FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Dordevic, SV van der Marel, D Homes, CC AF Dordevic, S. V. van der Marel, D. Homes, C. C. TI Fate of quasiparticles in the superconducting state SO PHYSICAL REVIEW B LA English DT Article ID CONDUCTIVITY; ELECTRODYNAMICS; METALS AB Quasiparticle properties in the superconducting state are masked by the superfluid and are not directly accessible to infrared spectroscopy. We show how one can use a Kramers-Kronig transformation to separate the quasiparticle from superfluid response and extract intrinsic quasiparticle properties in the superconducting state. We also address the issue of a narrow quasiparticle peak observed in microwave measurements, and demonstrate how it can be combined with infrared measurements to obtain a unified picture of electrodynamic properties of cuprate superconductors. C1 [Dordevic, S. V.] Univ Akron, Dept Phys, Akron, OH 44325 USA. [Dordevic, S. V.; van der Marel, D.] Univ Geneva, Dept Phys Mat Condensee, CH-1211 Geneva 4, Switzerland. [Homes, C. C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Dordevic, SV (reprint author), Univ Akron, Dept Phys, Akron, OH 44325 USA. EM dsasa@uakron.edu RI van der Marel, Dirk/G-4618-2012 OI van der Marel, Dirk/0000-0001-5266-9847 FU Swiss National Science Foundation (SNSF) [200020-140761] FX This work was supported by the Swiss National Science Foundation (SNSF) through Grant No. 200020-140761. NR 20 TC 1 Z9 1 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 17 PY 2014 VL 90 IS 17 AR 174508 DI 10.1103/PhysRevB.90.174508 PG 6 WC Physics, Condensed Matter SC Physics GA AU5HU UT WOS:000345638400008 ER PT J AU Forst, M Frano, A Kaiser, S Mankowsky, R Hunt, CR Turner, JJ Dakovski, GL Minitti, MP Robinson, J Loew, T Le Tacon, M Keimer, B Hill, JP Cavalleri, A Dhesi, SS AF Foerst, M. Frano, A. Kaiser, S. Mankowsky, R. Hunt, C. R. Turner, J. J. Dakovski, G. L. Minitti, M. P. Robinson, J. Loew, T. Le Tacon, M. Keimer, B. Hill, J. P. Cavalleri, A. Dhesi, S. S. TI Femtosecond x rays link melting of charge-density wave correlations and light-enhanced coherent transport in YBa2Cu3O6.6 SO PHYSICAL REVIEW B LA English DT Article ID ORDER; SUPERCONDUCTIVITY; FLUCTUATIONS; PSEUDOGAP AB We use femtosecond resonant soft x-ray diffraction to measure the optically stimulated ultrafast changes of charge-density wave correlations in underdoped YBa2Cu3O6.6. We find that when coherent interlayer transport is enhanced by optical excitation of the apical oxygen distortions, at least 50% of the in-plane charge-density wave order is melted. These results indicate that charge ordering and superconductivity may be competing up to the charge ordering transition temperature, with the latter becoming a hidden phase that is accessible only by nonlinear phonon excitation. C1 [Foerst, M.; Kaiser, S.; Mankowsky, R.; Hunt, C. R.; Cavalleri, A.] Max Planck Inst Struct & Dynam Matter, D-22761 Hamburg, Germany. [Foerst, M.; Kaiser, S.; Mankowsky, R.; Hunt, C. R.; Cavalleri, A.] Ctr Free Electron Laser Sci, D-22761 Hamburg, Germany. [Frano, A.; Loew, T.; Le Tacon, M.; Keimer, B.] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. [Frano, A.] Helmholtz Zentrum Berlin Mat & Energie, D-12489 Berlin, Germany. [Hunt, C. R.] Univ Illinois, Dept Phys, Urbana, IL 61802 USA. [Turner, J. J.; Dakovski, G. L.; Minitti, M. P.; Robinson, J.] Natl Accelerator Lab, Stanford Linear Accelerator Ctr, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Hill, J. P.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Cavalleri, A.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Dhesi, S. S.] Diamond Light Source, Didcot OX11 0QX, Oxon, England. RP Forst, M (reprint author), Max Planck Inst Struct & Dynam Matter, D-22761 Hamburg, Germany. RI Forst, Michael/D-8924-2012; Kaiser, Stefan/B-7788-2008; Le Tacon, Mathieu/D-8023-2011 OI Kaiser, Stefan/0000-0001-9862-2788; Le Tacon, Mathieu/0000-0002-5838-3724 FU LCLS; University of Hamburg through the BMBF [FSP 301]; Center for Free Electron Laser Science (CFEL); European Research Council under the European Union's Seventh Framework Programme (FP7)/ERC [319286]; Department of Energy, Division of Materials Science and Engineering [DE-AC02-98CH10886]; Stanford University, through the Stanford Institute for Materials Energy Sciences (SIMES); Lawrence Berkeley National Laboratory (LBNL) [DE-AC02-05CH11231] FX Portions of this research were carried out on the SXR Instrument at the Linac Coherent Light Source (LCLS), a division of SLAC National Accelerator Laboratory and an Office of Science user facility operated by Stanford University for the U.S. Department of Energy. The SXR Instrument is funded by a consortium whose membership includes the LCLS, Stanford University, through the Stanford Institute for Materials Energy Sciences (SIMES), Lawrence Berkeley National Laboratory (LBNL, Contract No. DE-AC02-05CH11231), University of Hamburg through the BMBF priority program FSP 301, and the Center for Free Electron Laser Science (CFEL). The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 319286 (Q-MAC). Work at Brookhaven National Laboratory was funded by the Department of Energy, Division of Materials Science and Engineering, under Contract No. DE-AC02-98CH10886. NR 25 TC 18 Z9 18 U1 2 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 17 PY 2014 VL 90 IS 18 AR 184514 DI 10.1103/PhysRevB.90.184514 PG 4 WC Physics, Condensed Matter SC Physics GA AU5IQ UT WOS:000345640600007 ER PT J AU Lemery, F Piot, P AF Lemery, F. Piot, P. TI Ballistic bunching of photoinjected electron bunches with dielectric-lined waveguides SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID WAKE-FIELD; ACCELERATION; LASER; BEAM; COMPRESSION; GUN AB We describe a simple technique to passively bunch non-ultra-relativistic (less than or similar to 10 MeV) electron bunches produced in conventional photoinjectors. The scheme employs a dielectric-lined waveguide located downstream of the electron source to impress an energy modulation on a picosecond bunch. The energy modulation is then converted into a density modulation via ballistic bunching. The method is shown to support the generation of subpicosecond bunch trains with multi-kA peak currents. The relatively simple technique is expected to find applications in compact, accelerator-based, light sources and advanced beam-driven accelerator methods. C1 [Lemery, F.; Piot, P.] No Illinois Univ, Northern Illinois Ctr Accelerator & Detector Dev, De Kalb, IL 60115 USA. [Lemery, F.; Piot, P.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Piot, P.] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. RP Lemery, F (reprint author), No Illinois Univ, Northern Illinois Ctr Accelerator & Detector Dev, De Kalb, IL 60115 USA. OI piot, philippe/0000-0002-4799-292X FU Defense Threat Reduction Agency, Basic Research Award [HDTRA1-10-1-0051]; Department of Energy [DE-FG02-08ER41532, DE-SC0011831]; Northern Illinois University; DOE [DE-AC02-07CH11359] FX This work was supported by the Defense Threat Reduction Agency, Basic Research Award No. HDTRA1-10-1-0051, to Northern Illinois University and by the Department of Energy Contracts No. DE-FG02-08ER41532 and No. DE-SC0011831 with Northern Illinois University. P. P. is partially supported by DOE Contract No. DE-AC02-07CH11359 to the Fermi research alliance LLC. NR 51 TC 4 Z9 4 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD NOV 17 PY 2014 VL 17 IS 11 AR 112804 DI 10.1103/PhysRevSTAB.17.112804 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AU6DH UT WOS:000345692500002 ER PT J AU Han, R Ha, JW Xiao, CX Pei, YC Qi, ZY Dong, B Bormann, NL Huang, WY Fang, N AF Han, Rui Ha, Ji Won Xiao, Chaoxian Pei, Yuchen Qi, Zhiyuan Dong, Bin Bormann, Nicholas L. Huang, Wenyu Fang, Ning TI Geometry-Assisted Three-Dimensional Superlocalization Imaging of Single-Molecule Catalysis on Modular Multilayer Nanocatalysts SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE heterogeneous catalysis; mesoporous silica; multilayer nanocatalysts; platinum; three-dimensional imaging ID CORE-SHELL NANOCATALYSTS; FLUORESCENCE MICROSCOPY; PROPANE DEHYDROGENATION; CARBON NANOTUBES; CRYSTAL SURFACES; IN-SITU; SILICA; ELECTRON; NANOCRYSTALS; REACTIVITY AB To establish the structure-catalytic property relationships of heterogeneous catalysts, a detailed characterization of the three-dimensional (3D) distribution of active sites on a single catalyst is essential. Single-particle catalysis of a modular multilayer catalytic platform that consists of a solid silica core, a mesoporous silica shell, and uniformly distributed Pt nanoparticles sandwiched in between these layers is presented. The first 3D high-resolution super-localization imaging of single fluorescent molecules produced at active sites on the core-shell model nanocatalysts is demonstrated. The 3D mapping is aided by the well-defined geometry and a correlation study in scanning electron microscopy and total internal reflection fluorescence and scattering microscopy. This approach can be generalized to study other nano- and mesoscale structures. C1 [Han, Rui; Ha, Ji Won; Xiao, Chaoxian; Pei, Yuchen; Qi, Zhiyuan; Dong, Bin; Bormann, Nicholas L.; Huang, Wenyu; Fang, Ning] Iowa State Univ, Ames Lab, USDA, Ames, IA 50011 USA. [Han, Rui; Ha, Ji Won; Xiao, Chaoxian; Pei, Yuchen; Qi, Zhiyuan; Dong, Bin; Bormann, Nicholas L.; Huang, Wenyu; Fang, Ning] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Ha, Ji Won] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Huang, WY (reprint author), Iowa State Univ, Ames Lab, USDA, Ames, IA 50011 USA. EM whuang@iastate.edu; nfang@iastate.edu RI Xiao, Chaoxian/E-7339-2013; Huang, Wenyu/L-3784-2014 OI Xiao, Chaoxian/0000-0002-4012-0539; Huang, Wenyu/0000-0003-2327-7259 FU Iowa State University; Ames Laboratory (Royalty Account); U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX This work was supported by U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division (instrument development) and by the Laboratory Directed Research and Development (LDRD) program of the Ames Laboratory (catalysis, platform synthesis). W. H. also thanks Iowa State University and the Ames Laboratory (Royalty Account) for startup funds. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract no. DE-AC02-07CH11358. NR 44 TC 8 Z9 8 U1 9 U2 57 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD NOV 17 PY 2014 VL 53 IS 47 BP 12865 EP 12869 DI 10.1002/anie.201407140 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA AT2UY UT WOS:000344793400034 PM 25257929 ER PT J AU Gleber, SC Wojcik, M Liu, J Roehrig, C Cummings, M Vila-Comamala, J Li, K Lai, B Shu, DM Vogt, S AF Gleber, Sophie-Charlotte Wojcik, Michael Liu, Jie Roehrig, Chris Cummings, Marvin Vila-Comamala, Joan Li, Kenan Lai, Barry Shu, Deming Vogt, Stefan TI Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard X-ray regime SO OPTICS EXPRESS LA English DT Article ID MICROSCOPY; RESOLUTION; OPTICS AB Focusing efficiency of Fresnel zone plates (FZPs) for X-rays depends on zone height, while the achievable spatial resolution depends on the width of the finest zones. FZPs with optimal efficiency and sub-100-nm spatial resolution require high aspect ratio structures which are difficult to fabricate with current technology especially for the hard X-ray regime. A possible solution is to stack several zone plates. To increase the number of FZPs within one stack, we first demonstrate intermediate-field stacking and apply this method by stacks of up to five FZPs with adjusted diameters. Approaching the respective optimum zone height, we maximized efficiencies for high resolution focusing at three different energies, 10, 11.8, and 25 keV. (C)2014 Optical Society of America C1 [Gleber, Sophie-Charlotte; Wojcik, Michael; Liu, Jie; Roehrig, Chris; Cummings, Marvin; Vila-Comamala, Joan; Lai, Barry; Shu, Deming; Vogt, Stefan] Argonne Natl Lab, Argonne, IL 60439 USA. [Li, Kenan] Northwestern Univ, Evanston, IL 60208 USA. RP Gleber, SC (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gleber@aps.anl.gov RI Vila-Comamala, Joan/E-2106-2017 FU U.S. Department of Energy (DOE) Office of Science; U.S. DOE [DE-AC02-06CH11357] FX We would like to acknowledge Liliana Stan, Leonidas E. Ocola and Ed Wrobel with their assistance during the research presented. Data was collected on beamlines 2-ID-D and 2-ID-E at the Advanced Photon Source, Argonne National Laboratory. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, and Center for Nanoscale Materials was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 27 TC 8 Z9 8 U1 0 U2 9 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 17 PY 2014 VL 22 IS 23 BP 28142 EP 28153 DI 10.1364/OE.22.028142 PG 12 WC Optics SC Optics GA AT9TI UT WOS:000345268500035 PM 25402054 ER PT J AU Huang, ZX Droulias, S Koschny, T Soukoulis, CM AF Huang, Zhixiang Droulias, Sotiris Koschny, Thomas Soukoulis, Costas M. TI Mechanism of the metallic metamaterials coupled to the gain material SO OPTICS EXPRESS LA English DT Article ID INDEX AB We present evidence of strong coupling between the gain material and the metallic metamaterials. It is of vital importance to understand the mechanism of the coupling of metamaterials with the gain medium. Using a four-level gain system, the numerical pump-probe experiments are performed in several configurations (split-ring resonators (SRRs), inverse SRRs and fishnets) of metamaterials, demonstrating reduction of the resonator damping in all cases and hence the possibility for loss compensation. We find that the differential transmittance Delta T/T can be negative in different SRR configurations, such as SRRs on the top of the gain substrate, gain in the SRR gap and gain covering the SRR structure, while in the fishnet metamaterial with gain Delta T/T is positive. (C) 2014 Optical Society of America C1 [Huang, Zhixiang; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Huang, Zhixiang; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Huang, Zhixiang] Anhui Univ, Key Lab Intelligent Comp & Signal Proc, Hefei 230039, Peoples R China. [Droulias, Sotiris; Soukoulis, Costas M.] FORTH, Inst Elect Struct & Laser, Iraklion 71110, Greece. RP Droulias, S (reprint author), FORTH, Inst Elect Struct & Laser, Iraklion 71110, Greece. EM sdroulias@iesl.forth.gr RI Huang, Zhixiang/C-3416-2014; Soukoulis, Costas/A-5295-2008 OI Huang, Zhixiang/0000-0002-8023-9075; FU U.S. Dept. of Energy, Basic Energy Science, Materials Science and Engineering [DE-AC02-07CH11358]; European Research Council under the ERC Advanced Grant [320081] FX Work at Ames Lab was partially supported by the U.S. Dept. of Energy, Basic Energy Science, Materials Science and Engineering, Contract no. DE-AC02-07CH11358. Simulation work at FORTH (theory) was supported by the European Research Council under the ERC Advanced Grant no. 320081 (PHOTOMETA). NR 22 TC 3 Z9 3 U1 2 U2 42 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 17 PY 2014 VL 22 IS 23 BP 28596 EP 28605 DI 10.1364/OE.22.028596 PG 10 WC Optics SC Optics GA AT9TI UT WOS:000345268500082 PM 25402101 ER PT J AU Demos, SG Ehnnann, PR Qiu, SR Schaffers, KI Suratwala, TI AF Demos, Stavros G. Ehnnann, Paul R. Qiu, S. Roger Schaffers, Kathleen I. Suratwala, Tayyab I. TI Dynamics of defects in Ce3+ doped silica affecting its performance as protective filter in ultraviolet high-power lasers SO OPTICS EXPRESS LA English DT Article ID SPECTROSCOPIC PROPERTIES; PHOSPHATE-GLASSES; CERIUM; ABSORPTION; FLUORESCENCE; EFFICIENT; BORATE AB We investigate defects forming in Ce3+-doped fused silica samples following exposure to nanosecond ultraviolet laser pulses and their relaxation as a function of time and exposure to low intensity light at different wavelengths. A subset of these defects are responsible for inducing absorption in the visible and near infrared spectral range, which is of critical importance for the use of this material as ultraviolet light absorbing filter in high power laser systems. The dependence of the induced absorption as a function of laser fluence and methods to most efficiently mitigate this effect are presented. Experiments simulating the operation of the material as a UV protection filter for high power laser systems were performed in order to determine limitations and practical operational conditions. (C) 2014 Optical Society of America C1 [Demos, Stavros G.; Ehnnann, Paul R.; Qiu, S. Roger; Schaffers, Kathleen I.; Suratwala, Tayyab I.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Demos, SG (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM demos1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-439171] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-439171. We thank Raluca A. Negres and Mary A. Norton for helping with execution of experiments. The authors also wish to acknowledge Asahi Glass Company (AGC) and Heraeus Quartz America for contributing the Ce:Silica glass samples that were studied in this work. NR 24 TC 3 Z9 3 U1 4 U2 19 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 17 PY 2014 VL 22 IS 23 BP 28798 EP 28809 DI 10.1364/OE.22.028798 PG 12 WC Optics SC Optics GA AT9TI UT WOS:000345268500100 PM 25402119 ER PT J AU Liao, ZM Raymond, B Gaylord, J Fallejo, R Bude, J Wegner, P AF Liao, Zhi M. Raymond, B. Gaylord, J. Fallejo, R. Bude, J. Wegner, P. TI Damage modeling and statistical analysis of optics damage performance in MJ-class laser systems SO OPTICS EXPRESS LA English DT Article ID FUSED-SILICA OPTICS; GROWTH; NIF; MITIGATION AB Modeling the lifetime of a fused silica optic is described for a multiple beam, MJ-class laser system. This entails combining optic processing data along with laser shot data to account for complete history of optic processing and shot exposure. Integrating with online inspection data allows for the construction of a performance metric to describe how an optic performs with respect to the model. This methodology helps to validate the damage model as well as allows strategic planning and identifying potential hidden parameters that are affecting the optic's performance. (C) 2014 Optical Society of America C1 [Liao, Zhi M.; Raymond, B.; Gaylord, J.; Fallejo, R.; Bude, J.; Wegner, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Liao, ZM (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM zman@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LLNL office of LDRD [LLNL-JRNL-660594] FX The authors would like to acknowledge our wonderful colleagues at NIF for their contributions: Kris Fury for editing, T. Suratwala, M. Nostrand, P. Whitman for helpful discussions; W. Carr, D. Cross, M. Negres, M. Norton, and OSL team for all the offline damage data and rules that are the heart of the damage model, and finally M. Spaeth for setting us on this path so many years ago. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded through LLNL office of LDRD. (LLNL-JRNL-660594) NR 20 TC 6 Z9 7 U1 0 U2 16 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 17 PY 2014 VL 22 IS 23 BP 28845 EP 28856 DI 10.1364/OE.22.028845 PG 12 WC Optics SC Optics GA AT9TI UT WOS:000345268500105 PM 25402124 ER PT J AU Eftink, BP Mara, NA Kingstedt, OT Safarik, DJ Lambros, J Robertson, IM AF Eftink, B. P. Mara, N. A. Kingstedt, O. T. Safarik, D. J. Lambros, J. Robertson, I. M. TI Anomalous deformation twinning in coarse-grained Cu in Ag60Cu40 composites under high strain-rate compressive loading SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Twinning; Copper; Silver; Slip ID ROOM-TEMPERATURE; EUTECTIC ALLOY; FCC METALS; COPPER; AG; SLIP; INTERFACES; STRENGTH; BOUNDARIES; LAMELLAE AB The deformation response of a directionally solidified Ag60Cu40 eutectic alloy with a cube-on-cube orientation relationship between Ag and Cu subjected to high strain-rate 10(3) s(-1) compressive loading was examined. Loading at 45 degrees and 90 degrees to the growth axis, near [001] and [11 (1) over bar] local crystal orientations, respectively, resulted in deformation twinning and dislocation slip in both Ag and Cu under conditions where deformation twinning would not normally be expected in Cu. In contrast, loading at 0 degrees and 90 degrees to the growth axis, near < 101 > local crystal orientations, resulted in the primary deformation mode being dislocation slip. These results are interpreted in terms of the influence of loading axis with respect to the local crystal orientation in the directionally solidified alloy and on slip transmission from Ag into Cu. (C) 2014 Elsevier B.V. All rights reserved. C1 [Eftink, B. P.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Mara, N. A.] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA. [Kingstedt, O. T.; Lambros, J.] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA. [Safarik, D. J.] Los Alamos Natl Lab, MST 6, Los Alamos, NM 87545 USA. [Robertson, I. M.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. RP Eftink, BP (reprint author), Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. EM beftink2@illinois.edu RI Mara, Nathan/J-4509-2014; OI Safarik, Douglas/0000-0001-8648-9377 FU National Nuclear Security Administration of the Department of Energy [DE-FG52-09NA29463]; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX This work was performed, in part, at the University of Illinois Urbana-Champaign by a grant from the National Nuclear Security Administration of the Department of Energy under contract DE-FG52-09NA29463. This work was also performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. Compression testing assistance was provided by the Advanced Materials Testing and Evolution Laboratory (AMTEL) through Dr. Gavin Horn, Fire Service Institute, University of Illinois at Urbana-Champaign. Electron Microscopy was carried out in the Frederick Seitz Materials Research Laboratory Central Facilities at the University of Illinois in addition to the Electron Microscopy Laboratory at Los Alamos National Laboratory. NR 39 TC 4 Z9 4 U1 3 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 17 PY 2014 VL 618 BP 254 EP 261 DI 10.1016/j.msea.2014.08.082 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA AS7MG UT WOS:000344439500031 ER PT J AU Stinson, JL Kathmann, SM Ford, IJ AF Stinson, Jake L. Kathmann, Shawn M. Ford, Ian J. TI Dynamical consequences of a constraint on the Langevin thermostat in molecular cluster simulation SO MOLECULAR PHYSICS LA English DT Article DE Langevin thermostat; small system; constraints AB We investigate some unusual behaviour observed while performing molecular dynamics simulations of small molecular clusters using a constrained Langevin thermostat. Atoms appear to be thermalised to different temperatures that depend on their mass and on the total number of particles in the system. The deviation from the zeroth law of thermodynamics can be considerable for small systems of heavy and light particles. We trace this behaviour to the absence of thermal noise acting on the centre of mass of the system. This is demonstrated by solving the stochastic dynamics for the constrained thermostat and comparing the results with simulation data. By removing the constraint, the Langevin thermostat may be restored to its intended behaviour. We also investigate a Langevin thermostat constrained to have zero total force acting on its centre of mass, and find similar deficiencies. C1 [Stinson, Jake L.; Ford, Ian J.] UCL, Dept Phys & Astron, London, England. [Stinson, Jake L.; Ford, Ian J.] UCL, London Ctr Nanotechnol, London, England. [Kathmann, Shawn M.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Stinson, JL (reprint author), UCL, Dept Phys & Astron, London, England. EM j.stinson@ucl.ac.uk FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; Pacific Northwest National Laboratory; IMPACT scheme at University College London FX We thank Ilian Todorov for assistance and comments. S. M. Kathmann was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. J.L. Stinson acknowledges Pacific Northwest National Laboratory and the IMPACT scheme at University College London for funding. We thank an anonymous referee for drawing our attention to the use of Gauss' principle of least constraint. NR 6 TC 0 Z9 0 U1 0 U2 4 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0026-8976 EI 1362-3028 J9 MOL PHYS JI Mol. Phys. PD NOV 17 PY 2014 VL 112 IS 22 BP 2920 EP 2923 DI 10.1080/00268976.2014.917732 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AT9UU UT WOS:000345272700005 ER PT J AU Hagos, S Feng, Z Burleyson, CD Lim, KSS Long, CN Wu, D Thompson, G AF Hagos, Samson Feng, Zhe Burleyson, Casey D. Lim, Kyo-Sun Sunny Long, Charles N. Wu, Di Thompson, Greg TI Evaluation of convection-permitting model simulations of cloud populations associated with the Madden-Julian Oscillation using data collected during the AMIE/DYNAMO field campaign SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE dynamo; cold pools; s-pol radar; cloud permitting; tropical convection; Madden-Julian oscillation ID MICROPHYSICS PARAMETERIZATION; PART I; RESOLVING MODEL; CLIMATE MODELS; RADAR; PRECIPITATION; ORGANIZATION; EXPLICIT; SCHEME; SNOW AB Regional convection-permitting model simulations of cloud populations observed during the 2011 Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation Investigation Experiment/Dynamics of the Madden-Julian Oscillation Experiment (AMIE/DYNAMO) field campaign are evaluated against ground-based radar and ship-based observations. Sensitivity of model simulated reflectivity, surface rain rate, and cold pool statistics to variations of raindrop breakup/self-collection parameters in four state-of-the-art two-moment bulk microphysics schemes in the Weather Research and Forecasting (WRF) model is examined. The model simulations generally overestimate reflectivity from large and deep convective cells, and underestimate stratiform rain and the frequency of cold pools. In the sensitivity experiments, introduction of more aggressive raindrop breakup or decreasing the self-collection efficiency increases the cold pool occurrence frequency in all of the simulations, and slightly reduces the reflectivity and precipitation statistics bias in some schemes but has little effect on the overall mean surface precipitation. Both the radar observations and model simulations of cloud populations show an approximate power law relationship between convective echo-top height and equivalent convective cell radius. C1 [Hagos, Samson; Feng, Zhe; Burleyson, Casey D.; Lim, Kyo-Sun Sunny; Long, Charles N.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wu, Di] NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Processes Lab, Greenbelt, MD 20771 USA. [Wu, Di] Sci Syst & Applicat Inc, Lanham, MD USA. [Thompson, Greg] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. RP Hagos, S (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM samson.hagos@pnnl.gov RI Lim, Kyo-Sun/I-3811-2012; Burleyson, Casey/F-1833-2016; Feng, Zhe/E-1877-2015 OI Burleyson, Casey/0000-0001-6218-9361; Feng, Zhe/0000-0002-7540-9017 FU Office of Biological and Environmental Research of the U.S. Department of Energy (DOE) as part of the Regional and Global Climate Modeling Program; Office of Biological and Environmental Research of the U.S. Department of Energy (DOE) as part of the Atmospheric System Research Program; DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830] FX The authors thank Yun Qian for his comments and suggestions. The data for this paper are available at NCAR's Earth Observing Laboratory's DYNAMO Data Catalogue https://www.eol.ucar.edu/field_projects/dynamo. The data set names are, R/V Roger Revelle Flux, Near-Surface Meteorology, and Navigation Data and S-PolKa Radar, fully corrected, merged, final moments data in cfRadial format. The S-Polka data were regridded by Stacy Brodzik (brodzik@atmos.washington.edu) at the University of Washington. This research is based on work supported by the Office of Biological and Environmental Research of the U.S. Department of Energy (DOE) as part of the Regional and Global Climate Modeling Program and Atmospheric System Research Program. Computing resources for the simulations are provided by the National Energy Research Scientific Computing Center (NERSC) and Oak Ridge Leadership Computing Facility (OLCF). The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. NR 39 TC 11 Z9 11 U1 2 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 16 PY 2014 VL 119 IS 21 BP 12052 EP 12068 DI 10.1002/2014JD022143 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AU6EQ UT WOS:000345696600031 ER PT J AU Niemann, C Gekelman, W Constantin, CG Everson, ET Schaeffer, DB Bondarenko, AS Clark, SE Winske, D Vincena, S Van Compernolle, B Pribyl, P AF Niemann, C. Gekelman, W. Constantin, C. G. Everson, E. T. Schaeffer, D. B. Bondarenko, A. S. Clark, S. E. Winske, D. Vincena, S. Van Compernolle, B. Pribyl, P. TI Observation of collisionless shocks in a large current-free laboratory plasma SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID EXPANSION; DESIGN AB We report the first measurements of the formation and structure of a magnetized collisionless shock by a laser-driven magnetic piston in a current-free laboratory plasma. This new class of experiments combines a high-energy laser system and a large magnetized plasma to transfer energy from a laser plasma plume to the ambient ions through collisionless coupling, until a self-sustained M-A similar to 2 magnetosonic shock separates from the piston. The ambient plasma is highly magnetized, current free, and large enough (17 m x 0.6 m) to support Alfven waves. Magnetic field measurements of the structure and evolution of the shock are consistent with two-dimensional hybrid simulations, which show Larmor coupling between the debris and ambient ions and the presence of reflected ions, which provide the dissipation. The measured shock formation time confirms predictions from computational work. C1 [Niemann, C.; Gekelman, W.; Constantin, C. G.; Everson, E. T.; Schaeffer, D. B.; Bondarenko, A. S.; Clark, S. E.; Vincena, S.; Van Compernolle, B.; Pribyl, P.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Winske, D.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Niemann, C (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM cniemann@ucla.edu OI Van Compernolle, Bart/0000-0002-5853-6233 FU Defense Threat Reduction Agency [HDTRA1-12-1-0024]; DOE Office of Science Early Career Research Program [E-FOA-0000395]; DOE/NSF FX This work was supported by the Defense Threat Reduction Agency under contract HDTRA1-12-1-0024 and the DOE Office of Science Early Career Research Program (E-FOA-0000395). The experiments were performed at the UCLA Basic Plasma Science Facility (BaPSF) supported by DOE/NSF. NR 23 TC 10 Z9 10 U1 1 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2014 VL 41 IS 21 BP 7413 EP 7418 DI 10.1002/2014GL061820 PG 6 WC Geosciences, Multidisciplinary SC Geology GA AU3MT UT WOS:000345518300001 ER PT J AU Airapetian, A Akopov, N Akopov, Z Augustyniak, W Avetissian, A Blok, HP Borissov, A Bryzgalov, V Capiluppi, M Capitani, GP Cisbani, E Ciullo, G Contalbrigo, M Dalpiaz, PF Deconinck, W De Leo, R De Sanctis, E Diefenthaler, M Di Nezza, P Duren, M Ehrenfried, M Elbakian, G Ellinghaus, F Etzelmuller, E Fabbri, R Felawka, L Frullani, S Gabbert, D Gapienko, G Gapienko, V Garibaldi, F Gavrilov, G Gharibyan, V Hartig, M Hasch, D Holler, Y Hristova, I Ivanilov, A Jackson, HE Joosten, S Kaiser, R Karyan, G Keri, T Kinney, E Kisselev, A Korotkov, V Kozlov, V Kravchenko, P Krivokhijine, VG Lagamba, L Lapikas, L Lehmann, I Lenisa, P Lorenzon, W Ma, BQ Mahon, D Manaenkov, SI Mao, Y Marianski, B Marukyan, H Movsisyan, A Murray, M Naryshkin, Y Nass, A Nowak, WD Pappalardo, LL Perez-Benito, R Petrosyan, A Reimer, PE Reolon, AR Riedl, C Rith, K Rostomyan, A Ryckbosch, D Schafer, A Schnell, G Schuller, KP Seitz, B Shibata, TA Stahl, M Stancari, M Statera, M Steffens, E Steijger, JJM Taroian, S Terkulov, A Truty, R Trzcinski, A Tytgat, M Van Haarlem, Y VanHulse, C Vikhrov, V Vilardi, I Wang, S Yaschenko, S Yen, S Zeiler, D Zihlmann, B Zupranski, P AF Airapetian, A. Akopov, N. Akopov, Z. Augustyniak, W. Avetissian, A. Blok, H. P. Borissov, A. Bryzgalov, V. Capiluppi, M. Capitani, G. P. Cisbani, E. Ciullo, G. Contalbrigo, M. Dalpiaz, P. F. Deconinck, W. De Leo, R. De Sanctis, E. Diefenthaler, M. Di Nezza, P. Dueren, M. Ehrenfried, M. Elbakian, G. Ellinghaus, F. Etzelmueller, E. Fabbri, R. Felawka, L. Frullani, S. Gabbert, D. Gapienko, G. Gapienko, V. Garibaldi, F. Gavrilov, G. Gharibyan, V. Hartig, M. Hasch, D. Holler, Y. Hristova, I. Ivanilov, A. Jackson, H. E. Joosten, S. Kaiser, R. Karyan, G. Keri, T. Kinney, E. Kisselev, A. Korotkov, V. Kozlov, V. Kravchenko, P. Krivokhijine, V. G. Lagamba, L. Lapikas, L. Lehmann, I. Lenisa, P. Lorenzon, W. Ma, B. -Q. Mahon, D. Manaenkov, S. I. Mao, Y. Marianski, B. Marukyan, H. Movsisyan, A. Murray, M. Naryshkin, Y. Nass, A. Nowak, W. -D. Pappalardo, L. L. Perez-Benito, R. Petrosyan, A. Reimer, P. E. Reolon, A. R. Riedl, C. Rith, K. Rostomyan, A. Ryckbosch, D. Schaefer, A. Schnell, G. Schueller, K. P. Seitz, B. Shibata, T. -A. Stahl, M. Stancari, M. Statera, M. Steffens, E. Steijger, J. J. M. Taroian, S. Terkulov, A. Truty, R. Trzcinski, A. Tytgat, M. Van Haarlem, Y. VanHulse, C. Vikhrov, V. Vilardi, I. Wang, S. Yaschenko, S. Yen, S. Zeiler, D. Zihlmann, B. Zupranski, P. TI Spin density matrix elements in exclusive omega electroproduction on H-1 and H-2 targets at 27.5 GeV beam energy SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID VECTOR-MESON LEPTOPRODUCTION; VIRTUAL COMPTON-SCATTERING; PARTON DISTRIBUTIONS; QCD AB Exclusive electroproduction of. mesons on unpolarized hydrogen and deuterium targets is studied in the kinematic region of Q(2) > 1.0 GeV2, 3.0 GeV < W < 6.3 GeV, and -t ' < 0.2 GeV2. Results on the angular distribution of the omega meson, including its decay products, are presented. The data were accumulated with the HER-MES forward spectrometer during the 1996-2007 running period using the 27.6 GeV longitudinally polarized electron or positron beam of HERA. The determination of the virtual-photon longitudinal-to-transverse cross-section ratio reveals that a considerable part of the cross section arises from transversely polarized photons. Spin density matrix elements are presented in projections of Q(2) or -t '. Violation of s-channel helicity conservation is observed for some of these elements. Asizable contribution from unnatural-parity-exchange amplitudes is found and the phase shift between those amplitudes that describe transverse omega production by longitudinal and transverse virtual photons,gamma(L)* -> omega(T) and gamma(T)* -> omega(T), is determined for the first time. A hierarchy of helicity amplitudes is established, which mainly means that the unnatural-parity-exchange amplitude describing the gamma(T)* -> omega(T) transition dominates over the two natural-parity-exchange amplitudes describing the gamma(L)* -> omega(L) and gamma(T)* -> omega(T) transitions, with the latter two being of similar magnitude. Good agreement is found between the HERMES proton data and results of a pQCD-inspired phenomenological model that includes pion-pole contributions, which are of unnatural parity. C1 [Jackson, H. E.; Reimer, P. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [De Leo, R.; Lagamba, L.; Vilardi, I.] Ist Nazl Fis Nucl, Sez Bari, I-70124 Bari, Italy. [Ma, B. -Q.; Mao, Y.; Wang, S.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [Schnell, G.; VanHulse, C.] Univ,Basque Country UPV EHU, Dept Theoret Phys, Bilbao 48080, Spain. [Schnell, G.] Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain. [Ellinghaus, F.; Kinney, E.] Univ Colorado, Nucl Phys Lab, Boulder, CO 80309 USA. [Akopov, Z.; Borissov, A.; Deconinck, W.; Gavrilov, G.; Hartig, M.; Holler, Y.; Rostomyan, A.; Schueller, K. P.; Yaschenko, S.; Zihlmann, B.] DESY, D-22603 Hamburg, Germany. [Fabbri, R.; Gabbert, D.; Hristova, I.; Nowak, W. -D.; Riedl, C.] DESY, D-15738 Zeuthen, Germany. [Krivokhijine, V. G.] Joint Inst Nucl Res, Dubna 141980, Russia. [Diefenthaler, M.; Nass, A.; Rith, K.; Steffens, E.; Yaschenko, S.; Zeiler, D.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. [Capiluppi, M.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Lenisa, P.; Movsisyan, A.; Pappalardo, L. L.; Stancari, M.; Statera, M.] Ist Nazl Fis Nucl, Sez Ferrara, I-44122 Ferrara, Italy. [Capiluppi, M.; Ciullo, G.; Dalpiaz, P. F.; Lenisa, P.; Pappalardo, L. L.; Stancari, M.; Statera, M.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [Capitani, G. P.; De Sanctis, E.; Di Nezza, P.; Hasch, D.; Reolon, A. R.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Joosten, S.; Ryckbosch, D.; Schnell, G.; Tytgat, M.; Van Haarlem, Y.; VanHulse, C.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Airapetian, A.; Dueren, M.; Ehrenfried, M.; Etzelmueller, E.; Keri, T.; Perez-Benito, R.; Stahl, M.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Kaiser, R.; Lehmann, I.; Mahon, D.; Murray, M.; Seitz, B.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Diefenthaler, M.; Joosten, S.; Riedl, C.; Truty, R.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Airapetian, A.; Lorenzon, W.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. [Kozlov, V.; Terkulov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Blok, H. P.; Lapikas, L.; Steijger, J. J. M.] Natl Inst Subat Phys Nikhef, NL-1009 DB Amsterdam, Netherlands. [Gavrilov, G.; Kisselev, A.; Kravchenko, P.; Manaenkov, S. I.; Naryshkin, Y.; Vikhrov, V.] BP Konstantinov Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Regio, Russia. [Bryzgalov, V.; Gapienko, G.; Gapienko, V.; Ivanilov, A.; Korotkov, V.] Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Schaefer, A.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. [Cisbani, E.; Frullani, S.; Garibaldi, F.] Ist Nazl Fis Nucl, Grp Collegato Sanita, I-00161 Rome, Italy. [Cisbani, E.; Frullani, S.; Garibaldi, F.] Ist Super Sanita, I-00161 Rome, Italy. [Felawka, L.; Gavrilov, G.; Yen, S.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Blok, H. P.] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands. [Augustyniak, W.; Marianski, B.; Trzcinski, A.; Zupranski, P.] Natl Ctr Nucl Res, PL-00689 Warsaw, Poland. [Akopov, N.; Avetissian, A.; Elbakian, G.; Gharibyan, V.; Karyan, G.; Marukyan, H.; Movsisyan, A.; Petrosyan, A.; Taroian, S.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Airapetian, A (reprint author), Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. EM gunar.schnell@desy.de RI Cisbani, Evaristo/C-9249-2011; Kozlov, Valentin/M-8000-2015; Terkulov, Adel/M-8581-2015 OI Cisbani, Evaristo/0000-0002-6774-8473; FU SCOAP3 / License Version CC BY 4.0 FX Funded by SCOAP3 / License Version CC BY 4.0. NR 28 TC 9 Z9 9 U1 3 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD NOV 15 PY 2014 VL 74 IS 11 AR 3110 DI 10.1140/epjc/s10052-014-3110-1 PG 25 WC Physics, Particles & Fields SC Physics GA AX8OZ UT WOS:000347169800001 ER PT J AU Cernuschi, F Bison, P Sun, JG AF Cernuschi, F. Bison, P. Sun, J. G. TI Thermal diffusivity of TBC: Results of a small round robin test and considerations about the effect of the surface preparation and the measuring approach SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Thermal barrier coatings; Thermal diffusivity; Blackening layer; Thermographic technique ID SPRAYED ZIRCONIA COATINGS; BARRIER COATINGS; MICROSTRUCTURAL CHARACTERIZATION; THERMOPHYSICAL PROPERTIES; HEAT-TREATMENT; LASER FLASH; CONDUCTIVITY AB Among the techniques used to measure the thermal diffusivity of TBC, the Laser Flash is a standard. Nonetheless, this technique shows two main limitations related to the size and the well-defined geometry of the specimens. Furthermore the most reliable data can be typically obtained only on freestanding coatings. On the contrary, other photothermal and thermographic techniques in reflection configuration (the same side is heated and temperature detected) can overcome these limitations. One aspect, only partially studied in the literature, is common to most of the photothermal and thermographic techniques. It concerns the effect of the blackening coating used for guaranteeing the absorption of the heating radiation just within a very shallow outer layer and to make opaque the TBC in the sensitivity range of the IR detector/camera. For this purpose, an inter-laboratory round robin has been promoted for comparing the thermal diffusivity in dependency of the blackening layer deposition technique, the TBC microstructure (in particular porous APS, columnar EB-PVD and PS-PVD (TM)) and the three different experimental set-ups in terms of spectral range and frame rate of the IR cameras, heating source and data reduction. (C) 2014 Elsevier B.V. All rights reserved. C1 [Cernuschi, F.] RSE, I-20134 Milan, Italy. [Bison, P.] CNR ITC, I-35127 Padua, Italy. [Sun, J. G.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Cernuschi, F (reprint author), RSE, Via Rubattino 54, I-20134 Milan, Italy. EM federico.cernuschi@rse-web.it OI Bison, Paolo/0000-0002-8984-1994 FU RSE; Ministry of Economic Development - General Directorate for Nuclear Energy, Renewable Energy and Energy Efficiency; U.S. Department of Energy, Office of Fossil Energy, Advanced Research and Technology Development/Materials Program; EU [AST4-CT-2005-516149] FX The work at RSE has been partially financed by the Research Fund for the Italian Electrical System under the Contract Agreement between RSE (formerly known as ERSE) and the Ministry of Economic Development - General Directorate for Nuclear Energy, Renewable Energy and Energy Efficiency stipulated on July 29, 2009 in compliance with the Decree of March 19, 2009.; The work at Argonne was sponsored by the U.S. Department of Energy, Office of Fossil Energy, Advanced Research and Technology Development/Materials Program.; Some samples used within this work have been manufactured in the frame of the EU project TOPPCOAT Project No. AST4-CT-2005-516149. NR 42 TC 3 Z9 3 U1 2 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD NOV 15 PY 2014 VL 258 BP 284 EP 292 DI 10.1016/j.surfcoat.2014.09.011 PG 9 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA AX4HW UT WOS:000346895000035 ER PT J AU Nordhorn, C Mucke, R Unocic, KA Lance, MJ Pint, BA Vassen, R AF Nordhorn, Christian Muecke, Robert Unocic, Kinga A. Lance, Michael J. Pint, Bruce A. Vassen, Robert TI Effects of thermal cycling parameters on residual stresses in alumina scales of CoNiCrAlY and NiCoCrAlY bond coats SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Photo-stimulated luminescence-spectroscopy; Thermally grown oxide; MCrAlY bond coats; Finite-element analysis; Mechanical stress ID BARRIER COATINGS; WATER-VAPOR; PHOTOLUMINESCENCE PIEZOSPECTROSCOPY; OXIDATION BEHAVIOR; GROWN OXIDE; SYSTEMS; TBCS; DURABILITY; MECHANISMS; LIFETIME AB Furnace cycling experiments were performed on free-standing high-velocity oxygen-fuel bond coat samples to investigate the effect of material composition, surface texture, and cycling conditions on the average stresses in the formed oxide scales after cooling. The oxide scale thicknesses were determined by SEM image analyses and information about the stresses were acquired by photo-stimulated luminescence-spectroscopy. Additionally, the scale thickness dependent stress fields were calculated in finite-element analyses including approximation functions for the surface roughness derived on the basis of profilometry data. The evolution of the average residual stress as a function of oxide scale thickness was subject to stochastic fluctuations predominantly caused by local scale spallations. In comparison to the supplemental modeling results, thermal stresses due to mismatch of thermal expansion coefficients are identified as the main contribution to the residual stresses. The theoretical results emphasize that analyses of spectroscopic data acquired for average stress investigations of alumina scales rely on detailed information about microstructural features. (C) 2014 Elsevier B.V. All rights reserved. C1 [Nordhorn, Christian; Muecke, Robert; Vassen, Robert] Forschungszentrum Julich, IEK 1, D-52428 Julich, Germany. [Unocic, Kinga A.; Lance, Michael J.; Pint, Bruce A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Nordhorn, C (reprint author), Forschungszentrum Julich, IEK 1, Wilhelm Johnen Str, D-52428 Julich, Germany. EM c.nordhorn@fz-juelich.de RI Pint, Bruce/A-8435-2008; Lance, Michael/I-8417-2016 OI Pint, Bruce/0000-0002-9165-3335; Lance, Michael/0000-0001-5167-5452 FU U.S. Department of Energy, Office of Coal and Power R&D, Office of Fossil Energy FX The authors gratefully acknowledge the support of D. Sebold for SEM work at Julich, G.W. Garner at ORNL for assistance with the thermal cycling experiments, and T.M. Lowe and T. Jordan for assistance with the experimental work at ORNL. The experimental work at ORNL was supported by the U.S. Department of Energy, Office of Coal and Power R&D, Office of Fossil Energy. NR 29 TC 2 Z9 2 U1 4 U2 30 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD NOV 15 PY 2014 VL 258 BP 608 EP 614 DI 10.1016/j.surfcoat.2014.08.028 PG 7 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA AX4HW UT WOS:000346895000074 ER PT J AU Tripathy, PK Wurth, LA Dufek, EJ Gutknecht, TY Gese, NJ Hahn, PA Frank, SM Fredrickson, GL Herring, JS AF Tripathy, Prabhat K. Wurth, Laura A. Dufek, Eric J. Gutknecht, Toni Y. Gese, Natalie J. Hahn, Paula A. Frank, Steven M. Fredrickson, Guy L. Herring, J. Stephen TI Aluminum electroplating on steel from a fused bromide electrolyte SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Bromide plating bath; Functional electrolyte; Aluminum electro-coating; Current density; Coating morphology ID MOLTEN-SALT; CORROSION-RESISTANCE; STAINLESS-STEEL; ELECTRODEPOSITION; ALCL3-NACL-KCL; DEPOSITION; SUBSTRATE; CHLORIDE; SURFACE; FILMS AB A quaternary bromide bath (LiBr-KBr-CsBr-AlBr3) was used to electro-coat aluminum on steel substrates. The electrolyte was prepared by the addition of AlBr3 into the eutectic LiBr-KBr-CsBr melt. A smooth, thick, adherent and shiny aluminum coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminum coverage. Both salt immersion and open circuit potential measurement suggested that the coatings did display a good corrosion-resistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminum coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminum coating on both ferrous and non-ferrous metals, including complex surfaces/geometries. Published by Elsevier B.V. C1 [Tripathy, Prabhat K.; Gese, Natalie J.; Frank, Steven M.; Fredrickson, Guy L.] Idaho Natl Lab, Separat Dept, Nucl Sci & Technol Directorate, Idaho Falls, ID 83415 USA. [Wurth, Laura A.] ZAF Energy Syst Inc, Columbia Falls, MT 59912 USA. [Dufek, Eric J.] Idaho Natl Lab, Biol & Chem Proc Dept, Energy & Environm Sci & Technol Directorate, Idaho Falls, ID 83415 USA. [Gutknecht, Toni Y.] Chalmers, S-41296 Gothenburg, Sweden. [Hahn, Paula A.] Idaho Natl Lab, Chem & Radiat Measurement Dept, Energy & Environm Sci & Technol Directorate, Idaho Falls, ID 83415 USA. [Herring, J. Stephen] Idaho Natl Lab, Nucl Sci & Technol Directorate, Nucl & Sci Engn Dept, Idaho Falls, ID 83415 USA. RP Tripathy, PK (reprint author), Idaho Natl Lab, Separat Dept, Nucl Sci & Technol Directorate, POB 1625, Idaho Falls, ID 83415 USA. EM Prabhat.Tripathy@inl.gov RI Dufek, Eric/B-8847-2017; Frank, Steven/B-9046-2017 OI Dufek, Eric/0000-0003-4802-1997; Frank, Steven/0000-0001-8259-6722 FU Idaho National Laboratory Directed Research and Development Program under DOE Idaho Operations Office; US Department of Energy [DE-AC07-05ID14517] FX The authors gratefully acknowledge the Idaho National Laboratory Directed Research and Development Program under DOE Idaho Operations Office for supporting the present research and development program. The manuscript was authorized by Battelle Energy Alliances under the contract No. DE-AC07-05ID14517, with the US Department of Energy, for publication. The US government retains and the publisher, by accepting the manuscript for publication, acknowledges that the US government retains a non-exclusive, paid up irrevocable worldwide license to publish or reproduce the published form of this manuscript or allow others to do so for United States Government purposes. NR 36 TC 0 Z9 0 U1 4 U2 22 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD NOV 15 PY 2014 VL 258 BP 652 EP 663 DI 10.1016/j.surfcoat.2014.08.021 PG 12 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA AX4HW UT WOS:000346895000080 ER PT J AU Garcin, E Seeger, F Quintyn, R Tanimoto, A Williams, G Tainer, J Wysocki, V AF Garcin, Elsa Seeger, Franziska Quintyn, Royston Tanimoto, Akiko Williams, Gareth Tainer, John Wysocki, Vicki TI Interfacial residues promote an optimal alignment of the catalytic center in soluble guanylate cyclase SO NITRIC OXIDE-BIOLOGY AND CHEMISTRY LA English DT Meeting Abstract DE Soluble guanylate cyclase; Enzyme mechanism; Regulation; X-ray crystallography; Conformational changes; Domain-domain interactions C1 [Garcin, Elsa; Seeger, Franziska] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. [Quintyn, Royston; Tanimoto, Akiko; Wysocki, Vicki] Ohio State Univ, Columbus, OH 43210 USA. [Williams, Gareth] Lawrence Berkeley Natl Lab, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1089-8603 EI 1089-8611 J9 NITRIC OXIDE-BIOL CH JI Nitric Oxide-Biol. Chem. PD NOV 15 PY 2014 VL 42 MA 2012-1 BP 112 EP 112 DI 10.1016/j.niox.2014.09.042 PG 1 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA AU7XZ UT WOS:000345812900049 ER PT J AU Garcin, E Seeger, F Quintyn, R Tanimoto, A Williams, G Tainer, J Wysocki, V AF Garcin, Elsa Seeger, Franziska Quintyn, Royston Tanimoto, Akiko Williams, Gareth Tainer, John Wysocki, Vicki TI Interfacial residues promote an optimal alignment of the catalytic center in soluble guanylate cyclase SO NITRIC OXIDE-BIOLOGY AND CHEMISTRY LA English DT Meeting Abstract DE Soluble guanylate cyclase; Enzyme mechanism; Regulation; X-ray crystallography; Conformational changes; Domain-domain interactions C1 [Garcin, Elsa; Seeger, Franziska] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. [Quintyn, Royston; Tanimoto, Akiko; Wysocki, Vicki] Ohio State Univ, Columbus, OH 43210 USA. [Williams, Gareth] Lawrence Berkeley Natl Lab, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1089-8603 EI 1089-8611 J9 NITRIC OXIDE-BIOL CH JI Nitric Oxide-Biol. Chem. PD NOV 15 PY 2014 VL 42 MA P216 BP 152 EP 153 DI 10.1016/j.niox.2014.09.156 PG 2 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA AU7XZ UT WOS:000345812900163 ER PT J AU Krot, AN Nagashima, K Wasserburg, GJ Huss, GR Papanastassiou, D Davis, AM Hutcheon, ID Bizzarro, M AF Krot, Alexander N. Nagashima, Kazuhide Wasserburg, Gerald J. Huss, Gary R. Papanastassiou, Dimitri Davis, Andrew M. Hutcheon, Ian D. Bizzarro, Martin TI Calcium-aluminum-rich inclusions with fractionation and unknown nuclear effects (FUN CAIs): I. Mineralogy, petrology, and oxygen isotopic compositions SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID UNUSUAL ALLENDE INCLUSION; EARLY SOLAR-SYSTEM; REFRACTORY INCLUSIONS; CARBONACEOUS CHONDRITES; PROTOPLANETARY DISK; MELILITE CRYSTALS; TRACE-ELEMENT; CV3 CHONDRITE; HETEROGENEOUS DISTRIBUTION; CAAL2SI2O8 POLYMORPHS AB We present a detailed characterization of the mineralogy, petrology, and oxygen isotopic compositions of twelve FUN CAIs, including C1 and EK1-4-1 from Allende (CV), that were previously shown to have large isotopic fractionation patterns for magnesium and oxygen, and large isotopic anomalies of several elements. The other samples show more modest patterns of isotopic fractionation and have smaller but significant isotopic anomalies. All FUN CAIs studied are coarse-grained igneous inclusions: Type B, forsterite-bearing Type B, compact Type A, and hibonite-rich. Some inclusions consist of two mineralogically distinct lithologies, forsterite-rich and forsterite-free/poor. All the CV FUN CAIs experienced postcrystallization open-system iron-alkali-halogen metasomatic alteration resulting in the formation of secondary minerals commonly observed in non-FUN CAIs from CV chondrites. The CR FUN CAI GG#3 shows no evidence for alteration. In all samples, clear evidence of oxygen isotopic fractionation was found. Most samples were initially O-16-rich. On a three-oxygen isotope diagram, various minerals in each FUN CAI (spinel, forsterite, hibonite, dmisteinbergite, most fassaite grains, and melilite (only in GG#3)), define mass-dependent fractionation lines with a similar slope of similar to 0.5. The different inclusions have different Delta O-17 values ranging from similar to-25 parts per thousand to similar to-16 parts per thousand. Melilite and plagioclase in the CV FUN CAIs have O-16-poor compositions (Delta O-17 similar to-3 parts per thousand) and plot near the intercept of the Allende CAI line and the terrestrial fractionation line. We infer that mass-dependent fractionation effects of oxygen isotopes in FUN CAI minerals are due to evaporation during melt crystallization. Differences in Delta O-17 values of mass-dependent fractionation lines defined by minerals in individual FUN CAIs are inferred to reflect differences in Delta O-17 values of their precursors. Differences in delta O-18 values of minerals defining the mass-dependent fractionation lines in several FUN CAIs are consistent with their inferred crystallization sequence, suggesting these minerals crystallized during melt evaporation. In other FUN CAIs, no clear correlation between delta O-18 values of individual minerals and their inferred crystallization sequence is observed, possibly indicating gas-melt back reaction and oxygen-isotope exchange in a O-16-rich gaseous reservoir. After oxygen-isotope fractionation, some FUN CAIs could have experienced partial melting and gas-melt oxygen-isotope exchange in a O-16-poor gaseous reservoir that resulted in crystallization of O-16-depleted fassaite, melilite and plagioclase. The final oxygen isotopic compositions of melilite and plagioclase in the CV FUN CAIs may have been established on the CV parent asteroid as a result of isotope exchange with a O-16-poor fluid during hydrothermal alteration. We conclude that FUN CAIs are part of a general family of refractory inclusions showing various degrees of fractionation effects due to evaporative processes superimposed on sampling of isotopically heterogeneous material. These processes have been experienced both by FUN and non-FUN igneous CAIs. Generally, the inclusions identified as FUN show larger isotope fractionation effects than non-FUN CAIs. There is a wide spread in UN isotopic anomalies in a large number of CAIs not exhibiting large fractionation effects in oxygen, magnesium, and silicon. The question of why some FUN CAIs show more extreme UN isotopic effects is attributed by us to limited sampling and not a special source of isotopically anomalous material. We consider the majority of igneous CAIs to be the result of several stages of thermal processing (evaporation, condensation, and melting) of aggregates of solid precursors composed of incompletely isotopically homogenized materials. The unknown nuclear effects in CAIs are common to both FUN and non-FUN CAIs, and are not a special characteristic of FUN inclusions but represent the spectrum of results from sampling a very heterogeneous medium in the accreting Solar System. