, YP Orth, C Pak, AE Palma, ES Palmer, JNE Parham, TG Park, HS Patel, PK Patterson, RW Peterson, JE Peterson, JL Phillips, T Prasad, R Primdahl, K Prisbrey, ST Qiu, SR Ralph, JE Raman, KS Ravizza, F Raymond, B Remington, BA Rever, MA Reynolds, J Richardson, MJ Riddle, AC Rittmann, B Rosen, MD Ross, JS Rygg, JR Sacks, RA Salmon, JT Salmonson, JD Sater, JD Saunders, RL Sawicki, R Schaffers, K Schneider, DH Schneider, MB Scott, HA Sepke, SM Seugling, R Shaughnessy, DA Shaw, MJ Shelton, R Shen, N Shingleton, N Simanovskaia, N Smalyuk, V Smauley, DA Spaeth, M Spears, BK Speck, DR Spinka, TM Springer, PT Stadermann, M Stoeffl, W Stolken, J Stolz, C Storm, E Strozzi, DJ Suratwala, T Suter, LJ Taylor, JS Thomas, CA Tietbohl, GL Tommasini, R Trummer, D VanWonterghem, B Von Rotz, R Wallace, RJ Walters, CF Wang, A Warrick, AL Weaver, S Weber, SV Wegner, PJ Widmann, K Widmayer, CC Williams, EA Whitman, PK Wilhelmsen, K Witte, M Wong, L Wood, RD Yang, S Yeamans, C Young, BK Yoxall, B Zacharias, RA Zimmerman, GB Batha, S Danly, CR Fatherley, V Grim, GP Guler, N Herrmann, HW Kim, Y Kline, JL Kyrala, GA Leeper, RJ Martinson, D Merrill, FE Olson, RE Wilde, C Wilke, MD Wilson, DC Chandler, GA Cooper, GW Hahn, KD Peterson, KJ Ruiz, CL Chen, KC Dorsano, N Emerich, M Gibson, C Hoover, D Hoppe, M Kilkenny, JD Moreno, K Wilkens, H Woods, S Frenje, JA Johnson, MG Li, CK Petrasso, RD Rinderknecht, H Rosenberg, M Seguin, FH Zylstra, A Garbett, W Graham, P Guymer, T Moore, AS Bourgade, JL Gauthier, P Leidinger, JP Masse, L Philippe, F Scott, RHH AF Lindl, J. D. Landen, O. L. Edwards, J. Moses, E. I. Adams, J. Amendt, P. A. Antipa, N. Arnold, P. A. Atherton, L. J. Azevedo, S. Barker, D. Barrios, M. A. Bass, I. Baxamusa, S. H. Beeler, R. Beeman, B. V. Bell, P. M. Benedetti, L. R. Bernstein, L. Hopkins, L. Berzak Bhandarkar, S. D. Biesiada, T. Bionta, R. M. Bleuel, D. L. Bond, E. J. Borden, M. Bowers, M. W. Bradley, D. K. Browning, D. Brunton, G. K. Bude, J. Burkhart, S. C. Burr, R. F. Butlin, B. Caggiano, J. A. Callahan, D. A. Carpenter, A. C. Carr, C. W. Casey, D. T. Castro, C. Celeste, J. Celliers, P. M. Cerjan, C. J. Chang, J. Chiarappa-Zucca, M. Choate, C. Clancy, T. J. Clark, D. S. Cohen, S. J. Collins, G. W. Conder, A. Cox, J. R. Datte, P. S. Deis, G. A. Dewald, E. L. Di Nicola, P. Di Nicola, J. M. Divol, L. Dixit, S. N. Doeppner, T. Draggoo, V. Drury, O. Dylla-Spears, R. Dzenitis, E. G. Dzenitis, J. M. Eckart, M. J. Eder, D. C. Eggert, J. H. Ehrlich, R. B. Erbert, G. V. Fair, J. Farley, D. R. Fedorov, M. Felker, B. Finucane, R. Fisher, A. Fittinghoff, D. N. Folta, J. Fortner, R. J. Frazier, T. Frieders, G. Frieders, S. Friedrich, S. Fry, J. Gaylord, J. Glenn, S. M. Glenzer, S. H. Golick, B. Gururangan, G. Guss, G. Haan, S. W. Haid, B. J. Hammel, B. Hamza, A. V. Hartouni, E. P. Hatarik, R. Hatch, B. W. Hatchett, S. P. Hawley, R. Haynam, C. Heebner, J. Heestand, G. Hermann, M. R. Hernandez, V. J. Hicks, D. G. Hinkel, D. E. Ho, D. D. Holder, J. P. Holunga, D. Honig, J. Horner, J. House, R. K. Hutton, M. Izumi, N. Jackson, M. C. Jancaitis, K. S. Jedlovec, D. R. Johnson, M. A. Jones, O. S. Kalantar, D. H. Kauffman, R. L. Kegelmeyer, L. Kerbel, G. Key, M. Khan, S. F. Kimbrough, J. R. Kirkwood, R. Klingman, J. J. Koch, J. A. Kohut, T. R. Koning, J. M. Knittel, K. M. Kozioziemski, B. J. Krauter, G. W. Krauter, K. Kritcher, A. Kroll, J. Kruer, W. L. LaCaille, G. LaFortune, K. N. Lagin, L. J. Land, T. A. Langdon, A. B. Langer, S. H. Larson, D. W. Latray, D. A. Laurence, T. LePape, S. Lerche, R. A. Liao, Z. Liebman, J. London, R. A. Lowe-Webb, R. R. Ma, T. MacGowan, B. J. MacKinnon, A. J. MacPhee, A. G. Malsbury, T. N. Manes, K. Manuel, A. M. Mapoles, E. R. Marinak, M. M. Marshall, C. D. Mason, D. Masters, N. Mathisen, D. G. Matthews, I. McCarville, T. McNaney, J. M. Meeker, D. J. Meezan, N. B. Menapace, J. Michel, P. Miller, P. E. Milovich, J. L. Mintz, M. Montesanti, R. Monticelli, M. Moody, J. D. Moran, M. J. Moreno, J. C. Munro, D. H. Negres, R. A. Nelson, J. R. Norton, M. Nostrand, M. O'Brien, M. Opachich, Y. P. Orth, C. Pak, A. E. Palma, E. S. Palmer, J. N. E. Parham, T. G. Park, H. -S. Patel, P. K. Patterson, R. W. Peterson, J. E. Peterson, J. L. Phillips, T. Prasad, R. Primdahl, K. Prisbrey, S. T. Qiu, S. R. Ralph, J. E. Raman, K. S. Ravizza, F. Raymond, B. Remington, B. A. Rever, M. A. Reynolds, J. Richardson, M. J. Riddle, A. C. Rittmann, B. Rosen, M. D. Ross, J. S. Rygg, J. R. Sacks, R. A. Salmon, J. T. Salmonson, J. D. Sater, J. D. Saunders, R. L. Sawicki, R. Schaffers, K. Schneider, D. H. Schneider, M. B. Scott, H. A. Sepke, S. M. Seugling, R. Shaughnessy, D. A. Shaw, M. J. Shelton, R. Shen, N. Shingleton, N. Simanovskaia, N. Smalyuk, V. Smauley, D. A. Spaeth, M. Spears, B. K. Speck, D. R. Spinka, T. M. Springer, P. T. Stadermann, M. Stoeffl, W. Stolken, J. Stolz, C. Storm, E. Strozzi, D. J. Suratwala, T. Suter, L. J. Taylor, J. S. Thomas, C. A. Tietbohl, G. L. Tommasini, R. Trummer, D. VanWonterghem, B. Von Rotz, R. Wallace, R. J. Walters, C. F. Wang, A. Warrick, A. L. Weaver, S. Weber, S. V. Wegner, P. J. Widmann, K. Widmayer, C. C. Williams, E. A. Whitman, P. K. Wilhelmsen, K. Witte, M. Wong, L. Wood, R. D. Yang, S. Yeamans, C. Young, B. K. Yoxall, B. Zacharias, R. A. Zimmerman, G. B. Batha, S. Danly, C. R. Fatherley, V. Grim, G. P. Guler, N. Herrmann, H. W. Kim, Y. Kline, J. L. Kyrala, G. A. Leeper, R. J. Martinson, D. Merrill, F. E. Olson, R. E. Wilde, C. Wilke, M. D. Wilson, D. C. Chandler, G. A. Cooper, G. W. Hahn, K. D. Peterson, K. J. Ruiz, C. L. Chen, K. C. Dorsano, N. Emerich, M. Gibson, C. Hoover, D. Hoppe, M. Kilkenny, J. D. Moreno, K. Wilkens, H. Woods, S. Frenje, J. A. Johnson, M. G. Li, C. K. Petrasso, R. D. Rinderknecht, H. Rosenberg, M. Seguin, F. H. Zylstra, A. Garbett, W. Graham, P. Guymer, T. Moore, A. S. Bourgade, J. -L. Gauthier, P. Leidinger, J. -P. Masse, L. Philippe, F. Scott, R. H. H. TI Review of the National Ignition Campaign 2009-2012 (vol 21, 020501, 2014) SO PHYSICS OF PLASMAS LA English DT Correction C1 [Lindl, J. D.; Landen, O. L.; Edwards, J.; Moses, E. I.; Adams, J.; Amendt, P. A.; Antipa, N.; Arnold, P. A.; Atherton, L. J.; Azevedo, S.; Barker, D.; Barrios, M. A.; Bass, I.; Baxamusa, S. H.; Beeler, R.; Beeman, B. V.; Bell, P. M.; Benedetti, L. R.; Bernstein, L.; Hopkins, L. Berzak; Bhandarkar, S. D.; Biesiada, T.; Bionta, R. M.; Bleuel, D. L.; Bond, E. J.; Borden, M.; Bowers, M. W.; Bradley, D. K.; Browning, D.; Brunton, G. K.; Bude, J.; Burkhart, S. C.; Burr, R. F.; Butlin, B.; Caggiano, J. A.; Callahan, D. A.; Carpenter, A. C.; Carr, C. W.; Casey, D. T.; Castro, C.; Celeste, J.; Celliers, P. M.; Cerjan, C. J.; Chang, J.; Chiarappa-Zucca, M.; Choate, C.; Clancy, T. J.; Clark, D. S.; Cohen, S. J.; Collins, G. W.; Conder, A.; Cox, J. R.; Datte, P. S.; Deis, G. A.; Dewald, E. L.; Di Nicola, P.; Di Nicola, J. M.; Divol, L.; Dixit, S. N.; Doeppner, T.; Draggoo, V.; Drury, O.; Dylla-Spears, R.; Dzenitis, E. G.; Dzenitis, J. M.; Eckart, M. J.; Eder, D. C.; Eggert, J. H.; Ehrlich, R. B.; Erbert, G. V.; Fair, J.; Farley, D. R.; Fedorov, M.; Felker, B.; Finucane, R.; Fisher, A.; Fittinghoff, D. N.; Folta, J.; Fortner, R. J.; Frazier, T.; Frieders, G.; Frieders, S.; Friedrich, S.; Fry, J.; Gaylord, J.; Glenn, S. M.; Glenzer, S. H.; Golick, B.; Gururangan, G.; Guss, G.; Haan, S. W.; Haid, B. J.; Hammel, B.; Hamza, A. V.; Hartouni, E. P.; Hatarik, R.; Hatch, B. W.; Hatchett, S. P.; Hawley, R.; Haynam, C.; Heebner, J.; Heestand, G.; Hermann, M. R.; Hernandez, V. J.; Hicks, D. G.; Hinkel, D. E.; Ho, D. D.; Holder, J. P.; Holunga, D.; Honig, J.; Horner, J.; House, R. K.; Hutton, M.; Izumi, N.; Jackson, M. C.; Jancaitis, K. S.; Jedlovec, D. R.; Johnson, M. A.; Jones, O. S.; Kalantar, D. H.; Kauffman, R. L.; Kegelmeyer, L.; Kerbel, G.; Key, M.; Khan, S. F.; Kimbrough, J. R.; Kirkwood, R.; Klingman, J. J.; Koch, J. A.; Kohut, T. R.; Koning, J. M.; Knittel, K. M.; Kozioziemski, B. J.; Krauter, G. W.; Krauter, K.; Kritcher, A.; Kroll, J.; Kruer, W. L.; LaCaille, G.; LaFortune, K. N.; Lagin, L. J.; Land, T. A.; Langdon, A. B.; Langer, S. H.; Larson, D. W.; Latray, D. A.; Laurence, T.; LePape, S.; Lerche, R. A.; Liao, Z.; Liebman, J.; London, R. A.; Lowe-Webb, R. R.; Ma, T.; MacGowan, B. J.; MacKinnon, A. J.; MacPhee, A. G.; Malsbury, T. N.; Manes, K.; Manuel, A. M.; Mapoles, E. R.; Marinak, M. M.; Marshall, C. D.; Mason, D.; Masters, N.; Mathisen, D. G.; Matthews, I.; McCarville, T.; McNaney, J. M.; Meeker, D. J.; Meezan, N. B.; Menapace, J.; Michel, P.; Miller, P. E.; Milovich, J. L.; Mintz, M.; Montesanti, R.; Monticelli, M.; Moody, J. D.; Moran, M. J.; Moreno, J. C.; Munro, D. H.; Negres, R. A.; Nelson, J. R.; Norton, M.; Nostrand, M.; O'Brien, M.; Opachich, Y. P.; Orth, C.; Pak, A. E.; Palma, E. S.; Palmer, J. N. E.; Parham, T. G.; Park, H. -S.; Patel, P. K.; Patterson, R. W.; Peterson, J. E.; Peterson, J. L.; Phillips, T.; Prasad, R.; Primdahl, K.; Prisbrey, S. T.; Qiu, S. R.; Ralph, J. E.; Raman, K. S.; Ravizza, F.; Raymond, B.; Remington, B. A.; Rever, M. A.; Reynolds, J.; Richardson, M. J.; Riddle, A. C.; Rittmann, B.; Rosen, M. D.; Ross, J. S.; Rygg, J. R.; Sacks, R. A.; Salmon, J. T.; Salmonson, J. D.; Sater, J. D.; Saunders, R. L.; Sawicki, R.; Schaffers, K.; Schneider, D. H.; Schneider, M. B.; Scott, H. A.; Sepke, S. M.; Seugling, R.; Shaughnessy, D. A.; Shaw, M. J.; Shelton, R.; Shen, N.; Shingleton, N.; Simanovskaia, N.; Smalyuk, V.; Smauley, D. A.; Spaeth, M.; Spears, B. K.; Speck, D. R.; Spinka, T. M.; Springer, P. T.; Stadermann, M.; Stoeffl, W.; Stolken, J.; Stolz, C.; Storm, E.; Strozzi, D. J.; Suratwala, T.; Suter, L. J.; Taylor, J. S.; Thomas, C. A.; Tietbohl, G. L.; Tommasini, R.; Trummer, D.; VanWonterghem, B.; Von Rotz, R.; Wallace, R. J.; Walters, C. F.; Wang, A.; Warrick, A. L.; Weaver, S.; Weber, S. V.; Wegner, P. J.; Widmann, K.; Widmayer, C. C.; Williams, E. A.; Whitman, P. K.; Wilhelmsen, K.; Witte, M.; Wong, L.; Wood, R. D.; Yang, S.; Yeamans, C.; Young, B. K.; Yoxall, B.; Zacharias, R. A.; Zimmerman, G. B.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Batha, S.; Danly, C. R.; Fatherley, V.; Grim, G. P.; Guler, N.; Herrmann, H. W.; Kim, Y.; Kline, J. L.; Kyrala, G. A.; Leeper, R. J.; Martinson, D.; Merrill, F. E.; Olson, R. E.; Wilde, C.; Wilke, M. D.; Wilson, D. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Chandler, G. A.; Cooper, G. W.; Hahn, K. D.; Peterson, K. J.; Ruiz, C. L.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Chen, K. C.; Dorsano, N.; Emerich, M.; Gibson, C.; Hoover, D.; Hoppe, M.; Kilkenny, J. D.; Moreno, K.; Wilkens, H.; Woods, S.] Gen Atom Co, San Diego, CA 92186 USA. [Frenje, J. A.; Johnson, M. G.; Li, C. K.; Petrasso, R. D.; Rinderknecht, H.; Rosenberg, M.; Seguin, F. H.; Zylstra, A.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Garbett, W.; Graham, P.; Guymer, T.; Moore, A. S.] AWE, Reading RG7 4PR, Berks, England. [Bourgade, J. -L.; Gauthier, P.; Leidinger, J. -P.; Masse, L.; Philippe, F.] CEA, DAM, DIF, F-91297 Arpajon, France. [Scott, R. H. H.] STFC Rutherford Appleton 118 Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England. RP Lindl, JD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Hicks, Damien/B-5042-2015; MacKinnon, Andrew/P-7239-2014; lepape, sebastien/J-3010-2015; Masse, Laurent/F-1476-2016; IZUMI, Nobuhiko/J-8487-2016; Patel, Pravesh/E-1400-2011; Tommasini, Riccardo/A-8214-2009 OI Hicks, Damien/0000-0001-8322-9983; MacKinnon, Andrew/0000-0002-4380-2906; IZUMI, Nobuhiko/0000-0003-1114-597X; Tommasini, Riccardo/0000-0002-1070-3565 NR 1 TC 10 Z9 10 U1 10 U2 70 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2014 VL 21 IS 12 AR 129902 DI 10.1063/1.4903459 PG 3 WC Physics, Fluids & Plasmas SC Physics GA AX8ME UT WOS:000347162700118 ER PT J AU Liu, SC Guo, HY Wang, L Wang, HQ Gan, KF Xia, TY Xu, GS Xu, XQ Liu, ZX Chen, L Yan, N Zhang, W Chen, R Shao, LM Ding, S Hu, GH Liu, YL Zhao, N Li, YL Gong, XZ Gao, X AF Liu, S. C. Guo, H. Y. Wang, L. Wang, H. Q. Gan, K. F. Xia, T. Y. Xu, G. S. Xu, X. Q. Liu, Z. X. Chen, L. Yan, N. Zhang, W. Chen, R. Shao, L. M. Ding, S. Hu, G. H. Liu, Y. L. Zhao, N. Li, Y. L. Gong, X. Z. Gao, X. TI Effects of heating power on divertor in-out asymmetry and scrape-off layer flow in reversed field on Experimental Advanced Superconducting Tokamak SO PHYSICS OF PLASMAS LA English DT Article ID W-SHAPED DIVERTOR; SOL PLASMA-FLOW; E X B; ASDEX UPGRADE; DIII-D; PARTICLE CONTROL; EDGE2D CODE; JET; JT-60U; TRANSPORT AB The dependence of divertor asymmetry and scrape-off layer (SOL) flow on heating power has been investigated in the Experimental Advanced Superconducting Tokamak (EAST). Divertor plasma exhibits an outboard-enhanced in-out asymmetry in heat flux in lower single null configuration for in reversed (ion del(B) drift direction toward the upper X-point) field directions. Upper single null exhibits an inboard-favored asymmetry in low heating power condition, while exhibits an outboard-favored asymmetry when increasing the heating power. Double null has the strongest in-out asymmetry in heat flux, favoring the outer divertor. The in-out asymmetry ratios of q(t,out)/q(t,in) and P-out/P-total increase with the power across the separatrix P-loss, which is probably induced by the enhanced radial particle transport due to a large pressure gradient. The characteristics of the measured SOL parallel flow under various discharge conditions are consistent with the Pfirsch-Schluter (PS) flow with the parallel Mach number M-parallel to decreasing with the line averaged density but increasing with P-loss, in the same direction as the PS flow. The contributions of both poloidal E x B drift and parallel flow on poloidal particle transport in SOL on EAST are also assessed. (C) 2014 AIP Publishing LLC. C1 [Liu, S. C.; Guo, H. Y.; Wang, L.; Wang, H. Q.; Gan, K. F.; Xia, T. Y.; Xu, G. S.; Liu, Z. X.; Chen, L.; Yan, N.; Zhang, W.; Chen, R.; Shao, L. M.; Ding, S.; Hu, G. H.; Liu, Y. L.; Zhao, N.; Li, Y. L.; Gong, X. Z.; Gao, X.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Guo, H. Y.] Gen Atom, San Diego, CA 92186 USA. [Wang, L.] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China. [Xu, X. Q.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Yan, N.] Assoc Euratom Riso DTU, DK-4000 Roskilde, Denmark. RP Liu, SC (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. EM lshch@ipp.ac.cn FU National Magnetic Confinement Fusion Research Program of China [2014GB106005, 2011GB107001, 2011GB101000, 2013GB107003]; National Natural Science Foundation of China [11405213, 11405217, 11422546, 11275234, 11105177, 11305206] FX The authors would like to thank the EAST Team for their cooperation and kind help. This work was supported by the National Magnetic Confinement Fusion Research Program of China under Contract Nos. 2014GB106005, 2011GB107001, 2011GB101000, and 2013GB107003, and the National Natural Science Foundation of China under Grant Nos. 11405213, 11405217, 11422546, 11275234, 11105177, and 11305206. NR 56 TC 1 Z9 1 U1 15 U2 33 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2014 VL 21 IS 12 AR 122514 DI 10.1063/1.4904205 PG 14 WC Physics, Fluids & Plasmas SC Physics GA AX8ME UT WOS:000347162700049 ER PT J AU Mancini, RC Johns, HM Joshi, T Mayes, D Nagayama, T Hsu, SC Baumgaertel, JA Cobble, J Krasheninnikova, NS Bradley, PA Hakel, P Murphy, TJ Schmitt, MJ Shah, RC Tregillis, IL Wysocki, FJ AF Mancini, R. C. Johns, H. M. Joshi, T. Mayes, D. Nagayama, T. Hsu, S. C. Baumgaertel, J. A. Cobble, J. Krasheninnikova, N. S. Bradley, P. A. Hakel, P. Murphy, T. J. Schmitt, M. J. Shah, R. C. Tregillis, I. L. Wysocki, F. J. TI Multiple-view spectrally resolved x-ray imaging observations of polar-direct-drive implosions on OMEGA SO PHYSICS OF PLASMAS LA English DT Article ID NATIONAL-IGNITION-FACILITY AB We present spatially, temporally, and spectrally resolved narrow-and broad-band x-ray images of polar-direct-drive (PDD) implosions on OMEGA. These self-emission images were obtained during the deceleration phase and bang time using several multiple monochromatic x-ray imaging instruments fielded along two or three quasi-orthogonal lines-of-sight, including equatorial and polar views. The instruments recorded images based on K-shell lines from a titanium tracer located in the shell as well as continuum emission. These observations constitute the first such data obtained for PDD implosions. The image data show features attributed to laser imprinting and zero-order hydrodynamics. Equatorial-view images show a "double bun" structure that is consistent with synthetic images obtained from post-processing 2D and 3D radiation-hydrodynamic simulations of the experiment. Polar-view images show a pentagonal, petal pattern that correlates with the PDD laser illumination used on OMEGA, thus revealing a 3D aspect of PDD OMEGA implosions not previously observed. Differences are noted with respect to a PDD experiment performed at National Ignition Facility. (C) 2014 AIP Publishing LLC. C1 [Mancini, R. C.; Johns, H. M.; Joshi, T.; Mayes, D.; Nagayama, T.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Hsu, S. C.; Baumgaertel, J. A.; Cobble, J.; Krasheninnikova, N. S.; Bradley, P. A.; Hakel, P.; Murphy, T. J.; Schmitt, M. J.; Shah, R. C.; Tregillis, I. L.; Wysocki, F. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Mancini, RC (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. RI Murphy, Thomas/F-3101-2014; OI Murphy, Thomas/0000-0002-6137-9873; Hakel, Peter/0000-0002-7936-4231; Schmitt, Mark/0000-0002-0197-9180; Bradley, Paul/0000-0001-6229-6677; Hsu, Scott/0000-0002-6737-4934; Joshi, Tirtha/0000-0003-2218-8190 FU LANL ICF Program Academic Collaboration under DOE [DE-AC52-06NA25396] FX This work was supported by a LANL ICF Program Academic Collaboration under DOE Contract No. DE-AC52-06NA25396. We thank members of the Laboratory for Laser Energetics and LANL's P-24 group who assisted with diagnostic setup and operation. NR 34 TC 1 Z9 1 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2014 VL 21 IS 12 AR 122704 DI 10.1063/1.4903324 PG 7 WC Physics, Fluids & Plasmas SC Physics GA AX8ME UT WOS:000347162700059 ER PT J AU Rafiq, T Kritz, AH Tangri, V Pankin, AY Voitsekhovitch, I Budny, RV AF Rafiq, T. Kritz, A. H. Tangri, V. Pankin, A. Y. Voitsekhovitch, I. Budny, R. V. CA JET EFDA Contributors TI Integrated modeling of temperature profiles in L-mode tokamak discharges SO PHYSICS OF PLASMAS LA English DT Article ID DIII-D; TORE-SUPRA; TRANSPORT; SIMULATIONS; PLASMAS; MODULE; PEDESTAL; LIBRARY; EDGE AB Simulations of doublet III-D, the joint European tokamak, and the tokamak fusion test reactor L-mode tokamak plasmas are carried out using the PTRANSP predictive integrated modeling code. The simulation and experimental temperature profiles are compared. The time evolved temperature profiles are computed utilizing the Multi-Mode anomalous transport model version 7.1 (MMM7.1) which includes transport associated with drift-resistive-inertial ballooning modes (the DRIBM model [T. Rafiq et al., Phys. Plasmas 17, 082511 (2010)]). The tokamak discharges considered involved a broad range of conditions including scans over gyroradius, ITER like current ramp-up, with and without neon impurity injection, collisionality, and low and high plasma current. The comparison of simulation and experimental temperature profiles for the discharges considered is shown for the radial range from the magnetic axis to the last closed flux surface. The regions where various modes in the Multi-Mode model contribute to transport are illustrated. In the simulations carried out using the MMM7.1 model it is found that: The drift-resistive-inertial ballooning modes contribute to the anomalous transport primarily near the edge of the plasma; transport associated with the ion temperature gradient and trapped electron modes contribute in the core region but decrease in the region of the plasma boundary; and neoclassical ion thermal transport contributes mainly near the center of the discharge. C1 [Rafiq, T.; Kritz, A. H.; Tangri, V.] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA. [Pankin, A. Y.] Tech X Corp, Boulder, CO 80303 USA. [Voitsekhovitch, I.] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England. [Budny, R. V.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Rafiq, T (reprint author), Lehigh Univ, Dept Phys, Bldg 16, Bethlehem, PA 18015 USA. FU U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences [DE-FG02-92-ER54141]; EURATOM FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Contract No. DE-FG02-92-ER54141 and was supported in part by EURATOM and carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily react those of the European Commission. NR 40 TC 4 Z9 4 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2014 VL 21 IS 12 AR 122505 DI 10.1063/1.4903464 PG 12 WC Physics, Fluids & Plasmas SC Physics GA AX8ME UT WOS:000347162700040 ER PT J AU Renk, TJ Harper-Slaboszewicz, V Mikkelson, KA Ginn, WC Ottinger, PF Schumer, JW AF Renk, T. J. Harper-Slaboszewicz, V. Mikkelson, K. A. Ginn, W. C. Ottinger, P. F. Schumer, J. W. TI Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III SO PHYSICS OF PLASMAS LA English DT Article ID INSULATED ELECTRON FLOW; IN-CELL SIMULATIONS; ROD-PINCH DIODE; AURORA PULSER; IMPEDANCE; PLASMA; ACCELERATORS; POLARITY; FUSION; VACUUM AB We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an "axial" pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometry that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. A new "radial" pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. In addition, a substantial high-energy ion population is also identified propagating in the "reverse" direction, i.e., from the back side of the anode foil in the electron beam dump. (C) 2014 AIP Publishing LLC. C1 [Renk, T. J.; Harper-Slaboszewicz, V.; Mikkelson, K. A.; Ginn, W. C.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Ottinger, P. F.] ENGILITY, Chantilly, VA 20151 USA. [Schumer, J. W.] Naval Res Lab, Div Plasma Phys, Washington, DC 20375 USA. RP Renk, TJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM tjrenk@sandia.gov OI Harper-Slaboszewicz, Victor/0000-0001-9518-9253; Ottinger, Paul/0000-0001-9901-7379 FU Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy, National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge the technical support of the Hermes facility staff-Gary Tilley, Chris Kirtley, and J. J. Montoya. The authors also acknowledge fruitful technical discussions with Dr. Steve Rosenthal and Dr. Bryan Oliver. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy, National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 49 TC 3 Z9 3 U1 3 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2014 VL 21 IS 12 AR 123114 DI 10.1063/1.4903947 PG 17 WC Physics, Fluids & Plasmas SC Physics GA AX8ME UT WOS:000347162700084 ER PT J AU Rosenberg, MJ Zylstra, AB Seguin, FH Rinderknecht, HG Frenje, JA Johnson, MG Sio, H Waugh, CJ Sinenian, N Li, CK Petrasso, RD McKenty, PW Hohenberger, M Radha, PB Delettrez, JA Glebov, VY Betti, R Goncharov, VN Knauer, JP Sangster, TC LePape, S Mackinnon, AJ Pino, J McNaney, JM Rygg, JR Amendt, PA Bellei, C Benedetti, LR Hopkins, LB Bionta, RM Casey, DT Divol, L Edwards, MJ Glenn, S Glenzer, SH Hicks, DG Kimbrough, JR Landen, OL Lindl, JD Ma, T MacPhee, A Meezan, NB Moody, JD Moran, MJ Park, HS Remington, BA Robey, H Rosen, MD Wilks, SC Zacharias, RA Herrmann, HW Hoffman, NM Kyrala, GA Leeper, RJ Olson, RE Kilkenny, JD Nikroo, A AF Rosenberg, M. J. Zylstra, A. B. Seguin, F. H. Rinderknecht, H. G. Frenje, J. A. Johnson, M. Gatu Sio, H. Waugh, C. J. Sinenian, N. Li, C. K. Petrasso, R. D. McKenty, P. W. Hohenberger, M. Radha, P. B. Delettrez, J. A. Glebov, V. Yu. Betti, R. Goncharov, V. N. Knauer, J. P. Sangster, T. C. LePape, S. Mackinnon, A. J. Pino, J. McNaney, J. M. Rygg, J. R. Amendt, P. A. Bellei, C. Benedetti, L. R. Hopkins, L. Berzak Bionta, R. M. Casey, D. T. Divol, L. Edwards, M. J. Glenn, S. Glenzer, S. H. Hicks, D. G. Kimbrough, J. R. Landen, O. L. Lindl, J. D. Ma, T. MacPhee, A. Meezan, N. B. Moody, J. D. Moran, M. J. Park, H. -S. Remington, B. A. Robey, H. Rosen, M. D. Wilks, S. C. Zacharias, R. A. Herrmann, H. W. Hoffman, N. M. Kyrala, G. A. Leeper, R. J. Olson, R. E. Kilkenny, J. D. Nikroo, A. TI Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF SO PHYSICS OF PLASMAS LA English DT Article ID INERTIAL-CONFINEMENT-FUSION; NATIONAL-IGNITION-FACILITY; POLAR-DIRECT-DRIVE; LASER FUSION; TARGET IMPLOSIONS; PROTON SPECTRA; AREAL DENSITY; OMEGA; SIMULATIONS; PERFORMANCE AB Measurements of yield, ion temperature, areal density (rho R), shell convergence, and bang time have been obtained in shock-driven, D-2 and (DHe)-He-3 gas-filled "exploding-pusher" inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel rho R inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to the predictions of 2D DRACO hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in the gas are often prevalent during the shock phase of both exploding pushers and ablatively driven implosions, including ignition-relevant implosions. (C) 2014 AIP Publishing LLC. C1 [Rosenberg, M. J.; Zylstra, A. B.; Seguin, F. H.; Rinderknecht, H. G.; Frenje, J. A.; Johnson, M. Gatu; Sio, H.; Waugh, C. J.; Sinenian, N.; Li, C. K.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [McKenty, P. W.; Hohenberger, M.; Radha, P. B.; Delettrez, J. A.; Glebov, V. Yu.; Betti, R.; Goncharov, V. N.; Knauer, J. P.; Sangster, T. C.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [LePape, S.; Mackinnon, A. J.; Pino, J.; McNaney, J. M.; Rygg, J. R.; Amendt, P. A.; Bellei, C.; Benedetti, L. R.; Hopkins, L. Berzak; Bionta, R. M.; Casey, D. T.; Divol, L.; Edwards, M. J.; Glenn, S.; Glenzer, S. H.; Hicks, D. G.; Kimbrough, J. R.; Landen, O. L.; Lindl, J. D.; Ma, T.; MacPhee, A.; Meezan, N. B.; Moody, J. D.; Moran, M. J.; Park, H. -S.; Remington, B. A.; Robey, H.; Rosen, M. D.; Wilks, S. C.; Zacharias, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Herrmann, H. W.; Hoffman, N. M.; Kyrala, G. A.; Leeper, R. J.; Olson, R. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kilkenny, J. D.; Nikroo, A.] Gen Atom Co, San Diego, CA 92186 USA. RP Rosenberg, MJ (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM mrosenbe@mit.edu RI Hicks, Damien/B-5042-2015; MacKinnon, Andrew/P-7239-2014; lepape, sebastien/J-3010-2015; OI Hicks, Damien/0000-0001-8322-9983; MacKinnon, Andrew/0000-0002-4380-2906; /0000-0003-4969-5571 FU U.S. DoE [DE-NA0001857]; FSC [5-24431]; LLE [415935-G]; LLNL [B600100] FX The authors thank J. Schaeffer, R. Frankel, E. Doeg, M. Cairel, M. Valadez, and M. McKernan for contributing to the processing of CR-39 data used in this work, as well as the NIF operations crew for their help in executing these experiments. This work was presented in partial fulfillment of the first author's Ph.D. thesis and supported in part by U.S. DoE (Grant No. DE-NA0001857), FSC (No. 5-24431), LLE (No. 415935-G), and LLNL (No. B600100). NR 62 TC 11 Z9 11 U1 3 U2 31 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2014 VL 21 IS 12 AR 122712 DI 10.1063/1.4905064 PG 12 WC Physics, Fluids & Plasmas SC Physics GA AX8ME UT WOS:000347162700067 ER PT J AU Shafer, MW Unterberg, EA Wingen, A Battaglia, DJ Evans, TE Ferraro, NM Harris, JH Hillis, DL Nazikian, R AF Shafer, M. W. Unterberg, E. A. Wingen, A. Battaglia, D. J. Evans, T. E. Ferraro, N. M. Harris, J. H. Hillis, D. L. Nazikian, R. TI Plasma response measurements of non-axisymmetric magnetic perturbations on DIII-D via soft x-ray imaging SO PHYSICS OF PLASMAS LA English DT Article ID CAMERA; EDGE AB Recent observations on DIII-D have advanced the understanding of plasma response to applied resonant magnetic perturbations (RMPs) in both H-mode and L-mode plasmas. Three distinct 3D features localized in minor radius are imaged via filtered soft x-ray emission: (i) the formation of lobes extending from the unperturbed separatrix in the X-point region at the plasma boundary, (ii) helical kink-like perturbations in the steep-gradient region inside the separatrix, and (iii) amplified islands in the core of a low-rotation L-mode plasma. These measurements are used to test and to validate plasma response models, which are crucial for providing predictive capability of edge-localized mode control. In particular, vacuum and two-fluid resistive magnetohydrodynamic (MHD) responses are tested in the regions of these measurements. At the plasma boundary in H-mode discharges with n = 3 RMPs applied, measurements compare well to vacuum-field calculations that predict lobe structures. Yet in the steep-gradient region, measurements agree better with calculations from the linear resistive two-fluid MHD code, M3D-C1. Relative to the vacuum fields, the resistive two-fluid MHD calculations show a reduction in the pitch-resonant components of the normal magnetic field (screening), and amplification of non-resonant components associated with ideal kink modes. However, the calculations still over-predict the amplitude of the measured perturbation by a factor of 4. In a slowly rotating L-mode plasma with n = 1 RMPs, core islands are observed amplified from vacuum predictions. These results indicate that while the vacuum approach describes measurements in the edge region well, it is important to include effects of extended MHD in the pedestal and deeper in the plasma core. (C) 2014 AIP Publishing LLC. C1 [Shafer, M. W.; Unterberg, E. A.; Wingen, A.; Harris, J. H.; Hillis, D. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Battaglia, D. J.; Nazikian, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Evans, T. E.; Ferraro, N. M.] Gen Atom, San Diego, CA 92186 USA. RP Shafer, MW (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM shafermw@ornl.gov RI Unterberg, Ezekial/F-5240-2016; OI Unterberg, Ezekial/0000-0003-1353-8865; Wingen, Andreas/0000-0001-8855-1349 FU U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences [DE-AC05-00OR22725, DE-AC02-09CH11466, DE-FC02-04ER54698] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards DE-AC05-00OR22725, DE-AC02-09CH11466, and DE-FC02-04ER54698. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. NR 33 TC 3 Z9 3 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2014 VL 21 IS 12 AR 122518 DI 10.1063/1.4905129 PG 10 WC Physics, Fluids & Plasmas SC Physics GA AX8ME UT WOS:000347162700053 ER PT J AU Soto, L Pavez, C Moreno, J Inestrosa-Izurieta, MJ Veloso, F Gutierrez, G Vergara, J Clausse, A Bruzzone, H Castillo, F Delgado-Aparicio, LF AF Soto, Leopoldo Pavez, Cristian Moreno, Jose Inestrosa-Izurieta, Maria Jose Veloso, Felipe Gutierrez, Gonzalo Vergara, Julio Clausse, Alejandro Bruzzone, Horacio Castillo, Fermin Delgado-Aparicio, Luis F. TI Characterization of the axial plasma shock in a table top plasma focus after the pinch and its possible application to testing materials for fusion reactors SO PHYSICS OF PLASMAS LA English DT Article ID STREAMS; DEVICE; DAMAGE; ION AB The characterization of plasma bursts produced after the pinch phase in a plasma focus of hundreds of joules, using pulsed optical refractive techniques, is presented. A pulsed Nd-YAG laser at 532 nm and 8 ns FWHM pulse duration was used to obtain Schlieren images at different times of the plasma dynamics. The energy, interaction time with a target, and power flux of the plasma burst were assessed, providing useful information for the application of plasma focus devices for studying the effects of fusion-relevant pulses on material targets. In particular, it was found that damage factors on targets of the order of 10(4) (W/cm(2)) s(1/2) can be obtained with a small plasma focus operating at hundred joules. (C) 2014 AIP Publishing LLC. C1 [Soto, Leopoldo; Pavez, Cristian; Moreno, Jose; Inestrosa-Izurieta, Maria Jose] Comis Chilena Energia Nucl, Santiago, Chile. [Soto, Leopoldo; Pavez, Cristian; Moreno, Jose; Inestrosa-Izurieta, Maria Jose] Centro Invest & Aplicac Fis Plasmas & Potencia Pu, Santiago Talca, Chile. [Soto, Leopoldo; Pavez, Cristian; Moreno, Jose] Univ Andres Bello, Fac Ciencias Exactas, Dept Ciencias Fis, Santiago, Chile. [Veloso, Felipe] Pontificia Univ Catolica Chile, Inst Fis, Santiago, Chile. [Gutierrez, Gonzalo] Univ Chile, Fac Ciencias, Dept Fis, Santiago, Chile. [Vergara, Julio] Pontificia Univ Catolica Chile, Fac Ingn, Santiago, Chile. [Clausse, Alejandro] Consejo Nacl Invest Cient & Tecn, CNEA, RA-7000 Tandil, Argentina. [Clausse, Alejandro] Univ Nacl Ctr, RA-7000 Tandil, Argentina. [Bruzzone, Horacio] Consejo Nacl Invest Cient & Tecn, Mar Del Plata, Argentina. [Bruzzone, Horacio] Univ Mar del Plata, Mar Del Plata, Argentina. [Castillo, Fermin] Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Cuernavaca 62191, Morelos, Mexico. [Delgado-Aparicio, Luis F.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Soto, L (reprint author), Comis Chilena Energia Nucl, Casilla 188-D, Santiago, Chile. EM lsoto@cchen.cl RI Pavez, Cristian /A-7441-2012; Veloso, Felipe/A-6864-2012; Soto, Leopoldo/A-7084-2012; Gutierrez, Gonzalo/A-4973-2008; Moreno, Jose/A-7125-2012; Inestrosa-Izurieta, Maria Jose/I-1360-2015; Vergara, Julio/D-3310-2014 OI Veloso, Felipe/0000-0002-6703-5449; Gutierrez, Gonzalo/0000-0003-0676-0089; Vergara, Julio/0000-0002-6114-3254 FU IAEA-CRP [16996]; bilateral project CONICYT Chile-ANPCyT Argentina: CONICYT [ACE-01]; CONICYT [ACT-1115]; FONDECYT [1110940]; CONICYT-PAI [79130026]; [ANPCyT-PICT-2697] FX This work was supported by IAEA-CRP contract 16996, bilateral project CONICYT Chile-ANPCyT Argentina: CONICYT ACE-01, ANPCyT-PICT-2697, and CONICYT grant ACT-1115. The visit of F. Castillo to Chile was supported by FONDECYT grant 1110940. M. J. Inestrosa-Izurieta is supported by CONICYT-PAI grant 79130026. NR 15 TC 10 Z9 10 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2014 VL 21 IS 12 AR 122703 DI 10.1063/1.4903471 PG 6 WC Physics, Fluids & Plasmas SC Physics GA AX8ME UT WOS:000347162700058 ER PT J AU Tang, XZ Delzanno, GL AF Tang, Xian-Zhu Delzanno, Gian Luca TI Orbital-motion-limited theory of dust charging and plasma response SO PHYSICS OF PLASMAS LA English DT Article ID DISCHARGES; GRAINS AB The foundational theory for dusty plasmas is the dust charging theory that provides the dust potential and charge arising from the dust interaction with a plasma. The most widely used dust charging theory for negatively charged dust particles is the so-called orbital motion limited (OML) theory, which predicts the dust potential and heat collection accurately for a variety of applications, but was previously found to be incapable of evaluating the dust charge and plasma response in any situation. Here, we report a revised OML formulation that is able to predict the plasma response and hence the dust charge. Numerical solutions of the new OML model show that the widely used Whipple approximation of dust charge-potential relationship agrees with OML theory in the limit of small dust radius compared with plasma Debye length, but incurs large (order-unity) deviation from the OML prediction when the dust size becomes comparable with or larger than plasma Debye length. This latter case is expected for the important application of dust particles in a tokamak plasma. (C) 2014 AIP Publishing LLC. C1 [Tang, Xian-Zhu; Delzanno, Gian Luca] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Tang, XZ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM xtang@lanl.gov; delzanno@lanl.gov OI Delzanno, Gian Luca/0000-0002-7030-2683 FU U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences, under National Nuclear Security Administration of the U.S. Department of Energy by Los Alamos National Laboratory [DE-AC52-06NA25396] FX This research was supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences, under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy by Los Alamos National Laboratory, operated by Los Alamos National Security LLC under Contract No. DE-AC52-06NA25396. NR 27 TC 8 Z9 8 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2014 VL 21 IS 12 AR 123708 DI 10.1063/1.4904404 PG 6 WC Physics, Fluids & Plasmas SC Physics GA AX8ME UT WOS:000347162700114 ER PT J AU Weis, MR Zhang, P Lau, YY Rittersdorf, IM Zier, JC Gilgenbach, RM Hess, MH Peterson, KJ AF Weis, M. R. Zhang, P. Lau, Y. Y. Rittersdorf, I. M. Zier, J. C. Gilgenbach, R. M. Hess, M. H. Peterson, K. J. TI Temporal evolution of surface ripples on a finite plasma slab subject to the magneto-Rayleigh-Taylor instability SO PHYSICS OF PLASMAS LA English DT Article ID FAST Z-PINCHES; TARGET FUSION; FLYER PLATES; SIMULATIONS; PHYSICS; OUTPUT; FIELD AB Using the ideal magnetohydrodynamic model, we calculate the temporal evolution of initial ripples on the boundaries of a planar plasma slab that is subjected to the magneto-Rayleigh-Taylor instability. The plasma slab consists of three regions. We assume that in each region the plasma density is constant with an arbitrary value and the magnetic field is also constant with an arbitrary magnitude and an arbitrary direction parallel to the interfaces. Thus, the instability may be driven by a combination of magnetic pressure and kinetic pressure. The general dispersion relation is derived, together with the feedthrough factor between the two interfaces. The temporal evolution is constructed from the superposition of the eigenmodes. Previously established results are recovered in the various limits. Numerical examples are given on the temporal evolution of ripples on the interfaces of the finite plasma slab. (C) 2014 AIP Publishing LLC. C1 [Weis, M. R.; Zhang, P.; Lau, Y. Y.; Rittersdorf, I. M.; Zier, J. C.; Gilgenbach, R. M.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Hess, M. H.; Peterson, K. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lau, YY (reprint author), Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. EM yylau@umich.edu RI Zhang, Peng/C-8257-2011 OI Zhang, Peng/0000-0003-0606-6855 FU DoE [DE-SC0002590, DE-SC0012328]; NSF [PHY 0903340]; Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by DoE Award Nos. DE-SC0002590, DE-SC0012328 and NSF Grant No. PHY 0903340. Matt Weis was supported by the Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 53 TC 2 Z9 2 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2014 VL 21 IS 12 AR 122708 DI 10.1063/1.4904210 PG 15 WC Physics, Fluids & Plasmas SC Physics GA AX8ME UT WOS:000347162700063 ER PT J AU Xu, XQ Ma, JF Li, GQ AF Xu, X. Q. Ma, J. F. Li, G. Q. TI Impact of the pedestal plasma density on dynamics of edge localized mode crashes and energy loss scaling SO PHYSICS OF PLASMAS LA English DT Article ID ELMS AB The latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode (ELM) crashes and the consistent collisionality scaling of ELM energy losses with the world multi-tokamak database. A series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELM energy losses vs collisionality via a density scan. Linear results demonstrate that as the pedestal collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but increases for low n (1< n< 5), therefore the width of the growth rate spectrum gamma(n) becomes narrower and the peak growth shifts to lower n. Nonlinear BOUT++ simulations show a two-stage process of ELM crash evolution of (i) initial bursts of pressure blob and void creation and (ii) inward void propagation. The inward void propagation stirs the top of pedestal plasma and yields an increasing ELM size with decreasing collisionality after a series of microbursts. The pedestal plasma density plays a major role in determining the ELM energy loss through its effect on the edge bootstrap current and ion diamagnetic stabilization. The critical trend emerges as a transition (1) linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low collisionality with decreasing density and (2) nonlinearly from turbulence spreading dynamics at high collisionality into avalanche-like dynamics at low collisionality. (C) 2014 AIP Publishing LLC. C1 [Xu, X. Q.; Ma, J. F.; Li, G. Q.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Ma, J. F.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Li, G. Q.] Chinese Acad Sci, Inst Plasma Phys, Hefei, Peoples R China. RP Xu, XQ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM xxu@llnl.gov OI Li, Guoqiang/0000-0003-0792-4348 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; IFS-UT Austin [DE-FG02-04ER-54742]; U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences; LLNL LDRD project [12-ERD-022]; LDRD project [11-ERD-058]; China Natural Science Foundation [10721505] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by IFS-UT Austin under Contract DE-FG02-04ER-54742. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences. The authors wish to thank the support of LLNL LDRD project 12-ERD-022, LDRD project 11-ERD-058, and the China Natural Science Foundation under Contract No. 10721505. The authors wish to thank Dr. B. Dudson, Dr. M. V. Umansky, Dr. P. B. Snyder, Dr. H. Wilson, Dr. A. W. Leonard, Dr. A. Kirk, and Dr. A. Loarte, G. T. A. Huijsmans, P. H. Diamond, F. Waelbroeck, T. Y. Xia, Mr. C. H. Ma and Mr. P. W. Xi for useful discussions LLNL-JRNL-656259. NR 17 TC 7 Z9 7 U1 6 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2014 VL 21 IS 12 AR 120704 DI 10.1063/1.4905070 PG 5 WC Physics, Fluids & Plasmas SC Physics GA AX8ME UT WOS:000347162700004 ER PT J AU Yu, LL Schroeder, CB Li, FY Benedetti, C Chen, M Weng, SM Sheng, ZM Esarey, E AF Yu, L. -L. Schroeder, C. B. Li, F. -Y. Benedetti, C. Chen, M. Weng, S. -M. Sheng, Z. -M. Esarey, E. TI Control of focusing fields for positron acceleration in nonlinear plasma wakes using multiple laser modes SO PHYSICS OF PLASMAS LA English DT Article ID ELECTRON-ACCELERATORS AB Control of transverse wakefields in the nonlinear laser-driven bubble regime using a combination of Hermite-Gaussian laser modes is proposed. By controlling the relative intensity ratio of the two laser modes, the focusing force can be controlled, enabling matched beam propagation for emittance preservation. A ring bubble can be generated with a large longitudinal accelerating field and a transverse focusing field suitable for positron beam focusing and acceleration. (C) 2014 AIP Publishing LLC. C1 [Yu, L. -L.; Li, F. -Y.; Chen, M.; Weng, S. -M.; Sheng, Z. -M.] Shanghai Jiao Tong Univ, Dept Phys & Astron, IFSA Collaborat Innovat Ctr, Key Lab Laser Plasmas,Minist Educ, Shanghai 200240, Peoples R China. [Schroeder, C. B.; Benedetti, C.; Esarey, E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sheng, Z. -M.] Univ Strathclyde, Dept Phys, SUPA, Glasgow G4 0NG, Lanark, Scotland. RP Yu, LL (reprint author), Shanghai Jiao Tong Univ, Dept Phys & Astron, IFSA Collaborat Innovat Ctr, Key Lab Laser Plasmas,Minist Educ, Shanghai 200240, Peoples R China. EM LuleYu@sjtu.edu.cn RI Chen, Min/A-9955-2010; Sheng, Zheng-Ming/H-5371-2012; Yu, Lule/P-2566-2015; Weng, Su-Ming/F-8076-2011; OI Chen, Min/0000-0002-4290-9330; Weng, Su-Ming/0000-0001-7746-9462; Schroeder, Carl/0000-0002-9610-0166 FU National Basic Research Program of China [2013CBA01504]; National Natural Science Foundation of China [11421064, 11405107, 11374210, 11374209]; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank M. Zeng for useful discussions. This work was supported by the National Basic Research Program of China under Grant No. 2013CBA01504, and the National Natural Science Foundation of China under Grant Nos. 11421064, 11405107, 11374210, and 11374209. Computational resources of the PI cluster at Shanghai Jiao Tong University were used to perform the simulations. Work at Lawrence Berkeley National Laboratory was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 11 TC 6 Z9 6 U1 4 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2014 VL 21 IS 12 AR 120702 DI 10.1063/1.4903536 PG 5 WC Physics, Fluids & Plasmas SC Physics GA AX8ME UT WOS:000347162700002 ER PT J AU Benevides, LA Piper, RK Romanyukha, A AF Benevides, L. A. Piper, R. K. Romanyukha, A. TI A performance comparison of Thermo Fisher EPD-MK2 and TLD (LiF:Mg,Cu,P) as part of accreditation proficiency testing SO RADIATION MEASUREMENTS LA English DT Article; Proceedings Paper CT 17th Conference on Solid State Dosimetry (SSD) CY SEP 22-27, 2013 CL Recife, BRAZIL SP ISSDO DE Proficiency; EPD-MK2; TLD ID ACTIVE PERSONAL DOSIMETERS AB In this study we compared the proficiency testing performance of the Thermo Fisher active electronic personal dosimeter (EPD-Mk2) to the passive Thermoluminescent (TLD) dosimetry (LiF:Mg, Cu, P) in four testing categories as part of proficiency testing. One hundred and thirty two EPDs and comparable number of TLDs were submitted to Pacific Northwest National Laboratory (PNNL) and were subsequently irradiated with four categories of radiations in accordance with ANSI HPS 13.11-2009 criteria. The TLD performance was significantly better than EPDs in all categories. In addition, the EPD-Mk2 under responded in the accident category for M150 X-ray beam primarily due to the dose rate. The EPD-Mk2 was unable to respond to the exposure rate increase associated with accident category. The study showed that while the performance of EPD-Mk2 has improved to the point of passing ANSI HPS 13.11-2009, it requires that the user has a significant knowledge of the exposure scenario and radiation field. Published by Elsevier Ltd. C1 [Benevides, L. A.] Bur Med & Surg, Falls Church, VA 22042 USA. [Piper, R. K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Romanyukha, A.] Naval Dosimetry Ctr, Bethesda, MD 20889 USA. RP Benevides, LA (reprint author), Bur Med & Surg, 7700 Arlington Ave, Falls Church, VA 22042 USA. EM Benevidesl@aol.com NR 11 TC 1 Z9 1 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1350-4487 J9 RADIAT MEAS JI Radiat. Meas. PD DEC PY 2014 VL 71 SI SI BP 183 EP 186 DI 10.1016/j.radmeas.2014.03.019 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AY3PD UT WOS:000347494400039 ER PT J AU Weaver, M Petasecca, M Cutajar, DL Lerch, MLF De Geronirno, G Pinelli, DA Cullen, AJ Prokopovich, DA Perevertaylo, VL Rosenfeld, AB AF Weaver, M. Petasecca, M. Cutajar, D. L. Lerch, M. L. F. De Geronirno, G. Pinelli, D. A. Cullen, A. J. Prokopovich, D. A. Perevertaylo, V. L. Rosenfeld, A. B. TI Panoptes: Calibration of a dosimetry system for eye brachytherapy SO RADIATION MEASUREMENTS LA English DT Article; Proceedings Paper CT 17th Conference on Solid State Dosimetry (SSD) CY SEP 22-27, 2013 CL Recife, BRAZIL SP ISSDO DE Eye plaque; Brachytherapy; Dosimety; HERMES; IBICC ID MELANOMA; I-125; AAPM AB Intraocular cancer is a serious threat to the lives of those that suffer from it. Dosimetry for eye brachytherapy presents a significant challenge due to the inherently steep dose gradients that are needed to treat such small tumours in close proximity to sensitive normal structures. This issue is addressed by providing much needed quality assurance to eye brachytherapy, a novel volumetric dosimetry system, called P-ANOPTES was developed. This study focuses on the preliminary characterisation and calibration of the system. Using ion beam facilities, the custom, pixelated silicon detector of PANOPTES was shown to have good charge collection uniformity and a well defined sensitive volume. Flat-field calibration was conducted on the device using a 250 kVp orthovoltage beam. Finally, the detector and phantom were simulated with Monte Carlo in Geant4, to create water equivalent dose correction factors for each pixel across a range of angles. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Weaver, M.; Petasecca, M.; Cutajar, D. L.; Lerch, M. L. F.; Rosenfeld, A. B.] Univ Wollongong, Ctr Med Radiat Phys, Wollongong, NSW 2522, Australia. [De Geronirno, G.; Pinelli, D. A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Cullen, A. J.] Illawarra Canc Care Ctr, Wollongong, NSW, Australia. [Prokopovich, D. A.] Australian Nucl Sci & Technol Org, Lucas Heights, NSW, Australia. [Perevertaylo, V. L.] SPA B1T, UA-04136 Kiev, Ukraine. RP Weaver, M (reprint author), Univ Wollongong, Ctr Med Radiat Phys, Wollongong, NSW 2522, Australia. EM mweaver@uow.edu.au; anatoly@uow.edu.au RI McKenzie, Warren/J-2137-2014 NR 9 TC 1 Z9 1 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1350-4487 J9 RADIAT MEAS JI Radiat. Meas. PD DEC PY 2014 VL 71 SI SI BP 310 EP 314 DI 10.1016/j.radmeas.2014.03.022 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AY3PD UT WOS:000347494400067 ER PT J AU Maksymovych, P Kelly, SJ Cerda, JI AF Maksymovych, Petro Kelly, Simon J. Cerda, Jorge I. TI Surface-State Enhancement of Tunneling Thermopower on the Ag(111) Surface SO ACS NANO LA English DT Article DE thermovoltage; tunneling; Landauer; resonance; thermopower; silver ID SINGLE-MOLECULE JUNCTIONS; AB-INITIO; MICROSCOPY; THERMOVOLTAGE; CONDUCTANCE; THERMOELECTRICITY; SIMULATION; CONTACTS; BARRIER AB Thermoelectric effects in tunnel junctions are currently being revisited for their prospects in cooling and energy harvesting applications, and as sensitive probes of electron transport. Quantitative interpretation of these effects calls for advances in both theory and experiment, particularly with respect to the electron transmission probability across a tunnel barrier which encodes the energy dependence and the magnitude of tunneling thermopower. Using noble metal surfaces as clean model systems, we demonstrate a comparatively simple and quantitative approach where the transmission probability is directly measured experimentally. Importantly, we estimate not only thermovoltage, but also its energy and temperature dependencies. We have thus resolved surface-state enhancement of thermovoltage, which manifests as 10-fold enhancement of thermopower on terraces of the Ag(111) surface compared to single-atom step sites and surface-supported nanoparticles. To corroborate experimental analysis, the methodology was applied to the transmission probability obtained from first-principles calculations for the (111) surfaces of the three noble metals, finding good agreement between overall trends. Surface-state effects themselves point to a possibility of achieving competitive performance of all-metal tunnel junctions when compared to molecular junctions. At the same time, the approach presented here opens up possibilities to investigate the properties of nominally doped or gated thermoelectric tunnel junctions as well as temperature gradient in nanometer gaps. C1 [Maksymovych, Petro; Kelly, Simon J.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Cerda, Jorge I.] CSIC, ICMM, E-28049 Madrid, Spain. RP Maksymovych, P (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM maksymovychp@ornl.gov RI Maksymovych, Petro/C-3922-2016; Cerda, Jorge/F-4043-2010 OI Maksymovych, Petro/0000-0003-0822-8459; Cerda, Jorge/0000-0001-6176-0191 FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; Scientific User Facilities Division, U.S. Department of Energy at Oak Ridge National Laboratory; Spanish Ministerio de Economia y Competitividad [MAT2010-18432, MAT2013-47878-C2-R] FX A portion of this research (S.K.) was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. A portion of this research (P.M.) was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy. J.I.C. acknowledges financial support from the Spanish Ministerio de Economia y Competitividad (Grant Nos. MAT2010-18432 and MAT2013-47878-C2-R). NR 45 TC 2 Z9 2 U1 2 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD DEC PY 2014 VL 8 IS 12 BP 12110 EP 12119 DI 10.1021/nn506123g PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AX8CL UT WOS:000347138000024 PM 25405264 ER PT J AU Kim, DW Riha, SC DeMarco, EJ Martinson, ABF Farha, OK Hupp, JT AF Kim, Dong Wook Riha, Shannon C. DeMarco, Erica J. Martinson, Alex B. F. Farha, Omar K. Hupp, Joseph T. TI Green lighting Photo electrochemical Oxidation of Water by Iron Oxide SO ACS NANO LA English DT Article DE iron oxide; titanium incorporation; ultrathin film; absorbed photon-to-current conversion efficiency (APCE); green light; transient photocurrent ID ATOMIC LAYER DEPOSITION; PHOTOELECTROCHEMICAL HYDROGEN-PRODUCTION; ALPHA-FE2O3 PHOTOELECTRODES; SEMICONDUCTOR ELECTRODES; VISIBLE-LIGHT; THIN-FILMS; HEMATITE; PHOTOANODES; PERFORMANCE; TI AB Hematite (alpha-Fe2O3) is one of just a few candidate electrode materials that possess all of the following photocatalyst-essential properties for scalable application to water oxidation: excellent stability, earth-abundance, suitability positive valence-band-edge energy, and significant visible light absorptivity. Despite these merits, hematites modest oxygen evolution reaction kinetics and its poor efficiency in delivering photogenerated holes, especially holes generated by green photons, to the electrode/solution interface, render it ineffective as a practical water-splitting catalyst. Here we show that hole delivery and catalytic utilization can be substantially improved through Ti alloying, provided that the alloyed material is present in ultrathin-thin-film form. Notably, the effects are most pronounced for charges photogenerated by photons with energy comparable to the band gap for excitation of Fe(3d) -> Fe(3d) transitions (i.e., green photons). Additionally, at the optimum Ti substitution level the lifetimes of surface-localized holes, competent for water oxidation, are extended. Together these changes explain an overall improvement in photoelectrochemical performance, especially enhanced internal quantum efficiencies, observed upon Ti(IV) incorporation. C1 [Kim, Dong Wook; DeMarco, Erica J.; Farha, Omar K.; Hupp, Joseph T.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Kim, Dong Wook; DeMarco, Erica J.; Martinson, Alex B. F.; Hupp, Joseph T.] Northwestern Univ, Argonne Northwestern Solar Energy Res ANSER Ctr, Evanston, IL 60208 USA. [Riha, Shannon C.; Martinson, Alex B. F.; Hupp, Joseph T.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Hupp, Joseph T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Farha, Omar K.] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah 22254, Saudi Arabia. RP Hupp, JT (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM j-hupp@northwestern.edu RI Faculty of, Sciences, KAU/E-7305-2017; OI Martinson, Alex/0000-0003-3916-1672 FU ANSER Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001059] FX We thank Dr. Benjamin Klahr for helpful discussions and critical reading of the manuscript. This work was supported as part of the ANSER Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001059. NR 62 TC 26 Z9 26 U1 17 U2 159 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD DEC PY 2014 VL 8 IS 12 BP 12199 EP 12207 DI 10.1021/nn503869n PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AX8CL UT WOS:000347138000032 PM 25414974 ER PT J AU Pfadler, T Coric, M Palumbiny, CM Jakowetz, AC Strunk, KP Dorman, JA Ehrenreich, P Wang, C Hexemer, A Png, RQ Ho, PKH Muller-Buschbaum, P Weickert, J Schmidt-Mende, L AF Pfadler, Thomas Coric, Mihael Palumbiny, Claudia M. Jakowetz, Andreas C. Strunk, Karl-Philipp Dorman, James A. Ehrenreich, Philipp Wang, Cheng Hexemer, Alexander Png, Rui-Qi Ho, Peter K. H. Mueller-Buschbaum, Peter Weickert, Jonas Schmidt-Mende, Lukas TI Influence of Interfacial Area on Exciton Separation and Polaron Recombination in Nanostructured Bilayer All-Polymer Solar Cells SO ACS NANO LA English DT Article DE exciton separation; recombination; comb-like morphology; all-polymer; nanoimprint lithography; soft X-rays; X-ray scattering ID X-RAY-SCATTERING; INTERNAL QUANTUM EFFICIENCY; OPEN-CIRCUIT VOLTAGE; DONOR-ACCEPTOR HETEROJUNCTIONS; PHOTOVOLTAIC CELLS; ORGANIC SEMICONDUCTORS; OPTICAL INTERFERENCE; CHARGE SEPARATION; THIN-FILMS; MOBILITY AB The macroscopic device performance of organic solar cells is governed by interface physics on a nanometer scale. A comb-like bilayer all-polymer morphology featuring a controlled enhancement in donoracceptor interfacial area is employed as a model system to investigate the fundamental processes of exciton separation and polaron recombination in these devices. The different nanostructures are characterized locally by SEM/AFM, and the buried interdigitating interface of the final device architecture is statistically verified on a large area via advanced grazing incidence X-ray scattering techniques. The results show equally enhanced harvesting of photoexcitons in both donor and acceptor materials directly correlated to the total enhancement of interfacial area. Apart from this beneficial effect, the enhanced interface leads to significantly increased polaron recombination losses both around the open-circuit voltage and maximum power point, which is determined in complement with diode dark current characteristics, impedance spectroscopy, and transient photovoltage measurements. From these findings, it is inferred that a spatially optimized comb-like donoracceptor nanonetwork alone is not the ideal morphology even though often postulated. Instead, the energetic landscape has to be considered. A perfect morphology for an excitonic solar cell must be spatially and energetically optimized with respect to the donoracceptor interface. C1 [Pfadler, Thomas; Coric, Mihael; Jakowetz, Andreas C.; Strunk, Karl-Philipp; Dorman, James A.; Ehrenreich, Philipp; Weickert, Jonas; Schmidt-Mende, Lukas] Univ Konstanz, Dept Phys, D-78457 Constance, Germany. [Palumbiny, Claudia M.; Mueller-Buschbaum, Peter] Tech Univ Munich, Phys Dept E13, Lehrstuhl Funkt Mat, D-85747 Garching, Germany. [Wang, Cheng; Hexemer, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Expt Syst Adv Light Source, Berkeley, CA 94720 USA. [Png, Rui-Qi; Ho, Peter K. H.] Natl Univ Singapore, Dept Phys, Singapore S117542, Singapore. RP Weickert, J (reprint author), Univ Konstanz, Dept Phys, Univ Str 10, D-78457 Constance, Germany. EM jonas.weickert@uni-konstanz.de; lukas.schmidt-mende@uni-konstanz.de RI Schmidt-Mende, Lukas/H-4240-2011; Wang, Cheng/A-9815-2014; Muller-Buschbaum, Peter/C-3397-2017; OI Schmidt-Mende, Lukas/0000-0001-6867-443X; Muller-Buschbaum, Peter/0000-0002-9566-6088; Jakowetz, Andreas/0000-0001-7804-7210 FU German Research Foundation (DFG) [SPP1355]; Alexander von Humboldt Foundation; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Professor L.L. Chua at the National University of Singapore and her team for providing the cross-linking molecules. We acknowledge support by the German Research Foundation (DFG) in the "SPP1355: Elementary processes of organic photovoltaics" and in the project "Identification and overcoming of loss mechanisms in nanostructured hybrid solar cells-pathways toward more efficient devices". C.M.P. acknowledges the GreenTech Initiative - Interface Science for Photovoltaics (ISPV) of the EuroTech Universities together with the International Graduate School of Science and Engineering (IGSSE), TUM, and the International Doctorate Program in Nano-BioTechnology (IDK-NBT) - Elite Network of Bavaria and the Center for NanoScience (CeNS). J.A.D. acknowledges funding by the Alexander von Humboldt Foundation. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 66 TC 12 Z9 12 U1 6 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD DEC PY 2014 VL 8 IS 12 BP 12397 EP 12409 DI 10.1021/nn5064166 PG 13 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AX8CL UT WOS:000347138000052 PM 25412270 ER PT J AU Adams, BD Black, R Radtke, C Williams, Z Mehdi, BL Browning, ND Nazar, LF AF Adams, Brian D. Black, Robert Radtke, Claudio Williams, Zack Mehdi, B. Layla Browning, Nigel D. Nazar, Linda F. TI The Importance of Nanometric Passivating Films on Cathodes for Li-Air Batteries SO ACS NANO LA English DT Article DE lithium oxygen batteries; lithium peroxide; cathodes; electrodes; surface passivation; electron transfer ID NONAQUEOUS LI-O-2 BATTERIES; LITHIUM-OXYGEN BATTERY; SOLVENT STABILITY; ELECTROLYTE; CARBON; DISCHARGE; CHARGE; PERFORMANCE; OXIDATION; CELLS AB Recently, there has been a transition from fully carbonaceous positive electrodes for the aprotic lithium oxygen battery to alternative materials and the use of redox mediator additives, in an attempt to lower the large electrochemical overpotentials associated with the charge reaction. However, the stabilizing or catalytic effect of these materials can become complicated due to the presence of major side-reactions observed during dis(charge). Here, we isolate the charge reaction from the discharge by utilizing electrodes prefilled with commercial lithium peroxide with a crystallite size of about 200-800 nm. Using a combination of S/TEM, online mass spectrometry, XPS, and electrochemical methods to probe the nature of surface films on carbon and conductive Ti-based nanoparticles, we show that oxygen evolution from lithium peroxide is strongly dependent on their surface properties. Insulating TiO2 surface layers on TiC and TiN - even as thin as 3 nmcan completely inhibit the charge reaction under these conditions. On the other hand, TiC, which lacks this oxide film, readily facilitates oxidation of the bulk Li2O2 crystallites, at a much lower overpotential relative to carbon. Since oxidation of lithium oxygen battery cathodes is inevitable in these systems, precise control of the surface chemistry at the nanoscale becomes of upmost importance. C1 [Adams, Brian D.; Black, Robert; Radtke, Claudio; Williams, Zack; Nazar, Linda F.] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada. [Adams, Brian D.; Black, Robert; Radtke, Claudio; Williams, Zack; Nazar, Linda F.] Univ Waterloo, Waterloo Inst Nanotechnol, Waterloo, ON N2L 3G1, Canada. [Mehdi, B. Layla; Browning, Nigel D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Nazar, LF (reprint author), Univ Waterloo, Dept Chem, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada. EM lfnazar@uwaterloo.ca RI Radtke, Claudio/B-8516-2008; OI Radtke, Claudio/0000-0003-3469-4920; Browning, Nigel/0000-0003-0491-251X; Nazar, Linda/0000-0002-3314-8197 FU NSERC; Waterloo Institute of Technology; CNPq; Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub - U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences; DOE's Office of Biological and Environmental Research; Department of Energy [DE-AC05-76RLO1830] FX NSERC is acknowledged by L.F.N. for a Canada Research Chair, and B.D.A. and R.B. for a graduate scholarship (CGS-D). B.D.A. and R.B. also thank the Waterloo Institute of Technology for WIN fellowships. C.R. thanks CNPq for a fellowship. This work was supported in part by the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (electrochemical and TEM) and as part of the Chemical Imaging Initiative conducted under the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). The (S)TEM work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. PNNL, a multiprogram national laboratory, is operated by Battelle for the Department of Energy under Contract DE-AC05-76RLO1830. We thank Dipan Kundu (UW) for his assistance with the iodometric titrations. NR 42 TC 37 Z9 37 U1 13 U2 136 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD DEC PY 2014 VL 8 IS 12 BP 12483 EP 12493 DI 10.1021/nn505337p PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AX8CL UT WOS:000347138000061 PM 25364863 ER PT J AU Yang, N Belianinov, A Strelcov, E Tebano, A Foglietti, V Di Castro, D Schlueter, C Lee, TL Baddorf, AP Balke, N Jesse, S Kalinin, SV Balestrino, G Aruta, C AF Yang, Nan Belianinov, Alex Strelcov, Evgheni Tebano, Antonello Foglietti, Vittorio Di Castro, Daniele Schlueter, Christoph Lee, Tien-Lin Baddorf, Arthur P. Balke, Nina Jesse, Stephen Kalinin, Sergei V. Balestrino, Giuseppe Aruta, Carmela TI Effect of Doping on Surface Reactivity and Conduction Mechanism in Samarium-Doped Ceria Thin Films SO ACS NANO LA English DT Article DE Sm-doped ceria; ion conduction; scanning probe microscopy; hard X-ray photoemission ID OXIDE FUEL-CELLS; NANOCRYSTALLINE CERIA; PROTON CONDUCTION; FORCE MICROSCOPY; OXYGEN VACANCY; ELECTRODES; NANOSCALE; BEHAVIOR; ENERGY; DENSE AB A systematic study by reversible and hysteretic electrochemical strain microscopy (ESM) in samples of cerium oxide with different Sm content and in several working conditions allows disclosing the microscopic mechanism underlying the difference in electrical conduction mechanism and related surface activity, such as water adsorption and dissociation with subsequent proton liberation. We have measured the behavior of the reversible hysteresis loops by changing temperature and humidity, both in standard ESM configuration and using the first-order reversal curve method. The measurements have been performed in much smaller temperature ranges with respect to alternative measuring techniques. Complementing our study with hard X-ray photoemission spectroscopy and irreversible scanning probe measurements, we find that water incorporation is favored until the doping with Sm is too high to allow the presence of Ce3+. The influence of doping on the surface reactivity clearly emerges from all of our experimental results. We find that at lower Sm concentration, proton conduction is prevalent, featured by lower activation energy and higher electrical conductivity. Defect concentrations determine the type of the prevalent charge carrier in a doping dependent manner. C1 [Yang, Nan; Tebano, Antonello; Di Castro, Daniele; Balestrino, Giuseppe; Aruta, Carmela] Univ Roma Tor Vergata, Natl Res Council CNR SPIN, I-00133 Rome, Italy. [Yang, Nan; Tebano, Antonello; Balestrino, Giuseppe; Aruta, Carmela] Univ Roma Tor Vergata, NAST Ctr, I-00133 Rome, Italy. [Tebano, Antonello; Di Castro, Daniele; Balestrino, Giuseppe] Univ Roma Tor Vergata, Dept DICII, I-00133 Rome, Italy. [Yang, Nan] Univ Niccolo Cusano, Fac Engn, I-00166 Rome, Italy. [Foglietti, Vittorio] CNR ISM Area Ric Montelibretti, Natl Res Council, I-00016 Rome, Italy. [Belianinov, Alex; Strelcov, Evgheni; Balke, Nina; Jesse, Stephen; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Schlueter, Christoph; Lee, Tien-Lin] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England. RP Aruta, C (reprint author), Univ Roma Tor Vergata, Natl Res Council CNR SPIN, I-00133 Rome, Italy. EM carmela.aruta@spin.cnr.it RI Aruta, Carmela/L-2957-2015; Balke, Nina/Q-2505-2015; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Baddorf, Arthur/I-1308-2016; Foglietti, Vittorio/J-7052-2012; Strelcov, Evgheni/H-1654-2013 OI Belianinov, Alex/0000-0002-3975-4112; Aruta, Carmela/0000-0002-6917-6667; Balke, Nina/0000-0001-5865-5892; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Baddorf, Arthur/0000-0001-7023-2382; TEBANO, ANTONELLO/0000-0002-0229-671X; DI CASTRO, DANIELE/0000-0002-0878-6904; Foglietti, Vittorio/0000-0002-9588-5379; FU META-Materials Enhancement for Technological Applications Project (FP7-PEOPLE-IRSES-Marie Curie Actions) [PIRSES-GA-2010-269182]; Italian MIUR through the FIRB [RBAP115AYN]; DOE Office of Science User Facility [CNMS2014-046] FX The authors acknowledge META-Materials Enhancement for Technological Applications Project (FP7-PEOPLE-2010-IRSES-Marie Curie Actions, PIRSES-GA-2010-269182). Italian MIUR is acknowledged for support through the FIRB Project RBAP115AYN "Oxides at the nanoscale: multifunctionality and applications" and PRIN Project 2010-2011 OXIDE, "OXide Interfaces: emerging new properties, multifunctionality, and Devices for Electronics and Energy". The SPM part of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility (user project CNMS2014-046). NR 39 TC 13 Z9 13 U1 12 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD DEC PY 2014 VL 8 IS 12 BP 12494 EP 12501 DI 10.1021/nn505345c PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AX8CL UT WOS:000347138000062 PM 25415828 ER PT J AU Makarov, NS Lau, PC Olson, C Velizhanin, KA Solntsev, KM Kieu, K Kilina, S Tretiak, S Norwood, RA Peyghambarian, N Perry, JW AF Makarov, Nikolay S. Lau, Pick Chung Olson, Christopher Velizhanin, Kirill A. Solntsev, Kyril M. Kieu, Khanh Kilina, Svetlana Tretiak, Sergei Norwood, Robert A. Peyghambarian, Nasser Perry, Joseph W. TI Two-Photon Absorption in CdSe Colloidal Quantum Dots Compared to Organic Molecules SO ACS NANO LA English DT Article DE quantum dot; CdSe; two-photon absorption; quantum-chemical calculations; effective-mass model ID STRUCTURE-PROPERTY RELATIONSHIPS; DENSITY-FUNCTIONAL THEORY; SEMICONDUCTOR NANOCRYSTALS; OPTICAL-PROPERTIES; NONLINEAR ABSORPTION; ELECTRONIC-STRUCTURE; SURFACE LIGANDS; CROSS-SECTION; SIZE; CHROMOPHORES AB We discuss fundamental differences in electronic structure as reflected in one- and two-photon absorption spectra of semiconductor quantum dots and organic molecules by performing systematic experimental and theoretical studies of the size-dependent spectra of colloidal quantum dots. Quantum-chemical and effective-mass calculations are used to model the one- and two-photon absorption spectra and compare them with the experimental results. Currently, quantum-chemical calculations are limited to only small-sized quantum dots (nanoclusters) but allow one to study various environmental effects on the optical spectra such as solvation and various surface functionalizations. The effective-mass calculations, on the other hand, are applicable to the larger-sized quantum dots and can, in general, explain the observed trends but are insensitive to solvent and ligand effects. Careful comparison of the experimental and theoretical results allows for quantifying the range of applicability of theoretical methods used in this work. Our study shows that the small clusters can be in principle described in a manner similar to that used for organic molecules. In addition, there are several important factors (quality of passivation, nature of the ligands, and intraband/interband transitions) affecting optical properties of the nanoclusters. The larger-size quantum dots, on the other hand, behave similarly to bulk semiconductors, and can be well described in terms of the effective-mass models. C1 [Makarov, Nikolay S.; Solntsev, Kyril M.; Perry, Joseph W.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Makarov, Nikolay S.; Solntsev, Kyril M.; Perry, Joseph W.] Georgia Inst Technol, Ctr Organ Photon & Elect, Atlanta, GA 30332 USA. [Olson, Christopher; Kilina, Svetlana] N Dakota State Univ, Dept Chem & Biochem, Fargo, ND 58108 USA. [Tretiak, Sergei] Los Alamos Natl Lab, Div Theoret, CINT T 1, Los Alamos, NM 87545 USA. [Velizhanin, Kirill A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Lau, Pick Chung; Kieu, Khanh; Norwood, Robert A.; Peyghambarian, Nasser] Univ Arizona, Sch Opt, Tucson, AZ 85721 USA. RP Perry, JW (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. EM joe.perry@gatech.edu RI Velizhanin, Kirill/C-4835-2008; Tretiak, Sergei/B-5556-2009 OI Tretiak, Sergei/0000-0001-5547-3647 FU DARPA ZOE program [W31P4Q-09-1-0012]; NSF PREM [DMR-0934212]; NSF [CHE-1213047]; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; Center for Integrated Nanotechnology (CINT); Center for Nonlinear Studies (CNLS); US Department of Energy (DOE) [DE-SC008446] FX This work was supported in part by grants from the DARPA ZOE program (Grant No. W31P4Q-09-1-0012), the NSF PREM (Grant No. DMR-0934212), and the NSF (Grant No. CHE-1213047). Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396. We acknowledge support of the Center for Integrated Nanotechnology (CINT) and Center for Nonlinear Studies (CNLS). S.K. acknowledges financial support of the US Department of Energy (DOE) Early Career Research Grant DE-SC008446. NR 83 TC 11 Z9 11 U1 4 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD DEC PY 2014 VL 8 IS 12 BP 12572 EP 12586 DI 10.1021/nn505428x PG 15 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AX8CL UT WOS:000347138000069 PM 25427158 ER PT J AU Steinruck, HG Schiener, A Schindler, T Will, J Magerl, A Konovalov, O Li Destri, G Seeck, OH Mezger, M Haddad, J Deutsch, M Checco, A Ocko, BM AF Steinrueck, Hans-Georg Schiener, Andreas Schindler, Torben Will, Johannes Magerl, Andreas Konovalov, Oleg Li Destri, Giovanni Seeck, Oliver H. Mezger, Markus Haddad, Julia Deutsch, Moshe Checco, Antonio Ocko, Benjamin M. TI Nanoscale Structure of Si/SiO2/Organics Interfaces SO ACS NANO LA English DT Article DE X-ray reflectivity; thin films; native silicon oxide; self-assembled monolayers ID SELF-ASSEMBLED MONOLAYERS; X-RAY; IN-SITU; SIO2/SI INTERFACE; OXIDE SURFACES; GROWTH; FILMS; OCTADECYLTRICHLOROSILANE; SPECTROSCOPY; TRANSISTORS AB X-ray reflectivity measurements of increasingly more complex interfaces involving silicon (001) substrates reveal the existence of a thin low-density layer intruding between the single-crystalline silicon and the amorphous native SiO2 terminating it. The importance of accounting for this layer in modeling silicon/liquid interfaces and silicon-supported monolayers is demonstrated by comparing fits of the measured reflectivity curves by models including and excluding this layer. The inclusion of this layer, with 6-8 missing electrons per silicon unit cell area, consistent with one missing oxygen atom whose bonds remain hydrogen passivated, is found to be particularly important for an accurate and high-resolution determination of the surface normal density profile from reflectivities spanning extended momentum transfer ranges, now measurable at modern third-generation synchrotron sources. C1 [Steinrueck, Hans-Georg; Schiener, Andreas; Schindler, Torben; Will, Johannes; Magerl, Andreas] Univ Erlangen Nurnberg, D-91058 Erlangen, Germany. [Konovalov, Oleg; Li Destri, Giovanni] ESRF, F-38043 Grenoble, France. [Seeck, Oliver H.] HASYLAB DESY, D-22607 Hamburg, Germany. [Mezger, Markus] Max Planck Inst Polymer Res, D-55128 Mainz, Germany. [Haddad, Julia; Deutsch, Moshe] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. [Haddad, Julia; Deutsch, Moshe] Bar Ilan Univ, Inst Nanotechnol & Adv Mat, IL-52900 Ramat Gan, Israel. [Checco, Antonio; Ocko, Benjamin M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Ocko, BM (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM ocko@bnl.gov RI Li Destri, Giovanni/C-8807-2012; Steinruck, Hans-Georg/A-6382-2015; Mezger, Markus/D-6897-2014; MPIP, AK Butt/B-8805-2009 OI Li Destri, Giovanni/0000-0001-6195-659X; Mezger, Markus/0000-0001-9049-6983; FU DFG research unit 1878; US-Israel Binational Science Foundation, Jerusalem; Division of Materials Sciences (DOE) [DE-AC02-76CH0016] FX H.-G.S, B.M.O., and M.D. thank Jerry Tersoff and Mark Hybertsen for fruitful discussions. Beamtime at beamlines ID10 and ID15A, ESRF, and P08, Petra III, is gratefully acknowledged, as is support by the DFG research unit 1878, "Functional Molecular Structures on Complex Oxide Surfaces" (H.-G.S., A.M.), and The US-Israel Binational Science Foundation, Jerusalem (M.D.). Work at BNL (B.M.O.) and at the NSLS is supported by the Division of Materials Sciences (DOE) under contract DE-AC02-76CH0016. NR 43 TC 7 Z9 7 U1 4 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD DEC PY 2014 VL 8 IS 12 BP 12676 EP 12681 DI 10.1021/nn5056223 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AX8CL UT WOS:000347138000079 PM 25401294 ER PT J AU Wojciechowski, K Stranks, SD Abate, A Sadoughi, G Sadhanala, A Kopidakis, N Rumbles, G Li, CZ Friend, RH Jen, AKY Snaith, HJ AF Wojciechowski, Konrad Stranks, Samuel D. Abate, Antonio Sadoughi, Golnaz Sadhanala, Aditya Kopidakis, Nikos Rumbles, Garry Li, Chang-Zhi Friend, Richard H. Jen, Alex K. -Y. Snaith, Henry J. TI Heterojunction Modification for Highly Efficient Organic - Inorganic Perovskite Solar Cells SO ACS NANO LA English DT Article DE perovskite; fullerene; self-assembled monolayer; photothermal deflection spectroscopy; microwave conductivity; traps; passivation ID LEAD IODIDE PEROVSKITE; ORGANOMETAL HALIDE PEROVSKITES; HOLE-TRANSPORT; LOW-COST; RECOMBINATION; PERFORMANCE; CH3NH3PBI3; TRIHALIDE; ABSORBER; ELECTRON AB Organicinorganic perovskites, such as CH3NH3PbX3 (X = I, Br, Cl), have emerged as attractive absorber materials for the fabrication of low cost high efficiency solar cells. Over the last 3 years, there has been an exceptional rise in power conversion efficiencies (PCEs), demonstrating the outstanding potential of these perovskite materials. However, in most device architectures, including the simplest thin-film planar structure, a currentvoltage response displays an anomalous hysteresis, whereby the power output of the cell varies with measurement time, direction and light exposure or bias history. Here we provide insight into the physical processes occurring at the interface between the n-type charge collection layer and the perovskite absorber. Through spectroscopic measurements, we find that electron transfer from the perovskite to the TiO2 in the standard planar junction cells is very slow. By modifying the n-type contact with a self-assembled fullerene monolayer, electron transfer is switched on, and both the n-type and p-type heterojunctions with the perovskite are active in driving the photovoltaic operation. The fullerene-modified devices achieve up to 17.3% power conversion efficiency with significantly reduced hysteresis, and stabilized power output reaching 15.7% in the planar pin heterojunction solar cells measured under simulated AM 1.5 sunlight. C1 [Wojciechowski, Konrad; Stranks, Samuel D.; Abate, Antonio; Sadoughi, Golnaz; Snaith, Henry J.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Sadhanala, Aditya; Friend, Richard H.] Univ Cambridge, Cavendish Lab, Cambridge CB3 OHE, England. [Kopidakis, Nikos; Rumbles, Garry] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Li, Chang-Zhi; Jen, Alex K. -Y.] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. RP Snaith, HJ (reprint author), Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM h.snaith1@physics.ox.ac.uk RI Kopidakis, Nikos/N-4777-2015; Snaith, Henry/A-7367-2016; Abate, Antonio/F-2419-2010; Stranks, Samuel/M-7837-2015; OI Snaith, Henry/0000-0001-8511-790X; Abate, Antonio/0000-0002-3012-3541; Stranks, Samuel/0000-0002-8303-7292; Rumbles, Garry/0000-0003-0776-1462; Sadhanala, Aditya/0000-0003-2832-4894 FU EPSRC; Office of Naval Research [N00014-11-1-0300]; ONR; U.S. Department of Energy, Office of Science [DE-AC36-08GO28308]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC36-08GO28308] FX This work was part funded by EPSRC. A.K.-Y.J. and C.-Z.L thank the support from the Office of Naval Research (No. N00014-11-1-0300). We thank the ONR global research support. The TRMC experiments are based upon work supported by the Solar Photochemistry Program of the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences through Grant DE-AC36-08GO28308 to NREL. NR 52 TC 154 Z9 154 U1 40 U2 382 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD DEC PY 2014 VL 8 IS 12 BP 12701 EP 12709 DI 10.1021/nn505723h PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AX8CL UT WOS:000347138000082 PM 25415931 ER PT J AU Cativo, MHM Kim, DK Riggleman, RA Yager, KG Nonnenmann, SS Chao, HK Bonnell, DA Black, CT Kagan, CR Park, SJ AF Cativo, Ma. Helen M. Kim, David K. Riggleman, Robert A. Yager, Kevin G. Nonnenmann, Stephen S. Chao, Huikuan Bonnell, Dawn A. Black, Charles T. Kagan, Cherie R. Park, So-Jung TI Air-Liquid Interfacial Self-Assembly of Conjugated Block Copolymers into Ordered Nanowire Arrays SO ACS NANO LA English DT Article DE amphiphilic polymer; conjugated copolymer; air-water interface; self-assembly; supramolecular chemistry ID FIELD-EFFECT TRANSISTORS; LITHIUM BATTERY ELECTRODES; LANGMUIR-BLODGETT-FILMS; ROD-COIL; REGIOREGULAR POLY(3-HEXYLTHIOPHENE); AIR/WATER INTERFACE; DIBLOCK COPOLYMERS; MICROPHASE SEPARATION; POLYTHIOPHENE CORE; WATER-INTERFACE AB The ability to control the molecular packing and nanoscale morphology of conjugated polymers is important for many of their applications. Here, we report the fabrication of well-ordered nanoarrays of conjugated polymers, based on the self-assembly of conjugated block copolymers at the airliquid interface. We demonstrate that the self-assembly of poly(3-hexylthiophene)-block-poly(ethylene glycol) (P3HT-b-PEG) at the airwater interface leads to large-area free-standing films of well-aligned P3HT nanowires. Block copolymers with high P3HT contents (82-91%) formed well-ordered nanoarrays at the interface. The fluidic nature of the interface, block copolymer architecture, and rigid nature of P3HT were necessary for the formation of well-ordered nanostructures. The free-standing films formed at the interface can be readily transferred to arbitrary solid substrates. The P3HT-b-PEG films are integrated in field-effect transistors and show orders of magnitude higher charge carrier mobility than spin-cast films, demonstrating that the airliquid interfacial self-assembly is an effective thin film fabrication tool for conjugated block copolymers. C1 [Cativo, Ma. Helen M.; Kagan, Cherie R.; Park, So-Jung] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. [Kim, David K.; Nonnenmann, Stephen S.; Bonnell, Dawn A.; Kagan, Cherie R.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Riggleman, Robert A.; Chao, Huikuan] Univ Penn, Dept Biomol & Chem Engn, Philadelphia, PA 19104 USA. [Kagan, Cherie R.] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA. [Yager, Kevin G.; Black, Charles T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Park, So-Jung] Ewha Womans Univ, Dept Chem & Nano Sci, Seoul 120750, South Korea. RP Park, SJ (reprint author), Univ Penn, Dept Chem, 231 South 34th St, Philadelphia, PA 19104 USA. EM sojungpark@ewha.ac.kr RI Yager, Kevin/F-9804-2011 OI Yager, Kevin/0000-0001-7745-2513 FU ARO [W911NF-09-1-0146]; Agency for Defense Development, South Korea; Nano/Bio Interface Center through the National Science Foundation (NSF) NSEC [DMR08-32802]; NSF [CBET-1236406] FX This work was supported by the ARO Young Investigator Award (W911NF-09-1-0146), the Agency for Defense Development, South Korea, and the Nano/Bio Interface Center through the National Science Foundation (NSF) NSEC DMR08-32802. D.K.K. and C.R.K. acknowledge support from NSF under Award CBET-1236406. The authors thank Yuming Lai and Scott Stinner for additional help in the electrical measurements. Use of University of Pennsylvania Nano/Bio Interface Center instrumentation is acknowledged. NR 53 TC 9 Z9 9 U1 17 U2 128 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD DEC PY 2014 VL 8 IS 12 BP 12755 EP 12762 DI 10.1021/nn505871b PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AX8CL UT WOS:000347138000089 PM 25486546 ER PT J AU Gao, JB Zhang, JB van de Lagemaat, J Johnson, JC Beard, MC AF Gao, Jianbo Zhang, Jianbing van de Lagemaat, Jao Johnson, Justin C. Beard, Matthew C. TI Charge Generation in PbS Quantum Dot Solar Cells Characterized by Temperature-Dependent Steady-State Photoluminescence SO ACS NANO LA English DT Article DE quantum dot; solar cell; photoluminescence; charge transport ID CARRIER TRANSPORT; TRANSFER EXCITONS; FILMS; SOLIDS; PHOTOCURRENT; EFFICIENCY; NANOCRYSTALS; DISSOCIATION; TRANSITION; DIODES AB Charge-carrier generation and transport within PbS quantum dot (QD) solar cells is investigated by measuring the temperature-dependent steady-state photoluminescence (PL) concurrently during in situ currentvoltage characterization. We first compare the temperature-dependent PL quenching for PbS QD films where the PbS QDs retain their original oleate ligand to that of PbS QDs treated with 1,2-ethanedithiol (EDT), producing a conductive QD layer, either on top of glass or on a ZnO nanocrystal film. We then measure and analyze the temperature-dependent PL in a completed QD-PV architecture with the structure Al/MoO3/EDT-PbS/ZnO/ITO/glass, collecting the PL and the current simultaneously. We find that at low temperatures excitons diffuse to the ZnO interface, where PL is quenched via interfacial charge transfer. At high temperatures, excitons dissociate in the bulk of the PbS QD film via phonon-assisted tunneling to nearby QDs, and that dissociation is in competition with the intrinsic radiative and nonradiative rates of the individual QDs. The activation energy for exciton dissociation in the QD-PV devices is found to be similar to 40 meV, which is considerably lower than that of the electrodeless samples, and suggests unique interactions between injected and photogenerated carriers in devices. C1 [Gao, Jianbo; Zhang, Jianbing; van de Lagemaat, Jao; Johnson, Justin C.; Beard, Matthew C.] Natl Renewable Energy Lab, Ctr Adv Solar Photophys, Golden, CO 80401 USA. [Zhang, Jianbing] Huazhong Univ Sci & Technol, Sch Optic & Elect Informat, Wuhan 430074, Peoples R China. RP Beard, MC (reprint author), Natl Renewable Energy Lab, Ctr Adv Solar Photophys, Golden, CO 80401 USA. EM matt.beard@nrel.gov RI Beard, MATTHEW/E-4270-2015; van de Lagemaat, Jao/J-9431-2012 OI Beard, MATTHEW/0000-0002-2711-1355; FU U.S. Department of Energy Office of Science, Office of Basic Energy Sciences Energy Frontier Research Centers program within the Center for Advanced Solar Photophysics; DOE [DE-AC36-08G028308] FX We acknowledge helpful discussions with Joseph Luther and Rachelle Ihly. The material presented here is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences Energy Frontier Research Centers program within the Center for Advanced Solar Photophysics. DOE funding was provided to NREL through contract DE-AC36-08G028308. NR 35 TC 19 Z9 19 U1 7 U2 69 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD DEC PY 2014 VL 8 IS 12 BP 12814 EP 12825 DI 10.1021/nn506075s PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AX8CL UT WOS:000347138000096 PM 25485555 ER PT J AU Razin, YS Pajer, G Breton, M Ham, E Mueller, J Paluszek, M Glasser, AH Cohen, SA AF Razin, Yosef S. Pajer, Gary Breton, Mary Ham, Eric Mueller, Joseph Paluszek, Michael Glasser, Alan H. Cohen, Samuel A. TI A direct fusion drive for rocket propulsion SO ACTA ASTRONAUTICA LA English DT Article; Proceedings Paper CT 63rd International Astronautical Congress (IAC) CY OCT 01-05, 2012 CL Naples, ITALY SP Int Astronaut Federat DE Fusion; Propulsion; FRC; Deuterium; Helium-3; Aneutronic ID ROTATING-MAGNETIC-FIELD; ION; SYSTEMS AB The Direct Fusion Drive (DFD), a compact, anuetronic fusion engine, will enable more challenging exploration missions in the solar system. The engine proposed here uses a deuterium-helium-3 reaction to produce fusion energy by employing a novel field-reversed configuration (FRC) for magnetic confinement. The FRC has a simple linear solenoid coil geometry yet generates higher plasma pressure, hence higher fusion power density, for a given magnetic field strength than other magnetic-confinement plasma devices. Waste heat generated from the plasma's Bremsstrahlung and synchrotron radiation is recycled to maintain the fusion temperature. The charged reaction products, augmented by additional propellant, are exhausted through a magnetic nozzle. A 1 MW DFD is presented in the context of a mission to deploy the James Webb Space Telescope (6200 kg) from GPS orbit to a Sun-Earth L2 halo orbit in 37 days using just 353 kg of propellant and about half a kilogram of He-3. The engine is designed to produce 40 N of thrust with an exhaust velocity of 56.5 km/s and has a specific power of 0.18 kW/kg. (C) 2014 IAA. Published by Elsevier Ltd. All rights reserved. C1 [Razin, Yosef S.; Pajer, Gary; Breton, Mary; Ham, Eric; Mueller, Joseph; Paluszek, Michael] Princeton Satellite Syst, Plainsboro, NJ 08536 USA. [Glasser, Alan H.] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA. [Cohen, Samuel A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Paluszek, M (reprint author), Princeton Satellite Syst, 6 Market St,Suite 926, Plainsboro, NJ 08536 USA. EM yrazin@gatech.edu; gpajer@psatellite.com; marybreton@alum.mit.edu; eham@psatellite.edu; jmueller@sift.net; map@psatellite.com; ahg5@u.washington.edu; scohen@pppl.gov OI Razin, Yosef/0000-0002-1630-8929 NR 55 TC 1 Z9 1 U1 2 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD DEC PY 2014 VL 105 IS 1 BP 145 EP 155 DI 10.1016/j.actaastro.2014.08.008 PG 11 WC Engineering, Aerospace SC Engineering GA AX6GP UT WOS:000347021400018 ER PT J AU Hussein, MI El-Kady, I Li, BW Sanchez-Dehesa, J AF Hussein, Mahmoud I. El-Kady, Ihab Li, Baowen Sanchez-Dehesa, Jose TI Preface to Special Topic: Selected Articles from Phononics 2013: The Second International Conference on Phononic Crystals/Metamaterials, Phonon Transport and Optomechanics, 2-7 June 2013, Sharm El-Sheikh, Egypt SO AIP ADVANCES LA English DT Editorial Material C1 [Hussein, Mahmoud I.] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA. [El-Kady, Ihab] Sandia Natl Labs, Albuquerque, NM 87185 USA. [El-Kady, Ihab] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. [Li, Baowen] Tongji Univ, Sch Phys Sci & Engn, Ctr Phonon & Thermal Energy Sci, Shanghai 200092, Peoples R China. [Li, Baowen] Natl Univ Singapore, Dept Phys, Ctr Computat Sci & Engn, Singapore 117546, Singapore. [Li, Baowen] Natl Univ Singapore, Graphene Res Ctr, Singapore 117546, Singapore. [Li, Baowen] Natl Univ Singapore, NUS Grad Sch Integrat Sci & Engn, Singapore 117456, Singapore. [Sanchez-Dehesa, Jose] Univ Politecn Valencia, Dept Ingn Elect, Grp Fenomenos Ondulatorios, E-46022 Valencia, Spain. RP Hussein, MI (reprint author), Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA. RI Li, Baowen/G-3003-2011; Hussein, Mahmoud/D-5567-2009 OI Li, Baowen/0000-0002-8728-520X; NR 21 TC 0 Z9 0 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD DEC PY 2014 VL 4 IS 12 AR 124101 DI 10.1063/1.4905437 PG 2 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AX8PC UT WOS:000347170100010 ER PT J AU Belianinov, A Ganesh, P Lin, WZ Sales, BC Sefat, AS Jesse, S Pan, MH Kalinin, SV AF Belianinov, Alex Ganesh, Panchapakesan Lin, Wenzhi Sales, Brian C. Sefat, Athena S. Jesse, Stephen Pan, Minghu Kalinin, Sergei V. TI Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis SO APL MATERIALS LA English DT Article ID AUGMENTED-WAVE METHOD; BI2SR2CACU2O8+DELTA; SUPERCONDUCTIVITY AB Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (T-c = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1-xSex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces. (C) 2014 Author(s). C1 [Belianinov, Alex; Ganesh, Panchapakesan; Lin, Wenzhi; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Inst Funct Imaging Mat, Oak Ridge, TN 37922 USA. [Sales, Brian C.; Sefat, Athena S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37922 USA. RP Belianinov, A (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Inst Funct Imaging Mat, Oak Ridge, TN 37922 USA. EM belianinova@ornl.gov RI Ganesh, Panchapakesan/E-3435-2012; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Sefat, Athena/R-5457-2016; OI Ganesh, Panchapakesan/0000-0002-7170-2902; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Sefat, Athena/0000-0002-5596-3504; Belianinov, Alex/0000-0002-3975-4112 FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX Research for A.B., W.L., S.V.K., B.S., and A.S. was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. Research by G.P., S.J., and M.P. was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 35 TC 4 Z9 4 U1 4 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD DEC PY 2014 VL 2 IS 12 AR 120701 DI 10.1063/1.4902996 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AX8PI UT WOS:000347170700001 ER PT J AU McKinlay, AC Allan, PK Renouf, CL Duncan, MJ Wheatley, PS Warrender, SJ Dawson, D Ashbrook, SE Gil, B Marszalek, B Duren, T Williams, JJ Charrier, C Mercer, DK Teat, SJ Morris, RE AF McKinlay, Alistair C. Allan, Phoebe K. Renouf, Catherine L. Duncan, Morven J. Wheatley, Paul S. Warrender, Stewart J. Dawson, Daniel Ashbrook, Sharon E. Gil, Barbara Marszalek, Bartosz Dueren, Tina Williams, Jennifer J. Charrier, Cedric Mercer, Derry K. Teat, Simon J. Morris, Russell E. TI Multirate delivery of multiple therapeutic agents from metal-organic frameworks SO APL MATERIALS LA English DT Article ID DRUG-DELIVERY; CARBON-DIOXIDE; STORAGE; ADSORPTION; HYDROGEN; SITES; NO AB The highly porous nature of metal-organic frameworks (MOFs) offers great potential for the delivery of therapeutic agents. Here, we show that highly porous metal-organic frameworks can be used to deliver multiple therapeutic agents-a biologically active gas, an antibiotic drug molecule, and an active metal ion-simultaneously but at different rates. The possibilities offered by delivery of multiple agents with different mechanisms of action and, in particular, variable timescales may allow new therapy approaches. Here, we show that the loaded MOFs are highly active against various strains of bacteria. (C) 2014 Author(s). C1 [McKinlay, Alistair C.; Allan, Phoebe K.; Renouf, Catherine L.; Duncan, Morven J.; Wheatley, Paul S.; Warrender, Stewart J.; Dawson, Daniel; Ashbrook, Sharon E.; Morris, Russell E.] Univ St Andrews, EaStCHEM Sch Chem, St Andrews KY16 9ST, Fife, Scotland. [Gil, Barbara; Marszalek, Bartosz] Jagiellonian Univ, Fac Chem, PL-30060 Krakow, Poland. [Dueren, Tina; Williams, Jennifer J.] Univ Edinburgh, Inst Mat & Proc, Sch Engn, Edinburgh EH9 3JL, Midlothian, Scotland. [Charrier, Cedric; Mercer, Derry K.] NovaBiot Ltd, Aberdeen AB21 9TR, Scotland. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP McKinlay, AC (reprint author), Univ St Andrews, EaStCHEM Sch Chem, St Andrews KY16 9ST, Fife, Scotland. RI Gil, Barbara/B-9825-2013; Morris, Russell/G-4285-2010; Marszalek, Bartosz/G-8583-2013; OI Gil, Barbara/0000-0003-4096-0762; Morris, Russell/0000-0001-7809-0315; Marszalek, Bartosz/0000-0002-9194-4351; Duren, Tina/0000-0002-2774-9121; Dawson, Daniel/0000-0002-8110-4535 FU Royal Society; Scottish Enterprise; British Heart Foundation [NH/11/8/29253]; EPSRC [EP/K025112/1, EP/K005499/1]; European Regional Development Fund [POIG.02.01.00-12-023/08]; U.S. Department of Energy [DE-AC02-05CH11231] FX R.E.M. is a Royal Society Industry Fellow and thanks the Royal Society for the provision of the Brian Mercer Award for Innovation, and thanks Scottish Enterprise for support. R.E.M. also thanks the British Heart Foundation for a New Horizons Award (NH/11/8/29253). R.E.M. and T.D. thank the EPSRC for funding (EP/K025112/1 and EP/K005499/1). The IR studies (B.G. and B.M.) were carried out with the equipment purchased thanks to the financial support of the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (Contract No. POIG.02.01.00-12-023/08). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 31 TC 10 Z9 10 U1 7 U2 57 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD DEC PY 2014 VL 2 IS 12 AR 124108 DI 10.1063/1.4903290 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AX8PI UT WOS:000347170700015 ER PT J AU Ruiz-Oses, M Schubert, S Attenkofer, K Ben-Zvi, I Liang, X Muller, E Padmore, H Rao, T Vecchione, T Wong, J Xie, J Smedley, J AF Ruiz-Oses, M. Schubert, S. Attenkofer, K. Ben-Zvi, I. Liang, X. Muller, E. Padmore, H. Rao, T. Vecchione, T. Wong, J. Xie, J. Smedley, J. TI Direct observation of bi-alkali antimonide photocathodes growth via in operando x-ray diffraction studies SO APL MATERIALS LA English DT Article ID FILMS AB Alkali antimonides have a long history as visible-light-sensitive photocathodes. This work focuses on the process of fabrication of the bi-alkali photocathodes, K2CsSb. In-situ synchrotron x-ray diffraction and photoresponse measurements were used to monitor phase evolution during sequential photocathode growth mode on Si(100) substrates. The amorphous-to-crystalline transition for the initial antimony layer was observed at a film thickness of 40 angstrom. The antimony crystalline structure dissolved upon potassium deposition, eventually recrystallizing upon further deposition into K-Sb crystalline modifications. This transition, as well as the conversion of potassium antimonide to K2CsSb upon cesium deposition, is correlated with changes in the quantum efficiency. (C) 2014 Author(s). C1 [Ruiz-Oses, M.; Ben-Zvi, I.; Liang, X.; Muller, E.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Schubert, S.] Helmholtz Zentrum Berlin, D-12489 Berlin, Germany. [Schubert, S.; Attenkofer, K.; Rao, T.; Smedley, J.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Padmore, H.; Vecchione, T.; Wong, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Xie, J.] Argonne Natl Lab, Lemont, IL 60439 USA. RP Smedley, J (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM smedley@bnl.gov OI Ruiz Oses, Miguel/0000-0002-3247-5874; Liang, Xue/0000-0003-0936-0662 FU U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-98CH10886, KC0407-ALSJNT-I0013, DE-FG02-12ER41837]; German BMBF; Helmholtz-Association; Land Berlin FX This work was supported by the U.S. Department of Energy, under Contracts DE-AC02-05CH11231, DE-AC02-98CH10886, KC0407-ALSJNT-I0013, DE-FG02-12ER41837, and the German BMBF, Helmholtz-Association and Land Berlin. NR 14 TC 7 Z9 7 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD DEC PY 2014 VL 2 IS 12 AR 121101 DI 10.1063/1.4902544 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AX8PI UT WOS:000347170700002 ER PT J AU Campbell, GH McKeown, JT Santala, MK AF Campbell, Geoffrey H. McKeown, Joseph T. Santala, Melissa K. TI Time resolved electron microscopy for in situ experiments SO APPLIED PHYSICS REVIEWS LA English DT Review ID AL-CU ALLOYS; FAST PHASE-TRANSITIONS; MICROSTRUCTURE SELECTION MAP; THIN POLYMER-FILMS; GE-TE FILMS; RAPID SOLIDIFICATION; METAL-FILMS; BANDED STRUCTURE; LASER-PULSES; LIQUID-FILMS AB Transmission electron microscopy has functioned for decades as a platform for in situ observation of materials and processes with high spatial resolution. Yet, the dynamics often remain elusive, as they unfold too fast to discern at these small spatial scales under traditional imaging conditions. Simply shortening the exposure time in hopes of capturing the action has limitations, as the number of electrons will eventually be reduced to the point where noise overtakes the signal in the image. Pulsed electron sources with high instantaneous current have successfully shortened exposure times (thus increasing the temporal resolution) by about six orders of magnitude over conventional sources while providing the necessary signal-to-noise ratio for dynamic imaging. We describe here the development of this new class of microscope and the principles of its operation, with examples of its application to problems in materials science. (C) 2014 AIP Publishing LLC. C1 [Campbell, Geoffrey H.; McKeown, Joseph T.; Santala, Melissa K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Campbell, GH (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM ghcampbell@llnl.gov OI Santala, Melissa/0000-0002-5189-5153 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [FWP SCW0974]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering for FWP SCW0974 by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 167 TC 8 Z9 8 U1 11 U2 64 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1931-9401 J9 APPL PHYS REV JI Appl. Phys. Rev. PD DEC PY 2014 VL 1 IS 4 AR 041101 DI 10.1063/1.4900509 PG 26 WC Physics, Applied SC Physics GA AX8LA UT WOS:000347159800001 ER PT J AU Li, HD Tian, C Deng, ZD AF Li, Huidong Tian, Chuan Deng, Z. Daniel TI Energy harvesting from low frequency applications using piezoelectric materials SO APPLIED PHYSICS REVIEWS LA English DT Review ID AC-DC CONVERTER; POWER-GENERATION; SINGLE-CRYSTALS; CIRCULAR DIAPHRAGM; SCAVENGING SYSTEMS; UP-CONVERSION; VIBRATION; DEVICES; SENSOR; STORAGE AB In an effort to eliminate the replacement of the batteries of electronic devices that are difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This presents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This paper reviews the current state of research on piezoelectric energy harvesting devices for low frequency (0-100 Hz) applications and the methods that have been developed to improve the power outputs of the piezoelectric energy harvesters. Various key aspects that contribute to the overall performance of a piezoelectric energy harvester are discussed, including geometries of the piezoelectric element, types of piezoelectric material used, techniques employed to match the resonance frequency of the piezoelectric element to input frequency of the host structure, and electronic circuits specifically designed for energy harvesters. (C) 2014 Author(s). C1 [Li, Huidong; Tian, Chuan; Deng, Z. Daniel] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Deng, ZD (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM zhiqun.deng@pnnl.gov RI Deng, Daniel/A-9536-2011 OI Deng, Daniel/0000-0002-8300-8766 FU U.S. Department of Energy Wind and Water Power Technologies Office FX This study was funded by the U.S. Department of Energy Wind and Water Power Technologies Office, and was conducted at Pacific Northwest National Laboratory, operated by Battelle for the U.S. Department of Energy. NR 114 TC 17 Z9 17 U1 17 U2 130 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1931-9401 J9 APPL PHYS REV JI Appl. Phys. Rev. PD DEC PY 2014 VL 1 IS 4 AR 041301 DI 10.1063/1.4900845 PG 20 WC Physics, Applied SC Physics GA AX8LA UT WOS:000347159800004 ER PT J AU Simeone, RM Oster, ME Cassell, CH Armour, BS Gray, DT Honein, MA AF Simeone, Regina M. Oster, Matthew E. Cassell, Cynthia H. Armour, Brian S. Gray, Darryl T. Honein, Margaret A. TI Pediatric Inpatient Hospital Resource Use for Congenital Heart Defects SO BIRTH DEFECTS RESEARCH PART A-CLINICAL AND MOLECULAR TERATOLOGY LA English DT Article DE heart defects; congenital; healthcare resource use; hospital costs; Kids' Inpatient Database ID UNITED-STATES; DISEASE; PREVALENCE; INFANTS; QUALITY; TRENDS; COSTS; CARE AB Background: Congenital heart defects (CHDs) occur in approximately 8 per 1000 live births. Improvements in detection and treatment have increased survival. Few national estimates of the healthcare costs for infants, children and adolescents with CHDs are available. Methods: We estimated hospital costs for hospitalizations using pediatric (0-20 years) hospital discharge data from the 2009 Healthcare Cost and Utilization Project Kids' Inpatient Database (KID) for hospitalizations with CHD diagnoses. Estimates were up-weighted to be nationally representative. Mean costs were compared by demographic factors and presence of critical CHDs (CCHDs). Results: Up-weighting of the KID generated an estimated 4,461,615 pediatric hospitalizations nationwide, excluding normal newborn births. The 163,980 (3.7%) pediatric hospitalizations with CHDs accounted for approximately $5.6 billion in hospital costs, representing 15.1% of costs for all pediatric hospitalizations in 2009. Approximately 17% of CHD hospitalizations had a CCHD, but it varied by age: approximately 14% of hospitalizations of infants, 30% of hospitalizations of patients aged 1 to 10 years, and 25% of hospitalizations of patients aged 11 to 20 years. Mean costs of CHD hospitalizations were higher in infancy ($36,601) than at older ages and were higher for hospitalizations with a CCHD diagnosis ($52,899). Hospitalizations with CCHDs accounted for 26.7% of all costs for CHD hospitalizations, with hypoplastic left heart syndrome, coarctation of the aorta, and tetralogy of Fallot having the highest total costs. Conclusion: Hospitalizations for children with CHDs have disproportionately high hospital costs compared with other pediatric hospitalizations, and the 17% of hospitalizations with CCHD diagnoses accounted for 27% of CHD hospital costs. Birth Defects Research (Part A) 100:934-943, 2014. (c) 2014 Wiley Periodicals, Inc. C1 [Simeone, Regina M.; Oster, Matthew E.; Cassell, Cynthia H.; Armour, Brian S.; Honein, Margaret A.] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA 30333 USA. [Simeone, Regina M.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Oster, Matthew E.] Childrens Healthcare Atlanta, Sibley Heart Ctr, Atlanta, GA USA. [Gray, Darryl T.] Agcy Healthcare Res & Qual, Ctr Qual Improvement, Rockville, MD USA. RP Simeone, RM (reprint author), Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, 1600 Clifton Rd,MS E-86, Atlanta, GA 30333 USA. EM rsimeone@cdc.gov FU Research Participation Program at the Centers for Disease Control and Prevention FX Regina M. Simeone was supported in part by an appointment to the Research Participation Program at the Centers for Disease Control and Prevention administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy and the Centers for Disease Control and Prevention. NR 27 TC 11 Z9 11 U1 1 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1542-0752 EI 1542-0760 J9 BIRTH DEFECTS RES A JI Birth Defects Res. Part A-Clin. Mol. Teratol. PD DEC PY 2014 VL 100 IS 12 BP 934 EP 943 DI 10.1002/bdra.23262 PG 10 WC Developmental Biology; Toxicology SC Developmental Biology; Toxicology GA AX4RB UT WOS:000346918000004 PM 24975483 ER PT J AU Kajimoto, M Ledee, DR Xu, C Kajimoto, H Isern, NG Portman, MA AF Kajimoto, Masaki Ledee, Dolena R. Xu, Chun Kajimoto, Hidemi Isern, Nancy G. Portman, Michael A. TI Triiodothyronine Activates Lactate Oxidation Without Impairing Fatty Acid Oxidation and Improves Weaning From Extracorporeal Membrane Oxygenation SO CIRCULATION JOURNAL LA English DT Article DE ECMO; Myocardial metabolism; Pediatric ID MECHANICAL CIRCULATORY SUPPORT; IMMATURE SWINE HEART; CARDIOPULMONARY BYPASS; PIG HEARTS; IN-VIVO; REPERFUSION; CHILDREN; METABOLISM; PYRUVATE; INFANTS AB Background: Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. It has previously been shown that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. Methods and Results: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 h) and wean: normal circulation (Group-C); transient coronary occlusion (10 min) for ischemia-reperfusion (IR) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon (C-13)-labeled lactate, medium-chain and long-chain FAs, was infused as oxidative substrates. Substrate fractional contribution (FC) to the citric acid cycle was analyzed by 13C-nuclear magnetic resonance. ECMO depressed circulating T3 levels to 40% of the baseline at 4 h and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [adenosine triphosphate]/[adenosine diphosphate] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. Conclusions: T3 releases inhibition of lactate oxidation following IR injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning. C1 [Kajimoto, Masaki; Ledee, Dolena R.; Xu, Chun; Kajimoto, Hidemi; Portman, Michael A.] Seattle Childrens Res Inst, Ctr Dev Therapeut, Seattle, WA 98101 USA. [Isern, Nancy G.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Portman, Michael A.] Univ Washington, Dept Pediat, Div Cardiol, Seattle, WA 98195 USA. RP Portman, MA (reprint author), Seattle Childrens Res Inst, Ctr Dev Therapeut, 1900 9th Ave, Seattle, WA 98101 USA. EM michael.portman@seattlechildrens.org FU National Institutes of Health [R01HL60666]; Department of Energy's Office of Biological and Environmental Research FX This work was supported by the National Institutes of Health [R01HL60666 to M.A.P.]. A portion of the research was performed using the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and is located at Pacific Northwest National Laboratory. NR 32 TC 6 Z9 6 U1 0 U2 6 PU JAPANESE CIRCULATION SOC PI TOYKO PA 18TH FLOOR IMPERIAL HOTEL TOWER, 1-1-1 UCHISAIWAI-CHO CHIYODA-KU, TOYKO, 100-0011, JAPAN SN 1346-9843 EI 1347-4820 J9 CIRC J JI Circ. J. PD DEC PY 2014 VL 78 IS 12 BP 2867 EP 2875 DI 10.1253/circj.CJ-14-0821 PG 9 WC Cardiac & Cardiovascular Systems SC Cardiovascular System & Cardiology GA AX1HL UT WOS:000346698300015 PM 25421230 ER PT J AU Parplys, AC Kratz, K Speed, MC Leung, SG Schild, D Wiese, C AF Parplys, Ann C. Kratz, Katja Speed, Michael C. Leung, Stanley G. Schild, David Wiese, Claudia TI RAD51AP1-deficiency in vertebrate cells impairs DNA replication SO DNA REPAIR LA English DT Article DE Homologous recombination; DNA replication; RAD51 foci; RAD51AP1; DT40 cells ID HOMOLOGOUS RECOMBINATION; MAMMALIAN-CELLS; FORK PROGRESSION; PROTEIN-1 RAD51AP1; S PHASE; BINDING PROTEIN; EXPRESSION; DAMAGE; CHK1; ENHANCEMENT AB RAD51-associated protein 1 (RAD51AP1) is critical for homologous recombination (HR) by interacting with and stimulating the activities of the RAD51 and DMC1 recombinases. In human somatic cells, knockdown of RAD51AP1 results in increased sensitivity to DNA damaging agents and to impaired HR, but the formation of DNA damage-induced RAD51 foci is unaffected. Here, we generated a genetic model system, based on chicken DT40 cells, to assess the phenotype of fully inactivated RAD51AP1 in vertebrate cells. Targeted inactivation of both RAD51AP1 alleles has no effect on either viability or doubling-time in undamaged cells, but leads to increased levels of cytotoxicity after exposure to cisplatin or to ionizing radiation. Interestingly, ectopic expression of GgRAD51AP1, but not of HsRAD51AP1 is able to fully complement in cell survival assays. Notably, in RAD51AP1-deficient DT40 cells the resolution of DNA damage-induced RAD51 foci is greatly slowed down, while their formation is not impaired. We also identify, for the first time, an important role for RAD51AP1 in counteracting both spontaneous and DNA damage-induced replication stress. In human and in chicken cells, RAD51AP1 is required to maintain wild type speed of replication fork progression, and both RAD51AP1-depleted human cells and RAD51AP1-deficient DT40 cells respond to replication stress by a slow-down of replication fork elongation rates. However, increased firing of replication origins occurs in RAD51AP1-/- DT40 cells, likely to ensure the timely duplication of the entire genome. Taken together, our results may explain why RAD51AP1 commonly is overexpressed in tumor cells and tissues, and we speculate that the disruption of RAD51AP1 function could be a promising approach in targeted tumor therapy. (C) 2014 Elsevier B.V. All rights reserved. C1 [Parplys, Ann C.; Kratz, Katja; Speed, Michael C.; Leung, Stanley G.; Schild, David; Wiese, Claudia] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Wiese, C (reprint author), Colorado State Univ, Dept Environm & Radiol Hlth Sci, Ft Collins, CO 80523 USA. EM dschild@lbl.gov; claudia.wiese@colostate.edu FU National Institutes of Health [R01 CA120315, R01 ES021454] FX We are grateful to Shunichi Takeda for providing wild type and XRCC3-deficient DT40 cells, to Jean-Marie Buerstedde for pLoxNeo and pLoxPuro vectors, and to Christina Clover for chicken EST cDNA clone containing locus DN928517. This work was supported by grants from the National Institutes of Health [R01 CA120315 to D.S., and R01 ES021454 to C.W.]. NR 43 TC 5 Z9 5 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1568-7864 EI 1568-7856 J9 DNA REPAIR JI DNA Repair PD DEC PY 2014 VL 24 BP 87 EP 97 DI 10.1016/j.dnarep.2014.09.007 PG 11 WC Genetics & Heredity; Toxicology SC Genetics & Heredity; Toxicology GA AX6GA UT WOS:000347019900011 PM 25288561 ER PT J AU Rothwell, G Wood, TW Daly, D Weimar, MR AF Rothwell, Geoffrey Wood, Thomas W. Daly, Don Weimar, Mark R. TI Sustainability of light water reactor fuel cycles SO ENERGY POLICY LA English DT Article DE Uranium; Plutonium; Light water reactors ID REAL OPTIONS APPROACH; NUCLEAR AB This paper compares the sustainability of two light water reactor, LWR, fuel cycles: the once-through UOX (low-enriched uranium oxide) cycle and the twice-through MOX (Mixed Uranium-Plutonium Oxide) cycle (increasing the input efficiency of available uranium) by assessing their probable long-term competitiveness. With the retirement of diffusion enrichment facilities, enrichment prices have declined by one-third since 2009 and are likely to remain below $100-kgSWU for the foreseeable future. Here, initial uranium prices are set at $90/kgU and reprocessing costs at $2500 per kilogram of heavy-metal throughput, representative of "new-build" costs for reprocessing facilities. Substantial reprocessing cost reductions must be achieved if MOX is to be competitive, i.e., if it is to improve the sustainability of the LWR. However, results indicate that preserving the MOX alternative for spent fuel management later in this century has a large present value under several sets of assumptions regarding uranium price increases and reprocessing cost decreases. (C) 2014 International Atomic Energy Agency. Published by Elsevier Ltd. All rights reserved. C1 [Rothwell, Geoffrey] Nucl Energy Agcy OECD, Paris, France. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Rothwell, G (reprint author), Nucl Energy Agcy OECD, Paris, France. EM geoffrey.rothwell@oecd.org FU U.S. Department of Energy through Pacific Northwest National Laboratory [83052]; Battelle Memorial Institute; Generation IV International Forum; U.S. Department of Energy through Idaho National Laboratory [DE-FC07-03ID14448]; International Atomic Energy Agency FX We thank M. Crozat, C. Forsberg, F. Ganda, J.H. Keppler, A. Lokhov, K. Miller, W. Rasin, A. Seward, F. Toth, M.E. Urso, P. Warren, K. Williams, and members of the Economic Modelling Working Group (EMWG) of the Generation IV International Forum (GIF) for their comments, data, encouragement, funding, help, references, software, and support. This paper was partially funded by the U.S. Department of Energy through Pacific Northwest National Laboratory (Contract No. 83052) with Battelle Memorial Institute; by Generation IV International Forum and the U.S. Department of Energy through Idaho National Laboratory (DE-FC07-03ID14448); and by an honorarium from the International Atomic Energy Agency. This paper reflects the views and conclusions of the authors, and not those of NEA-OECD, PNNL, Battelle, GIF, US DOE, IAEA, or the publisher. NR 33 TC 0 Z9 0 U1 2 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD DEC 1 PY 2014 VL 74 SU 1 BP S16 EP S23 DI 10.1016/j.enpol.2014.07.018 PG 8 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA AY0GS UT WOS:000347276100003 ER PT J AU Elliott, J Kelly, D Chryssanthacopoulos, J Glotter, M Jhunjhnuwala, K Best, N Wilde, M Foster, I AF Elliott, Joshua Kelly, David Chryssanthacopoulos, James Glotter, Michael Jhunjhnuwala, Kanika Best, Neil Wilde, Michael Foster, Ian TI The parallel system for integrating impact models and sectors (pSIMS) SO ENVIRONMENTAL MODELLING & SOFTWARE LA English DT Article DE Climate change impacts, adaptation, and vulnerabilities (VIA); Parallel computing; Data processing and standardization; Crop modeling; Forestry modeling; Multi-model; Ensemble simulation ID CLIMATE-CHANGE; AGRICULTURAL PRODUCTION; LARGE-SCALE; SIMULATION; PATTERNS AB We present a framework for massively parallel climate impact simulations: the parallel System for Integrating Impact Models and Sectors (pSIMS). This framework comprises a) tools for ingesting and converting large amounts of data to a versatile datatype based on a common geospatial grid; b) tools for translating this datatype into custom formats for site-based models; c) a scalable parallel framework for performing large ensemble simulations, using any one of a number of different impacts models, on clusters, supercomputers, distributed grids, or clouds; d) tools and data standards for reformatting outputs to common datatypes for analysis and visualization; and e) methodologies for aggregating these datatypes to arbitrary spatial scales such as administrative and environmental demarcations. By automating many time-consuming and error-prone aspects of large-scale climate impacts studies, pSIMS accelerates computational research, encourages model intercomparison, and enhances reproducibility of simulation results. We present the pSIMS design and use example assessments to demonstrate its multi-model, multi-scale, and multi-sector versatility. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Elliott, Joshua; Kelly, David; Best, Neil; Wilde, Michael; Foster, Ian] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Elliott, Joshua; Kelly, David; Wilde, Michael; Foster, Ian] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Chryssanthacopoulos, James] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA. [Glotter, Michael] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Jhunjhnuwala, Kanika] New Zealand Landcare Res, Auckland 1072, New Zealand. [Foster, Ian] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA. RP Elliott, J (reprint author), Univ Chicago, Computat Inst, 5735 S Ellis Ave, Chicago, IL 60637 USA. EM jelliott@ci.uchicago.edu FU National Science Foundation [SBE-0951576, GEO-1215910]; NSF [OCI-1148443]; NIH [S10 RR029030-01] FX We thank Pierre Riteau and Kate Keahey for help running pSIMS on clouds; Stephen Welch of Kansas State and Dan Stanzione, John Fonner, and Matthew Vaughn of TACC, for help executing Swift workflows on Ranger and Stampede, and under the iPlant portal; Ravi Madduri of Argonne and UChicago for help placing pSIMS under the Galaxy portal; and Cheryl Porter and Chis Villalobos of University of Florida for help with AgMIP translators. Thanks also to countless DSSAT. APSIM, and CenW experts that have answered questions and helped with parameterizations, including Ken Boote, Jim Jones, Cheryl Porter, Senthold Asseng, Sotirios Archontoulis, Peter Thorburn, and Miko Kirschbaum. This work was supported in part by the National Science Foundation under grants SBE-0951576 and GEO-1215910. Swift is supported in part by NSF grant OCI-1148443. Computing resources used included the XSEDE Stampede machine at TACC, the University of Chicago Computing Cooperative, the University of Chicago Research Computing Center, and the Beagle system funded by NIH grant S10 RR029030-01. NR 31 TC 15 Z9 15 U1 3 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1364-8152 EI 1873-6726 J9 ENVIRON MODELL SOFTW JI Environ. Modell. Softw. PD DEC PY 2014 VL 62 BP 509 EP 516 DI 10.1016/j.envsoft.2014.04.008 PG 8 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Sciences SC Computer Science; Engineering; Environmental Sciences & Ecology GA AX2CZ UT WOS:000346751800041 ER PT J AU Huang, D Liu, YG AF Huang, Dong Liu, Yangang TI A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE cloud structure; parameterization; radiative transfer ID OPTICAL MEDIA; SOLAR FLUXES; INHOMOGENEITY; VARIABILITY; GEOMETRY; SCHEMES; FIELDS; TOOLS AB Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models. C1 [Huang, Dong; Liu, Yangang] Brookhaven Natl Lab, Upton, NY 11973 USA. [Huang, Dong] Brookhaven Natl Lab, Environm & Climate Sci Dept, Upton, NY 11973 USA. RP Huang, D (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM dhuang@bnl.gov RI Huang, Dong/H-7318-2014 OI Huang, Dong/0000-0001-9715-6922 FU US Department of Energy; Laboratory Directed Research & Development program of Brookhaven National Laboratory FX This work is supported by the US Department of Energy's Earth System Modeling (ESM) and Atmospheric Science Research (ASR) programs, and the Laboratory Directed Research & Development program of Brookhaven National Laboratory. We are grateful to Drs Yuri Knyazikhin, Anthony Davis, Warren Wiscombe, and Robert McGraw for their encouragement and insightful advice. NR 37 TC 1 Z9 1 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD DEC PY 2014 VL 9 IS 12 AR 124022 DI 10.1088/1748-9326/9/12/124022 PG 7 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA AY2ZP UT WOS:000347454800023 ER PT J AU Hirooka, Y Zhou, H Ono, M AF Hirooka, Yoshi Zhou, Haishan Ono, Masa TI Hydrogen and helium recycling from stirred liquid lithium under steady state plasma bombardment SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 3rd International Symposium on Lithium Application for Fusion Devices (ISLA) CY OCT, 2013 CL ENEA Frascati Ctr, Frascati, ITALY HO ENEA Frascati Ctr DE Plasma-surface interactions; Liquid metal divertor; Lithium; Hydrogen recycling; Helium recycling; Oxygen-containing impurity AB For improved core performance via edge plasma-wall boundary control, solid and liquid lithium has been used as a plasma-facing material in a number of confinement experiments over the past several decades. Unfortunately, it is unavoidable that lithium is saturated in the surface region with implanted hydrogenic species as well as oxygen-containing impurities. For steady state operation, a flowing liquid lithium divertor with forced convection would probably be required. In the present work, the effects of liquid stirring to simulate forced convection have been investigated on the behavior of hydrogen and helium recycling from molten lithium at temperatures up to 350 C. Data indicate that liquid stirring reactivates hydrogen pumping via surface de-saturation and/or uncovering impurity films, but can also induce helium release via surface temperature change. (C) 2014 Elsevier B.V. All rights reserved. C1 [Hirooka, Yoshi] Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Hirooka, Yoshi; Zhou, Haishan] Grad Sch Adv Studies, Toki, Gifu 5095292, Japan. [Ono, Masa] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hirooka, Y (reprint author), Natl Inst Fus Sci, 322-6 Oroshi, Toki, Gifu 5095292, Japan. EM hirooka.yoshihiko@nifs.ac.jp NR 11 TC 1 Z9 1 U1 1 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD DEC PY 2014 VL 89 IS 12 BP 2833 EP 2837 DI 10.1016/j.fusengdes.2014.04.014 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AX6HI UT WOS:000347023200005 ER PT J AU Ono, M Jaworski, MA Kaita, R Hirooka, Y Andruczyk, D Gray, TK AF Ono, M. Jaworski, M. A. Kaita, R. Hirooka, Y. Andruczyk, D. Gray, T. K. CA NSTX-U Res Team TI Active radiative liquid lithium divertor concept SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 3rd International Symposium on Lithium Application for Fusion Devices (ISLA) CY OCT, 2013 CL ENEA Frascati Ctr, Frascati, ITALY HO ENEA Frascati Ctr DE International lithium symposium; Lithium; Divertor; Plasma-wall interactions ID TRANSPORT AB Developing a reactor compatible divertor has been identified as a particularly challenging technology problem for magnetic confinement fusion. Application of lithium (Li) in NSTX resulted in improved Hmode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising Li results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor (RLLD) concept [1]. In the RLLD, Li is evaporated from the liquid lithium (LL) coated divertor strike point surface due to the intense heat flux. The evaporated Li is readily ionized by the plasma due to its low ionization energy, and the poor Li particle confinement near the divertor plate enables ionized Li ions to radiate strongly, resulting in a significant reduction in the divertor heat flux. This radiative process has the desired effect of spreading the localized divertor heat load to the rest of the divertor chamber wall surfaces, facilitating divertor heat removal. The modeling results indicated that the Li radiation can be quite strong, so that only a small amount of Li (a few malls) is needed to significantly reduce the divertor peak heat flux for typical reactor parameters. In this paper, we examine an active version of the RLLD, which we term ARLLD, where LL is injected in the upstream region of divertor. We find that the ARLLD has similar effectiveness in reducing the divertor heat flux as the RLLD, again requiring only a few mol/s of LL to significantly reduce the divertor peak heat flux for a reactor. An advantage of the ARLLD is that one can inject LL proactively even in a feedback mode to insure the divertor peak heat flux remains below an acceptable level, providing the first line of defense against excessive divertor heat loads which could result in damage to divertor PFCs. Moreover, the low confinement property of the divertor (i.e., <1 ms for Li particle confinement time) makes the ARLLD response fast enough to mitigate the effects of possible transient events such as large ELMs. (C) 2014 Elsevier B.V. All rights reserved. C1 [Ono, M.; Jaworski, M. A.; Kaita, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Hirooka, Y.] Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Andruczyk, D.] Univ Illinois, Ctr Plasma Mat Interact, Urbana, IL 61801 USA. [Gray, T. K.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Ono, M (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM mono@pppl.gov NR 45 TC 3 Z9 3 U1 2 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD DEC PY 2014 VL 89 IS 12 BP 2838 EP 2844 DI 10.1016/j.fusengdes.2014.05.008 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AX6HI UT WOS:000347023200006 ER PT J AU Zuo, GZ Ren, J Hu, JS Sun, Z Yang, QX Li, JG Zakharov, LE Ruzic, DN AF Zuo, G. Z. Ren, J. Hu, J. S. Sun, Z. Yang, Q. X. Li, J. G. Zakharov, L. E. Ruzic, David N. CA HT-7 Team TI Liquid lithium surface control and its effect on plasma performance in the HT-7 tokamak SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 3rd International Symposium on Lithium Application for Fusion Devices (ISLA) CY OCT, 2013 CL ENEA Frascati Ctr, Frascati, ITALY HO ENEA Frascati Ctr DE Liquid lithium limiter; CPS; Li efflux; Disruptions; HT-7 ID CDX-U; SPHERICAL TORUS; DIII-D; LIMITER; SYSTEM; T-11M AB Experiments with liquid lithium limiters (LLLs) have been successfully performed in HT-7 since 2009 and the effects of different limiter surface structures on the ejection of Li droplets have been studied and compared. The experiments have demonstrated that strong interaction between the plasma and the liquid surface can cause intense Li efflux in the form of ejected Li droplets - which can, in turn, lead to plasma disruptions. The details of the LLL plasma-facing surface were observed to be extremely important in determining performance. Five different LLLs were evaluated in this work: two types of static freesurface limiters and three types of flowing liquid Li (FLLL) structures. It has been demonstrated that a FLLL with a slowly flowing thin liquid Li film on vertical flow plate which was pre-treated with evaporated Li was much less susceptible to Li droplet ejection than any of the other structures tested in this work. It was further observed that the plasmas run against this type of limiter were reproducibly well-behaved. These results provide technical references for the design of FLLLs in future tokamaks so as to avoid strong Li ejection and to decrease disruptive plasmas. (C) 2014 Elsevier B.V. All rights reserved. C1 [Zuo, G. Z.; Ren, J.; Hu, J. S.; Yang, Q. X.; Li, J. G.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Zakharov, L. E.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Ruzic, David N.] Univ Illinois, Urbana, IL 61801 USA. RP Hu, JS (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. EM hujs@ipp.ac.cn NR 25 TC 6 Z9 6 U1 3 U2 19 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD DEC PY 2014 VL 89 IS 12 BP 2845 EP 2852 DI 10.1016/j.fusengdes.2014.05.020 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AX6HI UT WOS:000347023200007 ER PT J AU Abrams, T Jaworski, MA Kaita, R Stotler, DP De Temmerman, G Morgan, TW van den Berg, MA van der Meiden, HJ AF Abrams, T. Jaworski, M. A. Kaita, R. Stotler, D. P. De Temmerman, G. Morgan, T. W. van den Berg, M. A. van der Meiden, H. J. TI Erosion of lithium coatings on TZM molybdenum and graphite during high-flux plasma bombardment SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 3rd International Symposium on Lithium Application for Fusion Devices (ISLA) CY OCT, 2013 CL ENEA Frascati Ctr, Frascati, ITALY HO ENEA Frascati Ctr DE Lithium; Lithium sputtering; Lithium evaporation; Lithium radiation; Lithium plasma surface interaction ID LIQUID LITHIUM; EDGE PLASMAS; DIII-D; OPERATION; DIVERTOR; BORONIZATION; ATOMS; LI AB The rate at which Li films will erode under plasma bombardment in the NSTX-U divertor is currently unknown. It is important to characterize this erosion rate so that the coatings can be replenished before they are completely depleted. An empirical formula for the Li erosion rate as a function of deuterium ion flux, incident ion energy, and Li temperature was developed based on existing theoretical and experimental work. These predictions were tested on the Magnum-PSI linear plasma device capable of ion fluxes >10(24) m(-2) s(-1), ion energies of 20 eV and Li temperatures >800 degrees C. Li-coated graphite and TZM molybdenum samples were exposed to a series of plasma pulses during which neutral Li radiation was measured with a fast camera. The total Li erosion rate was inferred from measurements of Li-I emission. The measured erosion rates are significantly lower than the predictions of the empirical formula. Strong evidence of fast Li diffusion into graphite substrates was also observed. Published by Elsevier B.V. C1 [Abrams, T.; Jaworski, M. A.; Kaita, R.; Stotler, D. P.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [De Temmerman, G.; Morgan, T. W.; van den Berg, M. A.; van der Meiden, H. J.] EURATOM, FOM, Trilateral Euregio Cluster, FOM Inst DIFFER Dutch Inst Fundamental Energy Res, NL-3430 BE Nieuwegein, Netherlands. RP Abrams, T (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM tabrams@pppl.gov RI Stotler, Daren/J-9494-2015; Morgan, Thomas/B-3789-2017 OI Stotler, Daren/0000-0001-5521-8718; Morgan, Thomas/0000-0002-5066-015X NR 46 TC 4 Z9 4 U1 4 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD DEC PY 2014 VL 89 IS 12 BP 2857 EP 2863 DI 10.1016/j.fusengdes.2014.06.005 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AX6HI UT WOS:000347023200009 ER PT J AU Hu, JS Ren, J Sun, Z Zuo, GZ Yang, QX Li, JG Mansfield, DK Zakharov, LE Ruzic, DN AF Hu, J. S. Ren, J. Sun, Z. Zuo, G. Z. Yang, Q. X. Li, J. G. Mansfield, D. K. Zakharov, L. E. Ruzic, D. N. CA EAST Team TI An overview of lithium experiments on HT-7 and EAST during 2012 SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 3rd International Symposium on Lithium Application for Fusion Devices (ISLA) CY OCT, 2013 CL ENEA Frascati Ctr, Frascati, ITALY HO ENEA Frascati Ctr DE Lithium; Wall conditioning; Flow liquid limiter; ELMs pacing; HT-7; EAST ID RECENT PROGRESS; H-MODE; CDX-U; PERFORMANCE; DIVERTOR; ITER; OPERATION; LIMITER AB In 2012, lithium coating with an upgraded system on EAST, the first application of lithium granules injection for ELMs pacing on EAST, and the first flowing lithium limiter experiments on HT-7 have successfully been carried out and several new results were obtained. On EAST, it was found that both the Mo first walls and the C divertors were well coated by lithium and the lithium film coverage was increased up to 85%, which greatly contributed to the new achievements of EAST, especially stationary H-mode plasma over 30 s and long pulse plasma over 400 s. And at the same time, ELMs suppression by active lithium conditioning and ELMs pacing using lithium granules injection were demonstrated and reported for the first time on EAST. On HT-7, flowing liquid lithium limiters using the TEMHD concept and using a thin flowing film concept were also initially tested and some references were obtained for the future development. Those experiments show that lithium should be an important material for fusion devices. It could be used for wall conditioning, ELMs mitigation and also provide a self-recovery plasma facing components in future fusion devices. (C) 2014 Elsevier B.V. All rights reserved. C1 [Hu, J. S.; Ren, J.; Sun, Z.; Zuo, G. Z.; Yang, Q. X.; Li, J. G.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. [Mansfield, D. K.; Zakharov, L. E.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Ruzic, D. N.] Univ Illinois, Urbana, IL 61801 USA. RP Hu, JS (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. EM hujs@ipp.ac.cn NR 38 TC 9 Z9 9 U1 14 U2 43 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD DEC PY 2014 VL 89 IS 12 BP 2875 EP 2885 DI 10.1016/j.fusengdes.2014.06.015 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AX6HI UT WOS:000347023200012 ER PT J AU Sun, Z Hu, JS Zuo, GZ Ren, J Cao, B Li, JG Mansfield, DK AF Sun, Z. Hu, J. S. Zuo, G. Z. Ren, J. Cao, B. Li, J. G. Mansfield, D. K. CA EAST Team TI Influence of lithium coatings with large-area coverage on EAST plasma performance SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 3rd International Symposium on Lithium Application for Fusion Devices (ISLA) CY OCT, 2013 CL ENEA Frascati Ctr, Frascati, ITALY HO ENEA Frascati Ctr DE Lithium coating; Coverage; Plasma; EAST ID TOKAMAK AB Over the last two EAST campaigns, lithium coatings by oven evaporation were carried out as a routine wall conditioning method and significant progresses has been achieved. By upgrading the EAST lithium coating systems, lithium area coverage increased from similar to 35% in 2010 to similar to 85% in 2012. Accompanying the increased lithium coverage, carbon, oxygen and molybdenum impurities were decreased to extremely low levels. In addition, hydrogen concentration was further decreased with the H/(H + D) ratio falling as low as 2.5%. The effective recycling coefficient decreased step-by-step to similar to 0.89 and remained below unity for 100 discharges. This allowed for effective feedback control of the plasma density. The wall retention rate increased from 55% to 75%, which also indicated stronger pumping of deuterium particles with increased Li coverage. With the help of increased lithium coverage, H-mode plasmas were generally easier to obtain and the EAST parameter space was enlarged. (C) 2014 Elsevier B.V. All rights reserved. C1 [Sun, Z.; Hu, J. S.; Zuo, G. Z.; Ren, J.; Cao, B.; Li, J. G.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. [Mansfield, D. K.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hu, JS (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. EM sunzhen@ipp.ac.cn; hujs@ipp.ac.cn NR 19 TC 6 Z9 6 U1 4 U2 24 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD DEC PY 2014 VL 89 IS 12 BP 2886 EP 2893 DI 10.1016/j.fusengdes.2014.06.016 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AX6HI UT WOS:000347023200013 ER PT J AU Andruczyk, D Roquemore, AL Fiflis, P Mansfield, D Ruzic, DN AF Andruczyk, D. Roquemore, A. L. Fiflis, P. Mansfield, D. Ruzic, D. N. TI A method to produce lithium pellets for fueling and ELM pacing in NSTX-U SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 3rd International Symposium on Lithium Application for Fusion Devices (ISLA) CY OCT, 2013 CL ENEA Frascati Ctr, Frascati, ITALY HO ENEA Frascati Ctr DE Plasma facing components; Plasma material interactions; Lithium; Liquid metal; Wood's metal; NSTX-U ID CAPILLARY STREAM BREAKUP; SURFACE-TENSION; DENSITY AB A device for producing small, high frequency spherical droplets or pellets for lithium or other liquid metals has been developed and could aid in the controlled excitation or pacing of edge-localized plasma modes (ELMs). The Liquid Lithium/metal Pellet Injector (LLPI) could also be used to replenish lithium coatings of plasma-facing components (PFCs) during a plasma discharge. With NSTX-U having longer pulse lengths (up to 5 s), it is desirable to be able to inject lithium during the discharge to maintain the beneficial effects. Using a nozzle injector design and a surrogate to lithium, Wood's metal, the LLPI has achieved droplet diameters between 0.6 mm < d(drop) < 1 mm in diameter and frequencies up to 1.5 kHz with argon gas driving the formation. This paper presents the LLPI being developed with initial results mainly using Wood's metal and some lithium, using high pressure argon to force the liquid lithium through the nozzle. (C) 2014 Elsevier B.V. All rights reserved. C1 [Andruczyk, D.; Fiflis, P.; Ruzic, D. N.] Univ Illinois, Ctr Plasma Mat Interact, Champaign, IL 61801 USA. [Roquemore, A. L.; Mansfield, D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Andruczyk, D (reprint author), Univ Illinois, Ctr Plasma Mat Interact, Champaign, IL 61801 USA. EM andruczy@illinois.edu NR 18 TC 0 Z9 0 U1 2 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD DEC PY 2014 VL 89 IS 12 BP 2910 EP 2914 DI 10.1016/j.fusengdes.2014.07.005 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AX6HI UT WOS:000347023200016 ER PT J AU Platacis, E Flerov, A Klukin, A Ivanov, S Sobolevs, A Shishko, A Zaharov, L Gryaznevich, M AF Platacis, E. Flerov, A. Klukin, A. Ivanov, S. Sobolevs, A. Shishko, A. Zaharov, L. Gryaznevich, M. TI Gravitational flow of a thin film of liquid metal in a strong magnetic field SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 3rd International Symposium on Lithium Application for Fusion Devices (ISLA) CY OCT, 2013 CL ENEA Frascati Ctr, Frascati, ITALY HO ENEA Frascati Ctr DE Divertor material; Liquid metals; Lithium; Fusion reactor materials ID SPHERICAL TOKAMAK AB The influence of a poloidal magnetic field of the spherical Tokamak on super thin (h approximate to 0.1 mm) film flow of liquid metal driven by gravity over the surface of the cooled divertor plate is addressed. The experimental setup developed at the Institute of Physics, University of Latvia (IPUL) is described, which makes it possible to drive and visualize such liquid metal flows in the solenoid of the superconducting magnet "Magdalena". As applied to the above setup, the magnetic field effect on the operation of the capillary system of liquid metal flow distribution (CSFD) is evaluated by using molten metal (lithium or eutectic InGaSn alloy) with a very small linear flowrate q <= 1 mm(2)/s, spread uniformly across the substrate. The magnetic field effect on the main parameters of the fully developed film flow is estimated for the above-mentioned liquid metals. An approximation technique has been proposed to calculate the development of the gravitational film flow. A non-linear differential second order equation has been derived, which describes the variation of the film flow thickness over the substrate length versus the flowrate q, magnetic field B and the substrate sloping alpha. Results of InGaSn film flow observations in a strong (B = 4T) poloidal magnetic field are presented. Analysis of the video records evidences of experimental realization of a stable stationary film flow at width-uniform supply of InGaSn. (C) 2014 Elsevier B.V. All rights reserved. C1 [Platacis, E.; Flerov, A.; Klukin, A.; Ivanov, S.; Sobolevs, A.; Shishko, A.] Univ Latvia, Inst Phys, LV-2169 Salaspils, Latvia. [Zaharov, L.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Gryaznevich, M.] Tokamak Solut UK Ltd, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. RP Zaharov, L (reprint author), Princeton Univ, Princeton Plasma Phys Lab, MS-27,POB 451, Princeton, NJ 08543 USA. EM zakharov@pppl.gov NR 8 TC 0 Z9 0 U1 2 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD DEC PY 2014 VL 89 IS 12 BP 2937 EP 2945 DI 10.1016/j.fusengdes.2014.09.003 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AX6HI UT WOS:000347023200021 ER PT J AU Uddin, H Kramer, R Pantano, C Kramer, K Tang, V Sacks, R Moses, G Hunt, R DeMuth, J Scott, H Dunne, AM AF Uddin, Hasib Kramer, Richard Pantano, Carlos Kramer, Kevin Tang, Vincent Sacks, Ryan Moses, Gregory Hunt, Ryan DeMuth, James Scott, Howard Dunne, A. Mike TI Integrated inertial fusion energy chamber dynamics and response SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 3rd International Symposium on Lithium Application for Fusion Devices (ISLA) CY OCT, 2013 CL ENEA Frascati Ctr, Frascati, ITALY HO ENEA Frascati Ctr DE Inertial confinement fusion; Large-eddy simulation; IFE; Fusion chamber ID LARGE-EDDY SIMULATION; ADAPTIVE MESH REFINEMENT; VIRTUAL TEST FACILITY; LIFE; FLOWS; SHOCK; SHELLS AB This paper presents results of three-dimensional hydrodynamics simulations of the flow inside a model inertial fusion energy (IFE) fusion chamber. Turbulence modeling employing the large-eddy simulation approach is used to estimate the gas dynamics, state, and mixing after a sufficiently large number of target ignitions. The rich radiation-flow physics that takes place immediately after the lasers hit the hohlraum is modeled separately using a high-fidelity one-dimensional model, which provides reference conditions for the complex geometry three-dimensional turbulence simulations. The IFE geometry includes optical ports and recirculation openings as well as a duct to evacuate the debris produced after each energy deposition (as a model of a laser shot). Furthermore, a selected set of sensitivity studies are conducted to estimate the effect of uncertainty in radiative properties of the Xenon gas at the prevalent conditions in the chamber. The results provide guidance regarding the turbulence conditions in the chamber, which seem to have entered a decay state immediately before a new shot takes place. Computational estimates of the density variability within the chamber as well as pressure history at the approximate location of the laser optical ports is presented among other turbulence statistics. (C) 2014 Elsevier B.V. All rights reserved. C1 [Uddin, Hasib; Kramer, Richard; Pantano, Carlos] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. [Sacks, Ryan; Moses, Gregory] Univ Wisconsin, Fus Technol Inst, Madison, WI 53706 USA. [Kramer, Kevin; Tang, Vincent; Hunt, Ryan; DeMuth, James; Scott, Howard; Dunne, A. Mike] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Uddin, H (reprint author), Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. EM uddin3@illinois.edu RI Pantano, Carlos/B-7571-2009 NR 36 TC 0 Z9 0 U1 0 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD DEC PY 2014 VL 89 IS 12 BP 3131 EP 3148 DI 10.1016/j.fusengdes.2014.10.003 PG 18 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AX6HI UT WOS:000347023200048 ER PT J AU Fleetwood, D Brown, D Girard, S Gouker, P Gerardin, S Quinn, H Barnaby, H AF Fleetwood, Dan Brown, Dennis Girard, Sylvain Gouker, Pascale Gerardin, Simone Quinn, Heather Barnaby, Hugh TI 2014 Special NSREC Issue of the IEEE TRANSACTIONS ON NUCLEAR SCIENCE Comments by the Editors SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Editorial Material C1 [Fleetwood, Dan] Vanderbilt Univ, Nashville, TN 37235 USA. [Girard, Sylvain] Univ St Etienne, St Etienne, France. [Gouker, Pascale] MIT Lincoln Lab, Lexington, MA USA. [Gerardin, Simone] Univ Padua, I-35100 Padua, Italy. [Quinn, Heather] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Barnaby, Hugh] Arizona State Univ, Tempe, AZ 85287 USA. RP Fleetwood, D (reprint author), Vanderbilt Univ, Nashville, TN 37235 USA. NR 0 TC 0 Z9 0 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2014 VL 61 IS 6 BP 2807 EP 2807 DI 10.1109/TNS.2014.2372831 PN 1 PG 1 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AX1RO UT WOS:000346724100002 ER PT J AU Hehr, BD AF Hehr, Brian D. TI Analysis of Radiation Effects in Silicon Using Kinetic Monte Carlo Methods SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 51st Annual IEEE International Nuclearand Space Radiation Effects Conference (NSREC) CY JUL 14-18, 2014 CL Paris, FRANCE SP IEEE DE Bipolar transistors; charge carrier lifetime; crystalline defects; displacement damage; kinetic Monte Carlo (KMC); radiation effects; silicon ID DYNAMICS AB The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. Neutron irradiation can instigate the formation of quasi-stable defect structures, thereby introducing new energy levels into the bandgap that alter carrier lifetimes and give rise to such phenomena as gain degradation in bipolar junction transistors. Typically, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. A kinetic Monte Carlo (KMC) code has been developed to model both thermal and carrier injection annealing of initial defect structures in semiconductor materials. The code is employed to investigate annealing in electron-irradiated, p-type silicon as well as the recovery of base current in silicon transistors bombarded with neutrons at the Los Alamos Neutron Science Center (LANSCE) "Blue Room" facility. The results reveal that KMC calculations agree well with these experiments once adjustments are made, within the appropriate uncertainty bounds, to some of the sensitive defect parameters. C1 Sandia Natl Labs, Appl Nucl Technol Grp, Albuquerque, NM 87185 USA. RP Hehr, BD (reprint author), Sandia Natl Labs, Appl Nucl Technol Grp, POB 5800, Albuquerque, NM 87185 USA. EM bdhehr@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 21 TC 1 Z9 1 U1 0 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2014 VL 61 IS 6 BP 2847 EP 2854 DI 10.1109/TNS.2014.2368075 PN 1 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AX1RO UT WOS:000346724100008 ER PT J AU Pellish, JA Marshall, PW Rodbell, KP Gordon, MS LaBel, KA Schwank, JR Dodds, NA Castaneda, CM Berg, MD Kim, HS Phan, AM Seidleck, CM AF Pellish, Jonathan A. Marshall, Paul W. Rodbell, Kenneth P. Gordon, Michael S. LaBel, Kenneth A. Schwank, James R. Dodds, Nathaniel A. Castaneda, Carlos M. Berg, Melanie D. Kim, Hak S. Phan, Anthony M. Seidleck, Christina M. TI Criticality of Low-Energy Protons in Single-Event Effects Testing of Highly-Scaled Technologies SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 51st Annual IEEE International Nuclearand Space Radiation Effects Conference (NSREC) CY JUL 14-18, 2014 CL Paris, FRANCE SP IEEE DE Alpha particle radiation effects; proton radiation effects; radiation hardness assurance testing; silicon-on-insulator technology; single-event upset ID NM SOI SRAM; UPSETS AB We report low-energy proton and low-energy alpha particle SEE data on a 32 nm SOI CMOS SRAM that demonstrates the criticality of using low-energy protons for SEE testing of highly-scaled technologies. Low-energy protons produced a significantly higher fraction of multi-bit upsets relative to single-bit upsets when compared to similar alpha particle data. This difference highlights the importance of performing hardness assurance testing with protons that include energy distribution components below 2 MeV. The importance of low-energy protons to system-level single-event performance is based on the technology under investigation as well as the target radiation environment. C1 [Pellish, Jonathan A.; LaBel, Kenneth A.; Berg, Melanie D.; Kim, Hak S.; Phan, Anthony M.; Seidleck, Christina M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Marshall, Paul W.] NASA Consultant, Brookneal, VA 24528 USA. [Rodbell, Kenneth P.; Gordon, Michael S.] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Schwank, James R.; Dodds, Nathaniel A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Castaneda, Carlos M.] Univ Calif Davis, Crocker Nucl Lab, Davis, CA 95616 USA. RP Pellish, JA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM jonathan.pellish@nasa.gov FU NASA Electronic Parts and Packaging program; Defense Threat Reduction Agency Radiation Hardened Microelectronics program; National Reconnaissance Office FX This work was supported in part by the NASA Electronic Parts and Packaging program, the Defense Threat Reduction Agency Radiation Hardened Microelectronics program, and the National Reconnaissance Office. NR 18 TC 8 Z9 8 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2014 VL 61 IS 6 BP 2896 EP 2903 DI 10.1109/TNS.2014.2369171 PN 1 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AX1RO UT WOS:000346724100015 ER PT J AU Dodds, NA Schwank, JR Shaneyfelt, MR Dodd, PE Doyle, BL Trinczek, M Blackmore, EW Rodbell, KP Gordon, MS Reed, RA Pellish, JA Label, KA Marshall, PW Swanson, SE Vizkelethy, G Van Deusen, S Sexton, FW Martinez, MJ AF Dodds, N. A. Schwank, J. R. Shaneyfelt, M. R. Dodd, P. E. Doyle, B. L. Trinczek, M. Blackmore, E. W. Rodbell, K. P. Gordon, M. S. Reed, R. A. Pellish, J. A. Label, K. A. Marshall, P. W. Swanson, S. E. Vizkelethy, G. Van Deusen, S. Sexton, F. W. Martinez, M. J. TI Hardness Assurance for Proton Direct Ionization-Induced SEEs Using a High-Energy Proton Beam SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 51st Annual IEEE International Nuclearand Space Radiation Effects Conference (NSREC) CY JUL 14-18, 2014 CL Paris, FRANCE SP IEEE DE Energy straggle; error rate prediction; low energy protons; proton direct ionization (PDI); single-event effects (SEEs) ID SINGLE-EVENT-UPSETS; NM SOI SRAM; PREDICTIONS AB The low-energy proton energy spectra of all shielded space environments have the same shape. This shape is easily reproduced in the laboratory by degrading a high-energy proton beam, producing a high-fidelity test environment. We use this test environment to dramatically simplify rate prediction for proton direct ionization effects, allowing the work to be done at high-energy proton facilities, on encapsulated parts, without knowledge of the IC design, and with little or no computer simulations required. Proton direct ionization (PDI) is predicted to significantly contribute to the total error rate under the conditions investigated. Scaling effects are discussed using data from 65-nm, 45-nm, and 32-nm SOI SRAMs. These data also show that grazing-angle protons will dominate the PDI-induced error rate due to their higher effective LET, so PDI hardness assurance methods must account for angular effects to be conservative. We show that this angular dependence can be exploited to quickly assess whether an IC is susceptible to PDI. C1 [Dodds, N. A.; Schwank, J. R.; Shaneyfelt, M. R.; Dodd, P. E.; Doyle, B. L.; Swanson, S. E.; Vizkelethy, G.; Van Deusen, S.; Sexton, F. W.; Martinez, M. J.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Trinczek, M.; Blackmore, E. W.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Rodbell, K. P.; Gordon, M. S.] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Reed, R. A.] Vanderbilt Univ, Nashville, TN 37203 USA. [Pellish, J. A.; Label, K. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Marshall, P. W.] NASA, Brookneal, VA 24528 USA. RP Dodds, NA (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM nadodds@sandia.gov FU Defense Threat Reduction Agency [DTRA100277008]; TRIUMF - National Research Council of Canada; Laboratory Directed Research and Development program at Sandia National Laboratories; United States Department of Energy [DE-AC04-94AL85000] FX This work was supported by the Defense Threat Reduction Agency under contract DTRA100277008, by TRIUMF, which receives funding via a contribution agreement through the National Research Council of Canada, and by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy, under contract DE-AC04-94AL85000. NR 22 TC 10 Z9 10 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2014 VL 61 IS 6 BP 2904 EP 2914 DI 10.1109/TNS.2014.2364953 PN 1 PG 11 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AX1RO UT WOS:000346724100016 ER PT J AU Hughart, DR Pacheco, JL Lohn, AJ Mickel, PR Bielejec, E Vizkelethy, G Doyle, BL Wolfley, SL Dodd, PE Shaneyfelt, MR McLain, ML Marinella, MJ AF Hughart, David R. Pacheco, Jose L. Lohn, Andrew J. Mickel, Patrick R. Bielejec, Edward Vizkelethy, Gyorgy Doyle, Barney L. Wolfley, Steven L. Dodd, Paul E. Shaneyfelt, Marty R. McLain, Michael L. Marinella, Matthew J. TI Mapping of Radiation-Induced Resistance Changes and Multiple Conduction Channels in TaOx Memristors SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 51st Annual IEEE International Nuclearand Space Radiation Effects Conference (NSREC) CY JUL 14-18, 2014 CL Paris, FRANCE SP IEEE DE Displacement damage; memristor; microbeam; Nanoimplanter; radiation effects; resistive memory; RRAM; tantalum ID ELECTRICAL CHARACTERISTICS; TIO2 MEMRISTORS; MEMORIES; IRRADIATION; HARDNESS; DEVICES; IMPACT AB The locations of conductive regions in TaOx memristors are spatially mapped using a microbeam and Nanoimplanter by rastering an ion beam across each device while monitoring its resistance. Microbeam irradiation with 800 keV Si ions revealed multiple sensitive regions along the edges of the bottom electrode. The rest of the active device area was found to be insensitive to the ion beam. Nanoimplanter irradiation with 200 keV Si ions demonstrated the ability to more accurately map the size of a sensitive area with a beam spot size of 40 nm by 40 nm. Isolated single spot sensitive regions and a larger sensitive region that extends approximately 300 nm were observed. C1 [Hughart, David R.; Pacheco, Jose L.; Lohn, Andrew J.; Mickel, Patrick R.; Bielejec, Edward; Vizkelethy, Gyorgy; Doyle, Barney L.; Wolfley, Steven L.; Dodd, Paul E.; Shaneyfelt, Marty R.; McLain, Michael L.; Marinella, Matthew J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hughart, DR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dhughar@sandia.gov FU Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) Program; U. S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported in part by Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 24 TC 0 Z9 0 U1 1 U2 22 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2014 VL 61 IS 6 BP 2965 EP 2971 DI 10.1109/TNS.2014.2365139 PN 1 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AX1RO UT WOS:000346724100024 ER PT J AU McLain, ML Hjalmarson, HP Sheridan, TJ Mickel, PR Hanson, D McDonald, K Hughart, DR Marine, MJ AF McLain, Michael L. Hjalmarson, Harold P. Sheridan, Tim J. Mickel, Patrick R. Hanson, Don McDonald, Kyle Hughart, David R. Marine, Matthew J. TI The Susceptibility of TaOx-Based Memristors to High Dose Rate Ionizing Radiation and Total Ionizing Dose SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 51st Annual IEEE International Nuclearand Space Radiation Effects Conference (NSREC) CY JUL 14-18, 2014 CL Paris, FRANCE SP IEEE DE Dose rate; memristors; pulsed ionizing radiation; tantalum oxide (TaOx); total ionizing dose (TID); transient radiation effects ID STORAGE-CLASS MEMORY; ELECTRICAL CHARACTERISTICS; TIO2 MEMRISTORS; DEVICE; RERAM AB This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaOx) memristors. Transient data were obtained during 50. x 10(7) the pulsed exposures for dose rates ranging from approximately rad(Si)/s to rad(Si)/s 4.7 x 10(8) and for pulse widths ranging from 50 ns to 50 mu s. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of similar to 3.0 x 10(8) rad(Si)/s. This is the first dose rate study on any type of memristive memory technology. In addition to assessing the tolerance of TaOx memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. Numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages. C1 [McLain, Michael L.; Hjalmarson, Harold P.; Sheridan, Tim J.; Mickel, Patrick R.; Hanson, Don; McDonald, Kyle; Hughart, David R.; Marine, Matthew J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP McLain, ML (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mlmclai@sandia.gov; hphjalm@sandia.gov; tjsheri@sandia.gov; pmickel@sandia.gov; jkmcdon@sandia.gov; dhughar@sandia.gov; mmarine@sandia.gov FU Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 36 TC 1 Z9 1 U1 2 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2014 VL 61 IS 6 BP 2997 EP 3004 DI 10.1109/TNS.2014.2364521 PN 1 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AX1RO UT WOS:000346724100029 ER PT J AU Wirthlin, M Lee, D Swift, G Quinn, H AF Wirthlin, Michael Lee, David Swift, Gary Quinn, Heather TI A Method and Case Study on Identifying Physically Adjacent Multiple-Cell Upsets Using 28-nm, Interleaved and SECDED-Protected Arrays SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 51st Annual IEEE International Nuclearand Space Radiation Effects Conference (NSREC) CY JUL 14-18, 2014 CL Paris, FRANCE SP IEEE DE Field programmable gate arrays (FPGAs); multiple-bit upset; reconfiguration; soft errors; single event effect (SEE); testing techniques ID MULTIBIT UPSETS; SRAM; DEVICE; ERRORS; FPGAS AB Extracting information about MCUs from SEU data sets can be a challenge without physical layout information. Many modern static-random access memory (SRAM) components interleave memory cells to improve the robustness of error-correcting codes (ECC) that detect and correct errors in the memory array. Bit interleaving has also become popular with other components with large SRAM arrays, including field-programmable gate arrays (FPGAs). In this paper, we present a technique for extracting MCUs statistically from radiation test data. Further, we use this technique to extract MCU information from a 28-nm FPGA that uses interleaving to protect the configuration memory. C1 [Wirthlin, Michael] Brigham Young Univ, Dept Elect & Comp Engn, NSF Ctr High Performance Reconfigurable Comp CHRE, Provo, UT 84602 USA. [Lee, David] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Swift, Gary] Swift Engn & Radiat Serv, San Jose, CA 95154 USA. [Quinn, Heather] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wirthlin, M (reprint author), Brigham Young Univ, Dept Elect & Comp Engn, NSF Ctr High Performance Reconfigurable Comp CHRE, Provo, UT 84602 USA. EM wirthlin@ee.byu.edu FU I/UCRC Program of the National Science Foundation [0801876]; Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energys National Nuclear Security Administration [DE-AC04-94AL85000]; U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by the I/UCRC Program of the National Science Foundation under Grant 0801876 and by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under Contract DE-AC04-94AL85000. This work has been authored by an employee ofNo. Los Alamos National Security, LLC, operator of the Los Alamos National Laboratory under Contract DE-AC52-06NA25396 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting this work for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce this work, or allow others to do so for United States Government purposes. Los Alamos National Laboratory strongly supports academic freedom and a researchers right to publish; however, the Laboratory as an institution does not endorse the viewpoint of a publication or guarantee its technical correctness. NR 17 TC 11 Z9 11 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2014 VL 61 IS 6 BP 3080 EP 3087 DI 10.1109/TNS.2014.2366913 PN 1 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AX1RO UT WOS:000346724100042 ER PT J AU Oliveira, DAG Rech, P Quinn, HM Fairbanks, TD Monroe, L Michalak, SE Anderson-Cook, C Navaux, POA Carro, L AF Oliveira, Daniel A. G. Rech, Paolo Quinn, Heather M. Fairbanks, Thomas D. Monroe, Laura Michalak, Sarah E. Anderson-Cook, Christine Navaux, Philippe O. A. Carro, Luigi TI Modern GPUs Radiation Sensitivity Evaluation and Mitigation Through Duplication With Comparison SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 51st Annual IEEE International Nuclearand Space Radiation Effects Conference (NSREC) CY JUL 14-18, 2014 CL Paris, FRANCE SP IEEE DE Fault tolerance; graphics processing unit (GPU); neutron sensitivity; parallel processors; reliability ID SOFT-ERROR; TOLERANCE; GRAPHICS AB Graphics processing units (GPUs) are increasingly common in both safety-critical and high-performance computing (HPC) applications. Some current supercomputers are composed of thousands of GPUs so the probability of device corruption becomes very high. Moreover, the GPU's parallel capabilities are very attractive for the automotive and aerospace markets, where reliability is a serious concern. In this paper, the neutron sensitivity of the modern GPU caches, and internal resources are experimentally evaluated. Various Duplication With Comparison strategies to reduce GPU radiation sensitivity are then presented and validated through radiation experiments. Threads should be carefully duplicated to avoid undesired errors on shared resources and to avoid the exacerbation of errors in critical resources such as the scheduler. C1 [Oliveira, Daniel A. G.; Rech, Paolo; Navaux, Philippe O. A.; Carro, Luigi] Univ Fed Rio Grande do Sul, Inst Informat, Porto Alegre, RS, Brazil. [Quinn, Heather M.; Fairbanks, Thomas D.] Los Alamos Natl Lab, Intelligence & Space Res Div, Los Alamos, NM 87545 USA. [Michalak, Sarah E.; Anderson-Cook, Christine] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. [Monroe, Laura] Los Alamos Natl Lab, High Performance Comp Div, Los Alamos, NM 87545 USA. RP Oliveira, DAG (reprint author), Univ Fed Rio Grande do Sul, Inst Informat, Porto Alegre, RS, Brazil. EM dagoliveira@inf.ufrgs.br; prech@inf.ufrgs.br; navaux@inf.ufrgs.br; carro@inf.ufrgs.br FU CAPES foundation of the Ministry of Education; CNPq research council of the Ministry of Science and Technology; FAPERGS research agency of the State of Rio Grande do Sul, Brazil; U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported in part by CAPES foundation of the Ministry of Education, in part by the CNPq research council of the Ministry of Science and Technology, and in part by the FAPERGS research agency of the State of Rio Grande do Sul, Brazil. This work has been authored by an employee of Los Alamos National Security, LLC, operator of the Los Alamos National Laboratory under Contract DE-AC52-06NA25396 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting this work for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce this work, or allow others to do so for United States Government purposes. Los Alamos National Laboratory strongly supports academic freedom and a researchers right to publish; however, the Laboratory as an institution does not endorse the viewpoint of a publication or guarantee its technical correctness. NR 27 TC 5 Z9 5 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2014 VL 61 IS 6 BP 3115 EP 3122 DI 10.1109/TNS.2014.2362014 PN 1 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AX1RO UT WOS:000346724100047 ER PT J AU Lourenco, NE Fleetwood, ZE Jung, SW Cardoso, AS Chakraborty, PS England, TD Roche, NJH Khachatrian, A McMorrow, D Buchner, SP Melinger, JS Warner, JH Paki, P Kaynak, M Tillack, B Knoll, D Cressler, JD AF Lourenco, Nelson E. Fleetwood, Zachary E. Jung, Seungwoo Cardoso, Adilson S. Chakraborty, Partha S. England, Troy D. Roche, Nicolas J. -H. Khachatrian, Ani McMorrow, Dale Buchner, Stephen P. Melinger, Joseph S. Warner, Jeffrey H. Paki, Pauline Kaynak, Mehmet Tillack, Bernd Knoll, Dieter Cressler, John D. TI On the Transient Response of a Complementary (npn plus pnp) SiGe HBT BiCMOS Technology SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 51st Annual IEEE International Nuclearand Space Radiation Effects Conference (NSREC) CY JUL 14-18, 2014 CL Paris, FRANCE SP IEEE DE C-SiGe; charge collection; complementary bipolar; complementary-SiGe; nanoTCAD; PNP heterojunction bipolar transistors; radiation hardening; SiGe HBT; silicon-germanium technology; single-event effects (SEE); single-event transient (SET) ID DESIGNING ELECTRONIC SYSTEMS; PROTON TOLERANCE; PART-I; CIRCUITS; 4TH-GENERATION; MITIGATION; OPERATION; LOGIC AB The single-event transient (SET) response of a third-generation bulk C-SiGe (npn + pnp) BiCMOS platform is investigated for the first time. Pulsed-laser, two-photon absorption experiments show that the pnp SiGe heterojunction bipolar transistor (SiGe HBT) exhibits a significant reduction in sensitive area as well as an improved transient response compared with the npn SiGe HBT. Ion-strike simulations on 3-D TCAD, C-SiGe HBT models agree with experimental findings, showing a reduction in overall transient duration and collected charge for the pnp SiGe HBT. These improvements in device-level SETs are attributed to the n-well isolation layer present in the vertical material stack of the pnp HBT. These results suggest that precision analog, RF/mm-wave, and high-speed digital applications utilizing unhardened, high-performance bulk pnp SiGe HBTs should benefit from an inherently improved SEE response. C1 [Lourenco, Nelson E.; Fleetwood, Zachary E.; Jung, Seungwoo; Cardoso, Adilson S.; Chakraborty, Partha S.; Cressler, John D.] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. [England, Troy D.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Roche, Nicolas J. -H.] George Washington Univ, Washington, DC 20052 USA. [Khachatrian, Ani] Sotera Def, Annapolis Jct, MD 20701 USA. [McMorrow, Dale; Buchner, Stephen P.; Melinger, Joseph S.; Warner, Jeffrey H.] Naval Res Lab, Washington, DC 20052 USA. [Paki, Pauline] Def Threat Reduct Agcy, Ft Belvoir, VA 22060 USA. [Kaynak, Mehmet; Tillack, Bernd; Knoll, Dieter] IHP Microelect, D-15236 Frankfurt, Germany. RP Lourenco, NE (reprint author), Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. EM nlourenco@gatech.edu; cressler@ece.gatech.edu FU Defense Threat Reduction Agency [HDTRA1-13-C-0058] FX This work was supported by the Defense Threat Reduction Agency under contract HDTRA1-13-C-0058. NR 32 TC 4 Z9 4 U1 1 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2014 VL 61 IS 6 BP 3146 EP 3153 DI 10.1109/TNS.2014.2361269 PN 1 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AX1RO UT WOS:000346724100051 ER PT J AU Cardoza, D LaLumondiere, SD Tockstein, MA Brewe, DL Wells, NP Koga, R Gaab, KM Lotshaw, WT Moss, SC AF Cardoza, David LaLumondiere, Stephen D. Tockstein, Michael A. Brewe, Dale L. Wells, Nathan P. Koga, Rokutaro Gaab, Kevin M. Lotshaw, William T. Moss, Steven C. TI Comparison of Single Event Transients Generated by Short Pulsed X-Rays, Lasers and Heavy Ions SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 51st Annual IEEE International Nuclearand Space Radiation Effects Conference (NSREC) CY JUL 14-18, 2014 CL Paris, FRANCE SP IEEE DE Integrated circuit reliability; radiation hardening; semiconductor device reliability; single event effects; single event transients; synchrotron radiation; x-ray applications ID HIGHLY DOPED SILICON; HOLE MOBILITY; MICROBEAM; LIGHT; MICROCIRCUITS; COEFFICIENTS; ABSORPTION; CIRCUITS; DEVICES; UPSETS AB We report an experimental study of the transients generated by pulsed x-rays, heavy ions, and different laser wavelengths in a Si p-i-n photodiode. We compare the charge collected by all of the excitation methods to determine the equivalent LET for pulsed x-rays relative to heavy ions. Our comparisons show that pulsed x-rays from synchrotron sources can generate a large range of equivalent LET and generate transients similar to those excited by laser pulses and heavy ion strikes. We also look at how the pulse width of the transients changes for the different excitation methods. We show that the charge collected with pulsed x-rays is greater than expected as the x-ray photon energy increases. Combined with their capability of focusing to small spot sizes and of penetrating metallization, pulsed x-rays are a promising new tool for high resolution screening of SEE susceptibility. C1 [Cardoza, David; LaLumondiere, Stephen D.; Wells, Nathan P.; Gaab, Kevin M.; Lotshaw, William T.] Aerosp Corp, Phys Sci Labs, Elect & Photon Lab, Photon Technol Dept, Los Angeles, CA 90009 USA. [Tockstein, Michael A.; Moss, Steven C.] Aerosp Corp, Phys Sci Labs, Elect & Photon Lab, Microelect Technol Dept, Los Angeles, CA 90009 USA. [Brewe, Dale L.] Argonne Natl Lab, Adv Photon Source, PNC XSD Facil Sect 20, Argonne, IL USA. [Koga, Rokutaro] Aerosp Corp, Space Sci Applicat Lab, Phys Sci Labs, Los Angeles, CA 90009 USA. RP Cardoza, D (reprint author), Aerosp Corp, Phys Sci Labs, Elect & Photon Lab, Photon Technol Dept, POB 92957, Los Angeles, CA 90009 USA. EM David.M.Cardoza@aero.org FU Aerospace Corporation; U.S. Department of Energy-Basic Energy Sciences; Canadian Light Source; University of Washington; Advanced Photon Source; U.S. DOE [DE-AC02-06CH11357] FX This work was supported in part by the Independent Research and Development Program at The Aerospace Corporation. PNC/XSD facilities at the Advanced Photon Source, and research at these facilities, are supported by the U.S. Department of Energy-Basic Energy Sciences, the Canadian Light Source and its funding partners, the University of Washington and the Advanced Photon Source. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract DE-AC02-06CH11357. NR 32 TC 2 Z9 2 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2014 VL 61 IS 6 BP 3154 EP 3162 DI 10.1109/TNS.2014.2368057 PN 1 PG 9 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AX1RO UT WOS:000346724100052 ER PT J AU Wang, SY Wu, JY Yao, SH Chang, WC AF Wang, Su-Yin Wu, Jinyuan Yao, Shi-Hong Chang, Wen-Chen TI A Field-Programmable Gate Array (FPGA) TDC for the Fermilab SeaQuest (E906) Experiment and Its Test with a Novel External Wave Union Launcher SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Field-programmable gate array (FPGA); front-end electronics; nuclear physics instrumentation; resolution; time-to-digital converters (TDCs) ID TO-DIGITAL CONVERTER; RESOLUTION AB We developed a field-programmable gate array (FPGA) TDC module for the tracking detectors of the Fermilab SeaQuest (E906) experiment, including drift chambers, proportional tubes, and hodoscopes. This 64-channel TDC module had a 6U VMEbus form factor and was equipped with a low-power, radiation-hardened Microsemi ProASIC3 Flash-based FPGA. The design of the new FPGA firmware (Run2-TDC) aimed to reduce the data volume and data acquisition (DAQ) deadtime. The firmware digitized multiple input hits of both polarities while allowing users to turn on a multiple-hit elimination logic to remove after-pulses in the wire chambers and proportional tubes. A scaler was implemented in the firmware to allow for recording the number of hits in each channel. The TDC resolution was determined by an internal cell delay of 450 ps. A measurement precision of 200 ps was achieved. We used five kinds of tests to ensure the qualification of 93 TDCs in mass production. We utilized the external wave union launcher in our test to improve the TDC's measurement precision and also to illustrate how to construct the Wave Union TDC using an existing multi-hit TDC without modifying its firmware. Measurement precision was improved by a factor of about two (108 ps) based on the four-edge wave union. Better measurement precision (69 ps) was achieved by combining the approaches of Wave Union TDC and multiple-channel ganging. C1 [Wang, Su-Yin; Yao, Shi-Hong; Chang, Wen-Chen] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Wang, Su-Yin] Fermilab Natl Accelerator Lab, Particle Phys Div, Batavia, IL 60510 USA. [Wang, Su-Yin] Natl Kaohsiung Normal Univ, Dept Phys, Kaohsiung 824, Taiwan. [Wu, Jinyuan] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Wang, SY (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. EM grass@phys.sinica.edu.tw; jywu168@fnal.gov; shyao@phys.sinica.edu.tw; changwc@phys.sinica.edu.tw FU National Science Council of Taiwan [100-2112-M-001-015-MY3]; United States Department of Energy [De-AC02-07CH11359] FX This work was supported by the National Science Council of Taiwan under Grant 100-2112-M-001-015-MY3) and operated by Fermi Research Alliance, LLC, under Contract De-AC02-07CH11359 with the United States Department of Energy. NR 11 TC 3 Z9 3 U1 1 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2014 VL 61 IS 6 BP 3592 EP 3598 DI 10.1109/TNS.2014.2362883 PN 2 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AX1SC UT WOS:000346725400003 ER PT J AU Rumaiz, AK Krings, T Siddons, DP Kuczewski, AJ Protic, D Ross, C De Geronimo, G Zhong, Z AF Rumaiz, Abdul K. Krings, T. Siddons, D. P. Kuczewski, A. J. Protic, D. Ross, C. De Geronimo, G. Zhong, Z. TI A Monolithic Segmented Germanium Detector with Highly Integrated Readout SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Energy dispersive x-ray diffraction; germanium; integrated circuits; monolithic; x-ray detector ID ENERGY; RESOLUTION AB We have constructed a pixelated germanium detector using a technique which has been shown to provide good isolation between adjacent pixels. In this work we present initial tests of the application of a low-noise CMOS ASIC to read out this detector. The detector has 64 pixels, each 0.5 mm x 5 mm, arranged as a series of strips. It is connected by wire-bonds to two 32-channel application-specific integrated circuits (ASICs) which provide a complete photon-counting chain for every channel. Since the size of the pixel array is no longer restricted by the difficulties of instrumenting large channel-count conventional electronics, this development will open up the possibility of even larger arrays, similar to those offered by silicon detectors. C1 [Rumaiz, Abdul K.; Siddons, D. P.; Kuczewski, A. J.; De Geronimo, G.; Zhong, Z.] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Krings, T.; Protic, D.; Ross, C.] Semikon Detector GmbH, Julich, Germany. RP Rumaiz, AK (reprint author), Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. EM siddons@bnl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 9 TC 2 Z9 2 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2014 VL 61 IS 6 BP 3721 EP 3726 DI 10.1109/TNS.2014.2365358 PN 2 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AX1SC UT WOS:000346725400018 ER PT J AU Dion, MP Fast, JE Hull, EL Rodriguez, DC Taubman, MS VanDevender, BA Wood, LS Wright, ME AF Dion, Michael P. Fast, James E. Hull, Ethan L. Rodriguez, Douglas C. Taubman, Matthew S. VanDevender, Brent A. Wood, Lynn S. Wright, Michael E. TI A Multi-Point Contact HPGe Detector SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Amorphous semiconductors and devices; charge collection; gamma-ray spectroscopy; germanium detectors; semiconductor radiation detectors ID GAMMA-RAY SPECTROMETRY; BLOCKING CONTACTS; GE DETECTOR; GERMANIUM; SPECTROSCOPY AB A novel, multi-point contact high-purity germanium detector has been developed for applications in high-rate gamma environments. The planar detector was fabricated with seven point contacts, a high-voltage steering grid and bias electrode using amorphous germanium technology. We have characterized this detector and report herein on the depletion profile, leakage current, energy resolution, and charge-sharing behavior. C1 [Dion, Michael P.; Fast, James E.; Rodriguez, Douglas C.; Taubman, Matthew S.; VanDevender, Brent A.; Wood, Lynn S.; Wright, Michael E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hull, Ethan L.] PHDS Co, Knoxville, TN 37921 USA. RP Dion, MP (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM michael.dion@pnnl.gov OI Dion, Michael/0000-0002-3030-0050 FU Battelle Memorial Institute [DE-AC06-76RLO 1830] FX PNNL is operated for the U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. NR 23 TC 1 Z9 1 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2014 VL 61 IS 6 BP 3739 EP 3746 DI 10.1109/TNS.2014.2360497 PN 2 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AX1SC UT WOS:000346725400021 ER PT J AU Small, LJ Wolf, S Spoerke, ED AF Small, Leo J. Wolf, Steven Spoerke, Erik D. TI Exploring Electrochromics: A Series of Eye-Catching Experiments To Introduce Students to Multidisciplinary Research SO JOURNAL OF CHEMICAL EDUCATION LA English DT Article DE Upper-Division Undergraduate; Graduate Education/Research; Analytical Chemistry; Physical Chemistry; Inorganic Chemistry; Inquiry-Based/Discovery Learning; Crystals/Crystallography; Electrochemistry; Materials Science; UV-Vis Spectroscopy ID TUNGSTEN-OXIDE FILMS; THIN-FILMS; SOL-GEL; COLORATION; COATINGS; PROGRESS; WINDOWS AB Introducing students to a multidisciplinary research laboratory presents challenges in terms of learning specific technical skills and concepts but also with respect to integrating different technical elements to form a coherent picture of the research. Here we present a multidisciplinary series of experiments we have developed in the Electronic, Optical, and Nano Materials group at Sandia National Laboratories to introduce students to essential experimental methods and concepts spanning thin film synthesis, crystallography, electrochemistry, and optical spectroscopy. With minimal assistance from a qualified instructor, students apply a sol-gel method to synthesize electrochromic tungsten oxide (WO3) thin films and evaluate their performance with electrochemistry, UV vis spectroscopy, and X-ray diffraction. We find that the color changing WO3 films capture the students' attention, are technologically relevant, and make excellent materials platforms for multidisciplinary research as they invite investigation with a range of laboratory techniques. The variety of experimental methods combined here challenges the students to correlate the interplay between structure, processing, and properties central to materials science. The modular nature of this experiment set permits it to be tailored to the time constraints of individual students and also allows it to be applied to upper-level materials science or chemistry laboratories. C1 [Small, Leo J.; Wolf, Steven; Spoerke, Erik D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Spoerke, ED (reprint author), Sandia Natl Labs, Elect Opt & Nano Mat, POB 5800 MS 1411, Albuquerque, NM 87185 USA. EM edspoer@sandia.gov OI Small, Leo/0000-0003-0404-6287 FU Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors gratefully acknowledge key laboratory support from Jill Wheeler. This work was supported by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 29 TC 3 Z9 3 U1 4 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-9584 EI 1938-1328 J9 J CHEM EDUC JI J. Chem. Educ. PD DEC PY 2014 VL 91 IS 12 BP 2099 EP 2104 DI 10.1021/ed500238j PG 6 WC Chemistry, Multidisciplinary; Education, Scientific Disciplines SC Chemistry; Education & Educational Research GA AX1FR UT WOS:000346693900013 ER PT J AU Patel, AS Saeed, M Yee, EJ Yang, J Lam, GJ Losey, AD Lillaney, PV Thorne, B Chin, AK Malik, S Wilson, MW Chen, XC Balsara, NP Hetts, SW AF Patel, Anand S. Saeed, Maythem Yee, Erin J. Yang, Jeffrey Lam, Gregory J. Losey, Aaron D. Lillaney, Prasheel V. Thorne, Bradford Chin, Albert K. Malik, Sheena Wilson, Mark W. Chen, Xi C. Balsara, Nitash P. Hetts, Steven W. TI Development and Validation of Endovascular Chemotherapy Filter Device for Removing High-Dose Doxorubicin: Preclinical Study SO JOURNAL OF MEDICAL DEVICES-TRANSACTIONS OF THE ASME LA English DT Article ID ISOLATED LIVER CHEMOPERFUSION; HEPATIC VENOUS ISOLATION; UNRESECTABLE HEPATOCELLULAR-CARCINOMA; BREAST-CANCER; PHASE-I; CHEMOEMBOLIZATION; TUMORS; MANAGEMENT; INFUSION; ANTHRACYCLINE AB To develop a novel endovascular chemotherapy filter (CF) able to remove excess drug from the blood during intra-arterial chemotherapy delivery (IAC), thus preventing systemic toxicities and thereby enabling higher dose IAC. A flow circuit containing 2.5 mL of ion-exchange resin was constructed. Phosphate-buffered saline (PBS) containing 50 mg doxorubicin (Dox) was placed in the flow model with the hypothesis that doxorubicin would bind rapidly to resin. To simulate IAC, 50 mg of doxorubicin was infused over 10 min into the flow model containing resin. Similar testing was repeated with porcine serum. Doxorubicin concentrations were measured over 60 min and compared to controls (without resin). Single-pass experiments were also performed. Based on these experiments, an 18F CF was constructed with resin in its tip. In a pilot porcine study, the device was deployed under fluoroscopy. A control hepatic doxorubicin IAC model (no CF placed) was developed in another animal. A second CF device was created with a resin membrane and tested in the infrarenal inferior vena cava (IVC) of a swine. In the PBS model, resin bound 76% of doxorubicin in 10 min, and 92% in 30 min (P < 0.001). During IAC simulation, 64% of doxorubicin bound in 10 min and 96% in 60 min (P < 0.001). On average, 51% of doxorubicin concentration was reduced during each pass in single pass studies. In porcine serum, 52% of doxorubicin bound in 10 min, and 80% in 30 min (P < 0.05). CF device placement and administration of IAC were successful in three animals. No clot was present on the resin within the CF following the in vivo study. The infrarenal IVC swine study demonstrated promising results with up to 85% reduction in peak concentration by the CF device. An endovascular CF device was developed and shown feasible in vitro. An in vivo model was established with promising results supporting high-capacity rapid doxorubicin filtration from the blood that can be further evaluated in future studies. C1 [Patel, Anand S.; Saeed, Maythem; Yee, Erin J.; Yang, Jeffrey; Lam, Gregory J.; Losey, Aaron D.; Lillaney, Prasheel V.; Thorne, Bradford; Wilson, Mark W.; Hetts, Steven W.] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94107 USA. [Chin, Albert K.; Malik, Sheena] ChemoFilter Inc, Hillsborough, CA 94010 USA. [Chen, Xi C.; Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Patel, AS (reprint author), Univ Calif San Francisco, Dept Radiol & Biomed Imaging, 185 Berry St,Suite 350, San Francisco, CA 94107 USA. EM anand.patel@ucsf.edu FU National Institutes of Health (NIH); National Institute of Biomedical Imaging and Bioengineering (NIBIB) Grant [5T32EB001631]; NIH, National Center for Research Resources; National Center for Advancing Translational Sciences through the UCSF Clinical and Translational Science Institute (CTSI) Grant [UL1 TR000004]; Society of Interventional Radiology Foundation Resident Research Grant; UCSF Department of Radiology Seed Grant; UCSF Margulis Society Resident Research Grant; Electron Microscopy of Soft Matter Program - Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy [DE-AC02-05CH11231] FX This project was supported by:; - National Institutes of Health (NIH) and National Institute of Biomedical Imaging and Bioengineering (NIBIB) Grant Number 5T32EB001631; - NIH, National Center for Research Resources, and the National Center for Advancing Translational Sciences through the UCSF Clinical and Translational Science Institute (CTSI) Grant Number UL1 TR000004. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.; - Society of Interventional Radiology Foundation Resident Research Grant; - UCSF Department of Radiology Seed Grant; - UCSF Margulis Society Resident Research Grant; The work of Xi C. Chen and Nitash P. Balsara on the synthesis and characterization of the block copolymer membrane was supported by the Electron Microscopy of Soft Matter Program supported by the Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 40 TC 4 Z9 4 U1 0 U2 4 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 1932-6181 EI 1932-619X J9 J MED DEVICES JI J. Med. Devices PD DEC PY 2014 VL 8 IS 4 AR 041008 DI 10.1115/1.4027444 PG 8 WC Engineering, Biomedical SC Engineering GA AX1HA UT WOS:000346697200008 ER PT J AU Ovun, M Kramer, MJ Kalay, YE AF Ovun, M. Kramer, M. J. Kalay, Y. E. TI Structural modeling of liquid and amorphous Al91Tb9 by Monte Carlo simulations SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Monte-Carlo simulations; Medium-range ordering; Phase separation; Chemical and topological configuration; Al-RE metallic glass ID TOTAL-ENERGY CALCULATIONS; EARTH METALLIC GLASSES; WAVE BASIS-SET; PHASE-SEPARATION; PRIMARY CRYSTALLIZATION; NANOCRYSTAL FORMATION; ALLOYS AB Evolution of the chemical and topological inhomogeneities within the Al91Tb9 amorphous system from liquid to glass was investigated using Monte Carlo (MC) simulations. The interatomic potential for Al-Tb system was developed and three-dimensional atomic configurations of liquid and amorphous structures were modeled. The simulations coupled with Voronoi Tessellation and Warren-Cowley chemical short-range order analysis revealed a high degree of chemical inhomogeneity at nanoscale composed of pure Al clusters which were found to be increasing in number and size with decreasing temperature in the supercooled liquid region. These chemically isolated prenucleation clusters are thought to be the origin of extreme number. (C) 2014 Elsevier B.V. All rights reserved. C1 [Ovun, M.; Kalay, Y. E.] METU, Dept Met & Mat Engn, TR-06800 Ankara, Turkey. [Kramer, M. J.] US DOE, Ames Lab, Ames, IA 50011 USA. RP Kalay, YE (reprint author), METU, Dept Met & Mat Engn, TR-06800 Ankara, Turkey. EM ekalay@metu.edu.tr FU Scientific and Technological Research Council of Turkey (TUBITAK) [113M346]; US Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering [DE-AC02-07CH11358]; Advanced Photon Source, Argonne National Laboratory [DE-AC02-06CH11357] FX This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under grant no. 113M346. Work at Ames Laboratory was supported by the US Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering, under contract no. DE-AC02-07CH11358. The high-energy X-ray experiments were performed at the XOR beamline (sector 6) of the Advanced Photon Source, Argonne National Laboratory, under grant no. DE-AC02-06CH11357. NR 36 TC 2 Z9 2 U1 2 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 EI 1873-4812 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD DEC 1 PY 2014 VL 405 BP 27 EP 32 DI 10.1016/j.jnoncrysol.2014.08.037 PG 6 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA AY0CW UT WOS:000347266400006 ER PT J AU Neeway, JJ Kerisit, S Gin, S Wang, ZY Zhu, ZH Ryan, JV AF Neeway, James J. Kerisit, Sebastien Gin, Stephane Wang, Zhaoying Zhu, Zihua Ryan, Joseph V. TI Low-temperature lithium diffusion in simulated high-level boroaluminosilicate nuclear waste glasses SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Lithium diffusion; High-level waste glass; Ion exchange; Interdiffusion ID VAPOR HYDRATION; ION-EXCHANGE; SON68 GLASS; ISOTOPE FRACTIONATION; ALTERATION MECHANISMS; CORROSION MECHANISMS; BOROSILICATE GLASS; WATER PENETRATION; DISSOLUTION RATE; SURFACE-LAYERS AB Ion exchange is recognized as an integral, if underrepresented, mechanism influencing glass corrosion. However, due to the formation of various alteration layers in the presence of water during the corrosion process, it is difficult to conclusively deconvolute the mechanisms of ion exchange from other simultaneously occurring processes. In this work, an inert non-aqueous solution was used as an alkali source material to isolate ion exchange and study the solid-state diffusion of lithium. Specifically, the experiments involved contacting simulated nuclear waste glass coupons, the 6-oxide CJ6 and the 26-oxide SON68, with a non-aqueous solution of (LiCl)-Li-6 dissolved in dimethyl sulfoxide at 90 degrees C for various time periods. The depth profiles of major elements in the glass coupons were measured using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Lithium interdiffusion coefficients, D-Li, were then calculated based on the measured depth profiles. The results indicate that the penetration of Li-6 is faster in the simplified CJ6 (D-6Li approximate to 4.0-8.0 x 10(-21) m(2)/s) compared to the more complex SON68 (D-6Li approximate to 2.0-4.0 x 10(-21) m(2)/s). These values are roughly an order of magnitude greater than measured water diffusion in glasses at similar temperatures. Additionally, sodium ions present in the glass were observed to participate in ion exchange reactions with lithium from the solution. Implications of the diffusion coefficients obtained in the absence of alteration layers to the long-term performance of nuclear waste glasses in a geological repository system are also discussed. (C) 2014 Elsevier B.V. All rights reserved. C1 [Neeway, James J.; Ryan, Joseph V.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Kerisit, Sebastien] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Gin, Stephane] CEA, DEN Marcoule, DTCD SECM, F-30207 Bagnols Sur Ceze, France. [Wang, Zhaoying; Zhu, Zihua] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Wang, Zhaoying] Chinese Acad Sci, Inst Chem, Beijing 100190, Peoples R China. RP Neeway, JJ (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM James.Neeway@pnnl.gov RI Zhu, Zihua/K-7652-2012; OI Neeway, Jim/0000-0001-7046-8408 FU U.S. Department of Energy (DOE) through the Office of Environmental Management; DOE [DE-AC06-76RLO 1830]; U.S. Department of Energy's Office of Biological and Environmental Research FX These studies were supported by the U.S. Department of Energy (DOE) through the Office of Environmental Management. Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. We would like to thank Peter Rieke of PNNL for his help in improving the manuscript and Jesse Lang also of PNNL for help in sample preparation. The research described in this paper was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory in Richland, WA. NR 50 TC 5 Z9 5 U1 6 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 EI 1873-4812 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD DEC 1 PY 2014 VL 405 BP 83 EP 90 DI 10.1016/j.jnoncrysol.2014.08.053 PG 8 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA AY0CW UT WOS:000347266400014 ER PT J AU Cha, MS Yin, XL Kneafsey, T Johanson, B Alqahtani, N Miskimins, J Patterson, T Wu, YS AF Cha, Minsu Yin, Xiaolong Kneafsey, Timothy Johanson, Brent Alqahtani, Naif Miskimins, Jennifer Patterson, Taylor Wu, Yu-Shu TI Cryogenic fracturing for reservoir stimulation - Laboratory studies SO JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING LA English DT Article DE cryogenic fracturing; thermal shock; shale and tight gas reservoirs AB While hydraulic fracturing has revolutionized hydrocarbon production from unconventional resources, waterless or reduced-water fracturing technologies have been actively sought due to concerns arising from the heavy use of water. This study investigates the feasibility of fracture stimulation by using cryogenic fluids to create a strong thermal gradient generating local tensile stress in the rocks surrounding a borehole. Cracks form when the tensile stress exceeds the material's tensile strength. This mechanism has not been exploited in the context of stimulation and may be used to fracture reservoir rocks to reduce or eliminate water usage. This paper reports initial results from a laboratory study of cryogenic fracturing. In particular, we have developed experimental setups and procedures to conduct cryogenic fracturing tests with and without confining stress, with integrated cryogen transport, measurements, and fracture characterization. Borehole pressure, liquid nitrogen, and temperature can be monitored continuously. Acoustic signals are used to characterize fractures before and after the experiments. Cryogenic tests conducted in the absence of the confining stress were able to create cracks in the experimental blocks and alter rock properties. Fractures were created by generating a strong thermal gradient in a concrete block semi-submerged in liquid nitrogen. Increasing the number of cryogenic stimulations enhanced fracturing by both creating new cracks as well as widening the existing cracks. By comparing the cryogenic fracturing results from unstressed weak concrete and sandstone, we found that the generation of fractures is dependent on the material properties. Water in the formation expands as it freezes and plays a competing role during cryogenic cooling with rock contraction, thus is an unfavorable factor. A rapid cooling rate is desired to achieve high thermal gradient. (C) 2014 Elsevier B.V. All rights reserved. C1 [Cha, Minsu; Yin, Xiaolong; Johanson, Brent; Alqahtani, Naif; Miskimins, Jennifer; Patterson, Taylor; Wu, Yu-Shu] Colorado Sch Mines, Dept Petr Engn, Golden, CO 80401 USA. [Kneafsey, Timothy] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Cha, MS (reprint author), Colorado Sch Mines, Dept Petr Engn, 1600 Arapahoe St, Golden, CO 80401 USA. EM mcha678@gmail.com RI Wu, Yu-Shu/A-5800-2011; Kneafsey, Timothy/H-7412-2014 OI Kneafsey, Timothy/0000-0002-3926-8587 FU RPSEA (Research Partnership to Secure Energy for America) [10122-20]; Fracturing, Acidizing, Stimulation Technology Consortium (FAST); Bryant Morris and Shannon Osterhout of the Pioneer Natural Resources; U.S. Department of Energy [DE-AC02-05CH11231] FX Support for this research was provided by RPSEA (Research Partnership to Secure Energy for America) (Grant no. 10122-20). We thank Manika Prasad for helping in the acoustic measurements, and Mike Brown for providing machined parts. In addition, we thank the Fracturing, Acidizing, Stimulation Technology Consortium (FAST) and Bryant Morris and Shannon Osterhout of the Pioneer Natural Resources for their support of the study. Timothy Kneafsey was supported by the Assistant Secretary for Fossil Energy, Office of Oil and Natural Gas of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. NR 13 TC 8 Z9 9 U1 9 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-4105 EI 1873-4715 J9 J PETROL SCI ENG JI J. Pet. Sci. Eng. PD DEC PY 2014 VL 124 BP 436 EP 450 DI 10.1016/j.petrol.2014.09.003 PG 15 WC Energy & Fuels; Engineering, Petroleum SC Energy & Fuels; Engineering GA AY0BO UT WOS:000347263200045 ER PT J AU Lu, P Romero, E Lee, S MacManus-Driscoll, JL Jia, QX AF Lu, Ping Romero, Eric Lee, Shinbuhm MacManus-Driscoll, Judith L. Jia, Quanxi TI Chemical Quantification of Atomic-Scale EDS Maps under Thin Specimen Conditions SO MICROSCOPY AND MICROANALYSIS LA English DT Article DE atomic-scale mapping; EDS; chemical quantification; SrTiO3; antiphase boundaries AB We report our effort to quantify atomic-scale chemical maps obtained by collecting energy-dispersive X-ray spectra (EDS) using scanning transmission electron microscopy (STEM) (STEM-EDS). With thin specimen conditions and localized EDS scattering potential, the X-ray counts from atomic columns can be properly counted by fitting Gaussian peaks at the atomic columns, and can then be used for site-by-site chemical quantification. The effects of specimen thickness and X-ray energy on the Gaussian peak width are investigated using SrTiO3 (STO) as a model specimen. The relationship between the peak width and spatial resolution of an EDS map is also studied. Furthermore, the method developed by this work is applied to study cation occupancy in a Sm-doped STO thin film and antiphase boundaries (APBs) present within the STO film. We find that Sm atoms occupy both Sr and Ti sites but preferably the Sr sites, and Sm atoms are relatively depleted at the APBs likely owing to the effect of strain. C1 [Lu, Ping; Romero, Eric] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Lee, Shinbuhm; MacManus-Driscoll, Judith L.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. [Jia, Quanxi] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Lu, P (reprint author), Sandia Natl Labs, POB 5800,MS 1411, Albuquerque, NM 87185 USA. EM plu@sandia.gov RI LEE, SHINBUHM/A-9494-2011 OI LEE, SHINBUHM/0000-0002-4907-7362 FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; LDRD program; U.S. Department of Energy through the Center for Integrated Nanotechnologies FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The work at Los Alamos was supported by LDRD program and, in part, by the U.S. Department of Energy through the Center for Integrated Nanotechnologies, a U. S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory. NR 21 TC 9 Z9 10 U1 4 U2 32 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 EI 1435-8115 J9 MICROSC MICROANAL JI Microsc. microanal. PD DEC PY 2014 VL 20 IS 6 BP 1782 EP 1790 DI 10.1017/S1431927614013245 PG 9 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA AX9PD UT WOS:000347233400016 PM 25307942 ER PT J AU Roldan, MA Oxley, MP Li, QA Zheng, H Gray, KE Mitchell, JF Pennycook, SJ Varela, M AF Roldan, Manuel A. Oxley, Mark P. Li, Qing'an Zheng, Hong Gray, K. E. Mitchell, J. F. Pennycook, Stephen J. Varela, Maria TI Atomic Scale Studies of La/Sr Ordering in Colossal Magnetoresistant La2-2xSr1 +2xMn2O7 Single Crystals SO MICROSCOPY AND MICROANALYSIS LA English DT Article DE colossal magnetoresistance; scanning transmission electron microscopy; complex oxides; electron energy-loss spectroscopy ID OXIDES; MANGANITES; SPIN AB To date, it is unclear whether chemical order (or disorder) is in any way connected to double exchange, electronic phase separation, or charge ordering (CO) in manganites. In this work, we carry out an atomic resolution study of the colossal magnetoresistant manganite La2-2xSr1+2xMn2O7 (LSMO). We combine aberration-corrected electron microscopy and spectroscopy with spectroscopic image simulations, to analyze cation ordering at the atomic scale in real space in a number of LSMO single crystals. We compare three different compositions within the phase diagram: a ferromagnetic metallic material (x=0.36), an insulating, antiferromagnetic charge ordered (AF-CO) compound (x=0.5), which also exhibits orbital ordering, and an additional AF sample (x=0.56). Detailed image simulations are essential to accurately quantify the degree of chemical ordering of these samples. We find a significant degree of long-range chemical ordering in all cases, which increases in the AF-CO range. However, the degree of ordering is never complete nor can it explain the strongly correlated underlying ordering phenomena. Our results show that chemical ordering over distinct crystallographic sites is not needed for electronic ordering phenomena to appear in manganites, and cannot by itself explain the complex electronic behavior of LSMO. C1 [Roldan, Manuel A.; Varela, Maria] Univ Complutense Madrid, Dpto Fis Aplicada 3, E-28040 Madrid, Spain. [Roldan, Manuel A.; Varela, Maria] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Oxley, Mark P.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37212 USA. [Li, Qing'an; Zheng, Hong; Gray, K. E.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Pennycook, Stephen J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Roldan, MA (reprint author), Univ Complutense Madrid, Dpto Fis Aplicada 3, E-28040 Madrid, Spain. EM marolgu@gmail.com RI Varela, Maria/E-2472-2014 OI Varela, Maria/0000-0002-6582-7004 FU US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; European Research Council Starting Investigator Award STEMOX [239739]; DOE [DE-FG02-09R46554] FX Research at Oak Ridge National Laboratory (M. V.; S.J.P.; Microscopy) and at Argonne National Laboratory (J.F.M., K. E. G., H.Z., Q. A. L.; sample preparation and magnetotransport characterization) was sponsored by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. M. R. was supported by the European Research Council Starting Investigator Award STEMOX # 239739. This work was supported in part by DOE grant No. DE-FG02-09R46554 (M.P.O.; theoretical simulations). The authors are thankful to M. Watanabe for the PCA plug in for Digital Micrograph. NR 23 TC 0 Z9 0 U1 0 U2 21 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 EI 1435-8115 J9 MICROSC MICROANAL JI Microsc. microanal. PD DEC PY 2014 VL 20 IS 6 BP 1791 EP 1797 DI 10.1017/S1431927614013075 PG 7 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA AX9PD UT WOS:000347233400017 PM 25263577 ER PT J AU Severson, PL Vrba, L Stampfer, MR Futscher, BW AF Severson, Paul L. Vrba, Lukas Stampfer, Martha R. Futscher, Bernard W. TI Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells SO MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS LA English DT Article DE Benzo[a]pyrene; p16; HMEC; Carcinogenesis ID ASIAN-AMERICAN WOMEN; DNA ADDUCT FORMATION; BREAST-CANCER; P16 INACTIVATION; TELOMERE-LENGTH; GROWTH ARREST; P53 FUNCTION; SENESCENCE; TRANSFORMATION; GENOME AB Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and toward immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutations were C:G >A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. The results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes. (C) 2014 Elsevier B.V. All rights reserved. C1 [Severson, Paul L.; Futscher, Bernard W.] Univ Arizona, Coll Pharm, Dept Pharmacol & Toxicol, Tucson, AZ 85724 USA. [Vrba, Lukas; Stampfer, Martha R.; Futscher, Bernard W.] Univ Arizona, Ctr Canc, Tucson, AZ 85724 USA. [Stampfer, Martha R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Futscher, BW (reprint author), Univ Arizona, Coll Pharm, Dept Pharmacol & Toxicol, Tucson, AZ 85724 USA. EM BFutscher@uacc.arizona.edu RI Vrba, Lukas/J-9268-2015 OI Vrba, Lukas/0000-0003-3042-6275 FU National Institutes of Health [P42 ES04940, ES006694, CA23074, 5T32ES16652-5]; Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank Gregory Metzger and the Genomics Shared Services Laboratory at the University of Arizona Cancer Center for their assistance with template preparation and sequencing. This work was supported by the National Institutes of Health (P42 ES04940, ES006694, CA23074, 5T32ES16652-5) and the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (MRS). NR 47 TC 7 Z9 7 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1383-5718 EI 1879-3592 J9 MUTAT RES-GEN TOX EN JI Mutat. Res. Genet. Toxicol. Environ. Mutagen. PD DEC PY 2014 VL 775 BP 48 EP 54 DI 10.1016/j.mrgentox.2014.10.011 PG 7 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA AX8BN UT WOS:000347135700006 PM 25435355 ER PT J AU Dominguez, G Mcleod, AS Gainsforth, Z Kelly, P Bechtel, HA Keilmann, F Westphal, A Thiemens, M Basov, DN AF Dominguez, Gerardo Mcleod, A. S. Gainsforth, Zack Kelly, P. Bechtel, Hans A. Keilmann, Fritz Westphal, Andrew Thiemens, Mark Basov, D. N. TI Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples SO NATURE COMMUNICATIONS LA English DT Article ID DIFFUSE INTERSTELLAR-MEDIUM; NEAR-FIELD MICROSCOPY; COMET 81P/WILD-2; ABSORPTION-SPECTRA; ALUMINOSILICATE GLASSES; INTERPLANETARY DUST; GRAPHENE PLASMONS; ORGANIC-MATTER; SMALL CRYSTALS; MG-FE AB Advances in the spatial resolution of modern analytical techniques have tremendously augmented the scientific insight gained from the analysis of natural samples. Yet, while techniques for the elemental and structural characterization of samples have achieved sub-nanometre spatial resolution, infrared spectral mapping of geochemical samples at vibrational 'fingerprint' wavelengths has remained restricted to spatial scales >10 mu m. Nevertheless, infrared spectroscopy remains an invaluable contactless probe of chemical structure, details of which offer clues to the formation history of minerals. Here we report on the successful implementation of infrared near-field imaging, spectroscopy and analysis techniques capable of sub-micron scale mineral identification within natural samples, including a chondrule from the Murchison meteorite and a cometary dust grain (Iris) from NASA's Stardust mission. Complementary to scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy probes, this work evidences a similarity between chondritic and cometary materials, and inaugurates a new era of infrared nano-spectroscopy applied to small and invaluable extraterrestrial samples. C1 [Dominguez, Gerardo] Calif State Univ, Dept Phys, San Marcos, CA 92096 USA. [Dominguez, Gerardo; Thiemens, Mark] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Mcleod, A. S.; Kelly, P.; Basov, D. N.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Gainsforth, Zack; Westphal, Andrew] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Bechtel, Hans A.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Keilmann, Fritz] Univ Munich, D-80539 Munich, Germany. [Keilmann, Fritz] Ctr Nanosci, D-80539 Munich, Germany. RP Dominguez, G (reprint author), Calif State Univ, Dept Phys, San Marcos, CA 92096 USA. EM gdominguez@csusm.edu RI Foundry, Molecular/G-9968-2014 FU NASA's Laboratory Analysis of Returned Samples program [NNX11AF24G]; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231]; US Department of Energy Office of Science FX This work and G.D. were supported by NASA's Laboratory Analysis of Returned Samples program (# NNX11AF24G). The Advanced Light Source and National Center for Electron Microscopy is supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. A.S.M acknowledges the support from a US Department of Energy Office of Science graduate research fellowship. NR 65 TC 8 Z9 8 U1 5 U2 46 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD DEC PY 2014 VL 5 AR 5445 DI 10.1038/ncomms6445 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AX9KF UT WOS:000347221100001 PM 25487365 ER PT J AU Feng, DW Wang, KC Wei, ZW Chen, YP Simon, CM Arvapally, RK Martin, RL Bosch, M Liu, TF Fordham, S Yuan, DQ Omary, MA Haranczyk, M Smit, B Zhou, HC AF Feng, Dawei Wang, Kecheng Wei, Zhangwen Chen, Ying-Pin Simon, Cory M. Arvapally, Ravi K. Martin, Richard L. Bosch, Mathieu Liu, Tian-Fu Fordham, Stephen Yuan, Daqiang Omary, Mohammad A. Haranczyk, Maciej Smit, Berend Zhou, Hong-Cai TI Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal-organic frameworks SO NATURE COMMUNICATIONS LA English DT Article ID POROUS COORDINATION POLYMERS; HYDROGEN STORAGE; BUILDING-BLOCKS; SURFACE-AREA; SEPARATIONS; TOPOLOGY; SITES; HOST AB Metal-organic frameworks with high stability have been pursued for many years due to the sustainability requirement for practical applications. However, researchers have had great difficulty synthesizing chemically ultra-stable, highly porous metal-organic frameworks in the form of crystalline solids, especially as single crystals. Here we present a kinetically tuned dimensional augmentation synthetic route for the preparation of highly crystalline and extremely robust metal-organic frameworks with a preserved metal cluster core. Through this versatile synthetic route, we obtain large single crystals of 34 different iron-containing metal-organic frameworks. Among them, PCN-250(Fe2Co) exhibits high volumetric uptake of hydrogen and methane, and is also stable in water and aqueous solutions with a wide range of pH values. C1 [Feng, Dawei; Wang, Kecheng; Wei, Zhangwen; Chen, Ying-Pin; Bosch, Mathieu; Liu, Tian-Fu; Fordham, Stephen; Zhou, Hong-Cai] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. [Chen, Ying-Pin; Zhou, Hong-Cai] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. [Simon, Cory M.; Smit, Berend] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Arvapally, Ravi K.; Omary, Mohammad A.] Univ N Texas, Dept Chem, Denton, TX 76203 USA. [Martin, Richard L.; Haranczyk, Maciej] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Yuan, Daqiang] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China. [Smit, Berend] Ecole Polytech Fed Lausanne, Inst Sci & Ingn Chim, CH-1015 Lausanne, Switzerland. RP Zhou, HC (reprint author), Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. EM zhou@chem.tamu.edu RI Zhou, Hong-Cai/A-3009-2011; Smit, Berend/B-7580-2009; Chen, Ying-Pin/B-6835-2015; Haranczyk, Maciej/A-6380-2014; Wei, Zhangwen/D-2536-2016; Feng, Dawei /S-4070-2016; Yuan, Daqiang/F-5695-2010; OI Zhou, Hong-Cai/0000-0002-9029-3788; Smit, Berend/0000-0003-4653-8562; Haranczyk, Maciej/0000-0001-7146-9568; Wei, Zhangwen/0000-0002-8378-2479; Yuan, Daqiang/0000-0003-4627-072X; Bosch, Mathieu/0000-0002-7284-0602; Simon, Cory/0000-0002-8181-9178 FU Methane Opportunities for Vehicular Energy (MOVE) Program [DE-AR0000249]; Center for Clean-Energy-related Gas Separation, an Energy Frontier Research Center (EFRC) - U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences FX This work was supported as part of the Methane Opportunities for Vehicular Energy (MOVE) Program under the Award Number DE-AR0000249 and as part of the Center for Clean-Energy-related Gas Separation, an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. NR 31 TC 38 Z9 38 U1 30 U2 154 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD DEC PY 2014 VL 5 AR 5723 DI 10.1038/ncomms6723 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AX9NP UT WOS:000347229600006 PM 25474702 ER PT J AU Hong, S Sutherlin, KD Park, J Kwon, E Siegler, MA Solomon, EI Nam, W AF Hong, Seungwoo Sutherlin, Kyle D. Park, Jiyoung Kwon, Eunji Siegler, Maxime A. Solomon, Edward I. Nam, Wonwoo TI Crystallographic and spectroscopic characterization and reactivities of a mononuclear non-haem iron(III)-superoxo complex SO NATURE COMMUNICATIONS LA English DT Article ID C-H; DIOXYGEN ACTIVATION; O-O; SUPEROXO COMPLEXES; OXYGEN ACTIVATION; METAL-COMPLEXES; IRON; CLEAVAGE; CENTERS; PHENOLS AB Mononuclear non-haem iron(III)-superoxo species (Fe-III-O-2(-center dot)) have been implicated as key intermediates in the catalytic cycles of dioxygen activation by non-haem iron enzymes. Although non-haem iron(III)-superoxo species have been trapped and characterized spectroscopically in enzymatic and biomimetic reactions, no structural information has yet been obtained. Here we report the isolation, spectroscopic characterization and crystal structure of a mononuclear side-on (eta(2)) iron(III)-superoxo complex with a tetraamido macrocyclic ligand. The non-haem iron(III)-superoxo species undergoes both electrophilic and nucleophilic oxidation reactions, as well as O-2-transfer between metal complexes. In the O-2-transfer reaction, the iron(III)-superoxo complex transfers the bound O-2 unit to a manganese(III) analogue, resulting in the formation of a manganese(IV)-peroxo complex, which is characterized structurally and spectroscopically as a mononuclear side-on (eta(2)) manganese(IV)-peroxo complex. The difference in the redox distribution between the metal ions and O-2 in iron(III)-superoxo and manganese(IV)-peroxo complexes is rationalized using density functional theory calculations. C1 [Hong, Seungwoo; Park, Jiyoung; Kwon, Eunji; Nam, Wonwoo] Ewha Womans Univ, Dept Chem & Nano Sci, Seoul 120750, South Korea. [Sutherlin, Kyle D.; Solomon, Edward I.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Siegler, Maxime A.] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA. [Solomon, Edward I.] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Solomon, EI (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA. EM edward.solomon@stanford.edu; wwnam@ewha.ac.kr OI Nam, Wonwoo/0000-0001-8592-4867 FU NRF of Korea through the CRI [NRF-2012R1A3A2048842]; GRL [NRF-2010-00353]; National Institutes of Health (NIH) [5 P41 RR001209] FX The research was supported by NRF of Korea through the CRI (NRF-2012R1A3A2048842 to W.N.) and GRL (NRF-2010-00353 to W.N.) Programs. The publication was partially supported by National Institutes of Health (NIH) Grant Number 5 P41 RR001209 (E.I.S.). NR 39 TC 23 Z9 23 U1 6 U2 56 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD DEC PY 2014 VL 5 AR 5440 DI 10.1038/ncomms6440 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AX9JZ UT WOS:000347220500001 PM 25510711 ER PT J AU Im, MY Lee, KS Vogel, A Hong, JI Meier, G Fischer, P AF Im, Mi-Young Lee, Ki-Suk Vogel, Andreas Hong, Jung-Il Meier, Guido Fischer, Peter TI Stochastic formation of magnetic vortex structures in asymmetric disks triggered by chaotic dynamics SO NATURE COMMUNICATIONS LA English DT Article ID REAL-SPACE OBSERVATION; X-RAY MICROSCOPY; SKYRMIONS; FIELD; FLUCTUATIONS; NUCLEATION; PERMALLOY; REVERSAL; MOTION AB The non-trivial spin configuration in a magnetic vortex is a prototype for fundamental studies of nanoscale spin behaviour with potential applications in magnetic information technologies. Arrays of magnetic vortices interfacing with perpendicular thin films have recently been proposed as enabler for skyrmionic structures at room temperature, which has opened exciting perspectives on practical applications of skyrmions. An important milestone for achieving not only such skyrmion materials but also general applications of magnetic vortices is a reliable control of vortex structures. However, controlling magnetic processes is hampered by stochastic behaviour, which is associated with thermal fluctuations in general. Here we show that the dynamics in the initial stages of vortex formation on an ultrafast timescale plays a dominating role for the stochastic behaviour observed at steady state. Our results show that the intrinsic stochastic nature of vortex creation can be controlled by adjusting the interdisk distance in asymmetric disk arrays. C1 [Im, Mi-Young; Fischer, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Im, Mi-Young; Hong, Jung-Il] Daegu Gyeongbuk Inst Sci & Technol, Dept Emerging Mat Sci, Taegu 711873, South Korea. [Lee, Ki-Suk] KIST UNIST, Ulsan Ctr Convergent Mat, Sch Mat Sci & Engn, Ulsan 689798, South Korea. [Vogel, Andreas; Meier, Guido] Univ Hamburg, Inst Angew Phys, D-20355 Hamburg, Germany. [Vogel, Andreas; Meier, Guido] Univ Hamburg, Zentrum Mikrostrukt Forsch, D-20355 Hamburg, Germany. [Meier, Guido] Univ Hamburg, Hamburg Ctr Ultrafast Imaging, D-22761 Hamburg, Germany. [Meier, Guido] Max Planck Inst Struct & Dynam Matter, D-22761 Hamburg, Germany. [Fischer, Peter] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 94056 USA. RP Im, MY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. EM mim@lbl.gov; kisuk@unist.ac.kr RI Fischer, Peter/A-3020-2010 OI Fischer, Peter/0000-0002-9824-9343 FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; Leading Foreign Research Institute Recruitment Program [2012K1A4A3053565]; National Research Foundation of Korea (NRF) - Ministry of Science, ICT and Future Planning [2012R1A1A1041922]; Deutsche Forschungsgemeinschaft [668, 1286] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231 and by the Leading Foreign Research Institute Recruitment Program (Grant No. 2012K1A4A3053565) and Basic Science Research Program (Grant No. 2012R1A1A1041922) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning. Financial support by the Deutsche Forschungsgemeinschaft via Sonderforschungsbereich 668 and via Graduiertenkolleg 1286 is gratefully acknowledged. NR 44 TC 6 Z9 6 U1 4 U2 35 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD DEC PY 2014 VL 5 AR 5620 DI 10.1038/ncomms6620 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AX9MF UT WOS:000347226100003 PM 25517739 ER PT J AU Lu, J Zhan, C Wu, TP Wen, JG Lei, Y Kropf, AJ Wu, HM Miller, DJ Elam, JW Sun, YK Qiu, XP Amine, K AF Lu, Jun Zhan, Chun Wu, Tianpin Wen, Jianguo Lei, Yu Kropf, A. Jeremy Wu, Huiming Miller, Dean J. Elam, Jeffrey W. Sun, Yang-Kook Qiu, Xinping Amine, Khalil TI Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach SO NATURE COMMUNICATIONS LA English DT Article ID LI-ION CELLS; ELECTROCHEMICAL IMPEDANCE; TEMPERATURE PERFORMANCE; CATHODE MATERIALS; CARBON ANODES; BATTERIES; ELECTRODES; LINI0.5MN1.5O4; INTERCALATION; DEPOSITION AB The capacity fade of lithium manganate-based cells is associated with the dissolution of Mn from cathode/electrolyte interface due to the disproportionation reaction of Mn( III), and the subsequent deposition of Mn(II) on the anode. Suppressing the dissolution of Mn from the cathode is critical to reducing capacity fade of LiMn2O4-based cells. Here we report a nanoscale surface-doping approach that minimizes Mn dissolution from lithium manganate. This approach exploits advantages of both bulk doping and surface-coating methods by stabilizing surface crystal structure of lithium manganate through cationic doping while maintaining bulk lithium manganate structure, and protecting bulk lithium manganate from electrolyte corrosion while maintaining ion and charge transport channels on the surface through the electrochemically active doping layer. Consequently, the surface-doped lithium manganate demonstrates enhanced electrochemical performance. This study provides encouraging evidence that surface doping could be a promising alternative to improve the cycling performance of lithium-ion batteries. C1 [Lu, Jun; Zhan, Chun; Kropf, A. Jeremy; Wu, Huiming; Amine, Khalil] Argonne Natl Lab, Div Chem Sci & Engn, Argonne, IL 60439 USA. [Zhan, Chun; Qiu, Xinping] Tsinghua Univ, Dept Chem, Key Lab Organ Optoelect & Mol Engn, Beijing 100084, Peoples R China. [Wu, Tianpin] Argonne Natl Lab, Div Xray Sci, Argonne, IL 60439 USA. [Wen, Jianguo; Miller, Dean J.] Argonne Natl Lab, Ctr Electron Microscopy, Argonne, IL 60439 USA. [Lei, Yu] Univ Alabama, Dept Chem & Mat Engn, Huntsville, AL 35899 USA. [Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Sun, Yang-Kook] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea. RP Lu, J (reprint author), Argonne Natl Lab, Div Chem Sci & Engn, 9700 S Cass Ave, Argonne, IL 60439 USA. EM junlu@anl.gov; qiuxp@mail.tsinghua.edu.cn; amine@anl.gov OI Lei, Yu/0000-0002-4161-5568 FU Center for Electrochemical Energy Science; US Department of Energy, Office of Science, Office of Basic Energy Sciences FX This work was primarily supported by the Center for Electrochemical Energy Science, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, including support for J. L., H. W., J. W. E., K. A. and A. J. K. (X-ray absorption studies). C. Z. and X. Q. were supported by the 973 Programme (2013CB934001, 2009CB220105) of China, Beijing Natural Science Foundation (2120001), National Natural Science Foundation of China (21273129) and 863 programme (2012DGF61480). Y. L. gratefully acknowledges the start-up support by the University of Alabama in Huntsville. Electron microscopy was carried out in the Electron Microscopy Center at Argonne, which is supported by the Office of Science under contract no. DE-AC02-06CH11357. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. Y.-K. S. acknowledges the financial support from the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 20124010203310) and by the National Research Foundation (NRF) of Korea grant funded by the Korea government (MEST; No. 2009-0092780). NR 31 TC 34 Z9 34 U1 25 U2 207 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD DEC PY 2014 VL 5 AR 5693 DI 10.1038/ncomms6693 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AX9NF UT WOS:000347228600007 PM 25514346 ER PT J AU Moon, EJ Colby, R Wang, Q Karapetrova, E Schleputz, CM Fitzsimmons, MR May, SJ AF Moon, E. J. Colby, R. Wang, Q. Karapetrova, E. Schlepuetz, C. M. Fitzsimmons, M. R. May, S. J. TI Spatial control of functional properties via octahedral modulations in complex oxide superlattices SO NATURE COMMUNICATIONS LA English DT Article ID MULTIFUNCTIONAL MATERIALS; HETEROSTRUCTURES; PEROVSKITES; INSULATOR AB Control of atomic structure, namely the topology of the corner-connected metal-oxygen octahedra, has emerged as an important route to tune the functional properties at oxide interfaces. Here we investigate isovalent manganite superlattices (SLs), [(La0.7Sr0.3MnO3) n/(Eu0.7Sr0.3MnO3) n] x m, as a route to spatial control over electronic bandwidth and ferromagnetism through the creation of octahedral superstructures. Electron energy loss spectroscopy confirms a uniform Mn valence state throughout the SLs. In contrast, the presence of modulations of the MnO6 octahedral rotations along the growth direction commensurate with the SL period is revealed by scanning transmission electron microscopy and X-ray diffraction. We show that the Curie temperatures of the constituent materials can be systematically engineered via the octahedral superstructures leading to a modulated magnetization in samples where the SL period is larger than the interfacial octahedral coupling length scale, whereas a single magnetic transition is observed in the short-period SLs. C1 [Moon, E. J.; May, S. J.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Colby, R.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Wang, Q.; Fitzsimmons, M. R.] Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Karapetrova, E.; Schlepuetz, C. M.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Moon, EJ (reprint author), Drexel Univ, Dept Mat Sci & Engn, 3141 Chestnut St,344 LeBow Engn Bldg, Philadelphia, PA 19104 USA. EM em582@drexel.edu; smay@coe.drexel.edu RI May, Steven/D-8563-2011; Moon, Eun Ju/C-7856-2014; Schleputz, Christian/C-4696-2008 OI May, Steven/0000-0002-8097-1549; Schleputz, Christian/0000-0002-0485-2708 FU US Army Research Office [W911NF-12-1-0132, W911NF-11-1-0283]; US DOE [DE-AC02-06CH11357]; DOE Office of Basic Energy Sciences; DOE [DE-AC5206NA25396]; Office of Biological and Environmental Research and located at PNNL FX E.J.M. and S.J.M. were supported by the US Army Research Office under grant No. W911NF-12-1-0132. Acquisition of the PPMS was supported by the US Army Research Office under grant No. W911NF-11-1-0283. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. This work has benefited from the use of Polarized Neutron Reflectometry at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC5206NA25396. The STEM-EELS was performed at EMSL, a DOE Office of Science User Facillity sponsored by the Office of Biological and Environmental Research and located at PNNL. NR 43 TC 13 Z9 13 U1 8 U2 42 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD DEC PY 2014 VL 5 AR 5710 DI 10.1038/ncomms6710 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AX9NM UT WOS:000347229300006 PM 25501927 ER PT J AU Rupich, SM Castro, FC Irvine, WTM Talapin, DV AF Rupich, Sara M. Castro, Fernando C. Irvine, William T. M. Talapin, Dmitri V. TI Soft epitaxy of nanocrystal superlattices SO NATURE COMMUNICATIONS LA English DT Article ID ISLAND GROWTH; BINARY; CRYSTALLIZATION; SUBMONOLAYER; ASSEMBLIES; MONOLAYERS; MEMBRANES; HEIGHT; ARRAYS AB Epitaxial heterostructures with precise registry between crystal layers play a key role in electronics and optoelectronics. In a close analogy, performance of nanocrystal (NC) based devices depends on the perfection of interfaces formed between NC layers. Here we systematically study the epitaxial growth of NC layers for the first time to enable the fabrication of coherent NC layers. NC epitaxy reveals an exceptional strain tolerance. It follows a universal island size scaling behaviour and shows a strain-driven transition from layer-by-layer to Stranski-Krastanov growth with non-trivial island height statistics. Kinetic bottlenecks play an important role in NC epitaxy, especially in the transition from sub-monolayer to multilayer coverage and the epitaxy of NCs with anisotropic shape. These findings provide a foundation for the rational design of epitaxial structures in a fundamentally and practically important size regime between atomic and microscopic systems. C1 [Rupich, Sara M.; Castro, Fernando C.; Talapin, Dmitri V.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Rupich, Sara M.; Irvine, William T. M.; Talapin, Dmitri V.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Irvine, William T. M.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Talapin, Dmitri V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Irvine, WTM (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM wtmirvine@uchicago.edu; dvtalapin@uchicago.edu FU NSF MRSEC Programme [DMR-0213745]; US Department of Energy SunShot programme [DMR-0213745, DE-EE0005312]; David and Lucile Packard Foundation; II-VI Foundation; US Department of Energy [DE-AC02-06CH11357] FX We thank J. Huang and M. Kovalenko for the synthesis of CdSe nanorods and CdSe NCs; E. Barry, P. Kanjanaboos, and S. McBride for discussions; P. Snee and M. Boles for assistance with oleic acid purification; J. Kurley for machining sample holders; and T. Witten for reading the manuscript. This work was supported by the NSF MRSEC Programme under Award Number DMR-0213745 and by the US Department of Energy SunShot programme under Award Number DE-EE0005312. W.T.M.I. and D.V.T. thank the David and Lucile Packard Foundation and II-VI Foundation for their support. The work at the Center for Nanoscale Materials at the Argonne National Laboratory was supported by the US Department of Energy under Contract No. DE-AC02-06CH11357. NR 31 TC 8 Z9 8 U1 9 U2 66 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD DEC PY 2014 VL 5 AR 5045 DI 10.1038/ncomms6045 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AX9JU UT WOS:000347220100001 PM 25434582 ER PT J AU Sheu, YM Trugman, SA Yan, L Jia, QX Taylor, AJ Prasankumar, RP AF Sheu, Y. M. Trugman, S. A. Yan, L. Jia, Q. X. Taylor, A. J. Prasankumar, R. P. TI Using ultrashort optical pulses to couple ferroelectric and ferromagnetic order in an oxide heterostructure SO NATURE COMMUNICATIONS LA English DT Article ID THIN-FILMS; SPIN POLARIZATION; MULTIFERROICS; GENERATION; CRYSTALS; DYNAMICS AB A new approach to all-optical detection and control of the coupling between electric and magnetic order on ultrafast timescales is achieved using time-resolved second-harmonic generation (SHG) to study a ferroelectric (FE)/ferromagnet (FM) oxide heterostructure. We use femtosecond optical pulses to modify the spin alignment in a Ba0.1Sr0.9TiO3 (BSTO)/La0.7Ca0.3MnO3 (LCMO) heterostructure and selectively probe the ferroelectric response using SHG. In this heterostructure, the pump pulses photoexcite non-equilibrium quasiparticles in LCMO, which rapidly interact with phonons before undergoing spin-lattice relaxation on a timescale of tens of picoseconds. This reduces the spin-spin correlations in LCMO, applying stress on BSTO through magnetostriction. This then modifies the FE polarization through the piezoelectric effect, on a timescale much faster than laser-induced heat diffusion from LCMO to BSTO. We have thus demonstrated an ultrafast indirect magnetoelectric effect in a FE/FM heterostructure mediated through elastic coupling, with a timescale primarily governed by spin-lattice relaxation in the FM layer. C1 [Sheu, Y. M.; Trugman, S. A.; Yan, L.; Jia, Q. X.; Taylor, A. J.; Prasankumar, R. P.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Sheu, YM (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, MS K771, Los Alamos, NM 87545 USA. EM yumiinsheu@gmail.com; rpprasan@lanl.gov OI Trugman, Stuart/0000-0002-6688-7228 FU Los Alamos National Laboratory's Directed Research and Development program; National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX This work was performed at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Partial support was also provided by Los Alamos National Laboratory's Directed Research and Development program. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under Contract No. DE-AC52-06NA25396. NR 50 TC 7 Z9 8 U1 6 U2 78 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD DEC PY 2014 VL 5 AR 5832 DI 10.1038/ncomms6832 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AX8RE UT WOS:000347175400001 PM 25534775 ER PT J AU Tian, J Zhou, TY Zhang, SC Aloni, S Altoe, MV Xie, SH Wang, H Zhang, DW Zhao, X Liu, Y Li, ZT AF Tian, Jia Zhou, Tian-You Zhang, Shao-Chen Aloni, Shaul Altoe, Maria Virginia Xie, Song-Hai Wang, Hui Zhang, Dan-Wei Zhao, Xin Liu, Yi Li, Zhan-Ting TI Three-dimensional periodic supramolecular organic framework ion sponge in water and microcrystals SO NATURE COMMUNICATIONS LA English DT Article ID MOLECULAR RECOGNITION; CHEMISTRY; POLYMERS; PERSPECTIVES; DIMERIZATION; SEPARATIONS; DERIVATIVES; CATALYSIS; SCOPE AB Self-assembly has emerged as a powerful approach to generating complex supramolecular architectures. Despite there being many crystalline frameworks reported in the solid state, the construction of highly soluble periodic supramolecular networks in a three-dimensional space is still a challenge. Here we demonstrate that the encapsulation motif, which involves the dimerization of two aromatic units within cucurbit[8]uril, can be used to direct the co-assembly of a tetratopic molecular block and cucurbit[8]uril into a periodic three-dimensional supramolecular organic framework in water. The periodicity of the supramolecular organic framework is supported by solution-phase small-angle X-ray-scattering and diffraction experiments. Upon evaporating the solvent, the periodicity of the framework is maintained in porous microcrystals. As a supramolecular 'ion sponge', the framework can absorb different kinds of anionic guests, including drugs, in both water and microcrystals, and drugs absorbed in microcrystals can be released to water with selectivity. C1 [Tian, Jia; Zhang, Shao-Chen; Xie, Song-Hai; Wang, Hui; Zhang, Dan-Wei; Li, Zhan-Ting] Fudan Univ, Dept Chem, Collaborat Innovat Ctr Chem Energy Mat iChEM, Shanghai 200433, Peoples R China. [Zhou, Tian-You; Zhao, Xin] Chinese Acad Sci, Shanghai Inst Organ Chem, Lab Synthet & Self Assembly Chem Organ Funct Mol, Shanghai 200032, Peoples R China. [Aloni, Shaul; Altoe, Maria Virginia; Liu, Yi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Zhang, DW (reprint author), Fudan Univ, Dept Chem, Collaborat Innovat Ctr Chem Energy Mat iChEM, 220 Handan Rd, Shanghai 200433, Peoples R China. EM zhangdw@fudan.edu.cn; yliu@lbl.gov; ztli@fudan.edu.cn RI Liu, yi/A-3384-2008; China, iChEM/F-2855-2015; Foundry, Molecular/G-9968-2014; Tian, Jia/O-2758-2014 OI Liu, yi/0000-0002-3954-6102; Tian, Jia/0000-0001-6793-2804 FU Ministry of Science and Technology [2013CB834501]; Ministry of Education [IRT1117]; National Natural Science Foundation of China [91227108, 21228203, J1103304]; Science and Technology Commission of Shanghai Municipality [13NM1400200]; Molecular Foundry; Lawrence Berkeley National Laboratory; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the US Department of Energy [DE-AC02-05CH11231] FX We acknowledge the Ministry of Science and Technology (2013CB834501), the Ministry of Education (IRT1117, Doctor Fellowship Grant), and the National Natural Science Foundation (91227108, 21228203 and J1103304) of China and the Science and Technology Commission of Shanghai Municipality (13NM1400200) for financial support, and Shanghai Synchrotron Radiation Facility for providing BL14B1 beamline for collecting the solution-phase synchrotron X-ray diffraction data. Y.L. thanks the support from the Molecular Foundry, Lawrence Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 50 TC 29 Z9 32 U1 21 U2 130 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD DEC PY 2014 VL 5 AR 5574 DI 10.1038/ncomms6574 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AX9LF UT WOS:000347223600001 PM 25470406 ER PT J AU Townson, JL Lin, YS Chou, SS Awad, YH Coker, EN Brinker, CJ Kaehr, B AF Townson, Jason L. Lin, Yu-Shen Chou, Stanley S. Awad, Yasmine H. Coker, Eric N. Brinker, C. Jeffrey Kaehr, Bryan TI Synthetic fossilization of soft biological tissues and their shape-preserving transformation into silica or electron-conductive replicas SO NATURE COMMUNICATIONS LA English DT Article ID MICROSCOPY; NANOPARTICLES; SPECIMENS; CELLS AB Structural preservation of complex biological systems from the subcellular to whole organism level in robust forms, enabling dissection and imaging while preserving 3D context, represents an enduring grand challenge in biology. Here we report a simple immersion method for structurally preserving intact organisms via conformal stabilization within silica. This self-limiting process, which we refer to as silica bioreplication, occurs by condensation of water-soluble silicic acid proximally to biomolecular interfaces throughout the organism. Conformal nanoscopic silicification of all biomolecular features imparts structural rigidity enabling the preservation of shape and nano-to-macroscale dimensional features upon drying to form a biocomposite and further high temperature oxidative calcination to form silica replicas or reductive pyrolysis to form electrically conductive carbon replicas of complete organisms. The simplicity and generalizability of this approach should facilitate efforts in biological preservation and analysis and could enable the development of new classes of biomimetic composite materials. C1 [Townson, Jason L.; Lin, Yu-Shen] Univ New Mexico, Dept Internal Med, Div Mol Med, Albuquerque, NM 87131 USA. [Townson, Jason L.; Lin, Yu-Shen; Awad, Yasmine H.] Univ New Mexico, Ctr Micro Engn Mat, Albuquerque, NM 87131 USA. [Chou, Stanley S.; Coker, Eric N.; Brinker, C. Jeffrey; Kaehr, Bryan] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87185 USA. [Brinker, C. Jeffrey; Kaehr, Bryan] Univ New Mexico, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA. RP Kaehr, B (reprint author), Sandia Natl Labs, Adv Mat Lab, POB 5800, Albuquerque, NM 87185 USA. EM bjkaehr@sandia.gov FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Air Force Office of Scientific Research [FA9550-14-1-0066]; New Mexico Cancer Nanotechnology Training Center [R25CA153825]; NSF INSPIRE program [CBET-1344298]; U.S. Department of Energy [DE-AC04-94AL85000] FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. J.L.T. acknowledges support from the Air Force Office of Scientific Research under grant #FA9550-14-1-0066. Y.-S.L. was supported by a fellowship from the New Mexico Cancer Nanotechnology Training Center (R25CA153825). Y.H.A. acknowledges support from the NSF INSPIRE program (CBET-1344298). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 32 TC 2 Z9 2 U1 1 U2 22 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD DEC PY 2014 VL 5 AR 5665 DI 10.1038/ncomms6665 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AX9NA UT WOS:000347228100008 PM 25482611 ER PT J AU Tsutsumi, N Kimura, T Arita, K Ariyoshi, M Ohnishi, H Yamamoto, T Zuo, XB Maenaka, K Park, EY Kondo, N Shirakawa, M Tochio, H Kato, Z AF Tsutsumi, Naotaka Kimura, Takeshi Arita, Kyohei Ariyoshi, Mariko Ohnishi, Hidenori Yamamoto, Takahiro Zuo, Xiaobing Maenaka, Katsumi Park, Enoch Y. Kondo, Naomi Shirakawa, Masahiro Tochio, Hidehito Kato, Zenichiro TI The structural basis for receptor recognition of human interleukin-18 SO NATURE COMMUNICATIONS LA English DT Article ID IFN-GAMMA PRODUCTION; SMALL-ANGLE SCATTERING; HUMAN IL-18; ATOPIC-DERMATITIS; MICE DEFICIENT; PROTEIN; SYSTEM; CYTOKINE; MUTATION; AUTOINFLAMMATION AB Interleukin (IL)-18 is a proinflammatory cytokine that belongs to the IL-1 family and plays an important role in inflammation. The uncontrolled release of this cytokine is associated with severe chronic inflammatory disease. IL-18 forms a signalling complex with the IL-18 receptor alpha (R alpha) and beta (R beta) chains at the plasma membrane, which induces multiple inflammatory cytokines. Here, we present a crystal structure of human IL-18 bound to the two receptor extracellular domains. Generally, the receptors' recognition mode for IL-18 is similar to IL-1 beta; however, certain notable differences were observed. The architecture of the IL-18 receptor second domain (D2) is unique among the other IL-1R family members, which presumably distinguishes them from the IL-1 receptors that exhibit a more promiscuous ligand recognition mode. The structures and associated biochemical and cellular data should aid in developing novel drugs to neutralize IL-18 activity. C1 [Tsutsumi, Naotaka; Ariyoshi, Mariko; Shirakawa, Masahiro] Kyoto Univ, Grad Sch Engn, Dept Mol Engn, Nishikyo Ku, Kyoto 6158510, Japan. [Kimura, Takeshi; Ohnishi, Hidenori; Yamamoto, Takahiro; Kondo, Naomi; Kato, Zenichiro] Gifu Univ, Grad Sch Med, Dept Pediat, Gifu 5011194, Japan. [Arita, Kyohei] Yokohama City Univ, Grad Sch Nanobiosci, Tsurumi Ku, Yokohama, Kanagawa 2300045, Japan. [Ariyoshi, Mariko] Kyoto Univ, Inst Integrated Cell Mat Sci, Kyoto 6068501, Japan. [Zuo, Xiaobing] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Maenaka, Katsumi] Hokkaido Univ, Fac Pharmaceut Sci, Lab Biomol Sci, Sapporo, Hokkaido 0600812, Japan. [Maenaka, Katsumi] Hokkaido Univ, Fac Pharmaceut Sci, Ctr Res & Educ Drug Discovery, Sapporo, Hokkaido 0600812, Japan. [Park, Enoch Y.] Shizuoka Univ, Grad Sch Sci & Technol, Res Inst Green Sci & Technol, Dept Biosci,Suruga Ku, Shizuoka 4228529, Japan. [Kondo, Naomi] Heisei Coll Hlth Sci, Gifu 5011131, Japan. [Shirakawa, Masahiro] Japan Sci & Technol Agcy, Core Res Evolut Sci CREST, Tokyo 1020076, Japan. [Tochio, Hidehito] Kyoto Univ, Grad Sch Sci, Dept Biophys, Sakyo Ku, Kyoto 6068502, Japan. [Kato, Zenichiro] Gifu Univ, United Grad Sch Drug Discovery & Med Informat Sci, Med Informat Sci Div, Gifu 5011194, Japan. RP Ohnishi, H (reprint author), Gifu Univ, Grad Sch Med, Dept Pediat, Yanagido 1-1, Gifu 5011194, Japan. EM ohnishih@gifu-u.ac.jp; tochio@mb.biophys.kyoto-u.ac.jp OI Tsutsumi, Naotaka/0000-0002-3617-7145; Tochio, Hidehito/0000-0003-3843-3330; Park, Enoch Y./0000-0002-7840-1424 FU SPring-8 (Harima, Japan); Photon Factory (Tsukuba, Japan); Argonne National Laboratory (Illinois, USA) [DE-AC02-06CH11357]; Platform for Drug Discovery, Informatics, and Structural Life Science (Japan); NIGMS [P41-GM103311]; JSPS KAKENHI [22370038]; Ministry of Health, Labour and Welfare; MEXT KAKENHI [21790979] FX X-ray data collection was supported by SPring-8 (Harima, Japan), Photon Factory (Tsukuba, Japan), Argonne National Laboratory (Illinois, USA, supported by DE-AC02-06CH11357) and Platform for Drug Discovery, Informatics, and Structural Life Science (Japan). We thank T. Tsunaka (Kyoto University) for the use of his beam time of BL44XU at SPring-8. We also thank T. Fukao, N. Kawamoto, K. Tsuji, M. Yamamoto, S. Ninomiya, T. Yano and K. Kasahara (Gifu University) for their scientific advice or technical help. Affymetrix, Inc. provided discontinued detergents to us. SAXS graphics were prepared using the UCSF Chimera package, which developed by the group at the University of California. (San Francisco, USA, supported by NIGMS P41-GM103311). This work was supported by JSPS KAKENHI Grant Number 22370038 to H.T., Grant-in-Aid for JSPS Fellows to N.T., Health and Labour Science Research Grants for Research on Intractable Diseases from the Ministry of Health, Labour and Welfare to H.O., Health and Labour Science Research Grants for Research from the Ministry of Health, Labour and Welfare to Z.K., Science Research Grant from Eishukai to Z.K, and MEXT KAKENHI Grant Number 21790979 to T.K. NR 55 TC 11 Z9 11 U1 4 U2 15 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD DEC PY 2014 VL 5 AR 5340 DI 10.1038/ncomms6340 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AX9JX UT WOS:000347220300001 PM 25500532 ER PT J AU Sabharwall, P Clark, D Glazoff, M Zheng, GQ Sridharan, K Anderson, M AF Sabharwall, Piyush Clark, Denis Glazoff, Michael Zheng, Guiqiu Sridharan, Kumar Anderson, Mark TI Advanced heat exchanger development for molten salts SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID CORROSION; TRITIUM; FLIBE AB This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non-nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, that show good corrosion resistance in molten salt at nominal operating temperatures up to 700 degrees C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in 58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850 degrees C for 200, 500, and 1000 h. Corrosion rates were similar between welded and nonwelded materials, typically <100 mu m per year after 1000 h of corrosion tests. No catastrophic corrosion was observed in the diffusion welded regions. For materials of construction, nickel-based alloys and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of the type of salt impurity and alloy composition, with respect to chromium and carbon, to better define the best conditions for corrosion resistance. Also presented is the division of the nuclear reactor and high-temperature components per American Society of Mechanical Engineers (ASME) standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa. Published by Elsevier B.V. C1 [Sabharwall, Piyush; Clark, Denis; Glazoff, Michael] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark] Univ Wisconsin, Madison, WI 53706 USA. RP Sabharwall, P (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM Piyush.Sabharwall@inl.gov RI Zheng, Guiqiu/G-7548-2015 OI Zheng, Guiqiu/0000-0002-5783-5848 NR 55 TC 3 Z9 4 U1 6 U2 43 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD DEC PY 2014 VL 280 BP 42 EP 56 DI 10.1016/j.nucengdes.2014.09.026 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AY0CI UT WOS:000347265100006 ER PT J AU King, BV Moore, JF Cui, Y Veryovkin, IV Tripa, CE AF King, B. V. Moore, J. F. Cui, Y. Veryovkin, I. V. Tripa, C. E. TI Comparison of laser ablation and sputter desorption of clusters from Au7Cu5Al4 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 20th International Workshop on Inelastic Ion-Surface Collisions (IISC) CY FEB 16-21, 2014 CL AUSTRALIA SP Flinders Univ, Sch Chem & Phys Sci, Kore Technol, Pfeiffer Vacuum, Scitek, SPECS, Lastek, BoentDek Handels GmbH, Flinders Univ, Ctr NanoScale Sci & Technol, AINSE DE Sputtering; Clusters; Laser ablation; LIMS; SNMS ID IONIZATION MASS-SPECTROMETRY; SURFACE-ANALYSIS; ALLOYS; TRACE AB Ionized and neutral clusters were desorbed from spangold, a polycrystalline ternary alloy with composition Au7Cu5Al4, using both a femtosecond laser beam and an energetic ion beam and the resulting time of flight mass spectra compared. Neutral clusters containing up to 7 atoms were ejected by the 15 key Ar+ beam whereas only smaller positively and negatively charged clusters were observed from the laser ablated spangold surface. Laser ionization mass spectrometry (LIMS) positive ion spectra were dominated by Al containing cluster ions whereas Au containing ions dominated the negative LIMS spectrum. An odd-even variation in LIMS cluster yield was observed, consistent with previous results and due to fragmentation of photoionized clusters. The laser sputtered neutral mass spectrometry (laser SNMS) spectrum showed that larger desorbed clusters were gold rich. The cluster signals also followed a power law dependence with cluster size with the exponent value of 6-7.6 for sputtered mixed clusters being greater than that found from sputtering of pure elements, similar to the result found previously in the Cu-Au system. (C) 2014 Elsevier B.V. All rights reserved. C1 [King, B. V.] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia. [Moore, J. F.] MassThink LLC, Naperville, IL 60565 USA. [Moore, J. F.; Cui, Y.] Univ Illinois, Dept Chem, Chicago, IL 60607 USA. [Veryovkin, I. V.; Tripa, C. E.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP King, BV (reprint author), Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia. EM bruce.king@newcastle.edu.au OI Cui, Yang/0000-0002-6071-8677 NR 13 TC 1 Z9 1 U1 4 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD DEC 1 PY 2014 VL 340 BP 72 EP 75 DI 10.1016/j.nimb.2014.07.039 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AX8AI UT WOS:000347132400015 ER PT J AU Pena, AJ Reano, C Silla, F Mayo, R Quintana-Orti, ES Duato, J AF Pena, Antonio J. Reano, Carlos Silla, Federico Mayo, Rafael Quintana-Orti, Enrique S. Duato, Jose TI A complete and efficient CUDA-sharing solution for HPC clusters SO PARALLEL COMPUTING LA English DT Article DE Graphics processors; Virtualization; High performance computing; Clusters AB In this paper we detail the key features, architectural design, and implementation of rCUDA, an advanced framework to enable remote and transparent GPGPU acceleration in HPC clusters. rCUDA allows decoupling GPUs from nodes, forming pools of shared accelerators, which brings enhanced flexibility to cluster configurations. This opens the door to configurations with fewer accelerators than nodes, as well as permits a single node to exploit the whole set of GPUs installed in the cluster. In our proposal, CUDA applications can seamlessly interact with any GPU in the cluster, independently of its physical location. Thus, GPUs can be either distributed among compute nodes or concentrated in dedicated GPGPU servers, depending on the cluster administrator's policy. This proposal leads to savings not only in space but also in energy, acquisition, and maintenance costs. The performance evaluation in this paper with a series of benchmarks and a production application clearly demonstrates the viability of this proposal. Concretely, experiments with the matrix-matrix product reveal excellent performance compared with regular executions on the local CPU; on a much more complex application, the GPU-accelerated LAMMPS, we attain up to 11x speedup employing 8 remote accelerators from a single node with respect to a 12-core CPU-only execution. GPGPU service interaction in compute nodes, remote acceleration in dedicated GPGPU servers, and data transfer performance of similar CPU virtualization frameworks are also evaluated. (C) 2014 Elsevier B.V. All rights reserved. C1 [Pena, Antonio J.] Argonne Natl Lab, MCS, Argonne, IL 60439 USA. [Reano, Carlos; Silla, Federico; Duato, Jose] Univ Politecn Valencia, DISCA, Valencia 46022, Spain. [Mayo, Rafael; Quintana-Orti, Enrique S.] Univ Jaume 1, DICC, Castellon de La Plana 12071, Spain. RP Pena, AJ (reprint author), Argonne Natl Lab, MCS, Argonne, IL 60439 USA. EM apenya@mcs.anl.gov RI Reano, Carlos/B-3454-2015; OI Reano, Carlos/0000-0001-7871-9152; Pena Monferrer, Antonio J./0000-0002-3575-4617 FU Spanish Ministerio de Economia y Competitividad (MINECO); FEDER [TIN2012-38341-004-01]; MINECO, FEDER [TIN2011-23283]; Fundacion Caixa-Castello Bancaixa [P11B2013-21]; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]; Mellanox Technologies FX This work was supported by the Spanish Ministerio de Economia y Competitividad (MINECO) and by FEDER funds under Grant TIN2012-38341-004-01. It was also supported by MINECO, FEDER funds, under Grant TIN2011-23283, and by the Fundacion Caixa-Castello Bancaixa, Grant P11B2013-21. This work was also supported in part by the U.S. Department of Energy, Office of Science, under contract DE-AC02-06CH11357. Authors are grateful for the generous support provided by Mellanox Technologies to the rCUDA Project. The authors would also like to thank Adrian Castello, member of The rCUDA Development Team, for his hard work on rCUDA. NR 49 TC 17 Z9 19 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD DEC PY 2014 VL 40 IS 10 BP 574 EP 588 DI 10.1016/j.parco.2014.09.011 PG 15 WC Computer Science, Theory & Methods SC Computer Science GA AX6FO UT WOS:000347018800002 ER PT J AU Teodoro, G Pan, T Kurc, T Kong, J Cooper, L Klasky, S Saltz, J AF Teodoro, George Pan, Tony Kurc, Tahsin Kong, Jun Cooper, Lee Klasky, Scott Saltz, Joel TI Region templates: Data representation and management for high-throughput image analysis SO PARALLEL COMPUTING LA English DT Article DE GPGPU; Storage and I/O; Heterogeneous environments; Image analysis; Microscopy imaging ID LARGE-SCALE; SYSTEM; ARCHITECTURES; XKAAPI; MODELS; GPU AB We introduce a region template abstraction and framework for the efficient storage, management and processing of common data types in analysis of large datasets of high resolution images on clusters of hybrid computing nodes. The region template abstraction provides a generic container template for common data structures, such as points, arrays, regions, and object sets, within a spatial and temporal bounding box. It allows for different data management strategies and I/O implementations, while providing a homogeneous, unified interface to applications for data storage and retrieval. A region template application is represented as a hierarchical dataflow in which each computing stage may be represented as another dataflow of finer-grain tasks. The execution of the application is coordinated by a runtime system that implements optimizations for hybrid machines, including performance-aware scheduling for maximizing the utilization of computing devices and techniques to reduce the impact of data transfers between CPUs and GPUs. An experimental evaluation on a state-of-the-art hybrid cluster using a microscopy imaging application shows that the abstraction adds negligible overhead (about 3%) and achieves good scalability and high data transfer rates. Optimizations in a high speed disk based storage implementation of the abstraction to support asynchronous data transfers and computation result in an application performance gain of about 1.13x. Finally, a processing rate of 11,730 4K x 4K tiles per minute was achieved for the microscopy imaging application on a cluster with 100 nodes (300 GPUs and 1200 CPU cores). This computation rate enables studies with very large datasets. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). C1 [Teodoro, George] Univ Brasilia, Dept Comp Sci, Brasilia, DF, Brazil. [Kurc, Tahsin; Saltz, Joel] SUNY Stony Brook, Biomed Informat Dept, Stony Brook, NY 11794 USA. [Pan, Tony; Kong, Jun; Cooper, Lee] Emory Univ, Biomed Informat Dept, Atlanta, GA 30322 USA. [Kurc, Tahsin; Klasky, Scott] Oak Ridge Natl Lab, Sci Data Grp, Oak Ridge, TN USA. RP Teodoro, G (reprint author), Univ Brasilia, Dept Comp Sci, Brasilia, DF, Brazil. EM teodoro@cic.unb.br; tony.pan@emory.edu; tahsin.kurc@stonybrook.edu; jun.kong@emory.edu; lee.cooper@emory.edu; klasky@ornl.org; joel.saltz@stonybrookmedicine.edu FU NCI [HHSN261200800001E, 1U24CA180924-01A1]; NHLBI [R24HL085343]; NLM [R01LM011119-01, R01LM009239]; NIH [RC4MD005964, K25CA181503]; NIH CTSA [PHS UL1RR025008]; CNPq; NSF [OCI-0910735] FX This work was supported in part by HHSN261200800001E and 1U24CA180924-01A1 from the NCI, R24HL085343 from the NHLBI, R01LM011119-01 and R01LM009239 from the NLM, RC4MD005964 from the NIH, PHS UL1RR025008 from the NIH CTSA, and CNPq. This work is supported in part by the NIH K25CA181503. This research used resources provided by the XSEDE Science Gateways program and the Keeneland Computing Facility at the Georgia Institute of Technology, which is supported by the NSF under Contract OCI-0910735. NR 70 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD DEC PY 2014 VL 40 IS 10 BP 589 EP 610 DI 10.1016/j.parco.2014.09.003 PG 22 WC Computer Science, Theory & Methods SC Computer Science GA AX6FO UT WOS:000347018800003 PM 26139953 ER PT J AU Horelik, N Siegel, A Forget, B Smith, K AF Horelik, Nicholas Siegel, Andrew Forget, Benoit Smith, Kord TI Monte Carlo domain decomposition for robust nuclear reactor analysis SO PARALLEL COMPUTING LA English DT Article DE Monte Carlo; Domain decomposition; Load balancing; Neutron transport; Nuclear reactor analyses ID ALGORITHMS; TRANSPORT; SIMULATIONS; CHALLENGES AB Monte Carlo (MC) neutral particle transport codes are considered the gold-standard for nuclear simulations, but they cannot be robustly applied to high-fidelity nuclear reactor analysis without accommodating several terabytes of materials and tally data. While this is not a large amount of aggregate data for a typical high performance computer, MC methods are only embarrassingly parallel when the key data structures are replicated for each processing element, an approach which is likely infeasible on future machines. The present work explores the use of spatial domain decomposition to make full-scale nuclear reactor simulations tractable with Monte Carlo methods, presenting a simple implementation in a production-scale code. Good performance is achieved for mesh-tallies of up to 2.39 TB distributed across 512 compute nodes while running a full-core reactor benchmark on the Mira Blue Gene/Q supercomputer at the Argonne National Laboratory. In addition, the effects of load imbalances are explored with an updated performance model that is empirically validated against observed timing results. Several load balancing techniques are also implemented to demonstrate that imbalances can be largely mitigated, including a new and efficient way to distribute extra compute resources across finer domain meshes. (C) 2014 Elsevier B.V. All rights reserved. C1 [Horelik, Nicholas; Forget, Benoit; Smith, Kord] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. [Siegel, Andrew] Argonne Natl Lab, Math & Computat Sci MCS Div, Argonne, IL 60439 USA. RP Horelik, N (reprint author), MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave,Bldg 24, Cambridge, MA 02139 USA. EM nhorelik@mit.edu; siegela@mcs.anl.gov; bforget@mit.edu; kord@mit.edu FU DOE's Center for Exascale Simulation of Advanced Reactors (CESAR); Office of Science of the U.S. Department of Energy [DE-AC02-06CH11357] FX This work was sponsored by the DOE's Center for Exascale Simulation of Advanced Reactors (CESAR), and used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. NR 29 TC 3 Z9 3 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD DEC PY 2014 VL 40 IS 10 BP 646 EP 660 DI 10.1016/j.parco.2014.10.001 PG 15 WC Computer Science, Theory & Methods SC Computer Science GA AX6FO UT WOS:000347018800006 ER PT J AU Roth, PC Chen, Y AF Roth, Philip C. Chen, Yong TI Guest Editors' introduction to the special issue on "DISCS-2013" SO PARALLEL COMPUTING LA English DT Editorial Material C1 [Roth, Philip C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Chen, Yong] Texas Tech Univ, Lubbock, TX 79409 USA. RP Roth, PC (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD DEC PY 2014 VL 40 IS 10 BP 681 EP 681 DI 10.1016/j.parco.2014.11.002 PG 1 WC Computer Science, Theory & Methods SC Computer Science GA AX6FO UT WOS:000347018800008 ER PT J AU Weaver, J Castellana, VG Morari, A Tumeo, A Purohit, S Chappell, A Haglin, D Villa, O Choudhury, S Schuchardt, K Feo, J AF Weaver, Jesse Castellana, Vito Giovanni Morari, Alessandro Tumeo, Antonino Purohit, Sumit Chappell, Alan Haglin, David Villa, Oreste Choudhury, Sutanay Schuchardt, Karen Feo, John TI Toward a data scalable solution for facilitating discovery of science resources SO PARALLEL COMPUTING LA English DT Article DE Data intensive; Science metadata; Graph database; Scalability; Semantics AB Data-intensive science simultaneously derives from and creates the need for large quantities of data. As such, scientists increasingly need to discover and analyze new datasets from diverse sources. Beyond the sheer volume of data, issues posed by the resultant data heterogeneity are often overlooked. We postulate that heterogeneity challenges can be solved (at least in part) with the adoption of the Resource Description Framework (RDF), a graph-based data model. In turn, this requires scalable graph query systems for discovering and analyzing data. Consequently, we investigate GEMS, a graph engine for large-scale clusters. We describe the features of GEMS that make it suitable for answering graph queries and scaling to larger quantities of data. We evaluate GEMS' ability to answer real science-based queries over real-world, curated, science metadata. We also demonstrate GEMS' ability to scale to larger datasets using a benchmark. (C) 2014 Elsevier B.V. All rights reserved. C1 [Weaver, Jesse; Castellana, Vito Giovanni; Tumeo, Antonino; Purohit, Sumit; Haglin, David; Choudhury, Sutanay; Schuchardt, Karen; Feo, John] Pacific NW Natl Lab, Richland, WA 99352 USA. [Morari, Alessandro; Chappell, Alan] Pacific NW Natl Lab, Seattle, WA 98109 USA. [Villa, Oreste] NVIDIA Res, Santa Clara, CA 95051 USA. RP Weaver, J (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM jesse.weaver@pnnl.gov; vitoGiovanni.castellana@pnnl.gov; alessandro.morari@pnnl.gov; antonino.tumeo@pnnl.gov; sumit.purohit@pnnl.gov; alan.chappell@pnnl.gov; david.haglin@pnnl.gov; ovilla@nvidia.com; sutanay.choudhury@pnnl.gov; karen.schuchardt@pnnl.gov; john.feo@pnnl.gov RI Tumeo, Antonino/L-3106-2016; OI Chappell, Alan/0000-0003-0479-3223 FU United States Department of Energy, Office of Science, Office of Advanced Scientific Computing Research [62892]; U.S. Department of Energy [DE-ACO5-76RL01830] FX This material is based in part upon work supported by the United States Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, under Award number 62892 "Resource Discovery for Extreme Scale Collaboration" (Program Manager Richard Carlson). This material is based in part upon work at the Center for Adaptive Supercomputing Software (CASS) at the U.S. Department of Energy's Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-ACO5-76RL01830. A portion of the research was performed using PNNL Institutional Computing. NR 35 TC 2 Z9 2 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD DEC PY 2014 VL 40 IS 10 BP 682 EP 696 DI 10.1016/j.parco.2014.08.002 PG 15 WC Computer Science, Theory & Methods SC Computer Science GA AX6FO UT WOS:000347018800009 ER PT J AU Howard, NT White, AE Greenwald, M Holland, C Candy, J Rice, JE AF Howard, N. T. White, A. E. Greenwald, M. Holland, C. Candy, J. Rice, J. E. TI Impurity transport, turbulence transitions and intrinsic rotation in Alcator C-Mod plasmas SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE gyrokinetics; impurity transport; intrinsic rotation ID TEMPERATURE-GRADIENT TURBULENCE; TOKAMAK; SIMULATIONS AB Linear and nonlinear gyrokinetic simulations are used to probe turbulent impurity transport in intrinsically rotating tokamak plasmas. For this simulation-based study, experimental input parameters are taken from a pair of ICRF heated Alcator C-Mod discharges exhibiting a change in the sign of the normalized toroidal rotation gradient at mid-radius (i.e. a change from hollow to peaked intrinsic rotation profiles). The simulations show that there is no change in the peaking of the calcium impurity between the plasmas with peaked and hollow rotation profiles, suggesting that the impurity transport and the shape of the rotation do not always change together. Furthermore, near mid-radius, r/a = 0.5 (normalized midplane minor radius), the linear and nonlinear gyrokinetic simulations exhibit no evidence of a transition from ion temperature gradient (ITG) to trapped electron mode dominance when the intrinsic rotation profile changes from peaked to hollow. Extensive nonlinear sensitivity analysis is performed, and there is no change in the ITG critical gradient or in the stiffness of ion heat transport with the change in the intrinsic toroidal rotation profile shape, which suggests that the shape of the rotation profile is not dominated by the ITG onset in these cases. C1 [Howard, N. T.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [White, A. E.; Greenwald, M.; Rice, J. E.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Holland, C.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Candy, J.] Gen Atom, San Diego, CA 92121 USA. RP Howard, NT (reprint author), Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. OI Greenwald, Martin/0000-0002-4438-729X FU Office of Science of the US Department of Energy [DE-AC02-05CH11231]; MIT PSFC parallel AMD Opteron/Infiniband cluster Loki; DOE [DE-FC02-99ER54512-CMOD] FX The authors would like to thank all of the Alcator C-Mod technical staff and the physics operators for their exceptional operation and maintenance of the tokamak. Specifically Dr Amanda Hubbard for maintaining the ECE temperature measurements, Chi Gao for monitoring the XICS system for theses shots, Dr Matt Reinke for processing ion temperatures and rotations, Dr Steve Wukitch for ICRF operation, Dr Steve Wolfe for EFIT, and John Walk for processing of the density profiles. We would like to thank Dr Ron Waltz for the development of the GYRO code and Dr Emily Belli for the development of the NEO code. Computer simulations using GYRO were carried out at the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231 and the MIT PSFC parallel AMD Opteron/Infiniband cluster Loki. This work was also supported by DOE contract - DE-FC02-99ER54512-CMOD and in part by an appointment to the US DOE Fusion Energy Postdoctoral Research Program administered by ORISE. NR 47 TC 6 Z9 7 U1 2 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2014 VL 56 IS 12 AR 124004 DI 10.1088/0741-3335/56/12/124004 PG 12 WC Physics, Fluids & Plasmas SC Physics GA AX4UH UT WOS:000346926300008 ER PT J AU Tritz, K Bell, RE Beiersdorfer, P Boyle, D Clementson, J Finkenthal, M Kaita, R Kozub, T Kubota, S Lucia, M Majeski, R Merino, E Schmitt, J Stutman, D AF Tritz, Kevin Bell, Ronald E. Beiersdorfer, Peter Boyle, Dennis Clementson, Joel Finkenthal, Michael Kaita, Robert Kozub, Tom Kubota, Shigeyuki Lucia, Matthew Majeski, Richard Merino, Enrique Schmitt, John Stutman, Dan TI VUV/XUV measurements of impurity emission in plasmas with liquid lithium surfaces on LTX SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE XUV; lithium; tokamak; spectroscopy ID ATOMIC DATABASE; LIMITER; CHIANTI; ALPS AB The VUV/XUV spectrum has been measured on the Lithium Tokamak eXperiment (LTX) using a transmission grating imaging spectrometer (TGIS) coupled to a direct-detection x-ray charge-coupled device camera. TGIS data show significant changes in the ratios between the lithium and oxygen impurity line emission during discharges with varying lithium wall conditions. Lithium coatings that have been passivated by lengthy exposure to significant levels of impurities contribute to a large O/Li ratio measured during LTX plasma discharges. Furthermore, previous results have indicated that a passivated lithium film on the plasma facing components will function as a stronger impurity source when in the form of a hot liquid layer compared to a solid lithium layer. However, recent TGIS measurements of plasma discharges in LTX with hot stainless steel boundary shells and a fresh liquid lithium coating show lower O/Li impurity line ratios when compared to discharges with a solid lithium film on cool shells. These new measurements help elucidate the somewhat contradictory results of the effects of solid and liquid lithium on plasma confinement observed in previous experiments. C1 [Tritz, Kevin; Finkenthal, Michael; Stutman, Dan] Johns Hopkins Univ, Dept Phys, Baltimore, MD 21218 USA. [Bell, Ronald E.; Boyle, Dennis; Kaita, Robert; Kozub, Tom; Lucia, Matthew; Majeski, Richard; Merino, Enrique; Schmitt, John] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Beiersdorfer, Peter; Clementson, Joel] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kubota, Shigeyuki] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Tritz, K (reprint author), Johns Hopkins Univ, Dept Phys, 3400 North Charles St, Baltimore, MD 21218 USA. EM ktritz@pppl.gov RI Stutman, Dan/P-4048-2015; OI Boyle, Dennis/0000-0001-8091-8169 FU Department of Energy [DE-FG02-09ER55012, DE-AC02-09CH11466, DE-AC05-00OR22725] FX This work is supported by the Department of Energy grant numbers: DE-FG02-09ER55012, and at LTX by the DoE contract numbers: DE-AC02-09CH11466 and DE-AC05-00OR22725. NR 21 TC 1 Z9 1 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2014 VL 56 IS 12 AR 125014 DI 10.1088/0741-3335/56/12/125014 PG 7 WC Physics, Fluids & Plasmas SC Physics GA AX4UH UT WOS:000346926300025 ER PT J AU Gilbert, JA Neufeld, JD AF Gilbert, Jack A. Neufeld, Josh D. TI Life in a World without Microbes SO PLOS BIOLOGY LA English DT Article C1 [Gilbert, Jack A.] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60439 USA. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Gilbert, Jack A.] Marine Biol Lab, Woods Hole, MA 02543 USA. [Gilbert, Jack A.] Zhejiang Univ, Coll Environm & Resource Sci, Hangzhou 310003, Zhejiang, Peoples R China. [Neufeld, Josh D.] Univ Waterloo, Dept Biol, Waterloo, ON N2L 3G1, Canada. RP Gilbert, JA (reprint author), Argonne Natl Lab, Inst Genom & Syst Biol, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gilbertjack@anl.gov FU Alfred P Sloan Foundation; Canadian Institutes for Health Research (CIHR); National Science and Engineering Research Council (NSERC) FX JAG is supported by the Alfred P Sloan Foundation. JDN is supported by funding from the Canadian Institutes for Health Research (CIHR) and the National Science and Engineering Research Council (NSERC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 13 TC 8 Z9 8 U1 6 U2 27 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1545-7885 J9 PLOS BIOL JI PLoS. Biol. PD DEC PY 2014 VL 12 IS 12 DI 10.1371/journal.pbio.1002020 PG 3 WC Biochemistry & Molecular Biology; Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA AX8MQ UT WOS:000347164000013 ER PT J AU Hori, C Ishida, T Igarashi, K Samejima, M Suzuki, H Master, E Ferreira, P Ruiz-Duenas, FJ Held, B Canessa, P Larrondo, LF Schmoll, M Druzhinina, IS Kubicek, CP Gaskell, JA Kersten, P St John, F Glasner, J Sabat, G BonDurant, SS Syed, K Yadav, J Mgbeahuruike, AC Kovalchuk, A Asiegbu, FO Lackner, G Hoffmeister, D Rencoret, J Gutierrez, A Sun, H Lindquist, E Barry, K Riley, R Grigoriev, IV Henrissat, B Kues, U Berka, RM Martinez, AT Covert, SF Blanchette, RA Cullen, D AF Hori, Chiaki Ishida, Takuya Igarashi, Kiyohiko Samejima, Masahiro Suzuki, Hitoshi Master, Emma Ferreira, Patricia Ruiz-Duenas, Francisco J. Held, Benjamin Canessa, Paulo Larrondo, Luis F. Schmoll, Monika Druzhinina, Irina S. Kubicek, Christian P. Gaskell, Jill A. Kersten, Phil St John, Franz Glasner, Jeremy Sabat, Grzegorz BonDurant, Sandra Splinter Syed, Khajamohiddin Yadav, Jagjit Mgbeahuruike, Anthony C. Kovalchuk, Andriy Asiegbu, Fred O. Lackner, Gerald Hoffmeister, Dirk Rencoret, Jorge Gutierrez, Ana Sun, Hui Lindquist, Erika Barry, Kerrie Riley, Robert Grigoriev, Igor V. Henrissat, Bernard Kuees, Ursula Berka, Randy M. Martinez, Angel T. Covert, Sarah F. Blanchette, Robert A. Cullen, Daniel TI Analysis of the Phlebiopsis gigantea Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood SO PLOS GENETICS LA English DT Article ID WHITE-ROT FUNGUS; BASIDIOMYCETE PHANEROCHAETE-CHRYSOSPORIUM; LIGNIN MODEL COMPOUNDS; CELLOBIOSE DEHYDROGENASE; BROWN-ROT; ALCOHOL-DEHYDROGENASE; MOLECULAR EVOLUTION; MULTICOPPER OXIDASE; COPRINOPSIS-CINEREA; PENIOPHORA-GIGANTEA AB Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on fresh-cut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea's extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes. C1 [Hori, Chiaki; Ishida, Takuya; Igarashi, Kiyohiko; Samejima, Masahiro] Univ Tokyo, Dept Biomat Sci, Tokyo, Japan. [Suzuki, Hitoshi; Master, Emma] Univ Toronto, Dept Chem Engn, Toronto, ON, Canada. [Ferreira, Patricia] Univ Zaragoza, Dept Biochem & Mol & Cellular Biol, Zaragoza, Spain. [Ferreira, Patricia] Univ Zaragoza, Inst Biocomputat & Phys Complex Syst, Zaragoza, Spain. [Ruiz-Duenas, Francisco J.; Martinez, Angel T.] CSIC, Ctr Invest Biol, Madrid, Spain. [Held, Benjamin; Blanchette, Robert A.] Univ Minnesota, Dept Plant Pathol, St Paul, MN USA. [Canessa, Paulo; Larrondo, Luis F.] Pontificia Univ Catolica Chile, Fac Ciencias Biol, Millennium Nucleus Fungal Integrat & Synthet Biol, Santiago, Chile. [Canessa, Paulo; Larrondo, Luis F.] Pontificia Univ Catolica Chile, Fac Ciencias Biol, Dept Genet Mol & Microbiol, Santiago, Chile. [Schmoll, Monika] Austrian Inst Technol GmbH, Hlth & Environm Dept, Tulin, Austria. [Druzhinina, Irina S.; Kubicek, Christian P.] Vienna Univ Technol, Austrian Ctr Ind Biotechnol, A-1040 Vienna, Austria. [Druzhinina, Irina S.; Kubicek, Christian P.] Vienna Univ Technol, Inst Chem Engn, A-1040 Vienna, Austria. [Gaskell, Jill A.; Kersten, Phil; St John, Franz; Cullen, Daniel] USDA, Forest Prod Lab, Madison, WI 53705 USA. [Glasner, Jeremy; Sabat, Grzegorz; BonDurant, Sandra Splinter] Univ Wisconsin, Ctr Biotechnol, Madison, WI 53705 USA. [Syed, Khajamohiddin; Yadav, Jagjit] Univ Cincinnati, Dept Environm Hlth, Cincinnati, OH USA. [Mgbeahuruike, Anthony C.; Kovalchuk, Andriy; Asiegbu, Fred O.] Univ Helsinki, Dept Forest Sci, Helsinki, Finland. [Lackner, Gerald; Hoffmeister, Dirk] Univ Jena, Dept Pharmaceut Biol, Hans Knoll Inst, Jena, Germany. [Rencoret, Jorge; Gutierrez, Ana] CSIC, Inst Recursos Nat & Agrobiol, E-41080 Seville, Spain. [Sun, Hui; Lindquist, Erika; Barry, Kerrie; Riley, Robert; Grigoriev, Igor V.] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Henrissat, Bernard] Aix Marseille Univ, Unite Mixte Rech 7257, CNRS, Marseille, France. [Kuees, Ursula] Univ Gottingen, Busgen Inst, D-37073 Gottingen, Germany. [Berka, Randy M.] Novozymes Inc, Davis, CA USA. [Covert, Sarah F.] Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA. RP Hori, C (reprint author), Univ Tokyo, Dept Biomat Sci, Tokyo, Japan. EM dcullen@wisc.edu RI Ruiz-Duenas, Francisco/L-9837-2015; Igarashi, Kiyohiko/E-6799-2016; Suzuki, Hitoshi/I-1059-2014; Schmoll, Monika/I-6541-2016; Larrondo, Luis/J-1086-2016; Master, Emma/O-3554-2014; St John, Franz/J-8970-2016; RENCORET, JORGE/E-1747-2013; OI Gutierrez, Ana/0000-0002-8823-9029; Ruiz-Duenas, Francisco/0000-0002-9837-5665; Igarashi, Kiyohiko/0000-0001-5152-7177; Suzuki, Hitoshi/0000-0002-0837-3763; Schmoll, Monika/0000-0003-3918-0574; Larrondo, Luis/0000-0002-8832-7109; St John, Franz/0000-0003-3458-5628; RENCORET, JORGE/0000-0003-2728-7331; Kues, Ursula/0000-0001-9180-4079; Martinez, Angel T/0000-0002-1584-2863 FU US Department of Agriculture Cooperative State, Research, Education, and Extension Service Grant [2007-35504-18257]; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; HIPOP project of the Spanish Ministry of Economy and Competitiveness (MINECO) [BIO2011-26694]; PEROXICATS European project [KBBE-2010-4-265397]; INDOX European project [KBBE-2013-.3.3-04-613549]; Chilean National Fund for Scientific and Technological Development Grant [1131030] FX The major portions of this work were performed under US Department of Agriculture Cooperative State, Research, Education, and Extension Service Grant 2007-35504-18257 (to DC and RAB). The US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under Contract DE-AC02-05CH11231. This work was also supported by the HIPOP (BIO2011-26694) project of the Spanish Ministry of Economy and Competitiveness (MINECO) (to FJRD), the PEROXICATS (KBBE-2010-4-265397) and INDOX (KBBE-2013-.3.3-04-613549) European projects (to ATM), and the Chilean National Fund for Scientific and Technological Development Grant 1131030 (to LFL). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 92 TC 19 Z9 19 U1 0 U2 53 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7390 EI 1553-7404 J9 PLOS GENET JI PLoS Genet. PD DEC PY 2014 VL 10 IS 12 AR e1004759 DI 10.1371/journal.pgen.1004759 PG 20 WC Genetics & Heredity SC Genetics & Heredity GA AX0NW UT WOS:000346649900006 PM 25474575 ER PT J AU Imam, S Noguera, DR Donohue, TJ AF Imam, Saheed Noguera, Daniel R. Donohue, Timothy J. TI Global Analysis of Photosynthesis Transcriptional Regulatory Networks SO PLOS GENETICS LA English DT Article ID RHODOBACTER-SPHAEROIDES 2.4.1; CYTOCHROME C(2) GENE; ESCHERICHIA-COLI; BACILLUS-SUBTILIS; FUNCTIONAL ASSIGNMENT; RESPONSIVE REGULATOR; GLUTAMINE-SYNTHETASE; CASCADE REGULATION; HISTIDINE KINASE; PURPLE BACTERIA AB Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates,34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a DFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. C1 [Imam, Saheed] Univ Wisconsin, Program Cellular & Mol Biol, Madison, WI 53718 USA. [Imam, Saheed; Donohue, Timothy J.] Univ Wisconsin, Dept Bacteriol, Wisconsin Energy Inst, Madison, WI 53706 USA. [Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI USA. [Noguera, Daniel R.] Univ Wisconsin, Dept Civil & Environm Engn, Madison, WI 53706 USA. RP Imam, S (reprint author), Univ Wisconsin, Program Cellular & Mol Biol, Madison, WI 53718 USA. EM tdonohue@bact.wisc.edu OI Donohue, Timothy/0000-0001-8738-2467 FU DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER) [DE- FC02 - - 07ER64494] FX This work was funded in part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE- FC02 - - 07ER64494). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 91 TC 8 Z9 8 U1 0 U2 11 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7390 EI 1553-7404 J9 PLOS GENET JI PLoS Genet. PD DEC PY 2014 VL 10 IS 12 AR e1004837 DI 10.1371/journal.pgen.1004837 PG 21 WC Genetics & Heredity SC Genetics & Heredity GA AX0NW UT WOS:000346649900039 PM 25503406 ER PT J AU Saxer, G Krepps, MD Merkley, ED Ansong, C Kaiser, BLD Valovska, MT Ristic, N Yeh, PT Prakash, VP Leiser, OP Nakhleh, L Gibbons, HS Kreuzer, HW Shamoo, Y AF Saxer, Gerda Krepps, Michael D. Merkley, Eric D. Ansong, Charles Kaiser, Brooke L. Deatherage Valovska, Marie-Therese Ristic, Nikola Yeh, Ping T. Prakash, Vittal P. Leiser, Owen P. Nakhleh, Luay Gibbons, Henry S. Kreuzer, Helen W. Shamoo, Yousif TI Mutations in Global Regulators Lead to Metabolic Selection during Adaptation to Complex Environments SO PLOS GENETICS LA English DT Article ID ESCHERICHIA-COLI POPULATIONS; TERM EXPERIMENTAL EVOLUTION; ADAPTIVE RADIATION; TRANSCRIPTIONAL MICROARRAYS; ECOLOGICAL SPECIALIZATION; MONITORING UTILIZATION; ANTIBIOTIC-RESISTANCE; BENEFICIAL MUTATIONS; CONSTANT ENVIRONMENT; SIGNAL-TRANSDUCTION AB Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes if many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased genetic and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that subtle modulations of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order metabolic selection that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism, and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a "one-step'' mechanism of adaptation to a novel environment, which highlights the importance of global resource management as a powerful strategy to adaptation. C1 [Saxer, Gerda; Valovska, Marie-Therese; Yeh, Ping T.; Prakash, Vittal P.; Shamoo, Yousif] Rice Univ, Dept Biosci, Houston, TX 77251 USA. [Krepps, Michael D.; Gibbons, Henry S.] US Army Edgewood Chem Biol Ctr, Aberdeen Proving Ground, MD USA. [Krepps, Michael D.] EXCET Inc, Springfield, VA USA. [Merkley, Eric D.; Ansong, Charles; Kaiser, Brooke L. Deatherage; Kreuzer, Helen W.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ristic, Nikola; Nakhleh, Luay] Rice Univ, Dept Comp Sci, Houston, TX USA. [Leiser, Owen P.] No Arizona Univ, Ctr Microbial Genet & Genom, Flagstaff, AZ 86011 USA. RP Saxer, G (reprint author), Rice Univ, Dept Biosci, Houston, TX 77251 USA. EM gsaxer@rice.edu; shamoo@rice.edu OI Merkley, Eric/0000-0002-5486-4723 FU Defense Threat Reduction Agency [HDTRA-1-10-1-0069, DTRA10027IA-2129]; U.S. Department of Energy [DE-AC06-76RLO] FX This work was supported by funding from the Defense Threat Reduction Agency (HDTRA-1-10-1-0069) to YS and (DTRA10027IA-2129) to HWK. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 86 TC 11 Z9 11 U1 3 U2 30 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7390 EI 1553-7404 J9 PLOS GENET JI PLoS Genet. PD DEC PY 2014 VL 10 IS 12 AR e1004872 DI 10.1371/journal.pgen.1004872 PG 17 WC Genetics & Heredity SC Genetics & Heredity GA AX0NW UT WOS:000346649900065 PM 25501822 ER PT J AU Vanegas, JM Arroyo, M AF Vanegas, Juan M. Arroyo, Marino TI Force Transduction and Lipid Binding in MscL: A Continuum-Molecular Approach SO PLOS ONE LA English DT Article ID MECHANOSENSITIVE CHANNEL MSCL; ESCHERICHIA-COLI; HYDROPHOBIC MISMATCH; PROTEIN INTERACTIONS; MEMBRANE-PROTEIN; GATING MECHANISM; ION-CHANNEL; TRANSMEMBRANE HELICES; LARGE-CONDUCTANCE; CRYSTAL-STRUCTURE AB The bacterial mechanosensitive channel MscL, a small protein mainly activated by membrane tension, is a central model system to study the transduction of mechanical stimuli into chemical signals. Mutagenic studies suggest that MscL gating strongly depends on both intra-protein and interfacial lipid-protein interactions. However, there is a gap between this detailed chemical information and current mechanical models of MscL gating. Here, we investigate the MscL bilayer-protein interface through molecular dynamics simulations, and take a combined continuum-molecular approach to connect chemistry and mechanics. We quantify the effect of membrane tension on the forces acting on the surface of the channel, and identify interactions that may be critical in the force transduction between the membrane and MscL. We find that the local stress distribution on the protein surface is largely asymmetric, particularly under tension, with the cytoplasmic side showing significantly larger and more localized forces, which pull the protein radially outward. The molecular interactions that mediate this behavior arise from hydrogen bonds between the electronegative oxygens in the lipid headgroup and a cluster of positively charged lysine residues on the amphipathic S1 domain and the C-terminal end of the second trans-membrane helix. We take advantage of this strong interaction (estimated to be 10-13 kT per lipid) to actuate the channel (by applying forces on protein-bound lipids) and explore its sensitivity to the pulling magnitude and direction. We conclude by highlighting the simple motif that confers MscL with strong anchoring to the bilayer, and its presence in various integral membrane proteins including the human mechanosensitive channel K2P1 and bovine rhodopsin. C1 [Vanegas, Juan M.; Arroyo, Marino] Univ Politecn Cataluna, BarcelonaTech, LaCaN, Barcelona, Spain. RP Vanegas, JM (reprint author), Sandia Natl Labs, Ctr Biol & Mat Sci, POB 5800, Albuquerque, NM 87185 USA. EM jmvaneg@sandia.gov RI Arroyo, Marino/B-5696-2008 OI Arroyo, Marino/0000-0003-1647-940X FU European Research Council [240487]; "ICREA Academia" for excellence in research - Generalitat de Catalunya FX JMV and MA acknowledge the support of the European Research Council (http://erc.europa.eu/ grant agreement nr 240487 (FP7/2007-2013). MA acknowledges the support received through the prize "ICREA Academia" for excellence in research, funded by the Generalitat de Catalunya (http://www.gencat.cat/generalitat/eng/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 61 TC 14 Z9 14 U1 1 U2 14 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD DEC 1 PY 2014 VL 9 IS 12 AR e113947 DI 10.1371/journal.pone.0113947 PG 22 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AX7SK UT WOS:000347114900101 PM 25437007 ER PT J AU Brombosz, SM Lee, S Firestone, MA AF Brombosz, Scott M. Lee, Sungwon Firestone, Millicent A. TI Installation of a reactive site for covalent wiring onto an intrinsically conductive poly(ionic liquid) SO REACTIVE & FUNCTIONAL POLYMERS LA English DT Article DE Functional interfaces; Post-polymerization radical bromination; Poly(ionic liquid); Dual conductive polymers ID POST-POLYMERIZATION FUNCTIONALIZATION; IONIC LIQUID; ELECTROACTIVE POLYMERS; CONJUGATED POLYMERS; CARBON NANOTUBES; CLICK CHEMISTRY; SIDE-CHAIN; POLYTHIOPHENE; BIOCOMPATIBILITY; SUBSTITUENTS AB Post-polymerization radical bromination of a nanostructured poly(ionic liquid) that selectively introduces a reactive bromo-group onto the polyalkylthiophene backbone is described. Raman and FT-IR spectroscopy proves that the bromine is successfully introduced at the 3-methyl position of the thiophene and that the molecular structure of the polymer remains largely intact with only minimal chain scission detected. FT-IR and Vis-NIR spectroscopy indicates that incorporation of the bromine induces twisting (loss of co-planarity) of the polythiophene backbone. WAXS confirms retention of an ordered lamellar structure with minor lattice spacing contraction. Cyclic voltammetry confirms spectroscopic findings that the bromination reaction yields a stable p-doped polymer. The installed bromine is susceptible to nucleophilic displacement permitting the covalent attachment of other functional molecules, such as a dialkylphosphonate. Elemental analysis of such a transformation established that 100% functionalization can be achieved. These results collectively demonstrate that post-modification of a pi-conjugated polymer can be used to both tune electronic and photonic properties, as well as install a chemoselective attachment point for the covalent wiring of other molecules. (C) 2014 Elsevier B.V. All rights reserved. C1 [Brombosz, Scott M.; Lee, Sungwon] Argonne Natl Lab, Argonne, IL 60439 USA. [Firestone, Millicent A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Firestone, MA (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663,MS K771, Los Alamos, NM 87545 USA. EM firestone@lanl.gov FU US Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000]; Office of Basic Energy Sciences, Division of Materials Sciences, United States Department of Energy [DE-AC02-06CH11357] FX We thank Dr. Bryan Ringstrand for editorial assistance in the preparation of this manuscript and Dr. Byeongdu Lee for performing the WAXS experiments. This work was performed in part at the US Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). The efforts of SMB and SS were supported by the Office of Basic Energy Sciences, Division of Materials Sciences, United States Department of Energy under Contract No. DE-AC02-06CH11357 to the UChicago, LLC. NR 48 TC 1 Z9 1 U1 3 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1381-5148 EI 1873-166X J9 REACT FUNCT POLYM JI React. Funct. Polym. PD DEC PY 2014 VL 85 SI SI BP 69 EP 76 DI 10.1016/j.reactfunctpolym.2014.10.005 PG 8 WC Chemistry, Applied; Engineering, Chemical; Polymer Science SC Chemistry; Engineering; Polymer Science GA AY0GF UT WOS:000347274800008 ER PT J AU Wellington, TAA Mason, TE AF Wellington, Tracey-Ann A. Mason, Thomas E. TI The effects of population growth and advancements in technology on global mineral supply SO RESOURCES POLICY LA English DT Article DE Mineral supply; Mineral reserves; Food supply; Energy technologies; Population growth AB Over the decades concerns have been raised about the future availability of certain essential minerals due to increased rates of population growth and advancements in technology. This paper seeks to assess the current state of global mineral supply, focusing mainly on the food and energy technology industries. Through analysis of global mineral production and consumption over a 40-year period we are able to ascertain that, for the industries in question, the increasing global demand is being met by constantly growing mineral reserves. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Wellington, Tracey-Ann A.] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA. [Mason, Thomas E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Wellington, TAA (reprint author), Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA. EM twelling@vols.utk.edu; masont@ornl.gov OI Wellington, Tracey-Ann/0000-0001-5913-9945 NR 15 TC 3 Z9 3 U1 0 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4207 EI 1873-7641 J9 RESOUR POLICY JI Resour. Policy PD DEC PY 2014 VL 42 BP 73 EP 82 DI 10.1016/j.resourpol.2014.10.006 PG 10 WC Environmental Studies SC Environmental Sciences & Ecology GA AX5CB UT WOS:000346943600009 ER PT J AU Dixit, H Zhou, W Idrobo, JC Nanda, J Cooper, VR AF Dixit, Hemant Zhou, Wu Idrobo, Juan-Carlos Nanda, Jagjit Cooper, Valentino R. TI Facet-Dependent Disorder in Pristine High-Voltage Lithium-Manganese-Rich Cathode Material SO ACS NANO LA English DT Article DE Li-ion battery; antisite defects; Ni segregation; surface; migration barriers ID AUGMENTED-WAVE METHOD; ION BATTERIES; COMPOSITION LI1.2MN0.525NI0.175CO0.1O2; SURFACE; CONVERSION; NICKEL; OXIDES; PERFORMANCE; ELECTRODES; MECHANISM AB Defects and surface reconstructions are thought to be crucial for the long-term stability of high-voltage lithiummanganese-rich cathodes. Unfortunately, many of these defects arise only after electrochemical cycling which occurs under harsh conditions, making it difficult to fully comprehend the role they play in degrading material performance. Recently, it has been observed that defects are present even in the pristine material. This study, therefore, focuses on examining the nature of the disorder observed in pristine Li1.2Ni0.175Mn0.525Co0.1O2 (LNMCO) particles. Using atomic-resolution Z-contrast imaging and electron energy loss spectroscopy measurements, we show that there is indeed a significant amount of antisite defects present in this material, with transition metals substituting on Li metal sites. Furthermore, we find a strong segregation tendency of these types of defects toward open facets (surfaces perpendicular to the layered arrangement of atoms) rather than closed facets (surfaces parallel to the layered arrangement of atoms). First-principles calculations identify antisite defect pairs of Ni swapping with Li ions as the predominant defect in the material. Furthermore, energetically favorable swapping of Ni on the Mn sites was observed to lead to Mn depletion at open facets. Relatively, low Ni migration barriers also support the notion that Ni is the predominant cause of disorder. These insights suggest that certain facets of the LNMCO particles may be more useful for inhibiting surface reconstruction and improving the stability of these materials through careful consideration of the exposed surface. C1 [Dixit, Hemant; Zhou, Wu; Nanda, Jagjit; Cooper, Valentino R.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Idrobo, Juan-Carlos] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Nanda, Jagjit] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. RP Dixit, H (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM dixithm@ornl.gov; nandaj@orni.gov; coopervr@ornl.gov RI Cooper, Valentino /A-2070-2012; Idrobo, Juan/H-4896-2015; Zhou, Wu/D-8526-2011 OI Cooper, Valentino /0000-0001-6714-4410; Idrobo, Juan/0000-0001-7483-9034; Zhou, Wu/0000-0002-6803-1095 FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; Office of Science Early Career Research Program; Office of Vehicle Technologies of the U.S. Department of Energy; Wigner Fellowship through the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; Center for Nanophase Materials Sciences (CNMS) - Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (V.R.C. and H.D.), and the Office of Science Early Career Research Program (V.R.C.). J.N. acknowledges funding support from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy. W.Z. acknowledges the Wigner Fellowship through the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. DOE. Part of this research supported by the Center for Nanophase Materials Sciences (CNMS), which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (J.C.I.). This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 32 TC 19 Z9 19 U1 13 U2 84 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD DEC PY 2014 VL 8 IS 12 BP 12710 EP 12716 DI 10.1021/nn505740v PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AX8CL UT WOS:000347138000083 PM 25415876 ER PT J AU Li, X Sanchez-Diaz, LE Wu, B Hamilton, WA Falus, P Porcar, L Liu, Y Do, C Faraone, A Smith, GS Egami, T Chen, WR AF Li, Xin Sanchez-Diaz, Luis E. Wu, Bin Hamilton, William A. Falus, Peter Porcar, Lionel Liu, Yun Do, Changwoo Faraone, Antonio Smith, Gregory S. Egami, Takeshi Chen, Wei-Ren TI Dynamical Threshold of Diluteness of Soft Colloids SO ACS MACRO LETTERS LA English DT Article ID NEUTRON SPIN-ECHO; MULTIARM STAR POLYMERS; ORDERING PHENOMENA; DENDRIMERS; SPECTROSCOPY; GENERATION; RELAXATION; SCATTERING; SIMULATION; WATER AB Soft colloids are hybrids between linear polymers and hard colloids. Their solutions exhibit rich phase phenomenon due to their unique microstructure. In scaling theories, a geometrically defined overlap concentration c* is used to identify the concentration regimes of their solutions characterized with distinct conformational properties. Previous experiments showed that the average size of soft colloids remains invariant below c* and varies characteristically above it. This observation reveals the causality between the conformational evolution and the physical overlap between neighboring particles. Using neutron scattering, we demonstrate that the competition between the interparticle translational diffusion and intrapartide internal dynamics leads to significant conformational evolution below c*. Substantial structural dehydration and slowing-down of internal dynamics are both observed before physical overlap develops. Well below c*, a new threshold of diluteness c(D)* emerges as the crossover between the characteristic times associated with these two relaxation processes. Below this dynamically defined c(D)*, the two relaxation processes are essentially uncoupled, and therefore, the majority of the soft colloids retain their unperturbed conformational dimensions. Our observation demonstrates the importance of incorporating dynamical degrees of freedom in defining the threshold of diluteness for this important class of soft matter. C1 [Li, Xin; Sanchez-Diaz, Luis E.; Do, Changwoo; Smith, Gregory S.; Chen, Wei-Ren] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Hamilton, William A.] Oak Ridge Natl Lab, Instrument & Source Div, Oak Ridge, TN 37831 USA. [Wu, Bin; Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Wu, Bin; Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Falus, Peter; Porcar, Lionel] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Liu, Yun; Faraone, Antonio] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Liu, Yun] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA. RP Chen, WR (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. EM chenw@ornl.gov RI Liu, Yun/F-6516-2012; Smith, Gregory/D-1659-2016; Do, Changwoo/A-9670-2011 OI Liu, Yun/0000-0002-0944-3153; Smith, Gregory/0000-0001-5659-1805; Do, Changwoo/0000-0001-8358-8417 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. This Research at SNS of Oak Ridge National Laboratory was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. We greatly appreciate the D22 SANS and IN15 NSE beamtime from the Institut Laue-Langevin. NR 41 TC 2 Z9 2 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD DEC PY 2014 VL 3 IS 12 BP 1271 EP 1275 DI 10.1021/mz500500c PG 5 WC Polymer Science SC Polymer Science GA AX1AW UT WOS:000346681800012 ER PT J AU Yin, XT Battaglia, C Lin, YJ Chen, K Hettick, M Zheng, M Chen, CY Kiriya, D Javey, A AF Yin, Xingtian Battaglia, Corsin Lin, Yongjing Chen, Kevin Hettick, Mark Zheng, Maxwell Chen, Cheng-Ying Kiriya, Daisuke Javey, Ali TI 19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact SO ACS PHOTONICS LA English DT Article DE InP photovoltaics; titanium dioxide; heterojunctions; selective contact ID ANODE INTERFACIAL LAYER; HIGH-PERFORMANCE; TRANSPORT LAYER; THIN-FILMS; LOW-COST; OXIDE; DEPOSITION; PASSIVATION; ACCEPTORS; MOOX AB We demonstrate an InP heterojunction solar cell employing an ultrathin layer (similar to 10 nm) of amorphous TiO2 deposited at 120 degrees C by atomic layer deposition as the transparent electron-selective contact. The TiO2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. A hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 303 mA/cm(2) and a high power conversion efficiency of 19.2%. C1 [Yin, Xingtian; Battaglia, Corsin; Lin, Yongjing; Chen, Kevin; Hettick, Mark; Zheng, Maxwell; Chen, Cheng-Ying; Kiriya, Daisuke; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Yin, Xingtian; Battaglia, Corsin; Lin, Yongjing; Chen, Kevin; Hettick, Mark; Zheng, Maxwell; Chen, Cheng-Ying; Kiriya, Daisuke; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yin, Xingtian] Xi An Jiao Tong Univ, Elect Mat Res Lab, Xian 710049, Peoples R China. [Lin, Yongjing] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynthesis, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Chen, Cheng-Ying/E-1662-2011; Javey, Ali/B-4818-2013; Battaglia, Corsin/B-2917-2010 OI Chen, Cheng-Ying/0000-0002-0802-6681; FU Bay Area Photovoltaics Consortium (BAPVC); Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231]; China Scholarship Council (CSC); Zeno Karl Schindler Foundation FX This work was funded by the Bay Area Photovoltaics Consortium (BAPVC). TiO2 deposition and characterization was funded by the Director, Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. X.Y. acknowledges a scholarship from the China Scholarship Council (CSC). C.B. acknowledges support from the Zeno Karl Schindler Foundation. NR 37 TC 21 Z9 22 U1 7 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD DEC PY 2014 VL 1 IS 12 BP 1245 EP 1250 DI 10.1021/ph500153c PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA AX1AX UT WOS:000346681900001 ER PT J AU Southard, LE Liu, XB Spitler, JD AF Southard, L. E. Liu, Xiaobing Spitler, J. D. TI Part Two Performance of HVAC Systems at ASHRAE HQ SO ASHRAE JOURNAL LA English DT Article AB When the ASHRAE headquarters building in Atlanta was renovated in 2008, a variable refrigerant flow (VRF) system was installed to provide conditioning for spaces on the first floor, while a ground source heat pump (GSHP) system was installed, primarily for spaces on the second floor. Details about these two systems are available in previous articles.(1,2) Data relating to the operation of the different HVAC systems have been collected and analyzed for the two-year time span from July 1, 2011 through June 30, 2013 in an attempt to evaluate the performance of the systems. C1 [Southard, L. E.; Spitler, J. D.] Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74078 USA. [Liu, Xiaobing] Oak Ridge Natl Lab, Bldg Technol Res & Integrat Ctr, Oak Ridge, TN USA. RP Southard, LE (reprint author), Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74078 USA. FU GEO; Geothermal Exchange Organization; Southern Company; US-China Clean Energy Research Center for Building Energy Efficiency (CERC-BEE) FX The project described in this article was funded by GEO, the Geothermal Exchange Organization, with additional support from the Southern Company. Dr. Liu's time was also supported by the US-China Clean Energy Research Center for Building Energy Efficiency (CERC-BEE). The Southern Company also provided a power engineer to assist with on-site measurements. NR 3 TC 0 Z9 0 U1 1 U2 3 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 EI 1943-6637 J9 ASHRAE J JI ASHRAE J. PD DEC PY 2014 VL 56 IS 12 BP 12 EP 23 PG 12 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA AX0DU UT WOS:000346624400010 ER PT J AU Jung, ES Kettimuthu, R AF Jung, Eun-Sung Kettimuthu, Rajkumar TI Challenges and Opportunities for Data-Intensive Computing in the Cloud SO COMPUTER LA English DT Editorial Material AB Now running mostly on high-performance computers, data-intensive applications pose several important challenges as they move toward cloud deployment. C1 [Jung, Eun-Sung; Kettimuthu, Rajkumar] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. RP Jung, ES (reprint author), Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. EM esjung@mcs.anl.gov; kettimut@mcs.anl.gov NR 8 TC 0 Z9 0 U1 0 U2 2 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 EI 1558-0814 J9 COMPUTER JI Computer PD DEC PY 2014 VL 47 IS 12 BP 82 EP 85 PG 4 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA AX2IJ UT WOS:000346766500017 ER PT J AU Zacher, AH Elliott, DC Olarte, MV Santosa, DM Preto, F Iisa, K AF Zacher, Alan H. Elliott, Douglas C. Olarte, Mariefel V. Santosa, Daniel M. Preto, Fernando Iisa, Kristiina TI Pyrolysis of Woody Residue Feedstocks: Upgrading of Bio-oils from Mountain-Pine-Beetle-Killed Trees and Hog Fuel SO ENERGY & FUELS LA English DT Article ID FORESTRY RESIDUE; BIOMASS; LIQUIDS AB Liquid transportation fuel blendstocks were produced by pyrolysis and catalytic upgrading of woody residue biomass. Mountain-pine-beetle-killed (MPBK) wood and hog fuel from a saw mill were pyrolyzed in a 1 kg/h fluidized bed reactor and, subsequently, upgraded to hydrocarbons in a continuous fixed bed hydrotreater. Upgrading was performed by catalytic hydrotreatment in a two-stage bed at 170 and 405 degrees C with a per bed liquid hourly space velocity between 0.17 and 0.19. The overall yields from biomass to upgraded fuel were similar for both feeds (24-25%), despite the differences in bio-oil (intermediate) mass yield. The pyrolysis bio-oil mass yield was 61% from MPBK wood, and subsequent upgrading of the bio-oil gave an average mass yield of 41% to liquid fuel blend stocks. Hydrogen was consumed at an average of 0.042 g/g of bio-oil fed, with a final oxygen content in the product fuel ranging from 0.3 to 1.6% over the course of the test. Comparatively, for hog fuel, the pyrolysis bio-oil mass yield was lower at 54% because of inorganics in the biomass, but subsequent upgrading of that bio-oil had an average mass yield of 45% to liquid fuel, resulting in a similar final mass yield to fuel compared to the cleaner MPBK wood. Hydrogen consumption for the hog fuel upgrading averaged 0.041 g/g of bio-oil fed, and the final oxygen content of the product fuel ranged from 0.09 to 2.4% over the run. While it was confirmed that inorganic-laden biomass yields less bio-oil, this work demonstrated that the resultant bio-oil can be upgraded to hydrocarbons at a higher yield than bio-oil from clean wood. Thus, the final hydrocarbon yield from clean or residue biomass pyrolysis/upgrading was similar. C1 [Zacher, Alan H.; Elliott, Douglas C.; Olarte, Mariefel V.; Santosa, Daniel M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Preto, Fernando] Nat Resources Canada, CanmetENERGY, Ottawa, ON K1A 1M1, Canada. [Iisa, Kristiina] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Zacher, AH (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM alan.zacher@pnnl.gov RI Olarte, Mariefel/D-3217-2013 OI Olarte, Mariefel/0000-0003-2989-1110 FU U.S. DOE at the Pacific Northwest National Laboratory [DE-AC05-76RL01830]; National Renewable Energy Laboratory [DE-AC36-08-GO28308]; U.S. DOE Bioenergy Technologies Office FX This research is part of the U.S.A.-Canada Clean Energy Dialogue between the U.S. Department of Energy (DOE) and Environment Canada. The work was supported by the U.S. DOE under Contract DE-AC05-76RL01830 at the Pacific Northwest National Laboratory and Contract DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. Funding was provided by the U.S. DOE Bioenergy Technologies Office. NR 31 TC 7 Z9 7 U1 0 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD DEC PY 2014 VL 28 IS 12 BP 7510 EP 7516 DI 10.1021/ef5017945 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AX2FU UT WOS:000346759800024 ER PT J AU Cheng, AS Dumitrescu, CE Mueller, CJ AF Cheng, A. S. (Ed) Dumitrescu, Cosmin E. Mueller, Charles J. TI Investigation of Methyl Decanoate Combustion in an Optical Direct-Injection Diesel Engine SO ENERGY & FUELS LA English DT Article ID BIODIESEL SURROGATE; IGNITION; FUELS; OXIDATION; MECHANISM AB An optically accessible heavy-duty diesel engine was used to investigate the impact of methyl decanoate (MD) on combustion and emissions. Specific goals of the study were to produce experimental data for validating engine combustion models using MD (a biodiesel surrogate), as well as to determine if MD could enable soot-free leaner-lifted flame combustion (LLFC), a mode of mixing-controlled combustion associated with equivalence ratios below approximately 2. An ultralow sulfur diesel certification fuel (CF) was used as the baseline fuel, and experiments were conducted at two fuel-injection pressures with three levels of charge-gas dilution; start of combustion and duration of fuel injection were held constant. In addition to conventional pressure-based and engine-out emissions measurements, exhaust laser-induced incandescence, in-cylinder natural luminosity, and in-cylinder chemiluminescence diagnostics were used to provide detailed insight into combustion processes. Results indicate that MD effectively eliminated soot emissions but that soot formation still occurred in-cylinder, with equivalence ratios at the flame lift-off length in excess of approximately 3. Nevertheless, the oxygen content of MD sufficiently limited soot formation and promoted soot oxidation such that very little soot remained at exhaust-valve open. Nitrogen oxides (NOx) emissions for MD relative to CF showed different trends depending on fuel-injection pressure, with distinct fuel effects influencing NOx formation depending on engine operating condition. Hydrocarbon (HC) and CO emissions were higher for MD compared to CF and corresponded to lower fuel-conversion and combustion efficiencies. These differences were attributed to the lower-load conditions of MD, resulting from its lower energy density and the need to limit fuel-injection duration to obtain valid lift-off length measurements. C1 [Cheng, A. S. (Ed)] San Francisco State Univ, Sch Engn, San Francisco, CA 94132 USA. [Dumitrescu, Cosmin E.; Mueller, Charles J.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. RP Cheng, AS (reprint author), San Francisco State Univ, Sch Engn, 1600 Holloway Ave,SCI 123, San Francisco, CA 94132 USA. EM ascheng@sfsu.edu FU U.S. Department of Energy (DOE) [DE-AC04-94AL85000] FX This research was supported by the U.S. Department of Energy (DOE) and in-part by the DOE Visiting Faculty Program. The authors gratefully acknowledge DOE Office of Vehicle Technologies Program Manager Kevin Stork for long-term support of the optical-engine laboratory at Sandia. The research was conducted at the Combustion Research Facility, Sandia National Laboratories, Livermore, California. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 43 TC 4 Z9 4 U1 2 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD DEC PY 2014 VL 28 IS 12 BP 7689 EP 7700 DI 10.1021/ef501934n PG 12 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AX2FU UT WOS:000346759800044 ER PT J AU Figueiredo, E Radu, L Worden, K Farrar, CR AF Figueiredo, Eloi Radu, Lucian Worden, Keith Farrar, Charles R. TI A Bayesian approach based on a Markov-chain Monte Carlo method for damage detection under unknown sources of variability SO ENGINEERING STRUCTURES LA English DT Article DE Structural Health Monitoring (SHM); Damage detection; Bayesian probability; Markov-Chain Monte Carlo (MCMC); Operational and environmental conditions AB In the Structural Health Monitoring of bridges, the effects of the operational and environmental variability on the structural responses have posed several challenges for early damage detection. In order to overcome those challenges, in the last decade recourse has been made to the statistical pattern recognition paradigm based on vibration data from long-term monitoring. This paradigm has been characterized by the use of purely data-based algorithms that do not depend on the physical descriptions of the structures. However, one drawback of this procedure is how to set up the baseline condition for new and existing bridges. Therefore, this paper proposes an algorithm with a Bayesian approach based on a Markovchain Monte Carlo method to cluster structural responses of the bridges into a reduced number of global state conditions, by taking into account eventual multimodality and heterogeneity of the data distribution. This approach stands as an improvement over the classical maximum likelihood estimation based on the expectation-maximization algorithm. Along with the Mahalanobis squared-distance, this approach permits one to form an algorithm able to detect structural damage based on daily response data even under abnormal events caused by temperature variability. The applicability of this approach is demonstrated on standard data sets from a real-world bridge in Switzerland, namely the Z-24 Bridge. The analysis suggests that this algorithm might be useful for bridge applications because it permits one to overcome some of the limitations posed by the pattern recognition paradigm, especially when dealing with limited amounts of training data and/or data with nonlinear temperature dependency. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Figueiredo, Eloi] Univ Lusofona Humanidades & Tecnol, Fac Engn, P-1749024 Lisbon, Portugal. [Radu, Lucian] Catholic Univ Portugal, Fac Engn, P-2635631 Rio De Mouro, Portugal. [Worden, Keith] Univ Sheffield, Sheffield S1 3JD, S Yorkshire, England. [Farrar, Charles R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. RP Figueiredo, E (reprint author), Univ Lusofona Humanidades & Tecnol, Fac Engn, Campo Grande 376, P-1749024 Lisbon, Portugal. EM eloifigueiredo@gmail.com OI Figueiredo, Eloi/0000-0002-9168-6903; Farrar, Charles/0000-0001-6533-6996 NR 17 TC 11 Z9 11 U1 2 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-0296 EI 1873-7323 J9 ENG STRUCT JI Eng. Struct. PD DEC 1 PY 2014 VL 80 BP 1 EP 10 DI 10.1016/j.engstruct.2014.08.042 PG 10 WC Engineering, Civil SC Engineering GA AX0DB UT WOS:000346622500001 ER PT J AU Titus, V Madison, D Green, T AF Titus, Valorie Madison, Dale Green, Timothy TI The Importance of Maintaining Upland Forest Habitat Surrounding Salamander Breeding Ponds: Case Study of the Eastern Tiger Salamander in New York, USA SO FORESTS LA English DT Article DE Ambystoma tigrinum; tiger salamander; amphibians; radiotelemetry; buffer zone; conservation management; forested habitat ID TERRESTRIAL BUFFER ZONES; AMBYSTOMA-TIGRINUM; TRICAINE METHANESULFONATE; POSTBREEDING MOVEMENTS; FRAGMENTED LANDSCAPE; SPOTTED SALAMANDERS; MIGRATION BEHAVIOR; RANA-SYLVATICA; AMPHIBIANS; CONSERVATION AB Most amphibians use both wetland and upland habitats, but the extent of their movement in forested habitats is poorly known. We used radiotelemetry to observe the movements of adult and juvenile eastern tiger salamanders over a 4-year period. Females tended to move farther from the breeding ponds into upland forested habitat than males, while the distance a juvenile moved appeared to be related to body size, with the largest individuals moving as far as the adult females. Individuals chose refugia in native pitch pine-oak forested habitat and avoided open fields, roads, and developed areas. We also observed a difference in potential predation pressures in relation to the distance an individual moved from the edge of the pond. Our results support delineating forested wetland buffer zones on a case-by-case basis to reduce the impacts of concentrated predation, to increase and protect the availability of pitch pine-oak forests near the breeding pond, and to focus primarily on the habitat needs of the adult females and larger juveniles, which in turn will encompass habitat needs of adult males and smaller juveniles. C1 [Titus, Valorie] Green Mt Coll, Dept Nat Resources, Poultney, VT 05764 USA. [Madison, Dale] SUNY Binghamton, Dept Biol Sci, Binghamton, NY 13902 USA. [Green, Timothy] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Titus, V (reprint author), Green Mt Coll, Dept Nat Resources, One Brennan Circle, Poultney, VT 05764 USA. EM valorie.titus@greenmtn.edu; dmadison@binghamton.edu; tgreen@bnl.gov FU State Wildlife Grant from the U.S. Fish and Wildlife Service (USFWS) [T-2-2] FX We would like to thank Al Breisch, John McDonald, Shannon Pederson Browne, and Jim Harding for comments on early versions of this manuscript. We would also like to thank the 2 anonymous reviewers for their helpful comments on this manuscript. This research was funded in part by State Wildlife Grant T-2-2 from the U.S. Fish and Wildlife Service (USFWS) to the New York State Department of Environmental Conservation (NYSDEC). This research was approved by Brookhaven National Laboratory IACUC #347 and New York State Department of Environmental Conservation Fish and Wildlife License #52. NR 72 TC 1 Z9 1 U1 5 U2 38 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1999-4907 J9 FORESTS JI Forests PD DEC PY 2014 VL 5 IS 12 BP 3070 EP 3086 DI 10.3390/f5123070 PG 17 WC Forestry SC Forestry GA AX2TT UT WOS:000346798100008 ER PT J AU Ruiz-Lopez, MJ Monello, RJ Schuttler, SG Lance, SL Gompper, ME Eggert, LS AF Ruiz-Lopez, Maria Jose Monello, Ryan J. Schuttler, Stephanie G. Lance, Stacey L. Gompper, Matthew E. Eggert, Lori S. TI Major Histocompatibility Complex, demographic, and environmental predictors of antibody presence in a free-ranging mammal SO INFECTION GENETICS AND EVOLUTION LA English DT Article DE Major Histocompatibility Complex; Raccoon; Procyon lotor; Canine distemper virus; Parvovirus; 454 pyrosequencing ID CANINE-DISTEMPER VIRUS; RACCOONS PROCYON-LOTOR; II ANTIGEN-EXPRESSION; MAXIMUM-LIKELIHOOD; BANK VOLE; EVOLUTIONARY GENETICS; POPULATION-GENETICS; NATURAL-SELECTION; MYODES-GLAREOLUS; UP-REGULATION AB Major Histocompatibility Complex (MHC) variability plays a key role in pathogen resistance, but its relative importance compared to environmental and demographic factors that also influence resistance is unknown. We analyzed the MHC II DRB exon 2 for 165 raccoons (Procyon lotor) in Missouri (USA). For each animal we also determined the presence of immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies to two highly virulent pathogens, canine distemper virus (CDV) and parvovirus. We investigated the role of MHC polymorphism and other demographic and environmental factors previously associated with predicting seroconversion. In addition, using an experimental approach, we studied the relative importance of resource availability and contact rates. We found important associations between IgG antibody presence and several MHC alleles and supertypes but not between IgM antibody presence and MHC. No effect of individual MHC diversity was found. For CDV, supertype S8, one allele within S8 (Prlo-DRB*222), and a second allele (Prlo-DRB*204) were positively associated with being IgG+, while supertype S4 and one allele within the supertype (Prlo-DRB*210) were negatively associated with being IgG+. Age, year, and increased food availability were also positively associated with being IgG+, but allele Prlo-DRB*222 was a stronger predictor. For parvovirus, only one MHC allele was negatively associated with being IgG+ and age and site were stronger predictors of seroconversion. Our results show that negative-frequency dependent selection is likely acting on the raccoon MHC and that while the role of MHC in relation to other factors depends on the pathogen of interest, it may be one of the most important factors predicting successful immune response. (C) 2014 Elsevier B.V. All rights reserved. C1 [Ruiz-Lopez, Maria Jose; Monello, Ryan J.; Schuttler, Stephanie G.; Gompper, Matthew E.] Univ Missouri, Dept Fisheries & Wildlife Sci, Columbia, MO 65211 USA. [Schuttler, Stephanie G.; Eggert, Lori S.] Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. [Lance, Stacey L.] Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Ruiz-Lopez, MJ (reprint author), Univ Oregon, Inst Ecol & Evolut, Eugene, OR 97401 USA. EM ruizlopezmj@gmail.com RI Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU NSF [DEB-0347609, DEB-0841654]; COE [DE-FC09-07SR22506] FX Financial support was provided by NSF awards DEB-0347609 and DEB-0841654. Manuscript preparation was also partially supported by the COE under Award number DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 76 TC 1 Z9 1 U1 0 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1567-1348 EI 1567-7257 J9 INFECT GENET EVOL JI Infect. Genet. Evol. PD DEC PY 2014 VL 28 BP 317 EP 327 DI 10.1016/j.meegid.2014.10.015 PG 11 WC Infectious Diseases SC Infectious Diseases GA AX1YI UT WOS:000346739500048 PM 25446941 ER PT J AU Kershenbaum, AD Langston, MA Levine, RS Saxton, AM Oyana, TJ Kilbourne, BJ Rogers, GL Gittner, LS Baktash, SH Matthews-Juarez, P Juarez, PD AF Kershenbaum, Anne D. Langston, Michael A. Levine, Robert S. Saxton, Arnold M. Oyana, Tonny J. Kilbourne, Barbara J. Rogers, Gary L. Gittner, Lisaann S. Baktash, Suzanne H. Matthews-Juarez, Patricia Juarez, Paul D. TI Exploration of Preterm Birth Rates Using the Public Health Exposome Database and Computational Analysis Methods SO INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH LA English DT Article DE exposome; county rates; data reduction; health disparities; geographical variation; premature birth rates; preterm birth ID UNITED-STATES; INCREASED RISK; MORTALITY; WOMEN; BLACK; DISPARITIES; ASSOCIATION; PREGNANCY; WEIGHT AB Recent advances in informatics technology has made it possible to integrate, manipulate, and analyze variables from a wide range of scientific disciplines allowing for the examination of complex social problems such as health disparities. This study used 589 county-level variables to identify and compare geographical variation of high and low preterm birth rates. Data were collected from a number of publically available sources, bringing together natality outcomes with attributes of the natural, built, social, and policy environments. Singleton early premature county birth rate, in counties with population size over 100,000 persons provided the dependent variable. Graph theoretical techniques were used to identify a wide range of predictor variables from various domains, including black proportion, obesity and diabetes, sexually transmitted infection rates, mother's age, income, marriage rates, pollution and temperature among others. Dense subgraphs (paracliques) representing groups of highly correlated variables were resolved into latent factors, which were then used to build a regression model explaining prematurity (R-squared = 76.7%). Two lists of counties with large positive and large negative residuals, indicating unusual prematurity rates given their circumstances, may serve as a starting point for ways to intervene and reduce health disparities for preterm births. C1 [Kershenbaum, Anne D.] Univ Tennessee, Dept Publ Hlth, Knoxville, TN 37996 USA. [Langston, Michael A.; Baktash, Suzanne H.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Levine, Robert S.; Kilbourne, Barbara J.] Meharry Med Coll, Dept Family & Community Med, Nashville, TN 37208 USA. [Saxton, Arnold M.] Univ Tennessee, Inst Agr, Dept Anim Sci, Knoxville, TN 37996 USA. [Oyana, Tonny J.; Matthews-Juarez, Patricia; Juarez, Paul D.] Univ Tennessee, Res Ctr Hlth Dispar Equ & Exposome, Hlth Sci Ctr, Memphis, TN 38163 USA. [Rogers, Gary L.] Oak Ridge Natl Lab, Natl Inst Computat Sci, Oak Ridge, TN 37831 USA. [Gittner, Lisaann S.] Texas Tech Univ, Dept Polit Sci, Lubbock, TX 79409 USA. RP Kershenbaum, AD (reprint author), Univ Tennessee, Dept Publ Hlth, Knoxville, TN 37996 USA. EM annekersh@gmail.com; langston@eecs.utk.edu; rlevine@mmc.edu; asaxton@utk.edu; toyana@uthsc.edu; bkilbourne@mmc.edu; grogers3@utk.edu; lisa.gittner@ttu.edu; sbaktash@utk.edu; pmatthe3@uthsc.edu; pjuarez@uthsc.edu OI Oyana, Tonny/0000-0003-0108-2370 FU National Institute on Minority Health and Health Disparities [3P20MD000516-08S2]; Environmental Protection Agency [3P20MD000516-08S2]; National Institute on Alcohol Abuse and Alcoholism [R01AA018776]; National Institute on Drug Abuse [R01AA018776]; University of Tennessee Health Science Center/Research Center on Health Disparities, Equity and the Exposome; National Institute for Mathematical and Biological Synthesis - National Science Foundation; U.S. Department of Homeland Security; U.S. Department of Agriculture through NSF [EF-0832858, DBI-1300426]; University of Tennessee, Knoxville FX Funding was made possible in part by grant 3P20MD000516-08S2 jointly from the National Institute on Minority Health and Health Disparities and the Environmental Protection Agency, by grant R01AA018776 jointly from the National Institute on Alcohol Abuse and Alcoholism and the National Institute on Drug Abuse, and by the University of Tennessee Health Science Center/Research Center on Health Disparities, Equity and the Exposome, the National Institute for Mathematical and Biological Synthesis, an Institute sponsored by the National Science Foundation, the U.S. Department of Homeland Security, and the U.S. Department of Agriculture through NSF Awards #EF-0832858 and #DBI-1300426, with additional support from The University of Tennessee, Knoxville. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, the Environmental Protection Agency, the University of Tennessee or the National Science Foundation. NR 35 TC 4 Z9 4 U1 1 U2 9 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1660-4601 J9 INT J ENV RES PUB HE JI Int. J. Environ. Res. Public Health PD DEC PY 2014 VL 11 IS 12 BP 12346 EP 12366 DI 10.3390/ijerph111212346 PG 21 WC Environmental Sciences; Public, Environmental & Occupational Health SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA AX2TJ UT WOS:000346797100016 PM 25464130 ER PT J AU Zhao, XM Shen, YF Qiu, LN Liu, YD Sun, X Zuo, L AF Zhao, Xianming Shen, Yongfeng Qiu, Lina Liu, Yandong Sun, Xin Zuo, Liang TI Effects of Intercritical Annealing Temperature on Mechanical Properties of Fe-7.9Mn-0.14Si-0.05Al-0.07C Steel SO MATERIALS LA English DT Article DE medium Mn steel; TRIP effect; austenite; strength; ductility ID TRANSFORMATION-INDUCED PLASTICITY; ASSISTED MULTIPHASE STEELS; RETAINED AUSTENITE; TRIP STEELS; FRACTURE-TOUGHNESS; TENSILE PROPERTIES; STRENGTH; CARBON; BEHAVIOR; MICROSTRUCTURE AB A medium Mn steel has been designed to achieve an excellent combination of strength and ductility based on the TRIP (Transformation Induced Plasticity) concept for automotive applications. Following six passes of hot rolling at 850 degrees C, the Fe-7.9Mn-0.14Si-0.05Al-0.07C (wt.%) steel was warm-rolled at 630 degrees C for seven passes and subsequently air cooled to room temperature. The sample was subsequently intercritically annealed at various temperatures for 30 min to promote the reverse transformation of martensite into austenite. The obtained results show that the highest volume fraction of austenite is 39% for the sample annealed at 600 degrees C. This specimen exhibits a yield stress of 910 MPa and a high ultimate tensile stress of 1600 MPa, with an elongation-to-failure of 0.29 at a strain rate of 1 x 10(-3)/s. The enhanced work-hardening ability of the investigated steel is closely related to martensitic transformation and the interaction of dislocations. Especially, the alternate arrangement of acicular ferrite (soft phase) and ultrafine austenite lamellae (50-200 nm, strong and ductile phase) is the key factor contributing to the excellent combination of strength and ductility. On the other hand, the as-warm-rolled sample also exhibits the excellent combination of strength and ductility, with elongation-to-failure much higher than those annealed at temperatures above 630 degrees C. C1 [Zhao, Xianming] Northeastern Univ, State Key Lab Rolling & Automat, Shenyang 110004, Peoples R China. [Shen, Yongfeng; Qiu, Lina; Liu, Yandong; Zuo, Liang] Northeastern Univ, Key Lab Anisotropy & Texture Mat MOE, Shenyang 110004, Peoples R China. [Sun, Xin] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Shen, YF (reprint author), Northeastern Univ, Key Lab Anisotropy & Texture Mat MOE, Shenyang 110004, Peoples R China. EM zhaoxm@ral.neu.edu.cn; shenyf@smm.neu.edu.cn; nali@smm.neu.edu.cn; ydliu@mail.neu.edu.cn; Xin.Sun@pnnl.gov; lzuo@mail.neu.edu.cn FU NSAF [U1430132]; National Natural Science Foundation of China [51231002]; National Science and Technology Support Project [2011BAE13B03]; Fundamental Research Funds for the Central Universities [N130402005]; Open Program of the State Key Lab of Rolling Automation [2012001]; Battelle Memorial Institute for the U. S. Department of Energy [DE-AC05-76RL01830] FX The present research is supported by NSAF (Grant No. U1430132), the National Natural Science Foundation of China (Grant No. 51231002), the National Science and Technology Support Project (2011BAE13B03), the Fundamental Research Funds for the Central Universities (No. N130402005) and the Open Program of the State Key Lab of Rolling & Automation (No. 2012001). Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U. S. Department of Energy under Contract No. DE-AC05-76RL01830. This work is partially funded by the Department of Energy Office of FreedomCAR and Vehicle Technologies under the Automotive Lightweighting Materials Program managed by William Joost. NR 38 TC 2 Z9 2 U1 3 U2 20 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1944 J9 MATERIALS JI Materials PD DEC PY 2014 VL 7 IS 12 BP 7891 EP 7906 DI 10.3390/ma7127891 PG 16 WC Materials Science, Multidisciplinary SC Materials Science GA AX2TG UT WOS:000346796800019 ER PT J AU Amer, BR Clubb, RT AF Amer, Brendan R. Clubb, Robert T. TI A sweet new role for LCP enzymes in protein glycosylation SO MOLECULAR MICROBIOLOGY LA English DT Article ID GRAM-POSITIVE BACTERIA; WALL TEICHOIC-ACIDS; BIOFILM DEVELOPMENT; POLYSACCHARIDE PRODUCTION; CAPSULAR POLYSACCHARIDE; STAPHYLOCOCCUS-AUREUS; FUNCTIONAL-ANALYSIS; FAMILY; STREPTOCOCCUS; COAGGREGATION AB The peptidoglycan that surrounds Gram-positive bacteria is affixed with a range of macromolecules that enable the microbe to effectively interact with its environment. Distinct enzymes decorate the cell wall with proteins and glycopolymers. Sortase enzymes covalently attach proteins to the peptidoglycan, while LytR-CpsA-Psr (LCP) proteins are thought to attach teichoic acid polymers and capsular polysaccharides. Ton-That and colleagues have discovered a new glycosylation pathway in the oral bacterium Actinomyces oris in which sortase and LCP enzymes operate on the same protein substrate. The A. oris LCP protein has a novel function, acting on the cell surface to transfer glycan macromolecules to a protein, which is then attached to the cell wall by a sortase. The reactions are tightly coupled, as elimination of the sortase causes the lethal accumulation of glycosylated protein in the membrane. Since sortase enzymes are attractive drug targets, this novel finding may provide a convenient cell-based tool to discover inhibitors of this important enzyme family. C1 [Amer, Brendan R.; Clubb, Robert T.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Clubb, Robert T.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Clubb, Robert T.] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA. RP Clubb, RT (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, 611 Charles Young Dr East, Los Angeles, CA 90095 USA. EM rclubb@mbi.ucla.edu FU National Institutes of Health [AI52217]; Department of Energy [DE-FC-03-87ER60615]; Whitcome Predoctoral Training Grant, UCLA Molecular Biology Institute FX This work was supported by National Institutes of Health Grant AI52217 and Department of Energy Grant DE-FC-03-87ER60615 (R.T.C.) and a Whitcome Predoctoral Training Grant, UCLA Molecular Biology Institute (B.R.A.). The authors have no conflict of interest. NR 23 TC 2 Z9 2 U1 1 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0950-382X EI 1365-2958 J9 MOL MICROBIOL JI Mol. Microbiol. PD DEC PY 2014 VL 94 IS 6 BP 1197 EP 1200 DI 10.1111/mmi.12825 PG 4 WC Biochemistry & Molecular Biology; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA AX0QE UT WOS:000346655900001 PM 25302626 ER PT J AU Tang, SW Kravchenko, I Yi, JY Cao, GX Howe, J Mandrus, D Gai, Z AF Tang, Siwei Kravchenko, Ivan Yi, Jieyu Cao, Guixin Howe, Jane Mandrus, David Gai, Zheng TI Growth of skyrmionic MnSi nanowires on Si: Critical importance of the SiO2 layer SO NANO RESEARCH LA English DT Article DE skyrmion; spintronics; oxide-assisted growth; nanowires; magnetic materials ID REAL-SPACE OBSERVATION; WEAK FERROMAGNETISM; THERMAL EVAPORATION; HELIMAGNET MNSI; CHIRAL MAGNET; SILICON; TEMPERATURE; INTERFACE; CRYSTAL; NANOSTRUCTURES AB MnSi in the B20 structure is a prototypical helimagnet that forms a skyrmion lattice, a vortex-like spin texture under applied magnetic field. We have systematically explored the synthesis of single crystal MnSi nanowires via controlled oxide-assisted chemical vapor deposition and observed a characteristic signature of skyrmion magnetic ordering in the MnSi nanowires. The thickness of the SiO2 layer on the Si substrate plays the key role in obtaining a high yield of B20 MnSi skyrmion nanowires. A growth mechanism was proposed that is consistent with the existence of an optimum SiO2 thickness. A growth phase diagram was constructed based on the extensive studies of various growth conditions for various MnSi nanostructures. The persistence of both the helicoidal and skyrmion magnetic ordering in the one-dimensional wires was directly revealed by ac and dc magnetic measurements. C1 [Tang, Siwei; Yi, Jieyu; Mandrus, David] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Tang, Siwei; Kravchenko, Ivan; Yi, Jieyu; Cao, Guixin; Gai, Zheng] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Howe, Jane] Hitachi High Technol Inc, Rexdale, ON M9W 6A4, Canada. RP Mandrus, D (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM dmandrus@utk.edu; gaiz@ornl.gov RI Gai, Zheng/B-5327-2012; Cao, Guixin/G-4452-2015; Kravchenko, Ivan/K-3022-2015 OI Gai, Zheng/0000-0002-6099-4559; Cao, Guixin/0000-0002-9252-1158; Kravchenko, Ivan/0000-0003-4999-5822 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX We thank N. J. Ghimire for stimulating discussions and a critical reading of the manuscript. This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 49 TC 2 Z9 2 U1 4 U2 40 PU TSINGHUA UNIV PRESS PI BEIJING PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 10084, PEOPLES R CHINA SN 1998-0124 EI 1998-0000 J9 NANO RES JI Nano Res. PD DEC PY 2014 VL 7 IS 12 BP 1788 EP 1796 DI 10.1007/s12274-014-0538-4 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AX0KM UT WOS:000346641400008 ER PT J AU Wang, JA Wang, H Bevard, B Howard, R AF Wang, Jy-An Wang, Hong Bevard, Bruce Howard, Robert TI New rig for studying SNF vibration integrity SO NUCLEAR ENGINEERING INTERNATIONAL LA English DT Editorial Material C1 [Wang, Jy-An; Wang, Hong; Bevard, Bruce; Howard, Robert] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Wang, JA (reprint author), Oak Ridge Natl Lab, Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM wangja@ornl.gov RI Wang, Hong/O-1987-2016; OI Wang, Hong/0000-0002-0173-0545; Bevard, Bruce/0000-0002-0272-186X; Wang, Jy-An/0000-0003-2402-3832 NR 0 TC 1 Z9 1 U1 0 U2 2 PU WILMINGTON PUBL PI SIDCUP PA WILMINGTON HOUSE, MAIDSTONE RD, FOOTS CRAY, SIDCUP DA14 SHZ, KENT, ENGLAND SN 0029-5507 J9 NUCL ENG INT JI Nucl. Eng. Int. PD DEC PY 2014 VL 59 IS 725 BP 36 EP 37 PG 2 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AX0FH UT WOS:000346628100012 ER PT J AU Famiano, M Boyd, R Kajino, T Onaka, T Koehler, K Hulbert, S AF Famiano, Michael Boyd, Richard Kajino, Toshitaka Onaka, Takashi Koehler, Katrina Hulbert, Sarah TI Determining Amino Acid Chirality in the Supernova Neutrino Processing Model SO SYMMETRY-BASEL LA English DT Article DE amino acids; chirality; neutrinos; weak interaction ID THEORETICAL SPECTRAL PATTERNS; STELLAR MAGNETIC-FIELDS; BIOMOLECULAR CHIRALITY; ASYMMETRIC AUTOCATALYSIS; ENANTIOMERIC EXCESS; NMR-SPECTROSCOPY; OPTICAL-ACTIVITY; POLARIZED-LIGHT; AMPLIFICATION; ORIGIN AB A model is described that can be used to estimate the bulk polarization of large rotating meteoroids in the magnetic field of a neutron star. The results of this model are applicable to the Supernova Neutrino Amino Acid Processing model, which describes one possible way in which the amino acids, known in nearly all cases to exhibit supramolecular chirality, could have become enantiomeric. C1 [Famiano, Michael] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Boyd, Richard; Hulbert, Sarah] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Boyd, Richard] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Kajino, Toshitaka] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Onaka, Takashi] Univ Tokyo, Grad Sch Sci, Dept Astron, Bunkyo Ku, Tokyo 1130033, Japan. [Koehler, Katrina] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Famiano, M (reprint author), Western Michigan Univ, Dept Phys, 1900 W Michigan Ave, Kalamazoo, MI 49008 USA. EM michael.famiano@gmail.com; richard11boyde@comcast.net; kajino@nao.ac.jp; onaka@astron.s.u-tokyo.ac.jp; katrina.koehler@gmail.com; hulbert.15@osu.edu OI Koehler, Katrina/0000-0003-3258-8526 FU NSF [PHY-1204486, PHY-0855013]; NAOJ Visiting Professor program FX Michael Famiano's work is supported by NSF grant #PHY-1204486 and #PHY-0855013. Both Michael Famiano's and Richard Boyd's work was supported by the NAOJ Visiting Professor program. NR 52 TC 0 Z9 0 U1 2 U2 9 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2073-8994 J9 SYMMETRY-BASEL JI Symmetry-Basel PD DEC PY 2014 VL 6 IS 4 BP 909 EP 925 DI 10.3390/sym6040909 PG 17 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AX2SR UT WOS:000346795100005 ER PT J AU Erskine, KM Meier, AM Joshi, VV Pilgrim, SM AF Erskine, Kevin M. Meier, Alan M. Joshi, Vineet V. Pilgrim, Steven M. TI The Effect of Braze Interlayer Thickness on the Mechanical Strength of Alumina Brazed with Ag-CuO Braze Alloys SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID WETTING BEHAVIOR; COPPER OXIDE; CERAMICS; METALS; JOINTS AB The effect of braze interlayer thickness on the strength of alumina brazed with silver-copper oxide reactive air braze (RAB) alloys was evaluated using a four point bend test configuration. The brazed samples had an average fracture strength of 180 MPa or approximately 60% of the average monolithic alumina strength. The joint strength values obtained exceeded the yield strength and ultimate tensile strength of the silver interlayer indicating strong ceramic to metal adhesion and the development of a triaxial stress state in the braze interlayer. The average fracture strength was relatively constant (190 +/- 60 MPa) in the thickness range of 0.030-0.230 mm for all test conditions. The braze fracture strength then decreased to 100 +/- 30 MPa as the braze thickness increased from 0.230 to 0.430 mm indicating a loss of triaxial constraint with increasing interlayer thickness. In addition, four different fracture modes were observed. C1 [Erskine, Kevin M.; Pilgrim, Steven M.] Alfred Univ, Inamori Sch Engn, Alfred, NY 14802 USA. [Meier, Alan M.] Univ Montana, Montana Tech, Butte, MT 59701 USA. [Joshi, Vineet V.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Erskine, KM (reprint author), Alfred Univ, Inamori Sch Engn, Alfred, NY 14802 USA. EM ameier@mtech.edu OI Joshi, Vineet/0000-0001-7600-9317 FU URISP [N00014-96-1-0961]; Center for Advanced Ceramic Technology at Alfred University FX This research was supported by URISP, under contract number N00014-96-1-0961, and by the Center for Advanced Ceramic Technology at Alfred University. The authors would like to acknowledge the support of Dr. Walter Schulze, Dr. James Varner, Ward Votava, Fran Williams, and Jim Thiebaud at Alfred University for their valuable technical assistance. NR 23 TC 0 Z9 0 U1 3 U2 24 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1438-1656 EI 1527-2648 J9 ADV ENG MATER JI Adv. Eng. Mater. PD DEC PY 2014 VL 16 IS 12 SI SI BP 1442 EP 1447 DI 10.1002/adem.201400128 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA AW8CJ UT WOS:000346487900006 ER PT J AU Prevost, E DeMarco, AJ MacMichael, B Joshi, VV Meier, A Hoffman, JW Walker, WJ AF Prevost, Erica DeMarco, A. Joseph MacMichael, Beth Joshi, Vineet V. Meier, Alan Hoffman, John W. Walker, William J. TI Microstructural Development and Mechanical Properties for Reactive Air Brazing of ZTA to Ni Alloys Using Ag-CuO Braze Alloys SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID OXIDE FUEL-CELLS; WETTING BEHAVIOR AB In the current study, nickel (Ni) alloys were heat treated to form an oxide layer prior to reactive air brazing (RAB) joining to zirconia-toughened alumina (ZTA). In the current study five Ni alloys were evaluated. The ZTA studied had compositions of 0-15wt% zirconia and 0-14 wt% glass. Four point-bend tests were performed to evaluate the joint strength of ZTA/ZTA and ZTA/nickel alloys brazed with Ag 2 wt% CuO braze alloys. The joint strength is not a function of the ZTA composition, but the strength is a strong function of the chemistry and microstructure of the oxide layer formed on the nickel alloy. An increase in the aluminum content of the Ni alloy resulted in an increase of the thickness of alumina in the oxide layer and was directly proportional to the bond strength. C1 [Joshi, Vineet V.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Prevost, Erica; DeMarco, A. Joseph; MacMichael, Beth] Alfred Univ, Kazuo Inamori Sch Engn, Alfred, NY 14802 USA. [Meier, Alan] Univ Montana, Dept Met & Mat Engn, Montana Tech, Butte, MT 59701 USA. [Hoffman, John W.] Owens Corning, Toledo, OH 43607 USA. [Walker, William J.] Fed Mogul Corp, Plymouth, MI 48170 USA. RP Prevost, E (reprint author), Alfred Univ, Kazuo Inamori Sch Engn, Alfred, NY 14802 USA. EM vineet.joshi@pnnl.gov OI Joshi, Vineet/0000-0001-7600-9317 NR 33 TC 1 Z9 1 U1 2 U2 16 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1438-1656 EI 1527-2648 J9 ADV ENG MATER JI Adv. Eng. Mater. PD DEC PY 2014 VL 16 IS 12 SI SI BP 1448 EP 1455 DI 10.1002/adem.201400140 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA AW8CJ UT WOS:000346487900007 ER PT J AU Sinnamon, KE Meier, AM Joshi, VV AF Sinnamon, Kathleen E. Meier, Alan M. Joshi, Vineet V. TI Wetting and Mechanical Performance of Zirconia Brazed with Silver/Copper Oxide and Silver/Vanadium Oxide Alloys SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID REACTIVE AIR BRAZE; YTTRIA-STABILIZED ZIRCONIA; COPPER-OXIDE; STRENGTH; CERAMICS; BEHAVIOR AB The wetting behavior and mechanical strength of silver/copper oxide and silver/vanadium oxide braze alloys were investigated for both magnesia-stabilized and yttria-stabilized (Mg-PSZ and Y-TZP) transformation toughened zirconia substrates. The temperatures investigated were 1000-1100 degrees C, with oxide additions of 1-10 wt% V2O5 or CuO, and hold times of 0.9-3.6 ks. Increasing either the isothermal hold temperature or time had a distinctly negative effect on the joint strength. The maximum strengths for both braze alloys were obtained for 5 wt% oxide additions at 1050 degrees C with a hold time of 0.9 ks. The MgPSZ/Ag-CuO system exhibited a average fracture strength of 255MPa (45% of the reported monolithic strength), and the Y-TZP/Ag-CuO system had an average fracture strength of 540 MPa (35% of the reported monolithic strength). The fracture strengths were lower for the Ag-V2O5 braze alloys, with fracture strengths of approximately 180MPa (30% of the monolithic strength) for Mg-PSZ versus approximately 160MPa (10% of the monolithic strength) for Y-TZP. The fracture always occurred at the braze-ceramic interface. Nointerfacial productswere observed in low magnification SEM analysis for the brazing alloys containing V2O5 additions, while there were interfacial products present for brazes prepared with CuO additions in the braze alloy. C1 [Sinnamon, Kathleen E.] Alfred Univ, Inamori Sch Engn, Alfred, NY 14802 USA. [Meier, Alan M.] Univ Montana, Montana Tech, Butte, MT 59701 USA. [Joshi, Vineet V.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sinnamon, KE (reprint author), Alfred Univ, Inamori Sch Engn, Alfred, NY 14802 USA. EM ameier@mtech.edu OI Joshi, Vineet/0000-0001-7600-9317 NR 33 TC 0 Z9 0 U1 3 U2 16 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1438-1656 EI 1527-2648 J9 ADV ENG MATER JI Adv. Eng. Mater. PD DEC PY 2014 VL 16 IS 12 SI SI BP 1482 EP 1489 DI 10.1002/adem.201400104 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA AW8CJ UT WOS:000346487900012 ER PT J AU He, LY AF He, Lianyi TI Finite range and upper branch effects on itinerant ferromagnetism in repulsive Fermi gases: Bethe-Goldstone ladder resummation approach SO ANNALS OF PHYSICS LA English DT Article DE Itinerant ferroinagnetism; Upper branch Fermi gas; Finite range effect; Ladder resummation ID EFFECTIVE-FIELD THEORY; THERMODYNAMICS; SYSTEMS; SCATTERING; RESONANCE; MATTER AB We investigate the ferromagnetic transition in repulsive Fermi gases at zero temperature with upper branch and effective range effects. Based on a general effective Lagrangian that reproduces precisely the two-body s-wave scattering phase shift, we obtain a nonperturbative expression of the energy density as a function of the polarization by using the Bethe-Goldstone ladder resummation. For hard sphere potential, the predicted critical gas parameter k(F)a = 0.816 and the spin susceptibility agree well with the results from fixed-node diffusion Monte Carlo calculations. In general, positive and negative effective ranges have opposite effects on the critical gas parameter k(F)a: While a positive effective range reduces the critical gas parameter, a negative effective range increases it. For attractive potential or Feshbach resonance model, the many-body upper branch exhibits an energy maximum at k(F)a = alpha with alpha = 1.34 from the Bethe-Goldstone ladder resummation, which is qualitatively consistent with experimental results. The many-body T-matrix has a positive-energy pole for k(F)a > alpha and it becomes impossible to distinguish the bound state and the scattering state. These positive-energy bound states become occupied and therefore the upper branch reaches an energy maximum at k(F)a = alpha. In the zero range limit, there exists a narrow window (0.86 < k(F)a < 1.56) for the ferromagnetic phase. At sufficiently large negative effective range, the ferromagnetic phase disappears. On the other hand, the appearance of positive-energy bound state resonantly enhances the two-body decay rate around k(F)a = alpha and may prevent the study of equilibrium phases and ferromagnetism of the upper branch Fermi gas. (C) 2014 Elsevier Inc. All rights reserved. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP He, LY (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM lianyi@lanl.gov RI He, Lianyi/G-5110-2010 OI He, Lianyi/0000-0002-9965-0446 FU Department of Energy Nuclear Physics Office; topical collaborations on Neutrinos and Nucleosynthesis; Los Alamos National Laboratory FX We thank Joseph Carlson, Stefano Gandolfi, and Sungkit Yip for useful discussions. The work is supported by the Department of Energy Nuclear Physics Office, by the topical collaborations on Neutrinos and Nucleosynthesis, and by Los Alamos National Laboratory. NR 88 TC 4 Z9 4 U1 3 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-4916 EI 1096-035X J9 ANN PHYS-NEW YORK JI Ann. Phys. PD DEC PY 2014 VL 351 BP 477 EP 503 DI 10.1016/j.aop.2014.09.009 PG 27 WC Physics, Multidisciplinary SC Physics GA AW7NZ UT WOS:000346451900025 ER PT J AU Astier, P Balland, C Brescia, M Cappellaro, E Carlberg, RG Cavuoti, S Della Valle, M Gangler, E Goobar, A Guy, J Hardin, D Hook, IM Kessler, R Kim, A Linder, E Longo, G Maguire, K Mannucci, F Mattila, S Nichol, R Pain, R Regnault, N Spiro, S Sullivan, M Tao, C Turatto, M Wang, XF Wood-Vasey, WM AF Astier, P. Balland, C. Brescia, M. Cappellaro, E. Carlberg, R. G. Cavuoti, S. Della Valle, M. Gangler, E. Goobar, A. Guy, J. Hardin, D. Hook, I. M. Kessler, R. Kim, A. Linder, E. Longo, G. Maguire, K. Mannucci, F. Mattila, S. Nichol, R. Pain, R. Regnault, N. Spiro, S. Sullivan, M. Tao, C. Turatto, M. Wang, X. F. Wood-Vasey, W. M. TI Extending the supernova Hubble diagram to z similar to 1.5 with the Euclid space mission SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmological parameters; dark energy ID ACTIVE GALACTIC NUCLEI; CORE-COLLAPSE SUPERNOVAE; DELAY-TIME DISTRIBUTION; PHOTOMETRY DATA RELEASE; HOST GALAXY PROPERTIES; STAR-FORMATION RATE; DARK ENERGY SURVEY; II-P SUPERNOVAE; IA LIGHT CURVES; LEGACY SURVEY AB We forecast dark energy constraints that could be obtained from a new large sample of Type Ia supernovae where those at high redshift are acquired with the Euclid space mission. We simulate a three-prong SN survey: a z < 0.35 nearby sample (8000 SNe), a 0.2 < z < 0.95 intermediate sample (8800 SNe), and a 0.75 < z < 1.55 high-z sample (1700 SNe). The nearby and intermediate surveys are assumed to be conducted from the ground, while the high-z is a joint ground-and space-based survey. This latter survey, the "Dark Energy Supernova Infra-Red Experiment" (DESIRE), is designed to fit within 6 months of Euclid observing time, with a dedicated observing programme. We simulate the SN events as they would be observed in rolling-search mode by the various instruments, and derive the quality of expected cosmological constraints. We account for known systematic uncertainties, in particular calibration uncertainties including their contribution through the training of the supernova model used to fit the supernovae light curves. Using conservative assumptions and a 1D geometric Planck prior, we find that the ensemble of surveys would yield competitive constraints: a constant equation of state parameter can be constrained to sigma(omega) = 0.022, and a Dark Energy Task Force figure of merit of 203 is found for a two-parameter equation of state. Our simulations thus indicate that Euclid can bring a significant contribution to a purely geometrical cosmology constraint by extending a high-quality SN Ia Hubble diagram to z similar to 1.5. We also present other science topics enabled by the DESIRE Euclid observations. C1 [Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.] Univ Paris 07, LPNHE, CNRS IN2P3, Univ Paris 06, F-75252 Paris 5, France. [Brescia, M.; Della Valle, M.] Capodimonte Astron Observ, INAF, I-80131 Naples, Italy. [Cappellaro, E.; Turatto, M.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Carlberg, R. G.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Cavuoti, S.; Longo, G.] Univ Naples Federico II, Dept Phys, I-80126 Naples, Italy. [Della Valle, M.] Int Ctr Relativist Astrophys, I-65122 Pescara, Italy. [Gangler, E.] Univ Blaise Pascal, Clermont Univ, CNRS IN2P3, Lab Phys Corpusculaire, F-63000 Clermont Ferrand, France. [Goobar, A.] Stockholm Univ, Albanova Univ Ctr, Dept Phys, S-10691 Stockholm, Sweden. [Hook, I. M.; Maguire, K.; Spiro, S.] Univ Oxford, Dept Phys Astrophys, Oxford OX1 3RH, England. [Hook, I. M.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, RM, Italy. [Kessler, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Kessler, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Kim, A.] LBNL, Berkeley, CA 94720 USA. [Linder, E.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Maguire, K.] European So Observ, D-85748 Garching, Germany. [Mannucci, F.] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Mattila, S.] Univ Turku, Finnish Ctr Astron ESO FINCA, Piikkio 21500, Finland. [Nichol, R.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Sullivan, M.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Tao, C.] Univ Aix Marseille, CPPM, CNRS IN2P3, F-13288 Marseille 9, France. [Tao, C.; Wang, X. F.] Tsinghua Univ, Dept Phys, Tsinghua Ctr Astrophys, Beijing 100084, Peoples R China. [Wood-Vasey, W. M.] Univ Pittsburgh, PITT PACC, Dept Phys & Astron, Pittsburgh, PA 15260 USA. RP Astier, P (reprint author), Univ Paris 07, LPNHE, CNRS IN2P3, Univ Paris 06, 4 Pl Jussieu, F-75252 Paris 5, France. EM pierre.astier@in2p3.fr RI Wang, Xiaofeng/J-5390-2015; Cavuoti, Stefano/B-4650-2017; OI Cavuoti, Stefano/0000-0002-3787-4196; mannucci, filippo/0000-0002-4803-2381; Cappellaro, Enrico/0000-0001-5008-8619; Turatto, Massimo/0000-0002-9719-3157; Sullivan, Mark/0000-0001-9053-4820 FU ASI [I/023/12/0]; MIUR FX We are grateful to the anonymous referee for suggesting subtantial improvements to the original manuscript. E.C., S.S. and M.T. acknowledge the grants ASI n.I/023/12/0 Attivit relative alla fase B2/C per la missione Euclid and MIUR PRIN 2010-2011 "The dark Universe and the cosmic evolution of baryons: from current surveys to Euclid". NR 129 TC 9 Z9 9 U1 0 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2014 VL 572 AR A80 DI 10.1051/0004-6361/201423551 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AW2ET UT WOS:000346101700101 ER PT J AU Dutton, SM Fisk, WJ AF Dutton, Spencer M. Fisk, William J. TI Energy and indoor air quality implications of alternative minimum ventilation rates in California offices SO BUILDING AND ENVIRONMENT LA English DT Article DE Office ventilation energy use; Indoor air quality; EnergyPlus; Contaminant modeling; Prescribed minimum ventilation; Title-24 ID COMMERCIAL BUILDINGS; VOC EMISSIONS; TEMPERATURE; FORMALDEHYDE; HEALTH; IMPACT AB The energy and IAQ implications of varying prescribed minimum outdoor air ventilation rates (VRs) in California office buildings were estimated using the EnergyPlus building simulation software tool. Weighting factors were used to scale these model predictions to state wide estimates. Energy use predictions were then verified using surveyed California building energy end use data. Models predicted state wide office electricity use that was within 15% of reported electricity consumption from power utilities. The HVAC energy penalty of providing the current Title-24 VRs was approximately 6%, of the total HVAC energy use. Having economizers installed reduced average indoor formaldehyde exposure by 38% and lowered HVAC EUI by 20%. For California offices with economizers, 50% and 100% increases in Title-24 prescribed minimum VRs increased heating, ventilating, and air conditioning (HVAC) modeled energy use by 7.6% and 21.6%, respectively, while decreasing the annual average workplace formaldehyde exposure by 8.6% and 14.4%, respectively. Economizers increased VRs above the minimum 79% of the time lowering annual average concentrations of formaldehyde. Decreasing minimum VRs below the Title-24 rate would have smaller predicted effects on energy use and comparatively larger effects on formaldehyde concentrations. In buildings without economizers in many climate zones, increasing VRs up to 150% of the current Title-24 minimum would save HVAC energy and significantly reduce formaldehyde. A key conclusion is that raising future minimum VRs in California offices is unlikely to significantly improve time-averaged IAQ in buildings with economizers. Lowering future minimum VRs would be unlikely to deliver substantive energy savings. Published by Elsevier Ltd. C1 [Dutton, Spencer M.; Fisk, William J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Dutton, SM (reprint author), 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM smdutton@lbl.gov FU University of California [500-09-049, DE-AC02-05CH11231]; U.S. Department of Energy [500-09-049, DE-AC02-05CH11231] FX The research reported here was supported by the California Energy Commission Public Interest Energy Research Program, Energy-Related Environmental Research Program, award number 500-09-049 via Contract DE-AC02-05CH11231 between the University of California and the U.S. Department of Energy. The authors thank Marla Mueller for program management. NR 38 TC 7 Z9 7 U1 2 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-1323 EI 1873-684X J9 BUILD ENVIRON JI Build. Environ. PD DEC PY 2014 VL 82 BP 121 EP 127 DI 10.1016/j.buildenv.2014.08.009 PG 7 WC Construction & Building Technology; Engineering, Environmental; Engineering, Civil SC Construction & Building Technology; Engineering GA AW8XU UT WOS:000346543500012 ER PT J AU D'Oca, S Hong, TZ AF D'Oca, Simona Hong, Tianzhen TI A data-mining approach to discover patterns of window opening and closing behavior in offices SO BUILDING AND ENVIRONMENT LA English DT Article DE Data mining; Behavioral pattern; Occupant behavior; Office buildings; Window closing; Window opening ID THERMAL COMFORT; NATURAL VENTILATION; OCCUPANT BEHAVIOR; USER BEHAVIOR; ENERGY USE; BUILDINGS; SIMULATION; MODELS; THERMOSTATS; PREDICT AB Understanding the relationship between occupant behaviors and building energy consumption is one of the most effective ways to bridge the gap between predicted and actual energy consumption in buildings. However effective methodologies to remove the impact of other variables on building energy consumption and isolate the leverage of the human factor precisely are still poorly investigated. Moreover, the effectiveness of statistical and data mining approaches in finding meaningful correlations in data is largely undiscussed in literature. This study develops a framework combining statistical analysis with two data-mining techniques, cluster analysis and association rules mining, to identify valid window operational patterns in measured data. Analyses are performed on a data set with measured indoor and outdoor physical parameters and human interaction with operable windows in 16 offices. Logistic regression was first used to identify factors influencing window opening and closing behavior. Clustering procedures were employed to obtain distinct behavioral patterns, including motivational, opening duration, interactivity and window position patterns. Finally the clustered patterns constituted a base for association rules segmenting the window opening behaviors into two archetypal office user profiles for which different natural ventilation strategies as well as robust building design recommendations that may be appropriate. Moreover, discerned working user profiles represent more accurate input to building energy modeling programs, to investigate the impacts of typical window opening behavior scenarios on energy use, thermal comfort and productivity in office buildings. (C) 2014 Elsevier Ltd. All rights reserved. C1 [D'Oca, Simona] Politecn Torino, Dept Energy, TEBE Grp, I-10129 Turin, Italy. [Hong, Tianzhen] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Hong, TZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM simona.doca@polito.it; thong@lbl.gov OI Hong, Tianzhen/0000-0003-1886-9137 FU U.S. Department of Energy under the U.S.-China Clean Energy Research Center [DE-AC02-05CH11231] FX This work was sponsored by the U.S. Department of Energy (Contract No. DE-AC02-05CH11231) under the U.S.-China Clean Energy Research Center for Building Energy Efficiency. The authors very appreciated Marcel Schweiker and Andreas Wagner of Karlsruhe Institute of Technology, Germany for sharing the dataset and answering our questions. This work is also part of the research of Annex 66, Definition and Simulation of Occupant Behavior in Buildings, under the International Energy Agency Energy in Buildings and Communities Program. NR 48 TC 23 Z9 23 U1 4 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-1323 EI 1873-684X J9 BUILD ENVIRON JI Build. Environ. PD DEC PY 2014 VL 82 BP 726 EP 739 DI 10.1016/j.buildenv.2014.10.021 PG 14 WC Construction & Building Technology; Engineering, Environmental; Engineering, Civil SC Construction & Building Technology; Engineering GA AW8XU UT WOS:000346543500069 ER PT J AU Illa-Bochaca, I Ouyang, HX Tang, J Sebastiano, C Mao, JH Costes, SV Demaria, S Barcellos-Hoff, MH AF Illa-Bochaca, Irineu Ouyang, Haoxu Tang, Jonathan Sebastiano, Christopher Mao, Jian-Hua Costes, Sylvain V. Demaria, Sandra Barcellos-Hoff, Mary Helen TI Densely Ionizing Radiation Acts via the Microenvironment to Promote Aggressive Trp53-Null Mammary Carcinomas SO CANCER RESEARCH LA English DT Article ID P53-NULL MOUSE MODEL; HUMAN BREAST-CANCER; BALB/C-TRP53(+/-) MICE; GENOMIC INSTABILITY; TUMORS; CELLS; CARCINOGENESIS; P53; GENES; GLAND AB Densely ionizing radiation, which is present in the space radiation environment and used in radiation oncology, has potentially greater carcinogenic effect compared with sparsely ionizing radiation that is prevalent on earth. Here, we used a radiation chimera in which mice were exposed to densely ionizing 350 MeV/amu Si-particles, gamma-radiation, or sham-irradiated and transplanted 3 days later with syngeneic Trp53-null mammary fragments. Trp53-null tumors arising in mice irradiated with Si-particles had a shorter median time to appearance and grew faster once detected compared with those in sham-irradiated or g-irradiated mice. Tumors were further classified by markers keratin 8/18 (K18, KRT18), keratin 14 (K14, KRT14) and estrogen receptor (ER, ESR1), and expression profiling. Most tumors arising in sham-irradiated hosts were comprised of both K18- and K14-positive cells (K14/18) while those tumors arising in irradiated hosts were mostly K18. Keratin staining was significantly associated with ER status: K14/18 tumors were predominantly ER-positive, whereas K18 tumors were predominantly ER-negative. Genes differentially expressed in K18 tumors compared with K14/18 tumor were associated with ERBB2 and KRAS, metastasis, and loss of E-cadherin. Consistent with this, K18 tumors tended to grow faster and be more metastatic than K14/18 tumors, however, K18 tumors in particle-irradiated mice grew significantly larger and were more metastatic compared with sham-irradiated mice. An expression profile that distinguished K18 tumors arising in particle-irradiated mice compared with sham-irradiated mice was enriched in mammary stem cell, stroma, and Notch signaling genes. These data suggest that carcinogenic effects of densely ionizing radiation are mediated by the microenvironment, which elicits more aggressive tumors compared with similar tumors arising in sham-irradiated hosts. (C)2014 AACR. C1 [Illa-Bochaca, Irineu; Ouyang, Haoxu; Demaria, Sandra; Barcellos-Hoff, Mary Helen] New York Univ, Sch Med, Dept Radiat Oncol, New York, NY 10016 USA. [Tang, Jonathan; Mao, Jian-Hua; Costes, Sylvain V.] NYU, Sch Med, Dept Pathol, New York, NY 10016 USA. [Sebastiano, Christopher; Demaria, Sandra] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Barcellos-Hoff, MH (reprint author), New York Univ, Sch Med, Dept Radiat Oncol, 450 E 29th St, New York, NY 10016 USA. EM mhbarcellos-hoff@nyumc.org OI Barcellos-Hoff, Mary Helen/0000-0002-5994-9558; Demaria, Sandra/0000-0003-4426-0499 FU NASA Specialized Center for Research in Radiation Health Effects, at the New York University School of Medicine [NNX09AM52G] FX This research was supported by NASA Specialized Center for Research in Radiation Health Effects, NNX09AM52G at the New York University School of Medicine. NR 48 TC 2 Z9 2 U1 0 U2 5 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD DEC 1 PY 2014 VL 74 IS 23 BP 7137 EP 7148 DI 10.1158/0008-5472.CAN-14-1212 PG 12 WC Oncology SC Oncology GA AW6EN UT WOS:000346362400037 PM 25304265 ER PT J AU Golbus, JR Puckelwartz, MJ Dellefave-Castillo, L Fahrenbach, JP Nelakuditi, V Pesce, LL Pytel, P McNally, EM AF Golbus, Jessica R. Puckelwartz, Megan J. Dellefave-Castillo, Lisa Fahrenbach, John P. Nelakuditi, Viswateja Pesce, Lorenzo L. Pytel, Peter McNally, Elizabeth M. TI Targeted Analysis of Whole Genome Sequence Data to Diagnose Genetic Cardiomyopathy SO CIRCULATION-CARDIOVASCULAR GENETICS LA English DT Article DE cardiomyopathies; genetics; genomics; humans ID SODIUM-CHANNEL MUTATIONS; DILATED CARDIOMYOPATHY; HYPERTROPHIC CARDIOMYOPATHY; SKELETAL MYOPATHY; DISEASE; HEART; MECHANISMS; PATHOLOGY; ACCURATE; PROTEIN AB Background-Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of >50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift toward comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results-Whole genome sequencing with an average of 37x coverage was combined with targeted analysis focused on 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1 to 14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and segregation analysis, where available. Three of 3 previously identified primary mutations were detected by this analysis. In 6 subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and had additional pathological correlation to provide evidence for causality. For 2 subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. Conclusions-These pilot data demonstrate that approximate to 30 to 40x coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes. C1 [Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa; Fahrenbach, John P.; Pytel, Peter; McNally, Elizabeth M.] Univ Chicago, Dept Med, Chicago, IL 60637 USA. [Nelakuditi, Viswateja; McNally, Elizabeth M.] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA. [Pytel, Peter] Univ Chicago, Dept Pathol, Chicago, IL 60637 USA. [Pesce, Lorenzo L.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. Argonne Natl Labs, Chicago, IL USA. RP McNally, EM (reprint author), Northwestern Univ, Feinberg Sch Med, Ctr Genet Med, 303 E Super St 7-123, Chicago, IL 60611 USA. EM elizabeth.mcnally@northwestern.edu FU Doris Duke Charitable Foundation, New York, NY; Sarnoff Foundation, Great Falls, VA; National Institutes of Health, Bethesda, MD [NIH T32 HL007237, NIH F32 HL097587] FX This work was supported by Doris Duke Charitable Foundation, New York, NY; Sarnoff Foundation, Great Falls, VA; and National Institutes of Health, Bethesda, MD, NIH T32 HL007237, NIH F32 HL097587. NR 45 TC 9 Z9 9 U1 0 U2 8 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1942-325X EI 1942-3268 J9 CIRC-CARDIOVASC GENE JI Circ.-Cardiovasc. Genet. PD DEC PY 2014 VL 7 IS 6 BP 751 EP U71 DI 10.1161/CIRCGENETICS.113.000578 PG 35 WC Cardiac & Cardiovascular Systems; Genetics & Heredity SC Cardiovascular System & Cardiology; Genetics & Heredity GA AW6DE UT WOS:000346358800004 PM 25179549 ER PT J AU Choi, S Oh, KC Lee, CB AF Choi, Seungmok Oh, Kwang-Chul Lee, Chun-Bum TI The effects of filter porosity and flow conditions on soot deposition/oxidation and pressure drop in particulate filters SO ENERGY LA English DT Article DE Particulate filter; Pressure drop; Filtration; Controlled regeneration; Filter porosity AB Particulate filters are widely used in the automotive industry to reduce PM (particulate matter) produced by internal combustion engines. Wall-flow particulate filters trap PM while exhaust gas passes through the porous walls of the filter, with the pore microstructure of the porous walls affecting soot deposition, oxidation, and pressure drops during filtration and regeneration. In this study, soot deposition/oxidation behaviors were visualized in relation to the pressure drop, and the pressure drop characteristics of two particulate filters having different porosity were compared based on the results of the visualizations. It was found that the oxidation rate of the soot cake on channel walls is slower than that of the soot in the pores, due to limited oxidizer diffusion into the soot cake, which causes three-stage regeneration under the controlled regeneration regime. The high-porosity filter offered a lower pressure drop at the same amount of soot loading, faster pressure drop recovery, and higher regeneration efficiency during controlled regeneration. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Choi, Seungmok] Argonne Natl Lab, Transportat Technol R&D Ctr, Argonne, IL 60439 USA. [Oh, Kwang-Chul; Lee, Chun-Bum] Korea Automot Technol Inst, Diesel Hybrid Res Ctr, Chonan Si 330912, Chungnam, South Korea. RP Choi, S (reprint author), Argonne Natl Lab, Transportat Technol R&D Ctr, 9700 S Cass Ave, Argonne, IL 60439 USA. EM schoi@anl.gov FU Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Vehicle Technologies; Korea Automotive Technology Institute (KATECH) [C1000301] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. This work was supported by the U.S. Department of Energy, Office of Vehicle Technologies, and Korea Automotive Technology Institute (KATECH) under Contract No. C1000301. NR 18 TC 7 Z9 8 U1 1 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD DEC 1 PY 2014 VL 77 SI SI BP 327 EP 337 DI 10.1016/j.energy.2014.08.049 PG 11 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA AW8XK UT WOS:000346542500038 ER PT J AU Stuart, E Larsen, PH Goldman, CA Gilligan, D AF Stuart, Elizabeth Larsen, Peter H. Goldman, Charles A. Gilligan, Donald TI A method to estimate the size and remaining market potential of the US ESCO (energy service company) industry SO ENERGY LA English DT Article DE ESCO (energy service companies); Performance contracting; Energy efficiency; Market potential ID EMPIRICAL-ANALYSIS; BUSINESS; PERFORMANCE; EFFICIENCY; BUILDINGS; EVOLUTION; INSIGHTS; FOSTER AB This study presents a method to estimate the market investment potential for ESPC (energy-saving performance contracts) and annual blended energy savings remaining in buildings typically addressed by U.S. ESCOs (energy service companies). We define ESCOs as companies for whom performance-based contracting is a core business activity. The market potential analysis incorporates market penetration estimates provided by industry experts in late 2012, data on U.S. building stock typically addressed by ESCOs, and typical project investment costs from a database of 4000 + projects. ESCO industry revenue growth significantly outpaced U.S. GDP (gross domestic product) growth during 2009-2011. We estimate that the remaining investment potential in facilities typically addressed by the ESCO industry ranges from similar to$71 to $133 billion. Our analysis includes ESCO industry size and growth projections drawing on information from interviews with ESCO executives conducted in late 2012. The U.S. ESCO industry could grow in size from $6 billion in 2013 to similar to$7.5 billion by 2014, but this growth is contingent on enabling policies. The U.S. ESCO industry is similar in size to the ESCO industries in Germany, France, and China. Our estimation approach could be adapted for other countries with the caveat that ESCO industry definitions and revenue reporting practices vary across countries. Published by Elsevier Ltd. C1 [Stuart, Elizabeth; Larsen, Peter H.; Goldman, Charles A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, Berkeley, CA 94720 USA. [Larsen, Peter H.] Stanford Univ, Sch Engn, Management Sci & Engn Dept, Stanford, CA 94305 USA. RP Stuart, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, 1 Cyclotron Rd,MS 90-4000, Berkeley, CA 94720 USA. EM EStuart@lbl.gov OI Stuart, Elizabeth/0000-0002-0471-3361 FU U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, Weatherization and Intergovernmental Programs [DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, Weatherization and Intergovernmental Programs under Contract No. DE-AC02-05CH11231. We would also like to thank a number of anonymous reviewers for their helpful suggestions. NR 34 TC 6 Z9 6 U1 6 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD DEC 1 PY 2014 VL 77 SI SI BP 362 EP 371 DI 10.1016/j.energy.2014.09.003 PG 10 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA AW8XK UT WOS:000346542500041 ER PT J AU Gao, CX Sun, M Shen, B Li, RR Tian, LX AF Gao, Cuixia Sun, Mei Shen, Bo Li, Ranran Tian, Lixin TI Optimization of China's energy structure based on portfolio theory SO ENERGY LA English DT Article DE Energy structure; Renewable energy; Portfolio theory; Learning curve; Cumulative research and development capacity ID POLICY IMPLICATIONS; EFFICIENCY; EMISSIONS AB Facing the mounting pressures of meeting energy and environment needs and reducing its dependence for fossil fuels, China needs to make more effort to develop renewable energy. This paper attempts to use portfolio theory to optimize China's overall energy system with considering the learning curve effect of renewable energy cost and the characteristic of fossil energy cost increasing over time. It also takes into account additional factors such as environmental costs of coal consumption and various growth rates of the cumulative R&D (research and development) capacity for solar power. This research has found that the development of renewable energy in China has tremendous potential but it will not replace fossil energy in the next decades. The sensitivity analysis of this paper indicates that development of solar power is driven not only by the cumulative installed capacity but also by the cumulative R&D capacity. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Gao, Cuixia; Sun, Mei; Li, Ranran; Tian, Lixin] Jiangsu Univ, Ctr Energy Dev & Environm Protect, Zhenjiang 212013, Jiangsu, Peoples R China. [Shen, Bo] Lawrence Berkeley Natl Lab, Energy Anal & Environm Impact Assessment Dept, Environm Energy Technol Div, China Energy Grp, Berkeley, CA 94720 USA. RP Sun, M (reprint author), Jiangsu Univ, Ctr Energy Dev & Environm Protect, Zhenjiang 212013, Jiangsu, Peoples R China. EM sunm@ujs.edu.cn OI Gao, Cuixia/0000-0002-4345-2934 FU National Nature Science Foundation of China [71073072, 71273119]; National Social Science Foundation of China [12ZD062]; Major Program of Social Science Foundation of Jiangsu Education Office [2010-2-10] FX This research was supported by both the National Nature Science Foundation of China (No. 71073072 and No. 71273119), the National Social Science Foundation of China (No. 12&ZD062) and Major Program of Social Science Foundation of Jiangsu Education Office (No. 2010-2-10). NR 35 TC 10 Z9 10 U1 2 U2 38 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD DEC 1 PY 2014 VL 77 SI SI BP 890 EP 897 DI 10.1016/j.energy.2014.09.075 PG 8 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA AW8XK UT WOS:000346542500091 ER PT J AU Qian, H Wang, YG AF Qian, Hua Wang, Yungang TI Modeling the interactions between the performance of ground source heat pumps and soil temperature variations SO ENERGY FOR SUSTAINABLE DEVELOPMENT LA English DT Article DE Ground source heat pump (GSHP); Coefficient of performance (COP); Building; Energy saving; Developing world AB The adoption of geothermal energy in space conditioning of buildings through utilizing ground source heat pump (GSHP, also known as geothermal heat pump) has increased rapidly during the past several decades. However, one problem in operating GSHPs is that collection or rejection heat from the ground alters the ground temperature, which can adversely affect the coefficient of performance (COP). In turn, the amount of heat that must be exchanged with the ground increases in order to satisfy a given heating or cooling load. This paper presents a novel model to calculate the soil temperature distribution and the COP of GSHP. Different scenarios were simulated to quantify the impact of different factors on the GSHP performance, including seasonal balance between heat collection and heat rejection, daily running mode, and spacing between boreholes. Our results show that greater loads and smaller distances between boreholes cause changes in soil temperature large enough to adversely affect the GSHP performance, even resulting in COPs less than those commonly achieved with air source heat pumps. However, shifting from heating to cooling on a seasonal basis can, in part, mitigate this problem. Long boreholes, additional space between boreholes and intermittent running mode could also improve the performance of GSHP, but large initial investment is required. (C) 2014 International Energy Initiative. Published by Elsevier Inc All rights reserved. C1 [Qian, Hua] Southeast Univ, Sch Energy & Environm, Nanjing 210096, Jiangsu, Peoples R China. [Qian, Hua; Wang, Yungang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Wang, YG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM yungangwang@lbl.gov RI QIAN, Hua/A-1410-2009 OI QIAN, Hua/0000-0002-7237-7806 FU National Key Technology Supported Program of China [2011BAJ03B10-1] FX The project was supported by National Key Technology Supported Program of China (2011BAJ03B10-1). The contents in this work are solely the responsibility of the authors and do not necessarily represent the official views of Department of Energy (DOE). NR 12 TC 12 Z9 12 U1 8 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0973-0826 J9 ENERGY SUSTAIN DEV JI Energy Sustain Dev. PD DEC PY 2014 VL 23 BP 115 EP 121 DI 10.1016/j.esd.2014.08.004 PG 7 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA AW7RA UT WOS:000346461000013 ER PT J AU Fontes, CJ Bostock, CJ Bartschat, K AF Fontes, Christopher J. Bostock, Christopher J. Bartschat, Klaus TI Annotation of Hans Bethe's paper, Zeitschrift fur Physik 76, 293 (1932), "Braking Formula for Electrons of Relativistic Speed" SO EUROPEAN PHYSICAL JOURNAL H LA English DT Article ID CHARGED PARTICLES; RADIATION; MATTER; PASSAGE; SCATTERING; COLLISIONS; SHOWERS; ATOMS AB We present an annotation of Hans Bethe's "Bremsformel fur Elektronen relativistischer Geschwindigkeit" [Zeitschrift fur Physik 76, 293 (1932)] (Braking Formula for Electrons of Relativistic Speed). The English translation of the paper appears as a companion to this annotation. We highlight the conceptual and historical aspects of the relevant quantum electrodynamics employed by Bethe, provide details in the derivation of several equations, and point out some typographical errors in the original manuscript. C1 [Fontes, Christopher J.] Los Alamos Natl Lab, Computat Phys Div, Los Alamos, NM 87545 USA. [Bostock, Christopher J.] Curtin Univ, ARC Ctr Antimatter Matter Studies, Perth, WA 6845, Australia. [Bartschat, Klaus] Drake Univ, Dept Phys & Astron, Des Moines, IA 50311 USA. RP Fontes, CJ (reprint author), Los Alamos Natl Lab, Computat Phys Div, POB 1663, Los Alamos, NM 87545 USA. EM cjf@lanl.gov; c.bostock@curtin.edu.au; klaus.bartschat@drake.edu FU U.S. Department of Energy, Los Alamos National Laboratory [DE-AC52-06NA25396]; Curtin University; United States National Science Foundation [PHY-1430245] FX Dr. H.E. Morris is gratefully acknowledged for helpful conversations concerning applications of the relativistic Bethe high-energy theory. CF's work was performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. CB's work was supported by Curtin University. KB's work was supported by the United States National Science Foundation under grant No. PHY-1430245. NR 34 TC 1 Z9 1 U1 3 U2 5 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 2102-6459 EI 2102-6467 J9 EUR PHYS J H JI Eur. Phys. J. H PD DEC PY 2014 VL 39 IS 5 BP 517 EP 536 DI 10.1140/epjh/e2014-50027-1 PG 20 WC History & Philosophy Of Science; Physics, Multidisciplinary SC History & Philosophy of Science; Physics GA AW4KJ UT WOS:000346249700002 ER PT J AU Burch, N D'Elia, M Lehoucq, RB AF Burch, N. D'Elia, M. Lehoucq, R. B. TI The exit-time problem for a Markov jump process SO EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS LA English DT Article ID VOLUME-CONSTRAINED PROBLEMS; NONLOCAL VECTOR CALCULUS; BOUNDED DOMAINS; DIFFUSION AB The purpose of this paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developed nonlocal vector calculus. This calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution. C1 [Burch, N.] Gonzaga Univ, Dept Math, Spokane, WA 99258 USA. [D'Elia, M.; Lehoucq, R. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Burch, N (reprint author), Gonzaga Univ, Dept Math, Spokane, WA 99258 USA. EM burchn@gonzaga.edu; mdelia@sandia.gov; rblehou@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 27 TC 3 Z9 3 U1 0 U2 0 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1951-6355 EI 1951-6401 J9 EUR PHYS J-SPEC TOP JI Eur. Phys. J.-Spec. Top. PD DEC PY 2014 VL 223 IS 14 BP 3257 EP 3271 DI 10.1140/epjst/e2014-02331-7 PG 15 WC Physics, Multidisciplinary SC Physics GA AW7AI UT WOS:000346416400016 ER PT J AU Panchy, N Wu, GX Newton, L Tsai, CH Chen, J Benning, C Farre, EM Shiu, SH AF Panchy, Nicholas Wu, Guangxi Newton, Linsey Tsai, Chia-Hong Chen, Jin Benning, Christoph Farre, Eva M. Shiu, Shin-Han TI Prevalence, Evolution, and cis-Regulation of Diel Transcription in Chlamydomonas reinhardtii SO G3-GENES GENOMES GENETICS LA English DT Article DE green algae; diel expression; transcriptomics; evolution; gene regulation; cis-regulatory element ID CIRCADIAN CLOCK; GENE-EXPRESSION; CELL-CYCLE; RNA-SEQ; PICOEUKARYOTE OSTREOCOCCUS; GREEN LINEAGE; ARABIDOPSIS; LIGHT; IDENTIFICATION; METABOLISM AB Endogenous (circadian) and exogenous (e.g., diel) biological rhythms are a prominent feature of many living systems. In green algal species, knowledge of the extent of diel rhythmicity of genome-wide gene expression, its evolution, and its cis-regulatory mechanism is limited. In this study, we identified cyclically expressed genes under diel conditions in Chlamydomonas reinhardtii and found that similar to 50% of the 17,114 annotated genes exhibited cyclic expression. These cyclic expression patterns indicate a clear succession of biological processes during the course of a day. Among 237 functional categories enriched in cyclically expressed genes, >90% were phase-specific, including photosynthesis, cell division, and motility-related processes. By contrasting cyclic expression between C. reinhardtii and Arabidopsis thaliana putative orthologs, we found significant but weak conservation in cyclic gene expression patterns. On the other hand, within C. reinhardtii cyclic expression was preferentially maintained between duplicates, and the evolution of phase between paralogs is limited to relatively minor time shifts. Finally, to better understand the cis regulatory basis of diel expression, putative cis-regulatory elements were identified that could predict the expression phase of a subset of the cyclic transcriptome. Our findings demonstrate both the prevalence of cycling genes as well as the complex regulatory circuitry required to control cyclic expression in a green algal model, highlighting the need to consider diel expression in studying algal molecular networks and in future biotechnological applications. C1 [Panchy, Nicholas; Chen, Jin; Farre, Eva M.; Shiu, Shin-Han] Michigan State Univ, Genet Program, E Lansing, MI 48824 USA. [Wu, Guangxi; Shiu, Shin-Han] Michigan State Univ, Cellular & Mol Biol Program, E Lansing, MI 48824 USA. [Newton, Linsey; Tsai, Chia-Hong; Farre, Eva M.; Shiu, Shin-Han] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Tsai, Chia-Hong; Chen, Jin] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Chen, Jin] Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USA. [Benning, Christoph] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. RP Farre, EM (reprint author), Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. EM farre@msu.edu; shius@msu.edu RI Wu, Guangxi/J-4516-2016; OI Shiu, Shin-Han/0000-0001-6470-235X; Farre, Eva/0000-0003-1566-7572 FU Michigan State University Strategic Partnership Grant; National Science Foundation grant [MCB-1119778] FX We thank Alexander Seddon and John Lloyd for help in identifying pCREs. We also thank all the members of the algae group at Michigan State University for their attention and critique. This work was supported by a Michigan State University Strategic Partnership Grant to C.B, E.F., and S.-H.S. and a National Science Foundation grant (MCB-1119778) to S.-H.S. NR 66 TC 6 Z9 6 U1 2 U2 13 PU GENETICS SOCIETY AMERICA PI BETHESDA PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA SN 2160-1836 J9 G3-GENES GENOM GENET JI G3-Genes Genomes Genet. PD DEC 1 PY 2014 VL 4 IS 12 BP 2461 EP 2471 DI 10.1534/g3.114.015032 PG 11 WC Genetics & Heredity SC Genetics & Heredity GA AW5WJ UT WOS:000346341500016 PM 25354782 ER PT J AU Walker, J Merzari, E Obabko, A Fischer, P Siegel, A AF Walker, Justin Merzari, Elia Obabko, Aleksandr Fischer, Paul Siegel, Andrew TI Accurate prediction of the wall shear stress in rod bundles with the spectral element method at high Reynolds numbers SO INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW LA English DT Article DE Wall shear stress; Rod bundle flows; Spectral element method; Large eddy simulation ID DEVELOPED TURBULENT-FLOW; NUMERICAL-SIMULATION; TRIANGULAR ARRAY; CHANNEL FLOW; HEAT; DIFFUSION; PASSAGES; MODEL AB Resolving flow near walls is critical to reproducing the high rates of shear that generate turbulence in high Reynolds number, wall-bounded flows. In the present study, we examine the resolution requirements for correctly reproducing mean flow quantities and wall shear stress distribution in a large eddy simulation using the spectral element method. In this method, derivatives are only guaranteed in a weak sense, and the same is true of quantities composed of derivatives, such as the wall shear stress. We are interested in what is required to resolve the wall shear stress in problems that lack homogeneity in at least one direction. The problem of interest is that of parallel flow through a rod bundle configuration. Several meshes for this problem are systematically compared. In addition, we conduct a study of channel flow in order to examine the issues in a canonical flow that contains spanwise homogeneity missing in rod bundle flow. In the case of channel flow, we compare several meshes and subgrid scale models. We find that typical measures of accuracy, such as the law of the wall, are not sufficient for determining the resolution of quantities that vary along the wall. Spanwise variation of wall shear stress in underresolved flows is characterized by spikes physical points without well-defined derivatives of the velocity found at element boundaries. These spikes are not particular to any subgrid scale model and are the unavoidable consequence of underresolution. Accurately reproducing the wall shear stress distribution, while minimizing the computational costs, requires increasing the number of elements along the wall (local h-refinement) and using very high order (N = 19) basis functions (p-refinement). We suggest that while these requirements are not easily generalized to grid spacing guidelines, one can apply a general process: construct a mesh that progressively increases elements along any walls, and increase the order of basis functions until the distribution of wall shear stress or any other quantity of interest is smooth. (C) 2013 Elsevier Inc. All rights reserved. C1 [Walker, Justin; Merzari, Elia; Obabko, Aleksandr; Fischer, Paul; Siegel, Andrew] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Merzari, E (reprint author), Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. EM emerzari@anl.gov FU Office of Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy [DE-AC02-06CH11357]; Office of Science of the U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported in part by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy, under Contract DE-AC02-06CH11357.; Moreover, this research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-06CH11357. NR 31 TC 5 Z9 5 U1 0 U2 2 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0142-727X EI 1879-2278 J9 INT J HEAT FLUID FL JI Int. J. Heat Fluid Flow PD DEC PY 2014 VL 50 BP 287 EP 299 DI 10.1016/j.ijheatfluidflow.2014.08.012 PG 13 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA AW8WO UT WOS:000346540400026 ER PT J AU Williams, AP Seager, R Berkelhammer, M Macalady, AK Crimmins, MA Swetnam, TW Trugman, AT Buenning, N Hryniw, N McDowell, NG Noone, D Mora, CI Rahn, T AF Williams, A. Park Seager, Richard Berkelhammer, Max Macalady, Alison K. Crimmins, Michael A. Swetnam, Thomas W. Trugman, Anna T. Buenning, Nikolaus Hryniw, Natalia McDowell, Nate G. Noone, David Mora, Claudia I. Rahn, Thom TI Causes and Implications of Extreme Atmospheric Moisture Demand during the Record-Breaking 2011 Wildfire Season in the Southwestern United States SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID SOUTHERN-OSCILLATION; HEAT-WAVE; CLIMATE; PRECIPITATION; VARIABILITY; IMPACTS AB In 2011, exceptionally low atmospheric moisture content combined with moderately high temperatures to produce a record-high vapor pressure deficit (VPD) in the southwestern United States (SW). These conditions combined with record-low cold-season precipitation to cause widespread drought and extreme wildfires. Although interannual VPD variability is generally dominated by temperature, high VPD in 2011 was also driven by a lack of atmospheric moisture. The May-July 2011 dewpoint in the SW was 4.5 standard deviations below the long-term mean. Lack of atmospheric moisture was promoted by already very dry soils and amplified by a strong ocean-to-continent sea level pressure gradient and upper-level convergence that drove dry northerly winds and subsidence upwind of and over the SW. Subsidence drove divergence of rapid and dry surface winds over the SW, suppressing southerly moisture imports and removing moisture from already dry soils. Model projections developed for the fifth phase of the Coupled Model Intercomparison Project (CMIP5) suggest that by the 2050s warming trends will cause mean warm-season VPD to be comparable to the record-high VPD observed in 2011. CMIP5 projections also suggest increased interannual variability of VPD, independent of trends in background mean levels, as a result of increased variability of dewpoint, temperature, vapor pressure, and saturation vapor pressure. Increased variability in VPD translates to increased probability of 2011-type VPD anomalies, which would be superimposed on ever-greater background VPD levels. Although temperature will continue to be the primary driver of interannual VPD variability, 2011 served as an important reminder that atmospheric moisture content can also drive impactful VPD anomalies. C1 [Williams, A. Park] Columbia Univ, Lamont Doherty Geol Observ, Div Biol & Paleo Environm, Palisades, NY 10964 USA. [Seager, Richard] Columbia Univ, Lamont Doherty Geol Observ, Div Ocean & Climate Phys, Palisades, NY 10964 USA. [Berkelhammer, Max; Noone, David] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Berkelhammer, Max; Noone, David] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Macalady, Alison K.] Univ Arizona, Sch Geog & Dev, Tucson, AZ USA. [Macalady, Alison K.; Swetnam, Thomas W.] Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA. [Crimmins, Michael A.] Univ Arizona, Coll Agr & Life Sci, Tucson, AZ USA. [Trugman, Anna T.] Princeton Univ, Dept Atmospher & Ocean Sci, Princeton, NJ 08544 USA. [Buenning, Nikolaus] Univ So Calif, Dept Earth Sci, Los Angeles, CA USA. [Hryniw, Natalia] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [McDowell, Nate G.; Mora, Claudia I.; Rahn, Thom] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Williams, AP (reprint author), Lamont Doherty Earth Observ, Div Biol & Paleo Environm, 61 Rte 9W, Palisades, NY 10964 USA. EM williams@ldeo.columbia.edu RI Williams, Park/B-8214-2016; Mora, Claudia/B-5511-2017; OI Williams, Park/0000-0001-8176-8166; Mora, Claudia/0000-0003-2042-0208; Rahn, Thomas/0000-0001-8634-1348 FU Los Alamos National Laboratory (LANL) Laboratory Directed Research and Development program; U.S. Department of Energy (DOE) Biological and Environmental Research program; NOAA [NA10OAR4310137]; NSF FX This work was supported by the Los Alamos National Laboratory (LANL) Laboratory Directed Research and Development program and the U.S. Department of Energy (DOE) Biological and Environmental Research program. Author RS was supported by NOAA awards NA10OAR4310137 (Global Decadal Hydroclimate Variability and Change) and NSF Award EASM2: Linking Near-term Future Changes in Weather and Hydroclimate in Western North America to Adaptation for Ecosystem and Water Management. Thanks are given to C. D. Allen, C. Baisan, C. Daly, D. Griffin, R. Linn, and S. A. Rauscher for helpful conversations and insights. NR 34 TC 10 Z9 10 U1 1 U2 16 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD DEC PY 2014 VL 53 IS 12 BP 2671 EP 2684 DI 10.1175/JAMC-D-14-0053.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AW4YU UT WOS:000346284300003 ER PT J AU Borque, P Kollias, P Giangrande, S AF Borque, Paloma Kollias, Pavlos Giangrande, Scott TI First Observations of Tracking Clouds Using Scanning ARM Cloud Radars SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID MESOSCALE CONVECTIVE COMPLEXES; CUMULUS CLOUDS; ATMOSPHERIC RADIATION; PRECIPITATION; FLORIDA; SYSTEM; PARAMETERIZATION; IDENTIFICATION; STRATEGIES; EVOLUTION AB Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large-drop formation (weather radar "first echo''). These measurements also complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2D) along-wind range-height indicator observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning Atmospheric Radiation Measurement Program (ARM) cloud radar (SACR) at the U.S. Department of Energy (DOE)-ARM Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger-scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous small nonprecipitating cloud elements. A new cloud identification and tracking algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2D observations (30 s) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud-element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived nonprecipitating clouds having an apparent life cycle shorter than 15 min. The advantages and disadvantages of cloud tracking using an SACR are discussed. C1 [Borque, Paloma; Kollias, Pavlos] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ, Canada. [Giangrande, Scott] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Borque, P (reprint author), Dept Atmospher & Ocean Sci, Room 945,Burnside Hall,805 Sherbrooke St West, Montreal, PQ H3A 2K6, Canada. EM paloma.borque@mail.mcgill.ca RI Measurement, Global/C-4698-2015; Giangrande, Scott/I-4089-2016 OI Giangrande, Scott/0000-0002-8119-8199 FU U.S. Department of Energy [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (OBER); U.S. DOE ASR Program; BNL Laboratory Directed Research and Development (LDRD) Program FX The authors thank the reviewers whose insightful comments and suggestions enhance this manuscript. This paper has been authored by employees of Brookhaven Science Associates, LLC, under Contract DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the U.S. government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. government purposes. Author Giangrande's work is supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (OBER) as part of the Atmospheric System Research (ASR) and ARM Programs. Additional author support was provided by the U.S. DOE ASR Program and by the BNL Laboratory Directed Research and Development (LDRD) Program. NR 30 TC 7 Z9 7 U1 2 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD DEC PY 2014 VL 53 IS 12 BP 2732 EP 2746 DI 10.1175/JAMC-D-13-0182.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AW4YU UT WOS:000346284300007 ER PT J AU Kim, JB Weichman, ML Neumark, DM AF Kim, Jongjin B. Weichman, Marissa L. Neumark, Daniel M. TI Assignment of Electronic Bands in the Photoelectron Spectrum of the VO2- Anion SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID OXIDE ANIONS AB Assignments of electronic bands in the high resolution photoelectron spectrum of the VO2- anion obtained via slow electron velocity-map imaging are discussed in light of a recent theoretical paper that questioned them and proposed an alternate assignment. C1 [Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009; OI Neumark, Daniel/0000-0002-3762-9473; Weichman, Marissa/0000-0002-2551-9146 FU Air Force Office of Scientific Research [FA9550-12-1-0160]; Defense University Research Instrumentation Program [FA9550-11-1-0300]; National Science Foundation FX This research is funded by the Air Force Office of Scientific Research under Grant No. FA9550-12-1-0160 and the Defense University Research Instrumentation Program under Grant No. FA9550-11-1-0300. M.L.W. thanks the National Science Foundation for a graduate research fellowship. NR 5 TC 1 Z9 1 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD DEC PY 2014 VL 10 IS 12 BP 5235 EP 5237 DI 10.1021/ct5007949 PG 3 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AW5OK UT WOS:000346324000004 PM 26583207 ER PT J AU Brorsen, KR Zahariev, F Nakata, H Fedorov, DG Gordon, MS AF Brorsen, Kurt R. Zahariev, Federico Nakata, Hiroya Fedorov, Dmitri G. Gordon, Mark S. TI Analytic Gradient for Density Functional Theory Based on the Fragment Molecular Orbital Method SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID LARGE SYSTEMS; METHOD FMO; CHEMISTRY; DYNAMICS; SIMULATION; SCHEME; MD AB The equations for the response terms for the fragment molecular orbital (FMO) method interfaced with the density functional theory (DFT) gradient are derived and implemented. Compared to the previous FMO-DFT gradient, which lacks response terms, the FMO-DFT analytic gradient has improved accuracy for a variety of functionals, when compared to numerical gradients. The FMO-DFT gradient agrees with the fully ab initio DFT gradient in which no fragmentation is performed, while reducing the nonlinear scaling associated with standard DFT. Solving for the response terms requires the solution of the coupled perturbed Kohn-Sham (CPKS) equations, where the CPKS equations are solved through a decoupled Z-vector procedure called the self-consistent Z-vector method. FMO-DFT is a nonvariational method and the FMO-DFT gradient is unique compared to standard DFT gradients in that the FMO-DFT gradient requires terms from both DFT and time-dependent density functional theory (TDDFT) theories. C1 [Brorsen, Kurt R.; Zahariev, Federico; Gordon, Mark S.] Iowa State Univ, Ames Lab, US DOE, Dept Chem, Ames, IA 50011 USA. [Nakata, Hiroya] Tokyo Inst Technol, Dept Biomol Engn, Midori Ku, Yokohama, Kanagawa 2268501, Japan. [Nakata, Hiroya] RIKEN Res Cluster Innovat, Nakamura Lab, Wako, Saitama 3510198, Japan. [Nakata, Hiroya] Japan Soc Promot Sci, Chiyoda Ku, Tokyo 1020083, Japan. [Fedorov, Dmitri G.] Natl Inst Adv Ind Sci & Technol, NRI, Tsukuba, Ibaraki 3058568, Japan. RP Gordon, MS (reprint author), Iowa State Univ, Ames Lab, US DOE, Dept Chem, Ames, IA 50011 USA. EM mark@si.msg.chem.iastate.edu FU Department of Energy Computational Science Graduate Fellowship; Department of Energy, Basic Energy Sciences; Iowa State University [DE-AC02-07CH11358]; Next Generation Super Computing Project, Nanoscience Program (MEXT, Japan); Computational Materials Science Initiative (CMSI, Japan) FX K.R.B. was supported by a Department of Energy Computational Science Graduate Fellowship. F.Z. and M.S.G. were supported by funds provided by the Department of Energy, Basic Energy Sciences, to the Ames Laboratory, administered by Iowa State University. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University, under Contract No. DE-AC02-07CH11358. D.G.F. was supported by the Next Generation Super Computing Project, Nanoscience Program (MEXT, Japan) and Computational Materials Science Initiative (CMSI, Japan). The computations reported here were performed on the Cyence computer at Iowa State University, obtained via a U.S. National Science Foundation MRI grant. NR 48 TC 12 Z9 12 U1 0 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD DEC PY 2014 VL 10 IS 12 BP 5297 EP 5307 DI 10.1021/ct500808p PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AW5OK UT WOS:000346324000010 PM 26583213 ER PT J AU Ganesh, P Kim, J Park, C Yoon, M Reboredo, FA Kent, PRC AF Ganesh, P. Kim, Jeongnim Park, Changwon Yoon, Mina Reboredo, Fernando A. Kent, Paul R. C. TI Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; BASIS-SET; INTERCALATION; SYSTEMS AB Highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based on point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. The results demonstrate that the lithiumcarbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches. C1 [Ganesh, P.; Park, Changwon; Yoon, Mina; Kent, Paul R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kim, Jeongnim; Reboredo, Fernando A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Kent, Paul R. C.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Ganesh, P (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM ganeshp@ornl.gov; kentpr@ornl.gov RI Ganesh, Panchapakesan/E-3435-2012; Yoon, Mina/A-1965-2016; Kent, Paul/A-6756-2008; Park, Changwon/B-3417-2016 OI Ganesh, Panchapakesan/0000-0002-7170-2902; Yoon, Mina/0000-0002-1317-3301; Kent, Paul/0000-0001-5539-4017; Park, Changwon/0000-0002-1788-045X FU Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Oak Ridge National Laboratory (ORNL) by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Division of Material Sciences, Office of Basic Energy Sciences, U.S. Department of Energy; Laboratory Directed Research and Development Program of ORNL; U.S. DOE [DE-AC05-00OR22725, DE-AC02-05CH11231] FX P.G. and P.R.C.K. (conceived and planned study, QMC and DFT calculations) were supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Research by M.Y. and C.P. (TS-vdW DFT calculations) was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory (ORNL) by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. F.A.R. (planning and discussions) was supported by the Division of Material Sciences, Office of Basic Energy Sciences, U.S. Department of Energy. J.K. (QMC development) was supported by the Laboratory Directed Research and Development Program of ORNL. Computations used OLCF and NERSC, supported under U.S. DOE contracts DE-AC05-00OR22725 and DE-AC02-05CH11231, respectively. NR 44 TC 30 Z9 30 U1 5 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD DEC PY 2014 VL 10 IS 12 BP 5318 EP 5323 DI 10.1021/ct500617z PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AW5OK UT WOS:000346324000012 PM 26583215 ER PT J AU Lehtola, S Jonsson, H AF Lehtola, Susi Jonsson, Hannes TI Variational, Self-Consistent Implementation of the Perdew-Zunger Self-Interaction Correction with Complex Optimal Orbitals SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID DENSITY-FUNCTIONAL THEORY; GENERALIZED GRADIENT APPROXIMATION; STATE CORRELATION ENERGIES; MANY-ELECTRON SYSTEMS; HARTREE-FOCK THEORY; WAVE-FUNCTIONS; CONVERGENCE ACCELERATION; THEORETICAL METHODS; MOLECULAR-ORBITALS; WANNIER FUNCTIONS AB A variational, self-consistent implementation of the Perdew-Zunger self-interaction correction (PZ-SIC), based on a unified Hamiltonian and complex optimal orbitals, is presented for finite systems and atom-centered basis sets. A simplifying approximation allowing the use of real canonical orbitals is proposed. The algorithm is based on two-step self-consistent field iterations, where the updates of the canonical orbitals and the optimal orbitals are done separately. Calculations of the energy of atoms ranging from H to Ar are presented, using various generalized gradient functionals (PBE, APBE, PBEsol) and a meta-generalized gradient functional (TPSS). While the energy of atoms is poorly described by PBEsol, which is a functional optimized to reproduce properties of solids, the PZ-SIC brings the calculations into good agreement with the best ab initio estimates. The importance of using complex optimal orbitals becomes particularly clear in calculations using the TPSS functional, where the original functional gives good results while the application of PZ-SIC with real orbitals gives highly inaccurate results. With complex optimal orbitals, PZ-SIC slightly improves the accuracy of the TPSS functional. The charge localization problem that plagues Kohn-Sham DFT functionals, including hybrid functionals, is illustrated by calculations on the CH3+ F- complex, where even PBEsol with PZ-SIC is found to give estimates of both energy and charge with accuracy comparable to that of coupled cluster calculations. C1 [Lehtola, Susi; Jonsson, Hannes] Aalto Univ, COMP Ctr Excellence, FI-00076 Espoo, Finland. [Lehtola, Susi; Jonsson, Hannes] Aalto Univ, Dept Appl Phys, FI-00076 Espoo, Finland. [Jonsson, Hannes] Univ Iceland, Fac Phys Sci, Reykjavik, Iceland. RP Lehtola, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM susi.lehtola@alumni.helsinki.fi RI Lehtola, Susi/H-1828-2013; Jonsson, Hannes/G-2267-2013 OI Lehtola, Susi/0000-0001-6296-8103; Jonsson, Hannes/0000-0001-8285-5421 FU Magnus Ernrooth Foundation; Academy of Finland through Centers of Excellence program [251748]; Academy of Finland through FiDiPro program [263294] FX S.L. gratefully acknowledges funding from the Magnus Ernrooth Foundation, and thanks David Stuck for discussions. We thank CSC IT Center for Science, Ltd. (Espoo, Finland) for providing computational resources for the present work. This work has been supported by the Academy of Finland through its Centers of Excellence (Grant No. 251748) and FiDiPro programs (Grant No. 263294). NR 124 TC 23 Z9 23 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD DEC PY 2014 VL 10 IS 12 BP 5324 EP 5337 DI 10.1021/ct500637x PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AW5OK UT WOS:000346324000013 PM 26583216 ER PT J AU Cawkwell, MJ Wood, MA Niklasson, AMN Mniszewski, SM AF Cawkwell, M. J. Wood, M. A. Niklasson, Anders M. N. Mniszewski, S. M. TI Computation of the Density Matrix in Electronic Structure Theory in Parallel on Multiple Graphics Processing Units SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID TIGHT-BINDING METHOD; 1ST PRINCIPLES; DIAGONALIZATION; SIMULATIONS AB The algorithm developed in Cawkwell, M. J. et al. J. Chem. Theory Comput. 2012, 8, 4094 for the computation of the density matrix in electronic structure theory on a graphics processing unit (GPU) using the second-order spectral projection (SP2) method [Niklasson, A. M. N. Phys. Rev. B 2002, 66, 155115] has been efficiently parallelized over multiple GPUs on a single compute node. The parallel implementation provides significant speed-ups with respect to the single GPU version with no loss of accuracy. The performance and accuracy of the parallel GPU-based algorithm is compared with the performance of the SP2 algorithm and traditional matrix diagonalization methods on a multicore central processing unit (CPU). C1 [Cawkwell, M. J.; Wood, M. A.; Niklasson, Anders M. N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Mniszewski, S. M.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. [Wood, M. A.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. RP Cawkwell, MJ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM cawkwell@lanl.gov OI Mniszewski, Susan/0000-0002-0077-0537; Cawkwell, Marc/0000-0002-8919-3368 FU Laboratory Directed Research and Development program of Los Alamos National Laboratory; U.S. Department of Energy National Nuclear Security Administration FX We thank Ed Sanville, Nick Bock, Kyle Spafford, and Jeffrey Vetter for their contributions and valuable discussions. This work was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory. Computing resources were provided in part by the Los Alamos National Laboratory Institutional Computing Program, which is supported by the U.S. Department of Energy National Nuclear Security Administration. NR 18 TC 3 Z9 3 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD DEC PY 2014 VL 10 IS 12 BP 5391 EP 5396 DI 10.1021/ct5008229 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AW5OK UT WOS:000346324000019 PM 26583222 ER PT J AU Kale, S Sode, O Weare, J Dinner, AR AF Kale, Seyit Sode, Olaseni Weare, Jonathan Dinner, Aaron R. TI Finding Chemical Reaction Paths with a Multilevel Preconditioning Protocol SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID DENSITY-FUNCTIONAL CALCULATIONS; MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; ATP HYDROLYSIS; SADDLE-POINTS; SEMIEMPIRICAL METHODS; CHORISMATE MUTASE; TRANSITION-STATES; STRING METHOD; OPTIMIZATION AB Finding transition paths for chemical reactions can be computationally costly owing to the level of quantum-chemical theory needed for accuracy. Here, we show that a multilevel preconditioning scheme that was recently introduced (Tempkin et al. J. Chem. Phys. 2014, 140, 184114) can be used to accelerate quantum-chemical string calculations. We demonstrate the method by finding minimum-energy paths for two well-characterized reactions: tautomerization of malonaldehyde and Claissen rearrangement of chorismate to prephanate. For these reactions, we show that preconditioning density functional theory (DFT) with a semiempirical method reduces the computational cost for reaching a converged path that is an optimum under DFT by several fold. The approach also shows promise for free energy calculations when thermal noise can be controlled. C1 [Kale, Seyit; Sode, Olaseni; Dinner, Aaron R.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Kale, Seyit; Sode, Olaseni; Weare, Jonathan; Dinner, Aaron R.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Sode, Olaseni; Dinner, Aaron R.] Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA. [Sode, Olaseni; Weare, Jonathan; Dinner, Aaron R.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Weare, Jonathan] Univ Chicago, Dept Stat, Chicago, IL 60637 USA. [Sode, Olaseni] Argonne Natl Lab, Argonne, IL 60439 USA. RP Dinner, AR (reprint author), Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. EM dinner@uchicago.edu FU National Institute of Health (NIH) [5 R01 GM109455-02]; National Science Foundation (NSF) through the Center for Multiscale Theory and Simulation [CHE-1136709]; Argonne National Laboratory [S10 RR029030-01] FX This research is supported by the National Institute of Health (NIH) Grant Number 5 R01 GM109455-02, and the National Science Foundation (NSF) through the Center for Multiscale Theory and Simulation (CHE-1136709). Computational resources were provided by the University of Chicago Research Computing Center (RCC). Additional resources were provided by NIH through resources of the Computation Institute and the Biological Sciences Division of the University of Chicago and Argonne National Laboratory, under grant S10 RR029030-01. We thank John H. Weare for helpful discussions and Michael Wilde for assistance with the parallel Swift framework. NR 52 TC 1 Z9 1 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD DEC PY 2014 VL 10 IS 12 BP 5467 EP 5475 DI 10.1021/ct500852y PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AW5OK UT WOS:000346324000027 PM 25516726 ER PT J AU Berardo, E Hu, HS van Dam, HJJ Shevlin, SA Woodley, SM Kowalski, K Zwijnenburg, MA AF Berardo, Enrico Hu, Han-Shi van Dam, Hubertus J. J. Shevlin, Stephen A. Woodley, Scott M. Kowalski, Karol Zwijnenburg, Martijn A. TI Describing Excited State Relaxation and Localization in TiO2 Nanoparticles Using TD-DFT SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID (TIO2)(N) CLUSTERS N=1-10; TITANIUM-DIOXIDE; ELECTRONIC-STRUCTURE; OPTICAL-PROPERTIES; QUANTUM DOTS; BASIS-SETS; ANATASE; WATER; NANOSTRUCTURES; PARTICLES AB We have investigated the description of excited state relaxation in naked and hydrated TiO2 nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials: B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled-cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to be the inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree-Fock like exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT problems during excited state relaxation for certain particles. We hypothesize that the spurious stabilization of CT states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries from those obtained using TD-CAM-B3LYP or TD-BHLYP. Finally, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in small naked and hydrated TiO2 nanoparticles is predicted to be associated with a large Stokes shift. C1 [Berardo, Enrico; Shevlin, Stephen A.; Woodley, Scott M.; Zwijnenburg, Martijn A.] UCL, Dept Chem, London WC1H 0AJ, England. [Hu, Han-Shi; van Dam, Hubertus J. J.; Kowalski, Karol] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Battelle, Richland, WA 99352 USA. RP Zwijnenburg, MA (reprint author), UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England. EM m.zwijnenburg@ud.ac.uk RI Albe, Karsten/F-1139-2011; Shevlin, Stephen/G-9269-2011; Woodley, Scott/B-6817-2012; Berardo, Enrico/D-1874-2017 OI van Dam, Hubertus Johannes Jacobus/0000-0002-0876-3294; Shevlin, Stephen/0000-0001-5896-0301; Woodley, Scott/0000-0003-3418-9043; Berardo, Enrico/0000-0003-3979-2247 FU UK Engineering and Physical Sciences Research Council (EPSRC) [EP/I004424/1]; UCL Impact studentship award; EPSRC [EP/K000144/1, EP/K000136/1, EP/L000202/1]; Department of Energy's Office of Biological and Environmental Research; Battelle Memorial Institute [DEAC06.76RLO-1830] FX We kindly acknowledge Prof. S. Bromley, Prof. F. Illas, Prof. A. Shluger, Prof. F. Furche, Dr. M. Calatayud, and Dr. A. A. Sokol for stimulating discussions. M.A.Z. acknowledges the UK Engineering and Physical Sciences Research Council (EPSRC) for a Career Acceleration Fellowship (Grant EP/I004424/1). This study has further been supported by a UCL Impact studentship award to E.B. Computational time on the computers of the Unity High Performance Computing Facility at University College London, the MIDIS regional high-performance computing service provided by the e-Infrastructure South Centre for Innovation (EPSRC Grants EP/K000144/1 and EP/K000136/1), and on Archer the UK's national high-performance computing service (via our membership of the UK's HPC Materials Chemistry Consortium, which is funded by EPSRC grant EP/L000202/1) is gratefully acknowledged. A significant portion of the research was also performed using PNNL Institutional Computing at Pacific Northwest National Laboratory and EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by the Battelle Memorial Institute under Contract DEAC06.76RLO-1830. NR 67 TC 10 Z9 10 U1 2 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD DEC PY 2014 VL 10 IS 12 BP 5538 EP 5548 DI 10.1021/ct500787x PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AW5OK UT WOS:000346324000035 PM 26583237 ER PT J AU Whitmer, JK Joshi, AA Carlton, RJ Abbott, NL de Pablo, JJ AF Whitmer, Jonathan K. Joshi, Abhijeet A. Carlton, Rebecca J. Abbott, Nicholas L. de Pablo, Juan J. TI Surface Adsorption in Nonpolarizable Atomic Models SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; THERMOTROPIC LIQUID-CRYSTALS; FREE-ENERGY CALCULATIONS; AQUEOUS INTERFACES; BIOMOLECULAR SIMULATIONS; AIR/WATER INTERFACE; HOFMEISTER SERIES; IONIC HYDRATION; WATER-SURFACE; ELECTROLYTES AB Many ionic solutions exhibit species-dependent properties, including surface tension and the salting-out of proteins. These effects may be loosely quantified in terms of the Hofmeister series, first identified in the context of protein solubility. Here, our interest is to develop atomistic models capable of capturing Hofmeister effects rigorously. Importantly, we aim to capture this dependence in computationally cheap hard ionic models, which do not exhibit dynamic polarization. To do this, we have performed an investigation detailing the effects of the water model on these properties. Though incredibly important, the role of water models in simulation of ionic solutions and biological systems is essentially unexplored. We quantify this via the ion-dependent surface attraction of the halide series (Cl, Br, I) and, in so doing, determine the relative importance of various hypothesized contributions to ionic surface free energies. Importantly, we demonstrate surface adsorption can result in hard ionic models combined with a thermodynamically accurate representation of the water molecule (TIP4Q). The effect observed in simulations of iodide is commensurate with previous calculations of the surface potential of mean force in rigid molecular dynamics and polarizable density-functional models. Our calculations are direct simulation evidence of the subtle but sensitive role of water thermodynamics in atomistic simulations. C1 [Whitmer, Jonathan K.; Joshi, Abhijeet A.; Carlton, Rebecca J.; Abbott, Nicholas L.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Whitmer, Jonathan K.; de Pablo, Juan J.] Argonne Natl Lab, Inst Mol Engn, Argonne, IL 60439 USA. [Whitmer, Jonathan K.; de Pablo, Juan J.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. RP de Pablo, JJ (reprint author), Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. EM depablo@uchicago.edu FU University of Wisconsin Materials Research Science and Engineering Center (UW-MRSEC) under National Science Foundation [DMR-1121288]; NHGRI [T32HG002760]; Department of Energy, Basic Energy Sciences, Materials Research Division FX This work was supported by the University of Wisconsin Materials Research Science and Engineering Center (UW-MRSEC) under National Science Foundation Grant No. DMR-1121288. J.K.W. was partially supported by a NHGRI training grant to the Genomic Sciences Training Program, T32HG002760. The authors acknowledge the use of computational resources accessible through the University of Wisconsin Center for High Throughput Computing, the University of Chicago Midway cluster, and Blues, a high-performance computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. Development of algorithms and codes employed for this work is supported by the Department of Energy, Basic Energy Sciences, Materials Research Division. NR 75 TC 2 Z9 2 U1 3 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD DEC PY 2014 VL 10 IS 12 BP 5616 EP 5624 DI 10.1021/ct5005406 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AW5OK UT WOS:000346324000043 PM 26583244 ER PT J AU Bousso, R Harlow, D Senatore, L AF Bousso, Raphael Harlow, Daniel Senatore, Leonardo TI Inflation after false vaccuum decay: new evidence from BICEP2 SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE inflation; gravitational waves and CMBR polarization; cosmological parameters from CMBR; string theory and cosmology ID COSMOLOGICAL CONSTANT; UNIVERSE AB Last year we argued that if slow-roll inflation followed the decay of a false vacuum in a large landscape, the steepening of the scalar potential between the inflationary plateau and the barrier generically leads to a potentially observable suppression of the scalar power spectrum at large distances. Here we revisit this analysis in light of the recent BICEP2 results. Assuming that both the BICEP2 B-mode signal and the Planck analysis of temperature fluctuations hold up, we find that the data now discriminate more sharply between our scenario and Lambda CDM. Nonzero tensor modes exclude standard Lambda CDM with notable but not yet conclusive confidence: at similar to 3.8 sigma if r = 0.2, or at similar to 3.5 sigma if r = 0.15. Of the two steepening models of our previous work, one is now ruled out by existing bounds on spatial curvature. The other entirely reconciles the tension between BICEP2 and Planck. Upcoming EE polarization measurements have the potential to rule out unmodified Lambda CDM decisively. Next generation Large Scale Structure surveys can further increase the significance. More precise measurements of BB at low l will help distinguish our scenario from other explanations. If steepening is con firmed, the prospects for detecting open curvature increase but need not be large. C1 [Bousso, Raphael] Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA. [Bousso, Raphael; Senatore, Leonardo] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bousso, Raphael] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Harlow, Daniel] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08540 USA. [Senatore, Leonardo] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94306 USA. [Senatore, Leonardo] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Senatore, Leonardo] SLAC, Menlo Pk, CA 94025 USA. RP Bousso, R (reprint author), Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA. EM bousso@lbl.gov; dharlow@princeton.edu; senatore@stanford.edu FU Berkeley Center for Theoretical Physics; National Science Foundation [1214644]; New Frontiers in Astronomy and Cosmology; U.S. Department of Energy [DE-AC02-05CH11231]; DOE [DE-FG02-12ER41854]; NSF [PHY-1068380]; Princeton Center for Theoretical Science; Foundational Questions Institute FX We would like to thank Nima Arkani-Hamed, Juan Maldacena, Steve Shenker, Eva Silver-stein, Leonard Susskind, and Matias Zaldarriaga for helpful discussions. The work of R.B. is supported by the Berkeley Center for Theoretical Physics, by the National Science Foundation (grant number 1214644), by the Foundational Questions Institute, by "New Frontiers in Astronomy and Cosmology", and by the U.S. Department of Energy (DE-AC02-05CH11231). L.S. is supported by DOE Early Career Award DE-FG02-12ER41854 and by NSF grant PHY-1068380. D.H. is supported by the Princeton Center for Theoretical Science. NR 36 TC 14 Z9 14 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD DEC PY 2014 IS 12 AR 019 DI 10.1088/1475-7516/2014/12/019 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AW5EN UT WOS:000346298800019 ER PT J AU Song, YS Sabiu, CG Okumura, T Oh, M Linder, EV AF Song, Yong-Seon Sabiu, Cristiano G. Okumura, Teppei Oh, Minji Linder, Eric V. TI Cosmological tests using redshift space clustering in BOSS DR11 SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE redshift surveys; baryon acoustic oscillations; dark energy experiments ID OSCILLATION SPECTROSCOPIC SURVEY; DIGITAL SKY SURVEY; SDSS-III; GALAXIES; CONSTANT; PARAMETER; EVOLUTION; GROWTH; WEDGES; Z=0.57 AB We analyze the clustering of large scale structure in the Universe in a model independent method, accounting for anisotropic effects along and transverse to the line of sight A large sample of 690,000 galaxies from The Baryon Oscillation Spectroscopy Survey Data Release 11 are used to determine the Hubble expansion H, angular distance D-A, and growth rate G(circle minus) at an effective redshift of z = 0.57. After careful bias and convergence studies of the effects from small scale clustering, we find that cutting transverse separations below 40 Mpc/h delivers robust results while smaller scale data leads to a bias due to unmodelled nonlinear and velocity effects. The converged results are in agreement with concordance Lambda CDM cosmology, general relativity, and minimal neutrino mass, all within the 68% confidence level. We also present results separately for the northern and southern hemisphere sky, finding a slight tension in the growth rate - potentially a signature of anisotropic stress, or just covariance with small scale velocities - but within 68% CL. C1 [Song, Yong-Seon; Oh, Minji; Linder, Eric V.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Sabiu, Cristiano G.] Korea Inst Adv Study, Seoul 130722, South Korea. [Okumura, Teppei] Univ Tokyo, WPI, Kavli IPMU, Chiba 2778582, Japan. [Song, Yong-Seon; Oh, Minji] Univ Sci & Technol, Taejon 305333, South Korea. [Linder, Eric V.] Univ Calif Berkeley, Berkeley Lab, Berkeley, CA 94720 USA. [Linder, Eric V.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. RP Song, YS (reprint author), Korea Astron & Space Sci Inst, Taejon 305348, South Korea. EM ysong@kasi.re.kr; csabiu@gmail.com; teppei.okumura@ipmu.jp; minjioh@kasi.re.kr; evlinder@lbl.gov FU US DOE [DE-SC-0007867, DE-AC02-05CH11231]; Alfred P. Sloan Foundation; Participating Institutions; National Science Foundation; U.S. Department of Energy Office of Science FX Numerical calculations were performed by using a high performance computing cluster in the Korea Astronomy and Space Science Institute and we also thank the Korea Institute for Advanced Study for providing computing resources (KIAS Center for Advanced Computation Linux Cluster System). EL was supported in part by US DOE grant DE-SC-0007867 and Contract No. DE-AC02-05CH11231. We thank Marc Manera for providing the mock simulations and Shinji Mukohyama for helpful comments on anisotropic stress.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/. NR 46 TC 6 Z9 6 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD DEC PY 2014 IS 12 AR 005 DI 10.1088/1475-7516/2014/12/005 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AW5EN UT WOS:000346298800005 ER PT J AU Savukov, I Karaulanovl, T AF Savukov, Igor Karaulanovl, Todor TI Multi-flux-transformer MRI detection With an atomic magnetometer SO JOURNAL OF MAGNETIC RESONANCE LA English DT Article DE MRI; Atomic magnetometer; Multi-channel; Flux transformer ID LOW FIELD MRI; MICROTESLA FIELDS; PHASED-ARRAY; HUMAN BRAIN; COILS AB Recently, anatomical ultra-low field (ULF) MRI has been demonstrated with an atomic magnetometer (AM). A flux-transformer (FT) has been used for decoupling MRI fields and gradients to avoid their negative effects on AM performance. The field of view (FOV) was limited because of the need to compromise between the size of the FT input coil and MRI sensitivity per voxel. Multi-channel acquisition is a well-known solution to increase FOV without significantly reducing sensitivity. In this paper, we demonstrate twofold FOV increase with the use of three FT input coils. We also show that it is possible to use a single atomic magnetometer and single acquisition channel to acquire three independent MRI signals by applying a frequency-encoding gradient along the direction of the detection array span. The approach can be generalized to more channels and can be critical for imaging applications of non-cryogenic ULF MRI where FOV needs to be large, including head, hand, spine, and whole-body imaging. (C) 2014 Elsevier Inc. All rights reserved. C1 [Savukov, Igor; Karaulanovl, Todor] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Savukov, I (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM isavukov@lanl.gov OI Savukov, Igor/0000-0003-4190-5335 FU NIH [5 R01 EB009355]; U.S. Department of Energy through the LANL/LDRD Program FX This work is sponsored by NIH Grant 5 R01 EB009355. The work of T. Karaulanov was partially supported by the U.S. Department of Energy through the LANL/LDRD Program. NR 22 TC 1 Z9 1 U1 3 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1090-7807 EI 1096-0856 J9 J MAGN RESON JI J. Magn. Reson. PD DEC PY 2014 VL 249 BP 49 EP 52 DI 10.1016/j.jmr.2014.10.009 PG 4 WC Biochemical Research Methods; Physics, Atomic, Molecular & Chemical; Spectroscopy SC Biochemistry & Molecular Biology; Physics; Spectroscopy GA AW9BM UT WOS:000346552700007 PM 25462946 ER PT J AU Halpern-Manners, NW Kennedy, DJ Trease, DR Teisseyre, TZ Malecek, NS Pines, A Bajaj, VS AF Halpern-Manners, Nicholas W. Kennedy, Daniel J. Trease, David R. Teisseyre, Thomas Z. Malecek, Nicolas S. Pines, Alexander Bajaj, Vikram S. TI Gradient-free microfluidic flow labeling using thin magnetic films and remotely detected MRI SO JOURNAL OF MAGNETIC RESONANCE LA English DT Article DE MRI; NMR; Remote detection; Microfluidics; Flow imaging ID DETECTION NMR; GAS-FLOW; RESOLUTION AB Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) may be employed as noninvasive measurements yielding detailed information about the chemical and physical parameters that define microscale flows. Despite these advantages, magnetic resonance has been difficult to combine with microfluidics, largely due to its low sensitivity when detecting small sample volumes and the difficulty of efficiently addressing individual flow pathways for parallel measurements without utilizing large electric currents to create pulsed magnetic field gradients. Here, we demonstrate that remotely-detected MRI (RD-MRI) employing static magnetic field gradients produced by thin magnetic films can be used to encode flow and overcome some of these limitations. We show how flow path and history can be selected through the use of these thin film labels and through the application of synchronized, frequency-selective pulses. This obviates the need for large eletric currents to produce pulsed magnetic field gradients and may allow for further application of NMR and MRI experiments on microscale devices. (C) 2014 Elsevier Inc. All rights reserved. C1 [Halpern-Manners, Nicholas W.; Kennedy, Daniel J.; Trease, David R.; Teisseyre, Thomas Z.; Malecek, Nicolas S.; Pines, Alexander; Bajaj, Vikram S.] EO Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Halpern-Manners, Nicholas W.; Trease, David R.; Pines, Alexander; Bajaj, Vikram S.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. [Kennedy, Daniel J.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Teisseyre, Thomas Z.] Univ Calif Berkeley, Grad Program Bioengn, Berkeley, CA 94720 USA. [Teisseyre, Thomas Z.] Univ Calif San Francisco, San Francisco, CA 94143 USA. [Malecek, Nicolas S.] Univ Calif Berkeley, Coll Engn, Berkeley, CA 94720 USA. [Bajaj, Vikram S.] Stanford Univ, Sch Med, Dept Radiol, Stanford, CA 94305 USA. RP Bajaj, VS (reprint author), Google, Google Life Sci Google X, 1600 Amphitheatre Pkwy, Mountain View, CA 94043 USA. EM vikbajaj@gmail.com OI Kennedy, Daniel/0000-0001-7186-7443 FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231. NR 22 TC 0 Z9 0 U1 1 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1090-7807 EI 1096-0856 J9 J MAGN RESON JI J. Magn. Reson. PD DEC PY 2014 VL 249 BP 135 EP 140 DI 10.1016/j.jmr.2014.09.016 PG 6 WC Biochemical Research Methods; Physics, Atomic, Molecular & Chemical; Spectroscopy SC Biochemistry & Molecular Biology; Physics; Spectroscopy GA AW9BM UT WOS:000346552700018 ER PT J AU Hasan, SM Raymond, JE Wilson, TS Keller, BK Maitland, DJ AF Hasan, Sayyeda M. Raymond, Jeffery E. Wilson, Thomas S. Keller, Brandis K. Maitland, Duncan J. TI Effects of Isophorone Diisocyanate on the Thermal and Mechanical Properties of Shape-Memory Polyurethane Foams SO MACROMOLECULAR CHEMISTRY AND PHYSICS LA English DT Article DE actuation rate; hydrophobicity; polyurethanes; shape-memory polymers; working time ID INTRACRANIAL ANEURYSMS; LOW-DENSITY; BIOMEDICAL APPLICATIONS; POLYMERS; WATER; BIOCOMPATIBILITY; COMPOSITES; STENTS AB Previously developed shape-memory polymer foams display fast actuation in water due to plasticization of the polymer network. The actuation presents itself as a depression in the glass-transition temperature when moving from dry to aqueous conditions; this effect limits the working time of the foam to 10 min when used in a transcatheter embolic device. Reproducible foams are developed by altering the chemical backbone, which can achieve working times of greater than 20 min. This is accomplished by incorporating isophorone diisocyanate into the foam, resulting in increased hydrophobicity, glass transitions, and actuation time. This delayed actuation, when compared with previous systems, allows for more optimal working time in clinical applications. C1 [Hasan, Sayyeda M.; Keller, Brandis K.; Maitland, Duncan J.] 3120 TAMU, Dept Biomed Engn, College Stn, TX 77843 USA. [Raymond, Jeffery E.] 3012 TAMU, Dept Chem, College Stn, TX 77842 USA. [Wilson, Thomas S.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Maitland, DJ (reprint author), 3120 TAMU, Dept Biomed Engn, 5045 Emerging Technol Bldg, College Stn, TX 77843 USA. EM djmaitland@tamu.edu FU National Institutes of Health/National Institute of Biomedical Imaging and Bioengineering [R01EB000462]; Texas A&M University Graduate Diversity Fellowship FX This work was supported by the National Institutes of Health/National Institute of Biomedical Imaging and Bioengineering grant R01EB000462 and the Texas A&M University Graduate Diversity Fellowship. The authors thank Marilyn Brooks, Rachael Muschalek, Jennifer Rodriguez, Anthony Boyle, Andrew Weems, and Landon Nash for their technical support on this research. NR 35 TC 15 Z9 15 U1 4 U2 31 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1022-1352 EI 1521-3935 J9 MACROMOL CHEM PHYS JI Macromol. Chem. Phys. PD DEC PY 2014 VL 215 IS 24 SI SI BP 2420 EP 2429 DI 10.1002/macp.201400407 PG 10 WC Polymer Science SC Polymer Science GA AW4RL UT WOS:000346268200004 ER PT J AU Veale, M White, M Conroy, C AF Veale, Melanie White, Martin Conroy, Charlie TI Comparing simple quasar demographics models SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: high redshift; quasars: general; galaxies: star formation ID SUPERMASSIVE BLACK-HOLES; STAR-FORMATION RATE; DARK-MATTER HALOES; ACTIVE GALACTIC NUCLEUS; LUMINOSITY FUNCTION; HOST GALAXIES; FORMING GALAXIES; MASS FUNCTION; HIGH-REDSHIFT; COSMOS FIELD AB This paper explores several simple model variations for the connections among quasars, galaxies, and dark matter haloes for redshifts 1 < z < 6. A key component of these models is that we enforce a self-consistent black hole (BH) history by tracking both BH mass and BH growth rate at all redshifts. We connect objects across redshift with a simple constant-number-density procedure, and choose a fiducial model with a relationship between BH and galaxy growth rates that is linear and evolves in a simple way with redshift. Within this fiducial model, we find the quasar luminosity function (QLF) by calculating an 'intrinsic' luminosity based on either the BH mass or BH growth rate, and then choosing a model of quasar variability with either a lognormal or truncated power-law distribution of instantaneous luminosities. This gives four model variations, which we fit to the observed QLF at each redshift. With the best-fitting models in hand, we undertake a detailed comparison of the four fiducial models, and explore changes to our fiducial model of the BH-galaxy relationship. Each model variation can successfully fit the observed QLF, the shape of which is generally set by the 'intrinsic' luminosity at the faint end and by the scatter due to variability at the bright end. We focus on accounting for the reasons why physically different models can make such similar predictions, and on identifying what observational data or physical arguments are most essential in breaking the degeneracies among models. C1 [Veale, Melanie; White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Veale, Melanie; White, Martin] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [White, Martin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Conroy, Charlie] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95060 USA. RP Veale, M (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM melanie.veale@berkeley.edu RI White, Martin/I-3880-2015 OI White, Martin/0000-0001-9912-5070 FU NASA; Sloan Foundation Fellowship; Packard Foundation Fellowship FX We would like to thank the referee Dr Ryan Hickox for comments and suggestions which improved the clarity of the paper. We also thank Tom Targett for the compilation of data in Fig. 6, and thank David Rosario for the data in Fig. 8. This work was supported by NASA. CC acknowledges support from Sloan and Packard Foundation Fellowships. This work made extensive use of the NASA Astrophysics Data System and of the astro-ph preprint archive at arXiv.org. NR 52 TC 6 Z9 6 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 1 PY 2014 VL 445 IS 2 BP 1144 EP 1156 DI 10.1093/mnras/stu1821 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AX5IJ UT WOS:000346959400006 ER PT J AU Sanchez, C Kind, MC Lin, H Miquel, R Abdalla, FB Amara, A Banerji, M Bonnett, C Brunner, R Capozzi, D Carnero, A Castander, FJ da Costa, LAN Cunha, C Fausti, A Gerdes, D Greisel, N Gschwend, J Hartley, W Jouvel, S Lahav, O Lima, M Maia, MAG Marti, P Ogando, RLC Ostrovski, F Pellegrini, P Rau, MM Sadeh, I Seitz, S Sevilla-Noarbe, I Sypniewski, A De Vicente, J Abbot, T Allam, SS Atlee, D Bernstein, G Bernstein, JP Buckley-Geer, E Burke, D Childress, MJ Davis, T DePoy, DL Dey, A Desai, S Diehl, HT Doel, P Estrada, J Evrard, A Fernandez, E Finley, D Flaugher, B Frieman, J Gaztanaga, E Glazebrook, K Honscheid, K Kim, A Kuehn, K Kuropatkin, N Lidman, C Makler, M Marshall, JL Nichol, RC Roodman, A Sanchez, E Santiago, BX Sako, M Scalzo, R Smith, RC Swanson, MEC Tarle, G Thomas, D Tucker, DL Uddin, SA Valdes, F Walker, A Yuan, F Zuntz, J AF Sanchez, C. Kind, M. Carrasco Lin, H. Miquel, R. Abdalla, F. B. Amara, A. Banerji, M. Bonnett, C. Brunner, R. Capozzi, D. Carnero, A. Castander, F. J. da Costa, L. A. N. Cunha, C. Fausti, A. Gerdes, D. Greisel, N. Gschwend, J. Hartley, W. Jouvel, S. Lahav, O. Lima, M. Maia, M. A. G. Marti, P. Ogando, R. L. C. Ostrovski, F. Pellegrini, P. Rau, M. M. Sadeh, I. Seitz, S. Sevilla-Noarbe, I. Sypniewski, A. De Vicente, J. Abbot, T. Allam, S. S. Atlee, D. Bernstein, G. Bernstein, J. P. Buckley-Geer, E. Burke, D. Childress, M. J. Davis, T. DePoy, D. L. Dey, A. Desai, S. Diehl, H. T. Doel, P. Estrada, J. Evrard, A. Fernandez, E. Finley, D. Flaugher, B. Frieman, J. Gaztanaga, E. Glazebrook, K. Honscheid, K. Kim, A. Kuehn, K. Kuropatkin, N. Lidman, C. Makler, M. Marshall, J. L. Nichol, R. C. Roodman, A. Sanchez, E. Santiago, B. X. Sako, M. Scalzo, R. Smith, R. C. Swanson, M. E. C. Tarle, G. Thomas, D. Tucker, D. L. Uddin, S. A. Valdes, F. Walker, A. Yuan, F. Zuntz, J. TI Photometric redshift analysis in the Dark Energy Survey Science Verification data SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE Astronomical data bases: surveys; galaxies: distances and redshifts; galaxies: statistics; large-scale structure of Universe ID DIGITAL SKY SURVEY; VLT DEEP SURVEY; OSCILLATION SPECTROSCOPIC SURVEY; LUMINOUS RED GALAXIES; DATA RELEASE; TARGET SELECTION; K-CORRECTIONS; FIELD-SOUTH; BLIND TEST; SDSS-III AB We present results from a study of the photometric redshift performance of the Dark Energy Survey (DES), using the early data from a Science Verification period of observations in late 2012 and early 2013 that provided science-quality images for almost 200 sq. deg. at the nominal depth of the survey. We assess the photometric redshift (photo-z) performance using about 15 000 galaxies with spectroscopic redshifts available from other surveys. These galaxies are used, in different configurations, as a calibration sample, and photo-z's are obtained and studied using most of the existing photo-z codes. A weighting method in a multidimensional colour-magnitude space is applied to the spectroscopic sample in order to evaluate the photo-z performance with sets that mimic the full DES photometric sample, which is on average significantly deeper than the calibration sample due to the limited depth of spectroscopic surveys. Empirical photo-z methods using, for instance, artificial neural networks or random forests, yield the best performance in the tests, achieving core photo-z resolutions sigma(68) similar to 0.08. Moreover, the results from most of the codes, including template-fitting methods, comfortably meet the DES requirements on photo-z performance, therefore, providing an excellent precedent for future DES data sets. C1 [Sanchez, C.; Miquel, R.; Bonnett, C.; Marti, P.; Fernandez, E.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Kind, M. Carrasco; Brunner, R.] Univ Illinois, Dept Astron, Urbana, IL 61820 USA. [Kind, M. Carrasco; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Lin, H.; Allam, S. S.; Buckley-Geer, E.; Diehl, H. T.; Estrada, J.; Finley, D.; Flaugher, B.; Frieman, J.; Kuropatkin, N.; Tucker, D. L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Abdalla, F. B.; Banerji, M.; Jouvel, S.; Lahav, O.; Sadeh, I.; Doel, P.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Amara, A.; Hartley, W.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Capozzi, D.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Carnero, A.; da Costa, L. A. N.; Gschwend, J.; Maia, M. A. G.; Ogando, R. L. C.; Ostrovski, F.; Pellegrini, P.] Observ Nacl ON MCT, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero, A.; da Costa, L. A. N.; Fausti, A.; Gschwend, J.; Lima, M.; Maia, M. A. G.; Ogando, R. L. C.; Ostrovski, F.; Santiago, B. X.] Lab Nacl E Astron, BR-20921400 Rio De Janeiro, RJ, Brazil. [Castander, F. J.; Gaztanaga, E.] IEEC CSIC, ICE, E-08193 Bellaterra, Barcelona, Spain. [Cunha, C.; Burke, D.; Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Gerdes, D.; Sypniewski, A.; Evrard, A.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Greisel, N.; Rau, M. M.; Seitz, S.] Univ Observ Munich, D-81679 Munich, Germany. [Greisel, N.; Rau, M. M.; Seitz, S.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Hartley, W.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, BR-05314970 Sao Paulo, Brazil. [Sevilla-Noarbe, I.; De Vicente, J.; Sanchez, E.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Abbot, T.; Smith, R. C.; Walker, A.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, La Serena, Chile. [Allam, S. S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Atlee, D.; Dey, A.; Valdes, F.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Bernstein, G.; Sako, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bernstein, J. P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Burke, D.; Roodman, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Childress, M. J.; Scalzo, R.; Yuan, F.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Childress, M. J.; Davis, T.; Uddin, S. A.; Yuan, F.] ARC Ctr Excellence All Sky Astrophys CAASTRO, Perth, WA, Australia. [Davis, T.] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. [DePoy, D. L.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenal, College Stn, TX 77843 USA. [DePoy, D. L.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Dey, A.] Harvard Univ, Radcliffe Inst Adv Study, Cambridge, MA 02138 USA. [Desai, S.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Desai, S.] Excellence Cluster Universe, D-85748 Garching, Germany. [Evrard, A.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A.] Univ Paris 06, Inst Astrophys Paris, F-75014 Paris, France. [Evrard, A.] CNRS, UMR7095, F-75014 Paris, France. [Glazebrook, K.; Uddin, S. A.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Honscheid, K.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Kim, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kuehn, K.; Lidman, C.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Makler, M.] Ctr Brasileiro Pesquisas Fis, ICRA, BR-22290180 Rio De Janeiro, RJ, Brazil. [Santiago, B. X.] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. [Thomas, D.] SEPnet, South East Phys Network, Denver, CO USA. [Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. RP Sanchez, C (reprint author), Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. EM csanchez@ifae.es RI De Vicente, Juan/H-3242-2015; Sanchez, Eusebio/H-5228-2015; Fernandez, Enrique/L-5387-2014; Ogando, Ricardo/A-1747-2010; Makler, Martin/G-2639-2012; Lima, Marcos/E-8378-2010; Glazebrook, Karl/N-3488-2015; Davis, Tamara/A-4280-2008; Gaztanaga, Enrique/L-4894-2014; OI De Vicente, Juan/0000-0001-8318-6813; Sanchez, Eusebio/0000-0002-9646-8198; Fernandez, Enrique/0000-0002-6405-9488; Ogando, Ricardo/0000-0003-2120-1154; Makler, Martin/0000-0003-2206-2651; Glazebrook, Karl/0000-0002-3254-9044; Davis, Tamara/0000-0002-4213-8783; Gaztanaga, Enrique/0000-0001-9632-0815; Greisel, Natascha/0000-0002-4907-6247; Evrard, August/0000-0002-4876-956X; Carrasco Kind, Matias/0000-0002-4802-3194; Scalzo, Richard/0000-0003-3740-1214; Abdalla, Filipe/0000-0003-2063-4345; Tucker, Douglas/0000-0001-7211-5729 FU US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia e Tecnologia; Deutsche Forschungsgemeinschaft; Argonne National Laboratories; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas; Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Edinburgh; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat; Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; MINECO [AYA2009-13936, AYA2012-39559, AYA2012-39620, FPA2012-39684]; FEDER from European Union; DS-CAPES Programme; STFC [ST/K00090X/1]; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) [CE110001020]; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Pennsylvania State University; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia e Tecnologia, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey.; The Collaborating Institutions are Argonne National Laboratories, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Edinburgh, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, the Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.; The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2009-13936, AYA2012-39559, AYA2012-39620, and FPA2012-39684, which include FEDER funds from the European Union. J.G acknowledges a fellowship from DS-CAPES Programme. This work was partially support by STFC grant ST/K00090X/1. Contact the author(s) to request access to research materials discussed in this paper.; Data for the OzDES spectroscopic survey were obtained with the Anglo-Australian Telescope (programme numbers 12B/11 and 13B/12). Parts of this research were conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the US Department of Energy Office of Science. The SDSS-III website is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 77 TC 55 Z9 55 U1 1 U2 14 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 1 PY 2014 VL 445 IS 2 BP 1482 EP 1506 DI 10.1093/mnras/stu1836 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AX5IJ UT WOS:000346959400034 ER PT J AU Lovekin, CC Guzik, JA AF Lovekin, C. C. Guzik, J. A. TI Pulsations as a driver for LBV variability SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: massive; stars: oscillations ID LUMINOUS BLUE VARIABLES; MASSIVE STARS; ETA-CARINAE; P-CYGNI; ERUPTIONS; EVOLUTION; OSCILLATIONS; PROGENITORS; SUPERNOVAE AB Among the most spectacular variable stars are the luminous blue variables (LBVs), which can show three types of variability. The LBV phase of evolution is poorly understood, and the driving mechanisms for the variability are not known. The most common type of variability, the S Dor instability, occurs on time-scales of tens of years. During an S Dor outburst, the visual magnitude of the star increases, while the bolometric magnitude stays approximately constant. In this work, we investigate pulsation as a possible trigger for the S Dor-type outbursts. We calculate the pulsations of envelope models using a non-linear hydrodynamic code including a time-dependent convection treatment. We initialize the pulsation in the hydrodynamic model based on linear non-adiabatic calculations. Pulsation properties for a full grid of models from 20 to 85 M-circle dot were calculated, and in this paper, we focus on the few models that show either long-period pulsations or outburst-like behaviour, with photospheric radial velocities reaching 70-80 km s(-1). At the present time, our models cannot follow mass-loss, so once the outburst event begins, our simulations are terminated. Our results show that pulsations alone are not able to drive enough surface expansion to eject the outer layers. However, the outbursts and long-period pulsations discussed here produce large variations in effective temperature and luminosity, which are expected to produce large variations in the radiatively driven mass-loss rates. C1 [Lovekin, C. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lovekin, C. C.] Mt Allison Univ, Dept Phys, Sackville, NB E4L 1E6, Canada. [Guzik, J. A.] Los Alamos Natl Lab, XTD NTA, Theoret Design Div, Los Alamos, NM 87545 USA. RP Lovekin, CC (reprint author), Los Alamos Natl Lab, T-2, Los Alamos, NM 87545 USA. EM clovekin@mta.ca FU US Department of Energy by Los Alamos National Laboratory [DE-AC52-06NA2-5396] FX The authors would like to thank Roberta Humphreys for her many helpful comments, which have greatly improved this manuscript. The authors would also like to thank Bob Deupree for his feedback on an early version of this paper. This work was performed for the US Department of Energy by Los Alamos National Laboratory under Contract No. DE-AC52-06NA2-5396. NR 31 TC 3 Z9 3 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 1 PY 2014 VL 445 IS 2 BP 1766 EP 1773 DI 10.1093/mnras/stu1899 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AX5IJ UT WOS:000346959400059 ER PT J AU Zeljkovic, I Nieminen, J Huang, D Chang, TR He, Y Jeng, HT Xu, ZJ Wen, JS Gu, GD Lin, H Markiewicz, RS Bansil, A Hoffman, JE AF Zeljkovic, Ilija Nieminen, Jouko Huang, Dennis Chang, Tay-Rong He, Yang Jeng, Horng-Tay Xu, Zhijun Wen, Jinsheng Gu, Genda Lin, Hsin Markiewicz, Robert S. Bansil, Arun Hoffman, Jennifer E. TI Nanoscale Interplay of Strain and Doping in a High-Temperature Superconductor SO NANO LETTERS LA English DT Article DE High-T-c superconductors; cuprates; Bi2Sr2CaCu2O8+x; strain; scanning tunneling microscopy ID INCOMMENSURATE MODULATION; ELECTRONIC INHOMOGENEITY; CUPRATE SUPERCONDUCTORS; ATOMIC-SCALE; OXYGEN-ATOMS; BI2SR2CACU2O8+DELTA; DISORDER; ORIGIN; IMPACT AB The highest-temperature superconductors are electronically inhomogeneous at the nanoscale, suggesting the existence of a local variable that could be harnessed to enhance the superconducting pairing. Here we report the relationship between local doping and local strain in the cuprate superconductor Bi2Sr2CaCu2O8+x. We use scanning tunneling microscopy to discover that the crucial oxygen dopants are periodically distributed in correlation with local strain. Our picoscale investigation of the intraunit-cell positions of all oxygen dopants provides essential structural input for a complete microscopic theory. C1 [Zeljkovic, Ilija; Huang, Dennis; He, Yang; Hoffman, Jennifer E.