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Krot, Alexander N.; Nagashima, Kazuhide; Wasserburg, Gerald J.; Huss, Gary R.] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Wasserburg, Gerald J.; Papanastassiou, Dimitri] CALTECH, Lunat Asylum, Pasadena, CA 91125 USA. [Papanastassiou, Dimitri] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Davis, Andrew M.] Lawrence Livermore Natl Lab, Glenn Seaborg Inst, Livermore, CA 94551 USA. [Hutcheon, Ian D.] Univ Chicago, Enrico Fermi Inst, Dept Geophys Sci, Chicago, IL 60637 USA. [Hutcheon, Ian D.] Univ Chicago, Chicago Ctr Cosmochem, Chicago, IL 60637 USA. [Bizzarro, Martin] Univ Copenhagen, Ctr Star & Planet Format, Geol Museum, DK-1350 Copenhagen, Denmark. RP Krot, AN (reprint author), Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. EM sasha@higp.hawaii.edu RI Bizzarro, Martin/I-8701-2012 OI Bizzarro, Martin/0000-0001-9966-2124 FU NASA [NNX10AH76G, NNX12AJ01G, NNX08AG58G, NNH10AO48I]; Danish National Research Foundation [DNRF97] FX We thank Dr. Hisayoshi Yurimoto, the anonymous reviewer, and Dr. Sara S. Russell for useful comments and suggestions. Editorial handling of the manuscript by S. S. Russell is highly appreciated.. This work was supported by NASA grants NNX10AH76G and NNX12AJ01G (A. N. Krot, P. I.), NNX08AG58G (G. R. Huss, P. I.), and NNH10AO48I (I. D. Hutcheon, P. I.). The Centre for Star and Planet Formation is financed by the Danish National Research Foundation (Grant DNRF97). This is Hawai'i Institute of Geophysics and Planetology publication XXXX and School of Ocean and Earth Science and Technology publication XXXX. NR 110 TC 12 Z9 12 U1 4 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD NOV 15 PY 2014 VL 145 BP 206 EP 247 DI 10.1016/j.gca.2014.09.027 PG 42 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AT4XO UT WOS:000344945800012 ER PT J AU Yan, HP Park, C Ahn, G Hong, S Keane, DT Kenney-Benson, C Chow, P Xiao, YM Shen, GY AF Yan, Hongping Park, Changyong Ahn, Gun Hong, Seungbum Keane, Denis T. Kenney-Benson, Curtis Chow, Paul Xiao, Yuming Shen, Guoyin TI Termination and hydration of forsteritic olivine (010) surface SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID X-RAY REFLECTIVITY; CRYSTAL TRUNCATION RODS; ATOMIC-FORCE MICROSCOPY; DISSOLUTION KINETICS; COMPUTER-SIMULATION; OCEANIC PERIDOTITES; HYDROGEN GENERATION; WATER; TEMPERATURE; SERPENTINIZATION AB Termination and hydration of the forsteritic (Fo90Fa10) olivine (010) surface have been investigated with high-resolution specular X-ray reflectivity and Atomic Force Microscopy. The surface was prepared by polishing a naturally grown {010} face, from which we found the polished surface in acidic (pH 3.5) alumina suspension exhibits regular steps while the basic (pH 9.5) silica polished surface is irregularly roughened, indicating there are two distinguishable mechanochemical processes for the surface dissolution. The quantitative interpretation of the regular steps from the alumina-polished surface suggests that the observed step heights correspond to multiples of crystallographic unit cell. Only this atomically terraced surface is investigated with the high-resolution X-ray reflectivity (HRXR) to determine the surface termination and hydration. The basic silica paste polished surface turned out too rough to measure with X-ray reflectivity. HRXR reveals that the alumina polished olivine (0 1 0) surface in pure water is terminated at a plane including half-occupied metal ion sites (M1), an oxygen vacancy site, and a silicate tetrahedral unit with one of its apices pointing outward with respect to the surface. An ideal termination with the oxygen vacancy would fulfill the stoichiometry of the formula unit; however, in the observation, the vacancy site is filled by an adsorbed water species and about a quarter of the remaining metal ions are further depleted. The terminating plane generates two distinct atomic layers in the laterally averaged electron density profile, on which two highly ordered adsorbed water layers are formed. The first layer formation is likely through the direct interaction with the M1 plane and the second layer is likely through the hydrogen bonding interaction with the first water layer. With this multilayered adsorbed water structure, the surface metal ion is partially hydrated by the vacancy-filling water species and adsorbed water molecules. The bulk water links to these distinct adsorbed water layers, with weak density oscillations that almost completely damp out after the first bulk water layer. The total thickness of the layered water structure including the two distinct adsorbed layers and the first layer of bulk water is slightly less than 1 nm, which corresponds to roughly three molecular layers of water. These results describe the steric constraints of the surface metal ion hydration and the iron redox environment during water-olivine interactions in this particular crystallographic orientation. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Yan, Hongping; Park, Changyong; Kenney-Benson, Curtis; Chow, Paul; Xiao, Yuming; Shen, Guoyin] Carnegie Inst Sci, HPCAT, Geophys Lab, Argonne, IL 60439 USA. [Ahn, Gun; Hong, Seungbum] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Keane, Denis T.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Yan, HP (reprint author), Carnegie Inst Sci, HPCAT, Geophys Lab, 9700 South Cass Ave,434E, Argonne, IL 60439 USA. EM hyan@carnegiescience.edu; cpark@carnegiescience.edu RI Hong, Seungbum/B-7708-2009; Park, Changyong/A-8544-2008; OI Hong, Seungbum/0000-0002-2667-1983; Park, Changyong/0000-0002-3363-5788; Yan, Hongping/0000-0001-6235-4523 FU Alfred P. Sloan Foundation in the United States; High-Pressure Collaborative Access Team (HPCAT); DOE-NNSA [DE-NA0001974]; DOE-BES [DE-FG02-99ER45775, DE-AC02-06CH11357]; NSF; E.I. DuPont de Nemours Co.; Dow Chemical Company; Northwestern University; Carnegie/DOE Alliance Center (CDAC); U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-06CH11357] FX This work is a part of the Deep Carbon Observatory-Deep Energy project, supported by the Alfred P. Sloan Foundation in the United States. H. Yan is partially supported by the High-Pressure Collaborative Access Team (HPCAT). HPCAT is supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award no. DE-FG02-99ER45775, with partial instrumental funding by NSF. Portions of this work were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by E.I. DuPont de Nemours & Co., The Dow Chemical Company and Northwestern University. Some preliminary tests were performed at the HPCAT 16ID-D beamline through the auspices of Carnegie/DOE Alliance Center (CDAC) for the beamtime. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. AFM experiments conducted at Materials Science Division, Argonne National Laboratory by G. Ahn and S. Hong were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02-06CH11357. NR 51 TC 2 Z9 2 U1 2 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD NOV 15 PY 2014 VL 145 BP 268 EP 280 DI 10.1016/j.gca.2014.09.005 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AT4XO UT WOS:000344945800014 ER PT J AU Anderson, B Venus, G Ott, D Divliansky, I Dawson, JW Drachenberg, DR Messerly, MJ Pax, PH Tassano, JB Glebov, LB AF Anderson, B. Venus, G. Ott, D. Divliansky, I. Dawson, J. W. Drachenberg, D. R. Messerly, M. J. Pax, P. H. Tassano, J. B. Glebov, L. B. TI Fundamental mode operation of a ribbon fiber laser by way of volume Bragg gratings SO OPTICS LETTERS LA English DT Article ID OPTICAL PARAMETRIC OSCILLATOR; HIGH-ORDER MODE; NARROW-BAND; POWER AB Selection of the fundamental mode of an active large mode area "ribbon" fiber laser with core dimensions of 107.8 mu m by 8.3 mu m was produced by a transmitting Bragg grating (TBG) in a free-space resonator. The multimode performance of the original laser was characterized to have an M-2 of 11.3 with an absorbed power slope efficiency of 76%. With the TBG aligned to provide maximum diffraction efficiency for the fundamental mode, the M-2 improved to 1.45 at an absorbed power slope efficiency of 54% and enhanced the brightness by 5.1 times. (C) 2014 Optical Society of America. C1 [Anderson, B.; Venus, G.; Ott, D.; Divliansky, I.; Glebov, L. B.] Univ Cent Florida, Coll Opt & Photon, CREOL, Orlando, FL 32816 USA. [Dawson, J. W.; Drachenberg, D. R.; Messerly, M. J.; Pax, P. H.; Tassano, J. B.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Anderson, B (reprint author), Univ Cent Florida, Coll Opt & Photon, CREOL, POB 162700, Orlando, FL 32816 USA. EM bmanders@knights.ucf.edu RI Divliansky, Ivan/D-4869-2011; OI Ott, Daniel/0000-0001-5221-8819 FU ARO; HEL-JTO [W911NF-10-1-0441]; Directed Energy Professional Society (DEPS) FX This work was supported by the ARO and HEL-JTO contract W911NF-10-1-0441. The author B. Anderson would like to acknowledge the support of the Directed Energy Professional Society (DEPS) graduate student scholarship. NR 16 TC 6 Z9 6 U1 0 U2 8 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD NOV 15 PY 2014 VL 39 IS 22 BP 6498 EP 6500 DI 10.1364/OL.39.006498 PG 3 WC Optics SC Optics GA AT5MB UT WOS:000344986000036 PM 25490503 ER PT J AU Otterstrom, N Pooser, RC Lawrie, BJ AF Otterstrom, N. Pooser, R. C. Lawrie, B. J. TI Nonlinear optical magnetometry with accessible in situ optical squeezing SO OPTICS LETTERS LA English DT Article ID RUBIDIUM VAPOR; ATOMIC MAGNETOMETER; QUANTUM-NOISE; COHERENCE; LIGHT AB We demonstrate compact and accessible squeezed-light magnetometry using four-wave mixing in a single hot rubidium vapor cell. The strong intrinsic coherence of the four-wave mixing process results in nonlinear magneto-optical rotation (NMOR) on each mode of a two-mode relative-intensity squeezed state. This framework enables 4.7 dB of quantum noise reduction while the opposing polarization rotation signals of the probe and conjugate fields add to increase the total signal to noise ratio. (C) 2014 Optical Society of America C1 [Otterstrom, N.] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA. [Otterstrom, N.; Pooser, R. C.; Lawrie, B. J.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Quantum Informat Sci Grp, Oak Ridge, TN 37830 USA. RP Lawrie, BJ (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Quantum Informat Sci Grp, Oak Ridge, TN 37830 USA. EM lawriebj@ornl.gov RI Lawrie, Benjamin/B-7182-2016 OI Pooser, Raphael/0000-0002-2922-453X; Lawrie, Benjamin/0000-0003-1431-066X NR 30 TC 8 Z9 8 U1 5 U2 18 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD NOV 15 PY 2014 VL 39 IS 22 BP 6533 EP 6536 DI 10.1364/OL.39.006533 PG 4 WC Optics SC Optics GA AT5MB UT WOS:000344986000045 PM 25490512 ER PT J AU Cai, ZB Meyer, HM Ma, C Chi, MF Luo, HM Qu, J AF Cai, Zhen-Bing Meyer, Harry M., III Ma, Cheng Chi, Miaofang Luo, Huimin Qu, Jun TI Comparison of the tribological behavior of steel-steel and Si3N4-steel contacts in lubricants with ZDDP or ionic liquid SO WEAR LA English DT Article DE ZDDP; Oil-soluble ionic liquid; Anti-wear additive; Wear mechanism; Tribofilm ID OIL; ADDITIVES; FRICTION; FILMS AB Tribological evaluations were conducted on lubricating base oils of different viscosity grades with and without an anti-wear (AW) additive in lubricating steel-steel and ceramic-steel contacts. Two AW additives were applied: a conventional secondary zinc dialkyldithiophosphate (ZDDP) and an oilmiscible phosphonium-phosphate ionic liquid (IL). Tests were carried out using reciprocating ball-on-flat sliding at room temperature. The flat material was AISI A2 tool steel, and the ball material was either AISI 52100 bearing steel or silicon nitride. Four lubricants were tested: Chevron SAE 15W40 and 0W30 base oils, and the 0W30 base oil plus 1 wt% ZDDP or IL For the steel-steel contact, the lower-viscosity 0W30 base oil resulted in a higher wear rate than did the 15W40 base oil, as expected. Both the ZDDP and the IL substantially reduced wear, and the IL-additized 0W30 base oil was the best performer. For the ceramic-steel contact, the ZDDP provided moderate wear protection for both ball and flat. In contrast, the IL reduced the steel flat wear more effectively but increased the ceramic ball wear rate. Crosssectional transmission electron microscopy (TEM) examination and x-ray photoelectron spectroscopy (XPS) chemical analysis were used to reveal the thickness, nanostructure, and composition of the tribofilms formed by ZDDP and IL on the steel and silicon nitride surfaces. (C) 2014 Elsevier B.V. All rights reserved. C1 [Cai, Zhen-Bing] Southwest Jiaotong Univ, Tribol Res Inst, Key Lab Adv Technol Mat, Chengdu 610031, Peoples R China. [Cai, Zhen-Bing; Meyer, Harry M., III; Ma, Cheng; Chi, Miaofang; Qu, Jun] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Luo, Huimin] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. RP Qu, J (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM qujn@ornl.gov RI Ma, Cheng/C-9120-2014; Chi, Miaofang/Q-2489-2015; OI Chi, Miaofang/0000-0003-0764-1567; Qu, Jun/0000-0001-9466-3179 FU Vehicle Technologies Office, Office of Energy Efficiency and Renewable Energy, US Department of Energy (DOE); DOE Office of Basic Energy Sciences FX The authors thank Dr. E.A. Bardasz of Lubrizol Corporation for providing the ZDDP. And thank D.W. Coffey and Dr. Y. Zhou of ORNL for TEM sample preparation and partial XPS analysis, respectively. This research was sponsored by The Vehicle Technologies Office, Office of Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The characterization work was supported in part by ORNL's SHaRE User Facility, which is sponsored by The DOE Office of Basic Energy Sciences. NR 20 TC 12 Z9 12 U1 5 U2 37 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0043-1648 EI 1873-2577 J9 WEAR JI Wear PD NOV 15 PY 2014 VL 319 IS 1-2 BP 172 EP 183 DI 10.1016/j.wear.2014.08.002 PG 12 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA AT6PP UT WOS:000345061600019 ER PT J AU Ryb, U Matmon, A Erel, Y Haviv, I Benedetti, L Hidy, AJ AF Ryb, U. Matmon, A. Erel, Y. Haviv, I. Benedetti, L. Hidy, A. J. TI Styles and rates of long-term denudation in carbonate terrains under a Mediterranean to hyper-arid climatic gradient SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE denudation; chemical weathering; erosion; carbonate terrains; climatic gradient; Cl-36 ID CHEMICAL-WEATHERING RATES; SITU-PRODUCED BE-10; DEAD-SEA RIFT; COSMOGENIC CL-36; LANDSCAPE EVOLUTION; DRAINAGE BASINS; EROSION RATES; KARST AREAS; LIMESTONE; NUCLIDES AB Carbonate minerals, unlike silicates, have the potential to dissolve almost completely and with high efficiency. Thus, in carbonate terrains denudation rate and style (the governing process of denudation, mechanical or chemical) should be more sensitive to climatic forcing. Using Cl-36 measurements in 39 carbonate bedrock and sediment samples, we calculate long-term denudation rates across a sharp climatic gradient from Mediterranean to hyper-arid conditions. Our samples were collected along the Arugot watershed, which drains the eastern flank of the Judea Range (central Israel) to the Dead Sea and is characterized by a pronounced rain shadow. Denudation rates of flat-lying bedrock outcrops sampled along interfluves differ by an order of magnitude from similar to 20 mm ka(-1) in the Mediterranean zone to 1-3 mm ka(-1) in the hyper-arid zone. These rates are strongly correlated with precipitation, and thus reflect the importance of carbonate mineral dissolution in the overall denudation process. In contrast, denudation rates of steep bedrock surfaces depend on the hillslope gradient, but only in the hyper-arid climate zone, indicating that mechanical processes dominate the overall hillslope denudation within this zone. The dominance of slope-dependent mechanical erosion in the hyper-arid zone is also reflected by an increase in spatially-average denudation rates from 17-19 mm ka(-1) in the Mediterranean-semi-arid zones to 21-25 mm ka(-1) in the hyper-arid zone. These higher rates are attributed to clast contribution from steep slopes under arid climate. This suggests an increased importance of mechanical processes to the overall denudation in the hyper-arid zone. We demonstrate that the transition between chemically-dominated denudation to mechanically-dominated denudation occurs between 100 and 200 mm of mean annual precipitation. Long-term denudation rates across the Judea Range indicate that between Mediterranean and hyper-arid climates, chemical weathering rates are limited by precipitation. Nevertheless, in more humid climates, chemical weathering rates are apparently limited by the rates of carbonate mineral dissolution. This study demonstrates that carbonate terrains have the capacity to shift between mechanically and chemically dominated denudation in response to changes in precipitation. Similar transitions in response to changes in temperature or the level of tectonic activity have been previously reported. We suggest that the abrupt nature of such transitions can be primarily attributed to the efficiency of carbonate dissolution processes and the competition between surface and subsurface drainage systems in carbonate terrains. (C) 2014 Elsevier B.V. All rights reserved. C1 [Ryb, U.; Matmon, A.; Erel, Y.] Fredy & Nadine Herrmann Inst Earth Sci, IL-91904 Jerusalem, Israel. [Haviv, I.] Ben Gurion Univ Negev, Dept Geol & Environm Sci, IL-84105 Beer Sheva, Israel. [Benedetti, L.] Aix Marseille Univ, Ctr Rech & Enseignement Gosci Environm CEREGE, Inst Rech Dev, Coll France,Technopole Arbois,CNRS,UM 34, F-13545 Aix En Provence, France. [Hidy, A. J.] Lawrence Livermore Natl Lab, CAMS, Livermore, CA 94550 USA. RP Ryb, U (reprint author), Fredy & Nadine Herrmann Inst Earth Sci, Admond J Safra Campus, IL-91904 Jerusalem, Israel. FU Kaye-Einstein fellowship; Israel Science Foundation [50/10] FX The authors wish to thank D. Palchan, M. Davis, U. Davidovich, and Y. Goldsmith for their assistance in the field, to S. Mazze, S. Vainer, and A. Paldor for assisting in preparing the samples for 36Cl analyses, and to the staff of ASTER-CEREGE for AMS measurements. We thank five anonymous reviewers for their critical and detailed reviews. We also thank the Kaye-Einstein fellowship for their support during this study. This study was funded by Israel Science Foundation grant 50/10. This is LLNL-JRNL-658044. NR 75 TC 10 Z9 10 U1 2 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD NOV 15 PY 2014 VL 406 BP 142 EP 152 DI 10.1016/j.epsl.2014.09.008 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AS3YO UT WOS:000344211200015 ER PT J AU Syverson, DD Pester, NJ Craddock, PR Seyfried, WE AF Syverson, Drew D. Pester, Nicholas J. Craddock, Paul R. Seyfried, William E., Jr. TI Fe isotope fractionation during phase separation in the NaCl-H2O system: An experimental study with implications for seafloor hydrothermal vents SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Fe isotope fractionation; phase separation; mid-ocean ridge hydrothermal processes ID MID-ATLANTIC RIDGE; EAST PACIFIC RISE; IN-SITU XAS; CHLORIDE COMPLEXES; FLUIDS; IRON; SPECIATION; BENEATH; FIELD AB Phase separation has been proposed as a possible mechanism contributing to the Fe isotope composition of hydrothermal fluids at mid-ocean ridges. The uncertainty results largely from the emphasis on field data that can involve competing processes that obscure cause and effect of any one process. To better understand the potential significance of phase separation in the NaCl-Fe-H2O system on Fe isotope fractionation, temperature and pressure of a Fe-bearing NaCl fluid in a titanium flow reactor were carefully adjusted to produce vapor +/- liquid +/- halite, while the Fe isotope composition between coexisting phases was monitored. Two different P-T regions were emphasized: (1) 424-420 degrees C, 35.2-31.5 MPa; and (2) 464-466 degrees C, 29.8-24.7 MPa. Both regions were chosen to simulate the range of physical conditions that are experienced by hydrothermal fluids at mid-ocean ridges (MORs). Decompression induced phase separation in both P-T regions results in the vapor phase becoming enriched in the heavier isotopes of Fe, as the Fe/Cl ratio decreases. The coexisting NaCl-rich liquid phase remains essentially constant with respect to Fe/CI ratio and Fe isotope composition. Coinciding with the lowest vapor chlorinity in the vapor-liquid stability field, the Fe/Cl ratio of the vapor abruptly increases, while the Fe isotope fractionation between the vapor and liquid (10(3) ln alpha(56/54)(V/L)) reached a maximum value of +0.145 +/- 0.048 parts per thousand). Subsequently, Fe isotope fractionation decreased upon transition into the vapor-halite stability field (P-T region 2). We infer that the observed Fe isotope fractionation between vapor +/- liquid +/- halite is caused by differences in Fe speciation among coexisting chloride-bearing phases. The experimental study confirms for the first time that measurable Fe isotope variability can result from phase separation in high temperature hydrothermal systems. The species-dependent Fe isotope fractionation reported here is small relative to predicted mineral-mineral and mineral-fluid fractionations, especially if redox effects are involved as might occur during vent fluid-seawater mixing reactions and/or magmatic activity associated with seafloor eruptive episodes. (C) 2014 Elsevier B.V. All rights reserved. C1 [Syverson, Drew D.; Pester, Nicholas J.; Seyfried, William E., Jr.] Univ Minnesota, Dept Earth Sci, Minneapolis, MN 55455 USA. [Craddock, Paul R.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Craddock, Paul R.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Pester, Nicholas J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Craddock, Paul R.] Schlumberger Doll Res Ctr, Cambridge, MA 02139 USA. RP Syverson, DD (reprint author), Univ Minnesota, Dept Earth Sci, 310 Pillsbury Dr SE, Minneapolis, MN 55455 USA. EM syve0063@umn.edu RI Pester, Nicholas/G-2424-2015; OI Pester, Nicholas/0000-0002-1852-6663; Syverson, Drew/0000-0003-2838-1522; Craddock, Paul/0000-0003-4702-0204 FU NSF grants OCE [0751771, 1061308, 1232704]; University of Minnesota FX The authors would like to thank the two anonymous reviewers and the associate editor, Dr. Bernard Marty, for their constructive comments, which made this paper undoubtedly more clear. We would also like to thank Rick Knurr (U. of MN) for providing detailed chemical analyses of the fluid samples provided. The authors are grateful for the funding provided by the NSF grants OCE #0751771, 1061308, and 1232704 (WES). The corresponding author (DDS) also acknowledges funding awarded by the University of Minnesota through the Doctoral Fellowship during a portion of this research. NR 52 TC 4 Z9 4 U1 6 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD NOV 15 PY 2014 VL 406 BP 223 EP 232 DI 10.1016/j.epsl.2014.09.020 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AS3YO UT WOS:000344211200022 ER PT J AU Litombe, NE Bollinger, AT Hoffman, JE Bozovic, I AF Litombe, N. E. Bollinger, A. T. Hoffman, J. E. Bozovic, I. TI La2-xSrxCuO4 superconductor nanowire devices SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE La2-xSrxCuO4; Nanowire; Fabrication; ALL-MBE; Lithography; Critical current ID TEMPERATURE; MAGNETORESISTANCE AB La2-xSrxCuO4 nanowire devices have been fabricated and characterized using electrical transport measurements. Nanowires with widths down to 80 nm are patterned using high-resolution electron beam lithography. However, the narrowest nanowires show incomplete superconducting transitions with some residual resistance at T = 4 K. Here, we report on the refinement of the fabrication process to achieve narrower nanowire devices with complete superconducting transitions, opening the path to the study of novel physics arising from dimension-limited superconductivity on the nanoscale. (C) 2014 Elsevier B.V. All rights reserved. C1 [Litombe, N. E.; Hoffman, J. E.] Harvard Univ, Cambridge, MA 02138 USA. [Litombe, N. E.; Bollinger, A. T.; Bozovic, I.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Bozovic, I (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM bozovic@bnl.gov RI Hoffman, Jennifer/H-4334-2011 OI Hoffman, Jennifer/0000-0003-2752-5379 FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. E-beam lithography was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 22 TC 2 Z9 2 U1 2 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 EI 1873-2143 J9 PHYSICA C JI Physica C PD NOV 15 PY 2014 VL 506 SI SI BP 169 EP 173 DI 10.1016/j.physc.2014.06.010 PG 5 WC Physics, Applied SC Physics GA AS4JD UT WOS:000344240100028 ER PT J AU Kresin, V Ovchinnikov, Y AF Kresin, Vladimir Ovchinnikov, Yurii TI Superconducting state of metallic nanoclusters and Josephson tunneling networks SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Nanoclusters; Energy shells; Observables; Networks; Synchronization ID JUNCTION ARRAYS; CLUSTERS; TEMPERATURE AB Metallic nanoclusters form a new family of high temperature superconductors. In principle, the value of T-C can be raised up to room temperature. In addition, one can observe the Josephson tunneling between two clusters. One can build the nanocluster-based tunneling network capable to transfer a macroscopic supercurrent at high temperatures. Such a network can be synchronized and radiate as single junction. Published by Elsevier B.V. C1 [Kresin, Vladimir] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Ovchinnikov, Yurii] RAN, L Landau Inst Theoret Phys, Moscow 117334, Russia. RP Kresin, V (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM vzkresin@lbl.gov NR 32 TC 0 Z9 0 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 EI 1873-2143 J9 PHYSICA C JI Physica C PD NOV 15 PY 2014 VL 506 SI SI BP 201 EP 206 DI 10.1016/j.physc.2014.06.001 PG 6 WC Physics, Applied SC Physics GA AS4JD UT WOS:000344240100034 ER PT J AU Sun, ZJ Wells, D Segebade, C Quigley, K Chemerisov, S AF Sun, Z. J. Wells, D. Segebade, C. Quigley, K. Chemerisov, S. TI A comparison of various procedures in photon activation analysis with the same irradiation setup SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Photon activation analysis; Quasi-absolute method; Monte Carlo simulation; LINAC ID NEUTRON; SAMPLES AB A sample of known elemental concentrations was activated in the bremsstrahlung photon beam which was created by a pulsed electron LINAC. Several procedures of photon activation analysis, including those applied with/without reference material and with/without photon flux monitor, were conducted to make a comparison of their precision and accuracy in practice. Experimental results have indicated that: (1) relative procedures usually produce better outcome despite that the absolute measurement is straightforward and eliminate the assistance of reference materials; (2) among relative procedures, the method with internal flux monitor yields higher quality of the analytical results. In the article, the pros and cons of each procedure are discussed as well. (C) 2014 Elsevier B.V. All rights reserved. C1 [Sun, Z. J.; Quigley, K.; Chemerisov, S.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Wells, D.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Segebade, C.] Idaho State Univ, Idaho Accelerator Ctr, Pocatello, ID 83209 USA. RP Sun, ZJ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U.S. Department of Energy, National Nuclear Security Administration's (NNSA's) Office of Defense Nuclear Nonproliferation [DE-AC02-06CH11357] FX This work is supported by the U.S. Department of Energy, National Nuclear Security Administration's (NNSA's) Office of Defense Nuclear Nonproliferation, under Contract DE-AC02-06CH11357. Argonne National Laboratory is operated for the U.S. Department of Energy by UChicago Argonne, LLC. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 29 TC 4 Z9 4 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD NOV 15 PY 2014 VL 339 BP 53 EP 57 DI 10.1016/j.nimb.2014.08.021 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AR7UP UT WOS:000343785500010 ER PT J AU Bannister, ME Hijazi, H Meyer, HM Cianciolo, V Meyer, FW AF Bannister, M. E. Hijazi, H. Meyer, H. M., III Cianciolo, V. Meyer, F. W. TI Surface-conductivity enhancement of PMMA by keV-energy metal-ion implantation SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Surface conductivity; Metal-ion implantation; Polymer; Tungsten ID SYSTEMS; FILMS AB An experiment has been proposed to measure the neutron electric dipole moment (nEDM) with high precision at the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source. One of the requirements of this experiment is the development of PMMA (Lucite) material with a sufficiently conductive surface to permit its use as a high-voltage electrode while immersed in liquid He. At the ORNL Multicharged Ion Research Facility, an R&D activity is under way to achieve suitable surface conductivity in poly-methyl methacrylate (PMMA) using metal ion implantation. The metal implantation is performed using an electron-cyclotron-resonance (ECR) ion source and a recently developed beam line deceleration module that is capable of providing high flux beams for implantation at energies as low as a few tens of eV. The latter is essential for reaching implantation fluences exceeding 1 x 10(16) cm(-2), where typical percolation thresholds in polymers have been reported. In this contribution, we report results on initial implantation of Lucite by Ti and W beams with keV energies to average fluences in the range 0.5-6.2 x 10(16) cm(-2). Initial measurements of surface-resistivity changes are reported as function of implantation fluence, energy, and sample temperature. We also report X-ray photoelectron spectroscopy (XPS) surface and depth profiling measurements of the ion implanted samples, to identify possible correlations between the near surface and depth resolved implanted W concentrations and the measured surface resistivities. (C) 2014 Elsevier B.V. All rights reserved. C1 [Bannister, M. E.; Hijazi, H.; Meyer, H. M., III; Cianciolo, V.; Meyer, F. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Meyer, FW (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM meyerfw@ornl.gov FU LDRD Program of Oak Ridge National Laboratory for the U.S. Department of Energy; Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Program - Office of Basic Energy Sciences, U.S. Department of Energy FX This research was sponsored by the LDRD Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. HH was appointed through the ORNL Postdoctoral Research Associates Program administered jointly by Oak Ridge Institute of Science and Education (ORISE), Oak Ridge Associated Universities (ORAU) and Oak Ridge National Laboratory (ORNL). XPS instrument supported by Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Program, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 14 TC 5 Z9 5 U1 4 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD NOV 15 PY 2014 VL 339 BP 75 EP 84 DI 10.1016/j.nimb.2014.02.133 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AR7UP UT WOS:000343785500014 ER PT J AU Kim, Y Ban, KY Kuciauskas, D Dippo, PC Honsberg, CB AF Kim, Yeongho Ban, Keun-Yong Kuciauskas, Darius Dippo, Patricia C. Honsberg, Christiana B. TI Effect of silicon delta-doping density on optical properties of type-II InAs/GaAsSb quantum dots SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Low dimensional structures; Molecular beans epitaxy; Antimonides; Semiconducting III-V materials ID PHOTOLUMINESCENCE; SEMICONDUCTORS; LAYER AB We have investigated the optical properties of type-II InAs/GaAs0.83Sb0.17 quantum dots (QDs) with different silicon delta-doping densities of 5 x 10(11)), 5 x 10 and 2 x 10(12) cm(-2) using photoluminescence (PL). The PL spectra of the QD ground state (GS) emission peaks for the samples are blueshifted at a slower rate with increasing the doping density due to the enhanced radiative recombination rate of the carriers. The PL intensity ratio of the GS emission to the first excited state emission increases with the doping density, which is indicative of the faster radiative recombination at the GS subbands with the doping density. The redshift rate of the GS emissions becomes faster at a high temperature (> 130 K) as the doping density increases up to 5 x 10(11) cm(-2) resulting from the quantum confined Stark effect by the electric field of the ionized dopants, and decreases at an increased doping density of 2 x 10(12) cm(-2) due to the enhanced QD size uniformity. Time-resolved PL exhibits that the QD sample doped at 5 x 10(10) cm(-2) has a longer total radiative lifetime than the undopal sample, and a further increase in the doping density to 2 x 10(12) cm(-2) decreases the lifetime due to the enhancement of the radiative recombination through fast carrier relaxation. (C) 2014 Elsevier B.V. All rights reserved. C1 [Kim, Yeongho; Ban, Keun-Yong; Honsberg, Christiana B.] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA. [Kuciauskas, Darius; Dippo, Patricia C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Kim, Y (reprint author), Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA. EM ykim172@asu.edu FU National Science Foundation (NSF); U.S. Department of Energy (DOE) under NSF CA [EEC-1041895]; National Renewable Energy Laboratory as a part of the Non-Proprietary Partnering Program [De-AC36-08-GO28308]; U.S. Department of Energy FX This material is based upon work primarily supported by the National Science Foundation (NSF) and the U.S. Department of Energy (DOE) under NSF CA No. EEC-1041895. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of NSF or DOE. This work was supported by the National Renewable Energy Laboratory as a part of the Non-Proprietary Partnering Program under Contract No. De-AC36-08-GO28308 with the U.S. Department of Energy. NR 21 TC 2 Z9 2 U1 0 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 EI 1873-5002 J9 J CRYST GROWTH JI J. Cryst. Growth PD NOV 15 PY 2014 VL 406 BP 68 EP 71 DI 10.1016/j.jcrysgro.2014.08.009 PG 4 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA AQ8QC UT WOS:000343092800012 ER PT J AU Dalai, AK Wang, Y AF Dalai, Ajay K. Wang, Yong TI Preface for the special Issue: Sustainable Fuels and Chemicals SO CATALYSIS TODAY LA English DT Editorial Material C1 [Dalai, Ajay K.] Univ Saskatchewan, Coll Engn, Dept Chem & Biol Engn, Catalysis & Chem React Engn Lab, Saskatoon, SK S7N 5A9, Canada. [Wang, Yong] Washington State Univ, Voiland Sch Chem Engn & Bioengn, Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99354 USA. RP Dalai, AK (reprint author), Univ Saskatchewan, Coll Engn, Dept Chem & Biol Engn, Catalysis & Chem React Engn Lab, Saskatoon, SK S7N 5A9, Canada. EM akd983@campus.usask.ca NR 0 TC 0 Z9 0 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 EI 1873-4308 J9 CATAL TODAY JI Catal. Today PD NOV 15 PY 2014 VL 237 BP 1 EP 2 DI 10.1016/j.cattod.2014.08.004 PG 2 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA AP2BR UT WOS:000341877900001 ER PT J AU Wang, H Lu, JL Marshall, CL Elam, JW Miller, JT Liu, HB Enterkin, JA Kennedy, RM Stair, PC Poeppelmeier, KR Marks, LD AF Wang, Hui Lu, Junling Marshall, Christopher L. Elam, Jeffrey W. Miller, Jeffrey T. Liu, HongBo Enterkin, James A. Kennedy, Robert M. Stair, Peter C. Poeppelmeier, Kenneth R. Marks, Laurence D. TI In situ XANES study of methanol decomposition and partial oxidation to syn-gas over supported Pt catalyst on SrTiO3 nanocubes SO CATALYSIS TODAY LA English DT Article DE Methanol; Decomposition; Partial oxidation; In situ XANES; SrTiO3 nanocuboid; Platinum nanoparticle ID HYDROGEN-PRODUCTION; TEMPERATURE; PT/AL2O3; PRETREATMENT AB A catalyst of Pt nanoparticles was prepared by atomic layer deposition on SrTiO3 nanocuboids and tested for methanol decomposition and partial oxidation. The catalyst had uniform nanoparticle size of 1.58 +/- 0.37 nm and a Pt (1 1 1) surface. In situ X-ray absorption near-edge spectroscopy (XANES) measured in a temperature-programmed reduction showed that the Pt particles were easily reduced. However, the as-received catalyst, a reduced catalyst, and an oxidized catalyst all had catalytic activity, differing slightly in methanol conversion and product selectivity. In situ XANES also revealed that CO adsorbed on the Pt sites was the only observed surface species during both methanol decomposition and partial oxidation. It seemed that the breakage of CH and OH bonds overwhelmingly occurred once methanol was adsorbed, forming H-2 and adsorbed CO. The latter was then released from the catalyst surface or was oxidized to CO2 when O-2 was present. (C) 2014 Elsevier B.V. All rights reserved. C1 [Wang, Hui; Marshall, Christopher L.; Miller, Jeffrey T.; Liu, HongBo] Chem Sci & Engn Div, Argonne, IL 60439 USA. [Lu, Junling; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Wang, Hui] Univ Saskatchewan, Dept Chem & Biol Engn, Saskatoon, SK S7N 5A9, Canada. [Enterkin, James A.; Kennedy, Robert M.; Poeppelmeier, Kenneth R.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Marks, Laurence D.] Northwestern Univ, Dept Mat Sci, Evanston, IL 60208 USA. RP Marshall, CL (reprint author), Chem Sci & Engn Div, Argonne, IL 60439 USA. EM marshall@anl.gov RI ID, MRCAT/G-7586-2011; Lu, Junling/F-3791-2010; Marks, Laurence/B-7527-2009; Marshall, Christopher/D-1493-2015 OI Lu, Junling/0000-0002-7371-8414; Marshall, Christopher/0000-0002-1285-7648 FU Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; University of Saskatchewan; Argonne National Laboratory FX This material is based upon work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Support for H. Wang was provided by the University of Saskatchewan and Argonne National Laboratory. NR 21 TC 5 Z9 5 U1 7 U2 86 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 EI 1873-4308 J9 CATAL TODAY JI Catal. Today PD NOV 15 PY 2014 VL 237 BP 71 EP 79 DI 10.1016/j.cattod.2014.02.008 PG 9 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA AP2BR UT WOS:000341877900010 ER PT J AU Ramasamy, KK Wang, Y AF Ramasamy, Karthikeyan K. Wang, Yong TI Ethanol conversion to hydrocarbons on HZSM-5: Effect of reaction conditions and Si/Al ratio on the product distributions SO CATALYSIS TODAY LA English DT Article DE HZSM-5; Si/Al ratio; Ethanol to hydrocarbon; Coke deposition; WHSV ID ZEOLITE CATALYSTS; AQUEOUS-ETHANOL; COKE FORMATION; METHANOL; DEACTIVATION; H-ZSM-5; MECHANISM; TRANSFORMATION; COKING; ZSM-5 AB The Conversion of ethanol to hydrocarbon over HZSM-5 zeolite with different Si/Al ratios was investigated under various reaction conditions. The catalyst with a higher Si/Al ratio (low acid density) deactivated faster and generated more unsaturated compounds at a similar time-on-stream. Temperature affects the catalytic activity with respect to liquid hydrocarbon generation and the hydrocarbon product composition. At lower temperatures (similar to 300 degrees C), the catalyst deactivated faster with respect to the liquid hydrocarbon formation. Higher temperatures (similar to 400 degrees C) reduced the formation of liquid range hydrocarbons and formed more gaseous fractions. Weight hourly space velocity was also found to affect product selectivity with higher weight hourly space velocity leading to a higher extent of ethylene formation. The experimental results were analyzed in terms of the product composition and the coke content with respect to catalyst time-on-stream and compared with the catalyst lifetime with respect to the variables tested on the conversion of ethanol to hydrocarbon. (C) 2014 Elsevier B.V. All rights reserved. C1 [Ramasamy, Karthikeyan K.; Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99354 USA. [Ramasamy, Karthikeyan K.; Wang, Yong] Washington State Univ, Voiland Sch Chem Engn & Bioengn, Pullman, WA 99163 USA. RP Ramasamy, KK (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM karthi@pnnl.gov; yong.wang@pnnl.gov RI Ramasamy, karthikeyan/H-9981-2014 FU U.S. Department of Energy's Bioenergy Technologies Office; Laboratory Directed Research and Development program at Pacific Northwest National Laboratory; Battelle Memorial Institute for the U.S. Department of Energy [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy's Bioenergy Technologies Office. The authors also thank the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory for funding the project. Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute for the U.S. Department of Energy under contract no. DE-AC05-76RL01830. NR 32 TC 16 Z9 18 U1 3 U2 59 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 EI 1873-4308 J9 CATAL TODAY JI Catal. Today PD NOV 15 PY 2014 VL 237 BP 89 EP 99 DI 10.1016/j.cattod.2014.02.044 PG 11 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA AP2BR UT WOS:000341877900012 ER PT J AU Marin-Flores, OG Karim, AM Wang, Y AF Marin-Flores, Oscar G. Karim, Ayman M. Wang, Yong TI Role of tungsten in the aqueous phase hydrodeoxygenation of ethylene glycol on tungstated zirconia supported palladium SO CATALYSIS TODAY LA English DT Article DE Palladium; Tungstated zirconia; Aqueous phase hydrodeoxygenation; Aqueous phase reforming; Ethylene glycol ID LIGNOCELLULOSIC BIOMASS; PD CLUSTERS; CATALYSTS; ACIDITY; CONVERSION; CHEMICALS; ZEOLITES; SORBITOL; SILICA; OXIDE AB The focus of the present work was specifically on the elucidation of the role played by tungsten on the catalytic activity and selectivity of tungstated zirconia supported palladium (Pd-mWZ) for the aqueous phase hydrodeoxygenation (APHDO) of ethylene glycol (EG). Zirconia supported palladium (Pd-mZ) was used as reference. The catalysts were prepared via incipient wet impregnation and characterized using X-ray diffraction (XRD), temperature-programmed reduction (TPR), CO pulse chemisorption, CO-DRIFTS, ammonia temperature-programmed desorption (NH3-TPD) and pyridine adsorption. The presence of W results in larger Pd particles on supported Pd catalysts, i.e., 0.9 and 6.1 nm Pd particles are for Pd-mZ and Pd-mWZ, respectively. The catalytic activity measurements show that the overall intrinsic activity of Pd-particles on mWZ is 1.9 times higher than on mZ. APHDO process appears to be highly favored on Pd-mWZ whereas Pd-mZ exhibits a higher selectivity for reforming. This difference in terms of selectivity seems to be related to the high concentration of Bronsted acid sites and electron-deficient Pd species present on Pd-mWZ. (C) 2014 Elsevier B.V. All rights reserved. C1 [Marin-Flores, Oscar G.; Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [Karim, Ayman M.; Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. RP Karim, AM (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. EM ayman.karim@pnnl.gov; wang42@wsu.edu RI Karim, Ayman/G-6176-2012 OI Karim, Ayman/0000-0001-7449-542X FU National Advanced Biofuels Consortium (NABC), Department of Energy's Office of Biomass Program; Battelle for the United States Department of Energy [DE-AC05-76RL01830] FX We would like to acknowledge Virent for their initial work on Pd/W-ZrO2 for HDO of polyols, and we would like to thank Dr. Randy Cortright, Ms. Liz Woods and Mr. Brian Blank for numerous invaluable discussions and suggestions. We acknowledge the financial support from the National Advanced Biofuels Consortium (NABC) which is funded by the Department of Energy's Office of Biomass Program with recovery act funds. The Pacific Northwest National Laboratory is operated by Battelle for the United States Department of Energy under Contract DE-AC05-76RL01830. NR 34 TC 3 Z9 3 U1 4 U2 62 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 EI 1873-4308 J9 CATAL TODAY JI Catal. Today PD NOV 15 PY 2014 VL 237 BP 118 EP 124 DI 10.1016/j.cattod.2014.03.068 PG 7 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA AP2BR UT WOS:000341877900015 ER PT J AU Wickramanayake, S Hopkinson, D Myers, C Hong, L Feng, J Seol, Y Plasynski, D Zeh, M Luebke, D AF Wickramanayake, Shan Hopkinson, David Myers, Christina Hong, Lei Feng, Jie Seol, Yongkoo Plasynski, Devon Zeh, Matthew Luebke, David TI Mechanically robust hollow fiber supported ionic liquid membranes for CO2 separation applications SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE Torlon; Matrimid; Hollow fiber; Ionic liquid; Strength ID CARBON-DIOXIDE; MICROFILTRATION MEMBRANES; ELECTRON-MICROGRAPHS; IMAGE-ANALYSIS; PERMEABILITY AB Polymeric hollow fiber supported ionic liquid membranes (SILMs) were fabricated utilizing Matrimid (R) and Torlon (R) as the supporting structure and the ionic liquid (IL) 1-hexyl-3-methylimidalzolium bis(trifluoromethylsulfonyl)imide ([C(6)mim][Tf2N]) as the gas transport media. This IL served as a baseline while the polymer and the fiber pore morphology were varied in order to optimize the support structure. By using sufficiently high fiber porosity, and thus maximizing the IL content of the membrane, it was found that the permeance and selectivity for CO2/H-2 separation were comparable for both Matrimid (R) and Torlon (R) supports. However, the mechanical strength of Matrimid (R) supports was low when saturated with IL Therefore Torlon (R) fibers were subsequently investigated because of the higher strength of this material. Molecular modeling was used to investigate the source of the increased strength of Torlon (R), and it was found that the polymer chains in Torlon (R) Lend to interlock with each other to a greater degree than Matrimid (R). Also, the IL [C(6)mim][Tf2N] has less interaction with Torlon (R) than with Matrimid (R). In this work the permeance and selectivity for CO2/H-2 of these hollow fiber SILMs are reported, as well as the tensile strength, Young's modulus, and glass transition temperature. Threshold image analysis was used to determine the volume fractions of polymer, macro-voids, and micro-voids. X-ray computed tomography scanning was used to non-destructively evaluate the location of IL within the fiber wall. (C) 2014 Elsevier B.V. All rights reserved. C1 [Wickramanayake, Shan; Hopkinson, David; Myers, Christina; Hong, Lei; Feng, Jie; Seol, Yongkoo; Plasynski, Devon; Zeh, Matthew; Luebke, David] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Wickramanayake, Shan; Hong, Lei] URS Energy & Construct, Pittsburgh, PA 15236 USA. [Feng, Jie; Plasynski, Devon; Zeh, Matthew] Oak Ridge Inst Sci & Educ, Pittsburgh, PA 15236 USA. RP Wickramanayake, S (reprint author), URS Energy & Construct, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. EM shan.wickramanayake@urs.com FU U.S. Department of Energy National Energy Technology Laboratory under the FY14 Carbon Capture field work proposal; agency of the United States Government FX We gratefully acknowledge funding and support from the U.S. Department of Energy National Energy Technology Laboratory under the FY14 Carbon Capture field work proposal. This report was prepared as an account of work sponsored by an agency of the United States Government, Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe on privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 27 TC 7 Z9 7 U1 7 U2 120 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 EI 1873-3123 J9 J MEMBRANE SCI JI J. Membr. Sci. PD NOV 15 PY 2014 VL 470 BP 52 EP 59 DI 10.1016/j.memsci.2014.07.015 PG 8 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA AO2IB UT WOS:000341141800006 ER PT J AU Mulvenna, RA Weidman, JL Jing, BX Pople, JA Zhu, YX Boudouris, BW Phillip, WA AF Mulvenna, Ryan A. Weidman, Jacob L. Jing, Benxin Pople, John A. Zhu, Yingxi Boudouris, Bryan W. Phillip, William A. TI Tunable nanoporous membranes with chemically-tailored pore walls from triblock polymer templates SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE PI-PS-PUMA triblock polymers; RAFT polymerization; Self-assembly and non-solvent induced; phase separation (SNIPS); Nanofiltration; Ultrafiltration ID LIVING RADICAL POLYMERIZATION; BLOCK-COPOLYMER MEMBRANES; ULTRAFILTRATION MEMBRANES; NANOFILTRATION MEMBRANES; FILTRATION MEMBRANES; WATER FILTRATION; PHASE-INVERSION; THIN-FILMS; PERFORMANCE; SEPARATION AB Membranes derived from sell assembled block polymers have shown promise as highly selective and highly permeable filters, but the complex synthetic routes and limited pore functionalities of existing systems need to be improved if these materials are to serve as a platform for the next generation of nanostructured membranes. Here, the facile synthesis of a polyisoprene-b-polystyrene-b-poly(N,N-dimethylacrylamide) (PI-PS-PDMA) triblock polymer using a controlled reversible addition fragmentation chain transfer (RAFT) polymerization mechanism is reported. This material is then processed into a membrane using a self assembly and non solvent induced phase separation (SNIPS) technique, which creates an asymmetric, porous structure consisting of a selective layer that contains a high density of PDMA-lined pores (9.4 x 10(13) pores m(-2)) with an average diameter of 8.1 nm, as determined using solute rejection tests. Solvent Bow experiments demonstrate that the PI-PS-PDMA membrane has a pH independent permeability of 6 L m(-2) h(-1) bar(-1). The PDMA moiety lining the pore walls is converted, through simple hydrolysis in the solid stare, to yield a poly(acrylic acid)-lined (PAA-lined) structure. The permeability of the PI-PS-PAA membrane is pH dependent, and ranges from 0.6 L m(-2) h(-1) bar(-1) for solutions with a pH greater than 4 to 16 L m(-2) h-(1) bar(-1) for a solution at pH 1. Solute rejection tests demonstrated a pore size of 3.4 nm for the PI-PS-PAA membrane, which is the smallest pore size reported to date for membranes fabricated horn self-assembled block polymers. The Facile synthesis of the PI-PS-PDMA material, the scalable SNIPS membrane fabrication protocol, and the simple conversion chemistry of the pore functionality demonstrate that these nanostructured membranes are a strong platform for applications within the range of water purification, pharmaceutical separations, sensors, and drug delivery. (C) 2014 Elsevier B.V. All rights reserved. C1 [Mulvenna, Ryan A.; Boudouris, Bryan W.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Weidman, Jacob L.; Jing, Benxin; Zhu, Yingxi; Phillip, William A.] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA. [Pople, John A.] SLAC, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Boudouris, BW (reprint author), Purdue Univ, Sch Chem Engn, 480 Stadium Mall Dr, W Lafayette, IN 47907 USA. EM boudouris@purdue.edu; wphillip@nd.edu RI Jing, Benxin/I-4944-2014 OI Jing, Benxin/0000-0002-8400-1937 FU Ralph W. and Grace M. Showalter Research Trust Award at Purdue University; Indiana Clinical and Translational Sciences Institute; National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award through the Collaboration in Translational Research (CTR) Pilot Program [TR000006] FX We gratefully acknowledge support from the Ralph W. and Grace M. Showalter Research Trust Award at Purdue University, Portions of this work were made possible with support from the Indiana Clinical and Translational Sciences Institute funded, in part by Grant number TR000006 (Project Manager: Dr. Thomas Sors) from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award through the Collaboration in Translational Research (CTR) Pilot Program. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. Portions of this research were also performed with the equipment from the Center for Environmental Science and Technology (CEST) at Notre Dame and Notre Dame Integrated Imaging Facility (NDIIF). NR 53 TC 25 Z9 25 U1 12 U2 145 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 EI 1873-3123 J9 J MEMBRANE SCI JI J. Membr. Sci. PD NOV 15 PY 2014 VL 470 BP 246 EP 256 DI 10.1016/j.memsci.2014.07.021 PG 11 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA AO2IB UT WOS:000341141800026 ER PT J AU Ramirez, AI Aggarwal, SK Som, S Rutter, TP Longman, DE AF Ramirez, A. I. Aggarwal, S. K. Som, S. Rutter, T. P. Longman, D. E. TI Effects of blending a heavy alcohol (C20H40O with diesel in a heavy-duty compression-ignition engine SO FUEL LA English DT Article DE Second-generation biofuel; In-cylinder endoscopy; Bio-derived alcohol; Cavitation modeling; CO and NOx measurements ID BIODIESEL FUELS; EMISSIONS; OIL; COMBUSTION; PERFORMANCE; SPRAY AB There is an extensive worldwide search for alternate fuels that can displace fossil-based resources, yet still fit within existing infrastructure. At Argonne National Laboratory, strains of fuel have been designed that are generated by photosynthetic bacteria, eventually producing a heavy alcohol called phytol (C20H40O). Phytol's physical and chemical properties (cetane number, heat of combustion, heat of vaporization, density, surface tension, etc.) correspond in magnitude to those of diesel fuel, suggesting that phytol might be a good blending agent in compression ignition (CI) engine applications. The main objective of this study is to investigate the feasibility of using phytol as a blending agent with diesel. Three phytol-diesel blends were chosen for evaluation: P5, P10, and P20 (5%, 10%, and 20% phytol by volume). The fuel blends were extensively analyzed to determine their chemical and physical properties, with mostly comparable values, excepting viscosity and vapor pressure. In order to understand the effects of higher viscosity phytol in the fuel injector, three-dimensional simulations of transient, turbulent nozzle flow compared the injection and cavitation characteristics of the various blends. Specifically, area and discharge coefficients and mass flow rates of diesel and phytol blends were compared under corresponding engine operating conditions. Experimental research was performed using a single-cylinder engine under conventional operating conditions to gather comparative performance and emissions characteristics of the various blends of phytol and diesel. The influence of the fuel's chemical composition on performance and emission characteristics was captured by executing an injection timing sweep. Combustion characteristics such as the in-cylinder pressure trace were comparable for the diesel and all the blends with phytol at each of the injection timings. The diesel/phytol blends show similar emissions characteristics as the diesel. The combustion event was depicted by performing high-speed, natural luminosity endoscopic imaging. The conclusion is that phytol may be a suitable blending agent with diesel fuel for CI applications. Published by Elsevier Ltd. C1 [Ramirez, A. I.; Aggarwal, S. K.] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60680 USA. [Som, S.; Rutter, T. P.; Longman, D. E.] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. RP Ramirez, AI (reprint author), Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60680 USA. EM aramir12@uic.edu FU Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; DOE's Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.; This research was funded by DOE's Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC02-06CH11357. The authors wish to thank Kevin Stork, program manager at DOE, for his support. NR 52 TC 4 Z9 4 U1 0 U2 41 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 EI 1873-7153 J9 FUEL JI Fuel PD NOV 15 PY 2014 VL 136 BP 89 EP 102 DI 10.1016/j.fuel.2014.06.039 PG 14 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AO4JC UT WOS:000341302300011 ER PT J AU Bhavsar, S Tackett, B Veser, G AF Bhavsar, Saurabh Tackett, Brian Veser, Goetz TI Evaluation of iron- and manganese-based mono- and mixed-metallic oxygen carriers for chemical looping combustion SO FUEL LA English DT Article DE Chemical looping combustion; CO2 capture; Iron; Manganese; Mixed oxides ID FLUIDIZED-BED; CO2 CAPTURE; UNCOUPLING CLOU; SOLID FUELS; OXIDES; METHANE; REACTOR; GAS; CLC; OXIDATION AB Chemical looping combustion (CLC) is an emerging technology for clean combustion of fossil fuels with inherent CO2 capture. In the present work, we investigate the use of iron and manganese based mixed oxides (MnxFe1 (x)-CeO2)supported on CeO2 as oxygen carriers in CLC. The low cost and low toxicity of iron and manganese make them interesting candidates for CLC, but both mono-metallic carriers suffer from issues of low reactivity, and manganese is additionally prone to form undesired spinel structures with typical oxide supports. Mono-and bimetallic oxygen carriers were synthesized across the entire spectrum of compositions from pure Mn to pure Fe (with x = 0, 0.1, 0.33, 0.5, 0.8, 0.9, 1), characterized, and tested in thermogravimetric and fixed-bed reactor studies using H-2 and CH4 as fuels. We find that the use of ceria as support results in stable operation for all compositions of the metal phase, including pure Mn. Bimetallic carriers with high Fe content, which contain a FeMnO3 phase, exhibit an unusual, reversible de-alloying/re-alloying behavior during cyclic redox operation, which precludes any synergistic effects between the two metals and results in slowed reduction kinetics. However, Mn-rich carriers show a pronounced increase in carrier reactivity and selectivity for total oxidation of methane due to the addition of small amounts of Fe, indicating the promise of appropriately designed FeMn carriers as low-cost, environmentally benign oxygen carrier materials for chemical looping combustion. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Bhavsar, Saurabh; Tackett, Brian; Veser, Goetz] Univ Pittsburgh, Swanson Sch Engn, Dept Chem Engn, Pittsburgh, PA 15261 USA. [Bhavsar, Saurabh; Veser, Goetz] US DOE, Natl Energy Technol Lab, Pittsburgh, PA USA. RP Veser, G (reprint author), Univ Pittsburgh, Swanson Sch Engn, Dept Chem Engn, Pittsburgh, PA 15261 USA. EM gveser@pitt.edu FU U.S. Department of Energy's National Energy Technology Laboratory's on-going research under the RDS [DE-AC26-04NT41817]; National Science Foundation (CBET) [1159853]; University of Pittsburgh's Mascaro Center for Sustainable Innovation FX This technical effort was performed in support of the U.S. Department of Energy's National Energy Technology Laboratory's on-going research under the RDS contract DE-AC26-04NT41817. Furthermore, financial support by the National Science Foundation (CBET # 1159853) and by the University of Pittsburgh's Mascaro Center for Sustainable Innovation is gratefully acknowledged. Finally, we would like to thank Prashant Kumta and Karan Kadakia for their help with Rietveld analysis. NR 53 TC 14 Z9 14 U1 9 U2 83 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 EI 1873-7153 J9 FUEL JI Fuel PD NOV 15 PY 2014 VL 136 BP 268 EP 279 DI 10.1016/j.fuel.2014.07.068 PG 12 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AO4JC UT WOS:000341302300033 ER PT J AU Hyman, JD Winter, CL AF Hyman, Jeffrey D. Winter, C. Larrabee TI Stochastic generation of explicit pore structures by thresholding Gaussian random fields SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Porous media; Stochastic methods; Minkowski functionals; Direct numerical simulation ID STRONGLY CORRELATED SYSTEMS; POROUS-MEDIA; FLOW; PERCOLATION; BOUNDARY; SIMULATIONS; GEOMETRIES; HEART; MODEL AB We provide a description and computational investigation of an efficient method to stochastically generate realistic pore structures. Smolarkiewicz and Winter introduced this specific method in pores resolving simulation of Darcy flows (Smolarkiewicz and Winter, 2010 [1]) without giving a complete formal description or analysis of the method, or indicating how to control the parameterization of the ensemble. We address both issues in this paper. The method consists of two steps. First, a realization of a correlated Gaussian field, or topography, is produced by convolving a prescribed kernel with an initial field of independent, identically distributed random variables. The intrinsic length scales of the kernel determine the correlation structure of the topography. Next, a sample pore space is generated by applying a level threshold to the Gaussian field realization: points are assigned to the void phase or the solid phase depending on whether the topography over them is above or below the threshold. Hence, the topology and geometry of the pore space depend on the form of the kernel and the level threshold. Manipulating these two user prescribed quantities allows good control of pore space observables, in particular the Minkowski functionals. Extensions of the method to generate media with multiple pore structures and preferential flow directions are also discussed. To demonstrate its usefulness, the method is used to generate a pore space with physical and hydrological properties similar to a sample of Berea sandstone. (C) 2014 Elsevier Inc. All rights reserved. C1 [Hyman, Jeffrey D.; Winter, C. Larrabee] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA. [Hyman, Jeffrey D.] Los Alamos Natl Lab, Computat Earth Sci Earth & Environm Sci EES 16, Los Alamos, NM 87544 USA. [Hyman, Jeffrey D.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA. [Winter, C. Larrabee] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. RP Hyman, JD (reprint author), Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA. EM jhyman@lanl.gov; winter@email.arizona.edu OI Hyman, Jeffrey /0000-0002-4224-2847 FU U.S. Department of Energy [DE-AC52-06NA25396] FX We thank M. Zhang for providing the sample of Berea sandstone, J.M. Hyman, A. Guadagnini and C. M. Newman for several insightful discussions and encouragement, and B. Berman for helping with image processing. We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program for this work (Grant no. DE-AC52-06NA25396). NR 56 TC 3 Z9 3 U1 3 U2 29 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD NOV 15 PY 2014 VL 277 BP 16 EP 31 DI 10.1016/j.jcp.2014.07.046 PG 16 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA AO4LV UT WOS:000341311000002 ER PT J AU Vogman, GV Colella, P Shumlak, U AF Vogman, G. V. Colella, P. Shumlak, U. TI Dory-Guest-Harris instability as a benchmark for continuum kinetic Vlasov-Poisson simulations of magnetized plasmas SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Vlasov-Poisson; Dory-Guest-Harris instability; Plasma kinetic theory; Continuum kinetic benchmark; Electrostatic waves in magnetized plasma; Phase space ID SEMI-LAGRANGIAN METHOD; MAXWELL SYSTEM; PERPENDICULAR PROPAGATION; WEIBEL INSTABILITY; NUMERICAL SCHEME; WAVES; EQUATION; INTEGRATION; SPACE; FIELD AB The Dory-Guest-Harris instability is demonstrated to be a well-suited benchmark for continuum kinetic Vlasov-Poisson algorithms. The instability is a special case of perpendicularly-propagating kinetic electrostatic waves in a warm uniformly magnetized plasma. A complete derivation of the closed-form linear theory dispersion relation for the instability is presented. The electric field growth rates and oscillation frequencies specified by the dispersion relation provide concrete measures against which simulation results can be quantitatively compared. A fourth-order continuum kinetic algorithm is benchmarked against the instability, and is demonstrated to have good convergence properties and close agreement with theoretical growth rate and oscillation frequency predictions. Second-order accurate simulations are also shown to be consistent with theoretical predictions, but require higher resolution for convergence. The Dory-Guest-Harris instability benchmark extends the scope of current standard test problems by providing a substantive means of validating continuum kinetic simulations of magnetized plasmas in higher-dimensional 3D (x, v(x), v(y)) phase space. The linear theory analysis, initial conditions, algorithm description, and comparisons between theoretical predictions and simulation results are presented. (C) 2014 Elsevier Inc. All rights reserved. C1 [Vogman, G. V.] Univ Calif Berkeley, Appl Sci & Technol Program, Berkeley, CA 94720 USA. [Colella, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Colella, P.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Shumlak, U.] Univ Washington, Aerosp & Energet Res Program, Seattle, WA 98195 USA. RP Vogman, GV (reprint author), Univ Calif Berkeley, Appl Sci & Technol Program, Berkeley, CA 94720 USA. OI Shumlak, Uri/0000-0002-2918-5446 FU Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF); Office of Advanced Scientific Computing Research of the US Department of Energy [DE-AC02-05CH11231]; United States Air Force Office of Scientific Research [FA9550-11-1-0167] FX This research was supported by an award from the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), agrant from the Office of Advanced Scientific Computing Research of the US Department of Energy under Contract Number DE-AC02-05CH11231, and a grant from the United States Air Force Office of Scientific Research under grant number FA9550-11-1-0167. NR 51 TC 1 Z9 1 U1 0 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD NOV 15 PY 2014 VL 277 BP 101 EP 120 DI 10.1016/j.jcp.2014.08.014 PG 20 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA AO4LV UT WOS:000341311000006 ER PT J AU Plunkett, P Hu, J Siefert, C Atzberger, PJ AF Plunkett, Pat Hu, Jonathan Siefert, Christopher Atzberger, Paul J. TI Spatially adaptive stochastic methods for fluid-structure interactions subject to thermal fluctuations in domains with complex geometries SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Stochastic Eulerian Lagrangian method; Immersed boundary method; Adaptive numerical methods; Multigrid; Stochastic numerical methods; Stochastic partial differential equations ID IMMERSED BOUNDARY METHOD; NAVIER-STOKES EQUATIONS; MONTE-CARLO METHOD; HYDRODYNAMIC INTERACTION; MULTIQUADRATIC ACTIONS; PROJECTION METHOD; DYNAMICS; PARTICLES; VERSION; BODIES AB We develop stochastic mixed finite element methods for spatially adaptive simulations of fluid-structure interactions when subject to thermal fluctuations. To account for thermal fluctuations, we introduce a discrete fluctuation-dissipation balance condition to develop compatible stochastic driving fields for our discretization. We perform analysis that shows our condition is sufficient to ensure results consistent with statistical mechanics. We show the Gibbs-Boltzmann distribution is invariant under the stochastic dynamics of the semi-discretization. To generate efficiently the required stochastic driving fields, we develop a Gibbs sampler based on iterative methods and multigrid to generate fields with O (N) computational complexity. Our stochastic methods provide an alternative to uniform discretizations on periodic domains that rely on Fast Fourier Transforms. To demonstrate in practice our stochastic computational methods, we investigate within channel geometries having internal obstacles and no-slip walls how the mobility/diffusivity of particles depends on location. Our methods extend the applicability of fluctuating hydrodynamic approaches by allowing for spatially adaptive resolution of the mechanics and for domains that have complex geometries relevant in many applications. (C) 2014 Elsevier Inc. All rights reserved. C1 [Plunkett, Pat; Atzberger, Paul J.] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA. [Hu, Jonathan; Siefert, Christopher] Sandia Natl Labs, Livermore, CA 94550 USA. RP Atzberger, PJ (reprint author), Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA. EM atzberg@math.ucsb.edu FU DOE ASCR [CM4]; NSF [DMS-0956210]; W. M. Keck Foundation FX The authors would like to acknowledge support from DOE ASCR CM4. The author P. J. A. acknowledges support from research grant NSF CAREER DMS-0956210 and W. M. Keck Foundation. The Trilinos packages ML and Epetra were used for the application simulations. The authors thank Alexander Roma, Boyce Griffith, Mike Parks, and Micheal Minion for helpful suggestions. NR 51 TC 6 Z9 6 U1 1 U2 24 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD NOV 15 PY 2014 VL 277 BP 121 EP 137 DI 10.1016/j.jcp.2014.07.051 PG 17 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA AO4LV UT WOS:000341311000007 ER PT J AU Long, AR Gentile, NA Palmer, TS AF Long, A. R. Gentile, N. A. Palmer, T. S. TI The iterative thermal emission method: A more implicit modification of IMC SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Thermal radiative transfer; Implicit Monte Carlo ID MONTE-CARLO METHOD; RADIATIVE-TRANSFER; TIME AB For over 40 years, the Implicit Monte Carlo (IMC) method has been used to solve challenging problems in thermal radiative transfer. These problems typically contain regions that are optically thick and diffusive, as a consequence of the high degree of "pseudo-scattering" introduced to model the absorption and reemission of photons from a tightly-coupled, radiating material. IMC has several well-known features that could be improved: a) it can be prohibitively computationally expensive, b) it introduces statistical noise into the material and radiation temperatures, which may be problematic in multiphysics simulations, and c) under certain conditions, solutions can be nonphysical, in that they violate a maximum principle, where IMC-calculated temperatures can be greater than the maximum temperature used to drive the problem. We have developed a variant of IMC called iterative thermal emission IMC, which is designed to have a reduced parameter space in which the maximum principle is violated. ITE IMC is a more implicit version of IMC in that it uses the information obtained from a series of IMC photon histories to improve the estimate for the end of time step material temperature during a time step. A better estimate of the end of time step material temperature allows for a more implicit estimate of other temperature-dependent quantities: opacity, heat capacity, Fleck factor (probability that a photon absorbed during a time step is not reemitted) and the Planckian emission source. We have verified the ITE IMC method against 0-D and 1-D analytic solutions and problems from the literature. These results are compared with traditional IMC. We perform an infinite medium stability analysis of ITE IMC and show that it is slightly more numerically stable than traditional IMC. We find that significantly larger time steps can be used with ITE IMC without violating the maximum principle, especially in problems with non-linear material properties. The ITE IMC method does however yield solutions with larger variance because each sub-step uses a different Fleck factor (even at equilibrium). (C) 2014 Elsevier Inc. All rights reserved. C1 [Long, A. R.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Gentile, N. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Palmer, T. S.] Oregon State Univ, Corvallis, OR 97333 USA. RP Long, AR (reprint author), Texas A&M Univ, Dept Nucl Engn, 3133 TAMU, College Stn, TX 77843 USA. EM arlong.ne@tamu.edu NR 22 TC 2 Z9 2 U1 1 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD NOV 15 PY 2014 VL 277 BP 228 EP 247 DI 10.1016/j.jcp.2014.08.017 PG 20 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA AO4LV UT WOS:000341311000011 ER PT J AU Gupta, S Suresh, KG Nigam, AK Mudryk, Y Paudyal, D Pecharsky, VK Gschneidner, KA AF Gupta, Sachin Suresh, K. G. Nigam, A. K. Mudryk, Y. Paudyal, D. Pecharsky, V. K. Gschneidner, K. A., Jr. TI The nature of the first order isostructural transition in GdRhSn SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Rare earth intermetallic; Iso-structural transition; Magnetocaloric effect ID SN-119 MOSSBAUER-SPECTROSCOPY; MAGNETIC PHASE-TRANSITIONS; GDPDAL SINGLE-CRYSTALS; STANNIDES RERHSN RE; ELECTRONIC-STRUCTURE; TBRHSN; DYRHSN; ANOMALIES; TRANSPORT; HORHSN AB We present structural, magnetic, thermal, magnetocaloric, and electrical transport properties of polycrystalline GdRhSn. Magnetization data show that it orders antiferromagnetically at T-N = 16.2 K. The compound has the ZrNiAl type hexagonal crystal structure at room temperature and undergoes a first order iso-structural transition in the paramagnetic state at 245 K. The unit cell volume change at the transition is small (-0.07%) but discontinuous, in agreement with the first-order nature of the transition observed by magnetic, transport, and heat capacity measurements. The anisotropic changes of the lattice parameters are Delta alpha/alpha = 0.28% and Delta c/c = 0.64% on cooling. A substantial change in the 4f and conduction electron hybridization, giving rise to an increased integrated DOS, occurs when the high temperature phase transforms to the low temperature phase. A moderate magnetocaloric effect at T-N (Delta S-M = 6.5 J/kg K and Delta T-ad = 4.5 K for Delta H = 50 kOe) has been measured using both magnetization and heat capacity data. (C) 2014 Elsevier B.V. All rights reserved. C1 [Gupta, Sachin; Suresh, K. G.] Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India. [Nigam, A. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Mudryk, Y.; Paudyal, D.; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Suresh, KG (reprint author), Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India. EM suresh@phy.iitb.ac.in RI Gupta, Sachin/G-4793-2013 OI Gupta, Sachin/0000-0002-2407-5555 FU CSIR, New Delhi; Iowa State University of Science and Technology for the US Department of Energy [DE-AC02-07CH11358]; Office of Basic Energy Sciences, Materials Sciences Division of the Office of Science, US Department of Energy FX SG would like to thank CSIR, New Delhi for granting senior research fellowship. The Ames Laboratory is operated by Iowa State University of Science and Technology for the US Department of Energy under contract No. DE-AC02-07CH11358. Work at Ames Laboratory (theoretical calculations and temperature dependent Xray powder diffraction measurements) is supported by the Office of Basic Energy Sciences, Materials Sciences Division of the Office of Science, US Department of Energy. NR 46 TC 4 Z9 4 U1 3 U2 44 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD NOV 15 PY 2014 VL 613 BP 280 EP 287 DI 10.1016/j.jallcom.2014.06.027 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA AM7BA UT WOS:000340018500048 ER PT J AU Hanifi, AR Paulson, S Torabi, A Shinbine, A Tucker, MC Birss, V Etsell, TH Sarkar, P AF Hanifi, Amir Reza Paulson, Scott Torabi, Alireza Shinbine, Alyssa Tucker, Michael C. Birss, Viola Etsell, Thomas H. Sarkar, Partha TI Slip-cast and hot-solution infiltrated porous yttria stabilized zirconia (YSZ) supported tubular fuel cells. SO JOURNAL OF POWER SOURCES LA English DT Article DE Hot solution infiltration; NiO-SDC; LSM; GDC-LSCF; Porous YSZ; Tubular SOFC ID NANO-STRUCTURED ELECTRODES; SOFC ANODES; HIGH-PERFORMANCE; DOPED CERIA; THERMAL-STABILITY; CERMET ANODES; IMPREGNATION; CATHODES; REDOX; MICROSTRUCTURE AB Hot solution infiltration was investigated as a flexible and rapid method to incorporate anode and cathode components into fully sintered, porous ceramic tubular templates for use as solid oxide fuel cells (SOFC). Composed of either a porous 8 mol% yttria-stabilized zirconia (YSZ) or 5 wt% NiO-YSZ support structure, a thin Ni-YSZ anode functional layer and an outer ca. 10 gm dense YSZ electrolyte, closed end tubes were first hot solution (ca. 100 degrees C) infiltrated on the inside with NiO-SDC (Sm0.2Ce0.8O1.9) to serve as the anode. Cathodes were either LSM (nominally La0.8Sr0.2MnO3+delta) infiltrated into a thin porous YSZ layer on the outer electrolyte surface, or an LSCF-GDC composite (Gd0.1Ce0.9O1.95-La0.6Sr0.4Co0.2Fe0.8O3-delta) on a thin GDC buffer layer. Although hot solution infiltration of the Ni, Ce and Sm salts into the anode support structure did not result in complete penetration (with the Ni contents in the tube wall ranging between 4 and 10 vol.%), well-sealed full cells produced power densities as high as 275, 196 and 153 mW cm(-2) at 800, 750 and 700 degrees C, respectively. Hot solution infiltration of active SOFC electrode materials is thus shown to be a very flexible approach for the evaluation of their performance. (C) 2014 Elsevier B.V. All rights reserved. C1 [Hanifi, Amir Reza; Torabi, Alireza; Shinbine, Alyssa; Etsell, Thomas H.] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada. [Paulson, Scott; Birss, Viola] Univ Calgary, Dept Chem, Calgary, AB T2N 1N4, Canada. [Tucker, Michael C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Sarkar, Partha] Alberta Innovates Technol Futures, Carbon & Energy Management, Edmonton, AB T6N 1E4, Canada. RP Hanifi, AR (reprint author), Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada. EM Hanifi@ualberta.ca FU Natural Sciences and Engineering Research Council (NSERC) FX This research was supported through funding to the NSERC Solid Oxide Fuel Cell Canada Strategic Research Network from the Natural Sciences and Engineering Research Council (NSERC) and other sponsors listed at www.sofccanada.com. We would also like to acknowledge Dr. Rob Marr at the University of Calgary Laboratory for Electron Microbeam Analysis (UCLEMA) for assistance with the electron microprobe analyses. NR 46 TC 6 Z9 6 U1 7 U2 88 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD NOV 15 PY 2014 VL 266 BP 121 EP 131 DI 10.1016/j.jpowsour.2014.05.001 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA AL0GV UT WOS:000338806300015 ER PT J AU Kan, YC Hu, Y Croy, J Ren, Y Sun, CJ Heald, SM Bareno, J Bloom, I Chen, ZH AF Kan, Yongchun Hu, Yuan Croy, Jason Ren, Yang Sun, Cheng-Jun Heald, Steve M. Bareno, Javier Bloom, Ira Chen, Zonghai TI Formation of Li2MnO3 investigated by in situ synchrotron probes SO JOURNAL OF POWER SOURCES LA English DT Article DE In situ probes; XRD; XANES; Factor analysis; Lithium battery ID FE-SUBSTITUTED LI2MNO3; LITHIUM-ION BATTERIES; X-RAY-DIFFRACTION; LAYERED-OXIDE; ELECTROCHEMICAL ACTIVITY; POSITIVE ELECTRODE; PHASE-TRANSITIONS; CATHODE MATERIALS; LOCAL-STRUCTURE; CAPACITY AB Both in situ high-energy X-ray diffraction and in situ X-ray absorption spectroscopy were used to investigate the structural evolution of materials during the solid-state synthesis of Li2MnO3. Combing Xray absorption spectroscopy and factor analysis techniques, we were able to capture the spectrum and evolution of an intermediate phase (MnO2) that could not be detected by the diffraction technique. Meanwhile, the X-ray diffraction data clearly showed the anisotropic crystallization of Li2MnO3 during sintering above 600 degrees C. (C) 2014 Elsevier B.V. All rights reserved. C1 [Kan, Yongchun; Hu, Yuan] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China. [Kan, Yongchun; Croy, Jason; Bareno, Javier; Bloom, Ira; Chen, Zonghai] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Ren, Yang; Sun, Cheng-Jun; Heald, Steve M.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Chen, ZH (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. EM zonghai.chen@anl.gov RI Chen, Zonghai/F-1067-2015; OI Chen, Zonghai/0000-0001-5371-9463; Bareno, Javier/0000-0003-1230-9278 FU U.S. Department of Energy, Vehicle Technologies Office; U.S. Department of Energy by UChicago Argonne, LLC [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; US Department of Energy - Basic Energy Sciences, a Major Resources Support grant from NSERC; University of Washington; Canadian Light Source; Advanced Photon Source FX Research at Argonne National Laboratory was funded by U.S. Department of Energy, Vehicle Technologies Office. Argonne National Laboratory is operated for the U.S. Department of Energy by UChicago Argonne, LLC, under contract DE-AC02-06CH11357. The authors also acknowledge the use of the Advanced Photon Source of Argonne National Laboratory supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. PNC/XSD facilities at the Advanced Photon Source, and research at these facilities, are supported by the US Department of Energy - Basic Energy Sciences, a Major Resources Support grant from NSERC, the University of Washington, the Canadian Light Source, and the Advanced Photon Source. NR 42 TC 8 Z9 8 U1 6 U2 150 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD NOV 15 PY 2014 VL 266 BP 341 EP 346 DI 10.1016/j.jpowsour.2014.05.032 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA AL0GV UT WOS:000338806300045 ER PT J AU Czakon, M Mitov, A Papucci, M Ruderman, JT Weiler, A AF Czakon, Michal Mitov, Alexander Papucci, Michele Ruderman, Joshua T. Weiler, Andreas TI Removing Gaps in the Exclusion of Top Squark Parameter Space SO PHYSICAL REVIEW LETTERS LA English DT Article ID HADRON COLLIDERS; PAIR PRODUCTION; PP COLLISIONS; FERMILAB TEVATRON; QUARK PRODUCTION; QCD CORRECTIONS; CROSS-SECTION; ROOT-S=8 TEV; SEARCH; LHC AB Light stops are a hallmark of the most natural realizations of weak-scale supersymmetry. While stops have been extensively searched for, there remain open gaps around and below the top mass, due to similarities of stop and top signals with current statistics. We propose a new fast-track avenue to improve light stop searches for R-parity-conserving supersymmetry by comparing top cross section measurements to the theoretical prediction. Stop masses below similar to 180 GeV can now be ruled out for a light neutralino. The possibility of a stop signal contaminating the top mass measurement is also briefly addressed. C1 [Czakon, Michal] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Mitov, Alexander] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Papucci, Michele; Ruderman, Joshua T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Papucci, Michele; Ruderman, Joshua T.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ruderman, Joshua T.] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Weiler, Andreas] DESY, D-22607 Hamburg, Germany. [Weiler, Andreas] CERN, Div Theory, CH-1211 Geneva 23, Switzerland. RP Czakon, M (reprint author), Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. FU German Research Foundation (DFG) via the Sonderforschungsbereich/Transregio [SFB/TR-9]; Heisenberg programme; UK Science and Technology Facilities Council [ST/L002760/1, ST/K004883/1]; ERC [291377]; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; Miller Institute for Basic Research in Science; German Science Foundation (DFG) under the Collaborative Research Center [(SFB) 676] FX We thank Stefan Berge, Kyle Cranmer, Lance Dixon, Ian Low, Michelangelo Mangano, and Matt Reece for discussions. M. P. and J. T. R. thank the CERN TH group and the Aspen Center for Physics for their hospitality. J. T. R. also thanks CFHEP at IHEP for hospitality. The work of M. C. was supported by the German Research Foundation (DFG) via the Sonderforschungsbereich/Transregio SFB/TR-9 "Computational Particle Physics" and the Heisenberg programme. The work of A. M. is supported by the UK Science and Technology Facilities Council (Grants No. ST/L002760/1 and No. ST/K004883/1) and in part by ERC Grant No. 291377 "LHCtheory: Theoretical predictions and analyses of LHC physics: advancing the precision frontier." M. P. was supported in part by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. J. T. R. is supported by a fellowship from the Miller Institute for Basic Research in Science. The work of A. W. was supported in part by the German Science Foundation (DFG) under the Collaborative Research Center (SFB) 676. NR 91 TC 31 Z9 31 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 14 PY 2014 VL 113 IS 20 AR 201803 DI 10.1103/PhysRevLett.113.201803 PG 6 WC Physics, Multidisciplinary SC Physics GA CB5JT UT WOS:000349664000004 PM 25432037 ER PT J AU Fatemi, V Hunt, B Steinberg, H Eltinge, SL Mahmood, F Butch, NP Watanabe, K Taniguchi, T Gedik, N Ashoori, RC Jarillo-Herrero, P AF Fatemi, Valla Hunt, Benjamin Steinberg, Hadar Eltinge, Stephen L. Mahmood, Fahad Butch, Nicholas P. Watanabe, Kenji Taniguchi, Takashi Gedik, Nuh Ashoori, Raymond C. Jarillo-Herrero, Pablo TI Electrostatic Coupling between Two Surfaces of a Topological Insulator Nanodevice SO PHYSICAL REVIEW LETTERS LA English DT Article ID BORON-NITRIDE; GRAPHENE; BI2SE3; STATE; TRANSPORT; BI2TE3 AB We report on electronic transport measurements of dual-gated nanodevices of the low-carrier density topological insulator (TI) Bi1.5Sb0.5Te1.7Se1.3. In all devices, the upper and lower surface states are independently tunable to the Dirac point by the top and bottom gate electrodes. In thin devices, electric fields are found to penetrate through the bulk, indicating finite capacitive coupling between the surface states. A charging model allows us to use the penetrating electric field as a measurement of the intersurface capacitance CTI and the surface state energy-density relationship mu(n), which is found to be consistent with independent angle-resolved photoemission spectroscopy measurements. At high magnetic fields, increased field penetration through the surface states is observed, strongly suggestive of the opening of a surface state band gap due to broken time-reversal symmetry. C1 [Fatemi, Valla; Hunt, Benjamin; Steinberg, Hadar; Eltinge, Stephen L.; Mahmood, Fahad; Gedik, Nuh; Ashoori, Raymond C.; Jarillo-Herrero, Pablo] MIT, Dept Phys, Cambridge, MA 02139 USA. [Steinberg, Hadar] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Butch, Nicholas P.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Butch, Nicholas P.] Univ Maryland, Dept Phys, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA. [Butch, Nicholas P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Watanabe, Kenji; Taniguchi, Takashi] Natl Inst Mat Sci, Adv Mat Lab, Tsukuba, Ibaraki 3050044, Japan. RP Fatemi, V (reprint author), MIT, Dept Phys, Cambridge, MA 02139 USA. EM vfatemi@mit.edu RI TANIGUCHI, Takashi/H-2718-2011; WATANABE, Kenji/H-2825-2011; Hunt, Benjamin/C-3395-2017 OI WATANABE, Kenji/0000-0003-3701-8119; Hunt, Benjamin/0000-0002-5008-8042 FU DOE, Basic Energy Sciences Office, Division of Materials Sciences and Engineering [DE-SC0006418]; Gordon and Betty Moore Foundation [GBMF2931]; STC Center for Integrated Quantum Materials, NSF [DMR-1231319]; MIT MRSEC Initiative under NSF [DMR-0819762]; NSF [DMR-0819762, ECS-0335765]; U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344] FX This work was partly supported by the DOE, Basic Energy Sciences Office, Division of Materials Sciences and Engineering, under Award No. DE-SC0006418 (V. F., S. E., H. S., and P. J. H.), by the Gordon and Betty Moore Foundation Grant No. GBMF2931 and the STC Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319 (B. H. and R. C. A.), and by an MIT MRSEC Initiative under NSF Grant No. DMR-0819762 (F. M. and N. G.). This work made use of the Materials Research Science and Engineering Center Shared Experimental Facilities supported by NSF under Grant No. DMR-0819762. Sample fabrication was performed partly at the Harvard Center for Nanoscale Science supported by the NSF under Grant No. ECS-0335765. Sample synthesis and initial characterization were performed under LDRD (Tracking Code 14-ERD-041) at Lawrence Livermore National Laboratory (LLNL). LLNL is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration, under Contract No. DE-AC52-07NA27344. We thank A. Stern, Y. Baum, K. Burch, D. Drew, B. Skinner, A. Frenzel, and J. D. Sanchez-Yamagishi for discussions and J. R. Jeffries for performing x-ray diffraction measurements. NR 41 TC 11 Z9 11 U1 5 U2 57 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 14 PY 2014 VL 113 IS 20 AR 206801 DI 10.1103/PhysRevLett.113.206801 PG 5 WC Physics, Multidisciplinary SC Physics GA CB5JT UT WOS:000349664000013 PM 25432050 ER PT J AU Michel, P Divol, L Turnbull, D Moody, JD AF Michel, P. Divol, L. Turnbull, D. Moody, J. D. TI Dynamic Control of the Polarization of Intense Laser Beams via Optical Wave Mixing in Plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID INERTIAL CONFINEMENT FUSION; ULTRAHIGH-POWER LASERS; SUPPRESSION; PROBE; PUMP AB When intense laser beams overlap in plasmas, the refractive index modulation created by the beat wave via the ponderomotive force can lead to optical wave mixing phenomena similar to those used in crystals and photorefractive materials. A new comprehensive analytical description of the modification of the polarization state of laser beams crossing at arbitrary angles in a plasma is presented. It is shown that a laser-plasma system can be used to provide full control of the polarization state of a separate "probe" laser beam; simple analytical estimates and practical considerations are provided for the design of novel photonics devices such as laser-plasma polarizers and wave plates. C1 [Michel, P.; Divol, L.; Turnbull, D.; Moody, J. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Michel, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 28 TC 13 Z9 13 U1 3 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 14 PY 2014 VL 113 IS 20 AR 205001 DI 10.1103/PhysRevLett.113.205001 PG 5 WC Physics, Multidisciplinary SC Physics GA CB5JT UT WOS:000349664000010 PM 25432044 ER PT J AU Appel, HM Fescemyer, H Ehlting, J Weston, D Rehrig, E Joshi, T Xu, D Bohlmann, J Schultz, J AF Appel, Heidi M. Fescemyer, Howard Ehlting, Juergen Weston, David Rehrig, Erin Joshi, Trupti Xu, Dong Bohlmann, Joerg Schultz, Jack TI Transcriptional responses of Arabidopsis thaliana to chewing and sucking insect herbivores SO FRONTIERS IN PLANT SCIENCE LA English DT Article DE Arabidopsis thaliana; Spodoptera exigua; Pieris brassicae; Myzus persicae; Brevicoryne brassicae; herbivory; hormone signaling; glucosinolates ID GENE-EXPRESSION; PLANT DEFENSE; NICOTIANA-ATTENUATA; SIGNALING PATHWAYS; GLUCOSINOLATE ACCUMULATION; COMBINATORIAL CONTROL; REGULATED GENE; JASMONIC ACID; TRANSFER-RNA; CROSS-TALK AB We tested the hypothesis that Arabidopsis can recognize and respond differentially to insect species at the transcriptional level using a genome wide microarray. Transcriptional reprogramming was characterized using co-expression analysis in damaged and undamaged leaves at two times in response to mechanical wounding and four insect species. In all, 2778 (10.6%) of annotated genes on the array were differentially expressed in at least one treatment. Responses differed mainly between aphid and caterpillar and sampling times. Responses to aphids and caterpillars shared only 10% of up-regulated and 8% of down-regulated genes. Responses to two caterpillars shared 21 and 12% of up- and down-regulated genes, whereas responses to the two aphids shared only 7 and 4% of up-regulated and down-regulated genes. Overlap in genes expressed between 6 and 24h was 3-15%, and depended on the insect species. Responses in attacked and unattacked leaves differed at 6 h but converged by 24 h. Genes responding to the insects are also responsive to many stressors and included primary metabolism. Aphids down-regulated amino acid catabolism; caterpillars stimulated production of amino acids involved in glucosinolate synthesis. Co-expression analysis revealed 17 response networks. Transcription factors were a major portion of differentially expressed genes throughout and responsive genes shared most of the known or postulated binding sites. However, cis-element composition of genes down regulated by the aphid M. persicae was unique, as were those of genes down-regulated by caterpillars. As many as 20 cis-elements were over-represented in one or more treatments, including some from well-characterized classes and others as yet uncharacterized. We suggest that transcriptional changes elicited by wounding and insects are heavily influenced by transcription factors and involve both enrichment of a common set of cis-elements and a unique enrichment of a few cis-elements in responding genes. C1 [Appel, Heidi M.; Schultz, Jack] Univ Missouri, Bond Life Sci Ctr, Columbia, MO 65211 USA. [Appel, Heidi M.; Schultz, Jack] Univ Missouri, Div Plant Sci, Columbia, MO 65211 USA. [Fescemyer, Howard] Penn State Univ, Dept Biol, University Pk, PA 16802 USA. [Ehlting, Juergen; Bohlmann, Joerg] Univ Missouri, Bond Life Sci Ctr, Columbia, MO 65211 USA. [Ehlting, Juergen] Univ Victoria, Dept Biol, Victoria, BC V8W 2Y2, Canada. [Weston, David] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Rehrig, Erin] Fitchburg State Univ, Dept Biol & Chem, Fitchburg, MA USA. [Joshi, Trupti; Xu, Dong] Univ Missouri, Bond Life Sci Ctr, Inst Informat, Dept Comp Sci, Columbia, MO 65211 USA. RP Appel, HM (reprint author), Univ Missouri, Bond Life Sci Ctr, 1201 Rollins St, Columbia, MO 65211 USA. EM appelh@missouri.edu FU NSF Arabidopsis grant [DEB 0313492] FX We thank two anonymous reviewers for a critical reading of the manuscript, Chris Frost and Clayton Coffman for help with data analysis, and the following individuals for help in conducting experiments: Inga Mewis, Jennifer Heath, JoAnn Snyder, Irmgard Seidl Adams, Nate McCartney, and Roger Snyder. Funding was provided by an NSF Arabidopsis 2010 grant (DEB 0313492) to Jack Schultz. NR 103 TC 10 Z9 10 U1 6 U2 64 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1664-462X J9 FRONT PLANT SCI JI Front. Plant Sci. PD NOV 14 PY 2014 VL 5 AR 565 DI 10.3389/fpls.2014.00565 PG 20 WC Plant Sciences SC Plant Sciences GA AX6ZC UT WOS:000347065500001 PM 25452759 ER PT J AU Kogan, VG Prozorov, R AF Kogan, V. G. Prozorov, R. TI Changing the type of superconductivity by magnetic and potential scattering SO PHYSICAL REVIEW B LA English DT Article ID PARAMAGNETIC IMPURITIES; ALLOYS AB By evaluating the upper and thermodynamic critical fields H-c2 and H-c and their ratio H-c2/H-c at arbitrary temperatures, we argue that situations are possible when a type-II material is transformed into type I by adding magnetic impurities. C1 [Kogan, V. G.] Iowa State Univ, Ames Lab DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Phys, Ames, IA 50011 USA. RP Kogan, VG (reprint author), Iowa State Univ, Ames Lab DOE, Ames, IA 50011 USA. EM kogan@ameslab.gov; prozorov@ameslab.gov FU Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-07CH11358] FX The authors are grateful to D. Finnemore, J. Kirtley, J. Thompson, P. Canfield, S. Bud'ko, V. Taufor, and B. Maple for many helpful discussions. The Ames Laboratory is supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358. NR 8 TC 2 Z9 2 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 14 PY 2014 VL 90 IS 18 AR 180502 DI 10.1103/PhysRevB.90.180502 PG 4 WC Physics, Condensed Matter SC Physics GA AU2BY UT WOS:000345422200004 ER PT J AU Gunawardana, KGSH Wilson, SR Mendelev, MI Song, XY AF Gunawardana, K. G. S. H. Wilson, S. R. Mendelev, M. I. Song, Xueyu TI Theoretical calculation of the melting curve of Cu-Zr binary alloys SO PHYSICAL REVIEW E LA English DT Article ID HARD-SPHERE FLUID; FUNDAMENTAL MEASURE-THEORY; FREE-ENERGY MODEL; PERTURBATION-THEORY; METALLIC GLASSES; REPULSIVE FORCES; LIQUID; SIMULATION; STABILITY; SYSTEM AB Helmholtz free energies of the dominant binary crystalline solids found in the Cu-Zr system at high temperatures close to the melting curve are calculated. Our theoretical approach combines fundamental measure density functional theory (applied to the hard-sphere reference system) and a perturbative approach to include the attractive interactions. The studied crystalline solids are Cu(fcc), Cu51Zr14(beta), CuZr(B2), CuZr2(C11b), Zr(hcp), and Zr(bcc). The calculated Helmholtz free energies of crystalline solids are in good agreement with results from molecular-dynamics (MD) simulations. Using the same perturbation approach, the liquid phase free energies are calculated as a function of composition and temperature, from which the melting curve of the entire composition range of this system can be obtained. Phase diagrams are determined in this way for two leading embedded atom method potentials, and the results are compared with experimental data. Theoretical melting temperatures are compared both with experimental values and with values obtained directly from MD simulations at several compositions. C1 [Gunawardana, K. G. S. H.; Wilson, S. R.; Mendelev, M. I.; Song, Xueyu] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Song, Xueyu] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Gunawardana, KGSH (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM xsong@iastate.edu FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy [W-7405-ENG-82]; Iowa State University FX This research was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. W-7405-ENG-82 with Iowa State University. We would like to thank Shihuai Zhou for providing much of the structural information used in this study. NR 41 TC 1 Z9 2 U1 3 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD NOV 14 PY 2014 VL 90 IS 5 AR 052403 DI 10.1103/PhysRevE.90.052403 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA AU4QB UT WOS:000345595600010 ER PT J AU Bolme, CA Ramos, KJ AF Bolme, C. A. Ramos, K. J. TI The elastic tensor of single crystal RDX determined by Brillouin spectroscopy SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CYCLOTRIMETHYLENE TRINITRAMINE RDX; CONSTANTS AB The elastic tensor of 1,3,5-trinitroperhydro-1,3,5-triazine (also known as RDX, hexogen, and cyclotrimethylene trinitramine) was determined using Brillouin spectroscopy of as-grown single crystals. This study addresses inconsistencies in the literature between the elastic tensor measurements made using Brillouin spectroscopy in the GHz frequency range and the measurements using various techniques in the kHz-MHz frequency range. These Brillouin results are consistent with previous measurements made in the kHz-MHz frequency range using various techniques and are also consistent with velocity measurements at 15 GHz using picosecond acoustic interferometry. These results are in disagreement with the previously published elastic tensor determined using Brillouin spectroscopy, and there are differences of several percent amongst the consistent set of elastic tensor determinations. The origins of the disagreement and differences are discussed. (C) 2014 AIP Publishing LLC. C1 [Bolme, C. A.; Ramos, K. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bolme, CA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Bolme, Cynthia/0000-0002-1880-271X FU National Nuclear Security Administration Science Campaign 2; LANL HE Crystal Laboratory FX This work was supported by the National Nuclear Security Administration Science Campaign 2 and performed at Los Alamos National Laboratory under DE-AC52-06NA25396. The authors gratefully acknowledge helpful discussions with Dr. Lewis Stevens, Dr. Dan Hooks, Dr. D. J. Luscher, and Dr. Marc Cawkwell, machining performed by Timothy Pierce, and support in the LANL HE Crystal Laboratory from Tate Hamilton. NR 26 TC 7 Z9 7 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 14 PY 2014 VL 116 IS 18 AR 183503 DI 10.1063/1.4901461 PG 7 WC Physics, Applied SC Physics GA AT8ZB UT WOS:000345216300012 ER PT J AU Huang, ZY Fu, H Hadimani, RL Balfour, EA Dembele, SN Teng, BH Jiles, DC AF Huang, Z. Y. Fu, H. Hadimani, R. L. Balfour, E. Agurgo Dembele, S. N. Teng, B. H. Jiles, D. C. TI Enhancement of magnetocaloric effect in the Gd2Al phase by Co alloying SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MAGNETIC REFRIGERATION; TEMPERATURE; COMPOUND AB To understand the effect of Co doping on the magnetic entropy changes in Gd2Al phase, a series of Gd2AlCox alloys with 0 <= x <= 0.6 were synthesized by arc-melting and the crystal structure was analyzed by XRD. The magnetic properties were investigated, and the entropy changes were calculated for a magnetic field change of 50 kOe. All the as-cast alloys doped with Co exhibited greater magnetic entropy changes than the original binary Gd2Al phase. The main reasons attributed to this are the increase of ferromagnetic interaction indicated by the disappearance of cusp and sharp drop in magnetization and the reduction of the critical field required to trigger the field-induced transition below 50K in Gd2Al phase after Co alloying. (C) 2014 AIP Publishing LLC. C1 [Huang, Z. Y.; Fu, H.; Balfour, E. Agurgo; Dembele, S. N.; Teng, B. H.] Univ Elect Sci & Technol China, Sch Phys Elect, Chengdu 610054, Peoples R China. [Hadimani, R. L.; Jiles, D. C.] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Hadimani, R. L.; Jiles, D. C.] US DOE, Ames Lab, Ames, IA 50011 USA. RP Fu, H (reprint author), Univ Elect Sci & Technol China, Sch Phys Elect, Chengdu 610054, Peoples R China. EM fuhao@uestc.edu.cn OI Hadimani, Ravi/0000-0001-5939-556X FU National Natural Science Foundation of China [51271049]; Barbara and James Palmer endowment at the Department of Electrical and Computer Engineering of Iowa State University FX This work was supported by the National Natural Science Foundation of China (No. 51271049). This work was also funded by Barbara and James Palmer endowment at the Department of Electrical and Computer Engineering of Iowa State University. NR 18 TC 0 Z9 0 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 14 PY 2014 VL 116 IS 18 AR 183908 DI 10.1063/1.4900782 PG 4 WC Physics, Applied SC Physics GA AT8ZB UT WOS:000345216300030 ER PT J AU Spirin, RE Salvadori, MC Teixeira, FS Sgubin, LG Cattani, M Brown, IG AF Spirin, R. E. Salvadori, M. C. Teixeira, F. S. Sgubin, L. G. Cattani, M. Brown, I. G. TI Nanocomposite formed by titanium ion implantation into alumina SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID DYNAMIC COMPOSITION CHANGES; GOLD NANOPARTICLES; RESISTIVITY; SIMULATION; CERAMICS; POLYMER; TRIDYN AB Composites of titanium nanoparticles in alumina were formed by ion implantation of titanium into alumina, and the surface electrical conductivity measured in situ as the implantation proceeded, thus generating curves of sheet conductivity as a function of dose. The implanted titanium self-conglomerates into nanoparticles, and the spatial dimensions of the buried nanocomposite layer can thus be estimated from the implantation depth profile. Rutherford backscattering spectrometry was performed to measure the implantation depth profile, and was in good agreement with the calculated profile. Transmission electron microscopy of the titanium-implanted alumina was used for direct visualization of the nanoparticles formed. The measured conductivity of the buried layer is explained by percolation theory. We determine that the saturation dose, phi(0), the maximum implantation dose for which the nanocomposite material still remains a composite, is phi(0) = 2.2 x 10(16) cm(-2), and the corresponding saturation conductivity is sigma(0) = 480 S/m. The percolation dose phi(c), below which the nanocomposite still has basically the conductivity of the alumina matrix, was found to be phi(c) = 0.84 x 10(16) cm(-2). The experimental results are discussed and compared with a percolation theory model. (C) 2014 AIP Publishing LLC. C1 [Spirin, R. E.] Univ Sao Paulo, Polytech Sch, BR-05508970 Sao Paulo, Brazil. [Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Cattani, M.] Univ Sao Paulo, Inst Phys, BR-05314970 Sao Paulo, Brazil. [Brown, I. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Salvadori, MC (reprint author), Univ Sao Paulo, Inst Phys, CP 66318, BR-05314970 Sao Paulo, Brazil. EM mcsalvadori@if.usp.br RI Salvadori, Maria Cecilia/A-9379-2013 FU Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil FX This work was supported by the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) and the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil. We are grateful to the Institute of Ion Beam Physics and Materials Research at the Forschungszentrum Dresden-Rossendorf, Germany, for the TRIDYN-FZR computer simulation code. NR 30 TC 0 Z9 0 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 14 PY 2014 VL 116 IS 18 AR 184306 DI 10.1063/1.4901643 PG 6 WC Physics, Applied SC Physics GA AT8ZB UT WOS:000345216300041 ER PT J AU Yang, C Zarkadoula, E Dove, MT Todorov, IT Geisler, T Brazhkin, VV Trachenko, K AF Yang, C. Zarkadoula, E. Dove, M. T. Todorov, I. T. Geisler, T. Brazhkin, V. V. Trachenko, K. TI Solid-state diffusion in amorphous zirconolite SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID RADIATION-DAMAGE; MOLECULAR-DYNAMICS; NUCLEAR-WASTE; PLUTONIUM; IMMOBILIZATION; CERAMICS; AMORPHIZATION; DISPOSITION AB We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste. (C) 2014 AIP Publishing LLC. C1 [Yang, C.; Zarkadoula, E.; Dove, M. T.; Trachenko, K.] Queen Mary Univ London, Sch Phys & Astron, London E1 4NS, England. [Zarkadoula, E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Todorov, I. T.] STFC Daresbury Lab, Warrington WA4 1EP, Cheshire, England. [Geisler, T.] Univ Bonn, Steinmann Inst Geol Mineral & Palaontol, D-53115 Bonn, Germany. [Brazhkin, V. V.] RAS, Inst High Pressure Phys, Moscow 142190, Russia. RP Yang, C (reprint author), Queen Mary Univ London, Sch Phys & Astron, Mile End Rd, London E1 4NS, England. RI Yang, Chenxing/B-4609-2016; OI Zarkadoula, Eva/0000-0002-6886-9664 FU QMUL Research-IT; EPSRC [EP/K000128/1]; CSC FX This research utilised Queen Mary's MidPlus computational facilities, supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1. We are grateful to E. Maddrell for discussions and to CSC for support. NR 28 TC 1 Z9 1 U1 3 U2 28 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 14 PY 2014 VL 116 IS 18 AR 184901 DI 10.1063/1.4901326 PG 6 WC Physics, Applied SC Physics GA AT8ZB UT WOS:000345216300054 ER PT J AU Neau, DB Bender, G Boeglin, WE Bartlett, SG Brash, AR Newcomer, ME AF Neau, David B. Bender, Gunes Boeglin, William E. Bartlett, Sue G. Brash, Alan R. Newcomer, Marcia E. TI Crystal Structure of a Lipoxygenase in Complex with Substrate THE ARACHIDONIC ACID-BINDING SITE OF 8R-LIPOXYGENASE SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article DE Arachidonic Acid (AA) (ARA); Eicosanoid Biosynthesis; Lipid Signaling; Lipoxygenase Pathway; Protein Structure; X-ray Crystallography ID ACTIVE-SITE; SOYBEAN LIPOXYGENASE-1; ARACHIDONIC-ACID; DATA QUALITY; FATTY-ACIDS; INHIBITION; SPECIFICITY; OXYGENATION; CATALYSIS; 15-LIPOXYGENASE AB Background: Lipoxygenases (LOX) catalyze the oxygenation of polyunsaturated fatty acids but generate distinct products from a common substrate. Results: We report the first structure of a LOX-substrate complex. Conclusion: The structure provides a context for understanding product specificity in enzymes that metabolize arachidonic acid. Significance: With roles in the production of potent lipid mediators, LOX are targets for drug design. Lipoxygenases (LOX) play critical roles in mammalian biology in the generation of potent lipid mediators of the inflammatory response; consequently, they are targets for the development of isoform-specific inhibitors. The regio- and stereo-specificity of the oxygenation of polyunsaturated fatty acids by the enzymes is understood in terms of the chemistry, but structural observation of the enzyme-substrate interactions is lacking. Although several LOX crystal structures are available, heretofore the rapid oxygenation of bound substrate has precluded capture of the enzyme-substrate complex, leaving a gap between chemical and structural insights. In this report, we describe the 2.0 angstrom resolution structure of 8R-LOX in complex with arachidonic acid obtained under anaerobic conditions. Subtle rearrangements, primarily in the side chains of three amino acids, allow binding of arachidonic acid in a catalytically competent conformation. Accompanying experimental work supports a model in which both substrate tethering and cavity depth contribute to positioning the appropriate carbon at the catalytic machinery. C1 [Bender, Gunes; Bartlett, Sue G.; Newcomer, Marcia E.] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA. [Neau, David B.] Cornell Univ, Argonne Natl Lab, Dept Chem & Chem Biol, Northeastern Collaborat Access Team, Argonne, IL 60439 USA. [Boeglin, William E.; Brash, Alan R.] Vanderbilt Univ, Dept Pharmacol, Sch Med, Nashville, TN 37232 USA. RP Newcomer, ME (reprint author), Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA. EM newcomer@lsu.edu FU Nation Institute of General Medical Sciences from the National Institutes of Health [P41 GM103403]; U. S. Department of Energy [DE-AC02-06CH11357] FX This work includes research conducted at the Advanced Photon Source on the Northeastern Collaborative Access Team beamlines, which are supported by a grant from the Nation Institute of General Medical Sciences (P41 GM103403) from the National Institutes of Health. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U. S. Department of Energy Office of Science by Argonne National Laboratory, was supported by the U. S. Department of Energy under Contract DE-AC02-06CH11357. NR 44 TC 14 Z9 15 U1 2 U2 15 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 EI 1083-351X J9 J BIOL CHEM JI J. Biol. Chem. PD NOV 14 PY 2014 VL 289 IS 46 BP 31905 EP 31913 DI 10.1074/jbc.M114.599662 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AU0LP UT WOS:000345314700021 PM 25231982 ER PT J AU Howe, JY Allard, LF Bigelow, WC Demers, H Overbury, SH AF Howe, Jane Y. Allard, Lawrence F. Bigelow, Wilbur C. Demers, Hendrix Overbury, Steven H. TI Understanding catalyst behavior during in situ heating through simultaneous secondary and transmitted electron imaging SO NANOSCALE RESEARCH LETTERS LA English DT Article DE Scanning transmission electron microscopy; Scanning electron microscopy; Catalyst; Phase transformation; In situ characterization ID HYDROGENATION REACTIONS; GOLD CATALYSTS; SINGLE ATOMS; MICROSCOPY; RESOLUTION; TEMPERATURES; PERFORMANCE; HEMATITE; SIZE AB By coupling techniques of simultaneous secondary (SE) and transmitted electron (TE) imaging at high resolution in a modern scanning transmission electron microscope (STEM), with the ability to heat specimens using a highly stable MEMS-based heating platform, we obtained synergistic information to clarify the behavior of catalysts during in situ thermal treatments. Au/iron oxide catalyst 'leached' to remove surface Au was heated to temperatures as high as 700 degrees C. The Fe2O3 support particle structure tended to reduce to Fe3O4 and formed surface terraces; the formation, coalescence, and mobility of 1- to 2-nm particles on the terraces were characterized in SE, STEM-ADF, and TEM-BF modes. If combined with simultaneous nanoprobe spectroscopy, this approach will open the door to a new way of studying the kinetics of nano-scaled phenomena. C1 [Howe, Jane Y.; Allard, Lawrence F.; Overbury, Steven H.] Oak Ridge Natl Lab, Phys Sci Directorate, Oak Ridge, TN 37831 USA. [Bigelow, Wilbur C.