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Nieminen, Jouko] Tampere Univ Technol, FIN-33101 Tampere, Finland. [Chang, Tay-Rong; Jeng, Horng-Tay] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Jeng, Horng-Tay] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Xu, Zhijun; Wen, Jinsheng; Gu, Genda] Brookhaven Natl Lab, Upton, NY 11973 USA. [Nieminen, Jouko; Lin, Hsin; Markiewicz, Robert S.; Bansil, Arun] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Zeljkovic, Ilija] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Lin, Hsin] Natl Univ Singapore, Graphene Res Ctr, Singapore 117542, Singapore. [Lin, Hsin] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. RP Zeljkovic, I (reprint author), Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. EM ilija.zeljkovic@bc.edu; jhoffman@physics.harvard.edu RI Wen, Jinsheng/F-4209-2010; He, Yang/E-7772-2015; Zeljkovic, Ilija/N-9439-2013; Chang, Tay-Rong/K-3943-2015; xu, zhijun/A-3264-2013; Nieminen, Jouko/B-1773-2016; Hoffman, Jennifer/H-4334-2011; Lin, Hsin/F-9568-2012 OI Wen, Jinsheng/0000-0001-5864-1466; Chang, Tay-Rong/0000-0003-1222-2527; xu, zhijun/0000-0001-7486-2015; Nieminen, Jouko/0000-0003-0817-1448; Hoffman, Jennifer/0000-0003-2752-5379; Lin, Hsin/0000-0002-4688-2315 FU Air Force Office of Scientific Research [FA9550-06-1-0531]; U.S. National Science Foundation [DMR-0847433]; DOE [DE-AC02-98CH10886, DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-FG02-07ER46352]; NSERC PGS-D fellowship FX The work at Harvard University was supported by the Air Force Office of Scientific Research under Grant FA9550-06-1-0531, and the U.S. National Science Foundation under Grant DMR-0847433. The work at Brookhaven National Laboratory was supported by DOE contract at DE-AC02-98CH10886. The work at Northeastern University was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences contract number DE-FG02-07ER46352, and benefited from Northeastern University's Advanced Scientific Computation Center (ASCC), theory support at the Advanced Light Source, Berkeley and the allocation of time at the NERSC supercomputing center through DOE Grant DE-AC02-05CH11231. In addition, the resources of the Institute of Advanced Computing in Tampere were utilized for computational modeling. D.H. acknowledges the support from an NSERC PGS-D fellowship. NR 32 TC 2 Z9 2 U1 3 U2 97 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD DEC PY 2014 VL 14 IS 12 BP 6749 EP 6753 DI 10.1021/nl501890k PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AW5NY UT WOS:000346322800001 PM 25365704 ER PT J AU Kuykendall, TR Altoe, MVP Ogletree, DF Aloni, S AF Kuykendall, Tevye R. Altoe, M. Virginia P. Ogletree, D. Frank Aloni, Shaul TI Catalyst-Directed Crystallographic Orientation Control of GaN Nanowire Growth SO NANO LETTERS LA English DT Article DE GaN; gallium nitride; growth direction; catalyst; nanowire; VLS; vapor-liquid-solid; gold; nickel; alloy ID CHEMICAL-VAPOR-DEPOSITION; LIQUID-SOLID GROWTH; SEMICONDUCTOR NANOWIRES; ARRAYS; NICKEL; FUTURE AB In this work, we demonstrate that catalyst composition can be used to direct the crystallographic growth axis of GaN nanowires. By adjusting the ratio of gold to nickel in a bimetallic catalyst, we achieved selective growth of dense, uniform nanowire arrays along two nonpolar directions. A gold-rich catalyst resulted in single-crystalline nanowire growth along the {1100} or m axis, whereas a nickel-rich catalyst resulted in nanowire growth along the {1120} or a axis. The same growth control was demonstrated on two different epitaxial substrates. Using proper conditions, many of the nanowires were observed to switch direction midgrowth, resulting in monolithic single-crystal structures with segments of two distinct orientations. Cathodoluminescence spectra revealed significant differences in the optical properties of these nanowire segments, which we attribute to the electronic structures of their semipolar {1122} or {1101} sidewalls. C1 [Kuykendall, Tevye R.; Altoe, M. Virginia P.; Ogletree, D. Frank; Aloni, Shaul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Kuykendall, TR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM TRKuykendall@lbl.gov; SAloni@lbl.gov RI Foundry, Molecular/G-9968-2014; Ogletree, D Frank/D-9833-2016 OI Ogletree, D Frank/0000-0002-8159-0182 FU U.S. Department of Energy Office of Science, Office of Basic Energy Sciences [DE-AC02-05CH1123] FX This work was performed at the Molecular Foundry and its National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, with support from the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences under Contract DE-AC02-05CH1123. The authors would like to thank Marissa Libbee for assisting with the preparation of crossectional TEM samples. NR 35 TC 23 Z9 23 U1 6 U2 78 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD DEC PY 2014 VL 14 IS 12 BP 6767 EP 6773 DI 10.1021/nl502079v PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AW5NY UT WOS:000346322800004 PM 25390285 ER PT J AU Wang, JL Wang, L Yang, MY Zhu, Y Tomsia, A Mao, CB AF Wang, Jianglin Wang, Lin Yang, Mingying Zhu, Ye Tomsia, Antoni Mao, Chuanbin TI Untangling the Effects of Peptide Sequences and Nanotopographies in a Biomimetic Niche for Directed Differentiation of iPSCs by Assemblies of Genetically Engineered Viral Nanofibers SO NANO LETTERS LA English DT Article DE Stem cell niche; bionanofiber; phage display; peptides; viruses; topography ID MESENCHYMAL STEM-CELLS; NANOSCALE; FATE; BIOMATERIALS; MAINTENANCE; SURFACES AB Here we report the design of a unique matrix, assembled from engineered M13 phage bionanofibers with specific cues of nanotopographies and versatile signal peptides to simulate native niche for directing the fate of induced pluripotent stem cells (iPSCs). By independently varying the peptide sequences and nanotopographies, we find that the resident iPSCs on the phage matrix are first differentiated into mesenchymal progenitor cells (MPCs), which are further differentiated into osteoblasts in the absence of osteogenic supplements due to the elongation induced by phage nanofibers. The phage-based matrix represents not only a biomimetic stem cell niche enabling independently varying biochemical and biophysical cues in one system but also a substrate for generating a safe and efficient cell source for tissue engineering. C1 [Wang, Jianglin; Wang, Lin; Zhu, Ye; Mao, Chuanbin] Univ Oklahoma, Dept Chem & Biochem, Stephenson Life Sci Res Ctr, Norman, OK 73019 USA. [Yang, Mingying] Zhejiang Univ, Coll Anim Sci, Inst Appl Bioresource Res, Hangzhou 310058, Zhejiang, Peoples R China. [Tomsia, Antoni] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, MY (reprint author), Zhejiang Univ, Coll Anim Sci, Inst Appl Bioresource Res, Yuhangtang Rd 866, Hangzhou 310058, Zhejiang, Peoples R China. EM yangm@zju.edu.cn; cbmao@ou.edu RI WANG, JIANGLIN/L-5155-2015; OI Mao, Chuanbin/0000-0002-8142-3659 FU Oklahoma Center for Adult Stem Cell Research [434003]; National Science Foundation [CMMI-1234957, CBET-0854414, CBET-0854465, DMR-0847758]; National Institutes of Health [1R01DE015633, 1R21EB015190]; Department of Defense Peer Reviewed Medical Research Program [W81XWH-12-1-0384]; Oklahoma Center for the Advancement of Science and Technology [HR14-160]; National High Technology Research and Development Program [2013AA102507]; Zhejiang Provincial Natural Science Foundation of China [LZ12C17001]; National Natural Science Foundation of China [20804037, 21172194]; Silkworm Industry Science and Technology Innovation Team [2011R50028] FX This work was supported by Oklahoma Center for Adult Stem Cell Research (434003). It was also in part supported by National Science Foundation (CMMI-1234957, CBET-0854414, CBET-0854465, and DMR-0847758), National Institutes of Health (1R01DE015633 and 1R21EB015190), Department of Defense Peer Reviewed Medical Research Program (W81XWH-12-1-0384), and Oklahoma Center for the Advancement of Science and Technology (HR14-160). M.Y. also thanks the generous support from National High Technology Research and Development Program 863 (2013AA102507), Zhejiang Provincial Natural Science Foundation of China (LZ12C17001), National Natural Science Foundation of China (20804037 and 21172194), and Silkworm Industry Science and Technology Innovation Team (2011R50028). NR 35 TC 18 Z9 18 U1 6 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD DEC PY 2014 VL 14 IS 12 BP 6850 EP 6856 DI 10.1021/nl504358j PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AW5NY UT WOS:000346322800016 PM 25456151 ER PT J AU Lee, D DuBois, JL Kanai, Y AF Lee, Donghwa DuBois, Jonathan L. Kanai, Yosuke TI Importance of Excitonic Effect in Charge Separation at Quantum-Dot/Organic Interface: First-Principles Many-Body Calculations SO NANO LETTERS LA English DT Article DE heterogeneous interface; PbS/thiophene; charge transfer exciton; energy level alignment; quantum Monte Carlo calculations ID PBS; EXCITATIONS; ABSORPTION; MOLECULES; ACCEPTOR; SOLIDS; STATES; DOTS; SIZE AB The staggered alignment of quasiparticle energy levels is widely regarded to be the key criterion necessary for electron-hole charge separation to occur at heterogeneous material interfaces. However, staggered energy levels at nanoscale interfaces, such as those between organic molecules and inorganic quantum dots, do not necessarily imply charge separation across the interface because the excitonic effect is often significant. Using quantum Monte Carlo calculations, we perform a detailed study of the role of the excitonic effects on charge separation across a representative set of interfaces between organic molecules and quantum dots. We find that the exciton binding energy of charge transfer excitons is significantly larger than would be estimated from a simple Coulombic analysis and, at these nanoscale interfaces, can be as significant as that of Frenkel excitons. This implies that charge transfer excitons can act as trap states and facilitate electron-hole recombination instead of charge separation. We conclude that in general, for nanoscale interfaces, high-fidelity quantum many-body calculations are essential for an accurate evaluation of the detailed energetic balance between localized and delocalized excitons and, thus, are crucial for the predictive treatment of interfacial charge separation processes. C1 [Lee, Donghwa; DuBois, Jonathan L.; Kanai, Yosuke] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Lee, Donghwa; Kanai, Yosuke] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA. RP Kanai, Y (reprint author), Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. EM ykanai@unc.edu RI Kanai, Yosuke/B-5554-2016 FU Office of Science of the U.S. DOE [DE-AC02-05CH11231]; U.S. DOE at Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. DOE under contract no. DE-AC02-05CH11231, is acknowledged for providing computational resources. Part of this work was performed under the auspices of the U.S. DOE at Lawrence Livermore National Laboratory under contract no. DE-AC52-07NA27344. NR 35 TC 2 Z9 2 U1 3 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD DEC PY 2014 VL 14 IS 12 BP 6884 EP 6888 DI 10.1021/nl502894b PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AW5NY UT WOS:000346322800021 PM 25388898 ER PT J AU Zhang, YH Qian, JF Xu, W Russell, SM Chen, XL Nasybulin, E Bhattacharya, P Engelhard, MH Mei, DH Cao, RG Ding, F Cresce, AV Xu, K Zhang, JG AF Zhang, Yaohui Qian, Jiangfeng Xu, Wu Russell, Selena M. Chen, Xilin Nasybulin, Eduard Bhattacharya, Priyanka Engelhard, Mark H. Mei, Donghai Cao, Ruiguo Ding, Fei Cresce, Arthur V. Xu, Kang Zhang, Ji-Guang TI Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure SO NANO LETTERS LA English DT Article DE Electrodeposition; Li dendrite; Li nanorods; dendrite free; surface composition ID ELECTROSTATIC SHIELD MECHANISM; VIBRATING ELECTRODE TECHNIQUE; ATOMIC-FORCE MICROSCOPY; LI-ION BATTERIES; METAL BATTERIES; ELECTROCHEMICAL DEPOSITION; NONAQUEOUS ELECTROLYTES; PROPYLENE CARBONATE; SECONDARY BATTERIES; SOLID ELECTROLYTES AB Suppressing lithium (Li) dendrite growth is one of the most critical challenges for the development of Li metal batteries. Here, we report for the first time the growth of dendrite-free lithium films with a self-aligned and highly compacted nanorod structure when the film was deposited in the electrolyte consisting of 1.0 M LiPF6 in propylene carbonate with 0.05 M CsPF6 as an additive. Evolution of both the surface and the cross-sectional morphologies of the Li films during repeated Li deposition/stripping processes were systematically investigated. It is found that the formation of the compact Li nanorod structure is preceded by a solid electrolyte interphase (SEI) layer formed on the surface of the substrate. Electrochemical analysis indicates that an initial reduction process occurred at similar to 2.05 V vs Li/Li+ before Li deposition is responsible for the formation of the initial SEI, while the X-ray photoelectron spectroscopy indicates that the presence of CsPF6 additive can largely enhance the formation of LiF in this initial SEI. Hence, the smooth Li deposition in Cs+-containing electrolyte is the result of a synergistic effect of Cs+ additive and preformed SEI layer. A fundamental understanding on the composition, internal structure, and evolution of Li metal films may lead to new approaches to stabilize the long-term cycling stability of Li metal and other metal anodes for energy storage applications. C1 [Zhang, Yaohui; Qian, Jiangfeng; Xu, Wu; Chen, Xilin; Nasybulin, Eduard; Bhattacharya, Priyanka; Cao, Ruiguo; Ding, Fei; Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. [Engelhard, Mark H.] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99354 USA. [Mei, Donghai] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. [Zhang, Yaohui] Harbin Inst Technol, Dept Phys, Harbin 150001, Heilongjiang, Peoples R China. [Qian, Jiangfeng] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Hubei, Peoples R China. [Ding, Fei] Tianjin Inst Power Sources, Natl Key Lab Power Sources, Tianjin 300381, Peoples R China. [Russell, Selena M.; Cresce, Arthur V.; Xu, Kang] US Army Res Lab, Sensor & Electron Devices Directorate, Adelphi, MD 20783 USA. RP Xu, W (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. EM wu.xu@pnnl.gov; jiguang.zhang@pnnl.gov RI Mei, Donghai/A-2115-2012; Bhattacharya, Priyanka/E-1652-2011; Mei, Donghai/D-3251-2011; Cao, Ruiguo/O-7354-2016; OI Mei, Donghai/0000-0002-0286-4182; Bhattacharya, Priyanka/0000-0003-0368-8480; Engelhard, Mark/0000-0002-5543-0812; Xu, Wu/0000-0002-2685-8684 FU Joint Center for Energy Storage Research, an Energy Innovation Hub - Basic Energy Sciences, Office of Science of the U.S. DOE; DOE's Office of Biological and Environmental Research at PNNL; National Science Foundation of China [21103037]; Linus Pauling Distinguished Postdoctoral Fellowship at PNNL; DOE's Batteries for Advanced Transportation Technologies (DOE-BATT) Program FX The research work conducted at Pacific Northwest National Laboratory (PNNL) was supported by the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the Basic Energy Sciences, Office of Science of the U.S. DOE. Preliminary work on the dendrite prevention was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technology of DOE. The SEM and EDX measurements were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. Y.Z. was grateful for the support from the National Science Foundation of China (21103037). P.B. was grateful for support from a Linus Pauling Distinguished Postdoctoral Fellowship at PNNL. The EFM work conducted at the U.S. Army Research Laboratory (ARL) was supported by the DOE's Batteries for Advanced Transportation Technologies (DOE-BATT) Program. S.M.R. was supported by an appointment to the U.S. ARL Postdoctoral Fellowship Program administered by the Oak Ridge Associated Universities through a cooperative agreement with the U.S. ARL. NR 52 TC 46 Z9 46 U1 49 U2 281 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD DEC PY 2014 VL 14 IS 12 BP 6889 EP 6896 DI 10.1021/nl5039117 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AW5NY UT WOS:000346322800022 PM 25419865 ER PT J AU Lin, YC Chang, CYS Ghosh, RK Li, J Zhu, H Addou, R Diaconescu, B Ohta, T Peng, X Lu, N Kim, MJ Robinson, JT Wallace, RM Mayer, TS Datta, S Li, LJ Robinson, JA AF Lin, Yu-Chuan Chang, Chih-Yuan S. Ghosh, Ram Krishna Li, Jie Zhu, Hui Addou, Rafik Diaconescu, Bogdan Ohta, Taisuke Peng, Xin Lu, Ning Kim, Moon J. Robinson, Jeremy T. Wallace, Robert M. Mayer, Theresa S. Datta, Suman Li, Lain-Jong Robinson, Joshua A. TI Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene SO NANO LETTERS LA English DT Article DE direct growth; heterostructures; graphene; tungsten diselenide (WSe2); LEED/LEEM; electron tunneling; conductive AFM ID TRANSITION-METAL DICHALCOGENIDES; DER-WAALS HETEROSTRUCTURES; EPITAXIAL GRAPHENE; MONOLAYER MOS2; PHOTOLUMINESCENCE; GROWTH AB Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. In order to engineer pristine layers and their interfaces, epitaxial growth of such heterostructures is required. We report the direct growth of crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG) grown from silicon carbide. Raman spectroscopy, photoluminescence, and scanning tunneling microscopy confirm high-quality WSe2 monolayers, whereas transmission electron microscopy shows an atomically sharp interface, and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that an additional barrier to carrier transport beyond the expected WSe2/EG band offset exists due to the interlayer gap, which is supported by theoretical local density of states (LDOS) calculations using self-consistent density functional theory (DFT) and nonequilibrium Greens function (NEGF). C1 [Lin, Yu-Chuan; Robinson, Joshua A.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Lin, Yu-Chuan; Robinson, Joshua A.] Penn State Univ, Ctr Dimens & Layered Mat 2, University Pk, PA 16802 USA. [Chang, Chih-Yuan S.; Li, Lain-Jong] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan. [Ghosh, Ram Krishna; Li, Jie; Mayer, Theresa S.; Datta, Suman] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA. [Zhu, Hui; Addou, Rafik; Peng, Xin; Lu, Ning; Kim, Moon J.; Wallace, Robert M.] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA. [Diaconescu, Bogdan; Ohta, Taisuke] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Robinson, Jeremy T.] Naval Res Lab, Washington, DC 20375 USA. [Li, Lain-Jong] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 23955, Saudi Arabia. RP Li, LJ (reprint author), Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan. EM lance.li@kaust.edu.sa; jrobinson@psu.edu RI Li, Lain-Jong/D-5244-2011; Lu, Ning/H-2351-2012; Kim, Moon/A-2297-2010; Addou, Rafik/C-8992-2013; Wallace, Robert/A-5283-2008 OI Li, Lain-Jong/0000-0002-4059-7783; Addou, Rafik/0000-0002-5454-0315; Wallace, Robert/0000-0001-5566-4806 FU Center for Low Energy Systems Technology (LEAST); STARnet phase of the Focus Center Research Program (FCRP), a Semiconductor Research Corporation (SRC) program - MARCO; STARnet phase of the Focus Center Research Program (FCRP), a Semiconductor Research Corporation (SRC) program - DARPA; Southwest Academy on Nanoelectronics (SWAN) a SRC center - Nanoelectronics Research Initiative; Southwest Academy on Nanoelectronics (SWAN) a SRC center - NIST; NRL Base Programs through the Office of Naval Research; US DOE Office of Basic Energy Sciences (BES), Division of Materials Science and Engineering; Sandia LDRD; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Academia Sinica Taiwan; KAUST Saudi Arabia; US [AOARD-134137] FX The work at Penn State and UT Dallas was supported by the Center for Low Energy Systems Technology (LEAST), one of six centers supported by the STARnet phase of the Focus Center Research Program (FCRP), a Semiconductor Research Corporation (SRC) program sponsored by MARCO and DARPA. Work at UT-Dallas was also supported by the Southwest Academy on Nanoelectronics (SWAN) a SRC center sponsored by the Nanoelectronics Research Initiative and NIST. Device fabrication was supported by the Pennsylvania State University Materials Research Institute Nanofabrication Lab and the National Science Foundation Cooperative Agreement No. ECS-0335765. J.T.R. acknowledges support by NRL Base Programs through the Office of Naval Research. The work at SNL was supported by the US DOE Office of Basic Energy Sciences (BES), Division of Materials Science and Engineering and by Sandia LDRD. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. L.J.L. acknowledges the support from Academia Sinica Taiwan, KAUST Saudi Arabia, and US AOARD-134137. Support for the WiteC Raman system, Bruker Dimension AFM, and nanofabrication facilities was provided by the National Nanotechnology Infrastructure Net- work at Penn State. NR 30 TC 37 Z9 37 U1 23 U2 288 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD DEC PY 2014 VL 14 IS 12 BP 6936 EP 6941 DI 10.1021/nl503144a PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AW5NY UT WOS:000346322800029 PM 25383798 ER PT J AU Suh, J Park, TE Lin, DY Fu, DY Park, J Jung, HJ Chen, YB Ko, C Jang, C Sun, YH Sinclair, R Chang, J Tongay, S Wu, JQ AF Suh, Joonki Park, Tae-Eon Lin, Der-Yuh Fu, Deyi Park, Joonsuk Jung, Hee Joon Chen, Yabin Ko, Changhyun Jang, Chaun Sun, Yinghui Sinclair, Robert Chang, Joonyeon Tongay, Sefaattin Wu, Junqiao TI Doping against the Native Propensity of MoS2: Degenerate Hole Doping by Cation Substitution SO NANO LETTERS LA English DT Article DE transition-metal dichalcogenides; molybdenum disulfide; substitutional doping; p-type MoS2; p-n junction ID TRANSITION-METAL DICHALCOGENIDES; SINGLE-LAYER MOS2; MONOLAYER MOS2; 2-DIMENSIONAL SEMICONDUCTORS; MOLYBDENUM-DISULFIDE; INTEGRATED-CIRCUITS; LIGHT-EMISSION; TRANSISTORS; HETEROSTRUCTURES; TRANSPORT AB Layered transition metal dichalcogenides (TMDs) draw much attention as the key semiconducting material for two-dimensional electrical, optoelectronic, and spintronic devices. For most of these applications, both n- and p-type materials are needed to form junctions and support bipolar carrier conduction. However, typically only one type of doping is stable for a particular TMD. For example, molybdenum disulfide (MoS2) is natively an n-type presumably due to omnipresent electron-donating sulfur vacancies, and stable/controllable p-type doping has not been achieved. The lack of p-type doping hampers the development of charge-splitting p-n junctions of MoS2, as well as limits carrier conduction to spin-degenerate conduction bands instead of the more interesting, spin-polarized valence bands. Traditionally, extrinsic p-type doping in TMDs has been approached with surface adsorption or intercalation of electron-accepting molecules. However, practically stable doping requires substitution of host atoms with dopants where the doping is secured by covalent bonding. In this work, we demonstrate stable p-type conduction in MoS2 by substitutional niobium (Nb) doping, leading to a degenerate hole density of similar to 3 x 10(19) cm(-3). Structural and X-ray techniques reveal that the Nb atoms are indeed substitutionally incorporated into MoS2 by replacing the Mo cations in the host lattice. van der Waals p-n homojunctions based on vertically stacked MoS2 layers are fabricated, which enable gate-tunable current rectification. A wide range of microelectronic, optoelectronic, and spintronic devices can be envisioned from the demonstrated substitutional bipolar doping of MoS2. From the miscibility of dopants with the host, it is also expected that the synthesis technique demonstrated here can be generally extended to other TMDs for doping against their native unipolar propensity. C1 [Suh, Joonki; Fu, Deyi; Chen, Yabin; Ko, Changhyun; Tongay, Sefaattin; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Park, Tae-Eon; Jang, Chaun; Chang, Joonyeon] Korea Inst Sci & Technol, Spin Convergence Res Ctr, Seoul 136791, South Korea. [Lin, Der-Yuh] Natl Changhua Univ Educ, Dept Elect Engn, Changhua 50007, Taiwan. [Park, Joonsuk; Sinclair, Robert] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Jung, Hee Joon] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Sun, Yinghui; Wu, Junqiao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wu, JQ (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM wuj@berkeley.edu RI Sun, Yinghui/K-1945-2014; Wu, Junqiao/G-7840-2011; Foundry, Molecular/G-9968-2014; Ko, Changhyun/E-1686-2011; Sun, Yinghui/I-5947-2016; Fu, Deyi/C-6624-2011 OI Wu, Junqiao/0000-0002-1498-0148; Fu, Deyi/0000-0003-1365-8963 FU National Science Foundation [DMR-1306601]; Singapore-Berkeley Research Initiative for Sustainable Energy (SinBeRISE); KIST Institutional program; National Science Council of Taiwan [NSC 102-2112-M-018-002]; U.S. Department of Energy, Office of Science [DE-AC02-76SF00515]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-05CH11231] FX This work was supported by the National Science Foundation under Grant No. DMR-1306601. J.W. and Y.C. acknowledge support from the Singapore-Berkeley Research Initiative for Sustainable Energy (SinBeRISE). T.-E.P., C.J., and J.C. were supported by KIST Institutional program. D.-Y.L. acknowledges support by the National Science Council of Taiwan under Grant No. NSC 102-2112-M-018-002. Use of the Stanford Synchrotron Radiation Light source (SLAG National Accelerator Laboratory) and XPS at the Molecular Foundry is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515 and DE-AC02-05CH11231, respectively. We thank Dr. D. Frank Ogletree, Erik J. Nelson, and Junko Yano for assistance with MPS and EXAFS measurements, Dr. Yeonbae Lee for the transport measurements, and Prof. Mike Crommie for use of the alignment microscope. Use of the FEI Titan 80-300 ETEM at Stanford Nanocharacterization Lab and JEOL ARM 200cF at the Pacific Northwest National Lab are also acknowledged. NR 50 TC 85 Z9 85 U1 39 U2 218 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD DEC PY 2014 VL 14 IS 12 BP 6976 EP 6982 DI 10.1021/nl503251h PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AW5NY UT WOS:000346322800035 PM 25420217 ER PT J AU Kim, K Geng, J Tunuguntla, R Comolli, LR Grigoropoulos, CP Ajo-Franklin, CM Noy, A AF Kim, Kyunghoon Geng, Jia Tunuguntla, Ramya Comolli, Luis R. Grigoropoulos, Costas P. Ajo-Franklin, Caroline M. Noy, Aleksandr TI Osmotically-Driven Transport in Carbon Nanotube Porins SO NANO LETTERS LA English DT Article DE Molecular transport; nanopores; carbon nanotubes; CNT porins; ion selectivity ID MEMBRANES; HYDRATION; CHANNELS; BILAYERS; SIZE AB We report the measurements of transport of ions and uncharged species through carbon nanotube (CNT) porins-short segments of CNTs inserted into a lipid bilayer membrane. Rejection characteristics of the CNT porins are governed by size exclusion for the uncharged species. In contrast, rejection of ionic species is governed by the electrostatic repulsion and Donnan membrane equilibrium. Permeability of monovalent cations follows the general trend in the hydrated ion size, except in the case of Cs+ ions. C1 [Kim, Kyunghoon; Geng, Jia; Tunuguntla, Ramya; Noy, Aleksandr] Lawrence Livermore Natl Lab, Biol & Biotechnol Div, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Geng, Jia; Noy, Aleksandr] Univ Calif, Sch Nat Sci, Merced, CA 95340 USA. [Kim, Kyunghoon; Grigoropoulos, Costas P.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Kim, Kyunghoon; Geng, Jia; Tunuguntla, Ramya; Ajo-Franklin, Caroline M.; Noy, Aleksandr] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Comolli, Luis R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Ajo-Franklin, Caroline M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Noy, A (reprint author), Lawrence Livermore Natl Lab, Biol & Biotechnol Div, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM noy1@llnl.gov RI Geng, Jia/G-4332-2010; Foundry, Molecular/G-9968-2014 OI Geng, Jia/0000-0003-4753-1039; FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy [DE-AC52-07NA27344]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Lawrence Scholar program at LLNL FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. The LDRD program at LLNL supported CNT porin synthesis. Work at the Lawrence Livermore National Laboratory was performed under the auspices of the U.S. Department of Energy under Contract DE-AC52-07NA27344. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. R.T. acknowledges support from the Lawrence Scholar program at LLNL. We thank Dr. Frances I. Allen (LBNL) for the help with electron microscopy images of CNT porins. NR 25 TC 8 Z9 8 U1 5 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD DEC PY 2014 VL 14 IS 12 BP 7051 EP 7056 DI 10.1021/nl5034446 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AW5NY UT WOS:000346322800046 PM 25372973 ER PT J AU Rasool, HI Ophus, C Zhang, Z Crommie, MF Yakobson, BI Zettl, A AF Rasool, Haider I. Ophus, Colin Zhang, Ziang Crommie, Michael F. Yakobson, Boris I. Zettl, Alex TI Conserved Atomic Bonding Sequences and Strain Organization of Graphene Grain Boundaries SO NANO LETTERS LA English DT Article DE Graphene; grain boundary; aberration corected TEM; strain; molecular dynamics; fracture ID CHEMICAL-VAPOR-DEPOSITION; POLYCRYSTALLINE GRAPHENE; MOLYBDENUM-DISULFIDE; STRENGTH; CRYSTALLINE; TRANSPORT; GROWTH; COPPER; PHASE; FILMS AB The bulk properties of polycrystalline materials are directly influenced by the atomic structure at the grain boundaries that join neighboring crystallites. In this work, we show that graphene grain boundaries are comprised of structural building blocks of conserved atomic bonding sequences using aberration corrected high-resolution transmission electron microscopy. These sequences appear as stretches of identically arranged periodic or aperiodic regions of dislocations. Atomic scale strain and lattice rotation of these interfaces is derived by mapping the exact positions of every carbon atom at the boundary with ultrahigh precision. Strain fields are organized into local tensile and compressive dipoles in both periodic and aperiodic dislocation regions. Using molecular dynamics tension simulations, we find that experimental grain boundary structures maintain strengths that are comparable to idealized periodic boundaries despite the presence of local aperiodic dislocation sequences. C1 [Rasool, Haider I.; Crommie, Michael F.; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Rasool, Haider I.; Crommie, Michael F.; Zettl, Alex] Univ Calif Berkeley, Ctr Integrated Nanomech Syst COINS, Berkeley, CA 94720 USA. [Rasool, Haider I.; Crommie, Michael F.; Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ophus, Colin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Mol Foundry, Berkeley, CA 94720 USA. [Zhang, Ziang; Yakobson, Boris I.] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA. [Zhang, Ziang; Yakobson, Boris I.] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Zhang, Ziang; Yakobson, Boris I.] Rice Univ, Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA. [Crommie, Michael F.; Zettl, Alex] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. RP Zettl, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM azettl@berkeley.edu RI Foundry, Molecular/G-9968-2014; Zettl, Alex/O-4925-2016; OI Zettl, Alex/0000-0001-6330-136X; Ophus, Colin/0000-0003-2348-8558 FU Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under sp2-bonded Materials Program [DE-AC02-05CH11231]; National Science Foundation [DMR-1206512]; Office of Naval Research [N00014-12-1-1008]; National Center for Electron Microscopy (NCEM) of the Lawrence Berkeley National Laboratory (LBNL) [DE-AC02-05CH11231]; Office of Naval Research (MURI); National Science Foundation CMMI (EAGER) [0951145] FX H.I.R and A.Z. acknowledge support in part by the Director, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract DE-AC02-05CH11231, within the sp2-bonded Materials Program, which provided for detailed TEM characterization; the National Science Foundation under grant DMR-1206512, which provided for Raman characterization; and the Office of Naval Research under grant N00014-12-1-1008 which supported graphene synthesis and transfer. C.O. acknowledges support by the National Center for Electron Microscopy (NCEM) of the Lawrence Berkeley National Laboratory (LBNL), under Contract DE-AC02-05CH11231. Z.Z. and B.I.Y. acknowledge support from the Office of Naval Research (MURI) and from the National Science Foundation CMMI (EAGER Grant 0951145). NR 33 TC 11 Z9 12 U1 3 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD DEC PY 2014 VL 14 IS 12 BP 7057 EP 7063 DI 10.1021/nl503450r PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AW5NY UT WOS:000346322800047 PM 25375022 ER PT J AU Wang, LL Tan, TL Johnson, DD AF Wang, Lin-Lin Tan, Teck L. Johnson, Duane D. TI Configurational Thermodynamics of Alloyed Nanoparticles with Adsorbates SO NANO LETTERS LA English DT Article DE Cluster expansion; first principles; nanoalloy; Pd; Rh; O; core-shell nanoparticle ID EFFECTIVE CLUSTER INTERACTIONS; SHAPE CHANGES; 1ST-PRINCIPLES CALCULATION; VARIATION FORMALISM; RH NANOPARTICLES; PHASE-DIAGRAM; CO OXIDATION; PD; CATALYSTS; TRANSFORMATIONS AB Changes in the chemical configuration of alloyed nanoparticle (NP) catalysts induced by adsorbates under working conditions, such as reversal in core-shell preference, are crucial to understand and design NP functionality. We extend the cluster expansion method to predict the configurational thermodynamics of alloyed NPs with adsorbates based on density functional theory data. Exemplified with PdRh NPs having O-coverage up to a monolayer, we fully detail the core-shell behavior across the entire range of NP composition and O-coverage with quantitative agreement to in situ experimental data. Optimally fitted cluster interactions in the heterogeneous system are the key to enable quantitative Monte Carlo simulations and design. C1 [Wang, Lin-Lin; Johnson, Duane D.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Tan, Teck L.] Agcy Sci Technol & Res, Inst High Performance Comp, Singapore 138632, Singapore. [Johnson, Duane D.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Wang, LL (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM llw@ameslab.gov; ddj@ameslab.gov OI Johnson, Duane/0000-0003-0794-7283 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Science and Engineering; Division of Chemical Science, Geosciences, and Bioscience [DEFG02-03ER15476]; DOE [DE-AC02-07CH11358]; National Science Foundation [DMR-012448]; Materials Computation Center [DMR-0325939]; Ames Laboratory FX Work at Ames Laboratory was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Science and Engineering (method), with partial support (L.L.W. for catalysis application) from the Division of Chemical Science, Geosciences, and Bioscience (DEFG02-03ER15476), and L.D.R.D. funding for materials discovery and design at Ames Laboratory. The research was performed at the Ames Laboratory, which is operated for DOE by Iowa State University under Contract No. DE-AC02-07CH11358. We modified the initial thesis version of T.T.K. code developed by T.L.T. at the University of Illinois Urbana-Champaign (http://hdl.handle.net/2142/24227), which was supported by the National Science Foundation (grant DMR-012448) and the Materials Computation Center (Grant DMR-0325939). NR 49 TC 9 Z9 9 U1 10 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD DEC PY 2014 VL 14 IS 12 BP 7077 EP 7084 DI 10.1021/nl503519m PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AW5NY UT WOS:000346322800050 PM 25411918 ER PT J AU Lee, J Bao, W Ju, L Schuck, PJ Wang, F Weber-Bargioni, A AF Lee, Jiye Bao, Wei Ju, Long Schuck, P. James Wang, Feng Weber-Bargioni, Alexander TI Switching Individual Quantum Dot Emission through Electrically Controlling Resonant Energy Transfer to Graphene SO NANO LETTERS LA English DT Article DE Resonant energy transfer; graphene; colloidal quantum dots; FRET; nanophotonic switch ID OPTICAL MODULATOR; NANOANTENNA; PLASMONICS AB Electrically controlling resonant energy transfer of optical emitters provides a novel mechanism to switch nanoscale light sources on and off individually for optoelectronic applications. Graphenes optical transitions are tunable through electrostatic gating over a broad wavelength spectrum, making it possible to modulate energy transfer from a variety of nanoemitters to graphene at room temperature. We demonstrate photoluminescence switching of individual colloidal quantum dots by electrically tuning their energy transfer to graphene. The gate dependence of energy transfer modulation confirms that the transition occurs when the Fermi level is shifted over half the emitters excitation energy. The modulation magnitude decreases rapidly with increasing emittergraphene distance (d), following the 1/d4 rate trend unique to the energy transfer process to two-dimensional materials. C1 [Lee, Jiye; Bao, Wei; Schuck, P. James; Weber-Bargioni, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Bao, Wei] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Ju, Long; Wang, Feng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Lee, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM jiyelee@lbl.gov; awb@lbl.gov RI Bao, Wei/B-4520-2014; Foundry, Molecular/G-9968-2014; wang, Feng/I-5727-2015 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Scientific User Facilities Division [DE-AC02-05CH11231]; Laboratory Directed Research and Development (LDRD) from Berkeley Lab by Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Scientific User Facilities Division (NSRCs) Early Career Award FX Work at the Molecular Foundry was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Scientific User Facilities Division, under contract no. DE-AC02-05CH11231. The device fabrication was supported by the Laboratory Directed Research and Development (LDRD) funding from Berkeley Lab, provided by the Director, Office of Science, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. The analysis was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Scientific User Facilities Division (NSRCs) Early Career Award. We thank April Sawvel for help with colloidal quantum dots and Hsin-Zon Tsai, Han-Sae Jung, Xuefei Feng, and Prof. Michael Crommie for support with graphene growth and transfer. NR 38 TC 15 Z9 16 U1 4 U2 65 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD DEC PY 2014 VL 14 IS 12 BP 7115 EP 7119 DI 10.1021/nl503587z PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AW5NY UT WOS:000346322800055 PM 25383700 ER PT J AU Zhong, Y Wang, JF Zhang, RF Wei, WB Wang, HM Lu, XP Bai, F Wu, HM Haddad, R Fan, HY AF Zhong, Yong Wang, Jiefei Zhang, Ruifang Wei, Wenbo Wang, Haimiao Lu, Xinpeng Bai, Feng Wu, Huimeng Haddad, Raid Fan, Hongyou TI Morphology-Controlled Self-Assembly and Synthesis of Photocatalytic Nanocrystals SO NANO LETTERS LA English DT Article DE Morphology control; self-assembly; photocatalytic nanocrystals; hierarchical porphrin ID MICELLES AB Abilities to control the size and shape of nanocrystals in order to tune functional properties are an important grand challenge. Here we report a surfactant self-assembly induced micelle encapsulation method to fabricate porphyrin nanocrystals using the optically active precursor zinc porphyrin (ZnTPP). Through confined noncovalent interactions of ZnTPP within surfactant micelles, nanocrystals with a series of morphologies including nanodisk, tetragonal rod, and hexagonal rod, as well as amorphous spherical particle are synthesized with controlled size and dimension. A phase diagram that describes morphology control is achieved via kinetically controlled nucleation and growth. Because of the spatial ordering of ZnTPP, the hierarchical nanocrystals exhibit both collective optical properties resulted from coupling of molecular ZnTPP and shape dependent photocatalytic activities in photo degradation of methyl orange pollutants. This simple ability to exert rational control over dimension and morphology provides new opportunities for practical applications in photocatalysis, sensing, and nanoelectronics. C1 [Zhong, Yong; Wang, Jiefei; Zhang, Ruifang; Wei, Wenbo; Wang, Haimiao; Lu, Xinpeng; Bai, Feng] Henan Univ, Minist Educ, Key Lab Special Funct Mat, Kaifeng 475004, Peoples R China. [Zhong, Yong; Wang, Jiefei; Zhang, Ruifang; Wei, Wenbo; Wang, Haimiao; Lu, Xinpeng; Bai, Feng] Collaborat Innovat Ctr Nano Funct Mat & Applicat, Suzhou, Henan Province, Peoples R China. [Bai, Feng; Haddad, Raid; Fan, Hongyou] Univ New Mexico, Dept Chem & Biol Engn, NSF Ctr Microengn Mat, Albuquerque, NM 87131 USA. [Wu, Huimeng; Fan, Hongyou] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Bai, F (reprint author), Henan Univ, Minist Educ, Key Lab Special Funct Mat, Kaifeng 475004, Peoples R China. EM baifengsun@gmail.com; hfan@sandia.gov RI Zhong, Yong/N-1586-2014 OI Zhong, Yong/0000-0003-1446-3148 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; National Natural Science Foundation of China [21422102, 21171049, 21403054, 50828302]; Program for Science & Technology Innovation Talents in Universities of Henan Province [13HASTIT009]; Program for Changjiang Scholars and Innovative Research Team in University [PCS IRT1126]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; NSF EPSCOR grant; NNIN grant FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. F.B. acknowledged the support from the National Natural Science Foundation of China (21422102, 21171049, 21403054, and 50828302), Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 13HASTIT009), and Program for Changjiang Scholars and Innovative Research Team in University (No. PCS IRT1126). TEM studies were performed in the Department of Earth and Planetary Sciences at University of New Mexico. We acknowledge the use of the SEM facility supported by the NSF EPSCOR and NNIN grants. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 24 TC 26 Z9 26 U1 10 U2 130 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD DEC PY 2014 VL 14 IS 12 BP 7175 EP 7179 DI 10.1021/nl503761y PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AW5NY UT WOS:000346322800064 PM 25365754 ER PT J AU Saberi, H Opatrny, T Molmer, K del Campo, A AF Saberi, Hamed Opatrny, Tomas Molmer, Klaus del Campo, Adolfo TI Adiabatic tracking of quantum many-body dynamics SO PHYSICAL REVIEW A LA English DT Article ID TRAPPED IONS; PHASE-TRANSITION; SIMULATION AB The nonadiabatic dynamics of a many-body system driven through a quantum critical point can be controlled using counterdiabatic driving, where the formation of excitations is suppressed by assisting the dynamics with auxiliary multiple-body nonlocal interactions. We propose an alternative scheme which circumvents practical challenges to realize shortcuts to adiabaticity in mesoscopic systems by tailoring the functional form of the auxiliary counterdiabatic interactions. A driving scheme resorting in short-range few-body interactions is shown to generate an effectively adiabatic dynamics. C1 [Saberi, Hamed; Opatrny, Tomas] Palacky Univ, Fac Sci, Dept Opt, Olomouc 77146, Czech Republic. [Saberi, Hamed] Univ Paderborn, Dept Phys, D-33098 Paderborn, Germany. [Saberi, Hamed] Univ Paderborn, CeOPP, D-33098 Paderborn, Germany. [Molmer, Klaus] Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [del Campo, Adolfo] Univ Massachusetts, Dept Phys, Boston, MA 02125 USA. [del Campo, Adolfo] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [del Campo, Adolfo] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Saberi, H (reprint author), Palacky Univ, Fac Sci, Dept Opt, 17 Listopadu 12, Olomouc 77146, Czech Republic. EM saberi@optics.upol.cz RI del Campo, Adolfo/B-8439-2009 OI del Campo, Adolfo/0000-0003-2219-2851 FU Aarhus University; European Social Fund; state budget of the Czech Republic [CZ.1.07/2.3.00/30.0041]; U.S. Department of Energy through the LANL/LDRD Program; LANL J. Robert Oppenheimer fellowship FX We acknowledge stimulating discussions with Daniel Lidar, Marek M. Rams, Alexey Gorshkov, and Xi-Wen Guan. H.S. is grateful to Aarhus University for support and hospitality. This work was financed by the European Social Fund and the state budget of the Czech Republic, Project No. CZ.1.07/2.3.00/30.0041. This research is further supported by the U.S. Department of Energy through the LANL/LDRD Program and a LANL J. Robert Oppenheimer fellowship (A.D.). NR 50 TC 27 Z9 27 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD DEC 1 PY 2014 VL 90 IS 6 AR 060301 DI 10.1103/PhysRevA.90.060301 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA AW6NJ UT WOS:000346385900001 ER PT J AU Chern, GW Rahmani, A Martin, I Batista, CD AF Chern, Gia-Wei Rahmani, Armin Martin, Ivar Batista, Cristian D. TI Quantum Hall ice SO PHYSICAL REVIEW B LA English DT Article ID CURRENT-CARRYING STATES; RANDOM MAGNETIC-FIELD; SPIN ICE; GROUND-STATE; LOCALIZATION; LATTICE; REALIZATION; FERROMAGNET; PERCOLATION; MODELS AB We show that the chiral kagome ice manifold exhibits an anomalous integer quantum Hall effect (IQHE) when coupled to itinerant electrons. Although electron-mediated interactions select a magnetically ordered ground state, the full ice manifold can coexist with the IQHE over a range of finite temperatures. The degenerate ice states provide a natural realization of power-law correlated flux disorder, for which the spectral gap of the system remains robust. The quantized (up to exponentially small finite-temperature corrections) Hall conductance persists over a wide range of electron densities due to the disorder-induced localization of electronic states. C1 [Chern, Gia-Wei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. RP Chern, GW (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Batista, Cristian/J-8008-2016 FU U.S. DOE under the LANL/LDRD program; LANL Oppenheimer fellowship FX We are grateful to C. Castelnovo, S. Trugman, and K. Yang for helpful discussions. This work was supported by the U.S. DOE under the LANL/LDRD program (C.B., G.W.C., I.M., and A.R.) and a LANL Oppenheimer fellowship (G.W.C.). NR 50 TC 5 Z9 5 U1 5 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD DEC 1 PY 2014 VL 90 IS 24 AR 241102 DI 10.1103/PhysRevB.90.241102 PG 5 WC Physics, Condensed Matter SC Physics GA AW6PK UT WOS:000346391000002 ER PT J AU Lee, M Choi, ES Huang, X Ma, J Dela Cruz, CR Matsuda, M Tian, W Dun, ZL Dong, S Zhou, HD AF Lee, M. Choi, E. S. Huang, X. Ma, J. Dela Cruz, C. R. Matsuda, M. Tian, W. Dun, Z. L. Dong, S. Zhou, H. D. TI Magnetic phase diagram and multiferroicity of Ba3MnNb2O9: A spin-5/2 triangular lattice antiferromagnet with weak easy-axis anisotropy SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; FRUSTRATED MAGNETS; POLARIZATION; DIFFRACTION; FIELD AB We have performed magnetic, electric, thermal, and neutron powder diffraction (NPD) experiments as well as density functional theory (DFT) calculations on Ba3MnNb2O9. All results suggest that Ba3MnNb2O9 is a spin-5/2 triangular lattice antiferromagnet (TLAF) with weak easy-axis anisotropy. At zero field, we observed a narrow two-step transition at T-N1 = 3.4 K and T-N2 = 3.0 K. The neutron diffraction measurement and the DFT calculation indicate a 120 degrees spin structure in the ab plane with out-of-plane canting at low temperatures. With increasing magnetic field, the 120 degrees spin structure evolves into up-up-down (uud) and oblique phases showing successive magnetic phase transitions, which fits well to the theoretical prediction for the 2D Heisenberg TLAF with classical spins. Multiferroicity is observed when the spins are not collinear but suppressed in the uud and oblique phases. C1 [Lee, M.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Lee, M.; Choi, E. S.; Zhou, H. D.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Huang, X.; Dong, S.] Southeast Univ, Dept Phys, Nanjing 211189, Jiangsu, Peoples R China. [Ma, J.; Dela Cruz, C. R.; Matsuda, M.; Tian, W.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37381 USA. [Dun, Z. L.; Zhou, H. D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Lee, M (reprint author), Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. EM echoi@magnet.fsu.edu; hzhou10@utk.edu RI Dong (董), Shuai (帅)/A-5513-2008; Ma, Jie/C-1637-2013; Tian, Wei/C-8604-2013; Matsuda, Masaaki/A-6902-2016; Lee, Minseong/D-5371-2016; Dun, Zhiling/F-5617-2016; dela Cruz, Clarina/C-2747-2013; Zhou, Haidong/O-4373-2016 OI Dong (董), Shuai (帅)/0000-0002-6910-6319; Tian, Wei/0000-0001-7735-3187; Matsuda, Masaaki/0000-0003-2209-9526; Dun, Zhiling/0000-0001-6653-3051; dela Cruz, Clarina/0000-0003-4233-2145; FU State of Florida; NHMFL User Collaboration Support Grant; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; 973 Projects of China [2011CB922101]; NSFC [51322206]; [NSF-DMR-1157490]; [NSF-DMR-1350002] FX We thank Tim Murphy, Ju-Hyun Park, and Glover Jones for their help with experiments carried out at the NHMFL. The NHMFL is supported by NSF-DMR-1157490, the State of Florida, and by the additional funding from the NHMFL User Collaboration Support Grant. Research at Oak Ridge National Laboratory was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. X.H and S.D. were supported by the the 973 Projects of China (Grant No. 2011CB922101) and NSFC (Grant No. 51322206). Z.L.D. and H.D.Z. thank the support of NSF-DMR-1350002. E.S.C and H.D.Z. thank the support of the late James S.Brooks. NR 43 TC 13 Z9 13 U1 8 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 1 PY 2014 VL 90 IS 22 AR 224402 DI 10.1103/PhysRevB.90.224402 PG 8 WC Physics, Condensed Matter SC Physics GA AW6OK UT WOS:000346388500013 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Ochesanu, S Roland, B Rougny, R Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Heracleous, N Kalogeropoulos, A Keaveney, J Kim, TJ Lowette, S Maes, M Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Caillol, C Clerbaux, B De Lentdecker, G Favart, L Gay, APR Leonard, A Marage, PE Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Crucy, S Dildick, S Garcia, G Klein, B Lellouch, J Mccartin, J Rios, AAO Ryckbosch, D Diblen, SS Sigamani, M Strobbe, N Thyssen, F Tytgat, M Walsh, S Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jez, P Komm, M Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Martins, TD Pol, ME Alda, WL Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Malek, M Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santaolalla, J Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Marinov, A Piperov, S Rodozov, M Sultanov, G Vutova, M Dimitrov, A Glushkov, I Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Chen, M Du, R Jiang, CH Liang, D Liang, S Meng, X Plestina, R Tao, J Wang, X Wang, Z Asawatangtrakuldee, C Ban, Y Guo, Y Li, Q Li, W Liu, S Mao, Y Qian, SJ Wang, D Zhang, L Zou, W Avila, C Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Mekterovic, D Morovic, S Tikvica, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Bodlak, M Finger, M Finger, M Assran, Y Elgammal, S Kamel, AE Mahmoud, MA Mahrous, A Radi, A Kadastik, M Muntel, M Murumaa, M Raidal, M Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Nayak, A Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Busson, P Charlot, C Daci, N Dahms, T Dalchenko, M Dobrzynski, L Filipovic, N Florent, A de Cassagnac, RG Mastrolorenzo, L Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sauvan, JB Sirois, Y Veelken, C Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Chabert, EC Collard, C Conte, E Drouhin, F Fontaine, JC Gele, D Goerlach, U Goetzmann, C Juillot, P Le Bihan, AC Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Brochet, S Montoya, CAC Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Alvarez, JDR Sgandurra, L Sordini, V Vander Donckt, M Verdier, P Viret, S Xiao, H Tsamalaidze, Z Autermann, C Beranek, S Bontenackels, M Calpas, B Edelhoff, M Feld, L Hindrichs, O Klein, K Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Padeken, K Papacz, P Reithler, H Schmitz, SA Sonnenschein, L Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bell, AJ Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Garcia, JG Geiser, A Grebenyuk, A Gunnellini, P Habib, S Hauk, J Hellwig, G Hempel, M Horton, D Jung, H Kasemann, M Katsas, P Kieseler, J Kleinwort, C Kramer, M Krucker, D Lange, W Leonard, J Lipka, K Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Novgorodova, O Nowak, F Ntomari, E Perrey, H Petrukhin, A Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Riedl, C Ron, E Sahin, MO Salfeld-Nebgen, J Saxena, P Schmidt, R Schoerner-Sadenius, T Schroder, M Stein, M Trevino, ADRV Walsh, R Wissing, C Martin, MA Blobel, V Vignali, MC Enderle, H Erfle, J Garutti, E Goebel, K Gorner, M Gosselink, M Haller, J Hoing, RS Kirschenmann, H Klanner, R Kogler, R Lange, J Lapsien, T Lenz, T Marchesini, I Ott, J Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Seidel, M Sibille, J Sola, V Stadie, H Steinbruck, G Troendle, D Usai, E Vanelderen, L Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hartmann, F Hauth, T Held, H Hoffmann, KH Husemann, U Katkov, I Kornmayer, A Kuznetsova, E Pardo, PL Martschei, D Mozer, MU Muller, T Niegel, M Nuernberg, A Oberst, O Quast, G Rabbertz, K Ratnikov, F Rocker, S Schilling, FP Schott, G Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Wolf, R Zeise, M Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kesisoglou, S Kyriakis, A Loukas, D Markou, A Markou, C Psallidas, A Topsis-Giotis, I Gouskos, L Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Jones, J Kokkas, P Manthos, N Papadopoulos, I Paradas, E Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Palinkas, J Szillasi, Z Raics, P Trocsanyi, ZL Ujvari, B Swain, SK Beri, SB Bhatnagar, V Dhingra, N Gupta, R Kalsi, AK Kaur, M Mittal, M Nishu, N Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Singh, AP Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Chatterjee, RM Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Banerjee, S Dewanjee, RK Dugad, S Arfaei, H Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Jafari, A Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Safarzadeh, B Zeinali, M Grunewald, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Radogna, R Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, P Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Fabbricatore, P Ferro, F Lo Vetere, M Musenich, R Robutti, E Tosi, S Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Di Guida, S Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bellato, M Biasotto, M Branca, A Checchia, P Dorigo, T Dosselli, U Galanti, M Gasparini, F Gasparini, U Giubilato, P Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Zotto, P Zucchetta, A Zumerle, G Gabusi, M Ratti, SP Riccardi, C Salvini, P Vitulo, P Biasini, M Bilei, GM Fano, L Lariccia, P Mantovani, G Menichelli, M Romeo, F Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fiori, F Foa, L Giassi, A Grippo, MT Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Moon, CS Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F Del Re, D Diemoz, M Grassi, M Jorda, C Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Rovelli, C Soffi, L Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Degano, A Demaria, N Finco, L Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Ortona, G Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Montanino, D Schizzi, A Umer, T Zanetti, A Chang, S Kim, TY Nam, SK Kim, DH Kim, GN Kim, JE Kim, MS Kong, DJ Lee, S Oh, YD Park, H Sakharov, A Son, DC Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, KS Park, SK Roh, Y Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kwon, E Lee, J Seo, H Yu, I Juodagalvis, A Komaragiri, JR Castilla-Valdez, H De la Cruz-Burelo, E Heredia-de la Cruz, I Lopez-Fernandez, R Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Krofcheck, D Butler, PH Doesburg, R Reucroft, S Ahmad, A Ahmad, M Asghar, MI Butt, J Hassan, Q Hoorani, HR Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Wolszczak, W Bargassa, P Silva, CBDE Faccioli, P Parracho, PGF Gallinaro, M Nguyen, F Antunes, JR Seixas, J Varela, J Vischia, P Golutvin, I Kamenev, A Karjavin, V Konoplyanikov, V Korenkov, V Kozlov, G Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Savina, M Shmatov, S Shulha, S Smirnov, V Tikhonenko, E Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Ekmedzic, M Milosevic, J Aguilar-Benitez, M Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Vazquez, DD Del Valle, AE Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Willmott, C Albajar, C de Troconiz, JF Missiroli, M Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Cifuentes, JAB Cabrillo, IJ Calderon, A Campderros, JD Fernandez, M Gomez, G Sanchez, JG Graziano, A Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A David, A De Guio, F De Roeck, A De Visscher, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Franzoni, G Funk, W Giffels, M Gigi, D Gill, K Giordano, D Girone, M Giunta, M Glege, F Garrido, RGR Gowdy, S Guida, R Hammer, J Hansen, M Harris, P Hegeman, J Innocente, V Janot, P Karavakis, E Kousouris, K Krajczar, K Lecoq, P Lourenco, C Magini, N Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Mulders, M Musella, P Orsini, L Cortezon, EP Pape, L Perez, E Perrozzi, L Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Pimia, M Piparo, D Plagge, M Racz, A Reece, W Rolandi, G Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Steggemann, J Stieger, B Stoye, M Treille, D Tsirou, A Veres, GI Vlimant, JR Wohri, HK Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Grab, C Hits, D Lustermann, W Mangano, B Marini, AC del Arbol, PMR Meister, D Mohr, N Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pauss, F Peruzzi, M Quittnat, M Rebane, L Ronga, FJ Rossini, M Starodumov, A Takahashi, M Theofilatos, K Wallny, R Weber, HA Amsler, C Canelli, MF Chiochia, V De Cosa, A Hinzmann, A Hreus, T Rikova, MI Kilminster, B Mejias, BM Ngadiuba, J Robmann, P Snoek, H Taroni, S Verzetti, M Yang, Y Cardaci, M Chen, KH Ferro, C Kuo, CM Li, SW Lin, W Lu, YJ Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Liu, YF Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wang, M Wilken, R Asavapibhop, B Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Karapinar, G Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Bahtiyar, H Barlas, E Cankocak, K Gunaydin, YO Vardarli, FI Yucel, M Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Senkin, S Smith, VJ Williams, T Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Ilic, J Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Dunne, P Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Sparrow, A Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A Lawson, P Lazic, D Richardson, C Rohlf, J Sperka, D St John, J Sulak, L Alimena, J Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Jabeen, S Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Swanson, J Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Kopecky, A Lander, R Miceli, T Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Rutherford, B Searle, M Shalhout, S Smith, J Squires, M Tripathi, M Wilbur, S Yohay, R Andreev, V Cline, D Cousins, R Erhan, S Everaerts, P Farrell, C Felcini, M Hauser, J Ignatenko, M Jarvis, C Rakness, G Takasugi, E Valuev, V Weber, M Babb, J Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Jandir, P Lacroix, F Liu, H Long, OR Luthra, A Malberti, M Nguyen, H Shrinivas, A Sturdy, J Sumowidagdo, S Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Evans, D Holzner, A Kelley, R Kovalskyi, D Lebourgeois, M Letts, J Macneill, I Padhi, S Palmer, C Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bradmiller-Feld, J Campagnari, C Danielson, T Dishaw, A Flowers, K Sevilla, MF Geffert, P George, C Golf, F Incandela, J Justus, C Villalba, RM Mccoll, N Pavlunin, V Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Kcira, D Mott, A Newman, HB Pena, C Rogan, C Spiropulu, M Timciuc, V Wilkinson, R Xie, S Zhu, RY Azzolini, V Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Drell, BR Ford, WT Gaz, A Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Chu, J Eggert, N Gibbons, LK Hopkins, W Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Gruenendahl, S Gutsche, O Hanlon, J Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kaadze, K Klima, B Kwan, S Linacre, J Lincoln, D Lipton, R Liu, T Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Nahn, S Newman-Holmes, C O'Dell, V Prokofyev, O Ratnikova, N Sexton-Kennedy, E Sharma, S Soha, A Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitbeck, A Whitmore, J Wu, W Yang, F Yun, JC Acosta, D Avery, P Bourilkov, D Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Field, RD Fisher, M Fu, Y Furic, IK Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Rinkevicius, A Shchutska, L Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Moon, DH O'Brien, C Silkworth, C Turner, P Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Dilsiz, K Duru, F Haytmyradov, M Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Rahmat, R Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Gritsan, AV Maksimovic, P Martin, C Swartz, M Baringer, P Bean, A Benelli, G Gray, J Kenny, RP Murray, M Noonan, D Sanders, S Sekaric, J Stringer, R Wang, Q Wood, JS Barfuss, AF Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Saini, LK Shrestha, S Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Skuja, A Temple, J Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Bauer, G Busza, W Cali, IA Chan, M Di Matteo, L Dutta, V Ceballos, GG Goncharov, M Gulhan, D Klute, M Lai, YS Lee, YJ Levin, A Luckey, PD Ma, T Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stoeckli, F Sumorok, K Velicanu, D Veverka, J Wyslouch, B Yang, M Yoon, AS Zanetti, M Zhukova, V Dahmes, B De Benedetti, A Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Singovsky, A Tambe, N Turkewitz, J Acosta, JG Cremaldi, LM Kroeger, R Oliveros, S Perera, L Sanders, DA Summers, D Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Suarez, RG Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Malik, S Meier, F Snow, GR Dolen, J Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Massironi, A Nash, D Orimoto, T Trocino, D Wood, D Zhang, J Anastassov, A Hahn, KA Kubik, A Lusito, L Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Berry, D Brinkerhoff, A Chan, KM Drozdetskiy, A Hildreth, M Jessop, C Karmgard, DJ Kellams, N Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Bylsma, B Durkin, LS Flowers, S Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Vuosalo, C Winer, BL Wolfe, H Wulsin, HW Berry, E Elmer, P Halyo, V Hebda, P Hunt, A Jindal, P Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zenz, SC Zuranski, A Brownson, E Lopez, A Mendez, H Vargas, JER Alagoz, E Barnes, VE Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jha, MK Jones, M Jung, K Kress, M Leonardo, N Pegna, DL Maroussov, V Merkel, P Miller, DH Neumeister, N Radburn-Smith, BC Shipsey, I Silvers, D Svyatkovskiy, A Wang, F Xie, W Xu, L Yoo, HD Zablocki, J Zheng, Y Parashar, N Stupak, J Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Michlin, B Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Rose, K Spanier, S Yang, ZC York, A Bouhali, O Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Krutelyov, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Rose, A Safonov, A Sakuma, T Suarez, I Tatarinov, A Toback, D Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kovitanggoon, K Kunori, S Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Wood, J Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Duric, S Friis, E Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Levine, A Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Sarangi, T Savin, A Smith, WH Woods, N AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Ochesanu, S. Roland, B. Rougny, R. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Heracleous, N. Kalogeropoulos, A. Keaveney, J. Kim, T. J. Lowette, S. Maes, M. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Caillol, C. Clerbaux, B. De Lentdecker, G. Favart, L. Gay, A. P. R. Leonard, A. Marage, P. E. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Crucy, S. Dildick, S. Garcia, G. Klein, B. Lellouch, J. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Diblen, S. Salva Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jez, P. Komm, M. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Correa Martins Junior, M. Dos Reis Martins, T. Pol, M. E. Alda Junior, W. L. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Malek, M. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santaolalla, J. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, P. Marinov, A. Piperov, S. Rodozov, M. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Du, R. Jiang, C. H. Liang, D. Liang, S. Meng, X. Plestina, R. Tao, J. Wang, X. Wang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, Q. Li, W. Liu, S. Mao, Y. Qian, S. J. Wang, D. Zhang, L. Zou, W. Avila, C. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Mekterovic, D. Morovic, S. Tikvica, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Bodlak, M. Finger, M. Finger, M., Jr. Assran, Y. Elgammal, S. Kamel, A. Ellithi Mahmoud, M. A. Mahrous, A. Radi, A. Kadastik, M. Muentel, M. Murumaa, M. Raidal, M. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Nayak, A. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Busson, P. Charlot, C. Daci, N. Dahms, T. Dalchenko, M. Dobrzynski, L. Filipovic, N. Florent, A. de Cassagnac, R. Granier Mastrolorenzo, L. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sauvan, J. B. Sirois, Y. Veelken, C. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Juillot, P. Le Bihan, A. -C. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Brochet, S. Montoya, C. A. Carrillo Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Alvarez, J. D. Ruiz Sgandurra, L. Sordini, V. Vander Donckt, M. Verdier, P. Viret, S. Xiao, H. Tsamalaidze, Z. Autermann, C. Beranek, S. Bontenackels, M. Calpas, B. Edelhoff, M. Feld, L. Hindrichs, O. Klein, K. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Padeken, K. Papacz, P. Reithler, H. Schmitz, S. A. Sonnenschein, L. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bell, A. J. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Garcia, J. Garay Geiser, A. Grebenyuk, A. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Hempel, M. Horton, D. Jung, H. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Kraemer, M. Kruecker, D. Lange, W. Leonard, J. Lipka, K. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Novgorodova, O. Nowak, F. Ntomari, E. Perrey, H. Petrukhin, A. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Sahin, M. O. Salfeld-Nebgen, J. Saxena, P. Schmidt, R. Schoerner-Sadenius, T. Schroeder, M. Stein, M. Trevino, A. D. R. Vargas Walsh, R. Wissing, C. Martin, M. Aldaya Blobel, V. Vignali, M. Centis Enderle, H. Erfle, J. Garutti, E. Goebel, K. Goerner, M. Gosselink, M. Haller, J. Hoeing, R. S. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Lapsien, T. Lenz, T. Marchesini, I. Ott, J. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Seidel, M. Sibille, J. Sola, V. Stadie, H. Steinbrueck, G. Troendle, D. Usai, E. Vanelderen, L. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hartmann, F. Hauth, T. Held, H. Hoffmann, K. H. Husemann, U. Katkov, I. Kornmayer, A. Kuznetsova, E. Pardo, P. Lobelle Martschei, D. Mozer, M. U. Mueller, Th. Niegel, M. Nuernberg, A. Oberst, O. Quast, G. Rabbertz, K. Ratnikov, F. Roecker, S. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Wolf, R. Zeise, M. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kesisoglou, S. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Psallidas, A. Topsis-Giotis, I. Gouskos, L. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Jones, J. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Palinkas, J. Szillasi, Z. Raics, P. Trocsanyi, Z. L. Ujvari, B. Swain, S. K. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kalsi, A. K. Kaur, M. Mittal, M. Nishu, N. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Singh, A. P. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Chatterjee, R. M. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Banerjee, S. Dewanjee, R. K. Dugad, S. Arfaei, H. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Grunewald, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Radogna, R. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, P. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Ferro, F. Lo Vetere, M. Musenich, R. Robutti, E. Tosi, S. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bellato, M. Biasotto, M. Branca, A. Checchia, P. Dorigo, T. Dosselli, U. Galanti, M. Gasparini, F. Gasparini, U. Giubilato, P. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Zotto, P. Zucchetta, A. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Salvini, P. Vitulo, P. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Moon, C. S. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Grassi, M. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Soffi, L. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Degano, A. Demaria, N. Finco, L. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Ortona, G. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Montanino, D. Schizzi, A. Umer, T. Zanetti, A. Chang, S. Kim, T. Y. Nam, S. K. Kim, D. H. Kim, G. N. Kim, J. E. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Sakharov, A. Son, D. C. Kim, J. Y. Kim, Zero J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kwon, E. Lee, J. Seo, H. Yu, I. Juodagalvis, A. Komaragiri, J. R. Castilla-Valdez, H. De la Cruz-Burelo, E. Heredia-de la Cruz, I. Lopez-Fernandez, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Doesburg, R. Reucroft, S. Ahmad, A. Ahmad, M. Asghar, M. I. Butt, J. Hassan, Q. Hoorani, H. R. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Wolszczak, W. Bargassa, P. Beirao Da Cruz E Silva, C. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Nguyen, F. Rodrigues Antunes, J. Seixas, J. Varela, J. Vischia, P. Golutvin, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Korenkov, V. Kozlov, G. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Savina, M. Shmatov, S. Shulha, S. Smirnov, V. Tikhonenko, E. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Ekmedzic, M. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De la Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. Willmott, C. Albajar, C. de Troconiz, J. F. Missiroli, M. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Duarte Campderros, J. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Graziano, A. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. David, A. De Guio, F. De Roeck, A. De Visscher, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Franzoni, G. Funk, W. Giffels, M. Gigi, D. Gill, K. Giordano, D. Girone, M. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Gowdy, S. Guida, R. Hammer, J. Hansen, M. Harris, P. Hegeman, J. Innocente, V. Janot, P. Karavakis, E. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Magini, N. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Mulders, M. Musella, P. Orsini, L. Cortezon, E. Palencia Pape, L. Perez, E. Perrozzi, L. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Plagge, M. Racz, A. Reece, W. Rolandi, G. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Treille, D. Tsirou, A. Veres, G. I. Vlimant, J. R. Woehri, H. K. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Grab, C. Hits, D. Lustermann, W. Mangano, B. Marini, A. C. del Arbol, P. Martinez Ruiz Meister, D. Mohr, N. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pauss, F. Peruzzi, M. Quittnat, M. Rebane, L. Ronga, F. J. Rossini, M. Starodumov, A. Takahashi, M. Theofilatos, K. Wallny, R. Weber, H. A. Amsler, C. Canelli, M. F. Chiochia, V. De Cosa, A. Hinzmann, A. Hreus, T. Rikova, M. Ivova Kilminster, B. Mejias, B. Millan Ngadiuba, J. Robmann, P. Snoek, H. Taroni, S. Verzetti, M. Yang, Y. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Li, S. W. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Liu, Y. F. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wang, M. Wilken, R. Asavapibhop, B. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Karapinar, G. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Bahtiyar, H. Barlas, E. Cankocak, K. Gunaydin, Y. O. Vardarli, F. I. Yucel, M. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Senkin, S. Smith, V. J. Williams, T. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Ilic, J. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Dunne, P. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. Lawson, P. Lazic, D. Richardson, C. Rohlf, J. Sperka, D. St John, J. Sulak, L. Alimena, J. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Jabeen, S. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Swanson, J. Breedon, R. Breto, G. Sanchez, M. Calderon De la Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Kopecky, A. Lander, R. Miceli, T. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Rutherford, B. Searle, M. Shalhout, S. Smith, J. Squires, M. Tripathi, M. Wilbur, S. Yohay, R. Andreev, V. Cline, D. Cousins, R. Erhan, S. Everaerts, P. Farrell, C. Felcini, M. Hauser, J. Ignatenko, M. Jarvis, C. Rakness, G. Takasugi, E. Valuev, V. Weber, M. Babb, J. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Jandir, P. Lacroix, F. Liu, H. Long, O. R. Luthra, A. Malberti, M. Nguyen, H. Shrinivas, A. Sturdy, J. Sumowidagdo, S. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Evans, D. Holzner, A. Kelley, R. Kovalskyi, D. Lebourgeois, M. Letts, J. Macneill, I. Padhi, S. Palmer, C. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bradmiller-Feld, J. Campagnari, C. Danielson, T. Dishaw, A. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Incandela, J. Justus, C. Villalba, R. Magana Mccoll, N. Pavlunin, V. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Kcira, D. Mott, A. Newman, H. B. Pena, C. Rogan, C. Spiropulu, M. Timciuc, V. Wilkinson, R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Ford, W. T. Gaz, A. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Chu, J. Eggert, N. Gibbons, L. K. Hopkins, W. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gruenendahl, S. Gutsche, O. Hanlon, J. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kaadze, K. Klima, B. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Nahn, S. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Ratnikova, N. Sexton-Kennedy, E. Sharma, S. Soha, A. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitbeck, A. Whitmore, J. Wu, W. Yang, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Rinkevicius, A. Shchutska, L. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Moon, D. H. O'Brien, C. Silkworth, C. Turner, P. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Haytmyradov, M. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Rahmat, R. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Gritsan, A. V. Maksimovic, P. Martin, C. Swartz, M. Baringer, P. Bean, A. Benelli, G. Gray, J. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Sekaric, J. Stringer, R. Wang, Q. Wood, J. S. Barfuss, A. F. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Bauer, G. Busza, W. Cali, I. A. Chan, M. Di Matteo, L. Dutta, V. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Klute, M. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Ma, T. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Velicanu, D. Veverka, J. Wyslouch, B. Yang, M. Yoon, A. S. Zanetti, M. Zhukova, V. Dahmes, B. De Benedetti, A. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Singovsky, A. Tambe, N. Turkewitz, J. Acosta, J. G. Cremaldi, L. M. Kroeger, R. Oliveros, S. Perera, L. Sanders, D. A. Summers, D. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Suarez, R. Gonzalez Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, F. Snow, G. R. Dolen, J. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Massironi, A. Nash, D. Orimoto, T. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Hahn, K. A. Kubik, A. Lusito, L. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Berry, D. Brinkerhoff, A. Chan, K. M. Drozdetskiy, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Bylsma, B. Durkin, L. S. Flowers, S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Vuosalo, C. Winer, B. L. Wolfe, H. Wulsin, H. W. Berry, E. Elmer, P. Halyo, V. Hebda, P. Hunt, A. Jindal, P. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zenz, S. C. Zuranski, A. Brownson, E. Lopez, A. Mendez, H. Vargas, J. E. Ramirez Alagoz, E. Barnes, V. E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jha, M. K. Jones, M. Jung, K. Kress, M. Leonardo, N. Pegna, D. Lopes Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shipsey, I. Silvers, D. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Stupak, J. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Rose, K. Spanier, S. Yang, Z. C. York, A. Bouhali, O. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Krutelyov, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Rose, A. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kovitanggoon, K. Kunori, S. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Wood, J. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Duric, S. Friis, E. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Levine, A. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Sarangi, T. Savin, A. Smith, W. H. Woods, N. CA CMS Collaboration TI Search for supersymmetry with razor variables in pp collisions at root s=7 TeV SO PHYSICAL REVIEW D LA English DT Article ID MISSING TRANSVERSE-MOMENTUM; DETECTOR ATLAS COLLABORATION; PROTON-PROTON COLLISIONS; HADRON COLLIDERS; JETS; GLUINOS; EVENTS; EXTENSION; NEUTRINO; PROGRAM AB The razor approach to search for R-parity conserving supersymmetric particles is described in detail. Two analyses are considered: an inclusive search for new heavy particle pairs decaying to final states with at least two jets and missing transverse energy, and a dedicated search for final states with at least one jet originating from a bottom quark. For both the inclusive study and the study requiring a bottom-quark jet, the data are examined in exclusive final states corresponding to all-hadronic, single-lepton, and dilepton events. The study is based on the data set of proton-proton collisions at root s = 7 TeV collected with the CMS detector at the LHC in 2011, corresponding to an integrated luminosity of 4.7 fb(-1). The study consists of a shape analysis performed in the plane of two kinematic variables, denoted M-R and R-2, that correspond to the mass and transverse energy flow, respectively, of pair-produced, heavy, new-physics particles. The data are found to be compatible with the background model, defined by studying event simulations and data control samples. Exclusion limits for squark and gluino production are derived in the context of the constrained minimal supersymmetric standard model (CMSSM) and also for simplified-model spectra (SMS). Within the CMSSM parameter space considered, squark and gluino masses up to 1350 GeV are excluded at 95% confidence level, depending on the model parameters. For SMS scenarios, the direct production of pairs of top or bottom squarks is excluded for masses as high as 400 GeV. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Austrian Acad Sci, Inst Hochenergiephys, A-1050 Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Heracleous, N.; Kalogeropoulos, A.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Correa Martins Junior, M.; Dos Reis Martins, T.; Pol, M. E.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Bodlak, M.; Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Mahmoud, M. A.; Mahrous, A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Giammanco, A.; Kadastik, M.; Muentel, M.; Murumaa, M.; Raidal, M.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Bernet, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Beluffi, C.; Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Strasbourg, Univ Haute Alsace Mulhouse, CNRS, IN2P3,Inst Puridisciplinaire Hubert Curien, Strasbourg, France. [Gadrat, S.] Inst Natl Phys Nucl & Phys Particules, CNRS, IN2P3, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Bontenackels, M.; Calpas, B.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Abdulsalam, A.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Inst Phys 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst 3B, Aachen, Germany. [Leonard, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Grebenyuk, A.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Hempel, M.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Kraemer, M.; Kruecker, D.; Lange, W.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Ntomari, E.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Sahin, M. O.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schroeder, M.; Stein, M.; Trevino, A. D. R. Vargas; Walsh, R.; Wissing, C.] Deutsch Elekt Synchrotron, Hamburg, Germany. [Martin, M. Aldaya; Blobel, V.; Vignali, M. Centis; Enderle, H.; Erfle, J.; Garutti, E.; Goebel, K.; Goerner, M.; Gosselink, M.; Haller, J.; Hoeing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Troendle, D.; Usai, E.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hartmann, F.; Hauth, T.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Pardo, P. Lobelle; Martschei, D.; Mozer, M. U.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Roecker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys, Aghia Paraskevi, Greece. [Gouskos, L.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Jones, J.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kalsi, A. K.; Kaur, M.; Mittal, M.; Nishu, N.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Singh, A. P.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, EHEP, Bombay 400005, Maharashtra, India. [Banerjee, S.; Guchait, M.; Dewanjee, R. K.; Dugad, S.] Tata Inst Fundamental Res, HECR, Bombay 400005, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Insti Res Fundamental Sci IPM, Tehran, Iran. [Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] INFN Sez Bari, Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] INFN Sez Bologna, Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] INFN Sez Catania, CSFNSM, Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, CSFNSM, Catania, Italy. [Giordano, F.] Ctr Siciliano Fis Nucl & Struttura Mat, I-95125 Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] INFN Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Ferro, F.; Lo Vetere, M.; Musenich, R.; Robutti, E.; Tosi, S.] INFN Sez Genova, Genoa, Italy. [Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] INFN Sez Milano Bicocca, Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] INFN Sez Napoli, Naples, Italy. [Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellato, M.; Biasotto, M.; Branca, A.; Checchia, P.; Dorigo, T.; Dosselli, U.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] INFN Sez Padova, Padua, Italy. [Branca, A.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Salvini, P.; Vitulo, P.] INFN Sez Pavia, Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.] INFN Sez Perugia, Perugia, Italy. [Biasini, M.; Fano, L.; Lariccia, P.; Mantovani, G.; Romeo, F.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Rolandi, G.] INFN Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Donato, S.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Soffi, L.; Traczyk, P.] INFN Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Grassi, M.; Longo, E.; Margaroli, F.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.; Traczyk, P.] Univ Roma, Rome, Italy. [Squillacioti, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] INFN Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Degano, A.; Finco, L.; Migliore, E.; Monaco, V.; Ortona, G.; Pacher, L.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.; Zanetti, A.] INFN Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.] Univ Trieste, Trieste, Italy. [Chang, S.; Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, J. E.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.] Vilnius State Univ, Vilnius, Lithuania. [Komaragiri, J. R.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-de la Cruz, I.; Lopez-Fernandez, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Doesburg, R.; Reucroft, S.] Univ Canterbury, Christchurch, New Zealand. [Ahmad, A.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bargassa, P.; Beirao Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Tsamalaidze, Z.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Korenkov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Smirnov, V.; Tikhonenko, E.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Matveev, V.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Popov, A.; Zhukov, V.; Katkov, I.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Willmott, C.] CIEMAT, Ctr Invest Energet Medioambientales & Tecnol, Madrid, Spain. [Albajar, C.; de Troconiz, J. F.; Missiroli, M.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.] Univ Oviedo, Oviedo, Spain. [Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Lopez Virto, A.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Rabady, D.; Genchev, V.; Iaydjiev, P.; Contardo, D.; Lingemann, J.; Guthoff, M.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Evangelou, I.; Foudas, C.; Bencze, G.; Sharma, A.; Mohanty, A. K.; Giordano, F.; Fiorendi, S.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Meola, S.; Paolucci, P.; Galanti, M.; Palla, F.; Pelliccioni, M.; Chamizo Llatas, M.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Mulders, M.; Musella, P.; Orsini, L.; Cortezon, E. Palencia; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Plagge, M.; Racz, A.; Reece, W.; Rolandi, G.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Sekmen, S.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Meister, D.; Mohr, N.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Ronga, F. J.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Ngadiuba, J.; Robmann, P.; Snoek, H.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Wilkinson, R.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Suwonjandee, N.] Chulalongkorn Univ, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.] Bogazici Univ, Istanbul, Turkey. [Bahtiyar, H.; Barlas, E.; Cankocak, K.; Vardarli, F. I.; Yucel, M.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Ctr Nat Sci, Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Belyaev, A.; Newbold, D. M.; Bell, K. W.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Ilic, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL 35487 USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Richardson, C.; Rohlf, J.; Sperka, D.; St John, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Takasugi, E.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Liu, H.; Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Shrinivas, A.; Sturdy, J.; Sumowidagdo, S.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Kovalskyi, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Villalba, R. Magana; Mccoll, N.; Pavlunin, V.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Dubinin, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chu, J.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY 14853 USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gruenendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Ratnikova, N.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL 32611 USA. [Gaultney, V.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.] Univ Illinois, Chicago, IL 60637 USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA 52242 USA. [Bernet, C.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Gray, J.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Yoon, A. S.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; De Benedetti, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN 55455 USA. [Acosta, J. G.; Cremaldi, L. M.; Kroeger, R.; Oliveros, S.; Perera, L.; Sanders, D. A.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Kumar, A.; Dolen, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL 60208 USA. [Berry, D.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hunt, A.; Jindal, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR 00681 USA. [Savoy-Navarro, A.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Li, W.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX 77005 USA. [Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Malik, S.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Rose, K.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN 37996 USA. [Rose, A.; Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX 77843 USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Mao, Y.