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48104 USA. [Demers, Hendrix] McGill Univ, Dept Min & Mat Engn, Montreal, PQ H3A 2B2, Canada. [Howe, Jane Y.] Hitachi High Technol Canada Inc, Toronto, ON M9W 6A4, Canada. RP Howe, JY (reprint author), Oak Ridge Natl Lab, Phys Sci Directorate, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM jane.howe@gmail.com RI Overbury, Steven/C-5108-2016; Howe, Jane/G-2890-2011 OI Overbury, Steven/0000-0002-5137-3961; FU US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, Propulsion Materials Program FX Microscopy research at the Oak Ridge National Laboratory's High Temperature Materials Laboratory was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, Propulsion Materials Program. This is a contributed paper and published as part of the Proceedings of the Microscopy and Microanalysis 2010, Portland, OR, USA, August, 2010. NR 24 TC 2 Z9 2 U1 4 U2 34 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1556-276X J9 NANOSCALE RES LETT JI Nanoscale Res. Lett. PD NOV 14 PY 2014 VL 9 AR 614 DI 10.1186/1556-276X-9-614 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AU2CH UT WOS:000345423100001 PM 25419195 ER PT J AU Muller, A Schippers, S Esteves-Macaluso, D Habibi, M Aguilar, A Kilcoyne, ALD Phaneuf, RA Ballance, CP McLaughlin, BM AF Mueller, A. Schippers, S. Esteves-Macaluso, D. Habibi, M. Aguilar, A. Kilcoyne, A. L. D. Phaneuf, R. A. Ballance, C. P. McLaughlin, B. M. TI Valence-shell photoionization of Ag-like Xe7+ ions: experiment and theory SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article DE photoionization; xenon ions; cross sections; experiment; theory ID ELECTRON-IMPACT EXCITATION; SINGLY-CHARGED XE; R-MATRIX METHOD; 4D PHOTOIONIZATION; ENERGY REGION; SCATTERING; KRYPTON AB We report on experimental and theoretical results for the photoionization of Ag-like xenon ions, Xe7+, in the photon energy range 95-145 eV. The measurements were carried out at the Advanced Light Source at an energy resolution of Delta E = 65 meV with additional measurements made at Delta E = 28 meV and 39 meV. Small resonance features below the ground-state ionization threshold, at about 106 eV, are due to the presence of metastable Xe7+(4d(10)4f F-2 degrees(5/2, 7/2)) ions in the ion beam. On the basis of the accompanying theoretical calculations using the Dirac atomic R-matrix codes (DARC), an admixture of only a few percent of metastable ions in the parent ion beam is inferred, with almost 100% of the parent ions in the (4d(10)5s S-2(1/2)) ground level. The cross section is dominated by a very strong resonance associated with 4d -> 5f excitation and subsequent autoionization. This prominent feature in the measured spectrum is the 4d(9)5s5f(2)P degrees resonance located at (122.139 +/- 0.01) eV. An absolute peak cross section of 1.2 Gigabarns was measured at 38 meV energy resolution. The experimental natural width Gamma = 76 +/- 3 meV of this resonance compares well with the theoretical estimate of 88 meV obtained from the DARC calculation with 249 target states. Given the complexity of the system, overall satisfactory agreement between theory and experiment is obtained for the photon energy region investigated. C1 [Mueller, A.; Schippers, S.] Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany. [Esteves-Macaluso, D.; Aguilar, A.; Kilcoyne, A. L. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Esteves-Macaluso, D.; Habibi, M.; Phaneuf, R. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Ballance, C. P.] Auburn Univ, Dept Phys, Allison Lab 206, Auburn, AL 36849 USA. [McLaughlin, B. M.] Queens Univ Belfast, Sch Math & Phys, CTAMOP, Belfast BT7 1NN, Antrim, North Ireland. [McLaughlin, B. M.] Harvard Smithsonian Ctr Astrophys, Inst Theoret Atom & Mol Phys, Cambridge, MA 02138 USA. RP Muller, A (reprint author), Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany. EM Alfred.Mueller@iamp.physik.uni-giessen.de; b.mclaughlin@qub.ac.uk RI Muller, Alfred/A-3548-2009; Kilcoyne, David/I-1465-2013; Schippers, Stefan/A-7786-2008 OI Muller, Alfred/0000-0002-0030-6929; Schippers, Stefan/0000-0002-6166-7138 FU Deutsche Forschungsgemeinschaft [Mu 1068/10]; US Department of Energy (DOE) [DE-AC03-76SF-00098, DE-FG02-03ER15424]; US Department of Energy (DoE) through Auburn University; US National Science Foundation; Queen's University Belfast; National Science Foundation [OCI-1053575]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX We acknowledge support by Deutsche Forschungsgemeinschaft under project number Mu 1068/10 as well as by the US Department of Energy (DOE) under contract DE-AC03-76SF-00098 and grant DE-FG02-03ER15424. C P Ballance was supported by US Department of Energy (DoE) grants through Auburn University. B M McLaughlin acknowledges support by the US National Science Foundation through a grant to ITAMP at the Harvard-Smithsonian Center for Astrophysics, a visiting research fellowship (VRF) from Queen's University Belfast and the hospitality of AM, SS and the University of Giessen. The computational work was carried out at the National Energy Research Scientific Computing Center in Oakland, CA, USA, the Kraken XT5 facility at the National Institute for Computational Science (NICS) in Knoxville, TN, USA and at the High Performance Computing Center Stuttgart (HLRS) of the University of Stuttgart, Stuttgart, Germany. The Kraken XT5 facility is a resource of the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 44 TC 9 Z9 10 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 EI 1361-6455 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD NOV 14 PY 2014 VL 47 IS 21 AR 215202 DI 10.1088/0953-4075/47/21/215202 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA AS8KH UT WOS:000344497400009 ER PT J AU Schilter, D Pelmenschikov, V Wang, HX Meier, F Gee, LB Yoda, Y Kaupp, M Rauchfuss, TB Cramer, SP AF Schilter, David Pelmenschikov, Vladimir Wang, Hongxin Meier, Florian Gee, Leland B. Yoda, Yoshitaka Kaupp, Martin Rauchfuss, Thomas B. Cramer, Stephen P. TI Synthesis and vibrational spectroscopy of Fe-57-labeled models of [NiFe] hydrogenase: first direct observation of a nickel-iron interaction SO CHEMICAL COMMUNICATIONS LA English DT Article ID NUCLEAR RESONANT SCATTERING; ACTIVE-SITE; METAL-METAL; ELECTRON LOCALIZABILITY; DENSITY ANALYSIS; LOCALIZATION; PRECURSORS; COMPLEXES; STATE; RAMAN AB A new route to iron carbonyls has enabled synthesis of Fe-57-labeled [NiFe] hydrogenase mimic (OC)(3)Fe-57(pdt)Ni(dppe). Its study by nuclear resonance vibrational spectroscopy revealed Ni-Fe-57 vibrations, as confirmed by calculations. The modes are absent for [(OC)(3)Fe-57(pdt)Ni(dppe)](+), which lacks Ni-Fe-57 bonding, underscoring the utility of the analyses in identifying metal-metal interactions. C1 [Schilter, David; Rauchfuss, Thomas B.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Pelmenschikov, Vladimir; Meier, Florian; Kaupp, Martin] Tech Univ Berlin, Inst Chem, D-10623 Berlin, Germany. [Wang, Hongxin; Gee, Leland B.; Cramer, Stephen P.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Wang, Hongxin; Cramer, Stephen P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Yoda, Yoshitaka] JASRI, Sayo, Hyogo 6795198, Japan. RP Schilter, D (reprint author), Univ Illinois, Dept Chem, Urbana, IL 61801 USA. EM schilter@illinois.edu; spjcramer@ucdavis.edu RI Gee, Leland/H-1742-2014; Dr. Kaupp, Martin/K-9569-2016; OI Gee, Leland/0000-0002-5817-3997; Schilter, David/0000-0002-5720-6806 FU National Institutes of Health [GM061153-10, GM-65440]; U.S. Department of Energy Office of Biological and Environmental Research (DOE OBER); 'Unifying Concepts in Catalysis' initiative of the German Research Council; JASRI [2013A0032] FX Thanks are given to Drs Mark J. Nilges and Haijun Yao for assistance with EPR and LI-FDI-MS, respectively. Financial support was provided by the National Institutes of Health (GM061153-10 to T.B.R. and GM-65440 to S.P.C.), U.S. Department of Energy Office of Biological and Environmental Research (DOE OBER) (S.P.C.), and the 'Unifying Concepts in Catalysis' initiative of the German Research Council (V.P., F.M., and M.K.). NRVS experiments performed at SPring-8 BL09XU were funded by JASRI (beamtime proposal 2013A0032). NR 34 TC 4 Z9 4 U1 1 U2 48 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PD NOV 14 PY 2014 VL 50 IS 88 BP 13469 EP 13472 DI 10.1039/c4cc04572f PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA AS0KE UT WOS:000343965300010 PM 25237680 ER PT J AU Al-Hamdani, YS Alfe, D von Lilienfeld, OA Michaelides, A AF Al-Hamdani, Yasmine S. Alfe, Dario von Lilienfeld, O. Anatole Michaelides, Angelos TI Water on BN doped benzene: A hard test for exchange-correlation functionals and the impact of exact exchange on weak binding SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID BASIS-SET CONVERGENCE; HARTREE-FOCK PSEUDOPOTENTIALS; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; DER-WAALS INTERACTIONS; DIFFUSION MONTE-CARLO; AUGMENTED-WAVE METHOD; GAUSSIAN-BASIS SETS; BORON-NITRIDE; NONCOVALENT INTERACTIONS AB Density functional theory (DFT) studies of weakly interacting complexes have recently focused on the importance of van der Waals dispersion forces, whereas the role of exchange has received far less attention. Here, by exploiting the subtle binding between water and a boron and nitrogen doped benzene derivative (1,2-azaborine) we show how exact exchange can alter the binding conformation within a complex. Benchmark values have been calculated for three orientations of the water monomer on 1,2-azaborine from explicitly correlated quantum chemical methods, and we have also used diffusion quantum Monte Carlo. For a host of popular DFT exchange-correlation functionals we show that the lack of exact exchange leads to the wrong lowest energy orientation of water on 1,2-azaborine. As such, we suggest that a high proportion of exact exchange and the associated improvement in the electronic structure could be needed for the accurate prediction of physisorption sites on doped surfaces and in complex organic molecules. Meanwhile to predict correct absolute interaction energies an accurate description of exchange needs to be augmented by dispersion inclusive functionals, and certain non-local van der Waals functionals (optB88- and optB86b-vdW) perform very well for absolute interaction energies. Through a comparison with water on benzene and borazine (B3N3H6) we show that these results could have implications for the interaction of water with doped graphene surfaces, and suggest a possible way of tuning the interaction energy. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Al-Hamdani, Yasmine S.; Alfe, Dario; Michaelides, Angelos] Thomas Young Ctr, London WC1H 0AH, England. [Al-Hamdani, Yasmine S.; Alfe, Dario; Michaelides, Angelos] London Ctr Nanotechnol, London WC1H 0AH, England. [Al-Hamdani, Yasmine S.; Michaelides, Angelos] UCL, Dept Chem, London WC1H 0AJ, England. [Alfe, Dario] UCL, Dept Earth Sci, London WC1E 6BT, England. [von Lilienfeld, O. Anatole] Univ Basel, Inst Phys Chem, Dept Chem, CH-4056 Basel, Switzerland. [von Lilienfeld, O. Anatole] Argonne Natl Labs, Lemont, IL 60439 USA. RP Al-Hamdani, YS (reprint author), Thomas Young Ctr, 17-19 Gordon St, London WC1H 0AH, England. EM angelos.michaelides@ucl.ac.uk RI von Lilienfeld, O. Anatole/D-8529-2011; Alfe`, Dario/C-1521-2008; OI Alfe`, Dario/0000-0002-9741-8678; Michaelides, Angelos/0000-0002-9169-169X FU University College London; Argonne National Laboratory (ANL) through Thomas Young Centre-ANL initiative; European Research Council under European Union [616121]; Royal Society; Swiss National Science foundation [PPOOP2 138932]; Office of Science of the U.S. Department of Energy (DOE) [DEAC05-00OR22725]; Office of Science of the U.S. DOE [DE-AC02-06CH11357] FX We are grateful for support from University College London and Argonne National Laboratory (ANL) through the Thomas Young Centre-ANL initiative. Some of the research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 616121 (HeteroIce project). A. M. is supported by the Royal Society through a Wolfson Research Merit Award. O.A.v.L. acknowledges funding from the Swiss National Science foundation (Grant No. PPOOP2 138932). This research used resources as part of an INCITE project (awarded to D. A.) at the Oak Ridge National Laboratory (Titan) which is supported by the Office of Science of the U. S. Department of Energy (DOE) under Contract No. DEAC05-00OR22725. This research also used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U. S. DOE under Contract No. DE-AC02-06CH11357. In addition, we are grateful for computing resources provided by the London Centre for Nanotechnology and University College London. We would like to thank G. Tocci, C. Gattinoni, and R. Ramakrishnan for useful discussions. NR 110 TC 12 Z9 12 U1 1 U2 32 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 14 PY 2014 VL 141 IS 18 AR 18C530 DI 10.1063/1.4898356 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AT3PZ UT WOS:000344847600074 PM 25399195 ER PT J AU Feng, RR Guo, Y Wang, HF AF Feng, Ran-Ran Guo, Yuan Wang, Hong-Fei TI Reorientation of the "free OH" group in the top-most layer of air/water interface of sodium fluoride aqueous solution probed with sum-frequency generation vibrational spectroscopy SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SURFACE 2ND-HARMONIC GENERATION; LIQUID WATER-SURFACE; MOLECULAR-STRUCTURE; SFG-VS; THEORETICAL-ANALYSIS; SALT-SOLUTIONS; WATER/VAPOR INTERFACE; LANGMUIR MONOLAYER; HALIDE INTERFACES; ORIENTATION AB Many experimental and theoretical studies have established the specific anion, as well as cation, effects on the hydrogen-bond structures at the air/water interface of electrolyte solutions. However, the ion effects on the top-most layer of the air/water interface, which is signified by the non-hydrogenbonded so-called "free OH" group, have not been explicitly discussed or studied. In this report, we present the measurement of changes of the orientational angle of the "free OH" group at the air/water interface of the sodium fluoride (NaF) solutions at different concentrations using the interface selective sum-frequency generation vibrational spectroscopy (SFG-VS) in the ssp and ppp polarizations. The polarization dependent SFG-VS results show that the average tilt angle of the "free OH" changes from about 36.6 degrees +/- 0.5 degrees to 44.1 degrees +/- 0.6 degrees as the NaF concentration increases from 0 to 0.94 M (nearly saturated). Such tilt angle change is around the axis of the other O-H group of the same water molecule at the top-most layer at the air/water interface that is hydrogen-bonded to the water molecules below the top-most layer. These results provide quantitative molecular details of the ion effects of the NaF salt on the structure of the water molecules at the top-most layer of the air/water interface, even though both the Na+ cation and the F- anion are believed to be among the most excluded ions from the air/water interface. (C) 2014 AIP Publishing LLC. C1 [Feng, Ran-Ran] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China. [Guo, Yuan] Chinese Acad Sci, Beijing Natl Lab Mol Sci, Inst Chem, Beijing 100190, Peoples R China. [Wang, Hong-Fei] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wang, HF (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM hongfei.wang@pnnl.gov RI Wang, Hongfei/B-1263-2010 OI Wang, Hongfei/0000-0001-8238-1641 FU Natural Science Foundation of China (NSFC) [20425309, 20533070, 20773143, 20673122]; Ministry of Science and Technology of China (MOST) [2007CB815205]; Pacific Northwest National Laboratory (PNNL) LDRD program; Department of Energy's Office of Biological and Environmental Research (BER) FX SFG-VS data in this report were collected at the Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, where R.-R.F. was a graduate student during 2005-2010, and H.-F.W. was a professor during 1999-2009. R.-R.F. thanks the helpful discussion from Wei Gan, Zhen Zhang, and Hong-Tao Bian. H.-F.W. thanks the helpful discussion from Chuanshan Tian. H.-F.W. also thanks the support by the Natural Science Foundation of China (NSFC, Grant Nos. 20425309, 20533070, and 20773143) and the Ministry of Science and Technology of China (MOST No. 2007CB815205). Y.G. thanks the support by the Natural Science Foundation of China (NSFC, Grant No. 20673122). Part of this work was supported by the Pacific Northwest National Laboratory (PNNL) LDRD program, and was conducted at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility located at the Pacific Northwest National Laboratory and sponsored by the Department of Energy's Office of Biological and Environmental Research (BER). NR 102 TC 6 Z9 6 U1 4 U2 47 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 14 PY 2014 VL 141 IS 18 AR 18C507 DI 10.1063/1.4895561 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AT3PZ UT WOS:000344847600051 PM 25399172 ER PT J AU Jones, RE Ward, DK Templeton, JA AF Jones, R. E. Ward, D. K. Templeton, J. A. TI Spatial resolution of the electrical conductance of ionic fluids using a Green-Kubo method SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; STATISTICAL-MECHANICAL THEORY; TRANSPORT-COEFFICIENTS; IRREVERSIBLE-PROCESSES; THERMAL-CONDUCTIVITY; ATOMISTIC SIMULATION; RECIPROCAL RELATIONS; LIQUID FLOW; FORMULAS; SYSTEMS AB We present a Green-Kubo method to spatially resolve transport coefficients in compositionally heterogeneous mixtures. We develop the underlying theory based on well-known results from mixture theory, Irving-Kirkwood field estimation, and linear response theory. Then, using standard molecular dynamics techniques, we apply the methodology to representative systems. With a homogeneous salt water system, where the expectation of the distribution of conductivity is clear, we demonstrate the sensitivities of the method to system size, and other physical and algorithmic parameters. Then we present a simple model of an electrochemical double layer where we explore the resolution limit of the method. In this system, we observe significant anisotropy in the wall-normal vs. transverse ionic conductances, as well as near wall effects. Finally, we discuss extensions and applications to more realistic systems such as batteries where detailed understanding of the transport properties in the vicinity of the electrodes is of technological importance. (C) 2014 AIP Publishing LLC. C1 [Jones, R. E.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. [Ward, D. K.] Sandia Natl Labs, Mat Chem Dept, Livermore, CA 94550 USA. [Templeton, J. A.] Sandia Natl Labs, Thermal Fluid Sci & Engn Dept, Livermore, CA 94550 USA. RP Jones, RE (reprint author), Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. FU Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratory; Advanced Simulation and Computing (ASC) program at Sandia National Laboratory; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development (LDRD) and Advanced Simulation and Computing (ASC) programs at Sandia National Laboratories. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors are grateful to J. Lechman, K. Mandadapu, and J. Zimmerman for helpful comments on a draft of this paper. NR 78 TC 1 Z9 1 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 14 PY 2014 VL 141 IS 18 AR 184110 DI 10.1063/1.4901035 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AT3PZ UT WOS:000344847600014 PM 25399135 ER PT J AU Kimmel, GA Zubkov, T Smith, RS Petrik, NG Kay, BD AF Kimmel, Greg A. Zubkov, Tykhon Smith, R. Scott Petrik, Nikolay G. Kay, Bruce D. TI Turning things downside up: Adsorbate induced water flipping on Pt(111) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID AMORPHOUS SOLID WATER; MOLECULAR-DYNAMICS; FUNDAMENTAL-ASPECTS; QUADRUPOLE-MOMENTS; METAL-SURFACES; ICE FILMS; ADSORPTION; INTERFACES; KINETICS; GROWTH AB We have examined the adsorption of the weakly bound species N-2, O-2, CO, and Kr on the (root 37 x root 37)R25.3 degrees water monolayer on Pt(111) using a combination of molecular beam dosing, infrared reflection absorption spectroscopy, and temperature programmed desorption. In contrast to multilayer crystalline ice, the adsorbate-free water monolayer is characterized by a lack of dangling OH bonds protruding into the vacuum (H-up). Instead, the non-hydrogen-bonded OH groups are oriented downward (H-down) to maximize their interaction with the underlying Pt(111) substrate. Adsorption of Kr and O-2 have little effect on the structure and vibrational spectrum of the "root 37" water monolayer while adsorption of both N-2, and CO are effective in "flipping" H-down water molecules into an H-up configuration. This "flipping" occurs readily upon adsorption at temperatures as low as 20 K and the water monolayer transforms back to the H-down, "root 37" structure upon adsorbate desorption above 35 K, indicating small energy differences and barriers between the H-down and H-up configurations. The results suggest that converting water in the first layer from H-down to Hup is mediated by the electrostatic interactions between the water and the adsorbates. (C) 2014 AIP Publishing LLC. C1 [Kimmel, Greg A.; Zubkov, Tykhon; Smith, R. Scott; Petrik, Nikolay G.; Kay, Bruce D.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Kimmel, GA (reprint author), Pacific NW Natl Lab, Div Phys Sci, MSIN K8-88,POB 999, Richland, WA 99352 USA. EM gregory.kimmel@pnnl.gov; bruce.kay@pnnl.gov RI Smith, Scott/G-2310-2015; Petrik, Nikolay/G-3267-2015; OI Smith, Scott/0000-0002-7145-1963; Petrik, Nikolay/0000-0001-7129-0752; Kimmel, Greg/0000-0003-4447-2440 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; DOE's Office of Biological and Environmental Research; DOE [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The research was performed using EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated by Battelle operated for the DOE under Contract No. DE-AC05-76RL01830. NR 55 TC 4 Z9 4 U1 1 U2 37 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 14 PY 2014 VL 141 IS 18 AR 18C515 DI 10.1063/1.4896226 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AT3PZ UT WOS:000344847600059 PM 25399180 ER PT J AU Molinero, V Kay, BD AF Molinero, Valeria Kay, Bruce D. TI Preface: Special Topic on Interfacial and Confined Water SO JOURNAL OF CHEMICAL PHYSICS LA English DT Editorial Material AB This special topic on the chemical physics of interfacial and confined water contains a collection of original research papers that showcase recent theoretical and experimental advances in the field. These papers provide a timely discussion of fundamental aspects of interfacial and confined water that are important in both natural environments and engineered applications. (C) 2014 AIP Publishing LLC. C1 [Molinero, Valeria] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. [Kay, Bruce D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Molinero, V (reprint author), Univ Utah, Dept Chem, 315 South 1400 East, Salt Lake City, UT 84112 USA. EM valeria.molinero@utah.edu; bruce.kay@pnnl.gov NR 0 TC 1 Z9 1 U1 1 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 14 PY 2014 VL 141 IS 18 AR 18C101 DI 10.1063/1.4900822 PG 2 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AT3PZ UT WOS:000344847600044 PM 25399165 ER PT J AU Sellner, B Kathmann, SM AF Sellner, Bernhard Kathmann, Shawn M. TI A matter of quantum voltages SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CORRELATED MOLECULAR CALCULATIONS; ATOMIC SCATTERING FACTORS; GAUSSIAN-BASIS SETS; ELECTRON HOLOGRAPHY; PROGRAM SYSTEM; FREE-ENERGY; DENSITY; POTENTIALS; WATER; APPROXIMATION AB Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (V-o) - the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate V-o from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of V-o for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict V-o as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms. (C) 2014 AIP Publishing LLC. C1 [Sellner, Bernhard; Kathmann, Shawn M.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Kathmann, SM (reprint author), Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. EM Shawn.Kathmann@pnnl.gov FU Office of Science of the U.S. Department of Energy [DEAC02-05CH11231] FX We would like to gratefully acknowledge helpful discussions with Bernd Kabius, Christopher J. Mundy, and Gregory K. Schenter. This work was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for the U.S. Department of Energy (DOE) by Battelle. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DEAC02-05CH11231. NR 60 TC 7 Z9 7 U1 0 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 14 PY 2014 VL 141 IS 18 AR 18C534 DI 10.1063/1.4898797 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AT3PZ UT WOS:000344847600078 PM 25399199 ER PT J AU Thurmer, K Nie, S Feibelman, PJ Bartelt, NC AF Thuermer, Konrad Nie, Shu Feibelman, Peter J. Bartelt, Norman C. TI Clusters, molecular layers, and 3D crystals of water on Ni(111) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; BASIS-SET; ADSORPTION; H2O; ICE; PT(111); METALS; OXYGEN; NUCLEATION AB We examined the growth and stability of ice layers on Ni(111) up to similar to 7 molecular layers (ML) thick using scanning tunneling microscopy. At low coverage, films were comprised of similar to 1 nm wide two-dimensional (2D) clusters. Only above similar to 0.5 ML did patches of continuous 2D layers emerge, coexisting with the clusters until the first ML was complete. The structure of the continuous layer is clearly different from that of the 2D clusters. Subsequently, a second molecular layer grew on top of the first. 3D crystallites started to form only after this 2nd ML was complete. 2D clusters re-appeared when thicker films were partially evaporated, implying that these clusters represent the equilibrium configuration at low coverage. Binding energies and image simulations computed with density functional theory suggest that the 2D clusters are partially dissociated and surrounded by H adatoms. The complete 2D layer contains only intact water molecules because of the lack of favorable binding sites for H atoms. We propose molecular structures for the 2D layer that are composed of the same pentagon-heptagon binding motif and water density observed on Pt(111). The similarity of the water structures on Pt and Ni suggests a general prescription for generating low-energy configurations on close-packed metal substrates. (C) 2014 AIP Publishing LLC. C1 [Thuermer, Konrad; Nie, Shu; Bartelt, Norman C.] Sandia Natl Labs, Livermore, CA 94550 USA. [Feibelman, Peter J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Thurmer, K (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. RI Thurmer, Konrad/L-4699-2013 OI Thurmer, Konrad/0000-0002-3078-7372 FU DOE Office of Basic Energy Sciences, Division of Materials Science and Engineering; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the DOE Office of Basic Energy Sciences, Division of Materials Science and Engineering. Sandia is operated by the Lockheed Martin Co. for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. VASP was developed at T. U. Wien's Institut fur Theoretische Physik. We thank an anonymous reviewer for making the interesting suggestion that configurational entropy might favor low coverage clusters. NR 48 TC 3 Z9 4 U1 9 U2 52 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 14 PY 2014 VL 141 IS 18 AR 18C520 DI 10.1063/1.4896300 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AT3PZ UT WOS:000344847600064 PM 25399185 ER PT J AU White, AJ Gorshkov, VN Wang, RX Tretiak, S Mozyrsky, D AF White, Alexander J. Gorshkov, Vyacheslav N. Wang, Ruixi Tretiak, Sergei Mozyrsky, Dmitry TI Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID QUANTUM-CLASSICAL DYNAMICS; EXCITED-STATE DYNAMICS; BORN-OPPENHEIMER TRAJECTORIES; DENSITY-FUNCTIONAL THEORY; CHARGE-TRANSFER; ELECTRONIC DEGREES; SCATTERING THEORY; TIME; SYSTEMS; DECOHERENCE AB Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement. (C) 2014 AIP Publishing LLC. C1 [White, Alexander J.; Gorshkov, Vyacheslav N.; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [White, Alexander J.; Tretiak, Sergei] Los Alamos Natl Lab, Ctr Nonlinear Studies CNLS, Los Alamos, NM 87545 USA. [Gorshkov, Vyacheslav N.] Natl Tech Univ Ukraine, UA-03056 Kiev, Ukraine. [Wang, Ruixi] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. [Tretiak, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA. RP White, AJ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM serg@lanl.gov; mozyrsky@lanl.gov RI Tretiak, Sergei/B-5556-2009; Gorshkov, Vyacheslav/J-3329-2015; White, Alexander/D-8754-2014; OI Tretiak, Sergei/0000-0001-5547-3647; Gorshkov, Vyacheslav/0000-0002-7700-5649; White, Alexander/0000-0002-7771-3899; Mozyrsky, Dima/0000-0001-5305-4617 FU U.S. Department of Energy through the Los Alamos National Laboratory (LANL) LDRD Program; U.S. Department of Energy [DE-AC52-06NA25396]; Center for Nonlinear Studies (CNLS); Center for Integrated Nanotechnology (CINT) at LANL FX We acknowledge the support of the U.S. Department of Energy through the Los Alamos National Laboratory (LANL) LDRD Program. LANL is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. We acknowledge the support of the Center for Nonlinear Studies (CNLS) and the Center for Integrated Nanotechnology (CINT) at LANL. We also thank J.E. Subotnik for sharing his numerical results reported in Ref. 48. NR 83 TC 6 Z9 6 U1 1 U2 34 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 14 PY 2014 VL 141 IS 18 AR 184101 DI 10.1063/1.4900988 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AT3PZ UT WOS:000344847600005 PM 25399126 ER PT J AU Campbell, PG Merrill, MD Wood, BC Montalvo, E Worsley, MA Baumann, TF Biener, J AF Campbell, P. G. Merrill, M. D. Wood, B. C. Montalvo, E. Worsley, M. A. Baumann, T. F. Biener, J. TI Battery/supercapacitor hybrid via non-covalent functionalization of graphene macro-assemblies SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID ELECTROCHEMICAL ENERGY-STORAGE; HIGH-SURFACE-AREA; CARBON NANOTUBES; SUPERCAPACITOR ELECTRODES; NEUTRON-SCATTERING; ANTHRAQUINONE; PERFORMANCE; CAPACITORS; PHENANTHRENEQUINONE; DEPOSITION AB Binder-free, monolithic, high surface area graphene macro-assemblies (GMAs) are promising materials for supercapacitor electrodes, but, like all graphitic carbon based supercapacitor electrodes, still tack sufficient energy density for demanding practical applications. Here, we demonstrate that the energy storage capacity of GMAs can be increased nearly 3-fold (up to 23 W h kg(-1)) by facile, non-covalent surface modification with anthraquinone (AQ). AQ provides battery-like redox charge storage (927 C g(-1)) without affecting the conductivity and capacitance of the GMA support. The resulting AQ-GMA battery/supercapacitor hybrid electrodes demonstrate excellent power performance, show remarkable long-term cycling stability and, by virtue of their excellent mechanical properties, allow for further increases in volumetric energy density by mechanical compression of the treated electrode. Our measured capacity is very close to the theoretical maximum obtained using detailed density functional theory calculations, suggesting nearly all incorporated AQ is made available for charge storage. C1 [Campbell, P. G.; Merrill, M. D.; Wood, B. C.; Montalvo, E.; Worsley, M. A.; Baumann, T. F.; Biener, J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Campbell, PG (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave L-367, Livermore, CA 94550 USA. EM campbell82@llnl.gov OI Campbell, Patrick/0000-0003-0167-4624; Worsley, Marcus/0000-0002-8012-7727 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE Office of Energy Efficiency and Renewable Energy; Lawrence Livermore National Laboratory Directed Research and Development (LDRD) [12-ERD-035] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Funding was provided by the DOE Office of Energy Efficiency and Renewable Energy, and the Lawrence Livermore National Laboratory Directed Research and Development (LDRD) Grant 12-ERD-035. NR 36 TC 12 Z9 12 U1 9 U2 71 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PD NOV 14 PY 2014 VL 2 IS 42 BP 17764 EP 17770 DI 10.1039/c4ta03605k PG 7 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA AS0IO UT WOS:000343961300009 ER PT J AU Mancini, A Barbieri, VR Neuefeind, JC Page, K Malavasi, L AF Mancini, Alessandro Barbieri, Victoria Raissa Neuefeind, Joerg C. Page, Katharine Malavasi, Lorenzo TI Correlation between the local scale structure and the electrochemical properties in lithium orthosilicate cathode materials SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID ELECTRICAL ENERGY-STORAGE; CRYSTAL-STRUCTURE; LI2MNSIO4; LI2FESIO4; BATTERY; POLYMORPH; CHEMISTRY AB Lithium metal orthosilicates with general formula Li2MSiO4 (M = Mn, Fe and Co) are among the most attractive new materials as potential high-specific-energy cathodes for lithium batteries. All the members of this family present a rich polymorphism with at least three clearly identified crystal structures of each Li2MSiO4 compound. Several theoretical investigations have highlighted that the energy stability of the different polymorphs is very close to each other irrespective of their average crystal structures. At the same time, the calculated and experimental electrochemical performances are again very similar among different polymorphs. By means of neutron total scattering investigation of different polymorphs (monoclinic and orthorhombic) of Li2FeSiO4 and Li2MnSiO4 orthosilicates coupled to Pair Distribution Function (PDF) analysis we showed that, at the local scale, all the polymorphs have the same structure (in particular the structure of the monoclinic polymorph) irrespective of the average structure they possess. This experimental evidence of a strong similarity at the local scale can be correlated with the observed electrochemical similarity (such as the lithium extraction voltages) among the different orthosilicate polymorphs, thus providing an approach to elucidate the relevance of local versus long-range structure. C1 [Mancini, Alessandro; Barbieri, Victoria Raissa; Malavasi, Lorenzo] Univ Pavia, Dept Chem, I-27100 Pavia, Italy. [Mancini, Alessandro; Barbieri, Victoria Raissa; Malavasi, Lorenzo] Univ Pavia, INSTM, I-27100 Pavia, Italy. [Neuefeind, Joerg C.; Page, Katharine] Oak Ridge Natl Lab, Chem & Engn Mat Div, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Page, Katharine] Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Malavasi, L (reprint author), Univ Pavia, Dept Chem, I-27100 Pavia, Italy. EM lorenzo.malavasi@unipv.it RI Page, Katharine/C-9726-2009; Neuefeind, Joerg/D-9990-2015; Malavasi, Lorenzo/P-1966-2016; OI Page, Katharine/0000-0002-9071-3383; Neuefeind, Joerg/0000-0002-0563-1544; Malavasi, Lorenzo/0000-0003-4724-2376 FU INTSM-RL research project "ATLANTE"; Scientific User Facilities Division, Office of Basic Energy Sciences; US Department of Energy; Department of Energy Office of Basic Energy Sciences FX Funding from the INTSM-RL research project "ATLANTE" is acknowledged. Research conducted at the ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, and US Department of Energy. This work has benefited from the use of the Lujan Center at the Los Alamos Neutron Science Center, funded by the Department of Energy Office of Basic Energy Sciences. NR 23 TC 3 Z9 3 U1 9 U2 41 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PD NOV 14 PY 2014 VL 2 IS 42 BP 17867 EP 17874 DI 10.1039/c4ta04063e PG 8 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA AS0IO UT WOS:000343961300021 ER PT J AU Chen, L Liu, YZ Ashuri, M Liu, CH Shaw, LL AF Chen, Lin Liu, Yuzi Ashuri, Maziar Liu, Caihong Shaw, Leon L. TI Li2S encapsulated by nitrogen-doped carbon for lithium sulfur batteries SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID CATHODE MATERIAL; ION BATTERIES; HIGH-CAPACITY; S BATTERIES; CYCLE LIFE; PERFORMANCE; PARTICLES; COMPOSITE; SILICON; CELLS AB Using high-energy ball milling of the Li2S plus carbon black mixture followed by carbonization of pyrrole, we have established a facile approach to synthesize Li2S-plus-C composite particles of average size similar to 400 nm, encapsulated by a nitrogen-doped carbon shell. Such an engineered core-shell structure exhibits an ultrahigh initial discharge specific capacity (1029 mA h g(-1)), reaching 88% of the theoretical capacity (1165 mA h g(-1) of Li2S) and thus offering the highest utilization of Li2S in the cathode among all of the reported works for the encapsulated Li2S cathodes. This Li2S/C composite core with a nitrogen-doped carbon shell can still retain 652 mA h g(-1) after prolonged 100 cycles. These superior properties are attributed to the nitrogen-doped carbon shell that can improve the conductivity to enhance the utilization of Li2S in the cathode. Fine particle sizes and the presence of carbon black within the Li2S core may also play a role in high utilization of Li2S in the cathode. C1 [Chen, Lin; Ashuri, Maziar; Liu, Caihong; Shaw, Leon L.] Wanger Inst Sustainable Energy Res, Chicago, IL 60616 USA. [Chen, Lin; Ashuri, Maziar; Liu, Caihong; Shaw, Leon L.] IIT, Dept Mech Mat & Aerosp Engn, Chicago, IL 60616 USA. [Liu, Yuzi] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Chen, L (reprint author), Wanger Inst Sustainable Energy Res, Chicago, IL 60616 USA. EM lshaw2@iit.edu RI Ashuri, Maziar/K-3413-2015; Liu, Caihong/I-3222-2014; Liu, Yuzi/C-6849-2011 OI Ashuri, Maziar/0000-0001-8610-1643; Liu, Caihong/0000-0002-8582-912X; FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-06CH11357. The authors also would like to thank Jose Orozco for training of multiply instruments at IIT, Dr Nancy L. Dietz Rago for FESEM training at ANL, and Dr Xiao-min Lin at ANL for offering us the Gatan vacuum transfer holder for EFTEM measurement. NR 39 TC 33 Z9 33 U1 8 U2 135 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PD NOV 14 PY 2014 VL 2 IS 42 BP 18026 EP 18032 DI 10.1039/c4ta04103h PG 7 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA AS0IO UT WOS:000343961300041 ER PT J AU Velasco-Velez, JJ Wu, CH Pascal, TA Wan, LWF Guo, JH Prendergast, D Salmeron, M AF Velasco-Velez, Juan-Jesus Wu, Cheng Hao Pascal, Tod A. Wan, Liwen F. Guo, Jinghua Prendergast, David Salmeron, Miquel TI The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy SO SCIENCE LA English DT Article ID FREQUENCY VIBRATIONAL SPECTROSCOPY; AU(111) SURFACE; MOLECULES; ADSORPTION; RU(0001); FORCE; LAYER AB The molecular structure of the electrical double layer determines the chemistry in all electrochemical processes. Using x-ray absorption spectroscopy (XAS), we probed the structure of water near gold electrodes and its bias dependence. Electron yield XAS detected at the gold electrode revealed that the interfacial water molecules have a different structure from those in the bulk. First principles calculations revealed that similar to 50% of the molecules lie flat on the surface with saturated hydrogen bonds and another substantial fraction with broken hydrogen bonds that do not contribute to the XAS spectrum because their core-excited states are delocalized by coupling with the gold substrate. At negative bias, the population of flat-lying molecules with broken hydrogen bonds increases, producing a spectrum similar to that of bulk water. C1 [Velasco-Velez, Juan-Jesus; Wu, Cheng Hao; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wu, Cheng Hao] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Pascal, Tod A.; Wan, Liwen F.; Prendergast, David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Joint Ctr Energy Storage Res, Berkeley, CA 94720 USA. [Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Guo, Jinghua] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM mbsalmeron@lbl.gov RI Wu, Cheng Hao/C-9565-2014; Foundry, Molecular/G-9968-2014 FU Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering, of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; Alexander von Humboldt Foundation, Germany; Joint Center for Energy Storage Research, an Energy Innovation Hub - U.S. DOE; DOE-BES; DOE-Advanced Scientific Computing Research; DOE Office of Science [DE-AC02-05CH11231] FX This work was supported by the Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering, of the U.S. Department of Energy (DOE) under contract no. DE-AC02-05CH11231 (through the Chemical and Mechanical Properties of Surfaces, Interfaces and Nanostructures program). J.-J.V.-V. acknowledges financial support from the Alexander von Humboldt Foundation, Germany. C.H.W. acknowledges the Advanced Light Source (ALS) Doctoral Fellowship in Residence. Theory and simulations by T.A.P., L.F.W., and D.P. were supported by the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. DOE and facilitated by a user project at the Molecular Foundry. Computations were performed with the computing resources of the National Energy Research Scientific Computing Center (NERSC). The ALS and Molecular Foundry (supported by DOE-BES) and NERSC (supported by DOE-Advanced Scientific Computing Research) are DOE Office of Science User Facilities, supported by the DOE Office of Science under contract no. DE-AC02-05CH11231. We thank C.-H. Chuang, B.-Y. Wang, D. Zhang, X. Feng, and M. W. West for support at the beamline. We also thank J. Zhang for help with AFM imaging and C. Das Pemmaraju, C. Schwartz, P. Ross, J. Colchero, G. Thornton, H. Fang, and S. Harris for useful discussions. NR 34 TC 55 Z9 56 U1 24 U2 193 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 14 PY 2014 VL 346 IS 6211 BP 831 EP 834 DI 10.1126/science.1259437 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AT0YL UT WOS:000344659900039 PM 25342657 ER PT J AU Romps, DM Seeley, JT Vollaro, D Molinari, J AF Romps, David M. Seeley, Jacob T. Vollaro, David Molinari, John TI Projected increase in lightning strikes in the United States due to global warming SO SCIENCE LA English DT Article ID CLIMATE-CHANGE; CONVECTIVE RAINFALL; PRECIPITATION; DISTRIBUTIONS; FREQUENCY; PARAMETERIZATION; RADAR; FIRE; NOX AB Lightning plays an important role in atmospheric chemistry and in the initiation of wildfires, but the impact of global warming on lightning rates is poorly constrained. Here we propose that the lightning flash rate is proportional to the convective available potential energy (CAPE) times the precipitation rate. Using observations, the product of CAPE and precipitation explains 77% of the variance in the time series of total cloud-toground lightning flashes over the contiguous United States (CONUS). Storms convert CAPE times precipitated water mass to discharged lightning energy with an efficiency of 1%. When this proxy is applied to 11 climate models, CONUS lightning strikes are predicted to increase 12 +/- 5% per degree Celsius of global warming and about 50% over this century. C1 [Romps, David M.; Seeley, Jacob T.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Romps, David M.; Seeley, Jacob T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Vollaro, David; Molinari, John] SUNY Albany, Dept Atmospher & Environm Sci, Albany, NY 12222 USA. RP Romps, DM (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM romps@berkeley.edu RI Romps, David/F-8285-2011; OI Seeley, Jacob/0000-0003-0769-292X FU Scientific Discovery through Advanced Computing (SciDAC) program - U.S. Department of Energy Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research; U.S. Department of Energy's Earth System Modeling, an Office of Science, Office of Biological and Environmental Research program [DE-AC02-05CH11231]; National Science Foundation (NSF) Graduate Research Fellowship [DGE1106400]; NSF [AGS1132576] FX D.M.R. acknowledges support from the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research, and by the U.S. Department of Energy's Earth System Modeling, an Office of Science, Office of Biological and Environmental Research program under contract no. DE-AC02-05CH11231. J.T.S. acknowledges support from the National Science Foundation (NSF) Graduate Research Fellowship under grant no. DGE1106400. D.V. and J.M. acknowledge support from NSF under grant no. AGS1132576. Thanks are due to the SPARC data center for archiving the high-resolution radiosonde data and making them publicly available. The authors are also grateful to J. Paul, B. Lawrence, K. Sugioka, and N. Jeevanjee for their help with the precipitation data. Thanks also to three anonymous reviewers. Data sources are described in the online supplementary materials. NR 38 TC 51 Z9 51 U1 7 U2 89 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 14 PY 2014 VL 346 IS 6211 BP 851 EP 854 DI 10.1126/science.1259100 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AT0YL UT WOS:000344659900045 PM 25395536 ER PT J AU Agakishiev, G Arnold, O Belver, D Belyaev, A Berger-Chen, JC Blanco, A Bohmer, M Boyard, JL Cabanelas, P Chernenko, S Dybczak, A Epple, E Fabbietti, L Fateev, O Finocchiaro, P Fonte, P Friese, J Frohlich, I Galatyuk, T Garzon, JA Gernhauser, R Gobel, K Golubeva, M Gonzalez-Diaz, D Guber, F Gumbcridzc, M Hcinz, T Hcnnino, T Holzmann, R Icrusalimov, A Iori, I Ivashkin, A Jurkovic, M Kampfer, B Karavicheva, T Koenig, I Koenig, W Kolb, BW Korcyl, G Kornakov, G Kotte, R Krasa, A Krizek, F Krucken, R Kuc, H Kuhn, W Kugler, A Kunz, T Kurepin, A Ladygin, V Lalik, R Lapidus, K Lebedev, A Lopes, L Lorenz, M Maier, L Mangiarotti, A Markert, J Metag, V Michel, J Muntz, C Munzer, R Naumann, L Pachmayer, YC Palka, M Parpottas, Y Pechenov, V Pechenova, O Pietraszko, J Przygoda, W Ramstein, B Reshetin, A Rustamov, A Sadovsky, A Salabura, P Schmah, A Schwab, E Siebenson, J Sobolev, YG Spruck, B Strobele, II Stroth, J Sturm, C Tarantola, A Teilab, K Tlusty, P Traxler, M Tsertos, H Vasiliev, T Wagner, V Weber, M Wendisch, C Wustenfeld, J Yurevich, S Zanevsky, Y Gaitanos, T Weil, J AF Agakishiev, G. Arnold, O. Belver, D. Belyaev, A. Berger-Chen, J. C. Blanco, A. Boehmer, M. Boyard, J. L. Cabanelas, P. Chernenko, S. Dybczak, A. Epple, E. Fabbietti, L. Fateev, O. Finocchiaro, P. Fonte, P. Friese, J. Froehlich, I. Galatyuk, T. Garzon, J. A. Gernhaeuser, R. Goebel, K. Golubeva, M. Gonzalez-Diaz, D. Guber, F. Gumbcridzc, M. Hcinz, T. Hcnnino, T. Holzmann, R. Icrusalimov, A. Iori, I. Ivashkin, A. Jurkovic, M. Kaempfer, B. Karavicheva, T. Koenig, I. Koenig, W. Kolb, B. W. Korcyl, G. Kornakov, G. Kotte, R. Krasa, A. Krizek, F. Kruecken, R. Kuc, H. Kuehn, W. Kugler, A. Kunz, T. Kurepin, A. Ladygin, V. Lalik, R. Lapidus, K. Lebedev, A. Lopes, L. Lorenz, M. Maier, L. Mangiarotti, A. Markert, J. Metag, V. Michel, J. Muentz, C. Muenzer, R. Naumann, L. Pachmayer, Y. C. Palka, M. Parpottas, Y. Pechenov, V. Pechenova, O. Pietraszko, J. Przygoda, W. Ramstein, B. Reshetin, A. Rustamov, A. Sadovsky, A. Salabura, P. Schmah, A. Schwab, E. Siebenson, J. Sobolev, Yu. G. Spruck, B. Stroebele, I. I. Stroth, J. Sturm, C. Tarantola, A. Teilab, K. Tlusty, P. Traxler, M. Tsertos, H. Vasiliev, T. Wagner, V. Weber, M. Wendisch, C. Wuestenfeld, J. Yurevich, S. Zanevsky, Y. Gaitanos, T. Weil, J. CA HADES Collaboration TI Medium effects in proton-induced K-0 production at 3.5 GeV SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; STRANGE-PARTICLE PRODUCTION; K+-NUCLEUS SCATTERING; KAON PRODUCTION; P COLLISIONS; BEAM ENERGY; MATTER; CONDENSATION; MESONS; FLOW AB We present the analysis of the inclusive K-0 production in p + p and p + Nb collisions measured with the HADES detector (GSI Helmholtzzentrum for Heavy-Ion Research, Darmstadt) at a beam kinetic energy of 3.5 GeV. Data are compared to the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) transport model. The data suggest the presence of a repulsive momentum-dependent kaon potential as predicted by the chiral perturbation theory (ChPT). For the kaon at rest and at normal nuclear density, the ChPT potential amounts to approximate to 35 MeV. A detailed tuning of the kaon production cross sections implemented in the model has been carried out to reproduce the experimental data measured in p + p collisions. The uncertainties in the parameters of the model were examined with respect to the sensitivity of the experimental results from p + Nb collisions to the in-medium kaon potential. C1 [Agakishiev, G.; Belyaev, A.; Chernenko, S.; Fateev, O.; Icrusalimov, A.; Ladygin, V.; Vasiliev, T.; Zanevsky, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Arnold, O.; Berger-Chen, J. C.; Boehmer, M.; Epple, E.; Fabbietti, L.; Friese, J.; Gernhaeuser, R.; Jurkovic, M.; Kruecken, R.; Kunz, T.; Lalik, R.; Lapidus, K.; Maier, L.; Muenzer, R.; Siebenson, J.; Weber, M.] Tech Univ Munich, Dept Phys E12, D-85748 Garching, Germany. [Arnold, O.; Berger-Chen, J. C.; Epple, E.; Fabbietti, L.; Lalik, R.; Lapidus, K.; Muenzer, R.; Siebenson, J.] Origin & Struct Univ, Excellence Cluster, D-85748 Garching, Germany. [Belver, D.; Cabanelas, P.; Garzon, J. A.] Univ Santiago, Fac Fis, LabCAF, Santiago De Compostela 15706, Spain. [Blanco, A.; Fonte, P.; Lopes, L.; Mangiarotti, A.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-3004516 Coimbra, Portugal. [Boyard, J. L.; Hcnnino, T.; Kuc, H.; Ramstein, B.] Univ Paris 11, CNRS IN2P3, UMR 8608, Inst Phys Nucl, F-91406 Orsay, France. [Dybczak, A.; Korcyl, G.; Kuc, H.; Palka, M.; Przygoda, W.; Salabura, P.] Jagiellonian Univ, Smoluchowski Inst Phys, PL-30059 Krakow, Poland. [Finocchiaro, P.] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95125 Catania, Italy. [Froehlich, I.; Goebel, K.; Lorenz, M.; Markert, J.; Michel, J.; Muentz, C.; Pachmayer, Y. C.; Pechenova, O.; Rustamov, A.; Stroebele, I. I.; Tarantola, A.; Teilab, K.] Goethe Univ, Inst Kernphys, D-60438 Frankfurt, Germany. [Galatyuk, T.; Gonzalez-Diaz, D.; Gumbcridzc, M.; Kornakov, G.] Tech Univ Darmstadt, D-64289 Darmstadt, Germany. [Golubeva, M.; Guber, F.; Ivashkin, A.; Karavicheva, T.; Kurepin, A.; Reshetin, A.; Sadovsky, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Hcinz, T.; Holzmann, R.; Koenig, I.; Koenig, W.; Kolb, B. W.; Pechenov, V.; Pietraszko, J.; Schwab, E.; Stroth, J.; Sturm, C.; Traxler, M.; Yurevich, S.] GSI Helmholtzzentrum Schwerionenforsch, GmbH, D-64291 Darmstadt, Germany. [Iori, I.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Kaempfer, B.; Kotte, R.; Wendisch, C.; Wuestenfeld, J.] Helmholtz Zentrum Dresden Rossendorf, Inst Strahlenphys, D-01314 Dresden, Germany. [Krasa, A.; Krizek, F.; Kugler, A.; Sobolev, Yu. G.; Tlusty, P.; Wagner, V.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Kuehn, W.; Metag, V.; Spruck, B.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Lebedev, A.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Parpottas, Y.; Tsertos, H.] Univ Cyprus, Dept Phys, CY-1678 Nicosia, Cyprus. [Schmah, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Gaitanos, T.] Inst Theoret Phys I, D-35392 Giessen, Germany. [Weil, J.] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany. [Fonte, P.] ISEC Coimbra, Coimbra, Portugal. [Galatyuk, T.; Gumbcridzc, M.] EMMI, ExtreMe Matter Inst, D-64291 Darmstadt, Germany. [Galatyuk, T.; Gumbcridzc, M.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Kaempfer, B.; Wendisch, C.] Tech Univ Dresden, D-01062 Dresden, Germany. [Parpottas, Y.] Frederick Univ, CY-1036 Nicosia, Cyprus. RP Lapidus, K (reprint author), Tech Univ Munich, Dept Phys E12, D-85748 Garching, Germany. EM kirill.lapidus@ph.tum.de RI Mangiarotti, Alessio/I-1072-2012; Kruecken, Reiner/A-1640-2013; Blanco, Alberto/L-2520-2014; Guber, Fedor/I-4271-2013; Fonte, Paulo/B-1842-2008; Gonzalez Diaz, Diego/K-7265-2014; Cabanelas, Pablo/B-2034-2016; Gobel, Kathrin/B-8531-2016; Kurepin, Alexey/H-4852-2013 OI Tsertos, Charalambos/0000-0001-5966-343X; Finocchiaro, Paolo/0000-0001-7502-2229; Mangiarotti, Alessio/0000-0001-7837-6057; Kruecken, Reiner/0000-0002-2755-8042; Guber, Fedor/0000-0001-8790-3218; Fonte, Paulo/0000-0002-2275-9099; Weil, Janus/0000-0003-1218-0574; Blanco, Alberto/0000-0001-9827-8294; Gonzalez Diaz, Diego/0000-0002-6809-5996; Cabanelas, Pablo/0000-0002-5416-4647; Gobel, Kathrin/0000-0003-2832-8465; Kurepin, Alexey/0000-0002-1851-4136 FU LIP Coimbra, Coimbra (Portugal) [PTDC/FIS/113339/2009]; SIP JUC Cracow, Cracow (Poland) [NN202286038, NN202198639]; HZ Dresden-Rossendorf (HZDR), Dresden (Germany) [BMBF 06DR9059D]; TU Munchen, Garching (Germany) FX The HADES Collaboration gratefully acknowledges support by the grants LIP Coimbra, Coimbra (Portugal): PTDC/FIS/113339/2009; SIP JUC Cracow, Cracow (Poland): NN202286038 28-JAN-2010 and NN202198639 01-OCT-2010; HZ Dresden-Rossendorf (HZDR), Dresden (Germany): BMBF 06DR9059D; TU Munchen, Garching (Germany): MLL Munchen, DFG EClust 153, VH-NG-330, BMBF 06MT9156 TP5, GSI TMKrue 1012; NPI AS CR, Rez, Rez (Czech Republic): MSMT LC07050, GAASCR IAA100480803; USC S. de Compostela, Santiago de Compostela (Spain): CPAN:CSD2007-00042; Goethe University, Frankfurt (Germany): HA216/EMMI HIC for FAIR (LOEWE), BMBF:06FY9100I, GSI F&E EU Contract No. HP3-283286. NR 61 TC 7 Z9 7 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD NOV 13 PY 2014 VL 90 IS 5 AR UNSP 054906 DI 10.1103/PhysRevC.90.054906 PG 12 WC Physics, Nuclear SC Physics GA CA2WR UT WOS:000348766900004 ER PT J AU Tkachenko, S Dutta, D Ent, R Ispiryan, M AF Tkachenko, S. Dutta, D. Ent, R. Ispiryan, M. CA CLAS Collaboration TI Measurement of the structure function of the nearly free neutron using spectator tagging in inelastic H-2(e, e' p(s)) X scattering with CLAS (vol 89, 045206, 2014) SO PHYSICAL REVIEW C LA English DT Correction C1 [Dutta, D.] Mississippi State Univ, Mississippi State, MS 39762 USA. [Ent, R.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Ispiryan, M.] Univ Houston, Houston, TX 77004 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD NOV 13 PY 2014 VL 90 IS 5 AR 059901 DI 10.1103/PhysRevC.90.059901 PG 1 WC Physics, Nuclear SC Physics GA CA2WR UT WOS:000348766900007 ER PT J AU Wu, JJ Lee, TSH Thomas, AW Young, RD AF Wu, Jia-Jun Lee, T. -S. H. Thomas, A. W. Young, R. D. TI Finite-volume Hamiltonian method for coupled-channels interactions in lattice QCD SO PHYSICAL REVIEW C LA English DT Article ID NUCLEON RESONANCE REGION; MESON PRODUCTION; BAG MODEL; STATES AB Within a multichannel formulation of pp scattering, we investigate the use of the finite-volume Hamiltonian approach to resolve scattering observables from lattice QCD spectra. The asymptotic matching of the well-known Luscher formalism encodes a unique finite-volume spectrum. Nevertheless, in many practical situations, such as coupled-channels systems, it is advantageous to interpolate isolated lattice spectra in order to extract physical scattering parameters. Here we study the use of the Hamiltonian framework as a parametrization that can be fit directly to lattice spectra. We find that, with a modest amount of lattice data, the scattering parameters can be reproduced rather well, with only a minor degree of model dependence. C1 [Wu, Jia-Jun; Lee, T. -S. H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Thomas, A. W.; Young, R. D.] Univ Adelaide, Spec Res Ctr Subatom Struct Matter CSSM, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Thomas, A. W.; Young, R. D.] Univ Adelaide, ARC, Ctr Excellence Particle Phys Terascale, Sch Chem & Phys, Adelaide, SA 5005, Australia. RP Wu, JJ (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Thomas, Anthony/G-4194-2012 OI Thomas, Anthony/0000-0003-0026-499X FU U.S. Department of Energy, Office of Nuclear Physics Division [DE-AC02-06CH11357]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; University of Adelaide; Australian Research Council through the ARC Centre of Excellence for Particle Physics at the Terascale [FL0992247, DP140103067, FT120100821] FX We wish to thank Raul Briceno for helpful correspondence. This work is supported by the U.S. Department of Energy, Office of Nuclear Physics Division, under Contract No. DE-AC02-06CH11357. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and resources provided on the Fusion, 320-node computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. This work was also supported by the University of Adelaide and the Australian Research Council through the ARC Centre of Excellence for Particle Physics at the Terascale and Grants No. FL0992247 (AWT), No. DP140103067, and No. FT120100821 (RDY). NR 44 TC 11 Z9 11 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD NOV 13 PY 2014 VL 90 IS 5 AR 055206 DI 10.1103/PhysRevC.90.055206 PG 14 WC Physics, Nuclear SC Physics GA CA2WR UT WOS:000348766900006 ER PT J AU Sun, YP Emma, P Raubenheimer, T Wu, JH AF Sun, Yipeng Emma, Paul Raubenheimer, Tor Wu, Juhao TI X-band rf driven free electron laser driver with optics linearization SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID OPERATION AB In this paper, a compact hard X-ray free electron lasers (FEL) design is proposed with all X-band rf acceleration and two stage bunch compression. It eliminates the need of a harmonic rf linearization section by employing optics linearization in its first stage bunch compression. Quadrupoles and sextupoles are employed in a bunch compressor one (BC1) design, in such a way that second order longitudinal dispersion of BC1 cancels the second order energy correlation in the electron beam. Start-to-end 6-D simulations are performed with all the collective effects included. Emittance growth in the horizontal plane due to coherent synchrotron radiation is investigated and minimized, to be on a similar level with the successfully operating Linac coherent light source (LCLS). At a FEL radiation wavelength of 0.15 nm, a saturation length of 40 meters can be achieved by employing an undulator with a period of 1.5 cm. Without tapering, a FEL radiation power above 10 GW is achieved with a photon pulse length of 50 fs, which is LCLS-like performance. The overall length of the accelerator plus undulator is around 250 meters which is much shorter than the LCLS length of 1230 meters. That makes it possible to build hard X-ray FEL in a laboratory with limited size. C1 [Emma, Paul; Raubenheimer, Tor; Wu, Juhao] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Sun, Yipeng] Argonne Natl Lab, Argonne, IL 60439 USA. RP Sun, YP (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yisun@aps.anl.gov FU U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]; U.S. Department of Energy [DE-AC02-76SF00515] FX Most of the work was done at SLAC National Accelerator Laboratory. The paper was finished at Argonne National Laboratory. Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. Work also supported by the U.S. Department of Energy under Contract DE-AC02-76SF00515. The authors would like to thank M. Woodley, A. Chao, Z. Huang, C. Adolphsen, Y. Ding, C. Limborg-Deprey for helpful discussions, C. Adolphsen for the proofreading. NR 31 TC 0 Z9 0 U1 3 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD NOV 13 PY 2014 VL 17 IS 11 AR 110703 DI 10.1103/PhysRevSTAB.17.110703 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CA2XS UT WOS:000348770000001 ER PT J AU Croken, MM Ma, YF Markillie, LM Taylor, RC Orr, G Weiss, LM Kim, K AF Croken, Matthew McKnight Ma, Yanfen Markillie, Lye Meng Taylor, Ronald C. Orr, Galya Weiss, Louis M. Kim, Kami TI Distinct Strains of Toxoplasma gondii Feature Divergent Transcriptomes Regardless of Developmental Stage SO PLOS ONE LA English DT Article ID GENE-EXPRESSION; RNA-SEQ; PSEUDOKINASES; VIRULENCE; PARASITES; DATABASE; FAMILY; CYST AB Using high through-put RNA sequencing, we assayed the transcriptomes of three different strains of Toxoplasma gondii representing three common genotypes under both in vitro tachyzoite and in vitro bradyzoite-inducing alkaline stress culture conditions. Strikingly, the differences in transcriptional profiles between the strains, RH, PLK, and CTG, is much greater than differences between tachyzoites and alkaline stressed in vitro bradyzoites. With an FDR of 10%, we identified 241 genes differentially expressed between CTG tachyzoites and in vitro bradyzoites, including 5 putative AP2 transcription factors. We also observed a close association between cell cycle regulated genes and differentiation. By Gene Set Enrichment Analysis (GSEA), there are a number of KEGG pathways associated with the in vitro bradyzoite transcriptomes of PLK and CTG, including pyrimidine metabolism and DNA replication. These functions are likely associated with cell-cycle arrest. When comparing mRNA levels between strains, we identified 1,526 genes that were differentially expressed regardless of culture-condition as well as 846 differentially expressed only in bradyzoites and 542 differentially expressed only in tachyzoites between at least two strains. Using GSEA, we identified that ribosomal proteins were expressed at significantly higher levels in the CTG strain than in either the RH or PLK strains. This association holds true regardless of life cycle stage. C1 [Croken, Matthew McKnight; Kim, Kami] Albert Einstein Coll Med, Dept Microbiol & Immunol, Bronx, NY 10467 USA. [Ma, Yanfen; Weiss, Louis M.; Kim, Kami] Albert Einstein Coll Med, Dept Pathol, Bronx, NY 10467 USA. [Markillie, Lye Meng; Orr, Galya] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Taylor, Ronald C.] Pacific NW Natl Lab, Div Biol Sci, Computat Biol & Bioinformat Grp, Richland, WA 99352 USA. [Weiss, Louis M.; Kim, Kami] Albert Einstein Coll Med, Dept Med, Bronx, NY 10467 USA. RP Weiss, LM (reprint author), Albert Einstein Coll Med, Dept Pathol, Bronx, NY 10467 USA. EM louis.weiss@einstein.yu.edu; kami.kim@einstein.yu.edu OI Taylor, Ronald/0000-0001-9777-9767; Kim, Kami/0000-0003-3384-152X FU National Institutes of Health (NIH) [AI095094] FX Research was supported by National Institutes of Health (NIH) grants AI095094 (LMW), AI087625 (KK), and by grant 40070 (LMW) from Environmental Molecular Sciences Laboratory (EMSL) Pacific Northwest National Laboratory. MMC was supported by the Training Program in Cellular and Molecular Biology and Genetics, funded by NIH T32 GM007491 awarded to the Albert Einstein College of Medicine. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Lab. This work was also supported in part by the Center for AIDS Research at the Albert Einstein College of Medicine and Montefiore Medical Center funded by the National Institutes of Health (NIH AI-051519). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 34 TC 5 Z9 5 U1 1 U2 9 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 13 PY 2014 VL 9 IS 11 AR e111297 DI 10.1371/journal.pone.0111297 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AY6YT UT WOS:000347709300014 PM 25393307 ER PT J AU Soler, MA Nelson, T Roitberg, AE Tretiak, S Femandez-Alberti, S AF Soler, Miguel A. Nelson, Tarnmie Roitberg, Adrian E. Tretiak, Sergei Femandez-Alberti, Sebastian TI Signature of Nonadiabatic Coupling in Excited-State Vibrational Modes SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID UNIDIRECTIONAL ENERGY-TRANSFER; CONICAL INTERSECTIONS; CONJUGATED MOLECULES; ELECTRONIC COHERENCE; EXCITONIC COUPLINGS; QUANTUM-CHEMISTRY; EMISSION-SPECTRA; DYNAMICS; ABSORPTION; SIMULATION AB Using analytical excited-state gradients, vibrational normal modes have been calculated at the minimum of the electronic excited-state potential energy surfaces for a set of extended conjugated molecules with different coupling between them. Molecular model systems composed of units of polyphenylene ethynylene (PPE), polyphenylenevinylene (PPV), and naphthacene/pentacene (NP) have been considered. In all cases except the NP model, the influence of the nonadiabatic coupling on the excited-state equilibrium normal modes is revealed as a unique highest frequency adiabatic vibrational mode that overlaps with the coupling vector. This feature is removed by using a locally diabatic representation in which the effect of NA interaction is removed. Comparison of the original adiabatic modes with a set of vibrational modes computed in the locally diabatic representation demonstrates that the effect of nonadiabaticity is confined to only a few modes. This suggests that the nonadiabatic character of a molecular system may be detected spectroscopically by identifying these unique state-specific high frequency vibrational modes. C1 [Soler, Miguel A.; Femandez-Alberti, Sebastian] Univ Nacl Quilmes, Bernal, Argentina. [Nelson, Tarnmie; Tretiak, Sergei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Roitberg, Adrian E.] Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA. RP Tretiak, S (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM serg@lanl.gov; sfalberti@gmail.com RI Tretiak, Sergei/B-5556-2009; OI Tretiak, Sergei/0000-0001-5547-3647; SOLER, MIGUEL/0000-0002-5780-9949 FU CONICET; UNQ; ANPCyT [PICT-2010-2375]; National Science Foundation [CHE-0239129, CHE-0808910]; U.S. Department of Energy; Los Alamos LDRD; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC5206NA25396]; Center for Integrated Nanotechnologies (CINT); Center for Nonlinear Studies (CNLS) at LANL FX This work was partially supported by CONICET, UNQ, ANPCyT (PICT-2010-2375), National Science Foundation Grant No. CHE-0239129 and CHE-0808910, and U.S. Department of Energy and Los Alamos LDRD funds. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC5206NA25396. The authors acknowledge support from the Center for Integrated Nanotechnologies (CINT) and the Center for Nonlinear Studies (CNLS) at LANL. NR 59 TC 5 Z9 5 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 13 PY 2014 VL 118 IS 45 BP 10372 EP 10379 DI 10.1021/jp503350k PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AT5IK UT WOS:000344976900011 PM 24844735 ER PT J AU Hong, J Jeon, S Kim, JJ Devi, D Chacon-Madrid, K Lee, W Koo, SM Wideman, J Sfeir, MY Peteanu, LA AF Hong, Jiyun Jeon, Sukyung Kim, Janice J. Devi, Diane Chacon-Madrid, Kelly Lee, Wynee Koo, Seung Moh Wideman, Jurjen Sfeir, Matthew Y. Peteanu, Linda A. TI The Effects of Side-Chain-Induced Disorder on the Emission Spectra and Quantum Yields of Oligothiophene Nanoaggregates: A Combined Experimental and MD-TDDFT Study SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; INTERCHAIN INTERACTIONS; ENERGY-TRANSFER; ALPHA-OLIGOTHIOPHENES; CHEMICAL CALCULATIONS; ELECTRONIC-STRUCTURES; COMPUTER EXPERIMENTS; CONJUGATED POLYMERS; PACKING STRUCTURES; OPTICAL-PROPERTIES AB Oligomeric thiophenes are commonly used components in organic electronics and solar cells. These molecules stack and/or aggregate readily under the processing conditions used to form thin films for these applications, significantly altering their optical and charge-transport properties. To determine how these effects depend on the substitution pattern of the thiophene main chains, nanoaggregates of three sexithiophene oligomers having different alkyl substitution patterns were formed using solvent-poisoning techniques and studied using steady-state and time-resolved emission spectroscopy. The results indicate the substantial role played by the side-chain substituents in determining the emissive properties of these species. Both the measured spectral changes and their dependence on substitution are well-modeled by combined quantum chemistry and molecular dynamics simulations. The simulations connect the side-chain-induced disorder, which determines the favorable chain-packing configurations within the aggregates, with their measured electronic spectra. C1 [Hong, Jiyun; Jeon, Sukyung; Kim, Janice J.; Devi, Diane; Chacon-Madrid, Kelly; Lee, Wynee; Koo, Seung Moh; Peteanu, Linda A.] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA. [Wideman, Jurjen] Zernike Inst Adv Mat Nijenborgh, NL-49747 AG Groningen, Netherlands. [Sfeir, Matthew Y.] Brookhaven Natl Lab, CFN, Upton, NY 11973 USA. RP Peteanu, LA (reprint author), Carnegie Mellon Univ, Dept Chem, 4400 Fifth Ave, Pittsburgh, PA 15213 USA. EM peteanu@cmu.edu RI Wen, Jin/G-6039-2014; OI Wen, Jin/0000-0001-6136-8771; Koo, Seung Moh/0000-0001-9331-4786; Sfeir, Matthew/0000-0001-5619-5722 FU NSF [CHE-1012529]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; National Natural Science Foundation of China [21290192, 21273102] FX L.A.P. acknowledges NSF (Grant CHE-1012529) for financial support. This work was performed in part at the Center for Functional Nanomaterials at Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-98CH10886. J.M. thanks the National Natural Science Foundation of China (Grants 21290192 and 21273102) for support and the High Performance Computing Center of Nanjing University for providing the IBM Blade cluster system. NR 55 TC 4 Z9 4 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 13 PY 2014 VL 118 IS 45 BP 10464 EP 10473 DI 10.1021/jp504254a PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AT5IK UT WOS:000344976900021 PM 24992478 ER PT J AU Fransted, KA Jackson, NE Zong, R Mara, MW Huang, J Harpham, MR Shelby, ML Thununel, RP Chen, LX AF Fransted, Kelly A. Jackson, Nicholas E. Zong, Ruifa Mara, Michael W. Huang, Jier Harpham, Michael R. Shelby, Megan L. Thummel, Randolph P. Chen, Lin X. TI Ultrafast Structural Dynamics of Cu(I)-Bicinchoninic Acid and Their Implications for Solar Energy Applications SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ABSORPTION FINE-STRUCTURE; COPPER(I) DIIMINE COMPLEXES; TRANSFER EXCITED-STATES; X-RAY; CU(NN)2+ SYSTEMS; CU(I) COMPLEXES; SPECTROSCOPY; CELLS; ELECTRON; HAMILTONIANS AB In this study, ultrafast optical transient absorption and X-ray transient absorption (XTA) spectroscopy are used to probe the excited-state dynamics and structural evolution of copper(I) bicinchoninic acid ([Cu(I)(BCA)(2)](+)), which has similar but less frequently studied biquinoline-based ligands compared to phenanthroline-based complexes. The optical transient absorption measurements performed on the complex in a series of polar protic solvents demonstrate a strong solvent dependency for the excited lifetime, which ranges from approximately 40 ps in water to over 300 ps in 2-methoxyethanol. The XTA experiments showed a reduction of the prominent 1s -> 4pz edge peak in the excited-state X-ray absorption near-edge structure (XANES) spectrum, which is indicative of an interaction with a fifth ligand, most likely the solvent. Analysis of the extended X-ray absorption fine structure (EXAFS) spectrum shows a shortening of the metal-ligand bond in the excited state and an increase in the coordination number for the Cu(II) metal center. A flattened structure is supported by DFT calculations that show that the system relaxes into a flattened geometry with a lowest-energy triplet state that has a dipole-forbidden transition to the ground state. While the short excited-state lifetime relative to previously studied Cu(I) diimine complexes could be attributed to this dark triplet state, the strong solvent dependency and the reduction of the 1s -> 4pz peak in the XTA data suggest that solvent interaction could also play a role. This detailed study of the dynamics in different solvents provides guidance for modulating excited-state pathways and lifetimes through structural factors such as solvent accessibility to fulfill the excited-state property requirements for efficient light harvesting and electron injection. C1 [Fransted, Kelly A.; Mara, Michael W.; Huang, Jier; Harpham, Michael R.; Shelby, Megan L.; Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Jackson, Nicholas E.; Mara, Michael W.; Shelby, Megan L.; Chen, Lin X.] Northwestern Univ, Dept Chem, Evanston, IL 60439 USA. [Zong, Ruifa; Thummel, Randolph P.] Univ Houston, Dept Chem, Houston, TX 77204 USA. RP Thununel, RP (reprint author), Univ Houston, Dept Chem, 4800 Calhoun Rd, Houston, TX 77204 USA. EM thummel@uh.edu; Ichen@anl.gov FU Division of Chemical Sciences, Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-06CH11357, DE-FG02-07ER15888]; Robert A. Welch Foundation [E-621]; U.S. DOE [DE-AC02-06CH11357] FX We would like to acknowledge support from the Division of Chemical Sciences, Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DE-AC02-06CH11357 (K.A.F. and L.X.C.), as well as DE-AC02-06CH11357 and DE-FG02-07ER15888 (R.Z. and R.P.T.) for support of this work. R.Z. and R.P.T. also thank the Robert A. Welch Foundation (Grant E-621). The authors would like to thank Dr. Xiaoyi Zhang of 11-ID-D at the Advanced Photon Source for her help with the XTA measurements. Use of beamline 11-ID-D at the Advanced Photon Source was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. The authors would also like to thank Dr. Dugan Hayes for his advice on experimental design. NR 60 TC 7 Z9 7 U1 4 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 13 PY 2014 VL 118 IS 45 BP 10497 EP 10506 DI 10.1021/jp504294j PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AT5IK UT WOS:000344976900024 PM 25015003 ER PT J AU Llansola-Portoles, MJ Bergkamp, JJ Finkelstein-Shapiro, D Sherman, BD Kodis, G Dimitrijevic, NM Gust, D Moore, TA Moore, AL AF Llansola-Portoles, Manuel J. Bergkamp, Jesse J. Finkelstein-Shapiro, Daniel Sherman, Benjamin D. Kodis, Gerdenis Dimitrijevic, Nada M. Gust, Devens Moore, Thomas A. Moore, Ana L. TI Controlling Surface Defects and Photophysics in TiO2 Nanoparticles SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID TITANIUM-DIOXIDE; SEMICONDUCTOR NANOCLUSTERS; PHOTOCATALYTIC REDUCTION; PARTICLES; SCIENCE; OXYGEN; EFFICIENCY; NANOTUBES; MOLECULES; STATES AB Titanium dioxide (TiO2) is widely used for photocatalysis and solar cell applications, and the electronic structure of bulk TiO2 is well understood. However, the surface structure of nanoparticulate TiO2, which has a key role in properties such as solubility and catalytic activity, still remains controversial. Detailed understanding of surface defect structures may help explain reactivity and overall materials performance in a wide range of applications. In this work we address the solubility problem and surface defects control on TiO2 nanoparticles. We report the synthesis and characterization of similar to 4 nm TiO2 anatase spherical nanoparticles that are soluble and stable in a wide range of organic solvents and water. By controlling the temperature during the synthesis, we are able to tailor the density of defect states on the surface of the TiO2 nanoparticles without affecting parameters such as size, shape, core crystallinity, and solubility. The morphology of both kinds of nanoparticles was determined by TEM. EPR experiments were used to characterize the surface defects, and transient absorption measurements demonstrate the influence of the TiO2 defect states on photoinduced electron transfer dynamics. C1 [Llansola-Portoles, Manuel J.; Bergkamp, Jesse J.; Finkelstein-Shapiro, Daniel; Sherman, Benjamin D.; Kodis, Gerdenis; Gust, Devens; Moore, Thomas A.; Moore, Ana L.] Arizona State Univ, Dept Chem & Biochem, Ctr Bioenergy & Photosynth, Tempe, AZ 85287 USA. [Dimitrijevic, Nada M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Dimitrijevic, Nada M.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Llansola-Portoles, MJ (reprint author), Arizona State Univ, Dept Chem & Biochem, Ctr Bioenergy & Photosynth, Tempe, AZ 85287 USA. EM mjllansola@gmail.com OI Llansola-Portoles, Manuel Jose/0000-0002-8065-9459; Finkelstein Shapiro, Daniel/0000-0001-8015-5376 FU Center for Bio-Inspired Solar Fuel Production, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001016]; National Science Foundation [CHB-1124895]; Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The work at ASU was supported by the Center for Bio-Inspired Solar Fuel Production, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001016, National Science Foundation CHB-1124895, and the research at ANL was supported by the Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No DE-AC02-06CH11357. NR 50 TC 7 Z9 7 U1 3 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 13 PY 2014 VL 118 IS 45 BP 10631 EP 10638 DI 10.1021/jp506284q PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AT5IK UT WOS:000344976900037 PM 25109403 ER PT J AU Pistner, AJ Pupillo, RC Yap, GPA Lutterman, DA Ma, YZ Rosenthal, J AF Pistner, Allen J. Pupillo, Rachel C. Yap, Glenn P. A. Lutterman, Daniel A. Ma, Ying-Zhong Rosenthal, Joel TI Electrochemical, Spectroscopic, and O-1(2) Sensitization Characteristics of 10,10-Dimethylbiladiene Complexes of Zinc and Copper SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID PHOTODYNAMIC THERAPY; LINEAR TETRAPYRROLES; COBALT COMPLEXES; ELECTRON-TRANSFER; PHOTOSENSITIZERS; PORPHYRIN; CHEMISTRY; OCTAETHYLBILINDIONE; LIGANDS; DENSITY AB The synthesis, electrochemistry, and photophysical characterization of a 10,10-dimethylbiladiene tetrapyrrole bearing ancillary pentafluorophenyl groups at the 5- and 15-meso positions (DMBil1) is presented. This nonmacrocyclic tetrapyrrole platform is robust and can serve as an excellent ligand scaffold for Zn2+ and Cu2+ centers. X-ray diffraction studies conducted for DMBil1 along with the corresponding Zn[DMBil1] and Cu[DMBil1] complexes show that this ligand scaffold binds a single metal ion within the tetrapyrrole core. Additionally, electrochemical experiments revealed that all three of the aforementioned compounds display an interesting redox chemistry as the DMBil1 framework can be both oxidized and reduced by two electrons. Spectroscopic and photophysical experiments carried out for DMBil1, Zn[DMBil1], and Cu[DMBil1] provide a basic picture of the electronic properties of these platforms. All three biladiene derivatives strongly absorb light in the visible region and are weakly emissive. The ability of these compounds to sensitize the formation of O-1(2) at wavelengths longer than 500 nm was probed. Both the free base and Zn2+ 10,10-dimethylbiladiene architectures show modest efficiencies for O-1(2) sensitization. The combination of structural, electrochemical, and photophysical data detailed herein provides a basis for the design of additional biladiene constructs for the activation of O-2 and other small molecules. C1 [Pistner, Allen J.; Pupillo, Rachel C.; Yap, Glenn P. A.; Rosenthal, Joel] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. [Lutterman, Daniel A.; Ma, Ying-Zhong] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Rosenthal, J (reprint author), Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. EM joelr@udel.edu RI Lutterman, Daniel/C-9704-2016; Ma, Yingzhong/L-6261-2016 OI Lutterman, Daniel/0000-0002-4875-6056; Ma, Yingzhong/0000-0002-8154-1006 FU American Chemical Society Petroleum Research Fund; NSF CAREER Award [CHE1352120]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geo-sciences, and Biosciences Division FX J.R. thanks Oak Ridge Associated Universities for a Ralph E. Powe Junior Faculty Enhancement Award. Additional financial support for this work was provided in part by the American Chemical Society Petroleum Research Fund and NSF CAREER Award CHE1352120. Work by D.A.L. and Y.-Z.M. was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geo-sciences, and Biosciences Division. NMR and other data were acquired at UD using instrumentation obtained with assistance from the NSF and NIH (NSF MIR 0421224, NSF CRIF MU CHE0840401 and CHE0541775, NIH P20 RR017716). NR 63 TC 1 Z9 1 U1 3 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 13 PY 2014 VL 118 IS 45 BP 10639 EP 10648 DI 10.1021/jp506412r PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AT5IK UT WOS:000344976900038 PM 25187099 ER PT J AU Popolan-Vaida, DM Wilson, KR Leone, SR AF Popolan-Vaida, Denisia M. Wilson, Kevin R. Leone, Stephen R. TI Reaction of Iodine Atoms with Submicrometer Squalane and Squalene Droplets: Mechanistic Insights into Heterogeneous Reactions SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID GENERATING PARTICLE BEAMS; CATALYZED ISOMERIZATION; CONTROLLED DIMENSIONS; AERODYNAMIC LENSES; NOZZLE EXPANSIONS; N-BUTENES; KINETICS; RADICALS; AEROSOLS; HEAT AB The gas-phase reaction of iodine atoms with hydrocarbon molecules is energetically unfavorable, and there is no direct evidence for iodinated product formation by either H abstraction or I addiction reactions at ambient termperature. Here we consider the possible heterogeneous reaction of I atoms with submicrometer droplets composed of a saturated alkane, squalane (Sq), and an unsaturated alkene, squalene (Sqe). The investigations are performed in an atmospheric pressure photochemical flow tube reactor in conjunction with a vacuum ultraviolet photoionization aerosol mass spectrometer and a scanning mobility particle sizer. Squalane, a branched alkane, is unreactive toward I atoms within the signal-to-noise, and an upper limit of the effective reactive uptake coefficient is estimated to be g(I)(Sq) = 8.58 x 10(-7). In contrast, the reaction of I atoms with unsaturated submicrometer squalene droplets results in observable iodinated squalene products. The effective reactive uptake coefficient of I atom with squalene particles is determined to be g(I)(Sqe) = (1.20 +/- 0.52) x 10(-4) at an average I concentration of 1.5 x 10(14) molecules cm(-3). C1 [Popolan-Vaida, Denisia M.; Wilson, Kevin R.; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Popolan-Vaida, Denisia M.; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Leone, SR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM srl@berkeley.edu FU Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231]; Alexander von Humboldt Foundation FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract DE-AC02-05CH11231. The authors acknowledge constructive discussions with Dr. M. D. Ward and the technical assistance from Dr. D. J. Taube. In particular, D.M.P.-V. is grateful to the Alexander von Humboldt Foundation for a Feodor Lynen fellowship. NR 39 TC 2 Z9 2 U1 4 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 13 PY 2014 VL 118 IS 45 BP 10688 EP 10698 DI 10.1021/jp5085247 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AT5IK UT WOS:000344976900043 PM 25327465 ER PT J AU Ondarse-Alvarez, D Oldani, N Tretiak, S Fernandez-Alberti, S AF Ondarse-Alvarez, D. Oldani, N. Tretiak, S. Fernandez-Alberti, S. TI Computational Study of Photoexcited Dynamics in Bichromophoric Cross-Shaped Oligofluorene SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID LIGHT-EMITTING-DIODES; UNIDIRECTIONAL ENERGY-TRANSFER; STATE MOLECULAR-DYNAMICS; CONJUGATED POLYMERS; OPTOELECTRONIC DEVICES; NONLINEAR POLARIZABILITIES; SUBSTITUTED POLYTHIOPHENES; POLYFLUORENE DERIVATIVES; NONADIABATIC COUPLINGS; ELECTRONIC COHERENCE AB The non-adiabatic excited state molecular dynamics (NA-ESMD) approach is applied to investigate photoexcited dynamics and relaxation pathways in a spiro-linked conjugated polyfluorene at room (T = 300 K) and low (T = 10 K) temperatures. This dimeric aggregate consists of two perpendicularly oriented weakly interacting a-polyfluorene oligomers. The negligible coupling between the monomer chains results in an initial absorption band composed of equal contributions of the two lowest excited electronic states, each localized on one of the two chains. After photoexcitation, an efficient ultrafast localization of the entire electronic population to the lowest excited state is observed on the time scale of about 100 fs. Both internal conversion between excited electronic states and vibronic energy relaxation on a single electronic state contribute to this process. Thus, photoexcited dynamics of the polyfluorene dimer follows two distinct pathways with substantial temperature dependence on their efficiency. One relaxation channel involves resonance electronic energy transfer between the monomer chains, whereas the second pathway concerns the relaxation of the electronic energy on the same chain that has been initially excited due to electron-phonon coupling. Despite the slower vibrational relaxation, a more efficient ultrafast electronic relaxation is observed at low temperature. Our numerical simulations analyze the effects of molecular geometry distortion during the electronic energy redistribution and suggest spectroscopic signatures reflecting complex electron-vibrational dynamics. C1 [Ondarse-Alvarez, D.; Oldani, N.; Fernandez-Alberti, S.] Univ Nacl Quilmes, Bernal, Argentina. [Tretiak, S.] Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies CNLS, Los Alamos, NM 87545 USA. [Tretiak, S.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA. RP Fernandez-Alberti, S (reprint author), Univ Nacl Quilmes, Roque Saenz Pena 352,B1876BXD, Bernal, Argentina. EM sfalberti@gmail.com RI Tretiak, Sergei/B-5556-2009 OI Tretiak, Sergei/0000-0001-5547-3647 FU CONICET; UNQ; ANPCyT [PICT-2010-2375]; U.S. Department of Energy; Los Alamos LDRD funds; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; Center for Integrated Nanotechnology (CINT) at LANL; Center for Nonlinear Studies (CNLS) at LANL FX This work was partially supported by CONICET, UNQ, ANPCyT (PICT-2010-2375) and the U.S. Department of Energy and Los Alamos LDRD funds. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. We acknowledge support of Center for Integrated Nanotechnology (CINT) and Center for Nonlinear Studies (CNLS) at LANL. NR 96 TC 4 Z9 4 U1 2 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 13 PY 2014 VL 118 IS 45 BP 10742 EP 10753 DI 10.1021/jp504720n PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AT5IK UT WOS:000344976900050 PM 25341055 ER PT J AU Ryberg, E Forssen, C Hammer, HW Platter, L AF Ryberg, Emil Forssen, Christian Hammer, H. -W. Platter, Lucas TI Constraining low-energy proton capture on beryllium-7 through charge radius measurements SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID EFFECTIVE-FIELD THEORY; CROSS-SECTION; HALO NUCLEI; SCATTERING; BE-7(P; EFT AB In this paper, we point out that a measurement of the charge radius of boron-8 provides indirect access to the S-factor for radiative proton capture on beryllium-7 at low energies. We use leading-order halo effective field theory to explore this correlation and we give a relation between the charge radius and the S-factor. Furthermore, we present important technical aspects relevant to the renormalization of point-like P -wave interactions in the presence of a repulsive Coulomb interaction. C1 [Ryberg, Emil; Forssen, Christian; Platter, Lucas] Chalmers, Dept Fundamental Phys, S-41296 Gothenburg, Sweden. [Hammer, H. -W.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Hammer, H. -W.] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Platter, Lucas] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Ryberg, E (reprint author), Chalmers, Dept Fundamental Phys, S-41296 Gothenburg, Sweden. EM emilr@chalmers.se RI Forssen, Christian/C-6093-2008; Platter, Lucas/N-3887-2013 OI Forssen, Christian/0000-0003-3458-0480; Platter, Lucas/0000-0001-6632-8250 FU Swedish Research Council [dnr. 2010-4078]; European Research Council under the European Community's Seventh Framework Programme [240603]; BMBF [05P12PDFTE]; DFG [SFB 634]; Office of Nuclear Physics, U.S. Department of Energy [DE-AC02-06CH11357]; Helmholtz Association [HA216/EMMI] FX We thank D.R. Phillips and H. Esbensen for useful discussions. This research was supported in part by the Swedish Research Council (dnr. 2010-4078), the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 240603, the BMBF under grant 05P12PDFTE, the DFG through SFB 634, the Office of Nuclear Physics, U.S. Department of Energy under contract no. DE-AC02-06CH11357 and by the Helmholtz Association under contract HA216/EMMI. We express our appreciation to the Extreme Matter Institute at GSI and the Institute for Nuclear Theory in Seattle, where part of this work was carried out. NR 44 TC 7 Z9 7 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD NOV 13 PY 2014 VL 50 IS 11 AR 170 DI 10.1140/epja/i2014-14170-2 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AT7XO UT WOS:000345148000001 ER PT J AU Krogstad, DV Choi, SH Lynd, NA Audus, DJ Perry, SL Gopez, JD Hawker, CJ Kramer, EJ Tirrell, MV AF Krogstad, Daniel V. Choi, Soo-Hyung Lynd, Nathaniel A. Audus, Debra J. Perry, Sarah L. Gopez, Jeffrey D. Hawker, Craig J. Kramer, Edward J. Tirrell, Matthew V. TI Small Angle Neutron Scattering Study of Complex Coacervate Micelles and Hydrogels Formed from Ionic Diblock and Triblock Copolymers SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID CHARGED BLOCK-COPOLYMERS; CORE; PROTEINS; BEHAVIOR; LENGTH; WATER AB A complex coacervate is a fluid phase that results from the electrostatic interactions between two oppositely charged macromolecules. The nature of the coacervate core structure of hydrogels and micelles formed from complexation between pairs of diblock or triblock copolymers containing oppositely charged end-blocks as a function of polymer and salt concentration was investigated. Both ABA triblock copolymers of poly[(allyl glycidyl ether)-b-(ethylene oxide)-b-(allyl glycidyl ether)] and analogous poly[(allyl glycidyl ether)-b-(ethylene oxide)] diblock copolymers, which were synthesized to be nearly one-half of the symmetrical triblock copolymers, were studied. The poly(allyl glycidyl ether) blocks were functionalized with either guanidinium or sulfonate groups via postpolymerization modification. Mixing of oppositely charged block copolymers resulted in the formation of nanometer-scale coacervate domains. Small angle neutron scattering (SANS) experiments were used to investigate the size and spacing of the coacervate domains. The SANS patterns were fit using a previously vetted, detailed model consisting of polydisperse coreshell micelles with a randomly distributed sphere or body-centered cubic (BCC) structure factor. For increasing polymer concentration, the size of the coacervate domains remained constant while the spatial extent of the poly(ethylene oxide) (PEO) corona decreased. However, increasing salt concentration resulted in a decrease in both the coacervate domain size and the corona size due to a combination of the electrostatic interactions being screened and the shrinkage of the neutral PEO blocks. Additionally, for the triblock copolymers that formed BCC ordered domains, the water content in the coacervate domains was calculated to increase from approximately 16.8% to 27.5% as the polymer concentration decreased from 20 to 15 wt %. C1 [Krogstad, Daniel V.; Hawker, Craig J.; Kramer, Edward J.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Krogstad, Daniel V.; Choi, Soo-Hyung; Lynd, Nathaniel A.; Audus, Debra J.; Gopez, Jeffrey D.; Hawker, Craig J.; Kramer, Edward J.] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. [Audus, Debra J.; Gopez, Jeffrey D.; Kramer, Edward J.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. [Hawker, Craig J.] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. [Choi, Soo-Hyung] Hongik Univ, Dept Chem Engn, Seoul 121791, South Korea. [Perry, Sarah L.; Tirrell, Matthew V.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Tirrell, Matthew V.] Argonne Natl Lab, Lemont, IL 60439 USA. RP Tirrell, MV (reprint author), Jones Lab 222, 5747 South Ellis Ave, Chicago, IL 60637 USA. EM mtirrell@uchicago.edu RI Choi, Soo-hyung/H-9734-2012; OI Choi, Soo-hyung/0000-0002-4078-6285; Perry, Sarah/0000-0003-2301-6710 FU National Science Foundation [DMR 1121053]; Argonne National Laboratory under U.S. Department of Energy [DE-ACO2-06CH11357]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX The synthesis, SANS and microscopy work reported here was partially supported by the IVIRSEC Program of the National Science Foundation under Award No. DMR 1121053 (D.V.K, NA.L, S.-H.C., DJ.A., J.G., CJ.H., and EJ.K.). SANS, interpretation, and writing were supported by the University of Chicago (D.V.K, S.L.P., M.V.T.), and by the Laboratory Directed Research and Development Program of the Argonne National Laboratory under U.S. Department of Energy Contract No. DE-ACO2-06CH11357 (M.V.T.). The research conducted at the ORNL's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The authors would like to thank Dr. Urban Volker and Dr. Sai Venkatesh Pingali for their help and support with the SANS experiment. NR 36 TC 19 Z9 19 U1 6 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 13 PY 2014 VL 118 IS 45 BP 13011 EP 13018 DI 10.1021/jp509175a PG 8 WC Chemistry, Physical SC Chemistry GA AT5IH UT WOS:000344976600022 PM 25338302 ER PT J AU Jiang, QL Sheng, X Shi, B Feng, XJ Xu, T AF Jiang, Qinglong Sheng, Xia Shi, Bing Feng, Xinjian Xu, Tao TI Nickel-Cathoded Perovskite Solar Cells SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID INORGANIC HOLE CONDUCTOR; CHARGE-TRANSPORT; SENSITIZED TIO2; DEPOSITION; EFFICIENCY; IODIDE AB Current lead halide perovskite solar cells use high work function (phi) precious metals, such as gold (phi = 5.1 eV), as the back cathode to maximize the attainable photovoltage. We report herein a set of perovskite-type solar cells that use nickel (phi = 5.04 eV), an earth-abundant element and non-precious metal, as back cathode and achieve the same open-circuit voltage as gold and an efficiency of 10.4%. This work opens a nickel-and-dimed (low-cost) way toward high-efficient perovskite solar cells. C1 [Jiang, Qinglong; Feng, Xinjian; Xu, Tao] No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA. [Sheng, Xia; Feng, Xinjian] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Jiangsu, Peoples R China. [Shi, Bing] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Xu, T (reprint author), No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA. EM txu@niu.edu FU U.S. National Science Foundation [CBET-1150617]; US DOE office of Science, Office of Basic energy Sciences [DE-AC02-06CH11357, DE-AC-02-98CH10886]; [NSFC-21371178] FX We acknowledge the support from the U.S. National Science Foundation (CBET-1150617). Ski is supported by the US DOE office of Science, Office of Basic energy Sciences, under Contract No. DE-AC02-06CH11357 and DE-AC-02-98CH10886. X.F. acknowledges the support from NSFC-21371178. NR 20 TC 19 Z9 20 U1 10 U2 87 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 13 PY 2014 VL 118 IS 45 BP 25878 EP 25883 DI 10.1021/jp506991x PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AT5IW UT WOS:000344978000007 ER PT J AU Seo, DM Afroz, T Allen, JL Boyle, PD Trulove, PC De Long, HC Henderson, WA AF Seo, Daniel M. Afroz, Taliman Allen, Joshua L. Boyle, Paul D. Trulove, Paul C. De Long, Hugh C. Henderson, Wesley A. TI Structural Interactions within Lithium Salt Solvates: Cyclic Carbonates and Esters SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID AMORPHOUS CONCENTRATED LIQUID; PROPYLENE CARBONATE; ETHYLENE CARBONATE; GAMMA-BUTYROLACTONE; CRYSTAL-STRUCTURE; AB-INITIO; IONIC ASSOCIATION; LOW-TEMPERATURE; NONAQUEOUS ELECTROLYTES; VIBRATIONAL FREQUENCIES AB Only limited information is available regarding the manner in which cyclic carbonate and ester solvents coordinate Li+ cations in electrolyte solutions for lithium batteries. One approach to gleaning significant insight into these interactions is to examine crystalline solvate structures. To this end, eight new solvate structures are reported with ethylene carbonate, gamma-butyrolactone, and gamma-valerolactone: (EC)(3):LiClO4, (EC)(2):LiClO4, (EC)(2):LiBF4, (GBL)(4):LiPF6, (GBL)(1):LiClO4, (GVL)(1):LiClO4, (GBL)(1):LiBF4, and (GBL)(1):LiCF3SO3. The crystal structure of (EC)(1):LiCF3SO3 is also re-reported for comparison. These structures enable the factors that govern the manner in which the ions are coordinated and the ion/solvent packing-in the solid-state-to be scrutinized in detail. C1 [Seo, Daniel M.; Afroz, Taliman; Allen, Joshua L.; Henderson, Wesley A.] N Carolina State Univ, Dept Chem & Biomol Engn, Ion Liquids & Electrolytes Energy Technol ILEET L, Raleigh, NC 27695 USA. [Boyle, Paul D.] N Carolina State Univ, Dept Chem, Xray Struct Facil, Raleigh, NC 27695 USA. [Trulove, Paul C.] US Naval Acad, Dept Chem, Annapolis, MD 21402 USA. [De Long, Hugh C.] Air Force Off Sci Res, Arlington, VA 22203 USA. [Henderson, Wesley A.] Pacific NW Natl Lab, Electrochem Mat & Syst Grp, Energy & Environm Directorate, Richland, WA 99352 USA. RP Henderson, WA (reprint author), N Carolina State Univ, Dept Chem & Biomol Engn, Ion Liquids & Electrolytes Energy Technol ILEET L, Raleigh, NC 27695 USA. EM Wesley.Henderson@pnnl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0002169] FX The authors wish to express their gratitude to the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, which supported this research under Award DE-SC0002169. NR 60 TC 7 Z9 7 U1 6 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 13 PY 2014 VL 118 IS 45 BP 25884 EP 25889 DI 10.1021/jp5079168 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AT5IW UT WOS:000344978000008 ER PT J AU Deshlahra, P Igesia, E AF Deshlahra, Prashant Igesia, Enrique TI Methanol Oxidative Dehydrogenation on Oxide Catalysts: Molecular and Dissociative Routes and Hydrogen Addition Energies as Descriptors of Reactivity SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DENSITY-FUNCTIONAL THEORY; SELECTIVE OXIDATION; HETEROPOLY COMPOUNDS; SURFACE-CHEMISTRY; MOLYBDENUM OXIDE; REDOX PROPERTIES; DIMETHYL ETHER; ACID CATALYSIS; METAL-OXIDES; SILICA AB The oxidative dehydrogenation (ODH) of alkanols on oxide catalysts is generally described as involving H-abstraction from alkoxy species formed via OH dissociation. Kinetic and isotopic data cannot discern between such routes and those involving kinetically-relevant H-abstraction from undissociated alkanols. Here, we combine such experiments with theoretical estimates of activation energies and entropies to show that the latter molecular routes prevail over dissociative routes for methanol reactions on polyoxometalate (POM) clusters at all practical reaction temperatures. The stability of the late transition states that mediate H-abstraction depend predominantly on the stability of the OH bond formed, making H-addition energies (HAE) accurate and single-valued descriptors of reactivity. Density functional theory-derived activation energies depend linearly on HAE values at each O-atom location on clusters with a range of composition (H3PMo12, H4SiMo12, H3PW12, H4PV1Mo11, and H4PV1W11); both barriers and HAE values reflect the lowest unoccupied molecular orbital energy of metal centers that accept the electron and the protonation energy of O-atoms that accept the proton involved in the H-atom transfer. Bridging O-atoms form OH bonds that are stronger than those of terminal atoms and therefore exhibit more negative HAE values and higher ODH reactivity on all POM clusters. For each cluster composition, ODH turnover rates reflect the reactivity-averaged HAE of all accessible O-atoms, which can be evaluated for each cluster composition to provide a rigorous and accurate predictor of ODH reactivity for catalysts with known structure. These relations together with oxidation reactivity measurements can then be used to estimate HAE values and to infer plausible structures for catalysts with uncertain active site structures. C1 [Deshlahra, Prashant; Igesia, Enrique] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Igesia, Enrique] EO Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Igesia, E (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM iglesia@berkeley.edu FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC05-76RL0-1830]; DOE [47582]; National Science Foundation [ACI-1053575, CHE-0840505] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC05-76RL0-1830. Computational facilities were provided by the Environmental Molecular Science Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL), a DOE Office of Science User Facility, under proposal 47582. The use of molecular DFT calculations using Gaussian program was made possible by the Extreme Science and Engineering Discovery Environment (XSEDE) and a UC Berkeley College of Chemistry facility, which are supported by National Science Foundation grants (ACI-1053575 and CHE-0840505, respectively). We thank Dr. David Hibbitts (UC-Berkeley) for assistance with the statistical mechanics treatments and Dr. Robert Carr, Mr. William Knaeble, and Mr. Nee lay Phadke (UC-Berkeley) for technical discussions and a critical review of the concepts developed in this manuscript. NR 52 TC 8 Z9 8 U1 3 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 13 PY 2014 VL 118 IS 45 BP 26115 EP 26129 DI 10.1021/jp507922u PG 15 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AT5IW UT WOS:000344978000034 ER PT J AU Yang, CT Wood, BC Bhethanabotla, VR Joseph, B AF Yang, Chi-Ta Wood, Brandon C. Bhethanabotla, Venkat R. Joseph, Babu TI CO2 Adsorption on Anatase TiO2 (101) Surfaces in the Presence of Subnanometer Ag/Pt Clusters: Implications for CO2 Photoreduction SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TOTAL-ENERGY CALCULATIONS; ELASTIC BAND METHOD; WAVE BASIS-SET; CARBON-DIOXIDE; PHOTOCATALYTIC CONVERSION; TIO2(101) SURFACE; HYDROCARBON FUELS; OXYGEN VACANCIES; SADDLE-POINTS; REDUCTION AB Using density functional theory calculations, we show how CO2 adsorption on perfect and reduced anatase TiO2 (101) surfaces can be substantially modified by the presence of surface Ag and Pt octamer clusters. We find that adsorption is affected even at sites where the adsorbate is not in direct contact with the octamer, which we attribute to charge donation to CO2 from the Ag/Pt-modified surface, as well as an electrostatic competition between attractive (Ti-O) and repulsive (Ti-C) interactions. In addition, TiO2-supported Pt octamers offer key advantages that could be leveraged for CO2 photoreduction, including providing additional stable adsorption sites for bent CO2 species and facilitating charge transfer to aid in CO2- anion formation. Electronic structure analysis suggests these factors arise primarily from the hybridization of the bonding molecular orbitals of CO2 with d orbitals of the Pt atoms. Our results show that, for adsorption on TiO(2-)supported Pt octamers, the O-C-O bending and C-O asymmetric stretching frequencies can be used as reliable indicators of the presence of the CO2- anion intermediate as well as to distinguish unique adsorption geometries or sites. Finally, we suggest a possible pathway for subsequent CO2 dissociation to CO at the surface of a reduced anatase TiO2 (101)-supported Pt octamer, which has a computed energy barrier of 1.01 eV. C1 [Yang, Chi-Ta; Bhethanabotla, Venkat R.; Joseph, Babu] Univ S Florida, Dept Chem & Biomed Engn, Tampa, FL 33620 USA. [Wood, Brandon C.] Lawrence Livermore Natl Lab, Quantum Simulat Grp, Livermore, CA 94550 USA. RP Joseph, B (reprint author), Univ S Florida, Dept Chem & Biomed Engn, Tampa, FL 33620 USA. EM bjoseph@usf.edu FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors thank the USE supercomputing center for computing time and support along with XSEDE and NERSC supercomputing resources. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 63 TC 10 Z9 10 U1 9 U2 98 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 13 PY 2014 VL 118 IS 45 BP 26236 EP 26248 DI 10.1021/jp509219n PG 13 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AT5IW UT WOS:000344978000046 ER PT J AU Espinosa-Faller, FJ Conradson, DR Riha, SC Martucci, MB Fredrick, SJ Vogel, S Prieto, AL Conradson, SD AF Espinosa-Faller, Francisco J. Conradson, Dylan R. Riha, Shannon C. Martucci, Mary B. Fredrick, Sarah J. Vogel, Sven Prieto, Amy L. Conradson, Steven D. TI Neutron Diffraction and X-ray Absorption Fine Structure Evidence for Local Lattice Distortions and Aperiodic Antisite Substitution in Cu2ZnSnS4 Nanoparticles SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SOLAR-CELLS; SEMICONDUCTOR NANOCRYSTALS; HETEROGENEOUS CATALYSIS; ABSORBER; PHOTOVOLTAICS; KESTERITE; INK AB A thorough structure determination has been performed on Cu2ZnSnS4 nanoparticles, a popular photovoltaic material, using neutron diffractionto characterize the long-range average crystal structureand X-ray absorption fine structure (XAFS) spectroscopy at the Cu, Zn, and Sn K-edges to elucidate the element-specific local structure. This is the first combined multiscale approach on nanoparticles of this material. The results indicate the presence of aperiodic disorder on the cation sites that is diminished by annealing. This disorder involves local lattice distortions around the crystallographic sites rather than the presence of interstitial atoms. It is most consistent with the known antisite substitutions that are integral to CZTS (referring to the ordering of the Cu, Zn, and Sn between planes). However, instead of being confined within single unit cells so as to maintain the crystallographic symmetry, periodicity, and homogeneity, the substitutional disorder appears to extend over larger regions consisting of multiple unit cells but still smaller than the physical dimensions of the nanoparticles. These results therefore imply the presence of nanoscale domains characterized by local fluctuations in composition that cause the individual domains to be enriched in certain metal ions and depleted in others. These will be mirrored by domains with the opposite fluctuations at other locations in the crystal so that the overall composition remains close to the stoichiometric Cu2ZnSnS4. This disorder is likely pronounced in these samples due to the relatively low temperature reaction (300 degrees C) and annealing (350 degrees C) conditions and can be expected to have a significant effect on the resulting physical properties of the material and its photovoltaic performance. C1 [Conradson, Dylan R.; Martucci, Mary B.; Vogel, Sven; Conradson, Steven D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Riha, Shannon C.; Martucci, Mary B.; Fredrick, Sarah J.; Prieto, Amy L.] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA. [Espinosa-Faller, Francisco J.] Univ Marista Merida, Merida 97300, Yucatan, Mexico. RP Prieto, AL (reprint author), Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA. EM amy.prieto@colostate.edu; steven.conradson@synchrotron-soleil.fr FU DOE-Basic Energy Sciences under FWP [2012LANLE389]; Conacyt-Mexico [169108]; Heavy Element Chemistry Program of the Division of Chemical Sciences, Biosdences, and Geosciences, Office of Basic Energy Sciences at Los Alamos National Laboratory that is operated by Los Alamos National Security, LLC; National Nuclear Security Administration of U.S. Department of Energy [DE-AC52-06NA2S396]; Colorado State University; Center for Revolutionary Solar Photoconversion (CRSP); NSF Graduate Fellowship program FX Part of this research was performed on the HIPPO instrument at the Lujan Center at Los Alamos National Laboratory supported by DOE-Basic Energy Sciences under FWP #2012LANLE389. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. FJEF would like to thank Conacyt-Mexico for financial support (Grant No. 169108). SDC and MBM were supported by the Heavy Element Chemistry Program of the Division of Chemical Sciences, Biosdences, and Geosciences, Office of Basic Energy Sciences at Los Alamos National Laboratory that is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy under Contract DE-AC52-06NA2S396. TEM imaging was supported in part by the Microscopy Imaging Network core infrastructure grant from Colorado State University. ALP and SCR thank the Center for Revolutionary Solar Photoconversion (CRSP) for funding. SJF thanks the NSF Graduate Fellowship program for funding. NR 42 TC 7 Z9 7 U1 3 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 13 PY 2014 VL 118 IS 45 BP 26292 EP 26303 DI 10.1021/jp502150s PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AT5IW UT WOS:000344978000052 ER PT J AU Cherakara, MJ Germann, TC Kober, EM Strachan, A AF Cherakara, Mathew J. Germann, Timothy C. Kober, Edward M. Strachan, Alejandro TI Shock Loading of Granular Ni/Al Composites. Part 1: Mechanics of Loading SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SOLID-STATE REACTIONS; NI-AL SYSTEM; MOLECULAR-DYNAMICS; SIMULATIONS; EXPLOSIVES; MODEL AB We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (mu(p) less than or similar to 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. The mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion and fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (mu(p) less than or similar to 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components in addition to the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites. C1 [Cherakara, Mathew J.; Strachan, Alejandro] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Cherakara, Mathew J.; Strachan, Alejandro] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Cherakara, Mathew J.; Germann, Timothy C.; Kober, Edward M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Strachan, A (reprint author), Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. EM strachan@purdue.edu OI Germann, Timothy/0000-0002-6813-238X FU U.S. Defense Threat Reduction Agency [HDTRA1-10-1-0119]; U.S. Department of Energy National Nuclear Security Administration [t DE-AC52-06NA25396]; Institute for Materials Science (LANL); ExMatEx project FX We thank John Barber for discussions and suggestions regarding the polygon packing problem. This work was supported by the U.S. Defense Threat Reduction Agency, HDTRA1-10-1-0119 (Program Manager Suhithi Peiris) and used resources provided by the Los Alamos National Laboratory Institutional Computing Program, which is supported by the U.S. Department of Energy National Nuclear Security Administration under Contract DE-AC52-06NA25396. E.M.K. acknowledges support from the Institute for Materials Science (LANL), and T.C.G. acknowledges support from the ExMatEx project. NR 45 TC 4 Z9 4 U1 5 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 13 PY 2014 VL 118 IS 45 BP 26377 EP 26386 DI 10.1021/jp507795w PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AT5IW UT WOS:000344978000061 ER PT J AU Lee, JJ Schmitt, FT Moore, RG Johnston, S Cui, YT Li, W Yi, M Liu, ZK Hashimoto, M Zhang, Y Lu, DH Devereaux, TP Lee, DH Shen, ZX AF Lee, J. J. Schmitt, F. T. Moore, R. G. Johnston, S. Cui, Y. -T. Li, W. Yi, M. Liu, Z. K. Hashimoto, M. Zhang, Y. Lu, D. H. Devereaux, T. P. Lee, D. -H. Shen, Z. -X. TI Interfacial mode coupling as the origin of the enhancement of T-c in FeSe films on SrTiO3 SO NATURE LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; PHOTOEMISSION AB Films of iron selenide (FeSe) one unit cell thick grown on strontium titanate (SrTiO3 or STO) substrates have recently shown(1-4) superconducting energy gaps opening at temperatures close to the boiling point of liquid nitrogen (77 kelvin), which is a record for the iron-based superconductors. The gap opening temperature usually sets the superconducting transition temperature T-c, as the gap signals the formation of Cooper pairs, the bound electron states responsible for superconductivity. To understand why Cooper pairs form at such high temperatures, we examine the role of the SrTiO3 substrate. Here we report high-resolution angle-resolved photoemission spectroscopy results that reveal an unexpected characteristic of the single-unit-cell FeSe/SrTiO3 system: shake-off bands suggesting the presence of bosonic modes, most probably oxygen optical phonons in SrTiO3 (refs 5-7), which couple to the FeSe electrons with only a small momentum transfer. Such interfacial coupling assists superconductivity in most channels, including those mediated by spin fluctuations(8-14). Our calculations suggest that this coupling is responsible for raising the superconducting gap opening temperature in single-unit-cell FeSe/SrTiO3. C1 [Lee, J. J.; Schmitt, F. T.; Moore, R. G.; Cui, Y. -T.; Li, W.; Yi, M.; Liu, Z. K.; Zhang, Y.; Devereaux, T. P.; Shen, Z. -X.