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA 22904 USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.] Wayne State Univ, Detroit, MI 48201 USA. [Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, Brazil. [Assran, Y.] Suez Univ, Suez, Egypt. [Elgammal, S.; Radi, A.] British Univ Egypt, Cairo, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Mahrous, A.] Helwan Univ, Cairo, Egypt. [Radi, A.] Ain Shams Univ, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Gurtu, A.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Biasotto, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, I-53100 Siena, Italy. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Heredia-de la Cruz, I.] Univ Michoacana, Morelia, Michoacan, Mexico. [Kim, V.] St Petersburg State Polytechn Univ, St Petersburg, Russia. [Colafranceschi, S.] Univ Roma, Fac Ingn, Rome, Italy. [Rolandi, G.] Scuola Normale, Pisa, Italy. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Istanbul Univ, Fac Sci, Istanbul, Turkey. [Bahtiyar, H.; Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Gunaydin, Y. O.] Kahramanmaras Sutcu Imam Univ, TR-46050 Kahramanmaras, Turkey. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Pioppi, M.] Univ Perugia, INFN Sez Perugia, I-06100 Perugia, Italy. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Bouhali, O.] Texas A&M Univ, Doha, Qatar. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI VARDARLI, Fuat Ilkehan/B-6360-2013; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Wulz, Claudia-Elisabeth/H-5657-2011; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Montanari, Alessandro/J-2420-2012; Hernandez Calama, Jose Maria/H-9127-2015; ciocci, maria agnese /I-2153-2015; My, Salvatore/I-5160-2015; Petrushanko, Sergey/D-6880-2012; Manganote, Edmilson/K-8251-2013; Bernardes, Cesar Augusto/D-2408-2015; Raidal, Martti/F-4436-2012; Calderon, Alicia/K-3658-2014; Lokhtin, Igor/D-7004-2012; Ferguson, Thomas/O-3444-2014; da Cruz e Silva, Cristovao/K-7229-2013; Grandi, Claudio/B-5654-2015; Chinellato, Jose Augusto/I-7972-2012; Leonidov, Andrey/P-3197-2014; Benussi, Luigi/O-9684-2014; Gulmez, Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Seixas, Joao/F-5441-2013; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Da Silveira, Gustavo Gil/N-7279-2014; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Konecki, Marcin/G-4164-2015; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Azarkin, Maxim/N-2578-2015; de Jesus Damiao, Dilson/G-6218-2012; Calvo Alamillo, Enrique/L-1203-2014; Flix, Josep/G-5414-2012; Cerrada, Marcos/J-6934-2014; Perez-Calero Yzquierdo, Antonio/F-2235-2013; Novaes, Sergio/D-3532-2012; Della Ricca, Giuseppe/B-6826-2013; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Kirakosyan, Martin/N-2701-2015; Lo Vetere, Maurizio/J-5049-2012; Ragazzi, Stefano/D-2463-2009; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; Matorras, Francisco/I-4983-2015; TUVE', Cristina/P-3933-2015; Dudko, Lev/D-7127-2012; KIM, Tae Jeong/P-7848-2015; Paganoni, Marco/A-4235-2016; Menasce, Dario Livio/A-2168-2016; Rolandi, Luigi (Gigi)/E-8563-2013; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; OI Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Montanari, Alessandro/0000-0003-2748-6373; Hernandez Calama, Jose Maria/0000-0001-6436-7547; ciocci, maria agnese /0000-0003-0002-5462; My, Salvatore/0000-0002-9938-2680; Ferguson, Thomas/0000-0001-5822-3731; Grandi, Claudio/0000-0001-5998-3070; Chinellato, Jose Augusto/0000-0002-3240-6270; Benussi, Luigi/0000-0002-2363-8889; Giubilato, Piero/0000-0003-4358-5355; Gallinaro, Michele/0000-0003-1261-2277; Lenzi, Piergiulio/0000-0002-6927-8807; Lucchini, Marco Toliman/0000-0002-7497-7450; Raval, Amita/0000-0003-0164-4337; Torassa, Ezio/0000-0003-2321-0599; Sogut, Kenan/0000-0002-9682-2855; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Androsov, Konstantin/0000-0003-2694-6542; Fiorendi, Sara/0000-0003-3273-9419; Martelli, Arabella/0000-0003-3530-2255; Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538; Korenkov, Vladimir/0000-0002-2342-7862; Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre David/0000-0001-5854-7699; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Konecki, Marcin/0000-0001-9482-4841; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; de Jesus Damiao, Dilson/0000-0002-3769-1680; Calvo Alamillo, Enrique/0000-0002-1100-2963; Flix, Josep/0000-0003-2688-8047; Cerrada, Marcos/0000-0003-0112-1691; Perez-Calero Yzquierdo, Antonio/0000-0003-3036-7965; Novaes, Sergio/0000-0003-0471-8549; Della Ricca, Giuseppe/0000-0003-2831-6982; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Lo Vetere, Maurizio/0000-0002-6520-4480; Ragazzi, Stefano/0000-0001-8219-2074; Rovelli, Tiziano/0000-0002-9746-4842; Matorras, Francisco/0000-0003-4295-5668; TUVE', Cristina/0000-0003-0739-3153; Dudko, Lev/0000-0002-4462-3192; KIM, Tae Jeong/0000-0001-8336-2434; Paganoni, Marco/0000-0003-2461-275X; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Gerosa, Raffaele/0000-0001-8359-3734; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Sguazzoni, Giacomo/0000-0002-0791-3350; da Cruz e silva, Cristovao/0000-0002-1231-3819; Casarsa, Massimo/0000-0002-1353-8964; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Ghezzi, Alessio/0000-0002-8184-7953; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619 FU BMWF (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); CSF (Croatia); RPF (Cyprus); MoER (Estonia); ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NIH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Republic of Korea); WCU (Republic of Korea); LAS (Lithuania); MOE (Malaysia); UM (Malaysia); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Dubna); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MESTD (Serbia); SEIDI (Spain); CPAN SNF (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter (Thailand); IPST (Thailand); STAR (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE (USA); NSF (USA); Marie- Curie program; European Research Council (European Union); EPLANET (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of Czech Republic; Council of Science and Industrial Research, India; Compagnia di San Paolo (Torino); HOMING PLUS program of the Foundation for Polish Science; European Regional Development Fund; Thalis program; Aristeia program; EU-ESF; Greek NSRF; [SF0690030s09] FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN SNF (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie- Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS program of the Foundation for Polish Science, cofinanced by the European Regional Development Fund; and the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF. NR 80 TC 3 Z9 3 U1 8 U2 66 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 1 PY 2014 VL 90 IS 11 AR 112001 DI 10.1103/PhysRevD.90.112001 PG 40 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AW7KE UT WOS:000346442200001 ER PT J AU Hojjati, A Linder, EV AF Hojjati, Alireza Linder, Eric V. TI Next generation strong lensing time delay estimation with Gaussian processes SO PHYSICAL REVIEW D LA English DT Article ID HUBBLE CONSTANT; COSMOLOGY; PRECISION AB Strong gravitational lensing forms multiple, time delayed images of cosmological sources, with the "focal length" of the lens serving as a cosmological distance probe. Robust estimation of the time delay distance can tightly constrain the Hubble constant as well as the matter density and dark energy. Current and next generation surveys will find hundreds to thousands of lensed systems but accurate time delay estimation from noisy, gappy light curves is potentially a limiting systematic. Using a large sample of blinded light curves from the Strong Lens Time Delay Challenge we develop and demonstrate a Gaussian process cross correlation technique that delivers an average bias within 0.1% depending on the sampling, necessary for subpercent Hubble constant determination. The fits are accurate (80% of them within one day) for delays from 5-100 days and robust against cadence variations shorter than six days. We study the effects of survey characteristics such as cadence, season, and campaign length, and derive requirements for time delay cosmology: in order not to bias the cosmology determination by 0.5s, the mean time delay fit accuracy must be better than 0.2%. C1 [Hojjati, Alireza] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hojjati, Alireza] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Linder, Eric V.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Linder, Eric V.] Univ Calif Berkeley, Berkeley Lab, Berkeley, CA 94720 USA. RP Hojjati, A (reprint author), Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. FU NASA, U.S. Department of Energy [DE-SC-0007867]; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; NSERC grant FX We thank Alex Kim, Arman Shafieloo, Sherry Suyu, and the evil and good teams of the time delay data challenges for useful discussions (and the Evil Team for exemplary effort in generating the challenges), the Institute for the Early Universe, Korea for computational resources, and IBS and KASI for hospitality. The simulated light curve data used in this work was generated by the Strong Lens Time Delay Challenge Evil Team (Liao, Dobler, Fassnacht, Marshall, Rumbaugh, and Treu) and is available at http://timedelaychallenge.org. E. L. was supported in part by NASA, U.S. Department of Energy Award No. DE-SC-0007867 and the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Award No. DE-AC02-05CH11231. A. H. is supported by an NSERC grant. NR 27 TC 7 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 1 PY 2014 VL 90 IS 12 AR 123501 DI 10.1103/PhysRevD.90.123501 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AW7KJ UT WOS:000346442700003 ER PT J AU Xia, CJ Cao, YX Kou, BQ Li, JD Wang, YJ Xiao, XH Fezzaa, K AF Xia, Chengjie Cao, Yixin Kou, Binquan Li, Jindong Wang, Yujie Xiao, Xianghui Fezzaa, Kamel TI Angularly anisotropic correlation in granular packings SO PHYSICAL REVIEW E LA English DT Article ID STATISTICAL-MECHANICS; ORIENTATIONAL ORDER; STRESS TRANSMISSION; SPHERE PACKINGS; GLASSES; LIQUIDS; ELLIPSOIDS; TRANSITION; DYNAMICS; DISORDER AB We present an x-ray microtomography study of the three-dimensional structural correlations in monodisperse granular packings. By measuring an orientation-dependent pair correlation function, we find that the local structure shows an angularly anisotropic orientation correlation. The correlation is strongest along the major axis of the local Minkowski tensor of the Voronoi cell. It turns out that this anisotropic correlation is consistent with the existence of some locally favored structures. The study suggests the importance of high-order structural correlations in random granular packings. C1 [Xia, Chengjie; Cao, Yixin; Kou, Binquan; Li, Jindong; Wang, Yujie] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China. [Xiao, Xianghui; Fezzaa, Kamel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Xia, CJ (reprint author), Shanghai Jiao Tong Univ, Dept Phys & Astron, 800 Dong Chuan Rd, Shanghai 200240, Peoples R China. EM yujiewang@sjtu.edu.cn RI wang, yujie/C-2582-2015; Kou, Binquan/O-8302-2016 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Natural Science Foundation of China [11175121]; National Basic Research Program of China (973 Program) [2010CB834301] FX We appreciate helpful discussion with Yuliang Jin. The use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Some of the preliminary experiments were carried out at the BL13W1 beamline of the Shanghai Synchrotron Radiation Facility. The work was supported by the National Natural Science Foundation of China through Grant No. 11175121, National Basic Research Program of China (973 Program No. 2010CB834301). NR 44 TC 1 Z9 1 U1 4 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD DEC 1 PY 2014 VL 90 IS 6 AR 062201 DI 10.1103/PhysRevE.90.062201 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA AW9YK UT WOS:000346610900008 PM 25615079 ER PT J AU Graves, WS Bessuille, J Brown, P Carbajo, S Dolgashev, V Hong, KH Ihloff, E Khaykovich, B Lin, H Murari, K Nanni, EA Resta, G Tantawi, S Zapata, LE Kartner, FX Moncton, DE AF Graves, W. S. Bessuille, J. Brown, P. Carbajo, S. Dolgashev, V. Hong, K. -H. Ihloff, E. Khaykovich, B. Lin, H. Murari, K. Nanni, E. A. Resta, G. Tantawi, S. Zapata, L. E. Kaertner, F. X. Moncton, D. E. TI Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID CHIRPED-PULSE AMPLIFICATION; REPETITION-RATE; THOMSON SCATTERING; YBYAG AMPLIFIER; HIGH-ENERGY; LASER; GENERATION AB A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness electron bunch on a picosecond laser pulse. The accelerator is a novel high-efficiency standing-wave linac and rf photoinjector powered by a single ultrastable rf transmitter at X-band rf frequency. The high efficiency permits operation at repetition rates up to 1 kHz, which is further boosted to 100 kHz by operating with trains of 100 bunches of 100 pC charge, each separated by 5 ns. The entire accelerator is approximately 1 meter long and produces hard x rays tunable over a wide range of photon energies. The colliding laser is a Yb: YAG solid-state amplifier producing 1030 nm, 100 mJ pulses at the same 1 kHz repetition rate as the accelerator. The laser pulse is frequency-doubled and stored for many passes in a ringdown cavity to match the linac pulse structure. At a photon energy of 12.4 keV, the predicted x-ray flux is 5 x 10(11) photons/second in a 5% bandwidth and the brilliance is 2 x 10(12) photons/(sec mm(2) mrad(2) 0.1%) in pulses with rms pulse length of 490 fs. The nominal electron beam parameters are 18 MeV kinetic energy, 10 microamp average current, 0.5 microsecond macropulse length, resulting in average electron beam power of 180 W. Optimization of the x-ray output is presented along with design of the accelerator, laser, and x-ray optic components that are specific to the particular characteristics of the Compton scattered x-ray pulses. C1 [Graves, W. S.; Hong, K. -H.; Khaykovich, B.; Lin, H.; Nanni, E. A.; Resta, G.; Zapata, L. E.; Kaertner, F. X.; Moncton, D. E.] MIT, Cambridge, MA 02139 USA. [Bessuille, J.; Brown, P.; Ihloff, E.] MIT, Bates Lab, Cambridge, MA 02139 USA. [Carbajo, S.; Murari, K.; Zapata, L. E.; Kaertner, F. X.] CFEL, D-22761 Hamburg, Germany. [Dolgashev, V.; Tantawi, S.] SLAC, Menlo Pk, CA 94025 USA. RP Graves, WS (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM wsgraves@mit.edu RI Khaykovich, Boris/A-7376-2012; Hong, Kyung-Han/G-6115-2012 OI Khaykovich, Boris/0000-0002-9490-2771; Hong, Kyung-Han/0000-0001-5041-5210 FU DARPA Grant [N66001-11-1-4192]; NSF Grant [DMR-1042342]; DOE Grants [DE-FG02-10ER46745, DE-FG02-08ER41532]; Center for Free-Electron Laser Science through the DESY-MIT Collaboration FX This work was supported by DARPA Grant No. N66001-11-1-4192, NSF Grant No. DMR-1042342, and DOE Grants No. DE-FG02-10ER46745 and No. DE-FG02-08ER41532, and the Center for Free-Electron Laser Science through the DESY-MIT Collaboration. NR 53 TC 16 Z9 16 U1 4 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC 1 PY 2014 VL 17 IS 12 AR 120701 DI 10.1103/PhysRevSTAB.17.120701 PG 24 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AW9ZP UT WOS:000346613900001 ER PT J AU Morris, EA Weisenberger, MC Bradley, SB Abdallah, MG Mecham, SJ Pisipati, P McGrath, JE AF Morris, E. Ashley Weisenberger, Matthew C. Bradley, Stephanie B. Abdallah, Mohamed G. Mecham, Sue J. Pisipati, Priya McGrath, James E. TI Synthesis, spinning, and properties of very high molecular weight poly(acrylonitrile-co-methyl acrylate) for high performance precursors for carbon fiber SO POLYMER LA English DT Article DE Polyacrylonitrile fiber; PAN polymer synthesis; Solution spinning ID POLYACRYLONITRILE FIBER; TENSILE PROPERTIES; CROSS-SECTION; MORPHOLOGY; PAN; MEMBRANES AB In this paper, synthesis of very high molecular weight (VHMW) polyacrylonitrile-co-methyl acrylate (PAN-co-MA) polymers with weight average molecular weights of at least 1.7 million g/mole were repeatedly achieved on a laboratory scale using emulsion polymerization. The development of a hybrid dry-jet gel solution spinning technique for the VHMW PAN-co-MA enabled continuous spinning of 100 filament count tows, 100s of meters in length. Single filaments were analyzed and tested for tensile performance. Experimentally, the hybrid spinning method coupled with VHMW polymers produced precursor fibers with excellent tensile properties, averaging 954 MPa in strength and 15.9 GPa in elastic modulus (N = 296), with small filament diameters (5 mu m). Results indicate a strong correlation between decreasing filament diameter, facilitated by high molecular weight polymer, and exponentially increasing tensile properties, using a hybrid dry-jet gel spinning process. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Morris, E. Ashley; Weisenberger, Matthew C.; Bradley, Stephanie B.] Univ Kentucky, Ctr Appl Energy Res, Lexington, KY 40511 USA. [Abdallah, Mohamed G.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Mecham, Sue J.; Pisipati, Priya; McGrath, James E.] Virginia Tech, Dept Chem, Blacksburg, VA USA. [Mecham, Sue J.; Pisipati, Priya; McGrath, James E.] Virginia Tech, Macromol & Interfaces Inst, Blacksburg, VA USA. RP Morris, EA (reprint author), Univ Kentucky, Ctr Appl Energy Res, 3572 Iron Works Pike, Lexington, KY 40511 USA. EM ashley.morris@uky.edu; agm1144@yahoo.com; sjmecham@unc.edu OI Morris, Elizabeth/0000-0002-9711-9512 FU ORNL; DARPA; Oak Ridge National Laboratory U.S. Department of Energy [400095449, 4000100727]; NSF-MRI at Virginia Tech [1126534]; NSF-DMR [1006630] FX The authors would like to acknowledge financial support from ORNL and DARPA. Additionally, the authors would like to acknowledge ORNL researchers Dr. Felix Paulauskas, Dr. Amit Naskar, Dr. Soydan Ozcan, and Mr. Cliff Eberle for their support.; Funding for much of this work was provided by Oak Ridge National Laboratory U.S. Department of Energy under award number 400095449 and 4000100727. NSF-MRI grant award number 1126534 at Virginia Tech provided equipment for molecular weight analysis. NSF-DMR grant award number 1006630 was very helpful for much of the characterization and some of the synthesis. NR 46 TC 12 Z9 12 U1 4 U2 46 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD DEC 1 PY 2014 VL 55 IS 25 BP 6471 EP 6482 DI 10.1016/j.polymer.2014.10.029 PG 12 WC Polymer Science SC Polymer Science GA AX0DP UT WOS:000346623900006 ER PT J AU Li, C Luo, XL Li, T Tong, XJ Li, YB AF Li, Cong Luo, Xiaolan Li, Tao Tong, Xinjie Li, Yebo TI Polyurethane foams based on crude glycerol-derived biopolyols: One-pot preparation of biopolyols with branched fatty acid ester chains and its effects on foam formation and properties SO POLYMER LA English DT Article DE Crude glycerol; Monoglycerides; Biopolyols ID LINEAR AROMATIC POLYURETHANES; SOYBEAN OIL; SYNCHROTRON SAXS; SOLID CATALYSTS; BASIC CATALYSTS; FTIR ANALYSIS; IN-SITU; TRANSESTERIFICATION; TEMPERATURE; POLYOLS AB Environmentally friendly biopolyols have been produced with crude glycerol as the sole feedstock using a one-pot thermochemical conversion process without the addition of extra catalysts and reagents. Structural features of these biopolyols were characterized by rheology analysis. Rigid polyurethane (PU) foams were obtained from these crude glycerol-based biopolyols and the foaming mechanism was explored. Investigations revealed that partial carbonyl groups hydrogen-bonded with N-H were replaced by aromatic rings after the introduction of branched fatty acid ester chains in the "urea rich" phase, and that distinct microphases had formed in the foams. Studies showed that branched fatty acid ester chains in the biopolyols played an important role in reducing the degree of microphase separation and stabilizing bubbles during foaming processes. PU foams with thermal conductivity comparable to commercial products made from petroleum-based polyols were obtained. These studies show the potential for development of PU foams based on crude glycerol, a renewable resource. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Li, Cong; Luo, Xiaolan; Tong, Xinjie; Li, Yebo] Ohio State Univ, Ohio Agr Res & Dev Ctr, Dept Food Agr & Biol Engn, Wooster, OH 44691 USA. [Li, Tao] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Li, YB (reprint author), Ohio State Univ, Ohio Agr Res & Dev Ctr, Dept Food Agr & Biol Engn, 1680 Madison Ave, Wooster, OH 44691 USA. EM li.851@osu.edu RI Li, Yebo/B-7889-2012; li, tao/K-8911-2012 OI li, tao/0000-0001-5454-1468 FU USDA-NIFA Critical Agricultural Materials Program [2012-38202-19288]; Ohio Soybean Council; U.S. DOE [DE-AC02-06CH11357] FX This project is funded by USDA-NIFA Critical Agricultural Materials Program (No. 2012-38202-19288) with additional financial support from the Ohio Soybean Council. The authors would like to thank Mrs. Mary Wicks (Department of Food, Agricultural and Biological Engineering, OSU) for reading through the manuscript and providing useful suggestions.; We are thankful for the use of the Advanced Photon Source, an Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory, supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 54 TC 8 Z9 8 U1 3 U2 35 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD DEC 1 PY 2014 VL 55 IS 25 BP 6529 EP 6538 DI 10.1016/j.polymer.2014.10.043 PG 10 WC Polymer Science SC Polymer Science GA AX0DP UT WOS:000346623900013 ER PT J AU Choi, JS Chang, YJ Woo, S Son, YW Park, Y Lee, MJ Byun, IS Kim, JS Choi, CG Bostwick, A Rotenberg, E Park, BH AF Choi, Jin Sik Chang, Young Jun Woo, Sungjong Son, Young-Woo Park, Yeonggu Lee, Mi Jung Byun, Ik-Su Kim, Jin-Soo Choi, Choon-Gi Bostwick, Aaron Rotenberg, Eli Park, Bae Ho TI Correlation between micrometer-scale ripple alignment and atomic-scale crystallographic orientation of monolayer graphene SO SCIENTIFIC REPORTS LA English DT Article ID ELASTIC PROPERTIES; NANORIBBONS; MICROSCOPY; MEMBRANES AB Deformation normal to the surface is intrinsic in two-dimensional materials due to phononic thermal fluctuations at finite temperatures. Graphene's negative thermal expansion coefficient is generally explained by such an intrinsic property. Recently, friction measurements on graphene exfoliated on a silicon oxide surface revealed an anomalous anisotropy whose origin was believed to be the formation of ripple domains. Here, we uncover the atomistic origin of the observed friction domains using a cantilever torsion microscopy in conjunction with angle-resolved photoemission spectroscopy. We experimentally demonstrate that ripples on graphene are formed along the zigzag direction of the hexagonal lattice. The formation of zigzag directional ripple is consistent with our theoretical model that takes account of the atomic-scale bending stiffness of carbon-carbon bonds and the interaction of graphene with the substrate. The correlation between micrometer-scale ripple alignment and atomic-scale arrangement of exfoliated monolayer graphene is first discovered and suggests a practical tool for measuring lattice orientation of graphene. C1 [Choi, Jin Sik; Park, Yeonggu; Lee, Mi Jung; Byun, Ik-Su; Kim, Jin-Soo; Park, Bae Ho] Konkuk Univ, Div Quantum Phases & Devices, Dept Phys, Seoul 143701, South Korea. [Chang, Young Jun] Univ Seoul, Dept Phys, Seoul 130743, South Korea. [Woo, Sungjong; Son, Young-Woo] Korea Inst Adv Study, Seoul 130722, South Korea. [Choi, Jin Sik; Kim, Jin-Soo; Choi, Choon-Gi] Elect & Telecommun Res Inst, Creat Res Ctr Graphene Elect, Taejon 305700, South Korea. [Bostwick, Aaron; Rotenberg, Eli] EO Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Son, YW (reprint author), Korea Inst Adv Study, Seoul 130722, South Korea. EM hand@kias.re.kr; baehpark@konkuk.ac.kr RI son, Young-Woo/B-2566-2010; Rotenberg, Eli/B-3700-2009 OI Rotenberg, Eli/0000-0002-3979-8844 FU National Research Foundation of Korea(NRF) - Korea government(MSIP) [2013R1A3A2042120, 2011-0030229, 2011-0031660, 2014R1A1A1002868, 2008-0061893(QMMRC)]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; Creative Research Program of the ETRI of Korea [14ZE1110]; CAC of KIAS FX This work is supported by the National Research Foundation of Korea(NRF) grants funded by the Korea government(MSIP) (Grant No. 2013R1A3A2042120, 2011-0030229, 2011-0031660, 2014R1A1A1002868, and 2008-0061893(QMMRC)). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. C.-G.C. acknowledges the Creative Research Program of the ETRI (14ZE1110) of Korea. Computation is supported by the CAC of KIAS. NR 39 TC 2 Z9 2 U1 5 U2 48 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 1 PY 2014 VL 4 AR 7263 DI 10.1038/srep07263 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AW4NK UT WOS:000346257700011 PM 25434431 ER PT J AU Li, TC Ota, S Kim, J Wong, ZJ Wang, Y Yin, XB Zhang, X AF Li, Tongcang Ota, Sadao Kim, Jeongmin Wong, Zi Jing Wang, Yuan Yin, Xiaobo Zhang, Xiang TI Axial Plane Optical Microscopy SO SCIENTIFIC REPORTS LA English DT Article ID LIGHT-SHEET MICROSCOPY; ILLUMINATION MICROSCOPY; SECTIONING MICROSCOPY; BRAIN; MECHANOTRANSDUCTION; DIFFRACTION; TOMOGRAPHY; SYSTEMS; EMBRYOS; CELLS AB We present axial plane optical microscopy (APOM) that can, in contrast to conventional microscopy, directly image a sample's cross-section parallel to the optical axis of an objective lens without scanning. APOM combined with conventional microscopy simultaneously provides two orthogonal images of a 3D sample. More importantly, APOM uses only a single lens near the sample to achieve selective-plane illumination microscopy, as we demonstrated by three-dimensional (3D) imaging of fluorescent pollens and brain slices. This technique allows fast, high-contrast, and convenient 3D imaging of structures that are hundreds of microns beneath the surfaces of large biological tissues. C1 [Li, Tongcang; Ota, Sadao; Kim, Jeongmin; Wong, Zi Jing; Wang, Yuan; Yin, Xiaobo; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Li, Tongcang; Wang, Yuan; Yin, Xiaobo; Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Zhang, Xiang/F-6905-2011; Yin, Xiaobo/A-4142-2011 FU CNR Biological Imaging Facility at UC Berkeley; Gordon and Betty Moore Foundation FX We are grateful to Kazunari Miyamichi at Stanford University and Hongfeng Gao at UC Berkeley for providing fluorescently labeled mouse brain sections. We thank Hu Cang, Peng Zhang and Ziliang Ye for helpful discussions. We also appreciate the support from the CNR Biological Imaging Facility at UC Berkeley. This research is funded by the Gordon and Betty Moore Foundation. NR 35 TC 4 Z9 4 U1 1 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 1 PY 2014 VL 4 AR 7253 DI 10.1038/srep07253 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AW4NK UT WOS:000346257700001 PM 25434770 ER PT J AU Lim, YC Sanderson, S Mahoney, M Yu, X Qiao, D Wang, Y Zhang, W Feng, Z AF Lim, Y. C. Sanderson, S. Mahoney, M. Yu, X. Qiao, D. Wang, Y. Zhang, W. Feng, Z. TI Characterization of Multilayered Multipass Friction Stir Weld on ASTM A572 G50 Steel SO WELDING JOURNAL LA English DT Article DE Friction Stir Welding; Multilayer; High-Strength Low-Alloy Steel; Mechanical Properties; Microstructure ID ALUMINUM-ALLOY; MECHANICAL-PROPERTIES; MICROSTRUCTURE; EVOLUTION; STRENGTH; TOUGHNESS; JOINT; PHASE AB A multilayered multipass friction stir weld (MM-FSW) on ASTM A572 Grade 50 steel was characterized to understand its potential application for thick-section structures. The 15-mm-thick section was fabricated by stacking three steel plates and then friction stir welding the plates together in a total of five passes. The unique butt/lap joint configuration encountered in the multilayer weld was examined to understand the effect of tool rotation direction on the joint quality, especially the formation of hooking defect. Charpy V-notch impact toughness tests showed generally higher impact toughness energy for the stir zone than the base metal with a ductile fracture mode. The microhardness value was measured from 195 to 220 HV in the stir zone, while the base metal showed an average value of 170 HV. The microstructure in the stir zone and the adjacent heat-affected zone was quantified using optical and scanning electron microscopy (SEM) including electron backscatter diffraction (EBSD). The increased toughness and hardness were correlated with the refined microstructure in the stir zone, resulting from severe plastic deformation and subsequent dynamic recrystallization during friction stir welding. C1 [Lim, Y. C.; Yu, X.; Qiao, D.; Wang, Y.; Zhang, W.; Feng, Z.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Sanderson, S.] MegoStir Technol LLC, Provo, UT USA. RP Lim, YC (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM fengz@ornl.gov RI Zhang, Wei/B-9471-2013; Feng, Zhili/H-9382-2012; Yu, Xinghua/E-2254-2017 OI Feng, Zhili/0000-0001-6573-7933; Yu, Xinghua/0000-0001-9605-8239 FU U.S. Department of Energy Office of Energy Efficiency and Renewable Energy; U.S. Department of Energy, Fuel Cell Technologies Office; U.S. Department of Energy, Advanced Manufacturing Office; U.S. Department of Energy [DE-AC05-00OR22725] FX The authors would like to acknowledge the financial support of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office and Advanced Manufacturing Office. Oak Ridge National Laboratory (ORNL) is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725. NR 37 TC 1 Z9 1 U1 1 U2 16 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD DEC PY 2014 VL 93 IS 12 BP 443S EP 450S PG 8 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA AW5RC UT WOS:000346330700024 ER PT J AU Nguyen, DH Ouyang, HX Mao, JH Hlatky, L Barcellos-Hoff, MH AF Nguyen, David H. Ouyang, Haoxu Mao, Jian-Hua Hlatky, Lynn Barcellos-Hoff, Mary Helen TI Distinct Luminal-Type Mammary Carcinomas Arise from Orthotopic Trp53-Null Mammary Transplantation of Juvenile versus Adult Mice SO CANCER RESEARCH LA English DT Article ID GROWTH-FACTOR-I; NEGATIVE BREAST-CANCER; GENE-EXPRESSION; ESTROGEN-RECEPTOR; MOLECULAR PORTRAITS; MOUSE MODELS; TUMORS; MICROENVIRONMENT; CELLS; P53 AB Age and physiologic status, such as menopause, are risk factors for breast cancer. Less clear is what factors influence the diversity of breast cancer. In this study, we investigated the effect of host age on the distribution of tumor subtypes in mouse mammary chimera consisting of wild-type hosts and Trp53 nullizygous epithelium, which undergoes a high rate of neoplastic transformation. Wild-type mammary glands cleared of endogenous epithelium at 3 weeks of age were subsequently transplanted during puberty (5 weeks) or at maturation (10 weeks) with syngeneic Trp53-null mammary tissue fragments and monitored for one year. Tumors arose sooner from adult hosts (AH) compared with juvenile hosts (JH). However, compared with AH tumors, JH tumors grew several times faster, were more perfused, exhibited a two-fold higher mitotic index, and were more highly positive for insulin-like growth factor receptor phosphorylation. Most tumors in each setting were estrogen receptor (ER)-positive (80% JH vs. 70% AH), but JH tumors were significantly more ER-immunoreactive (P = 0.0001) than AH tumors. A differential expression signature (JvA) of juvenile versus adult tumors revealed a luminal transcriptional program. Centroids of the human homologs of JvA genes showed that JH tumors were more like luminal A tumors and AH tumors were more like luminal B tumors. Hierarchical clustering with the JvA human ortholog gene list segregated luminal A and luminal B breast cancers across datasets. These data support the notion that age-associated host physiology greatly influences the intrinsic subtype of breast cancer. (C)2014 AACR. C1 [Nguyen, David H.; Ouyang, Haoxu; Barcellos-Hoff, Mary Helen] NYU, Sch Med, Dept Radiat Oncol, New York, NY 10016 USA. [Mao, Jian-Hua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Hlatky, Lynn] Tufts Univ, Sch Med, St Elizabeths Med Ctr, Ctr Canc Syst Biol,GeneSys Res Inst, Boston, MA 02111 USA. RP Barcellos-Hoff, MH (reprint author), NYU, Sch Med, Dept Radiat Oncol, 450 29th St,Room 321, New York, NY 10016 USA. EM mhbarcellos-hoff@nyumc.org OI Barcellos-Hoff, Mary Helen/0000-0002-5994-9558 FU Department of Defense-Breast Cancer Research Program; Department of Energy, Office of Biological and Environmental Research program on Low Dose Radiation; National Cancer Institute of the NIH [U54CA149233] FX This research was supported by a predoctoral fellowship to D.H. Nguyen from the Department of Defense-Breast Cancer Research Program, funding from the Department of Energy, Office of Biological and Environmental Research program on Low Dose Radiation (J.-H. Mao and M.H. Barcellos-Hoff) and the National Cancer Institute of the NIH under Award Number U54CA149233 (L. Hlatky and M.H. Barcellos-Hoff). NR 54 TC 0 Z9 0 U1 1 U2 2 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD DEC 1 PY 2014 VL 74 IS 23 BP 7149 EP 7158 DI 10.1158/0008-5472.CAN-14-1440 PG 10 WC Oncology SC Oncology GA AW6EN UT WOS:000346362400038 PM 25281718 ER PT J AU Kim, J Yin, WJ Kang, J Yan, Y Wei, SH Al-Jassim, MM AF Kim, Junho Yin, Wan-Jian Kang, Joongoo Yan, Yanfa Wei, Su-Huai Al-Jassim, Mowafak M. TI Creating intermediate bands in ZnTe via co-alloying approach SO APPLIED PHYSICS EXPRESS LA English DT Article ID SOLAR-CELLS; EFFICIENCY AB We propose an effective co-alloying approach to creating an intermediate band (IB) in bulk ZnTe. First-principles calculations show that a donor-acceptor co-alloying scheme can produce an IB within the band gap of ZnTe and that the position of the IB can be tuned by choosing appropriate donor-acceptor pairs. We find that the position of the IB is governed by the atomic d-orbital energies of dopants, and also by the charge transfer between donor and acceptor atoms and their subsequent intra- and inter-Coulomb interactions. Therefore, the location of the IB can be manipulated by selecting donors and acceptors with desirable d-orbital energies and electronegativities. (C) 2014 The Japan Society of Applied Physics C1 [Kim, Junho] Incheon Natl Univ, Dept Phys, Inchon 406772, South Korea. [Yin, Wan-Jian; Yan, Yanfa] Univ Toledo, Dept Phys, Toledo, OH 43606 USA. [Kang, Joongoo] DGIST, Dept Emerging Mat Sci, Taegu 711873, South Korea. [Yin, Wan-Jian; Wei, Su-Huai; Al-Jassim, Mowafak M.] Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. RP Kim, J (reprint author), Incheon Natl Univ, Dept Phys, Inchon 406772, South Korea. RI Yin, Wanjian/F-6738-2013 FU Incheon National University International Cooperative Research Grant FX This research was supported by the Incheon National University International Cooperative Research Grant in 2010. NR 27 TC 2 Z9 2 U1 2 U2 26 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1882-0778 EI 1882-0786 J9 APPL PHYS EXPRESS JI Appl. Phys. Express PD DEC PY 2014 VL 7 IS 12 AR 121201 DI 10.7567/APEX.7.121201 PG 4 WC Physics, Applied SC Physics GA AW2MM UT WOS:000346122300004 ER PT J AU Kurniawan, M Roy, RK Panda, AK Greve, DW Ohodnicki, PR McHenry, ME AF Kurniawan, M. Roy, R. K. Panda, A. K. Greve, D. W. Ohodnicki, P. R., Jr. McHenry, M. E. TI Interplay of stress, temperature, and giant magnetoimpedance in amorphous soft magnets SO APPLIED PHYSICS LETTERS LA English DT Article ID IMPEDANCE; ALLOYS; WIRES AB Giant Magnetoimpedance (GMI)-based sensing devices have attracted attention from both academia and industry due to their low cost, flexibility, and excellent sensitivity. Potential applications range widely from current and stress sensors, navigation systems, magnetic recording, to more demanding ones such as field sensors for deep drilling and oil fracking at elevated temperature. To realize the latter, the temperature dependence of GMI effect must be well understood. Herein, we report a study on the GMI effect in a Cobalt-based amorphous microwire under temperature cycles between 20 degrees C-560 degrees C. The GMI ratio was observed to decrease from 126.1% at 20 degrees C to 68.5% at 230 degrees C, rapidly drop at similar to 290 degrees C and reach a near zero value above 320 degrees C in the first half of the measurement where the temperature was increased. Upon cooling down from 560 degrees C to 20 degrees C, the GMI ratio exhibits little variation at similar to 95% in the 260 degrees C-20 degrees C regime. Similarly, the anisotropy-temperature profile was also observed to change irreversibly during the temperature cycle. Previous work has found the correlation between internal stress, anisotropy, permeability, and GMI effect. We hypothesize that irreversibility in GMI-temperature and anisotropy-temperature profiles stem from internal relief in the amorphous structure, which is locked in during the rapid cooling. In the subsequent temperature cycles, the GMI-temperature and anisotropy-temperature profiles show little variation, thus supporting the notion that the internal stress relief is complete after the first temperature cycle. (C) 2014 AIP Publishing LLC. C1 [Kurniawan, M.; Greve, D. W.; Ohodnicki, P. R., Jr.; McHenry, M. E.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Roy, R. K.; Panda, A. K.] CSIR Natl Met Lab, Jamshedpur 831007, Bihar, India. [Ohodnicki, P. R., Jr.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Kurniawan, M (reprint author), Carnegie Mellon Univ, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. EM mkurniaw@andrew.cmu.edu RI Sahu, Anjani/E-7590-2015 FU Army Research Laboratory [DEAR-0000219]; Research for Advanced Manufacturing in Pennsylvania [C000052427]; NETL [RES1000025/169]; agency of the United States Government FX M.E.M. and M.K. acknowledge the support from the Army Research Laboratory (Contract No. DEAR-0000219), M.E.M. acknowledges the support from the Research for Advanced Manufacturing in Pennsylvania (Contract No. C000052427), and D.W.G. acknowledges the support from NETL (Contract Number: RES1000025/169). This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, complete-ness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favouring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 20 TC 4 Z9 4 U1 2 U2 31 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 1 PY 2014 VL 105 IS 22 AR 222407 DI 10.1063/1.4903250 PG 4 WC Physics, Applied SC Physics GA AW4QH UT WOS:000346265200053 ER PT J AU Lee, S Meyer, TL Park, S Egami, T Lee, HN AF Lee, Shinbuhm Meyer, Tricia L. Park, Sungkyun Egami, Takeshi Ho Nyung Lee TI Growth control of the oxidation state in vanadium oxide thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID METAL-INSULATOR-TRANSITION; MOTT TRANSITION; VO2 AB Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research but also technological applications that utilize the subtle change in the physical properties originating from the metal-insulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase pure epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V2+3O3, V+4O2, and V2+5O5. A well pronounced MIT was only observed in VO2 films grown in a very narrow range of oxygen partial pressure P(O-2). The films grown either in lower (<10 mTorr) or higher P(O-2) (>25 mTorr) result in V2O3 and V2O5 phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO2 thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an improved MIT behavior. (C) 2014 AIP Publishing LLC. C1 [Lee, Shinbuhm; Meyer, Tricia L.; Park, Sungkyun; Egami, Takeshi; Ho Nyung Lee] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Park, Sungkyun] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea. [Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Lee, HN (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM hnlee@ornl.gov RI LEE, SHINBUHM/A-9494-2011; Lee, Ho Nyung/K-2820-2012 OI LEE, SHINBUHM/0000-0002-4907-7362; Lee, Ho Nyung/0000-0002-2180-3975 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; NRF-Korea [2012-005940] FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. One of authors (S.P.) was in part supported by NRF-Korea (2012-005940). NR 24 TC 15 Z9 15 U1 9 U2 101 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 1 PY 2014 VL 105 IS 22 AR 223515 DI 10.1063/1.4903348 PG 4 WC Physics, Applied SC Physics GA AW4QH UT WOS:000346265200099 ER PT J AU Lim, WL Liu, RH Tyliszczak, T Erokhin, SG Berkov, D Urazhdin, S AF Lim, W. L. Liu, R. H. Tyliszczak, T. Erokhin, S. G. Berkov, D. Urazhdin, S. TI Fast chirality reversal of the magnetic vortex by electric current SO APPLIED PHYSICS LETTERS LA English DT Article ID DRIVEN; DYNAMICS; MULTILAYERS; EXCITATION AB The possibility of high-density information encoding in magnetic materials by topologically stable inhomogeneous magnetization configurations such as domain walls, skyrmions, and vortices has motivated intense research into mechanisms enabling their control and detection. While the uniform magnetization states can be efficiently controlled by electric current using magnetic multilayer structures, this approach has proven much more difficult to implement for inhomogeneous states. Here, we report direct observation of fast reversal of magnetic vortex by electric current in a simple planar structure based on a bilayer of spin Hall material Pt with a single microscopic ferromagnetic disk contacted by asymmetric electrodes. The reversal is enabled by a combination of the chiral Oersted field and spin current generated by the nonuniform current distribution in Pt. Our results provide a route for the efficient control of inhomogeneous magnetization configurations by electric current. (C) 2014 AIP Publishing LLC. C1 [Lim, W. L.; Liu, R. H.; Urazhdin, S.] Emory Univ, Dept Phys, Atlanta, GA 30322 USA. [Tyliszczak, T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Erokhin, S. G.] Innovent Technol Dev, D-07745 Jena, Germany. [Berkov, D.] Gen Numer Res Lab eV, D-07749 Jena, Germany. RP Lim, WL (reprint author), Emory Univ, Dept Phys, Atlanta, GA 30322 USA. EM wlimnd@gmail.com; sergei.urazhdin@emory.edu RI Liu, Ronghua/A-9790-2013 OI Liu, Ronghua/0000-0002-4053-3923 FU U.S. National Science Foundation of USA; Advanced Light Source at the Lawrence Berkeley National Laboratory FX We acknowledge support from the U.S. National Science Foundation of USA and the Advanced Light Source at the Lawrence Berkeley National Laboratory. NR 32 TC 0 Z9 0 U1 2 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 1 PY 2014 VL 105 IS 22 AR 222405 DI 10.1063/1.4902997 PG 4 WC Physics, Applied SC Physics GA AW4QH UT WOS:000346265200051 ER PT J AU Ruzybayev, I Baik, SS Rumaiz, AK Sterbinsky, GE Woicik, JC Choi, HJ Shah, SI AF Ruzybayev, Inci Baik, Seung Su Rumaiz, Abdul. K. Sterbinsky, G. E. Woicik, J. C. Choi, Hyoung Joon Shah, S. Ismat TI Electronic structure of C and N co-doped TiO2: A combined hard x-ray photoemission spectroscopy and density functional theory study SO APPLIED PHYSICS LETTERS LA English DT Article ID PHOTOCATALYSIS; NITROGEN; RUTILE; FILMS AB We have studied the electronic structure of C and N co-doped TiO2 using hard x-ray photoelectron spectroscopy and first-principles density functional theory calculations. Our results reveal overlap of the 2p states of O, N, and C in the system which shifts the valence band maximum towards the Fermi level. Combined with optical data we show that co-doping is an effective route for band gap reduction in TiO2. Comparison of the measured valence band with theoretical photoemission density of states reveals the possibility of C on Ti and N on O site. (c) 2014 AIP Publishing LLC. C1 [Ruzybayev, Inci; Shah, S. Ismat] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Baik, Seung Su; Choi, Hyoung Joon] Yonsei Univ, Ctr Computat Studies Adv Elect Mat Properties, Seoul 120749, South Korea. [Baik, Seung Su; Choi, Hyoung Joon] Yonsei Univ, Dept Phys, Seoul 120749, South Korea. [Baik, Seung Su; Choi, Hyoung Joon] Yonsei Univ, IPAP, Seoul 120749, South Korea. [Rumaiz, Abdul. K.; Sterbinsky, G. E.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Woicik, J. C.] NIST, Gaithersburg, MD 20899 USA. [Shah, S. Ismat] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA. RP Rumaiz, AK (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. EM rumaiz@bnl.gov RI Choi, Hyoung Joon/N-8933-2015 OI Choi, Hyoung Joon/0000-0001-8565-8597 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; NRF of Korea [2011-0018306]; KISTI Supercomputing Center [KSC-2013-C3-062] FX The authors acknowledge Dr Erik Muller, Department of Physics, Stony Brook University for the convolution routine. The work was performed in National Synchrotron Light Source at Brookhaven National Laboratory which was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. S.S.B. and H.J.C. were supported by the NRF of Korea (Grant No. 2011-0018306). Computational resources have been provided by KISTI Supercomputing Center (Project No. KSC-2013-C3-062). NR 25 TC 3 Z9 3 U1 3 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 1 PY 2014 VL 105 IS 22 AR 221605 DI 10.1063/1.4902994 PG 5 WC Physics, Applied SC Physics GA AW4QH UT WOS:000346265200023 ER PT J AU Swartz, CH Edirisooriya, M LeBlanc, EG Noriega, OC Jayathilaka, PARD Ogedengbe, OS Hancock, BL Holtz, M Myers, TH Zaunbrecher, KN AF Swartz, C. H. Edirisooriya, M. LeBlanc, E. G. Noriega, O. C. Jayathilaka, P. A. R. D. Ogedengbe, O. S. Hancock, B. L. Holtz, M. Myers, T. H. Zaunbrecher, K. N. TI Radiative and interfacial recombination in CdTe heterostructures SO APPLIED PHYSICS LETTERS LA English DT Article ID MOLECULAR-BEAM EPITAXY; SURFACE RECOMBINATION; OPTICAL-PROPERTIES; BULK LIFETIME; SOLAR-CELLS; THIN-FILMS; VELOCITY; PHOTOCONDUCTIVITY; EFFICIENCY; STATES AB Double heterostructures (DH) were produced consisting of a CdTe film between two wide band gap barriers of CdMgTe alloy. A combined method was developed to quantify radiative and non-radiative recombination rates by examining the dependence of photoluminescence (PL) on both excitation intensity and time. The measured PL characteristics, and the interface state density extracted by modeling, indicate that the radiative efficiency of CdMgTe/CdTe DHs is comparable to that of AlGaAs/GaAs DHs, with interface state densities in the low 10(10) cm(-2) and carrier lifetimes as long as 240 ns. The radiative recombination coefficient of CdTe is found to be near 10(-10) cm(3)s(-1). CdTe film growth on bulk CdTe substrates resulted in a homoepitaxial interface layer with a high non-radiative recombination rate. (C) 2014 AIP Publishing LLC. C1 [Swartz, C. H.; Edirisooriya, M.; LeBlanc, E. G.; Noriega, O. C.; Jayathilaka, P. A. R. D.; Ogedengbe, O. S.; Hancock, B. L.; Holtz, M.; Myers, T. H.] Texas State Univ, Mat Sci Engn & Commercializat Program, San Marcos, TX 78666 USA. [Zaunbrecher, K. N.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Swartz, CH (reprint author), Texas State Univ, RFM 3205,601 Univ Dr, San Marcos, TX 78666 USA. EM craig.swartz@txstate.edu OI Holtz, Mark/0000-0001-9524-964X FU Alliance for Sustainable Energy, LLC [DEAC36-08GO28308]; [ZEJ-4-42007-0] FX Funding from the Alliance for Sustainable Energy, LLC, the manager and operator of the National Renewable Energy Laboratory for the U.S. Department of Energy through Contract No. DEAC36-08GO28308 FPACE II: Approaching the S-Q Limit with Epitaxial CdTe, Subcontract ZEJ-4-42007-0 is acknowledged. We would like to thank B. Gorman for APT results, and NREL for SIMS. NR 37 TC 19 Z9 19 U1 2 U2 35 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 1 PY 2014 VL 105 IS 22 AR 222107 DI 10.1063/1.4902926 PG 4 WC Physics, Applied SC Physics GA AW4QH UT WOS:000346265200043 ER PT J AU Witczak, LR Guzy, JC Price, SJ Gibbons, JW Dorcas, ME AF Witczak, Lynea R. Guzy, Jacquelyn C. Price, Steven J. Gibbons, J. Whitfield Dorcas, Michael E. TI Temporal and Spatial Variation in Survivorship of Diamondback Terrapins (Malaclemys terrapin) SO CHELONIAN CONSERVATION AND BIOLOGY LA English DT Article DE Diamondback terrapin; turtle; mark-recapture; population decline; long-term study; Kiawah Island; South Carolina; habitat modification ID CRAB POTS; MARKED ANIMALS; ADULT SURVIVAL; NATIONAL-PARK; POPULATION; TURTLES; CONSERVATION; MORTALITY; PATTERNS; MATURITY AB The diamondback terrapin (Malaclemys terrapin) is a species of conservation concern that has experienced noticeable declines throughout its range. Mark-recapture studies have been conducted on terrapins at Kiawah Island, South Carolina, since 1983, and during the early 1990s, this population began to decline. Our objectives were to evaluate current spatial and temporal variation in survivorship and compare current estimates of survivorship with those calculated from 1983 to 1999 in a previous study. We used an 11-year data set (2003 to 2013) in a capture-mark-recapture analysis to estimate the survivorship of terrapins in 5 creeks. Among creeks, annual survivorship estimates ranged from 61% to 82% with no difference between the sexes. Survivorship was lower than that documented for this population in the early 1990s. Recent anthropogenic habitat modification, such as the construction of docks, roads, and housing developments, as well as activities such as crab-trapping, likely play a role in low annual survivorship. Results from this long-term study are essential for understanding terrapin population status and can inform conservation and coastal ecosystem management. C1 [Witczak, Lynea R.; Dorcas, Michael E.] Davidson Coll, Dept Biol, Davidson, NC 28035 USA. [Guzy, Jacquelyn C.] Univ Arkansas, Dept Biol, Fayetteville, AR 72701 USA. [Price, Steven J.] Univ Kentucky, Dept Forestry, Lexington, KY 40546 USA. [Gibbons, J. Whitfield] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Witczak, LR (reprint author), Davidson Coll, Dept Biol, Davidson, NC 28035 USA. EM lywitczak@gmail.com; jcguzy@uark.edu; steven.price@uky.edu; wgibbons@uga.edu; midorcas@davidson.edu FU Davidson College Faculty Research Grants; Department of Biology at Davidson College; Pittman Foundation; US Department of Energy [DE-FC09-96SR18546, DE-FC09-07SR22506] FX We thank Annette Baker and Wyndham Vacation Rentals for arranging and providing lodging. Marilyn Blizard, Sophia McCallister, Jennifer Barbour, Nicholas Boehm, Jake Feary, Sidi Limehouse, and all the staff of the Kiawah Nature Center have been instrumental in facilitating our research on Kiawah Island. Also, we thank the students, technicians, research coordinators, and volunteers for assistance in the field and the UGA-SREL and Davidson College personnel who have helped sample and process terrapins. This research was conducted under SCDNR Scientific Terrapin Collection Permit and under the auspices of the Davidson College Animal Care and Use Committee. Funding was provided by Davidson College Faculty Research Grants, the Department of Biology at Davidson College, and the Pittman Foundation. Manuscript preparation was aided by the US Department of Energy through Financial Assistance Award DE-FC09-96SR18546 and DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 40 TC 1 Z9 1 U1 2 U2 26 PU CHELONIAN RESEARCH FOUNDATION PI LUNENBURG PA 168 GOODRICH ST., LUNENBURG, MA USA SN 1071-8443 EI 1943-3956 J9 CHELONIAN CONSERV BI JI Chelonian Conserv. Biol. PD DEC PY 2014 VL 13 IS 2 BP 146 EP 151 PG 6 WC Zoology SC Zoology GA AW2PY UT WOS:000346132000003 ER PT J AU Savara, A Chan-Thaw, CE Rossetti, I Villa, A Prati, L AF Savara, Aditya Chan-Thaw, Carine E. Rossetti, Ilenia Villa, Alberto Prati, Laura TI Benzyl Alcohol Oxidation on Carbon-Supported Pd Nanoparticles: Elucidating the Reaction Mechanism SO CHEMCATCHEM LA English DT Article DE adsorption; alcohols; oxidation; palladium; reaction mechanisms ID LIQUID-PHASE OXIDATION; SINGLE-CRYSTAL SURFACES; FREE AEROBIC OXIDATION; C-O BOND; SELECTIVE OXIDATION; METHANOL DECOMPOSITION; PD(111) SURFACE; PALLADIUM NANOPARTICLES; CATALYTIC-ACTIVITY; TRANSITION-METALS AB Experiments were conducted on the liquid-phase oxidation of benzyl alcohol over Pd nanoparticles, with the aim of determining the operative chemical reaction. Experiments were conducted in a batch reactor with para-xylene as the solvent and continuous gas purging of the headspace. The following experimental parameters were varied: the initial benzyl alcohol concentration, the oxygen partial pressure in the headspace, and the reactor temperature. From trends in the concentration profiles and integrated production of each product, it was determined that there are two primary reaction paths: A) an alkoxy pathway leading to toluene, benzaldehyde, and benzyl ether, and B) a carbonyloxyl pathway ("neutral carboxylate") leading to benzoic acid, benzene, and benzyl benzoate. From the mechanism elucidated, it is clear that the coverages of atomic hydrogen, atomic oxygen, and surface hydroxyls must be accounted for to achieve a complete description of the quantitative kinetics. C1 [Savara, Aditya] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Chan-Thaw, Carine E.; Rossetti, Ilenia; Villa, Alberto; Prati, Laura] Univ Milan, Dipartimento Chim, I-20133 Milan, Italy. RP Savara, A (reprint author), Oak Ridge Natl Lab, Div Chem Sci, 1 Bethel Valley Rd MS 6201, Oak Ridge, TN 37831 USA. EM savaraa@ornl.gov RI Villa, Alberto/H-7355-2013; Savara, Aditya (Ashi)/A-8831-2010; Chan-Thaw, Carine /O-9785-2014; Rossetti, Ilenia/O-8929-2016; Prati, Laura/Q-3970-2016 OI Villa, Alberto/0000-0001-8656-6256; Savara, Aditya (Ashi)/0000-0002-1937-2571; Chan-Thaw, Carine /0000-0002-7330-9629; Rossetti, Ilenia/0000-0001-5882-5011; Prati, Laura/0000-0002-8227-9505 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy FX Work by A. Savara was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. NR 68 TC 15 Z9 15 U1 7 U2 71 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1867-3880 EI 1867-3899 J9 CHEMCATCHEM JI ChemCatChem PD DEC PY 2014 VL 6 IS 12 BP 3464 EP 3473 DI 10.1002/cctc.201402552 PG 10 WC Chemistry, Physical SC Chemistry GA AW0IN UT WOS:000345975300026 ER PT J AU Mahurin, SM Fulvio, PF Hillesheim, PC Nelson, KM Veith, GM Dai, S AF Mahurin, Shannon M. Fulvio, Pasquale F. Hillesheim, Patrick C. Nelson, Kimberly M. Veith, Gabriel M. Dai, Sheng TI Directed Synthesis of Nanoporous Carbons from Task-Specific Ionic Liquid Precursors for the Adsorption of CO2 SO CHEMSUSCHEM LA English DT Article DE adsorption; carbon capture; electron microscopy; functionalization; ionic liquids ID ORDERED MESOPOROUS CARBONS; ACTIVATED CARBONS; MOLECULAR-SIEVES; DIOXIDE CAPTURE; SURFACE-AREA; NITROGEN; PERFORMANCE; ADSORBENTS; REDUCTION AB Postcombustion CO2 capture has become a key component of greenhouse-gas reduction as anthropogenic emissions continue to impact the environment. We report a one-step synthesis of porous carbon materials using a series of task-specific ionic liquids for the adsorption of CO2. By varying the structure of the ionic liquid precursor, we were able to control pore architecture and surface functional groups of the carbon materials in this one-step synthesis process leading to adsorbents with high CO2 sorption capacities (up to 4.067 mmolg(-1)) at 0 degrees C and 1 bar. Added nitrogen functional groups led to high CO2/N-2 adsorption-selectivity values ranging from 20 to 37 whereas simultaneously the interaction energy was enhanced relative to carbon materials with no added nitrogen. C1 [Mahurin, Shannon M.; Fulvio, Pasquale F.; Hillesheim, Patrick C.; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Nelson, Kimberly M.; Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM mahurinsm@ornl.gov; dais@ornl.gov RI Dai, Sheng/K-8411-2015 OI Dai, Sheng/0000-0002-8046-3931 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division FX The majority of this work was sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. A portion of this work (XPS) was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (GMV). NR 39 TC 6 Z9 6 U1 3 U2 88 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD DEC PY 2014 VL 7 IS 12 BP 3284 EP 3289 DI 10.1002/cssc.201402338 PG 6 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AW0IU UT WOS:000345976200014 PM 25082361 ER PT J AU Yoon, SJ Myung, ST Noh, HJ Lu, J Amine, K Sun, YK AF Yoon, Sung-June Myung, Seung-Taek Noh, Hyung-Joo Lu, Jun Amine, Khalil Sun, Yang-Kook TI Nanorod and Nanoparticle Shells in Concentration Gradient Core-Shell Lithium Oxides for Rechargeable Lithium Batteries SO CHEMSUSCHEM LA English DT Article DE batteries; concentration gradient; core-shell; lithium; nanorods; positive electrode; shell ID POSITIVE ELECTRODE MATERIAL; ION BATTERIES; ELECTROCHEMICAL PROPERTIES; CATHODE MATERIALS; COPRECIPITATION; BEHAVIOR; TI; MG; AL AB The structure, electrochemistry, and thermal stability of concentration gradient core-shell (CGCS) particles with different shell morphologies were evaluated and compared. We modified the shell morphology from nanoparticles to nanorods, because nanorods can result in a reduced surface area of the shell such that the outer shell would have less contact with the corrosive electrolyte, resulting in improved electrochemical properties. Electron microscopy studies coupled with electron probe X-ray micro-analysis revealed the presence of a concentration gradient shell consisting of nanoparticles and nanorods before and after thermal lithiation at high temperature. Rietveld refinement of the X-ray diffraction data and the chemical analysis results showed no variations of the lattice parameters and chemical compositions of both produced CGCS particles except for the degree of cation mixing (or exchange) in Li and transition metal layers. As anticipated, the dense nanorods present in the shell gave rise to a high tap density (2.5 g cm(-3)) with a reduced pore volume and surface area. Intimate contact among the nanorods is likely to improve the resulting electric conductivity. As a result, the CGCS Li[Ni0.60Co0.15Mn0.25]O-2 with the nanorod shell retained approximately 85.5% of its initial capacity over 150 cycles in the range of 2.7-4.5 V at 60 degrees C. The charged electrode consisting of Li-0.16[Ni0.60Co0.15Mn0.25]O-2 CGCS particles with the nanorod shell also displayed a main exothermic reaction at 279.4 degrees C releasing 751.7 Jg(-1) of heat. Due to the presence of the nanorod shell in the CGCS particles, the electrochemical and thermal properties are substantially superior to those of the CGCS particles with the nanoparticle shell. C1 [Yoon, Sung-June; Noh, Hyung-Joo; Sun, Yang-Kook] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea. [Myung, Seung-Taek] Sejong Univ, Dept Nano Engn, Seoul 143747, South Korea. [Lu, Jun; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. RP Yoon, SJ (reprint author), Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea. EM yksun@hanyang.ac.kr OI Myung, Seung-Taek/0000-0001-6888-5376 FU National Research Foundation of Korea (NRF) - Korean government (MEST) [2009-0092780]; Korea Institute of Energy Technology Evaluation and Planning (KETEP) - Korea government Ministry of Trade, Industry and Energy [20124010203290] FX This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (2009-0092780). This work was also supported by the Human Resources Development program (20124010203290) through a Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy. NR 21 TC 5 Z9 5 U1 1 U2 47 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD DEC PY 2014 VL 7 IS 12 BP 3295 EP 3303 DI 10.1002/cssc.201402389 PG 9 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AW0IU UT WOS:000345976200016 PM 25044175 ER PT J AU Ye, F Bao, W Chi, SX dos Santos, AM Molaison, JJ Fang, MH Wang, HD Mao, QH Wang, JC Liu, JJ Sheng, JM AF Ye Feng Bao Wei Chi Song-Xue dos Santos, Antonio M. Molaison, Jamie J. Fang Ming-Hu Wang Hang-Dong Mao Qian-Hui Wang Jin-Chen Liu Juan-Juan Sheng Jie-Ming TI High-Pressure Single-Crystal Neutron Scattering Study of Magnetic and Fe Vacancy Orders in (Tl, Rb)(2)Fe4Se5 Superconductor SO CHINESE PHYSICS LETTERS LA English DT Article AB The magnetic and iron vacancy orders in superconducting (Tl, Rb)(2)Fe4Se5 single-crystals are investigated by using a high-pressure neutron diffraction technique. Similar to the temperature effect, the block antiferromagnetic order gradually decreases upon increasing pressure while the Fe vacancy superstructural order remains intact before its precipitous disappearance at the critical pressure P-c = 8.3GPa. Combined with previously determined P-c for superconductivity, our phase diagram under pressure reveals the concurrence of the block AFM order, the root 5x root 5 iron vacancy order and superconductivity for the 245 superconductor. A synthesis of current experimental data in a coherent physical picture is attempted. C1 [Ye Feng; Chi Song-Xue; dos Santos, Antonio M.; Molaison, Jamie J.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Ye Feng] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Bao Wei; Wang Jin-Chen; Liu Juan-Juan; Sheng Jie-Ming] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. [Fang Ming-Hu; Wang Hang-Dong; Mao Qian-Hui] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China. RP Bao, W (reprint author), Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. EM wbao@ruc.edu.cn RI Ye, Feng/B-3210-2010; Bao, Wei/E-9988-2011; Chi, Songxue/A-6713-2013; dos Santos, Antonio/A-5602-2016 OI Ye, Feng/0000-0001-7477-4648; Bao, Wei/0000-0002-2105-461X; Chi, Songxue/0000-0002-3851-9153; dos Santos, Antonio/0000-0001-6900-0816 FU National Basic Research Program of China [2012CB921700, 2011CBA00112, 2011CBA00103, 2012CB821404]; National Natural Science Foundation of China [11034012, 11190024, 11374261, 11204059]; Natural Science Foundation of Zhejiang Province [LQ12A04007]; Scientific User Facilities Division of the Office of Basic Energy Sciences of U.S. DOE FX Supported by the National Basic Research Program of China under Grant Nos 2012CB921700, 2011CBA00112, 2011CBA00103 and 2012CB821404, the National Natural Science Foundation of China under Grant Nos 11034012, 11190024, 11374261 and 11204059, the Natural Science Foundation of Zhejiang Province under Grant No LQ12A04007, and the Scientific User Facilities Division of the Office of Basic Energy Sciences of U.S. DOE. NR 30 TC 5 Z9 5 U1 3 U2 32 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0256-307X EI 1741-3540 J9 CHINESE PHYS LETT JI Chin. Phys. Lett. PD DEC PY 2014 VL 31 IS 12 AR 127401 DI 10.1088/0256-307X/31/12/127401 PG 4 WC Physics, Multidisciplinary SC Physics GA AW3AQ UT WOS:000346158200029 ER PT J AU Bochev, P Gerritsma, M AF Bochev, Pavel Gerritsma, Marc TI A spectral mimetic least-squares method SO COMPUTERS & MATHEMATICS WITH APPLICATIONS LA English DT Article DE Least-squares; Mimetic methods; Algebraic topology; Spectral elements; Geometric localization ID MASS-CONSERVATION; ELEMENT-METHOD; POISSON EQUATION; STOKES PROBLEM; DISCRETIZATION; PRINCIPLES; OPERATORS; GRIDS AB We present a spectral mimetic least-squares method for a model diffusion-reaction problem, which preserves key conservation properties of the continuum problem. Casting the model problem into a first-order system for two scalar and two vector variables shifts material properties from the differential equations to a pair of constitutive relations. We use this system to motivate a new least-squares functional involving all four fields and show that its minimizer satisfies the differential equations exactly. Discretization of the four-field least-squares functional by spectral spaces compatible with the differential operators leads to a least-squares method in which the differential equations are also satisfied exactly. Moreover, the latter are reduced to purely topological relationships for the degrees of freedom that can be satisfied without reference to basis functions. Numerical experiments confirm the spectral accuracy of the method and its local conservation. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Bochev, Pavel] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Gerritsma, Marc] Delft Univ Technol, Fac Aerosp Engn, NL-2629 HT Delft, Netherlands. RP Bochev, P (reprint author), Sandia Natl Labs, Mail Stop 1320, Albuquerque, NM 87185 USA. EM pbboche@sandia.gov; M.I.Gerritsma@TUDelft.nl FU US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR) FX The authors are grateful to the anonymous referees for the thoughtful comments and remarks that helped to improve the paper. This material is based upon work supported by the US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR). NR 34 TC 4 Z9 4 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0898-1221 EI 1873-7668 J9 COMPUT MATH APPL JI Comput. Math. Appl. PD DEC PY 2014 VL 68 IS 11 BP 1480 EP 1502 DI 10.1016/j.camwa.2014.09.014 PG 23 WC Mathematics, Applied SC Mathematics GA AW3WI UT WOS:000346213600002 ER PT J AU Roberts, NV AF Roberts, Nathan V. TI Camellia: A software framework for discontinuous Petrov-Galerkin methods SO COMPUTERS & MATHEMATICS WITH APPLICATIONS LA English DT Article DE Discontinuous Petrov-Galerkin; Adaptive finite elements ID DPG METHOD AB The discontinuous Petrov-Galerkin (DPG) methodology of Demkowicz and Gopalakrishnan minimizes the solution residual in a user-determinable energy norm and offers a built-in mechanism for evaluating error in the energy norm, among other desirable features. However, the methodology also brings with it some additional complexity for researchers who wish to experiment with DPG in their computations. In this paper, we introduce Camellia, a software framework whose central design goal is to enable developers to create efficient hp-adaptive DPG solvers with minimal effort. (C) 2014 Elsevier Ltd. All rights reserved. C1 Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. RP Roberts, NV (reprint author), Argonne Natl Lab, Argonne Leadership Comp Facil, 9700 S Cass Ave, Argonne, IL 60439 USA. EM nvroberts@anl.gov FU US Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357]; Department of Energy [National Nuclear Security Administration] [DE-FC52-08NA28615]; Sandia National Laboratories (Albuquerque) FX This work is supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. DE-AC02-06CH11357. Roberts was supported in his dissertation work, of which the present work is an outgrowth, by the Department of Energy [National Nuclear Security Administration] under Award No. DE-FC52-08NA28615. We also thank Pavel Bochev and Denis Ridzal for hosting and collaborating with Roberts in the summers of 2010 and 2011, when he was supported by internships at Sandia National Laboratories (Albuquerque). We thank Jesse Chan and Truman Ellis for their contributions to Camellia both provided significant feedback and testing as they developed applications using Camellia; Chan also contributed the RieszRep implementation and the static condensation solver, while Ellis wrote the VTK output mechanisms which we use for nearly all of our visualization. NR 26 TC 3 Z9 3 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0898-1221 EI 1873-7668 J9 COMPUT MATH APPL JI Comput. Math. Appl. PD DEC PY 2014 VL 68 IS 11 BP 1581 EP 1604 DI 10.1016/j.camwa.2014.08.010 PG 24 WC Mathematics, Applied SC Mathematics GA AW3WI UT WOS:000346213600009 ER PT J AU Barrios, LA Peyrecave-Lleixa, E Craig, GA Roubeau, O Teat, SJ Aromi, G AF Barrios, Leoni A. Peyrecave-Lleixa, Eugenia Craig, Gavin A. Roubeau, Olivier Teat, Simon J. Aromi, Guillem TI Unusual Crystal Packing in a Family of [Fe{2,6-bis(pyrazol-3-yl)pyridine}(2)](2+) Compounds and the Effect on the Occurrence of Spin Crossover and Its Cooperative Character SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Spin crossover; Cooperative effects; Switchable materials; Iron; Crystal lattices; N ligands ID BIS(2,6-BIS(PYRAZOL-3-YL)PYRIDINE)IRON(II) THIOCYANATE; INTERMOLECULAR INTERACTIONS; MOLECULAR-CRYSTALS; HIRSHFELD SURFACES; IRON(II) COMPLEXES; TRANSITION; STATE; SALTS; RELAXATION; LIGANDS AB The crucial relationship between the spin-crossover (SCO) phenomenon and the crystal lattice can be investigated by tuning the intermolecular interactions of a complex with little change to the electronic environment of the metal. With this aim, the synthesis of the new ligand 2,6-bis[5-(naphth-2-yl)-pyrazol-3-yl] pyridine (H2L) and four different forms (1-4) of the corresponding [Fe(H2L)(2)](2+) complex cation are presented. H2L exhibits an increased number of aromatic rings with respect to previous analogues to augment the density of pi center dot center dot center dot pi contacts within the system. The four compounds group into three different structural arrangements that coincide with two different SCO behaviour types and a locked high-spin state. The intermolecular interactions that embody the various crystallographic organisations have been analysed through Hirshfeld plots, and the SCO properties of 1-4 are also discussed in light of the local structural analysis around the Fe-II centres. C1 [Barrios, Leoni A.; Peyrecave-Lleixa, Eugenia; Craig, Gavin A.; Aromi, Guillem] Univ Barcelona, Dept Quim Inorgan, E-08028 Barcelona, Spain. [Roubeau, Olivier] CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. [Roubeau, Olivier] Univ Zaragoza, E-50009 Zaragoza, Spain. [Teat, Simon J.] Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Craig, GA (reprint author), Univ Barcelona, Dept Quim Inorgan, Diagonal 647, E-08028 Barcelona, Spain. EM guillem.aromi@qi.ub.es RI Aromi, Guillem/I-2483-2015; Roubeau, Olivier/A-6839-2010; BARRIOS MORENO, LEONI ALEJANDRA/E-5413-2017; OI Aromi, Guillem/0000-0002-0997-9484; Roubeau, Olivier/0000-0003-2095-5843; BARRIOS MORENO, LEONI ALEJANDRA/0000-0001-7075-9950; Craig, Gavin/0000-0003-3542-4850 FU European Reseasch Council [ERC-2010-StG-258060]; Spanish Ministerio de Economia y Competitividad (MINECO) [CTQ2009-06959, CTQ2012-32247, MAT2011-24284]; Generalitat de Catalunya for the ICREA Academia; Gobierno de Aragon [E98-"MOLCHIP"]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank the European Reseasch Council for a Starting Grant, ERC-2010-StG-258060 (to G. A., L. A. B., E. P-L.), the Spanish Ministerio de Economia y Competitividad (MINECO) for projects CTQ2009-06959 (grants to G. A., L. A. B., G. A. C.), CTQ2012-32247 (grants to G. A., G. A. C.) and MAT2011-24284 (grant to O. R.), the Generalitat de Catalunya for the ICREA Academia Price 2008 and 2013 (to G. A.) and the Gobierno de Aragon for grant E98-"MOLCHIP" (to O. R.). The Advanced Light Source (S. J. T.) is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 52 TC 6 Z9 6 U1 2 U2 24 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1434-1948 EI 1099-0682 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD DEC PY 2014 IS 35 BP 6013 EP 6021 DI 10.1002/ejic.201403009 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AW1RA UT WOS:000346065900003 ER PT J AU Boaro, AA Kim, YM Konopka, AE Callister, SJ Ahring, BK AF Boaro, Amy A. Kim, Young-Mo Konopka, Allan E. Callister, Stephen J. Ahring, Birgitte K. TI Integrated 'omics analysis for studying the microbial community response to a pH perturbation of a cellulose-degrading bioreactor culture SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE metaproteomics; meta-metabolomics; microbial community; beta-glucosidase; Fibrobacter; Prevotella ID TANDEM MASS-SPECTRA; FIBROBACTER-SUCCINOGENES; ACCURATE MASS; ANAEROBIC-DIGESTION; RUMINAL BACTERIUM; GEN. NOV.; ACID; METABOLOMICS; PROTEOME; BIOMASS AB Integrated 'omics have been used on pure cultures and co-cultures, yet they have not been applied to complex microbial communities to examine questions of perturbation response. In this study, we used integrated 'omics to measure the perturbation response of a cellulose-degrading bioreactor community fed with microcrystalline cellulose (Avicel). We predicted that a pH decrease by addition of a pulse of acid would reduce microbial community diversity and temporarily reduce reactor function in terms of cellulose degradation. However, 16S rDNA gene pyrosequencing results revealed increased alpha diversity in the microbial community after the perturbation, and a persistence of the dominant community members over the duration of the experiment. Proteomics results showed a decrease in activity of proteins associated with Fibrobacter succinogenes 2 days after the perturbation followed by increased protein abundances 6 days after the perturbation. The decrease in cellulolytic activity suggested by the proteomics was confirmed by the accumulation of Avicel in the reactor. Metabolomics showed a pattern similar to that of the proteome, with amino acid production decreasing 2 days after the perturbation and increasing after 6 days. This study demonstrated that community 'omics data provide valuable information about the interactions and function of anaerobic cellulolytic community members after a perturbation. C1 [Boaro, Amy A.; Ahring, Birgitte K.] Washington State Univ Tricities, Bioprod Sci & Engn Lab, Richland, WA 99354 USA. [Kim, Young-Mo; Konopka, Allan E.; Callister, Stephen J.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Ahring, BK (reprint author), Washington State Univ Tricities, Bioprod Sci & Engn Lab, 2710 Crimson Way, Richland, WA 99354 USA. EM bka@wsu.edu RI Kim, Young-Mo/D-3282-2009 OI Kim, Young-Mo/0000-0002-8972-7593 FU Microbial Communities Initiative (MCI) LDRD Program; Department of Energy's (DOE) Office of Biological and Environmental Research Genome Sciences Program Pan-omics program; DOE [DE-AC05-76RL01830] FX The research described in this study was partly funded by the Microbial Communities Initiative (MCI) LDRD Program, and by the Department of Energy's (DOE) Office of Biological and Environmental Research Genome Sciences Program Pan-omics program and performed in the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory (PNNL). The Environmental Molecular Sciences Laboratory is a U.S. Department of Energy (DOE) Office of Biological and Environmental Research national scientific user facility on the PNNL campus. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under contract DE-AC05-76RL01830. Thanks to the Integrated Omics Group at PNNL for contributions to proteomics and metabolomics data generation. Thanks also to Stacy McCorkle, proprietor of Gene's Custom Slaughtering, for providing access to rumen fluid from slaughter carcasses, as well as Weiqun Zhong for assisting in activities related to bioreactor operation. NR 69 TC 3 Z9 3 U1 5 U2 44 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0168-6496 EI 1574-6941 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD DEC PY 2014 VL 90 IS 3 BP 802 EP 815 DI 10.1111/1574-6941.12435 PG 14 WC Microbiology SC Microbiology GA AW1OE UT WOS:000346057900023 PM 25290699 ER PT J AU Sitepu, IR Shi, S Simmons, BA Singer, SW Boundy-Mills, K Simmons, CW AF Sitepu, Irnayuli R. Shi, Shuang Simmons, Blake A. Singer, Steven W. Boundy-Mills, Kyria Simmons, Christopher W. TI Yeast tolerance to the ionic liquid 1-ethyl-3-methylimidazolium acetate SO FEMS YEAST RESEARCH LA English DT Article DE ionic liquid pretreatment; lignocellulosic biofuels; inhibitor tolerance; Galactomyces geotrichum ID DEBARYOMYCES-HANSENII; ETHANOL-PRODUCTION; D-XYLOSE; FERMENTATION; CULTURE; CELLODEXTRINS; HEMICELLULOSE; ENRICHMENT; VARIETY; BIOMASS AB Lignocellulosic plant biomass is the target feedstock for production of second-generation biofuels. Ionic liquid (IL) pretreatment can enhance deconstruction of lignocellulosic biomass into sugars that can be fermented to ethanol. Although biomass is typically washed following IL pretreatment, small quantities of residual IL can inhibit fermentative microorganisms downstream, such as the widely used ethanologenic yeast, Saccharomyces cerevisiae. The aim of this study was to identify yeasts tolerant to the IL 1-ethyl-3-methylimidazolium acetate, one of the top performing ILs known for biomass pretreatment. One hundred and sixty eight strains spanning the Ascomycota and Basidiomycota phyla were selected for screening, with emphasis on yeasts within or closely related to the Saccharomyces genus and those tolerant to saline environments. Based on growth in media containing 1-ethyl-3-methylimidazolium acetate, tolerance to IL levels ranging 1-5% was observed for 80 strains. The effect of 1-ethyl-3-methylimidazolium acetate concentration on maximum cell density and growth rate was quantified to rank tolerance. The most tolerant yeasts included strains from the genera Clavispora, Debaryomyces, Galactomyces, Hyphopichia, Kazachstania, Meyerozyma, Naumovozyma, Wicker-hamomyces, Yarrowia, and Zygoascus. These yeasts included species known to degrade plant cell wall polysaccharides and those capable of ethanol fermentation. These yeasts warrant further investigation for use in saccharification and fermentation of IL-pretreated lignocellulosic biomass to ethanol or other products. C1 [Sitepu, Irnayuli R.; Shi, Shuang; Boundy-Mills, Kyria; Simmons, Christopher W.] Univ Calif Davis, Dept Food Sci & Technol, Davis, CA 95616 USA. [Sitepu, Irnayuli R.] Minist Forestry, Forestry Res & Dev Agcy FORDA, Bogor, Indonesia. [Simmons, Blake A.; Singer, Steven W.; Simmons, Christopher W.] Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA USA. [Simmons, Blake A.] Sandia Natl Labs, Biol & Mat Sci Ctr, Livermore, CA USA. [Singer, Steven W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Simmons, CW (reprint author), Univ Calif Davis, Dept Food Sci & Technol, One Shields Ave, Davis, CA 95616 USA. EM cwsimmons@ucdavis.edu OI Sitepu, Irnayuli/0000-0001-9019-693X; Simmons, Blake/0000-0002-1332-1810 FU Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank Luis Antonio Garay, Joe Williams, Erin Cathcart, Katherine Neuhaus, Idelia Chandra, and Ting Lin of the Department of Food Science and Technology, UC Davis for assisting with data collection. This work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 30 TC 12 Z9 12 U1 5 U2 35 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1567-1356 EI 1567-1364 J9 FEMS YEAST RES JI FEMS Yeast Res. PD DEC PY 2014 VL 14 IS 8 BP 1286 EP 1294 DI 10.1111/1567-1364.12224 PG 9 WC Biotechnology & Applied Microbiology; Microbiology; Mycology SC Biotechnology & Applied Microbiology; Microbiology; Mycology GA AW1OJ UT WOS:000346058500013 PM 25348480 ER PT J AU Asgharian, B Price, OT Oldham, M Chen, LC Saunders, EL Gordon, T Mikheev, VB Minard, KR Teeguarden, JG AF Asgharian, B. Price, O. T. Oldham, M. Chen, Lung-Chi Saunders, E. L. Gordon, T. Mikheev, V. B. Minard, K. R. Teeguarden, J. G. TI Computational modeling of nanoscale and microscale particle deposition, retention and dosimetry in the mouse respiratory tract SO INHALATION TOXICOLOGY LA English DT Article DE Lung deposition; nanosized particles; particle retention; rats and mice ID MULTIPLE-PATH MODEL; SMALL LABORATORY-ANIMALS; HUMAN LUNG; RAT LUNG; B6C3F1 MICE; IN-VITRO; AEROSOL DEPOSITION; NICKEL SUBSULFIDE; NASAL PASSAGES; F344/N RATS AB Comparing effects of inhaled particles across rodent test systems and between rodent test systems and humans is a key obstacle to the interpretation of common toxicological test systems for human risk assessment. These comparisons, correlation with effects and prediction of effects, are best conducted using measures of tissue dose in the respiratory tract. Differences in lung geometry, physiology and the characteristics of ventilation can give rise to differences in the regional deposition of particles in the lung in these species. Differences in regional lung tissue doses cannot currently be measured experimentally. Regional lung tissue dosimetry can however be predicted using models developed for rats, monkeys, and humans. A computational model of particle respiratory tract deposition and clearance was developed for BALB/c and B6C3F1 mice, creating a cross-species suite of available models for particle dosimetry in the lung. Airflow and particle transport equations were solved throughout the respiratory tract of these mice strains to obtain temporal and spatial concentration of inhaled particles from which deposition fractions were determined. Particle inhalability (Inhalable fraction, IF) and upper respiratory tract (URT) deposition were directly related to particle diffusive and inertial properties. Measurements of the retained mass at several post-exposure times following exposure to iron oxide nanoparticles, micro-and nanoscale C60 fullerene, and nanoscale silver particles were used to calibrate and verify model predictions of total lung dose. Interstrain (mice) and interspecies (mouse, rat and human) differences in particle inhalability, fractional deposition and tissue dosimetry are described for ultrafine, fine and coarse particles. C1 [Asgharian, B.] Appl Res Associates Inc, Raleigh, NC 27615 USA. [Price, O. T.] Appl Res Associates Inc, Arlington, VA USA. [Oldham, M.] Virginia Commonwealth Univ, Dept Mech & Nucl Engn, Richmond, VA USA. [Chen, Lung-Chi; Saunders, E. L.; Gordon, T.] NYU, Sch Med, Dept Environm Med, New York, NY USA. [Mikheev, V. B.] Battelle Mem Inst, Columbus, OH 43201 USA. [Minard, K. R.; Teeguarden, J. G.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Asgharian, B (reprint author), Appl Res Associates Inc, 8537 Six Forks Rd,Suite 600, Raleigh, NC 27615 USA. EM basgharian@ara.com OI Chen, Lung Chi/0000-0003-1154-2107 FU NIH [U19-ES019544, U01 ES020126-03]; Defense Threat Reduction Agency [DTRA01-03-D-0014-0030] FX The funding for this study was provided by NIH grants U19-ES019544 (J. G. Teeguarden), U01 ES020126-03 (E. L. Saunders, L. C. Chen, T. Gordon), and in part by the Defense Threat Reduction Agency via contract DTRA01-03-D-0014-0030 (B. Asgharian, O. T. Price). The authors report no declarations of interest. NR 59 TC 19 Z9 19 U1 2 U2 21 PU INFORMA HEALTHCARE PI LONDON PA TELEPHONE HOUSE, 69-77 PAUL STREET, LONDON EC2A 4LQ, ENGLAND SN 0895-8378 EI 1091-7691 J9 INHAL TOXICOL JI Inhal. Toxicol. PD DEC PY 2014 VL 26 IS 14 BP 829 EP 842 DI 10.3109/08958378.2014.935535 PG 14 WC Toxicology SC Toxicology GA AW0KI UT WOS:000345980700001 PM 25373829 ER PT J AU Wereszczak, AA Anderson, CE AF Wereszczak, Andrew A. Anderson, Charles E., Jr. TI Borofloat and Starphire Float Glasses: A Comparison SO INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE LA English DT Article ID FAILURE AB Borofloat((R)) borosilicate float glass and Starphire((R)) soda-lime silicate float glass are used in transparent protective systems. They are known to respond differently in some ballistic and triaxial loading conditions, and efforts are underway to understand the causes of those differences. Toward that, a suite of test and material characterizations were completed in this study on both glasses so to identify what differences exist among them. Compositional, physical properties, elastic properties, flaw size distributions and concentrations, tensile/flexure strength, fracture toughness, spherical indentation and hardness, transmission electron microscopy, striae, high-pressure responses via diamond anvil cell testing, laser shock differences, and internal porosity were examined. Differences between these two float glasses were identified for many of these properties and characteristics, and the role of three (striae, high pressures where permanent densification can initiate, and submicrometer-sized porosity) lack understanding and deserve further attention. The contributing roles of any of those properties or characteristics to triaxial or ballistic loading responses are not definitive; however, they provide potential correlations that may lead to improved understanding and management of loading responses in glasses used in transparent protective systems. C1 [Wereszczak, Andrew A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Anderson, Charles E., Jr.] SW Res Inst, Engn Dynam Dept, San Antonio, TX 78238 USA. RP Anderson, CE (reprint author), SW Res Inst, Engn Dynam Dept, San Antonio, TX 78238 USA. EM wereszczakaa@ornl.gov RI Wereszczak, Andrew/I-7310-2016 OI Wereszczak, Andrew/0000-0002-8344-092X FU Purdue University under the Material Science and Technology Division, Work-for-Others (WFO) Program [IAN: 14B658801]; DOE [NFE-10-03121]; U.S. Department of Energy; United States Government [DE-AC05-00OR22725]; United States Department of Energy FX This research was performed at the Oak Ridge National Laboratory (ORNL) and sponsored by Purdue University under the Material Science and Technology Division, Work-for-Others (WFO) Program, IAN: 14B658801; and DOE agreement: NFE-10-03121, with the U.S. Department of Energy.; This submission was produced by a contractor of the United States Government under contract DE-AC05-00OR22725 with the United States Department of Energy. The United States Government retains, and the publisher, by accepting this submission for publication, acknowledges that the United States Government retains, a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this submission, or allow others to do so, for United States Government purposes. NR 23 TC 5 Z9 5 U1 0 U2 12 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-1286 EI 2041-1294 J9 INT J APPL GLASS SCI JI Int. J. Appl. Glass Sci. PD DEC PY 2014 VL 5 IS 4 SI SI BP 334 EP 344 DI 10.1111/ijag.12095 PG 11 WC Materials Science, Ceramics SC Materials Science GA AW0MY UT WOS:000345987800003 ER PT J AU Holmquist, TJ Wereszczak, AA AF Holmquist, Timothy J. Wereszczak, Andrew A. TI The Internal Tensile Strength of a Borosilicate Glass Determined from Laser Shock Experiments and Computational Analysis SO INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE LA English DT Article ID SPALL STRENGTH AB It is of interest to determine the internal tensile strength of glass because it is used in material models to understand and design transparent armor. It is difficult to determine this strength because surface conditions limit the ability to apply large tensile stresses needed to cause internally located crack initiation. This article presents a novel approach to estimate the internal tensile strength of glass using a combination of laser shock experiments and computational analysis. Laser shock produces a unique loading condition that causes maximum tension to occur in the interior of the glass without destroying the target. Several laser shock experiments were performed on a plate of borosilicate glass at varying levels of peak pressure. In one experiment, damage was produced only in the interior of the plate (there was no damage on either the front or rear surfaces). This experiment was singled out for analysis because surface flaws did not influence the internal crack initiation event. Computational analysis indicated that the internal tensile strength of this borosilicate glass is approximately 1.2GPa. The computed results produced damage only in the interior of the glass plate, similar to experimental observation. A similar failure stress was obtained using the Griffith criterion. C1 [Holmquist, Timothy J.] Southwest Res Inst Inc, Minneapolis, MN 55416 USA. [Wereszczak, Andrew A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Holmquist, TJ (reprint author), Southwest Res Inst Inc, 5353 Wayzata Blvd, Minneapolis, MN 55416 USA. EM tholmquist@swri.org RI Wereszczak, Andrew/I-7310-2016 OI Wereszczak, Andrew/0000-0002-8344-092X FU U.S. Army Tank-Automotive Research, Development and Engineering Center (TARDEC) [SP0700-99-D-030, 4104-51457]; Purdue University FX Research funded by U.S. Army Tank-Automotive Research, Development and Engineering Center (TARDEC), under prime contract SP0700-99-D-030 and subcontract 4104-51457 with Purdue University. NR 13 TC 6 Z9 6 U1 1 U2 10 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-1286 EI 2041-1294 J9 INT J APPL GLASS SCI JI Int. J. Appl. Glass Sci. PD DEC PY 2014 VL 5 IS 4 SI SI BP 345 EP 352 DI 10.1111/ijag.12097 PG 8 WC Materials Science, Ceramics SC Materials Science GA AW0MY UT WOS:000345987800004 ER PT J AU Parab, ND Black, JT Claus, B Hudspeth, M Sun, JZ Fezzaa, K Chen, WNW AF Parab, Niranjan D. Black, John T. Claus, Benjamin Hudspeth, Matthew Sun, Jianzhuo Fezzaa, Kamel Chen, Weinong W. TI Observation of Crack Propagation in Glass Using X-ray Phase Contrast Imaging SO INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE LA English DT Article ID SODA-LIME GLASS; BOROSILICATE GLASS; STEEL SPHERES; FAILURE WAVES; TAYLOR IMPACT; CONE CRACK; PENETRATION; SURFACES AB High-speed X-ray phase contrast imaging synchronized with a Kolsky bar apparatus was utilized to investigate the cracking behavior of a borosilicate glass, a soda lime glass, and a glass ceramic in front of a cylindrical projectile with an impact velocity of 5ms(-1). For each material, three different surface conditions were prepared for the impacted edge of the specimen. Angular cracking was observed in front of the projectile for borosilicate glass. For soda lime glass, straight cracking was observed. For glass ceramic, curved cracking was observed in front of the projectile. Cracking behavior was observed to be independent of the surface condition on the impacted edge. C1 [Parab, Niranjan D.; Black, John T.; Claus, Benjamin; Hudspeth, Matthew; Sun, Jianzhuo; Chen, Weinong W.] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA. [Fezzaa, Kamel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Chen, Weinong W.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. RP Chen, WNW (reprint author), Purdue Univ, Sch Aeronaut & Astronaut, 701 West Stadium Ave, W Lafayette, IN 47907 USA. EM wchen@purdue.edu OI Parab, Niranjan/0000-0002-3215-1466 FU U.S. DOE [DE-AC02-06CH11357]; Alion Science and Engineering; US Army TAR-DEC; Purdue University FX We appreciate professional help from A. Deriy with technical and safety aspects of our experiments at APS. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract no. DE-AC02-06CH11357. This research was also partially supported by contracts from Alion Science and Engineering and US Army TAR-DEC with Purdue University. NR 32 TC 0 Z9 0 U1 5 U2 17 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-1286 EI 2041-1294 J9 INT J APPL GLASS SCI JI Int. J. Appl. Glass Sci. PD DEC PY 2014 VL 5 IS 4 SI SI BP 363 EP 373 DI 10.1111/ijag.12092 PG 11 WC Materials Science, Ceramics SC Materials Science GA AW0MY UT WOS:000345987800006 ER PT J AU Pierce, EM Frugier, P Criscenti, LJ Kwon, KD Kerisit, SN AF Pierce, Eric M. Frugier, Pierre Criscenti, Louise J. Kwon, Kideok D. Kerisit, Sebastien N. TI Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations SO INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; MONTE-CARLO SIMULATIONS; NUCLEAR-WASTE GLASS; SODIUM BOROSILICATE GLASS; ION MIGRATION MECHANISMS; LONG-TERM BEHAVIOR; SILICATE-GLASSES; PERFORMANCE ASSESSMENT; DISSOLUTION RATES; GRAAL MODEL AB Describing the reactions that occur at the glass-water interface and control the development of the altered layer constitutes one of the main scientific challenges impeding existing models from providing accurate radionuclide release estimates. Radionuclide release estimates are a critical component of the safety basis for geologic repositories. The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products) represents a complex region, both physically and chemically, sandwiched between two distinct boundariespristine glass surface at the inner most interface and aqueous solution at the outer most interface. Computational models, spanning different length and timescales, are currently being developed to improve our understanding of this complex and dynamic process with the goal of accurately describing the mesoscale changes that occur as the system evolves. These modeling approaches include geochemical simulations (i.e., classical reaction path simulations and glass reactivity in allowance for alteration layer simulations), Monte Carlo simulations, and molecular dynamics methods. Discussed in this manuscript are the advances and limitations of each modeling approach placed in the context of the glass-water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers. New results are presented as examples of each approach. C1 [Pierce, Eric M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Frugier, Pierre] CEA, Marcoule DEN Lab Etud Comportement Long Term, F-30207 Bagnols Sur Ceze, France. [Criscenti, Louise J.; Kwon, Kideok D.] Sandia Natl Labs, Dept Geochem, Albuquerque, NM 87185 USA. [Kerisit, Sebastien N.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 87185 USA. RP Pierce, EM (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM pierceem@ornl.gov RI Pierce, Eric/G-1615-2011 OI Pierce, Eric/0000-0002-4951-1931 FU U.S. Department of Energy Office of Nuclear Energy (Fuel Cycle Research and Development); Office of Environmental Management (Tank Waste Management) [EM-21]; Office of Science's Office of Biological and Environmental Research (OBER); DOE by Battelle Memorial Institute [DE-AC05-76RL01830]; DOE [DE-AC05-00OR22725]; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was jointly funded by the U.S. Department of Energy Office of Nuclear Energy (Fuel Cycle Research and Development) and Office of Environmental Management (Tank Waste Management, EM-21). The authors are grateful to AREVA and the CEA for supporting GRAAL model development. Some computer simulations were performed as part of a DOE Office of Science-supported Science Theme User Proposal at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Molecular Science Computing (MSC) facilities. The EMSL is a national scientific user facility sponsored by the Office of Science's Office of Biological and Environmental Research (OBER) and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the DOE by Battelle Memorial Institute under Contract DE-AC05-76RL01830. Oak Ridge National Laboratory (ORNL) is managed by UT-Battelle LLC for the DOE under contract DE-AC05-00OR22725. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 98 TC 4 Z9 4 U1 3 U2 36 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-1286 EI 2041-1294 J9 INT J APPL GLASS SCI JI Int. J. Appl. Glass Sci. PD DEC PY 2014 VL 5 IS 4 SI SI BP 421 EP 435 DI 10.1111/ijag.12077 PG 15 WC Materials Science, Ceramics SC Materials Science GA AW0MY UT WOS:000345987800012 ER PT J AU Wan, JM Kim, Y Tokunaga, TK AF Wan, Jiamin Kim, Yongman Tokunaga, Tetsu K. TI Contact angle measurement ambiguity in supercritical CO2-water-mineral systems: Mica as an example SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Geological carbon sequestration; Wettability of muscovite mica; Contact angle measurement; Contact angle hysteresis; Adhesion; Mineral-CO2-brine reaction ID SILICA SURFACES; CARBON SEQUESTRATION; IONIC-STRENGTH; WETTABILITY; CO2; DISSOLUTION; BRINE; CONTAMINATION; TEMPERATURES; PRESSURES AB The current ambiguity on wettability of minerals in CO2-brine systems under the geological CO2 sequestration (GCS) reservoir conditions imparts the greatest uncertainty in predicting capillary behavior controlling safe-storage of CO2. To address this issue we conducted a series of experiments using muscovite as a representative of common aluminosilicate minerals. Based on new experimental results we identified several possible causes of the ambiguity problem in contact angle (CA) measurements. We also found that reaction with water-saturated supercritical (sc) CO2 (but not with scN(2)) phase severely roughened the muscovite surfaces, largely increased CA hysteresis and CO2 adhesion. Although some methodological influences on contact angle uncertainty can be reduced, the high surface-energy of clean and pristine aluminosilicate minerals have strong tendency to adsorb oppositely changed molecules and particles to reduce their surface energy, resulting in less reproducible CA values. Giving the fact that such clean and pristine mineral surfaces do not exist in real reservoirs, our future investigations shall focus on improving understanding of the effect of long-term CO2-mineral-brine reactions on reservoir wettability under realistic reservoir geochemical conditions. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Wan, Jiamin; Kim, Yongman; Tokunaga, Tetsu K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Wan, JM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM jwan@lbl.gov RI Tokunaga, Tetsu/H-2790-2014; Kim, Yongman/D-1130-2015; Wan, Jiamin/H-6656-2014 OI Tokunaga, Tetsu/0000-0003-0861-6128; Kim, Yongman/0000-0002-8857-1291; FU Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-05CH11231] FX This material is based upon work supported by the Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-AC02-05CH11231. We thank Kevin Knauss for use of the AFM, and Jonathan Ajo-Franklin for use of the SEM. NR 38 TC 18 Z9 18 U1 1 U2 30 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD DEC PY 2014 VL 31 BP 128 EP 137 DI 10.1016/j.ijggc.2014.09.029 PG 10 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA AW9RQ UT WOS:000346595300014 ER PT J AU Li, FK Pynn, R AF Li, Fankang Pynn, Roger TI A novel neutron spin echo technique for measuring phonon linewidths using magnetic Wollaston prisms SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID SUPERFLUID HE-4; SPECTROMETERS; SCATTERING; RESOLUTION; LIFETIMES AB A new method of implementing neutron spin echo measurement of phonon linewidths on a triple-axis neutron spectrometer is introduced, based on recently developed superconducting magnetic Wollaston prisms. Each arm of the spectrometer is composed of two Wollaston prisms with a rectangular field region between them. By introducing triangular and rectangular field regions, loci of constant spin echo phase can be manipulated easily to achieve the so-called phonon focusing condition. Unlike the neutron resonance spin echo method, which is tuned by physically tilting the field boundaries, the new device can be tuned electromagnetically to achieve the phonon focusing condition. By adjusting the field configurations, the linewidths of phonon excitations with high energy and large group velocity can be measured. By employing superconducting films to define the various field regions, high neutron transmission and good neutron polarization efficiency can be obtained. C1 [Li, Fankang; Pynn, Roger] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47408 USA. [Pynn, Roger] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. RP Li, FK (reprint author), Indiana Univ, Ctr Explorat Energy & Matter, 2401 Milo B Sampson Lane, Bloomington, IN 47408 USA. EM fankli@indiana.edu; rpynn@indiana.edu OI Li, Fankang/0000-0001-8859-0102 FU National Science Foundation [DMR-0956741]; STTR program of the US Department of Energy [DE-SC0009584] FX The conceptual design of the Wollaston prism was supported by the National Science Foundation (grant No. DMR-0956741), while the construction of the prototype was supported by the STTR program of the US Department of Energy (grant No. DE-SC0009584). We would like to acknowledge Professor David V. Baxter and Dr Steven R. Parnell for a critical reading of the manuscript. NR 23 TC 4 Z9 4 U1 1 U2 12 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD DEC PY 2014 VL 47 BP 1849 EP 1854 DI 10.1107/S1600576714020597 PN 6 PG 6 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA AU8XY UT WOS:000345877900006 ER PT J AU Yager, KG Majewski, PW AF Yager, Kevin G. Majewski, Pawel W. TI Metrics of graininess: robust quantification of grain count from the non-uniformity of scattering rings SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID X-RAY-DIFFRACTION; CRYSTALLITE SIZE DISTRIBUTION; PARTICLE-SIZE; PREFERRED ORIENTATION; SURFACE SCATTERING; PROFILE ANALYSIS; SCALE FORMATION; CO2 CORROSION; CARBON-STEEL; FILMS AB The diffraction rings that arise in X-ray scattering experiments frequently exhibit non-uniformity or 'spottiness' as a result of the finite number of grains within the probed volume. This article explores a variety of ways to assess this graininess and shows that scaling relationships can be used to quantitatively relate ring non-uniformity to the number of grains within the scattering volume. The applicability of the method is demonstrated for grain counts from 10 to 10(7), enabling measurement of the crystalline fraction or of the average grain size from 6 nm to 120 mu m. This method enables quantification of grain size even in cases where the intrinsic peak width is much smaller than the instrumental broadening. The method is validated with experimental measurements on a variety of systems. C1 [Yager, Kevin G.; Majewski, Pawel W.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Yager, KG (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM kyager@bnl.gov RI Yager, Kevin/F-9804-2011 OI Yager, Kevin/0000-0001-7745-2513 FU US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We thank Oleg Gang and Yugang Zhang for stimulating discussions and Chinedum Osuji for suggesting measurements of a sphere-forming block copolymer. This research was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under contract No. DE-AC02-98CH10886. NR 48 TC 2 Z9 2 U1 4 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 EI 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD DEC PY 2014 VL 47 BP 1855 EP 1865 DI 10.1107/S1600576714020822 PN 6 PG 11 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA AU8XY UT WOS:000345877900007 ER PT J AU Li, X Do, C Liu, Y Sanchez-Diaz, L Smith, G Chen, WR AF Li, Xin Do, Changwoo Liu, Yun Sanchez-Diaz, Luis Smith, Gregory Chen, Wei-Ren TI A scattering function of star polymers including excluded volume effects SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID ANGLE NEUTRON-SCATTERING; BRANCHED POLYMERS; SEMIFLEXIBLE POLYMERS; MOLECULAR-DYNAMICS; WORMLIKE MICELLES; DILUTE-SOLUTION; SIMULATION; SANS AB This work presents a new model for the form factor of a star polymer consisting of self-avoiding branches. This new model incorporates excluded volume effects and is derived from the two-point correlation function for a star polymer. This model is compared with small-angle neutron scattering measurements from polystyrene stars immersed in a good solvent, tetrahydrofuran. It is shown that this model provides a good description of the scattering signature originating from the excluded volume effect, and it explicitly elucidates the connection between the global conformation of a star polymer and the local stiffness of its constituent branch. C1 [Li, Xin; Do, Changwoo; Sanchez-Diaz, Luis; Smith, Gregory; Chen, Wei-Ren] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Do, Changwoo] Univ Delaware, Newark, DE 19716 USA. [Liu, Yun] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Chen, WR (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. EM chenw@ornl.gov RI Liu, Yun/F-6516-2012; Do, Changwoo/A-9670-2011 OI Liu, Yun/0000-0002-0944-3153; Do, Changwoo/0000-0001-8358-8417 FU US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. The EQSANS experiment at the SNS at Oak Ridge National Laboratory was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. We also acknowledge the support of the National Institute of Standards and Technology, US Department of Commerce, in providing the neutron research facilities used in this work. In their own activities as scientific institutions, NIST and ORNL use many different materials, products, types of equipment and services. However, NIST and ORNL do not approve, recommend or endorse any product or proprietary material. NR 35 TC 2 Z9 2 U1 0 U2 26 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 EI 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD DEC PY 2014 VL 47 BP 1901 EP 1905 DI 10.1107/S1600576714022249 PN 6 PG 5 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA AU8XY UT WOS:000345877900011 ER PT J AU Zepeda-Alarcon, E Nakotte, H Gualtieri, AF King, G Page, K Vogel, SC Wang, HW Wenk, HR AF Zepeda-Alarcon, Eloisa Nakotte, Heinz Gualtieri, Alessandro F. King, Graham Page, Katharine Vogel, Sven C. Wang, Hsiu-Wen Wenk, Hans-Rudolf TI Magnetic and nuclear structure of goethite (alpha-FeOOH): a neutron diffraction study SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID FINE-PARTICLE GOETHITE; POWDER DIFFRACTION; NEEL TEMPERATURE; SYNTHETIC GOETHITE; MOSSBAUER-SPECTRA; FIELD; THERMOREMANENCE; REFINEMENT; BEHAVIOR AB The magnetic structure of two natural samples of goethite (alpha-FeOOH) with varying crystallinity was analyzed at 15 and 300 K by neutron diffraction. The well crystallized sample has the Pb'nm color space group and remained antiferromagnetic up to 300 K, with spins aligned parallel to the c axis. The purely magnetic 100 peak, identifying this color space group, was clearly resolved. The nanocrystalline sample shows a phase transition to the paramagnetic state at a temperature below 300 K. This lowering of the Neel temperature may be explained by the interaction of magnetic clusters within particles. The nuclear structure, refined with the Rietveld and pair distribution function methods, is consistent with reports in the literature. C1 [Zepeda-Alarcon, Eloisa; Wenk, Hans-Rudolf] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Nakotte, Heinz] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. [King, Graham; Page, Katharine; Vogel, Sven C.; Wang, Hsiu-Wen] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Gualtieri, Alessandro F.] Univ Modena & Reggio Emilia, Chem & Earth Sci Dept, I-41121 Modena, Italy. RP Wenk, HR (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM wenk@berkeley.edu RI Page, Katharine/C-9726-2009; King, Graham/E-3632-2010; Gualtieri, Alessandro/L-9680-2015 OI Page, Katharine/0000-0002-9071-3383; King, Graham/0000-0003-1886-7254; Gualtieri, Alessandro/0000-0002-4414-9603 FU DOE Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396]; CDAC; NSF [EAR 1343908]; DOE-BES [DE-FG02-05ER15637] FX This work has benefited from the use of NPDF and HIPD at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE contract DE-AC52-06NA25396. EZA was supported by CDAC and HRW acknowledges support from NSF (EAR 1343908) and DOE-BES (DE-FG02-05ER15637). The authors would like to thank the Co-editor and an anonymous reviewer for their comments, which helped to improve the manuscript. NR 52 TC 1 Z9 1 U1 3 U2 33 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 EI 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD DEC PY 2014 VL 47 BP 1983 EP 1991 DI 10.1107/S1600576714022651 PN 6 PG 9 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA AU8XY UT WOS:000345877900021 ER PT J AU Pothineni, SB Venugopalan, N Ogata, CM Hilgart, MC Stepanov, S Sanishvili, R Becker, M Winter, G Sauter, NK Smith, JL Fischetti, RF AF Pothineni, Sudhir Babu Venugopalan, Nagarajan Ogata, Craig M. Hilgart, Mark C. Stepanov, Sergey Sanishvili, Ruslan Becker, Michael Winter, Graeme Sauter, Nicholas K. Smith, Janet L. Fischetti, Robert F. TI Tightly integrated single- and multi-crystal data collection strategy calculation and parallelized data processing in JBluIce beamline control system SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID CRYOCOOLED PROTEIN CRYSTALS; MACROMOLECULAR CRYSTALLOGRAPHY; DIFFRACTION DATA; DATA QUALITY; MICRO-CRYSTALLOGRAPHY; DATA REDUCTION; GM/CA-CAT; RECEPTOR; ICE AB The calculation of single-and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates a collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce. C1 [Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M.; Hilgart, Mark C.; Stepanov, Sergey; Sanishvili, Ruslan; Becker, Michael; Fischetti, Robert F.] Argonne Natl Lab, GM CA APS, Argonne, IL 60439 USA. [Winter, Graeme] Diamond Light Source, Didcot OX11 0QX, Oxon, England. [Sauter, Nicholas K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Smith, Janet L.] Univ Michigan, Inst Life Sci, Ann Arbor, MI 48109 USA. [Smith, Janet L.] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA. RP Pothineni, SB (reprint author), Argonne Natl Lab, GM CA APS, 9700 S Cass Ave, Argonne, IL 60439 USA. EM spothineni@anl.gov RI Sauter, Nicholas/K-3430-2012 FU National Cancer Institute [Y1-CO-1020]; National Institute of General Medical Science [Y1-GM-1104]; NIGMS [R01-GM095887]; US Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX We thank Ana Gonzalez, Scott E. McPhillips and Penjit Moorhead of SSRL for help with the initial porting of WebIce, and GM/CA users for providing valuable feedback. We also thank Dheeraj Khare for use of his unpublished data. GM/CA@APS is supported in whole or in part with federal funds from the National Cancer Institute (Y1-CO-1020) and National Institute of General Medical Science (Y1-GM-1104). NKS was supported by NIGMS grant R01-GM095887. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ('Argonne'). Argonne, a US Department of Energy Office of Science laboratory, is operated under contract No. DE-AC02-06CH11357. NR 45 TC 3 Z9 3 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 EI 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD DEC PY 2014 VL 47 BP 1992 EP 1999 DI 10.1107/S1600576714022730 PN 6 PG 8 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA AU8XY UT WOS:000345877900022 PM 25484844 ER PT J AU Stoica, GM Stoica, AD An, K Ma, D Vogel, SC Carpenter, JS Wang, XL AF Stoica, G. M. Stoica, A. D. An, K. Ma, D. Vogel, S. C. Carpenter, J. S. Wang, X-L TI Extracting grain-orientation-dependent data from in situ time-of-flight neutron diffraction. I. Inverse pole figures SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID RIETVELD TEXTURE ANALYSIS; DIFFRACTOMETER; VULCAN; REFINEMENT; EVOLUTION; DETECTOR; HIPPO; FIELD; NITI; LOAD AB The problem of calculating the inverse pole figure (IPF) is analyzed from the perspective of the application of time-of flight neutron diffraction to in situ monitoring of the thermomechanical behavior of engineering materials. On the basis of a quasi-Monte Carlo (QMC) method, a consistent set of grain orientations is generated and used to compute the weighting factors for IPF normalization. The weighting factors are instrument dependent and were calculated for the engineering materials diffractometer VULCAN (Spallation Neutron Source, Oak Ridge National Laboratory). The QMC method is applied to face-centered cubic structures and can be easily extended to other crystallographic symmetries. Examples include 316LN stainless steel in situ loaded in tension at room temperature and an Al-2% Mg alloy, substantially deformed by cold rolling and in situ annealed up to 653 K. C1 [Stoica, G. M.; Stoica, A. D.; An, K.; Ma, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Vogel, S. C.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Carpenter, J. S.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Wang, X-L] City Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. RP Stoica, GM (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM migrigm@gmail.com RI An, Ke/G-5226-2011; OI An, Ke/0000-0002-6093-429X; Wang, Xun-Li/0000-0003-4060-8777; Vogel, Sven C./0000-0003-2049-0361; Carpenter, John/0000-0001-8821-043X FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL); US Department of Energy [De-AC05-00OR22725]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; US Department of Energy's Office of Basic Energy Science; DOE [DE-AC52-06NA25396] FX The present research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC, for the US Department of Energy under contract No. De-AC05-00OR22725. The data were obtained at the Spallation Neutron Source at ORNL, sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy, and at the HIPPO instrument at the Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center, which is funded by the US Department of Energy's Office of Basic Energy Science. The Los Alamos National Laboratory is operated by Los Alamos National Security LLC under the DOE contract DE-AC52-06NA25396. Special thanks are directed to H. D. Skorpenske and R. Mills for the professional and continuous support at the VULCAN diffractometer. GMS would like to thank Dr E. A. Payzant for fruitful discussions and help. NR 44 TC 1 Z9 1 U1 1 U2 17 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 EI 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD DEC PY 2014 VL 47 BP 2019 EP 2029 DI 10.1107/S1600576714023036 PN 6 PG 11 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA AU8XY UT WOS:000345877900025 ER PT J AU Losko, AS Vogel, SC Reiche, HM Nakotte, H AF Losko, Adrian S. Vogel, Sven C. Reiche, H. Matthias Nakotte, Heinz TI A six-axis robotic sample changer for high-throughput neutron powder diffraction and texture measurements SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID STRESS DETERMINATION; STRAIN; DIFFRACTOMETER; HIPPO AB State-of-the-art neutron time-of-flight diffractometers at modern neutron sources allow sample throughput at rates of much less than one hour per sample. Automated sample changes with a high degree of reliability and flexibility are essential to assure safe operation and efficient use of available neutron flux. At the High-Pressure Preferred Orientation (HIPPO) diffractometer, a previous sample changer measured over 2300 texture and 400 powder samples at ambient conditions to study the properties of crystalline materials at the Lujan neutron scattering facility at the Los Alamos Neutron Science Center. Experience gained during operation of the sample changer for over a decade showed room for improvement and led to a new design using current industrial robot technology. Here, the new HIPPO versatile six-axis robotic sample changer for neutron powder diffraction experiments including texture measurements is presented. C1 [Losko, Adrian S.; Vogel, Sven C.; Reiche, H. Matthias; Nakotte, Heinz] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Losko, Adrian S.; Nakotte, Heinz] New Mexico State Univ, Las Cruces, NM 88003 USA. RP Vogel, SC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM sven@lanl.gov OI Vogel, Sven C./0000-0003-2049-0361 FU Lujan Neutron Scattering Center at LANSCE - US Department of Energy, Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396] FX This work has received support from the Lujan Neutron Scattering Center at LANSCE, funded by the US Department of Energy, Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE contract No. DE-AC52-06NA25396. The authors wish to thank Jason Burkhart, Eric Larson and Melvin Borrego for their support at the Lujan Center. NR 26 TC 3 Z9 3 U1 2 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 EI 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD DEC PY 2014 VL 47 BP 2109 EP 2112 DI 10.1107/S1600576714021797 PN 6 PG 4 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA AU8XY UT WOS:000345877900038 ER PT J AU Lindsay, K Bonan, GB Doney, SC Hoffman, FM Lawrence, DM Long, MC Mahowald, NM Moore, JK Randerson, JT Thornton, PE AF Lindsay, Keith Bonan, Gordon B. Doney, Scott C. Hoffman, Forrest M. Lawrence, David M. Long, Matthew C. Mahowald, Natalie M. Moore, J. Keith Randerson, James T. Thornton, Peter E. TI Preindustrial-Control and Twentieth-Century Carbon Cycle Experiments with the Earth System Model CESM1(BGC) SO JOURNAL OF CLIMATE LA English DT Article ID GENERAL-CIRCULATION MODEL; ANTHROPOGENIC CO2; WOOD-HARVEST; LAND-USE; CLIMATE; OCEAN; NITROGEN; DIOXIDE; VARIABILITY; SINKS AB Version 1 of the Community Earth System Model, in the configuration where its full carbon cycle is enabled, is introduced and documented. In this configuration, the terrestrial biogeochemical model, which includes carbon nitrogen dynamics and is present in earlier model versions, is coupled to an ocean biogeochemical model and atmospheric CO2 tracers. The authors provide a description of the model, detail how preindustrial-control and twentieth-century experiments were initialized and forced, and examine the behavior of the carbon cycle in those experiments. They examine how sea-and land-to-air CO2 fluxes contribute to the increase of atmospheric CO2 in the twentieth century, analyze how atmospheric CO2 and its surface fluxes vary on interannual time scales, including how they respond to ENSO, and describe the seasonal cycle of atmospheric CO2 and its surface fluxes. While the model broadly reproduces observed aspects of the carbon cycle, there are several notable biases, including having too large of an increase in atmospheric CO2 over the twentieth century and too small of a seasonal cycle of atmospheric CO2 in the Northern Hemisphere. The biases are related to a weak response of the carbon cycle to climatic variations on interannual and seasonal time scales and to twentieth-century anthropogenic forcings, including rising CO2, land-use change, and atmospheric deposition of nitrogen. C1 [Lindsay, Keith; Bonan, Gordon B.; Lawrence, David M.; Long, Matthew C.] Natl Ctr Atmospher Res, Climate & Global Dynam Div, Boulder, CO 80307 USA. [Doney, Scott C.] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA. [Hoffman, Forrest M.] Oak Ridge Natl Lab, Computat Earth Sci Grp, Oak Ridge, TN USA. [Mahowald, Natalie M.] Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY USA. [Moore, J. Keith; Randerson, James T.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Thornton, Peter E.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Thornton, Peter E.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. RP Lindsay, K (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. EM klindsay@ucar.edu RI Doney, Scott/F-9247-2010; Mahowald, Natalie/D-8388-2013; Thornton, Peter/B-9145-2012; Lawrence, David/C-4026-2011; Long, Matthew/H-4632-2016; Hoffman, Forrest/B-8667-2012 OI Doney, Scott/0000-0002-3683-2437; Mahowald, Natalie/0000-0002-2873-997X; Thornton, Peter/0000-0002-4759-5158; Lawrence, David/0000-0002-2968-3023; Long, Matthew/0000-0003-1273-2957; Hoffman, Forrest/0000-0001-5802-4134 FU National Science Foundation FX The National Center for Atmospheric Research is sponsored by the National Science Foundation. NR 50 TC 39 Z9 39 U1 2 U2 26 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD DEC PY 2014 VL 27 IS 24 BP 8981 EP 9005 DI 10.1175/JCLI-D-12-00565.1 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AW1NK UT WOS:000346055900001 ER PT J AU Staten, PW Reichler, T Lu, J AF Staten, Paul W. Reichler, Thomas Lu, Jian TI The Transient Circulation Response to Radiative Forcings and Sea Surface Warming SO JOURNAL OF CLIMATE LA English DT Article ID MIDLATITUDE JET VARIABILITY; MEAN-FLOW INTERACTION; PART I; TROPOSPHERE; MODEL; WAVE; EDDIES; SPEED AB Tropospheric circulation shifts have strong potential to impact surface climate. However, the magnitude of these shifts in a changing climate and the attending regional hydrological changes are difficult to project. Part of this difficulty arises from the lack of understanding of the physical mechanisms behind the circulation shifts themselves. To better delineate circulation shifts and their respective causes the circulation response is decomposed into 1) the "direct'' response to radiative forcings themselves and 2) the "indirect'' response to changing sea surface temperatures. Using ensembles of 90-day climate model simulations with immediate switch-on forcings, including perturbed greenhouse gas concentrations, stratospheric ozone concentrations, and sea surface temperatures, this paper documents the direct and indirect transient responses of the zonal-mean general circulation, and investigates the roles of previously proposed mechanisms in shifting the midlatitude jet. It is found that both the direct and indirect wind responses often begin in the lower stratosphere. Changes in midlatitude eddies are ubiquitous and synchronous with the midlatitude zonal wind response. Shifts in the critical latitude of wave absorption on either flank of the jet are not indicted as primary factors for the poleward-shifting jet, although some evidence for increasing equatorward wave reflection over the Southern Hemisphere in response to sea surface warming is seen. Mechanisms for the Northern Hemisphere jet shift are less clear. C1 [Staten, Paul W.; Reichler, Thomas] Univ Utah, Dept Atmospher Sci, Salt Lake City, UT USA. [Lu, Jian] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Staten, PW (reprint author), NASA JPL Caltech, M-S 233-304,4800 Oak Grove Rd, Pasadena, CA 91109 USA. EM paul.w.staten@jpl.nasa.gov FU NSG-GK12 grant; Office of Science; U.S. Department of Energy FX The author would like to thank Paulo Ceppi for his valuable input and three anonymous reviewers for the constructive comments and suggestions. We acknowledge the University of Utah CHPC for computing support. AM2.1 model data were archived at the National Energy Research Scientific Computing Center. Support of this research is provided by an NSG-GK12 grant. The work described in this publication was performed at the University of Utah. The writing and publication of this publication was supported by the JPL, Caltech, under a contract with NASA. Jian Lu was supported by the Office of Science and the U.S. Department of Energy, as part of the Regional and Global Climate Modeling program. NR 32 TC 3 Z9 3 U1 1 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD DEC PY 2014 VL 27 IS 24 BP 9323 EP 9336 DI 10.1175/JCLI-D-14-00035.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AW1NK UT WOS:000346055900019 ER PT J AU Getirana, ACV Dutra, E Guimberteau, M Kam, JH Li, HY Decharme, B Zhang, ZQ Ducharne, A Boone, A Balsamo, G Rodell, M Toure, AM Xue, YK Peters-Lidard, CD Kumar, SV Arsenault, K Drapeau, G Leung, LR Ronchail, J Sheffield, J AF Getirana, Augusto C. V. Dutra, Emanuel Guimberteau, Matthieu Kam, Jonghun Li, Hong-Yi Decharme, Bertrand Zhang, Zhengqiu Ducharne, Agnes Boone, Aaron Balsamo, Gianpaolo Rodell, Matthew Toure, Ally M. Xue, Yongkang Peters-Lidard, Christa D. Kumar, Sujay V. Arsenault, Kristi Drapeau, Guillaume Leung, L. Ruby Ronchail, Josyane Sheffield, Justin TI Water Balance in the Amazon Basin from a Land Surface Model Ensemble SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article DE Amazon region; Runoff; Hydrologic models; Land surface model ID RUNOFF ROUTING MODEL; RIVER-BASIN; PARAMETERIZATION SCHEME; HYDRAULIC CONDUCTIVITY; HYDROLOGICAL CYCLE; BIOSPHERE MODEL; SOIL HYDROLOGY; ECMWF MODEL; RAIN-FOREST; CLIMATE AB Despite recent advances in land surface modeling and remote sensing, estimates of the global water budget are still fairly uncertain. This study aims to evaluate the water budget of the Amazon basin based on several state-of-the-art land surface model (LSM) outputs. Water budget variables (terrestrial water storage TWS, evapotranspiration ET, surface runoff R, and base flow B) are evaluated at the basin scale using both remote sensing and in situ data. Meteorological forcings at a 3-hourly time step and 1 degrees spatial resolution were used to run 14 LSMs. Precipitation datasets that have been rescaled to match monthly Global Precipitation Climatology Project (GPCP) and Global Precipitation Climatology Centre (GPCC) datasets and the daily Hydrologie du Bassin de l'Amazone (HYBAM) dataset were used to perform three experiments. The Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme was forced with R and B and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration datasets and Gravity Recovery and Climate Experiment (GRACE) TWS estimates in two subcatchments of main tributaries (Madeira and Negro Rivers). At the basin scale, simulated ET ranges from 2.39 to 3.26 mm day(-1) and a low spatial correlation between ET and precipitation indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget components vary significantly as a function of both the LSM and precipitation dataset, but simulated TWS generally agrees with GRACE estimates at the basin scale. The best water budget simulations resulted from experiments using HYBAM, mostly explained by a denser rainfall gauge network and the rescaling at a finer temporal scale. C1 [Getirana, Augusto C. V.; Rodell, Matthew; Toure, Ally M.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Arsenault, Kristi] NASA Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20009 USA. [Dutra, Emanuel; Balsamo, Gianpaolo] ECMWF, Reading, Berks, England. [Guimberteau, Matthieu; Ducharne, Agnes] Inst Pierre Simon Laplace CNRS, Paris, France. [Kam, Jonghun; Sheffield, Justin] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. [Li, Hong-Yi; Leung, L. Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA. [Decharme, Bertrand; Boone, Aaron] Meteo France, CNRM GAME, Toulouse, France. [Zhang, Zhengqiu; Xue, Yongkang] Univ Calif Los Angeles, Los Angeles, CA USA. [Zhang, Zhengqiu] Chinese Acad Meteorol Sci, Beijing, Peoples R China. [Ducharne, Agnes] CNRS Univ Pierre & Marie Curie, UMR METIS, Paris, France. [Drapeau, Guillaume] Univ Paris Diderot, PRODIG, Paris, France. [Ronchail, Josyane] Univ Paris Diderot, Univ Sorbonne Paris Cite, Paris, France. [Ronchail, Josyane] Univ Paris 06, Sorbonne, CNRS IRD MNHN, LOCEAN, Paris, France. RP Getirana, ACV (reprint author), NASA Goddard Space Flight Ctr, Hydrol Sci Lab, 8800 Greenbelt Rd, Greenbelt, MD 20009 USA. EM augusto.getirana@nasa.gov RI Kam, Jonghun/G-3550-2012; Balsamo, Gianpaolo/I-3362-2013; Kumar, Sujay/B-8142-2015; Rodell, Matthew/E-4946-2012; Getirana, Augusto/G-4630-2011; Li, Hong-Yi/C-9143-2014; Peters-Lidard, Christa/E-1429-2012; Dutra, Emanuel/A-3774-2010; OI Kam, Jonghun/0000-0002-7967-7705; Balsamo, Gianpaolo/0000-0002-1745-3634; Rodell, Matthew/0000-0003-0106-7437; Li, Hong-Yi/0000-0001-5690-3610; Peters-Lidard, Christa/0000-0003-1255-2876; Dutra, Emanuel/0000-0002-0643-2643; Guimberteau, Matthieu/0000-0001-8582-6087 FU DOE by Battelle Memorial Institute [DE-AC05-76RLO1830] FX A. Getirana was funded by the NASA Postdoctoral Program (NPP) managed by Oak Ridge Associated Universities (ORAU). E. Dutra was financially supported by the FP7 EU project EartH2Observe, and M. Guimberteau was supported by the EU-FP7 AMAZALERT project. H.-Y. Li acknowledges the support by the Office of Science of the U.S. Department of Energy as part of the Regional and Global Climate Modeling program. The Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under Contract DE-AC05-76RLO1830. The study benefited from data made available by Agencia Nacional de Aguas (ANA). We thank M. Jung for providing the gridded FLUXNET dataset. NR 103 TC 11 Z9 11 U1 6 U2 38 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD DEC PY 2014 VL 15 IS 6 BP 2586 EP 2614 DI 10.1175/JHM-D-14-0068.1 PG 29 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AU9FZ UT WOS:000345898400027 ER PT J AU Subramanian, V Dubini, A Astling, DP Laurens, LML Old, WM Grossman, AR Posewitz, MC Seibert, M AF Subramanian, Venkataramanan Dubini, Alexandra Astling, David P. Laurens, Lieve M. L. Old, William M. Grossman, Arthur R. Posewitz, Matthew C. Seibert, Michael TI Profiling Chlamydomonas Metabolism under Dark, Anoxic H-2-Producing Conditions Using a Combined Proteomic, Transcriptomic, and Metabolomic Approach SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE Chlamydomonas reinhardtii; hydrogen production; proteomics; TCA reactions; glyoxylate pathway; isocitrate lyase; amino acid synthesis ID LEAST-SQUARES REGRESSION; PYRUVATE FORMATE-LYASE; BRASSICA-NAPUS L; ISOCITRATE LYASE; ALANINE AMINOTRANSFERASE; HYDROGEN PHOTOPRODUCTION; GENE-EXPRESSION; GREEN-ALGA; ARABIDOPSIS-THALIANA; PHOSPHOENOLPYRUVATE CARBOXYKINASE AB Chlamydomonas reinhardtii is well adapted to survive under different environmental conditions due to the unique flexibility of its metabolism. Here we report metabolic pathways that are active during acclimation to anoxia, but were previously not thoroughly studied under dark, anoxic H2-producing conditions in this model green alga. Proteomic analyses, using 2D-differential in-gel electrophoresis in combination with shotgun mass fingerprinting, revealed increased levels of proteins involved in the glycolytic pathway downstream of 3-phosphoglycerate, the glyoxylate pathway, and steps of the tricarboxylic acid (TCA) reactions. Upregulation of the enzyme, isocitrate lyase (ICL), was observed, which was accompanied by increased intracellular succinate levels, suggesting the functioning of glyoxylate pathway reactions. The ICL-inhibitor study revealed presence of reverse TCA reactions under these conditions. Contributions of the serine-isocitrate lyase pathway, glycine cleavage system, and c1-THF/serine hydroxymethyltransferase pathway in the acclimation to dark anoxia were found. We also observed increased levels of amino acids (AAs) suggesting nitrogen reorganization in the form of de novo AA biosynthesis during anoxia. Overall, novel routes for reductant utilization, in combination with redistribution of carbon and nitrogen, are used by this alga during acclimation to O-2 deprivation in the dark. C1 [Subramanian, Venkataramanan; Dubini, Alexandra; Astling, David P.; Laurens, Lieve M. L.; Seibert, Michael] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Subramanian, Venkataramanan; Posewitz, Matthew C.; Seibert, Michael] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. [Astling, David P.] Univ Colorado, Sch Med, Dept Biochem & Mol Genet, Aurora, CO 80045 USA. [Old, William M.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Grossman, Arthur R.] Carnegie Inst Sci, Dept Plant Biol, Stanford, CA 94305 USA. RP Subramanian, V (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM venkat.subramanian@nrel.gov RI dubini, alexandra /A-7252-2016; OI dubini, alexandra /0000-0001-8825-3915; OLD, WILLIAM/0000-0002-9499-8478 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research FX This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (M.S., A.D., M.C.P., and A.R.G.). We would also like to thank Ambarish Nag, Peter Lunacek, Monte Lunacek, and Christopher Chang for assistance with critical analysis of the proteomics data. NR 79 TC 8 Z9 8 U1 6 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 EI 1535-3907 J9 J PROTEOME RES JI J. Proteome Res. PD DEC PY 2014 VL 13 IS 12 BP 5431 EP 5451 DI 10.1021/pr500342j PG 21 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA AW1GY UT WOS:000346039400014 PM 25333711 ER PT J AU Candy, JV Fisher, KA Guidry, BL Chambers, DH AF Candy, J. V. Fisher, K. A. Guidry, B. L. Chambers, D. H. TI Model-based failure detection for cylindrical shells from noisy vibration measurements SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID HEART-VALVE SOUNDS; DYNAMIC-SYSTEMS; CLASSIFICATION; DESIGN AB Model-based processing is a theoretically sound methodology to address difficult objectives in complex physical problems involving multi-channel sensor measurement systems. It involves the incorporation of analytical models of both physical phenomenology (complex vibrating structures, noisy operating environment, etc.) and the measurement processes (sensor networks and including noise) into the processor to extract the desired information. In this paper, a model-based methodology is developed to accomplish the task of online failure monitoring of a vibrating cylindrical shell externally excited by controlled excitations. A model-based processor is formulated to monitor system performance and detect potential failure conditions. The objective of this paper is to develop a real-time, model-based monitoring scheme for online diagnostics in a representative structural vibrational system based on controlled experimental data. (C) 2014 Acoustical Society of America. C1 [Candy, J. V.; Fisher, K. A.; Guidry, B. L.; Chambers, D. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Candy, JV (reprint author), Lawrence Livermore Natl Lab, POB 808,L-151, Livermore, CA 94551 USA. EM candy1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 31 TC 1 Z9 1 U1 0 U2 0 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 EI 1520-8524 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD DEC PY 2014 VL 136 IS 6 BP 3114 EP 3125 DI 10.1121/1.4898421 PG 12 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA AW0IX UT WOS:000345976500027 PM 25480059 ER PT J AU Sood, S Kisslinger, K Gouma, P AF Sood, Shantanu Kisslinger, Kim Gouma, Perena TI Nanowire Growth by an Electron-Beam-Induced Massive Phase Transformation SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID TUNGSTEN TRIOXIDE; THIN-FILMS; NANOPARTICLES; POWDERS; WO3 AB Tungsten trioxide nanowires of a high aspect ratio have been synthesized in situ in a TEM under an electron beam of current density 14A/cm(2) due to a massive polymorphic reaction. Sol-gel-processed cubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one-dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. The findings are important to the controlled electron beam deposition of nanowires for functional applications starting from colloidal precursors. C1 [Sood, Shantanu; Gouma, Perena] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Kisslinger, Kim] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Gouma, P (reprint author), SUNY Stony Brook, Stony Brook, NY 11794 USA. EM pgouma@notes.cc.sunysb.edu RI Kisslinger, Kim/F-4485-2014 FU NSF-IIS [1231761]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This research was funded by the NSF-IIS, grant no. 1231761. This research was carried out (in part) at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. NR 25 TC 4 Z9 4 U1 2 U2 31 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD DEC PY 2014 VL 97 IS 12 BP 3733 EP 3736 DI 10.1111/jace.13339 PG 4 WC Materials Science, Ceramics SC Materials Science GA AW2EA UT WOS:000346099800005 ER PT J AU Bell, NS Edney, C Wheeler, JS Ingersoll, D Spoerke, ED AF Bell, Nelson S. Edney, Cynthia Wheeler, Jill S. Ingersoll, David Spoerke, Erik D. TI The Influences of Excess Sodium on Low-Temperature NaSICON Synthesis SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID ELECTRICAL-PROPERTIES; NANOCRYSTALLINE ZIRCONIA; CRYSTAL-STRUCTURE; CERAMICS; DEPENDENCE; MICROSTRUCTURE; ELECTROLYTES; PRECURSOR; BEHAVIOR; SENSORS AB Controlling the materials chemistry of the solid-state ion conductor NaSICON is key to realizing its potential utility in emerging sodium-based battery technologies. We describe here the influence of excess sodium on phase evolution of sol-gel synthesized NaSICON. Alkoxide-based sol-gel processing was used to produce powders of Na3Zr2PSi2O12 NaSICON with 0-2 atomic % excess sodium. Phase formation and component volatility were studied as a function of temperature. NaSICON synthesis at temperatures between 900-1100 degrees C with up to 2% excess sodium significantly reduced the presence of zirconia, sodium phosphate, and sodium silicate secondary phases in fired NaSICON powders. Insights into the role of sodium on the phase chemistry of sol-gel processed NaSICON may inform key improvements in NaSICON development. C1 [Bell, Nelson S.; Edney, Cynthia; Wheeler, Jill S.; Spoerke, Erik D.] Sandia Natl Labs, Elect Opt & Nano Mat Dept, Albuquerque, NM 87185 USA. [Ingersoll, David] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Spoerke, ED (reprint author), Sandia Natl Labs, Elect Opt & Nano Mat Dept, POB 5800, Albuquerque, NM 87185 USA. EM edspoer@sandia.gov FU US Department of Energy's National Nuclear Security Administration [DE-AC04 -94AL85000] FX The authors would like to thank Ms. Bonnie McKenzie for assistance with the scanning electron microscopy. This work was funded through the Energy Storage Program, managed by Dr. Imre Gyuk for the Department of Energy Office of Electricity Delivery and Energy Reliability. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04 -94AL85000. NR 34 TC 4 Z9 4 U1 21 U2 66 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD DEC PY 2014 VL 97 IS 12 BP 3744 EP 3748 DI 10.1111/jace.13167 PG 5 WC Materials Science, Ceramics SC Materials Science GA AW2EA UT WOS:000346099800008 ER PT J AU Beard, MC Luther, JM Nozik, AJ AF Beard, Matthew C. Luther, Joseph M. Nozik, Arthur J. TI The promise and challenge of nanostructured solar cells SO NATURE NANOTECHNOLOGY LA English DT Article ID DETAILED BALANCE LIMIT; QUANTUM DOTS; EFFICIENCY; RECOMBINATION; NANOCRYSTALS; ELECTRON AB Nanoscale objects provide opportunities to revolutionize the conversion of solar energy by enabling highly efficient and low-cost devices. Challenges associated with demonstrating high efficiency and stability are now being addressed in the research community. C1 [Beard, Matthew C.; Luther, Joseph M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Nozik, Arthur J.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. RP Beard, MC (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM matt.beard@nrel.gov; arthur.nozik@nrel.gov RI Beard, MATTHEW/E-4270-2015; Nozik, Arthur/A-1481-2012; Nozik, Arthur/P-2641-2016 OI Beard, MATTHEW/0000-0002-2711-1355; NR 26 TC 53 Z9 55 U1 10 U2 99 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD DEC PY 2014 VL 9 IS 12 BP 951 EP 954 DI 10.1038/nnano.2014.292 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA AW0EN UT WOS:000345963500002 PM 25466532 ER PT J AU Yang, S Ni, XJ Yin, XB Kante, B Zhang, P Zhu, J Wang, Y Zhang, X AF Yang, Sui Ni, Xingjie Yin, Xiaobo Kante, Boubacar Zhang, Peng Zhu, Jia Wang, Yuan Zhang, Xiang TI Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution SO NATURE NANOTECHNOLOGY LA English DT Article ID GOLD NANORODS; PLASMONIC NANOSTRUCTURES; DNA; NANOPARTICLES; MECHANISM; RELEASE; GROWTH AB Thermodynamically driven self-assembly offers a direct route to organize individual nanoscopic components into three-dimensional structures over a large scale(1-3). The most thermodynamically favourable configurations, however, may not be ideal for some applications. In plasmonics, for instance, nanophotonic constructs with non-trivial broken symmetries can display optical properties of interest, such as Fano resonance, but are usually not thermodynamically favoured(4). Here, we present a self-assembly route with a feedback mechanism for the bottom-up synthesis of a new class of symmetry-breaking optical metamaterials. We self-assemble plasmonic nanorod dimers with a longitudinal offset that determines the degree of symmetry breaking and its electromagnetic response. The clear difference in plasmonic resonance profiles of nanorod dimers in different configurations enables high spectra selectivity. On the basis of this plasmonic signature, our self-assembly route with feedback mechanism promotes the assembly of desired metamaterial structures through selective excitation and photothermal disassembly of unwanted assemblies in solution. In this fashion, our method can selectively reconfigure and homogenize the properties of the dimer, leading to highly monodispersed aqueous metamaterials with tailored symmetries and electromagnetic responses. C1 [Yang, Sui; Ni, Xingjie; Yin, Xiaobo; Kante, Boubacar; Zhang, Peng; Zhu, Jia; Wang, Yuan; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. [Yang, Sui; Yin, Xiaobo; Wang, Yuan; Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhang, Xiang] King Abdulaziz Univ, Dept Phys, Jeddah 21413, Saudi Arabia. [Zhang, Xiang] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94704 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94704 USA. RP Yang, S (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Zhang, Peng/D-9624-2011; Zhang, Xiang/F-6905-2011; Ni, Xingjie/I-2235-2012; Wang, Yuan/F-7211-2011; Yin, Xiaobo/A-4142-2011; Yang, Sui /H-4417-2016 OI Ni, Xingjie/0000-0001-7405-5678; FU National Science Foundation (NSF) [DMR-1344290]; NSF Materials World Network [DMR-1210170]; Molecule Foundry at LBNL FX The authors acknowledge funding support from the National Science Foundation (NSF; grant no. DMR-1344290) and the NSF Materials World Network (grant no. DMR-1210170). The authors also acknowledge facility support from Molecule Foundry at LBNL. NR 30 TC 27 Z9 27 U1 17 U2 108 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD DEC PY 2014 VL 9 IS 12 BP 1002 EP 1006 DI 10.1038/NNANO.2014.243 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA AW0EN UT WOS:000345963500017 PM 25362475 ER PT J AU Wu, S Baum, MM Kerwin, J Guerrero, D Webster, S Schaudinn, C VanderVelde, D Webster, P AF Wu, Siva Baum, Marc M. Kerwin, James Guerrero, Debbie Webster, Simon Schaudinn, Christoph VanderVelde, David Webster, Paul TI Biofilm-specific extracellular matrix proteins of nontypeable Haemophilus influenzae SO PATHOGENS AND DISEASE LA English DT Article DE nuclear magnetic resonance; electron microscopy; proteomics; immunocytochemistry; diagnostics ID OBSTRUCTIVE PULMONARY-DISEASE; PSEUDOMONAS-AERUGINOSA; EPITHELIAL-CELLS; OTITIS-MEDIA; STAPHYLOCOCCUS-AUREUS; POLYMERIC SUBSTANCES; PROTEOMIC ANALYSIS; MIDDLE-EAR; STREPTOCOCCUS-PNEUMONIAE; INFRARED-SPECTROSCOPY AB Nontypeable Haemophilus influenzae (NTHi), a human respiratory tract pathogen, can form colony biofilms in vitro. Bacterial cells and the amorphous extracellular matrix (ECM) constituting the biofilm can be separated using sonication. The ECM from 24- and 96-h NTHi biofilms contained polysaccharides and proteinaceous components as detected by nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) spectroscopy. More conventional chemical assays on the biofilm ECM confirmed the presence of these components and also DNA. Proteomics revealed eighteen proteins present in biofilm ECM that were not detected in planktonic bacteria. One ECM protein was unique to 24-h biofilms, two were found only in 96-h biofilms, and fifteen were present in the ECM of both 24- and 96-h NTHi biofilms. All proteins identified were either associated with bacterial membranes or cytoplasmic proteins. Immunocytochemistry showed two of the identified proteins, a DNA-directed RNA polymerase and the outer membrane protein OMP P2, associated with bacteria and biofilm ECM. Identification of biofilm-specific proteins present in immature biofilms is an important step in understanding the in vitro process of NTHi biofilm formation. The presence of a cytoplasmic protein and a membrane protein in the biofilm ECM of immature NTHi biofilms suggests that bacterial cell lysis may be a feature of early biofilm formation. C1 [Wu, Siva] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Bioenergy GTL & Struct Biol Dept, Berkeley, CA 94720 USA. [Baum, Marc M.; Webster, Paul] Oak Crest Inst Sci, Dept Chem, Pasadena, CA USA. [Kerwin, James] Sanovas Inc, San Rafael, CA USA. [Guerrero, Debbie] Max Planck Florida Inst, Jupiter, FL USA. [Webster, Simon] Oak Crest Inst Sci, Pasadena, CA USA. [Schaudinn, Christoph] Robert Koch Inst, Berlin, Germany. [VanderVelde, David] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Webster, Paul] Univ So Calif, Ctr Electron Microscopy & Microanal CEMMA, Los Angeles, CA 90089 USA. RP Webster, P (reprint author), Univ So Calif, Ctr Electron Microscopy & Microanal CEMMA, 814 Bloom Walk, Los Angeles, CA 90089 USA. EM pwebster@usc.edu FU National Science Foundation (NSF) [0722354] FX The authors are especially grateful to financial support provided by their respective organizations, and the generosity of the Ahmanson Foundation for their support in equipping the Imaging Center at the House Research Institute. Rapid freezing and freeze substitution was carried out using equipment purchased with funds from the National Science Foundation (NSF #0722354). The study was also supported in part by The Fritz Burns Foundation, The Hope for Hearing Foundation, the Deafness Research Foundation, the Hearst Foundation, and the Capita Foundation. A grant from the NIDCD ( 5 P-30 DC006276-03) supported the Ahmanson Imaging Core where a substantial part of this work was performed. Prof. T. F. Murphy, University at Buffalo, State University of New York provided polyclonal antibodies to the OMP P2 protein. Dr. Gabriel B. Gugiu of the Mass Spectrometry and Proteomics Core Facility at the Beckman Research Institute of the City of Hope performed the proteomic analysis of protein preparations from the 6.5-h, 12-h, 24-h, and 96-h filters after biofilm removal. Tim Gallaher and Richard Johnson provided expert bioinformatics assistance and instruction. Tyler Woolsey and Nandini Girish assisted with early microscopy and bacterial culturing ( NG: immunolabeling, TW viable bacteria and biomass estimates). The authors have stated no conflict of interest. NR 90 TC 6 Z9 7 U1 3 U2 22 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2049-632X J9 PATHOG DIS JI Pathog. Dis. PD DEC PY 2014 VL 72 IS 3 BP 143 EP 160 DI 10.1111/2049-632X.12195 PG 18 WC Immunology; Infectious Diseases; Microbiology SC Immunology; Infectious Diseases; Microbiology GA AW1FC UT WOS:000346034800001 PM 24942343 ER PT J AU Sundin, L Vanholme, R Geerinck, J Goeminne, G Hofer, R Kim, H Ralph, J Boerjan, W AF Sundin, Lisa Vanholme, Ruben Geerinck, Jan Goeminne, Geert Hofer, Rene Kim, Hoon Ralph, John Boerjan, Wout TI Mutation of the Inducible ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2 Alters Lignin Composition and Improves Saccharification SO PLANT PHYSIOLOGY LA English DT Article ID SECONDARY CELL-WALL; CYTOCHROME P450 REDUCTASES; ARABIDOPSIS-THALIANA; BIOSYNTHESIS PERTURBATIONS; FUNCTIONAL EXPRESSION; CELLULOSE SYNTHESIS; DOWN-REGULATION; HYBRID POPLAR; MUTANT; NADPH AB ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE1 (ATR1) and ATR2 provide electrons from NADPH to a large number of CYTOCHROME P450 (CYP450) enzymes in Arabidopsis (Arabidopsis thaliana). Whereas ATR1 is constitutively expressed, the expression of ATR2 appears to be induced during lignin biosynthesis and upon stresses. Therefore, ATR2 was hypothesized to be preferentially involved in providing electrons to the three CYP450s involved in lignin biosynthesis: CINNAMATE 4-HYDROXYLASE (C4H), p-COUMARATE 3-HYDROXYLASE1 (C3H1), and FERULATE 5-HYDROXYLASE1 (F5H1). Here, we show that the atr2 mutation resulted in a 6% reduction in total lignin amount in the main inflorescence stem and a compositional shift of the remaining lignin to a 10-fold higher fraction of p-hydroxyphenyl units at the expense of syringyl units. Phenolic profiling revealed shifts in lignin-related phenolic metabolites, in particular with the substrates of C4H, C3H1 and F5H1 accumulating in atr2 mutants. Glucosinolate and flavonol glycoside biosynthesis, both of which also rely on CYP450 activities, appeared less affected. The cellulose in the atr2 inflorescence stems was more susceptible to enzymatic hydrolysis after alkaline pretreatment, making ATR2 a potential target for engineering plant cell walls for biofuel production. C1 [Sundin, Lisa; Vanholme, Ruben; Geerinck, Jan; Goeminne, Geert; Hofer, Rene; Boerjan, Wout] Univ Ghent VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium. [Sundin, Lisa; Vanholme, Ruben; Geerinck, Jan; Goeminne, Geert; Hofer, Rene; Boerjan, Wout] Univ Ghent, Dept Plant Biotechnol & Bioinformat, B-9052 Ghent, Belgium. [Kim, Hoon; Ralph, John] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Wisconsin Energy Inst, Dept Biochem, Madison, WI 53726 USA. [Kim, Hoon; Ralph, John] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Wisconsin Energy Inst, Dept Biol Syst Engn, Madison, WI 53726 USA. [Kim, Hoon; Ralph, John] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Wisconsin Energy Inst, Dept Energy, Madison, WI 53726 USA. RP Boerjan, W (reprint author), Univ Ghent VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium. EM woboe@psb.vib-ugent.be OI Boerjan, Wout/0000-0003-1495-510X; Hofer, Rene/0000-0003-0964-1253 FU European Commission's Directorate General for Research within the 7th Framework Program [211982 [RENEWALL], 270089 [MULTIBIOPRO]]; Stanford University's Global Climate and Energy Projects Towards New Degradable Lignin Types and Efficient Biomass Conversion: Delineating the Best Lignin Monomer-Substitutes; Department of Energy Great Lakes Bioenergy Research Center [DE-FC02-07ER64494]; Ghent University [AUGE/014, 174PZA05, 01MRB510W]; Agency for Innovation by Science and Technology; Research Foundation-Flanders FX This work was supported by the European Commission's Directorate General for Research within the 7th Framework Program (grant nos. 211982 [RENEWALL] and 270089 [MULTIBIOPRO]), by Stanford University's Global Climate and Energy Projects Towards New Degradable Lignin Types and Efficient Biomass Conversion: Delineating the Best Lignin Monomer-Substitutes, by the Department of Energy Great Lakes Bioenergy Research Center (grant no. DE-FC02-07ER64494), by Ghent University (Hercules program grant no. AUGE/014, Bijzondere Onderzoeksfonds-Zware Apparatuur grant no. 174PZA05, and Biotechnology for a Sustainable Economy grant no. 01MRB510W), by the Agency for Innovation by Science and Technology (predoctoral fellowship to L.S.), and by the Research Foundation-Flanders (postdoctoral fellowship to R.V.). NR 76 TC 13 Z9 13 U1 2 U2 45 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 EI 1532-2548 J9 PLANT PHYSIOL JI Plant Physiol. PD DEC PY 2014 VL 166 IS 4 BP 1956 EP 1971 DI 10.1104/pp.114.245548 PG 16 WC Plant Sciences SC Plant Sciences GA AW0YF UT WOS:000346016400025 PM 25315601 ER PT J AU Jardine, K Chambers, J Alves, EG Teixeira, A Garcia, S Holm, J Higuchi, N Manzi, A Abrell, L Fuentes, JD Nielsen, LK Torn, MS Vickers, CE AF Jardine, Kolby Chambers, Jeffrey Alves, Eliane G. Teixeira, Andrea Garcia, Sabrina Holm, Jennifer Higuchi, Niro Manzi, Antonio Abrell, Leif Fuentes, Jose D. Nielsen, Lars K. Torn, Margaret S. Vickers, Claudia E. TI Dynamic Balancing of Isoprene Carbon Sources Reflects Photosynthetic and Photorespiratory Responses to Temperature Stress(1[W][OPEN]) SO PLANT PHYSIOLOGY LA English DT Article ID VOLATILE ORGANIC-COMPOUNDS; DROUGHT-STRESS; POPLAR LEAVES; EMISSION; PLANTS; BIOSYNTHESIS; FOREST; LIGHT; MEMBRANES; SYNTHASE AB The volatile gas isoprene is emitted in teragrams per annum quantities from the terrestrial biosphere and exerts a large effect on atmospheric chemistry. Isoprene is made primarily from recently fixed photosynthate; however, alternate carbon sources play an important role, particularly when photosynthate is limiting. We examined the relative contribution of these alternate carbon sources under changes in light and temperature, the two environmental conditions that have the strongest influence over isoprene emission. Using a novel real-time analytical approach that allowed us to examine dynamic changes in carbon sources, we observed that relative contributions do not change as a function of light intensity. We found that the classical uncoupling of isoprene emission from net photosynthesis at elevated leaf temperatures is associated with an increased contribution of alternate carbon. We also observed a rapid compensatory response where alternate carbon sources compensated for transient decreases in recently fixed carbon during thermal ramping, thereby maintaining overall increases in isoprene production rates at high temperatures. Photorespiration is known to contribute to the decline in net photosynthesis at high leaf temperatures. A reduction in the temperature at which the contribution of alternate carbon sources increased was observed under photorespiratory conditions, while photosynthetic conditions increased this temperature. Feeding [2-C-13] glycine (a photorespiratory intermediate) stimulated emissions of [C-13(1-5)] isoprene and (CO2)-C-13, supporting the possibility that photorespiration can provide an alternate source of carbon for isoprene synthesis. Our observations have important implications for establishing improved mechanistic predictions of isoprene emissions and primary carbon metabolism, particularly under the predicted increases in future global temperatures. C1 [Jardine, Kolby; Chambers, Jeffrey; Holm, Jennifer; Torn, Margaret S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Climate Sci Dept, Berkeley, CA 94720 USA. [Alves, Eliane G.; Teixeira, Andrea; Garcia, Sabrina; Higuchi, Niro; Manzi, Antonio] Natl Inst Amazon Res, BR-69080971 Manaus, Amazonas, Brazil. [Abrell, Leif] Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA. [Abrell, Leif] Univ Arizona, Dept Soil, Tucson, AZ 85721 USA. [Abrell, Leif] Univ Arizona, Dept Water, Tucson, AZ 85721 USA. [Abrell, Leif] Univ Arizona, Dept Environm Sci, Tucson, AZ 85721 USA. [Fuentes, Jose D.] Penn State Univ, Dept Meteorol, Coll Earth & Mineral Sci, University Pk, PA 16802 USA. [Nielsen, Lars K.; Vickers, Claudia E.] Univ Queensland, Australian Inst Bioengn & Nanotechnol, St Lucia, Qld 4072, Australia. RP Jardine, K (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Climate Sci Dept, Berkeley, CA 94720 USA. EM kjjardine@lbl.gov RI Vickers, Claudia/A-1288-2009; Nielsen, Lars/A-5519-2011; Chambers, Jeffrey/J-9021-2014; Torn, Margaret/D-2305-2015; Holm, Jennifer/D-3318-2015; Jardine, Kolby/N-2802-2013 OI Vickers, Claudia/0000-0002-0792-050X; Nielsen, Lars/0000-0001-8191-3511; Chambers, Jeffrey/0000-0003-3983-7847; Holm, Jennifer/0000-0001-5921-3068; Jardine, Kolby/0000-0001-8491-9310 FU Office of Biological and Environmental Research of the U.S. Department of Energy, Terrestrial Ecosystem Science Program [DE-AC02-05CH11231]; National Science Foundation [CHE0216226] FX This work was supported by the Office of Biological and Environmental Research of the U.S. Department of Energy (under contract no. DE-AC02-05CH11231) as part of their Terrestrial Ecosystem Science Program and the National Science Foundation CHE0216226. NR 67 TC 8 Z9 8 U1 3 U2 29 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 EI 1532-2548 J9 PLANT PHYSIOL JI Plant Physiol. PD DEC PY 2014 VL 166 IS 4 BP 2051 EP U1293 DI 10.1104/pp.114.247494 PG 15 WC Plant Sciences SC Plant Sciences GA AW0YF UT WOS:000346016400032 PM 25318937 ER PT J AU Nutaro, J AF Nutaro, James TI An extension of the OpenModelica compiler for using Modelica models in a discrete event simulation SO SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL LA English DT Article DE combined simulation; continuous system simulation; discrete event simulation; hybrid simulation; simulation languages ID HYBRID SYSTEMS; DEVS; COMPONENTS; HLA AB This article describes a new back-end and run-time system for the OpenModelica compiler. This new back-end transforms a Modelica model into a module for the adevs discrete event simulation package, thereby extending adevs to encompass complex, hybrid dynamical systems. The new run-time system that has been built within the adevs simulation package supports models with state-events and time-events and that comprise differential-algebraic systems with high index. Although the procedure for effecting this transformation is based on adevs and the Discrete Event System Specification, it can be adapted to any discrete event simulation package. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Nutaro, J (reprint author), Oak Ridge Natl Lab, POB 2008,MS6085, Oak Ridge, TN 37831 USA. EM nutarojj@ornl.gov OI Nutaro, James/0000-0001-7360-2836 FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL) [DE-AC05-00OR22725]; US Government [DE-AC05-00OR22725] FX This work was supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the US Department of Energy (contract number DE-AC05-00OR22725). The submitted manuscript has been authored by a contractor of the US Government under Contract DE-AC05-00OR22725. Accordingly, the US Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. NR 41 TC 0 Z9 0 U1 1 U2 4 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0037-5497 EI 1741-3133 J9 SIMUL-T SOC MOD SIM JI Simul.-Trans. Soc. Model. Simul. Int. PD DEC PY 2014 VL 90 IS 12 BP 1328 EP 1345 DI 10.1177/0037549714554480 PG 18 WC Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering SC Computer Science GA AW0OB UT WOS:000345991000005 ER PT J AU Koshelev, AE Varlamov, AA AF Koshelev, A. E. Varlamov, A. A. TI Fluctuations in two-band superconductors in strong magnetic field SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article DE multiband superconductors; superconducting fluctuations; iron-based superconductors ID GINZBURG-LANDAU THEORY; INDUCED DIAMAGNETISM; ENHANCED DIAMAGNETISM; COOPER PAIRS; TRANSITION; SUSCEPTIBILITY; TEMPERATURE; ONSET; STATE; FILMS AB We consider the behavior of the fluctuating specific heat and conductivity in the vicinity of the upper critical field line for a two-band superconductor. Multiple-band effects are pronounced when the bands have very different coherence lengths. The transition to superconductive state is mainly determined by the properties of the rigid condensate of the 'strong' band, while the 'weak' band with a large coherence length of the Cooper pairs causes the nonlocality in fluctuation behavior and break down of the simple Ginzburg-Landau picture. As expected, the multiple-band electronic structure does not change the functional forms of dominating divergencies of the fluctuating corrections when the magnetic field approaches the upper critical field. The temperature dependence of the coefficients, however, is modified. The large in-plane coherence length sets the field scale at which the upper critical field has upward curvature. The amplitude of fluctuations and fluctuation width enhances at this field scale due to reduction of the effective z-axis coherence length. We also observe that the apparent transport transition displaces to lower temperatures with respect to the thermodynamic transition. Even though this effect exists already in a single-band case at sufficiently high fields, it may be strongly enhanced in multiband materials. C1 [Koshelev, A. E.; Varlamov, A. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Varlamov, A. A.] CNR SPIN, I-00133 Rome, Italy. RP Koshelev, AE (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM koshelev@anl.gov RI Koshelev, Alexei/K-3971-2013 OI Koshelev, Alexei/0000-0002-1167-5906 FU US Department of Energy, Office of Science, Materials Sciences and Engineering Division; European FP7 program [SIMTECH 246937] FX The authors would like to thank U Welp and C Marcenat for discussion of experimental data for P-doped 122 iron pnictide. Work by AEK was supported by the US Department of Energy, Office of Science, Materials Sciences and Engineering Division. AAV acknowledges support of the European FP7 program, Grant No. SIMTECH 246937. NR 61 TC 6 Z9 6 U1 2 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD DEC PY 2014 VL 27 IS 12 AR 124001 DI 10.1088/0953-2048/27/12/124001 PG 9 WC Physics, Applied; Physics, Condensed Matter SC Physics GA AW3OS UT WOS:000346196900005 ER PT J AU Mancusi, D Di Giorgio, C Bobba, F Scarfato, A Cucolo, AM Iavarone, M Moore, SA Karapetrov, G Novosad, V Yefremenko, V Pace, S Polichetti, M AF Mancusi, D. Di Giorgio, C. Bobba, F. Scarfato, A. Cucolo, A. M. Iavarone, M. Moore, S. A. Karapetrov, G. Novosad, V. Yefremenko, V. Pace, S. Polichetti, M. TI Magnetic pinning in a superconducting film by a ferromagnetic layer with stripe domains SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article DE magnetic pinning; critical current; stripe magnetic domains ID FLUX; BILAYER; ARRAYS AB A magnetic study of superconductor/ferromagnet bilayers was performed by hysteresis loops and temperature-dependent magnetization measurements. The superconductor/ferromagnet bilayers consist of a Nb film deposited on a Py film with weak perpendicular magnetic anisotropy. By comparing the temperature-dependent magnetization data obtained on samples with different ferromagnetic layer thickness, a decrease of the magnetic pinning with increasing thickness of the ferromagnetic layer has been found. This is confirmed by the reduction of the Nb film critical current density at low fields extracted by using the magnetic irreversibility of the hysteresis loops. The reduction of the pinning can be related to the increase of the stripe width in the ferromagnetic layer observed by magnetic force microscopy (MFM) measurements. C1 [Mancusi, D.; Di Giorgio, C.; Bobba, F.; Scarfato, A.; Cucolo, A. M.; Pace, S.; Polichetti, M.] Univ Salerno, ER Caianiello Phys Dept, I-84084 Fisciano, SA, Italy. [Mancusi, D.; Bobba, F.; Scarfato, A.; Cucolo, A. M.; Pace, S.; Polichetti, M.] CNR SPIN Salerno, I-84084 Fisciano, SA, Italy. [Di Giorgio, C.; Bobba, F.; Scarfato, A.; Cucolo, A. M.; Pace, S.; Polichetti, M.] Res Ctr Nanomat & Nanotechnol, NANOMATES, I-84084 Fisciano, SA, Italy. [Iavarone, M.; Moore, S. A.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Karapetrov, G.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Novosad, V.; Yefremenko, V.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Mancusi, D (reprint author), Univ Salerno, ER Caianiello Phys Dept, I-84084 Fisciano, SA, Italy. EM polimax@sa.infn.it RI Moore, Steven/D-1562-2016; Novosad, V /J-4843-2015; Karapetrov, Goran/C-2840-2008; OI Moore, Steven/0000-0002-3956-815X; Karapetrov, Goran/0000-0003-1113-0137; POLICHETTI, Massimiliano/0000-0002-4534-3301 FU US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Division of Materials Sciences and Engineering [DE-SC0004556]; US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-AC02-06CH11357] FX Work done at Temple University was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Division of Materials Sciences and Engineering under Award No. DE-SC0004556. Work at Argonne was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award # DE-AC02-06CH11357. NR 25 TC 2 Z9 2 U1 2 U2 24 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD DEC PY 2014 VL 27 IS 12 AR 125002 DI 10.1088/0953-2048/27/12/125002 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA AW3OS UT WOS:000346196900020 ER PT J AU Yang, I Tomlin, CJ AF Yang, Insoon Tomlin, Claire J. TI Reaction-diffusion systems in protein networks: Global existence and identification SO SYSTEMS & CONTROL LETTERS LA English DT Article DE Reaction-diffusion systems; Global classical solution; Identification; Protein networks; Cancer systems biology ID DISTRIBUTED PARAMETER-SYSTEMS; NONLINEAR OPTIMIZATION; ALGORITHM; EQUATION; MASS AB Spatio-temporal biochemical signaling in a large class of protein-protein interaction networks is well modeled by a reaction-diffusion system. The global existence of the solution to the reaction-diffusion system is determined by the reaction kinetics model and the protein network topology. We propose a novel reaction kinetics model that guarantees that the reaction-diffusion system with this model has a nonnegative invariant global classical solution for any network topology, We then present a computational method to identify the unknown parameters and initial values for a reaction-diffusion system with this reaction kinetics model. The identification approach solves an optimization problem that minimizes the cost function defined as the L-2-norm of the difference between the data and the solution of the reaction-diffusion system. We utilize an adjoint-based optimal control method to obtain the gradients of the cost function with respect to the parameters and initial values. The regularity of the global classical solutions of the reaction-diffusion system and its corresponding adjoint system avoids situations in which the gradients blow up, and therefore guarantees the success of the identification method for any network structure. Utilizing this gradient information, an efficient algorithm to solve the optimization problem is proposed and applied to estimate the mass diffusivities, rate constants and initial values of a reaction-diffusion system that models protein-protein interactions in a signaling network that regulates the actin cytoskeleton in a malignant breast cell. (C) 2014 Elsevier BM. All rights reserved. C1 [Yang, Insoon; Tomlin, Claire J.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Tomlin, Claire J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Yang, I (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM iyang@eecs.berkeley.edu; tomlin@eecs.berkeley.edu FU NCI PS-OC program [29949-31150-44-IQPRJ1-IQCLT] FX The authors would like to thank Professor Lawrence Craig Evans for helpful discussions about the regularity of the classical solution of reaction-diffusion systems. This research was supported by NCI PS-OC program under grant number 29949-31150-44-IQPRJ1-IQCLT. NR 30 TC 0 Z9 0 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6911 EI 1872-7956 J9 SYST CONTROL LETT JI Syst. Control Lett. PD DEC PY 2014 VL 74 BP 50 EP 57 DI 10.1016/j.sysconle.2014.09.013 PG 8 WC Automation & Control Systems; Operations Research & Management Science SC Automation & Control Systems; Operations Research & Management Science GA AW3XA UT WOS:000346215300008 ER PT J AU Polat, BD Eryilmaz, OL Erck, R Keles, O Erdemir, A Amine, K AF Polat, B. D. Eryilmaz, O. L. Erck, R. Keles, O. Erdemir, A. Amine, K. TI Structured SiCu thin films in LiB as anodes SO THIN SOLID FILMS LA English DT Article DE Lithium ion batteries; Anode; Helices; CuSi thin film; Glancing angle deposition ID ION RECHARGEABLE BATTERIES; ELECTROCHEMICAL IMPEDANCE; LITHIUM BATTERIES; ANGLE DEPOSITION; SILICON; NANOSTRUCTURES; TEMPERATURE; INSERTION; NANORODS AB Both helical and inclined columnar Si-10 at.% Cu structured thin films were deposited on Cu substrates using glancing angle deposition (GLAD) technique. In order to deposit Cu and Si two evaporation sources were used. Ion assistance was utilized in the first 5 min of the GLAD to enhance the adhesion and the density of the films. These films were characterized by thin film XRD, GDOES, SEM, and EDS. Electrochemical characterizations were made by testing the thin films as anodes in half-cells for 100 cycles. The results showed that the columnar SiCu thin film delivered 2200mAh g(-1), where the helical one exhibited 2600 mAh g(-1), and, their initial coulombic efficiencies were found to be 38%-50% respectively. For the columnar and the helical thin film anodes, sustainable 520 and 800 mAh g(-1) with 90% and 99% coulombic efficiencies were achieved for 100 cycles. These sustainable capacities showed the importance of the thin film structure having nano-sized crystals and amorphous particles. The higher surface area of the helices increases the capacity of the electrode because the contact area of the thin film anode with Li ions is increased, and the polarization which otherwise forms on the anode surface due to SEI formation is decreased. In addition, because of larger interspaces between the helices the ability of the anode to accommodate the volumetric changes is improved, which results in a higher coulombic efficiency and capacity retention during cycling test. (C) 2014 Elsevier B.V. All rights reserved. C1 [Polat, B. D.; Keles, O.] Istanbul Tech Univ, Dept Met & Mat Engn, TR-34469 Istanbul, Turkey. [Eryilmaz, O. L.; Erck, R.; Erdemir, A.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Amine, K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Polat, BD (reprint author), Istanbul Tech Univ, Dept Met & Mat Engn, TR-34469 Istanbul, Turkey. EM bpolat@itu.edu.tr; ozgulkeles@itu.edu.tr FU Scientific and Technological Research Council of Turkey (TUBITAK) [213M511] FX This work is a part of the research project 213M511 approved by the Scientific and Technological Research Council of Turkey (TUBITAK). The authors thank Dr. Ali Abouimrane for his valuable help to accomplish the paper, Prof. Dr. Mustafa Urgen, Prof. Dr. Gultekin Goller, Huseyin Sezer and Sevgin Turkeli for XRD and SEM analyses, then Sinem Erarslan for GDOES analysis. NR 36 TC 1 Z9 1 U1 4 U2 46 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD DEC 1 PY 2014 VL 572 BP 134 EP 141 DI 10.1016/j.tsf.2014.09.008 PG 8 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA AW1NM UT WOS:000346056100023 ER PT J AU Kowiel, M Jaskolski, M Dauter, Z AF Kowiel, Marcin Jaskolski, Mariusz Dauter, Zbigniew TI ACHESYM: an algorithm and server for standardized placement of macromolecular models in the unit cell SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID RESOLUTION STRUCTURE; CRYSTAL-STRUCTURE; MOLECULES; PROTEIN AB Despite the existence of numerous useful conventions in structural crystallography, for example for the choice of the asymmetric part of the unit cell or of reciprocal space, surprisingly no standards are in use for the placement of the molecular model in the unit cell, often leading to inconsistencies or confusion. A conceptual solution for this problem has been proposed for macromolecular crystal structures based on the idea of the anti-Cheshire unit cell. Here, a program and server (called ACHESYM; http://achesym.ibch.poznan.pl) are presented for the practical implementation of this concept. In addition, the first task of ACHESYM is to find an optimal (compact) macromolecular assembly if more than one polymer chain exists. ACHESYM processes PDB (atomic parameters and TLS matrices) and mmCIF (diffraction data) input files to produce a new coordinate set and to reindex the reflections and modify their phases, if necessary. C1 [Kowiel, Marcin] Poznan Univ Med Sci, Dept Organ Chem, Poznan, Poland. [Jaskolski, Mariusz] Adam Mickiewicz Univ, Fac Chem, Dept Crystallog, PL-60780 Poznan, Poland. [Jaskolski, Mariusz] Polish Acad Sci, Inst Bioorgan Chem, Ctr Biocrystallog Res, Poznan, Poland. [Dauter, Zbigniew] NCI, Synchrotron Radiat Res Sect, Macromol Crystallog Lab, Argonne Natl Lab, Argonne, IL USA. RP Kowiel, M (reprint author), Poznan Univ Med Sci, Dept Organ Chem, Poznan, Poland. EM mkowiel@ump.edu.pl FU National Science Center (Poland) [2013/10/M/NZ1/00251]; Intramural Research Program of the National Cancer Institute FX We thank Professor Andrzej Gzella for his interest in this work, Dr Garib Murshudov for consultations regarding the TLS transformations, and Jedrzej Jajor and Mirek Gilski for help with setting up the ACHESYM web server. This project was supported by grant 2013/10/M/NZ1/00251 from the National Science Center (Poland). ZD acknowledges support from the Intramural Research Program of the National Cancer Institute. NR 17 TC 5 Z9 5 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 EI 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD DEC PY 2014 VL 70 BP 3290 EP 3298 DI 10.1107/S1399004714024572 PN 12 PG 9 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA AU8LT UT WOS:000345848700020 PM 25478846 ER PT J AU Sauter, NK Hattne, J Brewster, AS Echols, N Zwart, PH Adams, PD AF Sauter, Nicholas K. Hattne, Johan Brewster, Aaron S. Echols, Nathaniel Zwart, Petrus H. Adams, Paul D. TI Improved crystal orientation and physical properties from single-shot XFEL stills SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID SERIAL FEMTOSECOND CRYSTALLOGRAPHY; FREE-ELECTRON LASER; X-RAY-DIFFRACTION; ROOM-TEMPERATURE; PROTEIN NANOCRYSTALLOGRAPHY; OSCILLATION METHOD; POST-REFINEMENT; PHOTOSYSTEM-II; SPECTROSCOPY; SNAPSHOTS AB X-ray diffraction patterns from still crystals are inherently difficult to process because the crystal orientation is not uniquely determined by measuring the Bragg spot positions. Only one of the three rotational degrees of freedom is directly coupled to spot positions; the other two rotations move Bragg spots in and out of the reflecting condition but do not change the direction of the diffracted rays. This hinders the ability to recover accurate structure factors from experiments that are dependent on single-shot exposures, such as femtosecond diffract-and-destroy protocols at X-ray free-electron lasers (XFELs). Here, additional methods are introduced to optimally model the diffraction. The best orientation is obtained by requiring, for the brightest observed spots, that each reciprocal-lattice point be placed into the exact reflecting condition implied by Bragg's law with a minimal rotation. This approach reduces the experimental uncertainties in noisy XFEL data, improving the crystallographic R factors and sharpening anomalous differences that are near the level of the noise. C1 [Sauter, Nicholas K.; Hattne, Johan; Brewster, Aaron S.; Echols, Nathaniel; Zwart, Petrus H.; Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Sauter, NK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM nksauter@lbl.gov RI Sauter, Nicholas/K-3430-2012; Adams, Paul/A-1977-2013 OI Adams, Paul/0000-0001-9333-8219 FU NIH [GM095887, GM102520]; Office of Science, Department of Energy (DOE) [DE-AC02-05CH11231, GM063210] FX We thank James M. Holton (LBNL) for making available both the simulated data and the program fastBragg (http://bl831.als.lbl.gov/similar to jamesh/fastBragg) and David G. Waterman (CCP4) for a technical reading of the manuscript. This work was supported by NIH grants GM095887 and GM102520 and the Director, Office of Science, Department of Energy (DOE) under contract DE-AC02-05CH11231 for data-processing methods (NKS) and grant GM063210 (PDA). The authors declare no competing financial interests. NR 43 TC 13 Z9 13 U1 2 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 EI 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD DEC PY 2014 VL 70 BP 3299 EP 3309 DI 10.1107/S1399004714024134 PN 12 PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA AU8LT UT WOS:000345848700021 PM 25478847 ER PT J AU Thompson, MC Crowley, CS Kopstein, J Bobik, TA Yeates, TO AF Thompson, Michael C. Crowley, Christopher S. Kopstein, Jeffrey Bobik, Thomas A. Yeates, Todd O. TI Structure of a bacterial microcompartment shell protein bound to a cobalamin cofactor SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS LA English DT Article ID DEPENDENT METHIONINE SYNTHASE; ETHANOLAMINE AMMONIA-LYASE; SALMONELLA-ENTERICA; MACROMOLECULAR CRYSTALLOGRAPHY; ESCHERICHIA-COLI; DATA QUALITY; ORGANELLES; INSIGHTS; TYPHIMURIUM; MECHANISMS AB The EutL shell protein is a key component of the ethanolamine-utilization microcompartment, which serves to compartmentalize ethanolamine degradation in diverse bacteria. The apparent function of this shell protein is to facilitate the selective diffusion of large cofactor molecules between the cytoplasm and the lumen of the microcompartment. While EutL is implicated in molecular-transport phenomena, the details of its function, including the identity of its transport substrate, remain unknown. Here, the 2.1 angstrom resolution X-ray crystal structure of a EutL shell protein bound to cobalamin (vitamin B12) is presented and the potential relevance of the observed protein-ligand interaction is briefly discussed. This work represents the first structure of a bacterial microcompartment shell protein bound to a potentially relevant cofactor molecule. C1 [Thompson, Michael C.; Yeates, Todd O.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Crowley, Christopher S.; Yeates, Todd O.] Univ Calif Los Angeles, Mol Biol Interdept PhD Program, Los Angeles, CA 90095 USA. [Kopstein, Jeffrey; Yeates, Todd O.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Bobik, Thomas A.] Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA. RP Yeates, TO (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. EM yeates@mbi.ucla.edu OI Yeates, Todd/0000-0001-5709-9839 FU NIH [R01AI081146]; BER program of the DOE Office of Science; DOE [DE-FC02-02ER63421]; National Institutes of Health [RR-15301]; DOE, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors wish to thank Drs Michael Sawaya and Duilio Cascio for helpful suggestions regarding X-ray structure determination, as well as Jason Navarro and Michael Collazo for their technical assistance with crystallization screening. This work was supported by NIH grant R01AI081146 (TOY and TAB) and by the BER program of the DOE Office of Science. X-ray data collection was supported by DOE grant DE-FC02-02ER63421 and the NE-CAT beamlines of the Advanced Photon Source, which are supported by National Institutes of Health grant RR-15301(NCRR). We thank the NE-CAT beamline staff for their technical assistance. Use of the Advanced Photon Source is supported by the DOE, Office of Basic Energy Sciences under Contract DE-AC02-06CH11357. NR 35 TC 5 Z9 5 U1 2 U2 17 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Commun. PD DEC PY 2014 VL 70 BP 1584 EP 1590 DI 10.1107/S2053230X1402158X PN 12 PG 7 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA AU8JS UT WOS:000345843300003 PM 25484204 ER EF