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Lee, J. J.; Yi, M.; Liu, Z. K.; Shen, Z. -X.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Lee, J. J.; Yi, M.; Liu, Z. K.; Shen, Z. -X.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Lee, J. J.; Yi, M.; Liu, Z. K.; Shen, Z. -X.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Johnston, S.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Johnston, S.] Univ British Columbia, Quantum Matter Inst, Vancouver, BC V6T 1Z4, Canada. [Johnston, S.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Hashimoto, M.; Lu, D. H.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Zhang, Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Lee, D. -H.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lee, D. -H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Shen, ZX (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. EM zxshen@stanford.edu RI Cui, Yong-Tao/G-8505-2015; Johnston, Steven/J-7777-2016 OI Cui, Yong-Tao/0000-0002-8015-1049; FU US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Department of Energy, Office of Basic Energy Sciences, Division of Materials Science, under the Quantum Material programme [DE-AC02-05CH11231] FX This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. D.-H.L. is supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Science, under the Quantum Material programme DE-AC02-05CH11231. Measurements were performed at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. NR 27 TC 131 Z9 133 U1 22 U2 207 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD NOV 13 PY 2014 VL 515 IS 7526 BP 245 EP U207 DI 10.1038/nature13894 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AT0MZ UT WOS:000344631400045 PM 25391962 ER PT J AU Xie, JJ Wu, JJ Zou, BS AF Xie, Ju-Jun Wu, Jia-Jun Zou, Bing-Song TI Role of the possible Sigma*(1/2(-)) state in the Lambda p -> Lambda p pi(0) reaction SO PHYSICAL REVIEW C LA English DT Article AB The Lambda p -> Lambda p pi(0) reaction near threshold is studied within an effective Lagrangian method. The production process is described by single-pion and single-kaon exchange. In addition to the role played by the Sigma*(1385) resonance of spin-parity J(P) = 3/2(+), the effects of a newly proposed Sigma* (J(P) = 1/2(-)) state with mass and width around 1380 MeV and 120 MeV are investigated. We show that our model leads to a good description of the experimental data on the total cross section of the Lambda p -> Lambda p pi(0) reaction by including the contributions from the possible Sigma* (1/2(-)) state. However, the theoretical calculations by considering only the Sigma*(1385) resonance fail to reproduce the experimental data, especially for the enhancement close to the reaction threshold. On the other hand, it is found that the single-pion exchange is dominant. Furthermore, we also demonstrate that the angular distributions provide direct information of this reaction, hence could be useful for the investigation of the existence of the Sigma*(1/2(-)) state and may be tested by future experiments. C1 [Xie, Ju-Jun] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. [Xie, Ju-Jun] Chinese Acad Sci, Inst Modern Phys, Res Ctr Hadron, Lanzhou 730000, Peoples R China. [Xie, Ju-Jun] Chinese Acad Sci, Inst Modern Phys, CSR Phys, Lanzhou 730000, Peoples R China. [Xie, Ju-Jun] Lanzhou Univ, Lanzhou 730000, Peoples R China. [Xie, Ju-Jun; Zou, Bing-Song] Chinese Acad Sci, Inst Theoret Phys, State Key Lab Theoret Phys, Beijing 100190, Peoples R China. [Wu, Jia-Jun] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Xie, JJ (reprint author), Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. EM xiejujun@impcas.ac.cn; zoubs@itp.ac.cn FU National Natural Science Foundation of China [11105126, 11035006, 11121092, 11261130311]; Chinese Academy of Sciences [KJCX2-EW-N01]; Ministry of Science and Technology of China [2009CB825200]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357] FX We would like to thank Prof. T.-S. H. Lee and Xu Cao for useful discussions. This work is partly supported by the National Natural Science Foundation of China under Grants No. 11105126, No. 11035006, No. 11121092, No. 11261130311 (RC110 by DFG and NSFC), the Chinese Academy of Sciences under Project No. KJCX2-EW-N01, and the Ministry of Science and Technology of China (2009CB825200). This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. NR 33 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD NOV 12 PY 2014 VL 90 IS 5 AR 055204 DI 10.1103/PhysRevC.90.055204 PG 6 WC Physics, Nuclear SC Physics GA CJ0UP UT WOS:000355194400003 ER PT J AU Yu, T Tyson, TA Gao, P Wu, T Hong, X Ghose, S Chen, YS AF Yu, T. Tyson, T. A. Gao, P. Wu, T. Hong, X. Ghose, S. Chen, Y. -S. TI Structural changes related to the magnetic transitions in hexagonal InMnO3 SO PHYSICAL REVIEW B LA English DT Article ID PAIR DISTRIBUTION FUNCTION; LUMNO3; PHASE AB Two magnetic ordering transitions are found in InMnO3, the paramagnetic to antiferromagnetic transition at similar to 118 K and a lower possible spin rotation transition near 42 K. Multiple length scale structural measurements reveal enhanced local distortion found to be connected with tilting of the MnO5 polyhedra as temperature is reduced. Coupling is observed between the lattice and the spin manifested as changes in the structure near both of the magnetic ordering temperatures (at similar to 42 and similar to 118 K). External parameters, such as pressure, are expected to modify the coupling. C1 [Yu, T.; Tyson, T. A.; Gao, P.; Wu, T.] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. [Hong, X.] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. [Ghose, S.] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Chen, Y. -S.] Univ Chicago, ChemMatCARS, Argonne, IL 60439 USA. [Chen, Y. -S.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Tyson, TA (reprint author), New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. EM tyson@njit.edu FU DOE Grant [DE-FG02-07ER46402]; US Department of Energy; National Science Foundation; Department of Energy [NSF/CHE-1346572]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF MRI Grant [DMR-0923032] FX This work was supported by DOE Grant No. DE-FG02-07ER46402. Synchrotron powder x-ray diffraction and x-ray absorption data acquisition were performed at Brookhaven National Laboratory's NSLS, which is funded by the US Department of Energy. Single-crystal x-ray diffraction measurements were performed at the beamline 15-ID-B, Advanced Photon Source, Argonne National Laboratory. ChemMat-CARS Sector 15 is principally supported by the National Science Foundation and Department of Energy under Grant No. NSF/CHE-1346572. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The physical properties measurement system was acquired under NSF MRI Grant No. DMR-0923032 (ARRA award). NR 25 TC 1 Z9 1 U1 0 U2 48 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 12 PY 2014 VL 90 IS 17 AR 174106 DI 10.1103/PhysRevB.90.174106 PG 9 WC Physics, Condensed Matter SC Physics GA CA2YT UT WOS:000348773000002 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Axen, B Azuelos, G Azuma, Y Baak, MA Baas, AE Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batista, SJ Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bessidskaia, O Bessner, M Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cuciuc, CM Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Dias, FA Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Wemans, AD Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franconi, L Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, M Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hoffman, J Hoffmann, D Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Hopkins, WH Horii, Y Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Kareem, MJ Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-Zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubuab, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramosb, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagata, K Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Garcia, RFN Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negri, G Negrini, M Nektarijevic, S Nellist, C Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Perini, L Pernegger, H Perrella, S Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sabato, G Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarraa, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Sinervo, P Sinev, NB Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T Spurlock, B Denis, RDS Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Turvey, AJ Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Den Wollenberg, W Van Der Deijl, PCD van der Geer, R Van der Graaf, H van der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H Von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevica, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Axen, B. Azuelos, G. Azuma, Y. Baak, M. A. Baas, A. E. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Battistin, M. Bauer, F. Bawa, H. S. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bessidskaia, O. Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boddy, C. R. Boehler, M. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buscher, D. Buscher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cuciuc, C. -M. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Vivie De Regie, J. B. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Do Valle Wemans, A. Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duhrssen, M. Dunford, M. Yildiz, H. Duran Duren, M. Durglishvili, A. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franconi, L. Franklin, M. Franz, S. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Goncalves Pinto Firmino Da Costa, J. Gonella, L. de la Hoz, S. Gonzalez Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gossling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstrom, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Groth-Jensen, J. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hagebock, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Jimenez, Y. Hernandez Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hopkins, W. H. Horii, Y. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hulsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Rozas, A. Juste Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Kareem, M. J. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-Zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubuab, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koneke, K. Konig, A. C. Konig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Kopke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Kruger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maier, A. A. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. de Andrade Filho, L. Manhaes Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mattig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Monig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagata, K. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Garcia, R. F. Naranjo Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Perini, L. Pernegger, H. Perrella, S. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruhr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sabato, G. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarraa, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schafer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Sinervo, P. Sinev, N. B. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Strohmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Turvey, A. J. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van Den Wollenberg, W. Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevica, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at root s=8 TeV with the ATLAS detector SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering ID BENCHMARK SCENARIOS; MASSLESS PARTICLES; BROKEN SYMMETRIES; MONTE-CARLO; MSSM; LHC; MASSES; PROGRAM; DISCOVERY; COUPLINGS AB A search for the neutral Higgs bosons predicted by the Minimal Supersymmetric Standard Model (MSSM) is reported. The analysis is performed on data from proton-proton collisions at a centre-of-mass energy of 8 TeV collected with the ATLAS detector at the Large Hadron Collider. The samples used for this search were collected in 2012 and correspond to integrated luminosities in the range 19.5-20.3 fb(-1). The MSSM Higgs bosons are searched for in the tau tau final state. No significant excess over the expected background is observed, and exclusion limits are derived for the production cross section times branching fraction of a scalar particle as a function of its mass. The results are also interpreted in the MSSM parameter space for various benchmark scenarios. C1 [Jackson, P.; Lee, L.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Kuday, S.; Cakir, I. Turk] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-Zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anjos, N.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Anjos, N.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin Dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Axen, B.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooper, B. D.; Cornelissen, T.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Krieger, P.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Axen, B.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooper, B. D.; Cornelissen, T.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Krieger, P.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Stamm, S.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.; Yorita, K.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.; Yorita, K.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Aloisio, A.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corriveau, F.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarraa, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] INFN Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Menke, S.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Gonella, L.; Haefner, P.; Hagebock, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Kruger, H.; Lapoire, C.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Meric, N.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Velz, T.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Univ Fed Juiz de Fora, Juiz De Fora, Brazil. [do Vale, M. A. B.] Univ Fed Sao Joao del Rei, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, 026c, Bucharest, Romania. West Univ Timisoara, 026d, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Barone, G.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Crosetti, G.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, H.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Milosavljevica, M. Vranjes; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhao, Y.; Zhao, Z.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Chen, X.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Huseynov, N.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Aloisio, A.; Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Collegato Cosenza, Lab Nazl Frascati, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Knue, A.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Dallas, TX 75230 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Monig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Monig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Gossling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Pohl, M.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Okamura, W.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buscher, D.; Coniavitis, E.; Consorti, V.; Dao, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ronzani, M.; Ruhr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Merola, L.; Muenstermann, D.; Nektarijevic, S.; Nikolics, K.; Picazio, A.; Rosbach, K.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubuab, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, GE-380086 Tbilisi, Rep of Georgia. [Duren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35390 Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland. [Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Kareem, M. J.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conventi, F.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mergelmeyer, S.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Djuvsland, J. I.; Dunford, M.; Hanke, P.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Castillo, L. R. Flores] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Pluth, D.; Prell, S.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huston, J.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Aloisio, A.; Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan. [Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Allison, L. J.; Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Copic, K.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Cooper-Sarkar, A. M.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Blum, W.; Buscher, V.; Caputo, R.; Caudron, J.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Hulsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Konig, S.; Kopke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schafer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Barnes, S. L.; Borri, M.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Koffas, T.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corso-Radu, A.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Goldfarb, S.; Harper, D.; Hu, X.; Levin, D.; Liu, L.; Long, J. D.; Lu, N.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Merritt, F. S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Aloisio, A.; Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kneringer, E.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Meoni, E.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Cooke, M.; de Asmundis, R.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Meroni, C.; Patricelli, S.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Meroni, C.; Patricelli, S.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Chekulaev, S. V.; Croft, V.; De Groot, N.; Filthaut, F.; Fortin, D.; Galea, C.; Klok, P. F.; Kneringer, E.; Konig, A. C.; Ramos, J. A. Manjarres; Palacino, G.; Codina, E. Perez; Salvucci, A.; Seuster, R.; Strubig, A.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.] Nikhef, Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Meroni, C.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY USA. [Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Tannenwald, B. B.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Donszelmann, T. Cuhadar; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Adelman, J.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Vivie De Regie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Adelman, J.; Aloisio, A.; Alonso, A.; Altheimer, A.; Amorim, A.; Andreazza, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Vivie De Regie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Lee, J. S. H.; Nomachi, M.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Bruni, A.; Buckingham, R. M.; Cooper-Smith, N. J.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Geich-Gimbel, Ch.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Univ Pavia, INFN Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Geich-Gimbel, Ch.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Meyer, C.; Ospanov, R.; Saxon, J.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, INFN Sez Pisa, Pisa, Italy. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Do Valle Wemans, A.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, P-1699 Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Do Valle Wemans, A.] Univ Nova Lisboa, Dept Fis, Caparica, Portugal. [Do Valle Wemans, A.] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Guenther, J.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Aloisio, A.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Aloisio, A.; Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, INFN Sez Roma, I-00185 Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, INFN Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Univ Rome Tre, INFN Sez Roma Tre, I-00146 Rome, Italy. [Bacci, C.; Baroncelli, A.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Benchekroun, D.; Boutouil, S.; Chafaq, A.; El Moursli, R. Cherkaoui; Derkaoui, J. E.; El Kacimi, M.; Fassi, F.; Ghazlane, H.; Gouighri, M.; Goujdami, D.; Haddad, N.; Hoummada, A.; Idrissi, Z.; Ouchrif, M.; Tayalati, Y.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Cadi Ayyad, LPHEA, Fac Sci Semlalia, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Goncalves Pinto Firmino Da Costa, J.; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Mermod, P.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, IRFU, DSM, Commissariat Energie Atom & Energies Alternat, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Sadrozinski, H. F-W.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Aloisio, A.; Alonso, A.; Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nef, P. D.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Lee, C. A.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Hamity, G. N.; Hsu, C.; March, L.; Garcia, B. R. Mellado; Ruan, X.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bassalat, A.; Bendtz, K.; Bertoli, G.; Bessidskaia, O.; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bessidskaia, O.; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Miucci, A.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron & Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Papageorgiou, K.; Hernandez, D. Paredes; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Batista, S. J.; Brelier, B.; Chau, C. C.; DeMarco, D. A.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Koutsman, A.; Oram, C. J.; Schouten, D.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Mercurio, K. M.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Kotov, V. M.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Errede, D.; Errede, S.; Giordani, M. P.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kuutmann, E. Bergeaas; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, IMB CNM, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC V5Z 1M9, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.; Ventura, A.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Redelbach, A.; Schreyer, M.; Siragusa, G.; Strohmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, T. T.; Braun, H. M.; Corradi, M.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Mattig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany. [Baker, O. K.; Bedikian, S.; Cummings, J.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London WC2R 2LS, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anisenkov, A. V.; Bobrovnikov, V. S.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Apolle, R.; Davies, E.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Chen, L.; Gao, J.] Aix Marseille Univ, CPPM, Marseille, France. [Chen, L.; Gao, J.] IN2P3, CNRS, Marseille, France. [Cooke, M.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corso-Radu, A.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] IPP, Thornhill, ON, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Barcelona, Spain. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Jenni, P.] CERN, Geneva, Switzerland. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Li, B.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Li, Y.] Univ Paris 11, LAL, Orsay, France. [Li, Y.] IN2P3, CNRS, Orsay, France. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Liu, K.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Liu, K.] Univ Paris Diderot, Paris, France. [Liu, K.] IN2P3, CNRS, Paris, France. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Messina, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys, Dolgoprudnyi, Russia. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Technol State Univ, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pinamonti, M.] SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vickey, T.] Univ Oxford, Dept Phys, Oxford, England. [Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Xu, L.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Mindur, Bartosz/A-2253-2017; Fabbri, Laura/H-3442-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Yang, Haijun/O-1055-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Wemans, Andre/A-6738-2012; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Kantserov, Vadim/M-9761-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Warburton, Andreas/N-8028-2013; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; De, Kaushik/N-1953-2013; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Marti-Garcia, Salvador/F-3085-2011; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; Doyle, Anthony/C-5889-2009; spagnolo, stefania/A-6359-2012; Ciubancan, Liviu Mihai/L-2412-2015; Zhukov, Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Connell, Simon/F-2962-2015; Livan, Michele/D-7531-2012; Smirnova, Oxana/A-4401-2013; Bosman, Martine/J-9917-2014; Joergensen, Morten/E-6847-2015; Mitsou, Vasiliki/D-1967-2009; Villa, Mauro/C-9883-2009; Riu, Imma/L-7385-2014; Mir, Lluisa-Maria/G-7212-2015; White, Ryan/E-2979-2015; Brooks, William/C-8636-2013; Di Domenico, Antonio/G-6301-2011 OI Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Wemans, Andre/0000-0002-9669-9500; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Perrino, Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Kantserov, Vadim/0000-0001-8255-416X; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Tikhomirov, Vladimir/0000-0002-9634-0581; Warburton, Andreas/0000-0002-2298-7315; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; De, Kaushik/0000-0002-5647-4489; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; Doyle, Anthony/0000-0001-6322-6195; spagnolo, stefania/0000-0001-7482-6348; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Connell, Simon/0000-0001-6000-7245; Livan, Michele/0000-0002-5877-0062; Smirnova, Oxana/0000-0003-2517-531X; Bosman, Martine/0000-0002-7290-643X; Joergensen, Morten/0000-0002-6790-9361; Mitsou, Vasiliki/0000-0002-1533-8886; Villa, Mauro/0000-0002-9181-8048; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; White, Ryan/0000-0003-3589-5900; Brooks, William/0000-0001-6161-3570; Di Domenico, Antonio/0000-0001-8078-2759 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MIN-ERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MIN-ERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 91 TC 56 Z9 56 U1 6 U2 64 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV 12 PY 2014 IS 11 AR 056 DI 10.1007/JHEP11(2014)056 PG 47 WC Physics, Particles & Fields SC Physics GA AZ0AC UT WOS:000347908000003 ER PT J AU Liang, SH Mukherjee, A Patel, ND Bishop, CB Dagotto, E Moreo, A AF Liang, Shuhua Mukherjee, Anamitra Patel, Niravkumar D. Bishop, Christopher B. Dagotto, Elbio Moreo, Adriana TI Diverging nematic susceptibility, physical meaning of T* scale, and pseudogap in the spin fermion model for the pnictides SO PHYSICAL REVIEW B LA English DT Article ID IRON ARSENIDE SUPERCONDUCTOR; TRANSITION; MAGNETISM; ORDER AB Using Monte Carlo simulations with a tunable uniaxial strain, the nematic susceptibility of the spin fermion model for the pnictides is calculated. The results are in excellent agreement with the experiments by Chu et al. [Science 337, 710 (2012)]. Via a Ginzburg-Landau analysis, our study suggests a nematicity in the spin fermion model primarily originating in magnetism, but with the lattice/orbital also playing a key role by boosting up critical temperatures and separating the structural T-S and Neel T-N transitions. At T > T-S, Curie-Weiss behavior is observed with a characteristic temperature T* being the T-N of the purely electronic system. In this temperature regime, short-range magnetic order with wave vectors (pi, 0)-(0, pi) induce local nematic fluctuations and a density-of-states pseudogap, compatible with several experiments. The present analysis relies on the study of a particular model for the iron superconductors; thus further studies are needed to conclusively establish the driver of nematicity in real materials. C1 [Liang, Shuhua; Dagotto, Elbio; Moreo, Adriana] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Liang, Shuhua; Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Christopher B.; Dagotto, Elbio; Moreo, Adriana] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Liang, SH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. NR 41 TC 8 Z9 8 U1 4 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 12 PY 2014 VL 90 IS 18 AR 184507 DI 10.1103/PhysRevB.90.184507 PG 10 WC Physics, Condensed Matter SC Physics GA CA2YZ UT WOS:000348773600003 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruehwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Ochesanu, S Roland, B Rougny, R Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Heracleous, N Kalogeropoulos, A Keaveney, J Kim, TJ Lowette, S Maes, M Olbrechts, A Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Caillol, C Clerbaux, B De Lentdecker, G Favart, L Gay, APR Leonard, A Marage, PE Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Crucy, S Dildick, S Garcia, G Klein, B Lellouch, J Mccartin, J Rios, AAO Ryckbosch, D Diblen, SS Sigamani, M Strobbe, N Thyssen, F Tytgat, M Walsh, S Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jez, P Komm, M Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Martins, TD Pol, ME Souza, MHG Alda, WL Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Malek, M Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santaolalla, J Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Marinov, A Piperov, S Rodozov, M Sultanov, G Vutova, M Dimitrov, A Glushkov, I Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Chen, M Du, R Jiang, CH Liang, D Liang, S Meng, X Plestina, R Tao, J Wang, X Wang, Z Asawatangtrakuldee, C Ban, Y Guo, Y Li, Q Li, W Liu, S Mao, Y Qian, SJ Wang, D Zhang, L Zou, W Avila, C Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Mekterovic, D Morovic, S Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Elgammal, S Kamel, AE Mahmoud, MA Mahrous, A Radi, A Kadastik, M Muntel, M Murumaa, M Raidal, M Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Nayak, A Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Busson, P Charlot, C Daci, N Dahms, T Dalchenko, M Dobrzynski, L Filipovic, N Florent, A de Cassagnac, RG Mastrolorenzo, L Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sauvan, JB Sirois, Y Veelken, C Yilmaz, Y Zabi, A Agram, JL Andrea, J Bloch, D Brom, JM Chabert, EC Collard, C Conte, E Drouhin, F Fontaine, JC Gele, D Goerlach, U Goetzmann, C Juillot, P Le Bihan, AC Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Brochet, S Montoya, CAC Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Alvarez, JDR Sgandurra, L Sordini, V Donckt, MV Verdier, P Viret, S Xiao, H Tsamalaidze, Z Autermann, C Beranek, S Bontenackels, M Calpas, B Edelhoff, M Feld, L Hindrichs, O Klein, K Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Padeken, K Papacz, P Reithler, H Schmitz, SA Sonnenschein, L Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bell, AJ Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Geiser, A Grebenyuk, A Gunnellini, P Habib, S Hauk, J Hellwig, G Hempel, M Horton, D Jung, H Kasemann, M Katsas, P Kieseler, J Kleinwort, C Kraemer, M Kruecker, D Lange, W Leonard, J Lipka, K Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Novgorodova, O Nowak, F Ntomari, E Perrey, H Petrukhin, A Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Riedl, C Ron, E Sahin, MO Salfeld-Nebgen, J Saxena, P Schmidt, R Schoerner-Sadenius, T Schrder, M Stein, M Trevino, ADRV Walsh, R Wissing, C Martin, MA Blobel, V Enderle, H Erfle, J Garutti, E Goebel, K Gorner, M Gosselink, M Haller, J Hoing, RS Kirschenmann, H Klanner, R Kogler, R Lange, J Lapsien, T Lenz, T Marchesini, I Ott, J Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Seidel, M Sibille, J Sola, V Stadie, H Steinbruck, G Troendle, D Usai, E Vanelderen, L Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hartmann, F Hauth, T Held, H Hoffmann, KH Husemann, U Katkov, I Kornmayer, A Kuznetsova, E Pardo, PL Martschei, D Mozer, MU Muller, T Niegel, M Nurnberg, A Oberst, O Quast, G Rabbertz, K Ratnikov, F Rocker, S Schilling, FP Schott, G Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Wolf, R Zeise, M Anagnostou, G Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Markou, A Markou, C Psallidas, A Topsis-Giotis, I Gouskos, L Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Jones, J Kokkas, P Manthos, N Papadopoulos, I Paradas, E Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Swain, SK Beri, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mittal, M Nishu, N Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Singh, AP Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Chatterjee, RM Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Arfaei, H Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Jafari, A Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Safarzadeh, B Zeinali, M Grunewald, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Radogna, R Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, P Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Fabbricatore, P Ferretti, R Ferro, F Lo Vetere, M Musenich, R Robutti, E Tosi, S Dinardo, ME Fiorendi, S Gennai, S Geros, R Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Di Guida, S Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bellato, M Biasotto, M Bisello, D Branca, A Checchia, P Dorigo, T Dosselli, U Fanzago, F Galanti, M Gasparini, F Gasparini, U Giubilato, P Gonella, F Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Zotto, P Zucchetta, A Zumerle, G Gabusi, M Ratti, SP Riccardi, C Salvini, P Vitulo, P Biasini, M Bilei, GM Fano, L Lariccia, P Mantovani, G Menichelli, M Romeo, F Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orsoa, R Donato, S Fiori, F Foa, L Giassi, A Grippo, MT Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Moon, CS Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F Del Re, D Diemoz, M Grassi, M Jorda, C Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Rovelli, C Soffi, L Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Degano, A Demaria, N Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Ortona, G Pacher, L Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Montanino, D Penzo, A Schizzi, A Umer, T Zanetti, A Chang, S Kim, TY Nam, SK Kim, DH Kim, GN Kim, JE Kim, MS Kong, DJ Lee, S Oh, YD Park, H Sakharov, A Son, DC Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, KS Park, SK Roh, Y Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kwon, E Lee, J Seo, H Yu, I Juodagalvis, A Komaragiri, JR Castilla-Valdez, H De la Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Krofcheck, D Butler, PH Doesburg, R Reucroft, S Ahmad, A Ahmad, M Asghar, MI Butt, J Hassan, Q Hoorani, HR Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Wolszczak, W Bargassa, P Silva, CBDCE Faccioli, P Parracho, PGF Gallinaro, M Nguyen, F Antunes, JR Seixas, J Varela, J Vischia, P Golutvin, I Karjavin, V Konoplyanikov, V Korenkov, V Kozlov, G Lanev, A Malakhov, A Matveev, V Mitsyn, VV Moisenz, P Palichik, V Perelygin, V Shmatov, S Shulha, S Skatchkov, N Smirnov, V Tikhonenko, E Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Dordevic, M Ekmedzic, M Milosevic, J Aguilar-Benitez, M Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Willmott, C Albajar, C de Troconiz, JF Missiroli, M Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Cifuentes, JAB Cabrillo, IJ Calderon, A Campderros, JD Fernandez, M Gomez, G Sanchez, JG Graziano, A Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodrguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A David, A De Guio, F De Roeck, A De Visscher, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Franzoni, G Funk, W Giffels, M Gigi, D Gill, K Giordano, D Girone, M Giunta, M Glege, F Garrido, RGR Gowdy, S Guida, R Hammer, J Hansen, M Harris, P Hegeman, J Innocente, V Janot, P Karavakis, E Kousouris, K Krajczar, K Lecoq, P Lourenco, C Magini, N Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Mulders, M Musella, P Orsini, L Cortezon, EP Pape, L Perez, E Perrozzi, L Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Pimia, M Piparo, D Plagge, M Racz, A Reece, W Rolandi, G Rovere, M Sakulin, H Santanastasio, F Sch,Fer, C Schwick, C Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Steggemann, J Stieger, B Stoye, M Treille, D Tsirou, A Veres, GI Vlimant, JR Wohri, HK Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Grab, C Hits, D Lustermann, W Mangano, B Marini, AC Del Arbol, PMR Meister, D Mohr, N Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pauss, F Peruzzi, M Quittnat, M Rebane, L Ronga, FJ Rossini, M Starodumov, A Takahashi, M Theofilatos, K Wallny, R Weber, HA Amsler, C Canelli, MF Chiochia, V De Cosa, A Favaro, C Hinzmann, A Hreus, T Rikova, MI Kilminster, B Mejias, BM Ngadiuba, J Robmann, P Snoek, H Taroni, S Verzetti, M Yang, Y Cardaci, M Chen, KH Ferro, C Kuo, CM Li, SW Lin, W Lu, YJ Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Liu, YF Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wang, M Wilken, R Asavapibhop, B Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Karapinar, G Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Bahtiyar, H Barlas, E Cankocak, K Gunaydin, YO Vardarli, FI Yucel, M Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Senkin, S Smith, VJ Williams, T Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Ilic, J Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Sparrow, A Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A Lawson, P Lazic, D Richardson, C Rohlf, J Sperka, D St John, J Sulak, L Alimena, J Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Jabeen, S Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Swanson, J Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Kopecky, A Lander, R Miceli, T Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Rutherford, B Searle, M Shalhout, S Smith, J Squires, M Tripathi, M Wilbur, S Yohay, R Andreev, V Cline, D Cousins, R Erhan, S Everaerts, P Farrell, C Felcini, M Hauser, J Ignatenko, M Jarvis, C Rakness, G Schlein, P Takasugi, E Valuev, V Weber, M Babb, J Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Jandir, P Lacroix, F Liu, H Long, OR Luthra, A Malberti, M Nguyen, H Shrinivas, A Sturdy, J Sumowidagdo, S Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Evans, D Holzner, A Kelley, R Kovalskyi, D Lebourgeois, M Letts, J Macneill, I Padhi, S Palmer, C Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bradmiller-Feld, J Campagnari, C Danielson, T Dishaw, A Flowers, K Sevilla, MF Geffert, P George, C Golf, F Incandela, J Justus, C Villalba, RM Mccoll, N Pavlunin, V Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Kcira, D Mott, A Newman, HB Pena, C Rogan, C Spiropulu, M Timciuc, V Wilkinson, R Xie, S Zhu, RY Azzolini, V Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Drell, BR Ford, WT Gaz, A Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Chu, J Eggert, N Gibbons, LK Hopkins, W Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kaadze, K Klima, B Kwan, S Linacre, J Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Nahn, S Newman-Holmes, C O'Dell, V Prokofyev, O Ratnikova, N Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitbeck, A Whitmore, J Wu, W Yang, F Yun, JC Acosta, D Avery, P Bourilkov, D Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Field, RD Fisher, M Fu, Y Furic, IK Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Rinkevicius, A Shchutska, L Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Moon, DH O'Brien, C Silkworth, C Turner, P Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Dilsiz, K Duru, F Haytmyradov, M Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Rahmat, R Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Gritsan, AV Maksimovic, P Martin, C Swartz, M Baringer, P Bean, A Benelli, G Gray, J Kenny, RP Murray, M Noonan, D Sanders, S Sekaric, J Stringer, R Wang, Q Wood, JS Barfuss, AF Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Saini, LK Shrestha, S Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Skuja, A Temple, J Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Bauer, G Busza, W Cali, IA Chan, M Di Matteo, L Dutta, V Ceballos, GG Goncharov, M Gulhan, D Klute, M Lai, YS Lee, YJ Levin, A Luckey, PD Ma, T Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stockli, F Sumorok, K Velicanu, D Veverka, J Wyslouch, B Yang, M Yoon, AS Zanetti, M Zhukova, V Dahmes, B De Benedetti, A Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Singovsky, A Tambe, N Turkewitz, J Acosta, JG Cremaldi, LM Kroeger, R Oliveros, S Perera, L Sanders, DA Summers, D Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Suarez, RG Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Malik, S Meier, F Snow, GR Dolen, J Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Massironi, A Nash, D Orimoto, T Trocino, D Wood, D Zhang, J Anastassov, A Hahn, KA Kubik, A Lusito, L Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Berry, D Brinkerhoff, A Chan, KM Drozdetskiy, A Hildreth, M Jessop, C Karmgard, DJ Kellams, N Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Bylsma, B Durkin, LS Flowers, S Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Vuosalo, C Winer, BL Wolfe, H Wulsin, HW Berry, E Elmer, P Halyo, V Hebda, P Hunt, A Jindal, P Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zenz, SC Zuranski, A Brownson, E Lopez, A Mendez, H Vargas, JER Alagoz, E Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jha, MK Jones, M Jung, K Kress, M Leonardo, N Pegna, DL Maroussov, V Merkel, P Miller, DH Neumeister, N Radburn-Smith, BC Shipsey, I Silvers, D Svyatkovskiy, A Wang, F Xie, W Xu, L Yoo, HD Zablocki, J Zheng, Y Parashar, N Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Michlin, B Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Rose, K Spanier, S Yang, ZC York, A Bouhali, O Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Krutelyov, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Suarez, I Tatarinov, A Toback, D Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kovitanggoon, K Kunori, S Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Wood, J Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Duric, S Friis, E Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Levine, A Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Sarangi, T Savin, A Smith, WH Woods, N AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Ochesanu, S. Roland, B. Rougny, R. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Heracleous, N. Kalogeropoulos, A. Keaveney, J. Kim, T. J. Lowette, S. Maes, M. Olbrechts, A. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Caillol, C. Clerbaux, B. De Lentdecker, G. Favart, L. Gay, A. P. R. Leonard, A. Marage, P. E. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Crucy, S. Dildick, S. Garcia, G. Klein, B. Lellouch, J. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Diblen, S. Salva Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jez, P. Komm, M. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Martins Junior, M. Correa Martins, T. Dos Reis Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. Damiao, D. De Jesus Martins, C. De Oliveira De Souza, S. Fonseca Malbouisson, H. Malek, M. Figueiredo, D. Matos Mundim, L. Nogima, H. Da Silva, W. L. Prado Santaolalla, J. Santoro, A. Sznajder, A. Manganote, E. J. Tonelli Pereira, A. Vilela Bernardes, C. A. Dias, F. A. Tomei, T. R. Fernandez Perez Gregores, E. M. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, P. Marinov, A. Piperov, S. Rodozov, M. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Du, R. Jiang, C. H. Liang, D. Liang, S. Meng, X. Plestina, R. Tao, J. Wang, X. Wang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, Q. Li, W. Liu, S. Mao, Y. Qian, S. J. Wang, D. Zhang, L. Zou, W. Avila, C. Sierra, L. F. Chaparro Florez, C. Gomez, J. P. Moreno, B. Gomez Sanabria, J. C. Godinovic, N. Lelas, D. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Mekterovic, D. Morovic, S. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Elgammal, S. Kamel, A. Ellithi Mahmoud, M. A. Mahrous, A. Radi, A. Kadastik, M. Muentel, M. Murumaa, M. Raidal, M. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Haerkoenen, J. Karimaeki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Nayak, A. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Busson, P. Charlot, C. Daci, N. Dahms, T. Dalchenko, M. Dobrzynski, L. Filipovic, N. Florent, A. de Cassagnac, R. Granier Mastrolorenzo, L. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sauvan, J. B. Sirois, Y. Veelken, C. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Juillot, P. Le Bihan, A. -C. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Brochet, S. Montoya, C. A. Carrillo Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Alvarez, J. D. Ruiz Sgandurra, L. Sordini, V. Donckt, M. Vander Verdier, P. Viret, S. Xiao, H. Tsamalaidze, Z. Autermann, C. Beranek, S. Bontenackels, M. Calpas, B. Edelhoff, M. Feld, L. Hindrichs, O. Klein, K. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Padeken, K. Papacz, P. Reithler, H. Schmitz, S. A. Sonnenschein, L. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Flugge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bell, A. J. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Geiser, A. Grebenyuk, A. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Hempel, M. Horton, D. Jung, H. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Kraemer, M. Kruecker, D. Lange, W. Leonard, J. Lipka, K. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I-A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Novgorodova, O. Nowak, F. Ntomari, E. Perrey, H. Petrukhin, A. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Sahin, M. O. Salfeld-Nebgen, J. Saxena, P. Schmidt, R. Schoerner-Sadenius, T. Schrder, M. Stein, M. Trevino, A. D. R. Vargas Walsh, R. Wissing, C. Martin, M. Aldaya Blobel, V. Enderle, H. Erfle, J. Garutti, E. Goebel, K. Gorner, M. Gosselink, M. Haller, J. Hoing, R. S. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Lapsien, T. Lenz, T. Marchesini, I. Ott, J. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Seidel, M. Sibille, J. Sola, V. Stadie, H. Steinbruck, G. Troendle, D. Usai, E. Vanelderen, L. Barth, C. Baus, C. Berger, J. Boser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hartmann, F. Hauth, T. Held, H. Hoffmann, K. H. Husemann, U. Katkov, I. Kornmayer, A. Kuznetsova, E. Pardo, P. Lobelle Martschei, D. Mozer, M. U. Muller, Th. Niegel, M. Nurnberg, A. Oberst, O. Quast, G. Rabbertz, K. Ratnikov, F. Rocker, S. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Wolf, R. Zeise, M. Anagnostou, G. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Psallidas, A. Topsis-Giotis, I. Gouskos, L. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Jones, J. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Swain, S. K. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mittal, M. Nishu, N. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Singh, A. P. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Chatterjee, R. M. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Arfaei, H. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Grunewald, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Radogna, R. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, P. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Ferretti, R. Ferro, F. Lo Vetere, M. Musenich, R. Robutti, E. Tosi, S. Dinardo, M. E. Fiorendi, S. Gennai, S. Geros, R. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bellato, M. Biasotto, M. Bisello, D. Branca, A. Checchia, P. Dorigo, T. Dosselli, U. Fanzago, F. Galanti, M. Gasparini, F. Gasparini, U. Giubilato, P. Gonella, F. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Zotto, P. Zucchetta, A. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Salvini, P. Vitulo, P. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orsoa, R. Donato, S. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Moon, C. S. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Grassi, M. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Soffi, L. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Degano, A. Demaria, N. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Ortona, G. Pacher, L. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Umer, T. Zanetti, A. Chang, S. Kim, T. Y. Nam, S. K. Kim, D. H. Kim, G. N. Kim, J. E. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Sakharov, A. Son, D. C. Kim, J. Y. Kim, Zero J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kwon, E. Lee, J. Seo, H. Yu, I. Juodagalvis, A. Komaragiri, J. R. Castilla-Valdez, H. De la Cruz-Burelo, E. Heredia-de la Cruz, I. Lopez-Fernandez, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Moreno, S. Carrillo Valencia, F. Vazquez Ibarguen, H. A. Salazar Linares, E. Casimiro Pineda, A. Morelos Krofcheck, D. Butler, P. H. Doesburg, R. Reucroft, S. Ahmad, A. Ahmad, M. Asghar, M. I. Butt, J. Hassan, Q. Hoorani, H. R. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Wolszczak, W. Bargassa, P. Silva, C. Beirao Da Cruz E. Faccioli, P. Parracho, P. G. Ferreira Gallinaro, M. Nguyen, F. Antunes, J. Rodrigues Seixas, J. Varela, J. Vischia, P. Golutvin, I. Karjavin, V. Konoplyanikov, V. Korenkov, V. Kozlov, G. Lanev, A. Malakhov, A. Matveev, V. Mitsyn, V. V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Shulha, S. Skatchkov, N. Smirnov, V. Tikhonenko, E. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Dordevic, M. Ekmedzic, M. Milosevic, J. Aguilar-Benitez, M. Maestre, J. Alcaraz Battilana, C. Calvo, E. Cerrada, M. Llatas, M. Chamizo Colino, N. De la Cruz, B. Peris, A. Delgado Vazquez, D. Dominguez Bedoya, C. Fernandez Ramos, J. P. Fernandez Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Lopez, O. Gonzalez Lopez, S. Goy Hernandez, J. M. Josa, M. I. Merino, G. De Martino, E. Navarro Yzquierdo, A. Perez-Calero Pelayo, J. Puerta Olmeda, A. Quintario Redondo, I. Romero, L. Soares, M. S. Willmott, C. Albajar, C. de Troconiz, J. F. Missiroli, M. Brun, H. Cuevas, J. Menendez, J. Fernandez Folgueras, S. Caballero, I. Gonzalez Iglesias, L. Lloret Cifuentes, J. A. Brochero Cabrillo, I. J. Calderon, A. Campderros, J. Duarte Fernandez, M. Gomez, G. Sanchez, J. Gonzalez Graziano, A. Virto, A. Lopez Marco, J. Marco, R. Rivero, C. Martinez Matorras, F. Sanchez, F. J. Munoz Gomez, J. Piedra Rodrigo, T. Rodrguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Cortabitarte, R. Vilar Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. David, A. De Guio, F. De Roeck, A. De Visscher, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Franzoni, G. Funk, W. Giffels, M. Gigi, D. Gill, K. Giordano, D. Girone, M. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Gowdy, S. Guida, R. Hammer, J. Hansen, M. Harris, P. Hegeman, J. Innocente, V. Janot, P. Karavakis, E. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Magini, N. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Mulders, M. Musella, P. Orsini, L. Cortezon, E. Palencia Pape, L. Perez, E. Perrozzi, L. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Pimia, M. Piparo, D. Plagge, M. Racz, A. Reece, W. Rolandi, G. Rovere, M. Sakulin, H. Santanastasio, F. Sch, C. Fer Schwick, C. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Treille, D. Tsirou, A. Veres, G. I. Vlimant, J. R. Wohri, H. K. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Konig, S. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Bani, L. Bianchini, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Dunser, M. Eller, P. Grab, C. Hits, D. Lustermann, W. Mangano, B. Marini, A. C. Del Arbol, P. Martinez Ruiz Meister, D. Mohr, N. Nageli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pauss, F. Peruzzi, M. Quittnat, M. Rebane, L. Ronga, F. J. Rossini, M. Starodumov, A. Takahashi, M. Theofilatos, K. Wallny, R. Weber, H. A. Amsler, C. Canelli, M. F. Chiochia, V. De Cosa, A. Favaro, C. Hinzmann, A. Hreus, T. Rikova, M. Ivova Kilminster, B. Mejias, B. Millan Ngadiuba, J. Robmann, P. Snoek, H. Taroni, S. Verzetti, M. Yang, Y. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Li, S. W. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Liu, Y. F. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wang, M. Wilken, R. Asavapibhop, B. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Karapinar, G. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Bahtiyar, H. Barlas, E. Cankocak, K. Gunaydin, Y. O. Vardarli, F. I. Yucel, M. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Senkin, S. Smith, V. J. Williams, T. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Ilic, J. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. Lawson, P. Lazic, D. Richardson, C. Rohlf, J. Sperka, D. St John, J. Sulak, L. Alimena, J. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Jabeen, S. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Swanson, J. Breedon, R. Breto, G. Sanchez, M. Calderon De la Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Kopecky, A. Lander, R. Miceli, T. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Rutherford, B. Searle, M. Shalhout, S. Smith, J. Squires, M. Tripathi, M. Wilbur, S. Yohay, R. Andreev, V. Cline, D. Cousins, R. Erhan, S. Everaerts, P. Farrell, C. Felcini, M. Hauser, J. Ignatenko, M. Jarvis, C. Rakness, G. Schlein, P. Takasugi, E. Valuev, V. Weber, M. Babb, J. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Jandir, P. Lacroix, F. Liu, H. Long, O. R. Luthra, A. Malberti, M. Nguyen, H. Shrinivas, A. Sturdy, J. Sumowidagdo, S. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Evans, D. Holzner, A. Kelley, R. Kovalskyi, D. Lebourgeois, M. Letts, J. Macneill, I. Padhi, S. Palmer, C. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wurthwein, F. Yagil, A. Yoo, J. Barge, D. Bradmiller-Feld, J. Campagnari, C. Danielson, T. Dishaw, A. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Incandela, J. Justus, C. Villalba, R. Magana Mccoll, N. Pavlunin, V. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Kcira, D. Mott, A. Newman, H. B. Pena, C. Rogan, C. Spiropulu, M. Timciuc, V. Wilkinson, R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Ford, W. T. Gaz, A. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Chu, J. Eggert, N. Gibbons, L. K. Hopkins, W. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Grunendahl, S. Gutsche, O. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kaadze, K. Klima, B. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Nahn, S. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Ratnikova, N. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitbeck, A. Whitmore, J. Wu, W. Yang, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Rinkevicius, A. Shchutska, L. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Moon, D. H. O'Brien, C. Silkworth, C. Turner, P. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Haytmyradov, M. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Rahmat, R. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Gritsan, A. V. Maksimovic, P. Martin, C. Swartz, M. Baringer, P. Bean, A. Benelli, G. Gray, J. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Sekaric, J. Stringer, R. Wang, Q. Wood, J. S. Barfuss, A. F. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Bauer, G. Busza, W. Cali, I. A. Chan, M. Di Matteo, L. Dutta, V. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Klute, M. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Ma, T. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stockli, F. Sumorok, K. Velicanu, D. Veverka, J. Wyslouch, B. Yang, M. Yoon, A. S. Zanetti, M. Zhukova, V. Dahmes, B. De Benedetti, A. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Singovsky, A. Tambe, N. Turkewitz, J. Acosta, J. G. Cremaldi, L. M. Kroeger, R. Oliveros, S. Perera, L. Sanders, D. A. Summers, D. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Suarez, R. Gonzalez Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, F. Snow, G. R. Dolen, J. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Massironi, A. Nash, D. Orimoto, T. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Hahn, K. A. Kubik, A. Lusito, L. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Berry, D. Brinkerhoff, A. Chan, K. M. Drozdetskiy, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Bylsma, B. Durkin, L. S. Flowers, S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Vuosalo, C. Winer, B. L. Wolfe, H. Wulsin, H. W. Berry, E. Elmer, P. Halyo, V. Hebda, P. Hunt, A. Jindal, P. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zenz, S. C. Zuranski, A. Brownson, E. Lopez, A. Mendez, H. Vargas, J. E. Ramirez Alagoz, E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jha, M. K. Jones, M. Jung, K. Kress, M. Leonardo, N. Pegna, D. Lopes Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shipsey, I. Silvers, D. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Rose, K. Spanier, S. Yang, Z. C. York, A. Bouhali, O. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Krutelyov, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kovitanggoon, K. Kunori, S. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Wood, J. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Duric, S. Friis, E. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Levine, A. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Sarangi, T. Savin, A. Smith, W. H. Woods, N. CA CMS Collaboration TI Measurement of differential cross sections for the production of a pair of isolated photons in pp collisions at root s=7TeV SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID LHC; HIERARCHY; BOSON; MASS AB A measurement of differential cross sections for the production of a pair of isolated photons in proton-proton collisions at root s = 7 TeV is presented. The data sample corresponds to an integrated luminosity of 5.0 fb(-1) collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25 GeV respectively, in the pseudorapidity range vertical bar eta vertical bar < 2.5, vertical bar eta vertical bar (sic) [1.44, 1.57] and with an angular separation Delta R > 0.45, is 17.2 +/-0.2 (stat) +/-1.9 (syst) +/- 0.4 (lumi) pb. Differential cross sections are measured as a function of the diphoton invariant mass, the diphoton transverse momentum, the azimuthal angle difference between the two photons, and the cosine of the polar angle in the Collins-Soper reference frame of the diphoton system. The results are compared to theoretical predictions at leading, next-to-leading, and next-to-next-to-leading order in quantum chromodynamics. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Heracleous, N.; Kalogeropoulos, A.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Martins Junior, M. Correa; Martins, T. Dos Reis; Pol, M. E.; De Souza, S. Fonseca] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; Damiao, D. De Jesus; Martins, C. De Oliveira; De Souza, S. Fonseca; Malbouisson, H.; Malek, M.; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Da Silva, W. L. Prado; Santaolalla, J.; Santoro, A.; Sznajder, A.; Manganote, E. J. Tonelli; Pereira, A. Vilela] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Tomei, T. R. Fernandez Perez; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Sierra, L. F. Chaparro; Florez, C.; Gomez, J. P.; Moreno, B. Gomez; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Sudic, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Mahmoud, M. A.; Mahrous, A.; Radi, A.] Egyptian Network High Energy Phys, Acad Sci Res & Technol Arab Republ Egypt, Cairo, Egypt. [Kadastik, M.; Muentel, M.; Murumaa, M.; Raidal, M.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Haerkoenen, J.; Karimaeki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Daci, N.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Dahmes, B.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Bloch, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Gadrat, S.] IN2P3, CNRS, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Klein, B.; Autermann, C.; Beranek, S.; Bontenackels, M.; Calpas, B.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukova, V.] Rhein Westfal TH Aachen, Phys Inst 1, Aachen, Germany. [Caudron, A.; Weber, H.; Ata, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Flugge, G.; Geenen, H.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Geiser, A.; Kress, M.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Leonard, A.; Meyer, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Geiser, A.; Grebenyuk, A.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Hempel, M.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Kraemer, M.; Kruecker, D.; Lange, W.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I-A.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Ntomari, E.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Sahin, M. O.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schrder, M.; Stein, M.; Trevino, A. D. R. Vargas; Walsh, R.; Wissing, C.; Schmidt, A.; Choudhary, B. C.] DESY, Hamburg, Germany. [Martin, M. Aldaya; Blobel, V.; Enderle, H.; Erfle, J.; Garutti, E.; Goebel, K.; Gorner, M.; Gosselink, M.; Haller, J.; Hoing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sibille, J.; Stadie, H.; Steinbruck, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Solano, A.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hartmann, F.; Hauth, T.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Pardo, P. Lobelle; Martschei, D.; Mozer, M. U.; Muller, Th.; Niegel, M.; Nurnberg, A.; Oberst, O.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Rocker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, INPP, Aghia Paraskevi, Greece. [Gouskos, L.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Jones, J.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Hidas, D.] Wigner Res Ctr Phys, Budapest, Hungary. [Bencze, G.; Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mittal, M.; Nishu, N.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Gomber, B.; Jain, Sa.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Singh, A. P.; Dutta, D.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Banerjee, S.; Aziz, T.; Chatterjee, R. M.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Majumder, D.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Mohammadi, A.; Arfaei, H.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.; Tosi, M.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Giordano, D.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Giordano, F.] CSFNSM, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Musenich, R.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Ferretti, R.; Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi, Rome, Italy. [Azzi, P.; Bellato, M.; Biasotto, M.; Bisello, D.; Branca, A.; Checchia, P.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trent, Trento, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Salvini, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Fano, L.; Lariccia, P.; Mantovani, G.; Romeo, F.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orsoa, R.; Donato, S.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Donato, S.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Soffi, L.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Grassi, M.; Longo, E.; Margaroli, F.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.; Traczyk, P.] Univ Rome, Rome, Italy. [Costa, S.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Degano, A.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Degano, A.; Migliore, E.; Monaco, V.; Ortona, G.; Pacher, L.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Umer, T.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.] Univ Trieste, Trieste, Italy. [Chang, S.; Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, J. E.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.] Vilnius Univ, Vilnius, Lithuania. [Komaragiri, J. R.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-de la Cruz, I.; Lopez-Fernandez, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Moreno, S. Carrillo; Valencia, F. Vazquez] Univ Iberoamer, Mexico City, DF, Mexico. [Ibarguen, H. A. Salazar] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Linares, E. Casimiro; Pineda, A. Morelos] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Doesburg, R.; Reucroft, S.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, A.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bargassa, P.; Silva, C. Beirao Da Cruz E.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Nguyen, F.; Antunes, J. Rodrigues; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao Fis Expt Particulas, Lisbon, Portugal. [Golutvin, I.; Karjavin, V.; Konoplyanikov, V.; Korenkov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, Gatchina, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Dordevic, M.; Ekmedzic, M.; Milosevic, J.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Dordevic, M.; Ekmedzic, M.; Milosevic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Maestre, J. Alcaraz; Battilana, C.; Calvo, E.; Cerrada, M.; Llatas, M. Chamizo; Colino, N.; De la Cruz, B.; Peris, A. Delgado; Vazquez, D. Dominguez; Bedoya, C. Fernandez; Ramos, J. P. Fernandez; Ferrando, A.; Flix, J.; Fouz, M. C.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Merino, G.; De Martino, E. Navarro; Yzquierdo, A. Perez-Calero; Pelayo, J. Puerta; Olmeda, A. Quintario; Redondo, I.; Romero, L.; Soares, M. S.; Willmott, C.; Garcia-Bellido, A.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; de Troconiz, J. F.; Missiroli, M.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Menendez, J. Fernandez; Folgueras, S.; Caballero, I. Gonzalez; Iglesias, L. Lloret] Univ Oviedo, Oviedo, Spain. [Cifuentes, J. A. Brochero; Cabrillo, I. J.; Calderon, A.; Campderros, J. Duarte; Fernandez, M.; Gomez, G.; Sanchez, J. Gonzalez; Graziano, A.; Virto, A. Lopez; Marco, J.; Marco, R.; Rivero, C. Martinez; Matorras, F.; Sanchez, F. J. Munoz; Gomez, J. Piedra; Rodrigo, T.; Rodrguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Cortabitarte, R. Vilar] CSIC Univ Cantabria, IFCA, Santander, Spain. [Moreno, B. Gomez; Bloch, D.; Sharma, A.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Mulders, M.; Musella, P.; Orsini, L.; Cortezon, E. Palencia; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimia, M.; Piparo, D.; Plagge, M.; Racz, A.; Reece, W.; Rolandi, G.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Sch, C. Fer; Schwick, C.; Sekmen, S.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wohri, H. K.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Konig, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Bani, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Dunser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; Del Arbol, P. Martinez Ruiz; Meister, D.; Mohr, N.; Nageli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Ronga, F. J.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Paus, C.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Favaro, C.; Hinzmann, A.; Hreus, T.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Ngadiuba, J.; Robmann, P.; Snoek, H.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Volpe, R.; Yu, S. S.; Lu, Y.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Lei, Y. J.; Liu, Y. F.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Wilken, R.; Kao, S. C.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Suwonjandee, N.] Chulalongkorn Univ, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.] Bogazici Univ, Istanbul, Turkey. [Bahtiyar, H.; Barlas, E.; Cankocak, K.; Gunaydin, Y. O.; Vardarli, F. I.; Yucel, M.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Ilic, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Della Ricca, G.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Richardson, C.; Rohlf, J.; Sperka, D.; St John, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, H.; Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Takasugi, E.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Liu, H.; Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Shrinivas, A.; Sturdy, J.; Sumowidagdo, S.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Simon, M.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Kovalskyi, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wurthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Villalba, R. Magana; Mccoll, N.; Pavlunin, V.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chu, J.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Yang, Y.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Grunendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Joshi, U.; Kaadze, K.; Klima, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Ratnikova, N.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Wu, W.; Yun, J. C.; Johnson, K. F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Gray, J.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Sanders, D. A.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Zhukov, V.; Zanetti, A.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stockli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Yoon, A. S.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; De Benedetti, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Cremaldi, L. M.; Kroeger, R.; Oliveros, S.; Perera, L.; Sanders, D. A.; Summers, D.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.] Univ Nebraska Lincoln, Lincoln, NE USA. [Kumar, A.; Dolen, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Chan, M.; Berry, D.; Brinkerhoff, A.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Flowers, K.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hunt, A.; Jindal, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Li, W.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, MN USA. [Malik, S.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Rose, K.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Mao, Y.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Woods, N.] Univ Wisconsin, Madison, WI USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Rabady, D.; Genchev, V.; Iaydjiev, P.; Contardo, D.; Lingemann, J.; Guthoff, M.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Evangelou, I.; Foudas, C.; Bencze, G.; Mohanty, A. K.; Fiorendi, S.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Meola, S.; Paolucci, P.; Galanti, M.; Palla, F.; Pelliccioni, M.; Llatas, M. Chamizo; Avetisyan, A.; Anastassov, A.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Beluffi, C.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Giammanco, A.] NICPB, Tallinn, Estonia. [Popov, A.; Zhukov, V.; Katkov, I.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Chinellato, J.; Manganote, E. J. Tonelli] Univ Estadual Campinas, Campinas, SP, Brazil. [Dias, F. A.] CALTECH, Pasadena, CA 91125 USA. [Plestina, R.; Bernet, C.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Assran, Y.] Suez Univ, Suez, Egypt. [Elgammal, S.; Radi, A.] British Univ Egypt, Cairo, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Mahrous, A.] Helwan Univ Univ, Cairo, Egypt. Univ Haute Alsace, Mulhouse, France. [Tsamalaidze, Z.] Joint Inst Nucl Res, Dubna, Russia. [Behrenhoff, W.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Sibille, J.] Univ Kansas, Lawrence, KS 66045 USA. [Horvath, D.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Biasotto, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Androsov, K.; Grippo, M. T.; Squillacioti, P.] Univ Siena, I-53100 Siena, Italy. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Savoy-Navarro, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Heredia-de la Cruz, I.] Univ Michoacana, Morelia, Michoacan, Mexico. [Matveev, V.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Adzic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Nageli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Istanbul Univ, Fac Sci, Istanbul, Turkey. [Bahtiyar, H.; Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Gunaydin, Y. O.] Kahramanmaras Sutcu Imam Univ, Kahramanmaras, Turkey. [Newbold, D. M.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Pioppi, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Haytmyradov, M.] Erzincan Univ, Erzincan, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Bouhali, O.] Texas A&M Univ Qatar, Doha, Qatar. [Kamon, T.] Kyungpook Natl Univ, Taegu 702701, South Korea. [CMS Collaboration] CERN, CH-1211 Geneva 23, Switzerland. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Ligabue, Franco/F-3432-2014; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Menasce, Dario Livio/A-2168-2016; Rolandi, Luigi (Gigi)/E-8563-2013; Sguazzoni, Giacomo/J-4620-2015; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Da Silveira, Gustavo Gil/N-7279-2014; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Konecki, Marcin/G-4164-2015; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Calvo Alamillo, Enrique/L-1203-2014; Flix, Josep/G-5414-2012; Cerrada, Marcos/J-6934-2014; Perez-Calero Yzquierdo, Antonio/F-2235-2013; Novaes, Sergio/D-3532-2012; Della Ricca, Giuseppe/B-6826-2013; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Stahl, Achim/E-8846-2011; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; Matorras, Francisco/I-4983-2015; TUVE', Cristina/P-3933-2015; Dudko, Lev/D-7127-2012; KIM, Tae Jeong/P-7848-2015; Paganoni, Marco/A-4235-2016; Azarkin, Maxim/N-2578-2015; de Jesus Damiao, Dilson/G-6218-2012; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Wulz, Claudia-Elisabeth/H-5657-2011; Belyaev, Alexander/F-6637-2015; Trocsanyi, Zoltan/A-5598-2009; Montanari, Alessandro/J-2420-2012; Hernandez Calama, Jose Maria/H-9127-2015; ciocci, maria agnese /I-2153-2015; My, Salvatore/I-5160-2015; Lo Vetere, Maurizio/J-5049-2012; Ragazzi, Stefano/D-2463-2009; Manganote, Edmilson/K-8251-2013; Lokhtin, Igor/D-7004-2012; da Cruz e Silva, Cristovao/K-7229-2013; Grandi, Claudio/B-5654-2015; Chinellato, Jose Augusto/I-7972-2012; Leonidov, Andrey/P-3197-2014; Benussi, Luigi/O-9684-2014; Petrushanko, Sergey/D-6880-2012; Bernardes, Cesar Augusto/D-2408-2015; Raidal, Martti/F-4436-2012; Calderon, Alicia/K-3658-2014; VARDARLI, Fuat Ilkehan/B-6360-2013 OI da Cruz e silva, Cristovao/0000-0002-1231-3819; Casarsa, Massimo/0000-0002-1353-8964; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Ciulli, Vitaliano/0000-0003-1947-3396; Androsov, Konstantin/0000-0003-2694-6542; Fiorendi, Sara/0000-0003-3273-9419; Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Gerosa, Raffaele/0000-0001-8359-3734; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Sguazzoni, Giacomo/0000-0002-0791-3350; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Konecki, Marcin/0000-0001-9482-4841; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Calvo Alamillo, Enrique/0000-0002-1100-2963; Flix, Josep/0000-0003-2688-8047; Cerrada, Marcos/0000-0003-0112-1691; Perez-Calero Yzquierdo, Antonio/0000-0003-3036-7965; Novaes, Sergio/0000-0003-0471-8549; Della Ricca, Giuseppe/0000-0003-2831-6982; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Stahl, Achim/0000-0002-8369-7506; Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre David/0000-0001-5854-7699; Rovelli, Tiziano/0000-0002-9746-4842; Matorras, Francisco/0000-0003-4295-5668; TUVE', Cristina/0000-0003-0739-3153; Dudko, Lev/0000-0002-4462-3192; KIM, Tae Jeong/0000-0001-8336-2434; Paganoni, Marco/0000-0003-2461-275X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Belyaev, Alexander/0000-0002-1733-4408; Trocsanyi, Zoltan/0000-0002-2129-1279; Montanari, Alessandro/0000-0003-2748-6373; Hernandez Calama, Jose Maria/0000-0001-6436-7547; ciocci, maria agnese /0000-0003-0002-5462; My, Salvatore/0000-0002-9938-2680; Lo Vetere, Maurizio/0000-0002-6520-4480; Ragazzi, Stefano/0000-0001-8219-2074; Korenkov, Vladimir/0000-0002-2342-7862; Giubilato, Piero/0000-0003-4358-5355; Gallinaro, Michele/0000-0003-1261-2277; Sogut, Kenan/0000-0002-9682-2855; Grandi, Claudio/0000-0001-5998-3070; Chinellato, Jose Augusto/0000-0002-3240-6270; Benussi, Luigi/0000-0002-2363-8889; FU SCOAP3 FX Funded by SCOAP3 / License Version CC BY 4.0. NR 36 TC 6 Z9 6 U1 11 U2 65 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD NOV 12 PY 2014 VL 74 IS 11 AR 3129 DI 10.1140/epjc/s10052-014-3129-3 PG 30 WC Physics, Particles & Fields SC Physics GA AX8PK UT WOS:000347170900001 ER PT J AU Browning, JF Baggetto, L Jungjohann, KL Wang, Y Tenhaeff, WE Keum, JK Wood, DL Veith, GM AF Browning, James F. Baggetto, Loic Jungjohann, Katherine L. Wang, Yongqiang Tenhaeff, Wyatt E. Keum, Jong K. Wood, David L., III Veith, Gabriel M. TI In Situ Determination of the Liquid/Solid Interface Thickness and Composition for the Li Ion Cathode LiMn1.5Ni0.5O4 SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE liquid-solid interface; Li ion batteries; SEI layer; in situ battery; neutron reflectometry ID X-RAY REFLECTOMETRY; ELECTRODE/ELECTROLYTE INTERFACE; SEI FORMATION; LITHIUM; BATTERIES; ELECTRODES; SURFACE; MODEL; ELECTROLYTES; LITHIATION AB Using neutron reflectometry, we have determined the thickness and scattering length density profile of the electrode electrolyte interface for the high-voltage cathode LiMn1.5Ni0.5O4 in situ at open circuit voltage and fully delithiated. Upon exposure to a liquid electrolyte, a thin 3.3 nm Li-rich interface forms due to the ordering of the electrolyte on the cathode surface. This interface changes in composition, as evident by an increase in the scattering length density of the new layer, with charging as the condensed layer evolves from being lithium rich to one containing a much higher concentration of F from the LiPF6 salt. These results show the surface chemistry evolves as a function of the potential. C1 [Browning, James F.; Keum, Jong K.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Baggetto, Loic; Tenhaeff, Wyatt E.; Wood, David L., III; Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Jungjohann, Katherine L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Wang, Yongqiang] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Veith, GM (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM veithgm@ornl.gov RI Browning, James/C-9841-2016; Keum, Jong/N-4412-2015; Baggetto, Loic/D-5542-2017 OI Browning, James/0000-0001-8379-259X; Keum, Jong/0000-0002-5529-1373; Baggetto, Loic/0000-0002-9029-2363 FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE) under UT-Battelle, LLC; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE; U.S. DOE's National Nuclear Security Administration [DE-AC04-94AL85000]; National Nuclear Security Administration of the U.S. DOE [DE-AC52-06NA25396] FX This research was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE), under contract with UT-Battelle, LLC (G.M.V.). A portion of this work was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. DOE (L.B., W.E.T., D.L.W.). Neutron reflectometry measurements were carried out on the liquids reflectometer at the Spallation Neutron Source, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE (J.F.B., J.K.K.). STEM imaging and RBS experiments were performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. DOE Office of Science. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Co., for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000 (K.L.J.). RBS experiments were performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. DOE Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under Contract DE-AC52-06NA25396 (Y.W.). NR 33 TC 12 Z9 12 U1 13 U2 95 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 12 PY 2014 VL 6 IS 21 BP 18569 EP 18576 DI 10.1021/am5032055 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA AT5IY UT WOS:000344978200029 PM 25285852 ER PT J AU Verde, MG Liu, HD Carroll, KJ Baggetto, L Veith, GM Meng, YS AF Verde, Michael G. Liu, Haodong Carroll, Kyler J. Baggetto, Loic Veith, Gabriel M. Meng, Y. Shirley TI Effect of Morphology and Manganese Valence on the Voltage Fade and Capacity Retention of Li[Li2/12Ni3/12Mn7/12]O-2 SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE Li-rich; Li-excess; Li-ion battery; cathode; high energy density; surface; XPS ID LITHIUM-ION BATTERIES; X-RAY-DIFFRACTION; CATHODE MATERIALS; PHOTOELECTRON-SPECTROSCOPY; LAYERED OXIDES; SOLID-SOLUTION; LI2MNO3; LI1.20MN0.54CO0.13NI0.13O2; ELECTRODES; MECHANISM AB We have determined the electrochemical characteristics of the high voltage, high capacity Li-ion battery cathode material Li[Li2/12Ni3/12Mn7/12]O-2 prepared using three different synthesis routes: sol-gel, hydroxide coprecipitation, and carbonate coprecipitation. Each route leads to distinct morphologies and surface areas while maintaining the same crystal structures. X-ray photoelectron spectroscopy (XPS) measurements reveal differences in their surface chemistries upon cycling, which correlate with voltage fading. Indeed, we observe the valence state of Mn on the surface to decrease upon lithiation, and this reduction is specifically correlated to discharging below 3.6 V. Furthermore, the data shows a correlation of the formation of Li2CO3 with the Mn oxidation state from the decomposition of electrolyte. These phenomena are related to each material's electrochemistry in order to expand upon the reaction mechanisms taking place-specifically in terms of the particle morphology produced by each synthetic approach. C1 [Verde, Michael G.; Liu, Haodong; Carroll, Kyler J.; Meng, Y. Shirley] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA. [Baggetto, Loic; Veith, Gabriel M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Verde, MG (reprint author), Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA. EM mverdejr@gmail.com; shmeng@ucsd.edu RI Baggetto, Loic/D-5542-2017 OI Baggetto, Loic/0000-0002-9029-2363 FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy [AC02-05CH11231, 7056412]; U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division FX The authors are grateful for the financial support from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract No. 7056412 under the Batteries for Advanced Transportation Technologies (BATT) Program. The U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division supported a portion of this work (BET, XPS LB, GMV). We are also grateful for the contributions from undergraduate research assistants at the University of California San Diego (UCSD), Han Nguyen and Michael Tang. NR 56 TC 22 Z9 22 U1 8 U2 108 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 12 PY 2014 VL 6 IS 21 BP 18868 EP 18877 DI 10.1021/am504701s PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA AT5IY UT WOS:000344978200064 PM 25275709 ER PT J AU Yildirim, H Greeley, JP Sankaranarayanan, SKRS AF Yildirim, Handan Greeley, Jeffrey P. Sankaranarayanan, Subramanian K. R. S. TI Localized Order-Disorder Transitions Induced by Li Segregation in Amorphous TiO2 Nanoparticles SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE amorphous titania; nanoparticle; lithiation; segregation; diffusion; Li-ion batteries ID TITANIUM-DIOXIDE NANOPARTICLES; MOLECULAR-DYNAMICS SIMULATION; LITHIUM-ION BATTERIES; RATE PERFORMANCE; ENERGY-STORAGE; ANATASE TIO2; ADSORPTION; INSERTION; SURFACE; NANOSTRUCTURES AB Li segregation and transport characteristics in amorphous TiO2 nanopartides (NPs) are studied using molecular dynamics (MD) simulations. A strong intrapartide segregation of Li is observed, and the degree of segregation is found to correlate with Li concentration. With increasing Li concentration, Li diffusivity and segregation are enhanced, and this behavior is tied to the structural response of the NPs with increasing lithiation. The atoms in the amorphous NPs undergo rearrangement in the regions of high Li concentration, introducing new pathways for Li transport and segregation. These localized atomic rearrangements, in turn, induce preferential crystallization near the surfaces of the NPs. Such rich, dynamical responses are not expected for crystalline NPs, where the presence of well-defined lattice sites leads to limited segregation and transport at high Li concentrations. The preferential crystallization in the near-surface region in amorphous NPs may offer enhanced stability and fast Li transport for Li-ion battery applications, in addition to having potentially useful properties for other materials science applications. C1 [Yildirim, Handan; Greeley, Jeffrey P.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Sankaranarayanan, Subramanian K. R. S.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Greeley, JP (reprint author), Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. EM jgreeley@purdue.edu; skrssank@anl.gov FU DOE Early Career Award through the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences/Chemical Sciences; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX A DOE Early Career Award for J.G. through the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences/Chemical Sciences, is acknowledged. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No: DE-AC02-06CH11357. The authors also acknowledge the use of computational resources through the National Energy Research Scientific Computing Center (NERSC). This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 66 TC 3 Z9 3 U1 4 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 12 PY 2014 VL 6 IS 21 BP 18962 EP 18970 DI 10.1021/am5048398 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA AT5IY UT WOS:000344978200074 PM 25303039 ER PT J AU Chaukulkar, RP de Peuter, K Stradins, P Pylypenko, S Bell, JP Yang, YA Agarwal, S AF Chaukulkar, Rohan P. de Peuter, Koen Stradins, Paul Pylypenko, Svitlana Bell, Jacob P. Yang, Yongan Agarwal, Sumit TI Single-Step Plasma Synthesis of Carbon-Coated Silicon Nanoparticles SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE Si nanoparticles; radio frequency plasmas; nanoparticle synthesis ID LITHIUM-ION BATTERIES; GAS-PHASE HYDROSILYLATION; AMORPHOUS-CARBON; CARBIDE FILMS; METAL NANOPARTICLES; ANODE MATERIAL; CRITICAL SIZE; QUANTUM DOTS; SIC MATRIX; CORE-LEVEL AB We have developed a novel single-step technique based on nonthermal, radio frequency (rf) plasmas to synthesize sub-10 nm, core-shell, carbon-coated crystalline Si (c-Si) nanoparticles (NPs) for potential application in Li+ batteries and as fluorescent markers. Hydrogen-terminated c-Si NPs nucleate and grow in a SiH4-containing, low-temperature plasma in the upstream section of a tubular quartz reactor. The c-Si NPs are then transported downstream by gas flow, and are coated with amorphous carbon (a-C) in a second C2H2-containing plasma. X-ray diffraction (XRD), X-ray photoelectron spectroscopy, and in situ attenuated total reflection Fourier transform infrared spectroscopy show that a thin, < 1 rim, 3C-SiC layer forms at the c-Si/a-C interface. By varying the downstream C2H2 plasma rf power, we can alter the nature of the a-C coating as well as the thickness of the interfacial 3C-SiC layer. The transmission electron microscopy (TEM) analysis is in agreement with the Si NP core size determined by Raman spectroscopy, photoluminescence spectroscopy, and XRD analysis. The size of the c-Si NP core, and the corresponding light emission from these NPs, was directly controlled by varying the thickness of the interfacial 3C-SiC layer. This size tunable emission thus also demonstrates the versatility of this technique for synthesizing c-Si NPs for potential applications in light emitting diodes, biological markers, and nanocrystal inks. C1 [Chaukulkar, Rohan P.; Agarwal, Sumit] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. [de Peuter, Koen] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands. [Stradins, Paul] Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. [Pylypenko, Svitlana] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. [Bell, Jacob P.; Yang, Yongan] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. RP Agarwal, S (reprint author), Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. EM sagarwal@mines.edu RI Yang, Yongan/C-2688-2011; Agarwal, Sumit/D-8950-2011 OI Yang, Yongan/0000-0003-1451-2923; FU NSF CAREER program [CBET-0846923]; U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory; Eindhoven University of Technology FX We gratefully acknowledge support from the NSF CAREER program (Grant No. CBET-0846923). P.S. acknowledges support from U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. K.d.P. acknowledges support from the Eindhoven University of Technology. The authors would like to thank H. A. MacPherson and Dr. C. R. Stoldt at the University of Colorado for the Raman measurements, and the surface analysis group at the National Renewable Energy Laboratory for support and access to the XPS. NR 70 TC 7 Z9 7 U1 15 U2 133 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 12 PY 2014 VL 6 IS 21 BP 19026 EP 19034 DI 10.1021/am504913n PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA AT5IY UT WOS:000344978200081 PM 25275941 ER PT J AU Tan, HQ Zhao, Z Zhu, WB Coker, EN Li, BS Zheng, M Yu, WX Fan, HY Sun, ZC AF Tan, Huaqiao Zhao, Zhao Zhu, Wan-bin Coker, Eric N. Li, Binsong Zheng, Min Yu, Weixing Fan, Hongyou Sun, Zaicheng TI Oxygen Vacancy Enhanced Photocatalytic Activity of Pervoskite SrTiO3 SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE SrTiO3; NaBH4; oxygen vacancy; core/shell nanostructure; photocatlytic H-2 generation ID VISIBLE-LIGHT; HYDROGEN-PRODUCTION; WATER OXIDATION; H-2 EVOLUTION; DOPED ZNO; TIO2; NANOPARTICLES; PERFORMANCE; COCATALYSTS; ABSORPTION C1 [Tan, Huaqiao; Zhao, Zhao; Zheng, Min; Sun, Zaicheng] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Luminescence & Applicat, Changchun 130033, Peoples R China. [Zhao, Zhao] Univ Chinese Acad Sci, Beijing 100000, Peoples R China. [Zhu, Wan-bin; Yu, Weixing] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Appl Opt, Changchun 130033, Peoples R China. [Coker, Eric N.; Li, Binsong; Fan, Hongyou] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87185 USA. [Fan, Hongyou] Univ New Mexico, Dept Chem & Nucl Engn, Ctr Microengn & Mat, Albuquerque, NM 87106 USA. RP Sun, ZC (reprint author), Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Luminescence & Applicat, 3888 East Nanhu Rd, Changchun 130033, Peoples R China. EM sunzc@ciomp.ac.cn RI Zheng, Min/B-6267-2013; Sun, Zaicheng/B-5397-2012; Yu, Weixing/G-3658-2012 OI Sun, Zaicheng/0000-0001-5277-5308; Yu, Weixing/0000-0002-3216-526X FU "Hundred Talent Program" of CAS; open research fund program of State Key Laboratory of Luminescence and Applications (Changchun Institute of Optics, Fine Mechanics and Physics, CAS); Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, P. R. China; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank the National Natural Science Foundation of China (No. 21301166, 21201159, 61361166004, and 61176016); Science and Technology Department of Jilin Province (No. 20130522127JH and 20121801) are gratefully acknowledged. Z.S. thanks the support of the "Hundred Talent Program" of CAS. Supported by open research fund program of State Key Laboratory of Luminescence and Applications (Changchun Institute of Optics, Fine Mechanics and Physics, CAS) and Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, P. R. China. HF acknowledges the support from the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 41 TC 50 Z9 50 U1 35 U2 205 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 12 PY 2014 VL 6 IS 21 BP 19184 EP 19190 DI 10.1021/am5051907 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA AT5IY UT WOS:000344978200100 PM 25311356 ER PT J AU Braid, JL Koldemir, U Sellinger, A Collins, RT Furtak, TE Olson, DC AF Braid, Jennifer L. Koldemir, Unsal Sellinger, Alan Collins, Reuben T. Furtak, Thomas E. Olson, Dana C. TI Conjugated Phosphonic Acid Modified Zinc Oxide Electron Transport Layers for Improved Performance in Organic Solar Cells SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE organic photovoltaics; inverted devices; work function tuning; phosphonic acid; conjugated linkage ID SELF-ASSEMBLED MONOLAYERS; INDIUM-TIN OXIDE; WORK FUNCTION; BENZYLPHOSPHONIC ACIDS; SURFACE-PROPERTIES; BINDING AB Phosphonic acid modification of zinc oxide (ZnO) electron transport layers in inverted P3HT:ICBA solar cells was studied to determine the effect of conjugated linkages between the aromatic and phosphonic add attachment groups. For example, zinc oxide treated with 2,6-difluorophenylvinylphosphonic acid, having a conjugated vinyl group connecting the aromatic moiety to the phosphonic add group, showed a 0.78 eV decrease in the effective work function versus unmodified ZnO, whereas nonconjugated 2,6-difluorophenyle-thylphosphonic acid resulted in a 0.57 eV decrease, as measured by Kelvin probe. This resulted in an average power conversion efficiency of 5.89% for conjugated 2,6-difluorophenyvinylphosphonic add modified solar cells, an improvement over unmodified (5.24%) and nonconjugated phosphonic add modified devices (5.64%), indicating the importance of the conjugated linkage. C1 [Braid, Jennifer L.; Collins, Reuben T.; Furtak, Thomas E.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Koldemir, Unsal; Sellinger, Alan] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. [Braid, Jennifer L.; Sellinger, Alan; Olson, Dana C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Olson, DC (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM aselli@mines.edu; rtcollin@mines.edu; dana.olson@nrel.gov RI Sellinger, Alan/C-6250-2015; Collins, Reuben/O-2545-2014; Braid, Jennifer/A-7705-2017 OI Sellinger, Alan/0000-0001-6705-1548; Collins, Reuben/0000-0001-7910-3819; Braid, Jennifer/0000-0002-0677-7756 FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory through the DOE SETP program; National Science Foundation [DMR-0907409]; Renewable Energy Materials Research Science and Engineering Center FX This work was supported by the U.S. Department of Energy under Contract DE-AC36-08-GO28308 with the National Renewable Energy Laboratory through the DOE SETP program. Partial support from the National Science Foundation through Grant DMR-0907409 and the Renewable Energy Materials Research Science and Engineering Center is also acknowledged for RTC and TEF. NR 34 TC 11 Z9 11 U1 1 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 12 PY 2014 VL 6 IS 21 BP 19229 EP 19234 DI 10.1021/am505182c PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA AT5IY UT WOS:000344978200105 PM 25329245 ER PT J AU Bhaway, SM Kisslinger, K Zhang, LH Yager, KG Schmitt, AL Mahanthappa, MK Karim, A Vogt, BD AF Bhaway, Sarang M. Kisslinger, Kim Zhang, Lihua Yager, Kevin G. Schmitt, Andrew L. Mahanthappa, Mahesh K. Karim, Alamgir Vogt, Bryan D. TI Mesoporous Carbon-Vanadium Oxide Films by Resol-Assisted, Triblock Copolymer-Templated Cooperative Self-Assembly SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE block copolymer; self-assembly; vanadia; templated synthesis; nanopores; FDU-16 ID ENVIRONMENTAL ELLIPSOMETRIC POROSIMETRY; TRANSITION-METAL OXIDES; LITHIUM-ION BATTERIES; HYBRID THIN-FILMS; MOLECULAR-SIEVES; SOLAR-CELLS; TIO2; PERFORMANCE; ELECTRODE; REDUCTION AB Unlike other crystalline metal oxides amenable to templating by the combined assemblies of soft and hard chemistries (CASH) method, vanadium oxide nanostructures templated by poly(ethylene oxide-b-1,4-butadiene-b-ethylene oxide) (OBO) triblock copolymers are not preserved upon high temperature calcination in argon. Triconstituent cooperative assembly of a phenolic resin oligomer (resol) and an OBO triblock in a VOCl3 precursor solution enhances the carbon yield and can prevent breakout crystallization of the vanadia during calcination. However, the calcination environment significantly influences the observed mesoporous morphology in these composite thin films. Use of an argon atmosphere in this processing protocol leads to nearly complete loss of carbon vanadium oxide thin film mesostructure, due to carbothermal reduction of vanadium oxide. This reduction mechanism also explains why the CASH method is not more generally successful for the fabrication of ordered mesoporous vanadia. Carbonization under a nitrogen atmosphere at temperatures up to 800 degrees C instead enables formation of a block copolymer-templated mesoporous structure, which apparently stems from the formation of a minor fraction of a stabilizing vanadium oxynitride. Thus, judicious selection of the inert gas for template removal is critical for the synthesis of well-defined, mesoporous vanadia carbon composite films. This resol-assisted assembly method may generally apply to the fabrication of other mesoporous materials, wherein inorganic framework crystallization is problematic due to kinetically competitive carbothermal reduction processes. C1 [Bhaway, Sarang M.; Karim, Alamgir; Vogt, Bryan D.] Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA. [Kisslinger, Kim; Zhang, Lihua; Yager, Kevin G.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Schmitt, Andrew L.; Mahanthappa, Mahesh K.] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. RP Vogt, BD (reprint author), Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA. EM vogt@uakron.edu RI Vogt, Bryan/H-1986-2012; Zhang, Lihua/F-4502-2014; Yager, Kevin/F-9804-2011; Kisslinger, Kim/F-4485-2014; OI Vogt, Bryan/0000-0003-1916-7145; Yager, Kevin/0000-0001-7745-2513; Mahanthappa, Mahesh/0000-0002-9871-804X FU National Science Foundation [CBET-1336057]; NSF American Competitiveness in Chemistry Postdoctoral Fellowship [CHE-1041975]; U.S. Department of Energy, Office of Basic EnergySciences [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Ohio Research Scholars Program Research Cluster on Surfaces in Advanced Materials FX This work has been partial supported by the National Science Foundation under grant CBET-1336057. A.L.S. gratefully acknowledges financial support from a NSF American Competitiveness in Chemistry Postdoctoral Fellowship (CHE-1041975). Research carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Basic EnergySciences, under Contract No. DE-AC02-98CH10886. Use of the Sector 8-ID-E beamline of the Advanced Photon Source at Argonne National Laboratory for GISAXS measurements was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors also thank Dr. Zhorro Nikolov for his assistance with XPS data analysis. Changhuai Ye and Zhe Qiang are acknowledged for help with GISAXS measurements. Some TEM data were obtained at the (cryo) TEM facility at the Liquid Crystal Institute, Kent State University, supported by the Ohio Research Scholars Program Research Cluster on Surfaces in Advanced Materials. S.M.B. thanks Dr. Min Gao for assistance with the TEM. NR 62 TC 4 Z9 4 U1 5 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 12 PY 2014 VL 6 IS 21 BP 19288 EP 19298 DI 10.1021/am505307t PG 11 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA AT5IY UT WOS:000344978200113 PM 25317954 ER PT J AU Ren, XD Lau, KC Yu, MZ Bi, XX Kreidler, E Curtiss, LA Wu, YY AF Ren, Xiaodi Lau, Kah Chun Yu, Mingzhe Bi, Xuanxuan Kreidler, Eric Curtiss, Larry A. Wu, Yiying TI Understanding Side Reactions in K-O-2 Batteries for Improved Cycle Life SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE metal-air batteries; potassium-oxygen battery; side reactions; O-2 crossover; ion selective separator ID SUPEROXIDE NAO2 BATTERY; NONAQUEOUS LI-O-2; POTASSIUM SUPEROXIDE; LITHIUM BATTERIES; ORGANIC-SOLVENTS; CARBON ELECTRODE; AIR BATTERIES; CHALLENGES; STABILITY; CATIONS AB Superoxide based metal-air (or metal-oxygen) batteries, including potassium and sodium-oxygen batteries, have emerged as promising alternative chemistries in the metal-air battery family because of much improved round-trip efficiencies (>90%). In order to improve the cycle life of these batteries, it is crucial to understand and control the side reactions between the electrodes and the electrolyte. For potassium-oxygen batteries using ether-based electrolytes, the side reactions on the potassium anode have been identified as the main cause of battery failure. The composition of the side products formed on the anode, including some reaction intermediates, have been identified and quantified. Combined experimental studies and density functional theory (DFT) calculations show the side reactions are likely driven by the interaction of potassium with ether molecules and the crossover of oxygen from the cathode. To inhibit these side reactions, the incorporation of a polymeric potassium ion selective membrane (Nafion-K+) as a battery separator is demonstrated that significantly improves the battery cycle life. The K-O-2 battery with the Nafion-K+ separator can be discharged and charged for more than 40 cycles without increases in charging overpotential. C1 [Ren, Xiaodi; Yu, Mingzhe; Bi, Xuanxuan; Wu, Yiying] Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA. [Lau, Kah Chun; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Lau, Kah Chun; Curtiss, Larry A.] Argonne Natl Lab, Joint Ctr Energy Storage Res, Argonne, IL 60439 USA. [Kreidler, Eric] Honda Res Inst USA Inc, Columbus, OH 43212 USA. RP Wu, YY (reprint author), Ohio State Univ, Dept Chem & Biochem, 100 West 18th Ave, Columbus, OH 43210 USA. EM wu@chemistry.ohio-state.edu RI Lau, Kah Chun/A-9348-2013; Ren, Xiaodi/M-5843-2014; Yu, Mingzhe/N-5907-2016 OI Lau, Kah Chun/0000-0002-4925-3397; Ren, Xiaodi/0000-0002-2025-7554; FU Honda Research Institute USA; CNM Carbon Cluster at Argonne National Laboratory; ALCF Fusion Cluster at Argonne National Laboratory; Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences FX We are thankful for the financial support from Honda Research Institute USA. We acknowledge grants of computer time through the CNM Carbon Cluster at Argonne National Laboratory, the ALCF Fusion Cluster at Argonne National Laboratory. K.C.L. and L.A.C. were supported as part of the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. NR 30 TC 17 Z9 17 U1 18 U2 88 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 12 PY 2014 VL 6 IS 21 BP 19299 EP 19307 DI 10.1021/am505351s PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA AT5IY UT WOS:000344978200114 PM 25295518 ER PT J AU Song, CK Eckstein, BJ Tam, TLD Trahey, L Marks, TJ AF Song, Charles Kiseok Eckstein, Brian J. Tam, Teck Lip Dexter Trahey, Lynn Marks, Tobin J. TI Conjugated Polymer Energy Level Shifts in Lithium-Ion Battery Electrolytes SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE lithium-ion battery; conjugated polymer; electron affinity; cyclic voltammetry; electrolyte; organic photovoltaics ID HETEROJUNCTION SOLAR-CELLS; LIGHT-EMITTING-DIODES; CONDUCTING POLYMER; SIDE-CHAINS; ELECTRODES; POTENTIALS; LI; REDUCTION; ANODE; POLYTHIOPHENES AB The ionization potentials (IPs) and electron affinities (EAs) of widely used conjugated polymers are evaluated by cyclic voltammetry (CV) in conventional electrochemical and lithium-ion battery media, and also by ultraviolet photoelectron spectroscopy (UPS) in vacuo. By comparing the data obtained in the different systems, it is found that the IPs of the conjugated polymer films determined by conventional CV (IPC) can be correlated with UPS-measured HOMO energy levels (E-H,E-UPS) by the relationship E-H,E-UPS = (1.14 +/- 0.23) X qIP(C) + (4.62 +/- 0.10) eV, where q is the electron charge. It is also found that the EAs of the conjugated polymer films measured via CV in conventional (EA(C)) and Li+ battery (EA(B)) media can be linearly correlated by the relationship EA(B) = (1.07 +/- 0.13) x EA(C) + (2.84 +/- 0.22) V. The slopes and intercepts of these equations can be correlated with the dielectric constants of the polymer film environments and the redox potentials of the reference electrodes, as modified by the surrounding electrolyte, respectively. C1 [Song, Charles Kiseok; Eckstein, Brian J.; Tam, Teck Lip Dexter; Marks, Tobin J.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Trahey, Lynn] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Marks, Tobin J.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Trahey, L (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM trahey@anl.gov; t-marks@northwestern.edu FU Institute for Sustainability and Energy at Northwestern (ISEN); Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001059]; Agency of Science, Technology and Research (A*STAR); Northwestern U., the NSF [CHE-0923236, CHE-9871268]; Pfizer; State of Illinois; Northwestern U., the State of Illinois; Keck foundation; NSF-MRSEC; NSF-NSEC FX This research was supported in part by the Institute for Sustainability and Energy at Northwestern (ISEN) (C.K.S.) and by the Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0001059 (B.J.E.). This research was also supported by the Agency of Science, Technology and Research (A*STAR; T.L.D.T.). We acknowledge the Integrated Molecular Structure Education and Research Center (IMSERC) for molecular characterization facilities for NMR spectroscopy supported by Northwestern U., the NSF under grants CHE-0923236 and CHE-9871268, Pfizer, and the State of Illinois. We also thank the Nanoscale Integrated Fabrication, Testing, and Instrument (NIFTI) and Keck Interdisciplinary Surface Science (KECK-II) facilities of Northwestern University's Atomic and Nanoscale Characterization Experimental (NUANCE) Center for UPS experiments, supported by Northwestern U., the State of Illinois, the Keck foundation, NSF-MRSEC, and NSF-NSEC. Finally, we thank Dr. Antonio Facchetti, J. T. Shin, and J. L. Song for helpful discussions. NR 57 TC 7 Z9 7 U1 6 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 12 PY 2014 VL 6 IS 21 BP 19347 EP 19354 DI 10.1021/am505416m PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA AT5IY UT WOS:000344978200119 PM 25329000 ER PT J AU Li, YZ Rios, O Kessler, MR AF Li, Yuzhan Rios, Orlando Kessler, Michael R. TI Thermomagnetic Processing of Liquid-Crystalline Epoxy Resins and Their Mechanical Characterization Using Nanoindentation SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE liquid-crystalline epoxy resins; thermomagnetic processing; molecular orientation; mechanical properties ID HIGH MAGNETIC-FIELD; RIGID-ROD; SENSING INDENTATION; BIPHENYL MESOGEN; SINGLE-CRYSTALS; THERMOSETS; ANISOTROPY; ORIENTATION; POLYMERS; KINETICS AB A thermomagnetic processing method was used to produce a biphenyl-based liquid-crystalline epoxy resin (LCER) with oriented liquid-crystalline (LC) domains. The orientation of the LCER was confirmed and quantified using two-dimensional X-ray diffraction. The effect of molecular alignment on the mechanical and thermomechanical properties of the LCER was investigated using nanoindentation and thermomechanical analysis, respectively. The effect of the orientation on the fracture behavior was also examined. The results showed that macroscopic orientation of the LC domains was achieved, resulting in an epoxy network with an anisotropic modulus, hardness, creep behavior, and thermal expansion. C1 [Li, Yuzhan; Kessler, Michael R.] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. [Rios, Orlando] Oak Ridge Natl Lab, Mat Proc & Mfg Grp, Oak Ridge, TN 37831 USA. RP Kessler, MR (reprint author), Washington State Univ, Sch Mech & Mat Engn, POB 642920, Pullman, WA 99164 USA. EM MichaelR.Kessler@wsu.edu RI Kessler, Michael/C-3153-2008; Rios, Orlando/E-6856-2017 OI Kessler, Michael/0000-0001-8436-3447; Rios, Orlando/0000-0002-1814-7815 FU Critical Materials Institute, an Energy Innovation Hub - U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy , and Advanced Manufacturing Office [DE-AC05-00OR22725]; UT-Battelle, LLC; Air Force Office of Scientific Research [FA9550-12-1-0108] FX The authors thank Dr. Scott Schlorholtz at the Materials Analysis Research Laboratory at Iowa State University for his help with the XRD experiments and Dr. Amy Wo for the helpful discussion regarding the nanoindentation experiments. The authors also thank Dr. Valerie Lynch-Holm at the Franceschi Microscopy & Imaging Center at Washington State University. Research sponsored in part by the Critical Materials Institute, an Energy Innovation Hub funded by U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, and Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Support through the Air Force Office of Scientific Research (Award FA9550-12-1-0108) is gratefully acknowledged. NR 37 TC 5 Z9 5 U1 2 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 12 PY 2014 VL 6 IS 21 BP 19456 EP 19464 DI 10.1021/am505874t PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA AT5IY UT WOS:000344978200131 PM 25318760 ER PT J AU Berman, D Deshmukh, SA Sankaranarayanan, SKRS Erdemir, A Sumant, AV AF Berman, Diana Deshmukh, Sanket A. Sankaranarayanan, Subramanian K. R. S. Erdemir, Ali Sumant, Anirudha V. TI Extraordinary Macroscale Wear Resistance of One Atom Thick Graphene Layer SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article DE single layer graphene; wear; friction; tribology; MD Simulations ID DIAMOND-LIKE CARBON; SLIDING STEEL SURFACES; RAMAN-SPECTROSCOPY; FRICTION; GRAPHITE; DYNAMICS; HYDROGEN; NITROGEN; DEFECTS; FUTURE AB During the last few years, graphene's unusual friction and wear properties have been demonstrated at nano to micro scales but its industrial tribological potential has not been fully realized. The macroscopic wear resistance of one atom thick graphene coating is reported by subjecting it to pin-on-disc type wear testing against most commonly used steel against steel tribo-pair. It is shown that when tested in hydrogen, a single layer of graphene on steel can last for 6400 sliding cycles, while few-layer graphene (3-4 layers) lasts for 47 000 cycles. Furthermore, these graphene layers are shown to completely cease wear despite the severe sliding conditions including high contact pressures (approximate to 0.5 GPa) observed typically in macroscale wear tests. The computational simulations show that the extraordinary wear performance originates from hydrogen passivation of the dangling bonds in a ruptured graphene, leading to significant stability and longer lifetime of the graphene protection layer. Also, the electronic properties of these graphene sheets are theoretically evaluated and the improved wear resistance is demonstrated to preserve the electronic properties of graphene and to have significant potential for flexible electronics. The findings demonstrate that tuning the atomistic scale chemical interactions holds the promise of realizing extraordinary tribological properties of monolayer graphene coatings. C1 [Berman, Diana; Deshmukh, Sanket A.; Sankaranarayanan, Subramanian K. R. S.; Sumant, Anirudha V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Erdemir, Ali] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Berman, D (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sumant@anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 41 TC 23 Z9 23 U1 10 U2 99 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD NOV 12 PY 2014 VL 24 IS 42 BP 6640 EP 6646 DI 10.1002/adfm.201401755 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AT2QC UT WOS:000344778200008 ER PT J AU Shao, M Keum, JK Kumar, R Chen, JH Browning, JF Das, S Chen, W Hou, JH Do, C Littrell, KC Rondinone, A Geohegan, DB Sumpter, BG Xiao, K AF Shao, Ming Keum, Jong Kahk Kumar, Rajeev Chen, Jihua Browning, James F. Das, Sanjib Chen, Wei Hou, Jianhui Do, Changwoo Littrell, Kenneth C. Rondinone, Adam Geohegan, David B. Sumpter, Bobby G. Xiao, Kai TI Understanding How Processing Additives Tune the Nanoscale Morphology of High Efficiency Organic Photovoltaic Blends: From Casting Solution to Spun-Cast Thin Film SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article DE polymer photovoltaics; morphology; neutron scattering; reflectometry; Flory-Huggins theory ID POLYMER SOLAR-CELLS; PERFORMANCE; DEVICES AB Adding a small amount of a processing additive to the casting solution of photoactive organic blends has been demonstrated to be an effective method for achieving improved power conversion efficiency (PCE) in organic photovoltaics (OPVs). However, an understanding of the nano-structural evolution occurring in the transformation from casting solution to thin photoactive films is still lacking. In this report, the effects of the processing additive diiodooctane (DIO) on the morphology of the established blend of PBDTTT-C-T polymer and the fullerene derivative PC71BM used for OPVs are investigated, starting in the casting solution and tracing the effects in spun-cast thin films by using neutron/X-ray scattering, neutron reflectometry, and other characterization techniques. The results reveal that DIO has no observable effect on the structures of PBDTTT-C-T and PC71BM in solution; however, in the spun-cast films, it significantly promotes their molecular ordering and phase segregation, resulting in improved PCE. Thermodynamic analysis based on Flory-Huggins theory provides a rationale for the effects of DIO on different characteristics of phase segregation due to changes in concentration resulting from evaporation of the solvent and additive during film formation. Such information may help improve the rational design of ternary blends to more consistently achieve improved PCE for OPVs. C1 [Shao, Ming; Keum, Jong Kahk; Kumar, Rajeev; Chen, Jihua; Rondinone, Adam; Geohegan, David B.; Sumpter, Bobby G.; Xiao, Kai] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Keum, Jong Kahk; Browning, James F.; Do, Changwoo; Littrell, Kenneth C.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Kumar, Rajeev; Sumpter, Bobby G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Das, Sanjib] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Chen, Wei] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Hou, Jianhui] Chinese Acad Sci, Inst Chem, Beijing 10080, Peoples R China. RP Shao, M (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM xiaok@ornl.gov RI Littrell, Kenneth/D-2106-2013; Geohegan, David/D-3599-2013; KUMAR, RAJEEV/D-2562-2010; Do, Changwoo/A-9670-2011; Das, Sanjib/A-9255-2017; Chen, Jihua/F-1417-2011; Hou, Jianhui /E-5824-2011; Chen, Wei/G-6055-2011; Sumpter, Bobby/C-9459-2013; Kumar, Rajeev/Q-2255-2015; Rondinone, Adam/F-6489-2013; Browning, James/C-9841-2016; Keum, Jong/N-4412-2015 OI Littrell, Kenneth/0000-0003-2308-8618; Geohegan, David/0000-0003-0273-3139; Do, Changwoo/0000-0001-8358-8417; Das, Sanjib/0000-0002-5281-4458; Chen, Jihua/0000-0001-6879-5936; Hou, Jianhui /0000-0002-2105-6922; Chen, Wei/0000-0001-8906-4278; Sumpter, Bobby/0000-0001-6341-0355; Kumar, Rajeev/0000-0001-9494-3488; Rondinone, Adam/0000-0003-0020-4612; Browning, James/0000-0001-8379-259X; Keum, Jong/0000-0002-5529-1373 FU Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy; Laboratory Directed Research and Development award, Oak Ridge National Laboratory (ORNL) FX M.S. and J.K. contributed equally for this work. This research was conducted at the Center for Nanophase Materials Sciences (CNMS), High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS) which are sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. KX and DBG acknowledge the support provided by a Laboratory Directed Research and Development award from the Oak Ridge National Laboratory (ORNL) for the neutron experiments. NR 37 TC 16 Z9 16 U1 2 U2 77 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD NOV 12 PY 2014 VL 24 IS 42 BP 6647 EP 6657 DI 10.1002/adfm.201401547 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AT2QC UT WOS:000344778200009 ER PT J AU Rappe, KG AF Rappe, Kenneth G. TI Integrated Selective Catalytic Reduction-Diesel Particulate Filter Aftertreatment: Insights into Pressure Drop, NOx Conversion, and Passive Soot Oxidation Behavior SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID ZEOLITE CATALYSTS; CU-SSZ-13; AMMONIA; SITES; FLOW; NH3 AB Integrating urea-selective catalytic reduction (SCR) and diesel particulate filter (DPF) technologies into a single device has the potential to reduce the complexity of current diesel aftertreatment strategies. Fundamental studies were performed to shed light on the pressure drop and reaction behavior of integrated SCR and DPF systems. Details of SCR washcoat amount and location were investigated for effect on pressure drop during soot filtration. The SCR catalyst primarily impacted depth filtration of soot, promoted by increased catalyst located within the upstream portion of the porous filter wall. This effect is believed to be related to the nature of the porous filter substrate and pore network and changing of the rate at which pores plug in the presence of catalyst. SCR catalyst on the wall of the inlet filter channel also had an effect on the pressure rise during cake filtration of soot. NOx reduction efficiency measurements were performed to determine the nature and magnitude of the effect of soot on SCR performance. The effect of soot on the SCR performance is primarily attributed to the contribution of passive soot oxidation, and the propensity for soot oxidation to shift the NO2/NOx fraction relative to 0.5. SCR performance at NO2/NOx < 0.5 is adversely affected by the presence of soot oxidation by increasing the SCR dependency on standard (NO only) SCR reactions; conversely, at NO2/NOx > 0.5, the SCR performance is positively impacted by a decreased dependency on NO2-only SCR reactions. Temperature-programmed oxidation studies were performed to evaluate the impact of SCR on passive soot oxidation. SCR adversely impacts soot oxidation performance via NO2 diffusive effects, decreasing NO2 concentration in the inlet channel. This impact can be minimized or recovered at higher NO2 concentration and NO2/NOx fractions >0.5. C1 Pacific NW Natl Lab, Richland, WA 99354 USA. RP Rappe, KG (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99354 USA. EM ken.rappe@pnnl.gov FU U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program; U.S. Department of Energy by Battelle Memorial Institute [DE-AC06-76RLO 1830] FX This work was performed at the Applied Process Engineering Laboratory at Pacific Northwest National Laboratory (PNNL). The author wishes to thank Gary Maupin for assistance in operating the soot loading apparatus and Jarrod Crum and Brian Riley for assistance in acquiring SEM images of the SCR/DPF samples. The author gratefully acknowledges funding provided for the research from the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. PNNL is a multiprogram national laboratory operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. Figure 1 is reused with permission from SAGE Publications under license number 3466720963654. NR 30 TC 2 Z9 2 U1 2 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD NOV 12 PY 2014 VL 53 IS 45 BP 17547 EP 17557 DI 10.1021/ie502832f PG 11 WC Engineering, Chemical SC Engineering GA AT4JT UT WOS:000344906400003 ER PT J AU Fu, Y Li, BS Jiang, YB Dunphy, DR Tsai, A Tam, SY Fan, HY Zhang, HX Rogers, D Rempe, S Atanassov, P Cecchi, JL Brinker, CJ AF Fu, Yaqin Li, Binsong Jiang, Ying-Bing Dunphy, Darren R. Tsai, Andy Tam, Siu-Yue Fan, Hongyou Zhang, Hongxia Rogers, David Rempe, Susan Atanassov, Plamen Cecchi, Joseph L. Brinker, C. Jeffrey TI Atomic Layer Deposition of L-Alanine Polypeptide SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SPECTROSCOPY; AGENT AB L-Alanine polypeptide thin films were synthesized via atomic layer deposition (ALD). Instead of using an amino acid monomer as the precursor, an L-alanine amino acid derivatized with a protecting group was used to prevent self-polymerization, increase the vapor pressure, and allow linear cycle-by-cycle growth emblematic of ALD. The successful deposition of a conformal polypeptide film has been confirmed by FTIR, TEM, and Mass Spectrometry, and the ALD process has been extended to polyvaline. C1 [Fu, Yaqin; Jiang, Ying-Bing; Dunphy, Darren R.; Atanassov, Plamen; Cecchi, Joseph L.; Brinker, C. Jeffrey] Univ New Mexico, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA. [Fu, Yaqin; Jiang, Ying-Bing; Dunphy, Darren R.; Atanassov, Plamen; Cecchi, Joseph L.; Brinker, C. Jeffrey] Univ New Mexico, Ctr Microengineered Mat, Albuquerque, NM 87131 USA. [Jiang, Ying-Bing] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Tsai, Andy; Tam, Siu-Yue] T3 Sci LLC, Blaine, MN 55449 USA. [Li, Binsong; Fan, Hongyou; Rogers, David; Rempe, Susan; Brinker, C. Jeffrey] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Zhang, Hongxia] Angstrom Thin Film Technol LLC, Albuquerque, NM 87113 USA. RP Jiang, YB (reprint author), Univ New Mexico, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA. EM ybjiang@unm.edu; cjbrink@sandia.gov FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES) Catalysis Sciences Program [DE-FG02-02-ER15368]; DOE BES Division of Materials Sciences and Engineering; Air Force Office of Scientific Research [FA 9550-10-1-0054]; Sandia National Laboratories (SNL) Laboratory Directed Research and Development (LDRD) program; U.S. Department of Energy's NNSA [DE-AC04-94AL85000] FX Y.F. and D.D. were supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES) Catalysis Sciences Program Grant DE-FG02-02-ER15368; H.F. and C.J.B. were supported by the DOE BES Division of Materials Sciences and Engineering; B.L. and Y.-B.J.. were supported by the Air Force Office of Scientific Research Grant FA 9550-10-1-0054; and D.R. and S.R. were supported by the Sandia National Laboratories (SNL) Laboratory Directed Research and Development (LDRD) program. SNL is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000. The authors also want to thank Dr. Ken Sherrell at UNM Dept. of Chemistry for his help in mass spectrometry measurements. NR 19 TC 3 Z9 3 U1 4 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 12 PY 2014 VL 136 IS 45 BP 15821 EP 15824 DI 10.1021/ja5043403 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA AT4JQ UT WOS:000344906100004 PM 25355683 ER PT J AU Zadrozny, JM Niklas, J Poluektov, OG Freedman, DE AF Zadrozny, Joseph M. Niklas, Jens Poluektov, Oleg G. Freedman, Danna E. TI Multiple Quantum Coherences from Hyperfine Transitions in a Vanadium(IV) Complex SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SPIN; CRYSTAL; LIGANDS; QUBITS; DECOHERENCE; COMPUTERS; LATTICE; DESIGN; MAGNET AB We report a vanadium complex in a nuclear-spin free ligand field that displays two key properties for an ideal candidate qubit system: long coherence times that persist at high temperature, T-2 = 1.2 mu s at 80 K, and the observation of quantum coherences from multiple transitions. The electron paramagnetic resonance (EPR) spectrum of the complex [V(C8S8)(3)](2) displays multiple transitions arising from a manifold of states produced by the hyperfine coupling of the S = 1/2 electron spin and I = 7/2 nuclear spin. Transient nutation experiments reveal Rabi oscillations for multiple transitions. These observations suggest that each pair of hyperfine levels hosted within [V(C8S8)(3)](2) are candidate qubits. The realization of multiple quantum coherences within a transition metal complex illustrates an emerging method of developing scalability and addressability in electron spin qubits. This study presents a rare molecular demonstration of multiple Rabi oscillations originating from separate transitions. These results extend observations of multiple quantum coherences from prior reports in solid-state compounds to the new realm of highly modifiable coordination compounds. C1 [Zadrozny, Joseph M.; Freedman, Danna E.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Niklas, Jens; Poluektov, Oleg G.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Freedman, DE (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM danna.freedman@northwestern.edu RI Zadrozny, Joseph/D-8206-2015; Niklas, Jens/I-8598-2016; Zadrozny, Joseph/A-1429-2017; OI Zadrozny, Joseph/0000-0002-1309-6545; Niklas, Jens/0000-0002-6462-2680; Zadrozny, Joseph/0000-0002-1309-6545; Freedman, Danna/0000-0002-2579-8835 FU Northwestern University; state of Illinois; U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357] FX We thank Prof. Brian Hoffman and Dr. Veronika Hooke for preliminary continuous wave X-band EPR spectra and M. S. Fataftah, M. J. Graham for helpful discussions. We acknowledge support from Northwestern University and the state of Illinois. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract DE-AC02-06CH11357 (J.N. and O.G.P.). NR 42 TC 20 Z9 20 U1 4 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 12 PY 2014 VL 136 IS 45 BP 15841 EP 15844 DI 10.1021/ja507846k PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA AT4JQ UT WOS:000344906100009 PM 25340518 ER PT J AU Zhang, S Hao, YZ Su, D Doan-Nguyen, VVT Wu, YT Li, J Sun, SH Murray, CB AF Zhang, Sen Hao, Yizhou Su, Dong Doan-Nguyen, Vicky V. T. Wu, Yaoting Li, Jing Sun, Shouheng Murray, Christopher B. TI Monodisperse Core/Shell Ni/FePt Nanoparticles and Their Conversion to Ni/Pt to Catalyze Oxygen Reduction SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ALLOY NANOPARTICLES; STRAIN CONTROL; ELECTROCATALYSTS; SHELL; CORE; MONOLAYER; NANOWIRES; EFFICIENT; PD; ELECTROOXIDATION AB We report a size-controllable synthesis of monodisperse core/shell Ni/FePt nanoparticles (NPs) via a seed-mediated growth and their subsequent conversion to Ni/Pt NPs. Preventing surface oxidation of the Ni seeds is essential for the growth of uniform FePt shells. These Ni/FePt NPs have a thin (approximate to 1 nm) FePt shell and can be converted to Ni/Pt by acetic acid wash to yield active catalysts for oxygen reduction reaction (ORR). Tuning the core size allows the optimization of their electrocatalytic activity. The specific activity and mass activity of 4.2/0.8 nm core/shell Ni/FePt after acetic acid wash reach 1.95 mA/cm(2) and 490 mA/mg(pt) at 0.9 V (vs reversible hydrogen electrode), which are much higher than those of benchmark commercial Pt catalyst (0.34 mA/cm(2) and 92 mA/mg(pt) at 0.9 V). Our studies provide a robust approach to monodisperse core/shell NPs with nonprecious metal core, making it possible to develop advanced NP catalysts with ultralow Pt content for ORR and many other heterogeneous reactions. C1 [Zhang, Sen; Wu, Yaoting; Murray, Christopher B.] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. [Hao, Yizhou; Doan-Nguyen, Vicky V. T.; Murray, Christopher B.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Su, Dong; Li, Jing] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Sun, Shouheng] Brown Univ, Dept Chem, Providence, RI 02912 USA. RP Murray, CB (reprint author), Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. EM cbmurray@sas.upenn.edu RI Zhang, Sen/E-4226-2015 FU Nature Conservancy; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Catalysis Center for Energy Innovation, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001004]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program; U.S. Army Research Laboratory; U.S. Army Research Office under the Multi University Research Initiative (MURI) [W911NF-11-1-0353] FX This work was supported by NatureNet Science Fellowship from The Nature Conservancy. Partial work on electron microscopy carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. Partial work on Ni nanoparticle chemistry was supported by the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award no. DE-SC0001004. Partial work on electrochemistry was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program and by the U.S. Army Research Laboratory and the U.S. Army Research Office under the Multi University Research Initiative (MURI, grant no. W911NF-11-1-0353) on "Stress-Controlled Catalysis via Engineered Nanostructures". NR 47 TC 47 Z9 48 U1 36 U2 294 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 12 PY 2014 VL 136 IS 45 BP 15921 EP 15924 DI 10.1021/ja5099066 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA AT4JQ UT WOS:000344906100029 PM 25350678 ER PT J AU Scott, AD Pelmenschikov, V Guo, YS Yan, LF Wang, HX George, SJ Dapper, CH Newton, WE Yoda, Y Tanaka, Y Cramer, SP AF Scott, Aubrey D. Pelmenschikov, Vladimir Guo, Yisong Yan, Lifen Wang, Hongxin George, Simon J. Dapper, Christie H. Newton, William E. Yoda, Yoshitaka Tanaka, Yoshihito Cramer, Stephen P. TI Structural Characterization of CO-Inhibited Mo-Nitrogenase by Combined Application of Nuclear Resonance Vibrational Spectroscopy, Extended X-ray Absorption Fine Structure, and Density Functional Theory: New Insights into the Effects of CO Binding and the Role of the Interstitial Atom SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID AZOTOBACTER-VINELANDII NITROGENASE; IRON-MOLYBDENUM COFACTOR; ELECTRON-PARAMAGNETIC-RESONANCE; FEMO-COFACTOR; ACTIVE-SITE; VANADIUM NITROGENASE; CARBON-MONOXIDE; KLEBSIELLA-PNEUMONIAE; INFRARED-SPECTROSCOPY; CRYSTAL-STRUCTURE AB The properties of CO-inhibited Azotobacter vinelandii (Av) Mo-nitrogenase (N(2)ase) have been examined by the combined application of nuclear resonance vibrational spectroscopy (NRVS), extended X-ray absorption fine structure (EXAFS), and density functional theory (DFT). Dramatic changes in the NRVS are seen under high-CO conditions, especially in a 188 cm(1) mode associated with symmetric breathing of the central cage of the FeMo-cofactor. Similar changes are reproduced with the alpha-H195Q N(2)ase variant. In the frequency region above 450 cm(1), additional features are seen that are assigned to Fe-CO bending and stretching modes (confirmed by (CO)-C-13 isotope shifts). The EXAFS for wild-type N(2)ase shows evidence for a significant cluster distortion under high-CO conditions, most dramatically in the splitting of the interaction between Mo and the shell of Fe atoms originally at 5.08 angstrom in the resting enzyme. A DFT model with both a terminal -CO and a partially reduced -CHO ligand bound to adjacent Fe sites is consistent with both earlier FT-IR experiments, and the present EXAFS and NRVS observations for the wild-type enzyme. Another DFT model with two terminal CO ligands on the adjacent Fe atoms yields Fe-CO bands consistent with the alpha-H195Q variant NRVS. The calculations also shed light on the vibrational shake modes of the interstitial atom inside the central cage, and their interaction with the Fe-CO modes. Implications for the CO and N-2 reactivity of N(2)ase are discussed. C1 [Pelmenschikov, Vladimir] Tech Univ Berlin, Inst Chem, D-10623 Berlin, Germany. [Scott, Aubrey D.; Yan, Lifen; Wang, Hongxin; George, Simon J.; Cramer, Stephen P.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Guo, Yisong] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA. [Wang, Hongxin; Cramer, Stephen P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Dapper, Christie H.; Newton, William E.] Virginia Polytech Inst & State Univ, Dept Biochem, Blacksburg, VA 24061 USA. [Yoda, Yoshitaka] SPring8 JASRI, Res & Utilizat Div, Sayo, Hyogo 6795198, Japan. [Tanaka, Yoshihito] RIKEN SPring 8 Ctr, SR Mat Sci Instrumentat Unit, Sayo, Hyogo 6795148, Japan. RP Cramer, SP (reprint author), Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. EM spjcramer@ucdavis.edu RI Guo, Yisong/C-7785-2009 OI Guo, Yisong/0000-0002-4132-3565 FU NIH [GM-65440]; NSF [CHE 1308384]; DOE Office of Biological and Environmental Research; Deutsche Forschungsgemeinschaft (DFG) via the "Unifying Concepts in Catalysis" (UniCat) Excellence Cluster FX We thank Saeed Kamali for assistance early on with NRVS data collection at SPring-8. The experiments at SPring-8 were performed at BL09XU with the approval of JASRI (Proposal No. 2009A0015-2013B0103), and at BL19LXU with the approval of RIKEN (Proposal No. 20120107 and 20130022). V.P. thanks Sven de Marothy for the XYZviewer program. This work was funded by NIH grant GM-65440 (S.P.C.), NSF grant CHE 1308384 (S.P.C.), the DOE Office of Biological and Environmental Research (S.P.C.), and the Deutsche Forschungsgemeinschaft (DFG) via the "Unifying Concepts in Catalysis" (UniCat) Excellence Cluster (V.P.). NR 100 TC 8 Z9 8 U1 10 U2 64 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 12 PY 2014 VL 136 IS 45 BP 15942 EP 15954 DI 10.1021/ja505720m PG 13 WC Chemistry, Multidisciplinary SC Chemistry GA AT4JQ UT WOS:000344906100033 PM 25275608 ER PT J AU Senesi, AJ Eichelsdoerfer, DJ Brown, KA Lee, B Auyeung, E Choi, CHJ Macfarlane, RJ Young, KL Mirkin, CA AF Senesi, Andrew J. Eichelsdoerfer, Daniel J. Brown, Keith A. Lee, Byeongdu Auyeung, Evelyn Choi, Chung Hang J. Macfarlane, Robert J. Young, Kaylie L. Mirkin, Chad A. TI Oligonucleotide Flexibility Dictates Crystal Quality in DNA-Programmable Nanoparticle Superlattices SO ADVANCED MATERIALS LA English DT Article DE DNA; superlattices; metamaterials; X-ray scattering; ligand flexibility ID SINGLE-STRANDED-DNA; GRAIN-GROWTH; REFRACTIVE-INDEX; ATOM EQUIVALENTS; METAMATERIALS; PARTICLES; CRYSTALLIZATION; MOLECULES; RANGE; NANOSTRUCTURES C1 [Senesi, Andrew J.; Eichelsdoerfer, Daniel J.; Brown, Keith A.; Choi, Chung Hang J.; Macfarlane, Robert J.; Young, Kaylie L.; Mirkin, Chad A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Senesi, Andrew J.; Lee, Byeongdu] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Auyeung, Evelyn; Mirkin, Chad A.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Mirkin, CA (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM chadnano@northwestern.edu RI Mirkin, Chad/E-3911-2010; OI Lee, Byeongdu/0000-0003-2514-8805 FU AFOSR Awards [FA9550-11-1-0275, FA9550-12-1-0141]; Department of Defense [32 CFR 168a]; AFOSR [32 CFR 168a]; Northwestern University's International Institute for Nanotechnology; Croucher Foundation; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This material is based upon work supported by the AFOSR Awards FA9550-11-1-0275 and FA9550-12-1-0141. D.J.E., E.A. and K.L.Y. acknowledge the Department of Defense and AFOSR for a National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. K.A.B. gratefully acknowledges support from Northwestern University's International Institute for Nanotechnology. C.H.J.C. acknowledges a postdoctoral research fellowship from The Croucher Foundation. The SAXS experiments were carried out at Sector 5-ID of the DuPont-Northwestern-Dow Collaborative Access Team and Sector 12-ID-B at the Advanced Photon Source. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The TEM work was performed at the EPIC facility of the NU Atomic and Nanoscale Characterization Experimental Center (NUANCE) at Northwestern University. NR 56 TC 15 Z9 15 U1 1 U2 43 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD NOV 12 PY 2014 VL 26 IS 42 BP 7235 EP 7240 DI 10.1002/adma.201402548 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AT2RS UT WOS:000344783300013 PM 25244608 ER PT J AU Sales, BC Saparov, B McGuire, MA Singh, DJ Parker, DS AF Sales, Brian C. Saparov, Bayrammurad McGuire, Michael A. Singh, David J. Parker, David S. TI Ferromagnetism of Fe3Sn and Alloys SO SCIENTIFIC REPORTS LA English DT Article ID HARD MAGNETIC-MATERIALS; INTERMETALLIC COMPOUNDS; SINGLE-CRYSTALS; DIFFRACTION AB Hexagonal Fe3Sn has many of the desirable properties for a new permanent magnet phase with a Curie temperature of 725 K, a saturation moment of 1.18 MA/m. and anisotropy energy, K-1 of 1.8 MJ/m(3). However, contrary to earlier experimental reports, we found both experimentally and theoretically that the easy magnetic axis lies in the hexagonal plane, which is undesirable for a permanent magnet material. One possibility for changing the easy axis direction is through alloying. We used first principles calculations to investigate the effect of elemental substitutions. The calculations showed that substitution on the Sn site has the potential to switch the easy axis direction. However, transition metal substitutions with Co or Mn do not have this effect. We attempted synthesis of a number of these alloys and found results in accord with the theoretical predictions for those that were formed. However, the alloys that could be readily made all showed an in-plane easy axis. The electronic structure of Fe3Sn is reported, as are some are magnetic and structural properties for the Fe3Sn2, and Fe5Sn3 compounds, which could be prepared as mm-sized single crystals. C1 [Sales, Brian C.; Saparov, Bayrammurad; McGuire, Michael A.; Singh, David J.; Parker, David S.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Sales, BC (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM salesbc@ornl.gov RI McGuire, Michael/B-5453-2009 OI McGuire, Michael/0000-0003-1762-9406 FU Critical Materials Institute, an Energy Innovation Hub - U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies, Propulsion Materials Program FX This research was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. MAM. acknowledges support of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies, Propulsion Materials Program. NR 15 TC 6 Z9 6 U1 13 U2 63 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 12 PY 2014 VL 4 AR 7024 DI 10.1038/srep07024 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AT2JL UT WOS:000344760700014 PM 25387850 ER PT J AU Laverock, J Chen, B Preston, ARH Newby, D Piper, LFJ Tung, LD Balakrishnan, G Glans, PA Guo, JH Smith, KE AF Laverock, J. Chen, B. Preston, A. R. H. Newby, D. Piper, L. F. J. Tung, L. D. Balakrishnan, G. Glans, P-A Guo, J-H Smith, K. E. TI Low-energy V t(2g) orbital excitations in NdVO3 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE resonant inelastic x-ray scattering; orbital excitations; crystal field excitations ID ELEMENTARY EXCITATIONS; ORDER AB The electronic structure of NdVO3 and YVO3 has been investigated as a function of sample temperature using resonant inelastic soft x-ray scattering at the V L-3-edge. Most of the observed spectral features are in good agreement with an atomic crystal-field multiplet model. However, a low energy feature is observed at similar to 0.4 eV that cannot be explained by crystal-field arguments. The resonant behaviour of this feature establishes it as due to excitations of the V t(2g) states. Moreover, this feature exhibits a strong sample temperature dependence, reaching maximum intensity in the orbitally-ordered phase of NdVO3, before becoming suppressed at low temperatures. This behaviour indicates that the origin of this feature is a collective orbital excitation, i.e. the bi-orbiton. C1 [Laverock, J.; Chen, B.; Preston, A. R. H.; Newby, D.; Piper, L. F. J.; Smith, K. E.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Piper, L. F. J.] Binghamton Univ, Dept Phys Appl Phys & Astron, Binghamton, NY 13902 USA. [Tung, L. D.; Balakrishnan, G.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Glans, P-A; Guo, J-H] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Phys, Berkeley, CA 94720 USA. [Smith, K. E.] Univ Auckland, Sch Chem Sci, Auckland 1142, New Zealand. [Smith, K. E.] Univ Auckland, MacDiarmid Inst Adv Mat & Nanotechnol, Auckland 1142, New Zealand. RP Laverock, J (reprint author), Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. EM laverock@bu.edu RI Laverock, Jude/G-4537-2010; Glans, Per-Anders/G-8674-2016; Piper, Louis/C-2960-2011; Balakrishnan, Geetha/P-5977-2016; Chen, Bo/C-5428-2017 OI Laverock, Jude/0000-0003-3653-8171; Piper, Louis/0000-0002-3421-3210; Balakrishnan, Geetha/0000-0002-5890-1149; Chen, Bo/0000-0002-9263-5171 FU Department of Energy [DE-FG02-98ER45680]; US Department of Energy [DE-AC02-05CH11231, DE-AC02-98CH10886]; EPSRC [EP/I007210/1] FX The Boston University program is supported in part by the Department of Energy under Grant No. DE-FG02-98ER45680. The ALS, Berkeley, is supported by the US Department of Energy under Contract No. DE-AC02-05CH11231. The NSLS, Brookhaven, is supported by the US Department of Energy under Contract No. DE-AC02-98CH10886. GB gratefully acknowledges financial support from EPSRC Grant EP/I007210/1. NR 38 TC 1 Z9 1 U1 4 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 12 PY 2014 VL 26 IS 45 AR 455603 DI 10.1088/0953-8984/26/45/455603 PG 9 WC Physics, Condensed Matter SC Physics GA AR7ZT UT WOS:000343796200011 PM 25336521 ER PT J AU Zhao, X Nguyen, MC Wang, CZ Ho, KM AF Zhao, Xin Manh Cuong Nguyen Wang, Cai-Zhuang Ho, Kai-Ming TI New stable Re-B phases for ultra-hard materials SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE ultra-hard materials; rhenium boride; genetic algorithm; first-principles calculations ID SUPERHARD RHENIUM DIBORIDE; AUGMENTED-WAVE METHOD; AMBIENT-PRESSURE; BORIDES; SUPERCONDUCTIVITY; STABILITY AB As a distinct class of ultra-hard materials, transition metal borides are found to have superior mechanical properties that challenge the traditional materials. In this work, we explored new stable structures for rhenium borides with different stoichiometries using genetic algorithm in combination with first-principles calculations. Based on theoretical calculations, ReB in a P-3m1 structure is found to be stable against decomposition reactions below 10 GPa and ReB3 in a P-6m2 structure is stable above 22 GPa. Two new phases of Re2B are predicted to be thermodynamically stable at pressures higher than 55 GPa and 80 GPa respectively. We also show that a C2/m structure discovered for ReB4 has energy lower than that of the R-3m structure reported earlier (Wang et al 2013 J. Alloys Compd. 573 20). Elastic and vibrational properties from first-principles calculations indicate that the low-energy structures obtained in our search are mechanically and dynamically stable and are promising targets as new ultra-hard materials. C1 [Zhao, Xin] US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Zhao, X (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM wangcz@ameslab.gov RI Nguyen, Manh Cuong/G-2783-2015; OI Nguyen, Manh Cuong/0000-0001-8027-9029; Zhao, Xin/0000-0002-3580-512X FU US Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering [DE-AC02-07CH11358] FX Work at Ames Laboratory was supported by the US Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering, under Contract No. DE-AC02-07CH11358, including a grant of computer time at the National Energy Research Supercomputing Centre (NERSC) in Berkeley, CA. NR 28 TC 2 Z9 2 U1 1 U2 23 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 12 PY 2014 VL 26 IS 45 AR 455401 DI 10.1088/0953-8984/26/45/455401 PG 7 WC Physics, Condensed Matter SC Physics GA AR7ZT UT WOS:000343796200007 PM 25318642 ER PT J AU Reddi, K Elgowainy, A Sutherland, E AF Reddi, Krishna Elgowainy, Amgad Sutherland, Erika TI Hydrogen refueling station compression and storage optimization with tube-trailer deliveries SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen refueling station; Tube-trailer; Simulation model; Compression; Storage; Fuel cell electric vehicles ID CYLINDER AB Hydrogen refueling stations require high capital investment, with compression and storage comprising more than half of the installed cost of refueling equipment. Refueling station configurations and operation strategies can reduce capital investment while improving equipment utilization. Argonne National Laboratory developed a refueling model to evaluate the impact of various refueling compression and storage configurations and tube trailer operating strategies on the cost of hydrogen refueling. The modeling results revealed that a number of strategies can be employed to reduce fueling costs. Proper sizing of the high-pressure buffer storage reduces the compression requirement considerably, thus reducing refueling costs. Employing a tube trailer to initially fill the vehicle's tank also reduces the compression and storage requirements, further reducing refueling costs. Reducing the cut-off pressure of the tube trailer for initial vehicle fills can also significantly reduce the refueling costs. Finally, increasing the trailer's return pressure can cut refueling costs, especially for delivery distances less than 100 km, and in early markets, when refueling stations will be grossly underutilized. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Reddi, Krishna; Elgowainy, Amgad] Argonne Natl Lab, Argonne, IL 60439 USA. [Sutherland, Erika] US DOE, Fuel Cell Technol Off, Washington, DC 20585 USA. RP Reddi, K (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kreddi@anl.gov FU Fuel Cell Technologies Office of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy [DE-ACO2-06CH11357] FX This research effort was supported by the Fuel Cell Technologies Office of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy under Contract Number DE-ACO2-06CH11357. NR 35 TC 5 Z9 5 U1 1 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV 11 PY 2014 VL 39 IS 33 BP 19169 EP 19181 DI 10.1016/j.ijhydene.2014.09.099 PG 13 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA AU7TO UT WOS:000345803900046 ER PT J AU Kogan, VG Mints, RG AF Kogan, V. G. Mints, R. G. TI Effect of current injection into thin-film Josephson junctions SO PHYSICAL REVIEW B LA English DT Article ID FLUX AB New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. A method of calculating the distribution of injected currents is proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Lambda = 2 lambda(2)/d; lambda is the bulk London penetration depth of the film material and d is the film thickness. C1 [Kogan, V. G.] US DOE, Ames Lab, Ames, IA 50011 USA. [Mints, R. G.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. RP Kogan, VG (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM kogan@ameslab.gov; mints@post.tau.ac.il FU Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-07CH11358] FX The authors are grateful to A. Ustinov for the interest and comments and to E. Goldobin for sharing experimental information and many helpful discussions. The Ames Laboratory is supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358. NR 13 TC 0 Z9 0 U1 2 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 11 PY 2014 VL 90 IS 18 AR 184504 DI 10.1103/PhysRevB.90.184504 PG 5 WC Physics, Condensed Matter SC Physics GA AU2RL UT WOS:000345465300004 ER PT J AU Lucy, JM Ball, MR Restrepo, OD Hauser, AJ Soliz, JR Freeland, JW Woodward, PM Windl, W Yang, FY AF Lucy, J. M. Ball, M. R. Restrepo, O. D. Hauser, A. J. Soliz, J. R. Freeland, J. W. Woodward, P. M. Windl, W. Yang, F. Y. TI Strain-tunable extraordinary magnetocrystalline anisotropy in Sr2CrReO6 epitaxial films SO PHYSICAL REVIEW B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; MAGNETIC-ANISOTROPY; TRANSITION; MOMENT; NI AB We report the discovery of extraordinarily large anisotropy fields and strain-tunable magnetocrystalline anisotropy in Sr2CrReO6 epitaxial films. We determine the strain-induced tetragonal distortions and octahedral rotations in Sr2CrReO6 epitaxial films grown on (LaAlO3)(0.3)(Sr2AlTaO6)(0.7) (LSAT), SrTiO3 (STO), and SrCr0.5Nb0.5O3/LSAT substrates using x-ray diffraction and density functional theory. The structural distortions drive dramatic changes in magnetocrystalline anisotropy. We use magnetometry measurements and first principles calculations to determine the atomic origins of the large anisotropy observed. These techniques elucidate the interplay between structural deformations and magnetic behavior and lay the groundwork for the study of other strongly correlated systems in this class of ferromagnetic oxides. C1 [Lucy, J. M.; Yang, F. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Ball, M. R.; Restrepo, O. D.; Windl, W.] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. [Hauser, A. J.] Univ Calif Santa Barbara, California Nanosyst Inst, Santa Barbara, CA 93106 USA. [Soliz, J. R.; Woodward, P. M.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Freeland, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Lucy, JM (reprint author), Ohio State Univ, Dept Phys, 191 West Woodruff Ave, Columbus, OH 43210 USA. EM fyyang@physics.osu.edu FU Center for Emergent Materials at the Ohio State University; NanoSystems Laboratory; Center for Electron Microscopy and Analysis at The Ohio State University; U.S. Department of Energy, Office of Science [DEAC02-06CH11357]; NSF Materials Research Science and Engineering Center [DMR-1420451] FX This work is supported by the Center for Emergent Materials at the Ohio State University, a NSF Materials Research Science and Engineering Center (DMR-1420451). Partial support is provided by the NanoSystems Laboratory and the Center for Electron Microscopy and Analysis at The Ohio State University. Work at Argonne National Laboratory, including the Advanced Photon Source, is supported by the U.S. Department of Energy, Office of Science under Grant No. DEAC02-06CH11357. NR 38 TC 5 Z9 5 U1 2 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 11 PY 2014 VL 90 IS 18 AR 180401 DI 10.1103/PhysRevB.90.180401 PG 6 WC Physics, Condensed Matter SC Physics GA AU2RL UT WOS:000345465300001 ER PT J AU Mattsson, TR Root, S Mattsson, AE Shulenburger, L Magyar, RJ Flicker, DG AF Mattsson, Thomas R. Root, Seth Mattsson, Ann E. Shulenburger, Luke Magyar, Rudolph J. Flicker, Dawn G. TI Validating density-functional theory simulations at high energy-density conditions with liquid krypton shock experiments to 850 GPa on Sandia's Z machine SO PHYSICAL REVIEW B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; SOLID KRYPTON; PHASE-TRANSITIONS; ELECTRON-GAS; STATE; EQUATION; XENON AB We use Sandia's Z machine and magnetically accelerated flyer plates to shock compress liquid krypton to 850 GPa and compare with results from density-functional theory (DFT) based simulations using the AM05 functional. We also employ quantum Monte Carlo calculations to motivate the choice of AM05. We conclude that the DFT results are sensitive to the quality of the pseudopotential in terms of scattering properties at high energy/temperature. A new Kr projector augmented wave potential was constructed with improved scattering properties which resulted in excellent agreement with the experimental results to 850 GPa and temperatures above 10 eV (110 kK). Finally, we present comparisons of our data from the Z experiments and DFT calculations to current equation of state models of krypton to determine the best model for high energy-density applications. C1 [Mattsson, Thomas R.; Root, Seth; Mattsson, Ann E.; Shulenburger, Luke; Magyar, Rudolph J.; Flicker, Dawn G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Mattsson, TR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM trmatts@sandia.gov; sroot@sandia.gov; aematts@sandia.gov; lshulen@sandia.gov; rjmagya@sandia.gov; dgflick@sandia.gov FU NNSA Science Campaigns; Predictive Theory and Modeling for Materials and Chemical Science program; Office of Basic Energy Sciences (BES); Department of Energy (DOE); U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank all members of the Sandia Z facility that contributed to the design, fabrication, and fielding of the Z experiments. The authors especially appreciate the dedicated efforts of the cryo-team: A. Lopez, J. Lynch, J. Villalva, and K. Shelton as well as the engineering designs by D. Dalton and the diagnostics by C. Meyer. The work was supported by the NNSA Science Campaigns. L.S. was supported through the Predictive Theory and Modeling for Materials and Chemical Science program by the Office of Basic Energy Sciences (BES), Department of Energy (DOE). Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 53 TC 3 Z9 3 U1 3 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 11 PY 2014 VL 90 IS 18 AR 184105 DI 10.1103/PhysRevB.90.184105 PG 10 WC Physics, Condensed Matter SC Physics GA AU2RL UT WOS:000345465300003 ER PT J AU Shi, HL Saparov, B Singh, DJ Sefat, AS Du, MH AF Shi, Hongliang Saparov, Bayrammurad Singh, David J. Sefat, Athena S. Du, Mao-Hua TI Ternary chalcogenides Cs2Zn3Se4 and Cs2Zn3Te4: Potential p-type transparent conducting materials SO PHYSICAL REVIEW B LA English DT Article ID MOLECULAR-BEAM EPITAXY; WIDE-BAND-GAP; SEMICONDUCTOR NANOCRYSTALS; ELECTRICAL-CONDUCTION; DIMENSIONAL REDUCTION; DELAFOSSITE STRUCTURE; CUPROUS DELAFOSSITES; DEFECT MECHANISMS; THIN-FILMS; OXIDE AB We report the prediction of two ternary chalcogenides that can potentially be used as p-type transparent conductors along with experimental synthesis and initial characterization of these compounds, Cs(2)Zn(3)Ch(4) (Ch = Se, Te). In particular, the structures are predicted based on density functional calculations and confirmed by experiments. Phase diagrams, electronic structure, optical properties, and defect properties of Cs2Zn3Se4 and Cs2Zn3Te4 are calculated to assess the viability of these materials as p-type transparent conducting materials (TCMs). Cs2Zn3Se4 and Cs2Zn3Te4, which are stable under ambient air, display large optical band gaps (calculated to be 3.61 and 2.83 eV, respectively) and have small hole effective masses (0.5-0.77m(e)) that compare favorably with other proposed p-type TCMs. Defect calculations show that undoped Cs2Zn3Se4 and Cs2Zn3Te4 are p-type materials. However, the free hole concentration may be limited by low-energy native donor defects, e.g., Zn interstitials. Nonequilibrium growth techniques should be useful for suppressing the formation of native donor defects, thereby increasing the hole concentration. C1 [Shi, Hongliang; Saparov, Bayrammurad; Singh, David J.; Sefat, Athena S.; Du, Mao-Hua] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Shi, HL (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM mhdu@ornl.gov RI Shi, Hongliang/A-7568-2010; Du, Mao-Hua/B-2108-2010; Sefat, Athena/R-5457-2016 OI Shi, Hongliang/0000-0003-0713-4688; Du, Mao-Hua/0000-0001-8796-167X; Sefat, Athena/0000-0002-5596-3504 FU Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX This paper was supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 68 TC 3 Z9 3 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 11 PY 2014 VL 90 IS 18 AR 184104 DI 10.1103/PhysRevB.90.184104 PG 9 WC Physics, Condensed Matter SC Physics GA AU2RL UT WOS:000345465300002 ER PT J AU Coloma, P Minakata, H Parke, SJ AF Coloma, Pilar Minakata, Hisakazu Parke, Stephen J. TI Interplay between appearance and disappearance channels for precision measurements of theta(23) and delta SO PHYSICAL REVIEW D LA English DT Article ID NEUTRINO OSCILLATION EXPERIMENTS; LINE-EXPERIMENT-SIMULATOR; LEPTONIC CP VIOLATION; NO-NU-A; SOLAR; BEAM; T2K AB We discuss how the CP- violating phase delta and the mixing angle theta(23) can be measured precisely in an environment where there are strong correlations between them. This is achieved by paying special attention to the mutual roles and the interplay between the appearance and the disappearance channels in longbaseline neutrino oscillation experiments. We analyze and clarify the general structure of the theta(23) - theta(13) - delta degeneracy for both the appearance and disappearance channels in a more complete fashion than what has previously been discussed in the literature. A full understanding of this degeneracy is of vital importance if theta(23) is close to maximal mixing. The relative importance between the appearance and disappearance channels depends upon the particular setup and how close to maximal mixing nature has chosen the value for theta(23). For facilities that operate with a narrow band beam or a wideband beam centered on the first oscillation extremum, the contribution of the disappearance channel depends critically on the systematic uncertainties assumed for this channel, whereas for facilities that operate at energies above the first oscillation extremum or at the second oscillation extremum, the appearance channels dominate. On the other hand, for d we find that the disappearance channel usually improves the sensitivity, modestly for facilities around the first oscillation extremum and more significantly for facilities operating at an energy above the first oscillation extremum, especially near delta similar to +/-pi 2 C1 [Coloma, Pilar] Virginia Tech, Ctr Neutrino Phys, Blacksburg, VA 24061 USA. [Minakata, Hisakazu] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Parke, Stephen J.] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Coloma, P (reprint author), Virginia Tech, Ctr Neutrino Phys, Blacksburg, VA 24061 USA. EM pcoloma@vt.edu; hisakazu.minakata@gmail.com; parke@fnal.gov OI Coloma, Pilar/0000-0002-1164-9900; Parke, Stephen/0000-0003-2028-6782 FU NORDITA; organizers of the workshop "NuNews: News in Neutrino Physics,"; KAKENHI through Tokyo Metropolitan University; Japan Society' for the Promotion of Science [23540315]; European Union FP7 ITN INVISIBLES (Marie Curie Actions [PITN-GA-2011-289442]; Fermi Research Alliance [DEACO2-07CH11359]; U.S. Department of Energy [DE-SC0003915] FX All the authors thank NORDITA and the organizers of the workshop "NuNews: News in Neutrino Physics," where part of this work was completed, for financial support and hospitality. P. C. thanks Enrique Fernandez-Martinez for providing the files needed to simulate the ESSvSB setup. P. C. and H. M. thank the Fermilab Theory Group for hospitality during their visits. H. M. thanks Universidade de Sao Paulo for the great opportunity of a stay as Pesquisador Visitante Internacional. He is also partially supported by KAKENHI received through Tokyo Metropolitan University, Grant-inAid for Scientific Research No. 23540315, Japan Society' for the Promotion of Science. S. P. acknowledges partial support from the European Union FP7 ITN INVISIBLES (Marie Curie Actions, PITN-GA-2011-289442). Fermilab is operated by the Fermi Research Alliance under Contract No. DEACO2-07CH11359 with the U.S. Department of Energy'. Also, this work has been partially supported by the U.S. Department of Energy under Grant No. DE-SC0003915. NR 75 TC 16 Z9 16 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD NOV 11 PY 2014 VL 90 IS 9 AR 093003 DI 10.1103/PhysRevD.90.093003 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AU3SQ UT WOS:000345534300002 ER PT J AU TerAvest, MA Zajdel, TJ Ajo-Franklin, CM AF TerAvest, Michaela A. Zajdel, Tom J. Ajo-Franklin, Caroline M. TI The Mtr Pathway of Shewanella oneidensis MR-1 Couples Substrate Utilization to Current Production in Escherichia coli SO CHEMELECTROCHEM LA English DT Article DE bioelectrochemistry; Escherichia coli; metabolic engineering; Shewanella oneidensis; synthetic biology ID STRAIN MR-1; CELLS AB Introducing an electronic interface into Escherichia coli will allow its enormous synthetic biology toolkit to be leveraged in bioelectrochemical applications. While E.coli expressing the Mtr pathway of Shewanella oneidensis MR-1 transfer electrons to an anode, it has remained unclear if this current production alters the intracellular state of E.coli, which is a critical requirement for bioelectronic technologies. Here we address this by characterizing current production in Mtr-expressing E.coli and its effects on cellular viability, substrate consumption, and product generation. We found that cymA-mtr E.coli sustained approximate to 8-fold higher current levels than a control strain. This increased current production did not change E.coli viability or substrate consumption, but it did alter metabolic fluxes. A shift to more oxidized products strongly suggests that the Mtr pathway improves redox balance in E.coli. By demonstrating the Mtr module couples current production to intracellular state, this work establishes Mtr-expressing E.coli as a platform for accelerated development of bioelectronic technologies. C1 [Ajo-Franklin, Caroline M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Div Mat Sci, Berkeley, CA 94720 USA. [Ajo-Franklin, Caroline M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Synthet Biol Inst, Berkeley, CA 94720 USA. [Zajdel, Tom J.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [TerAvest, Michaela A.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. RP TerAvest, MA (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. EM cajo-franklin@lbl.gov RI Foundry, Molecular/G-9968-2014 FU Office of Naval Research [N000141310551]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Office of Naval Research (award number N000141310551) and performed at the Molecular Foundry. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also thank Dr. Behzad Rad and Dr. Heather Jensen for helpful discussions related to this work. NR 15 TC 7 Z9 8 U1 1 U2 29 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 2196-0216 J9 CHEMELECTROCHEM JI ChemElectroChem PD NOV 11 PY 2014 VL 1 IS 11 SI SI BP 1874 EP 1879 DI 10.1002/celc.201402194 PG 6 WC Electrochemistry SC Electrochemistry GA AT9GW UT WOS:000345237000017 ER PT J AU Byun, HS Pirbadian, S Nakano, A Shi, L El-Naggar, MY AF Byun, Hye Suk Pirbadian, Sahand Nakano, Aiichiro Shi, Liang El-Naggar, Mohamed Y. TI Kinetic Monte Carlo Simulations and Molecular Conductance Measurements of the Bacterial Decaheme Cytochrome MtrF SO CHEMELECTROCHEM LA English DT Article DE bacteria; cytochromes; electron transfer; Monte Carlo simulations; respiration ID SHEWANELLA-ONEIDENSIS MR-1; OUTER-MEMBRANE-CYTOCHROMES; EXTRACELLULAR ELECTRON-TRANSPORT; C-TYPE CYTOCHROMES; PUTREFACIENS MR-1; METAL REDUCTION; CHARGE-TRANSFER; FREE-ENERGY; NANOWIRES; OMCA AB Microorganisms overcome the considerable hurdle of respiring extracellular solid substrates by deploying large multiheme cytochrome complexes that form 20 nanometer conduits to traffic electrons through the periplasm and across the cellular outer membrane. Here we report the first kinetic Monte Carlo simulations and single-molecule scanning tunneling microscopy (STM) measurements of the Shewanella oneidensis MR-1 outer membrane decaheme cytochrome MtrF, which can perform the final electron transfer step from cells to minerals and microbial fuel cell anodes. We find that the calculated electron transport rate through MtrF is consistent with previously reported in vitro measurements of the Shewanella Mtr complex, as well as in vivo respiration rates on electrode surfaces assuming a reasonable (experimentally verified) coverage of cytochromes on the cell surface. The simulations also reveal a rich phase diagram in the overall electron occupation density of the hemes as a function of electron injection and ejection rates. Single-molecule tunneling spectroscopy confirms MtrF's ability to mediate electron transport between an STM tip and an underlying Au(111) surface, but at rates higher than expected from previously calculated heme-to-heme electron transfer rates for solvated molecules. C1 [Byun, Hye Suk; Pirbadian, Sahand; Nakano, Aiichiro; El-Naggar, Mohamed Y.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Nakano, Aiichiro] Univ So Calif, Los Angeles, CA 90089 USA. [Shi, Liang] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Byun, HS (reprint author), Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. EM mnaggar@usc.edu FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy [DE-FG02-13ER16415] FX This work was funded by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy through grant DE-FG02-13ER16415 to ME-N. We gratefully acknowledge valuable conversations with J. Blumberger, K. Rosso, and M. Breuer, who provided the QM/MM calculation results to us ahead of publication (reference 17c). NR 56 TC 7 Z9 7 U1 6 U2 37 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 2196-0216 J9 CHEMELECTROCHEM JI ChemElectroChem PD NOV 11 PY 2014 VL 1 IS 11 SI SI BP 1932 EP 1939 DI 10.1002/celc.201402211 PG 8 WC Electrochemistry SC Electrochemistry GA AT9GW UT WOS:000345237000025 ER PT J AU Ichihashi, O Vishnivetskaya, TA Borole, AP AF Ichihashi, Osamu Vishnivetskaya, Tatiana A. Borole, Abhijeet P. TI High-Performance Bioanode Development for Fermentable Substrates via Controlled Electroactive Biofilm Growth SO CHEMELECTROCHEM LA English DT Article DE biofilms; continuous flow; direct electron transfer; exoelectrogenic catalysts; microbial fuel cells ID MICROBIAL FUEL-CELLS; ELECTRICITY-GENERATION; AEROMONAS-HYDROPHILA; GLUCOSE; METABOLISM; CONVERSION; ANODES AB A bioanode was optimized to generate current densities reaching 38.4 +/- 4.9Am(-2), which brings bioelectrochemical systems closer to commercial consideration. Glucose and lactate were fed together in a continuous or fed-batch mode. The current density increased from 2.3Am(-2) to 38.4Am(-2) over a 33day period and remained stable thereafter. The Coulombic efficiency ranged from 50% to 80%. A change in substrate concentration from 200mgL(-1) to 5mgL(-1) decreased maximum current density from 38.4Am(-2) to 12.3Am(-2). The anode consortia included Firmicutes (55.0%), Proteobacteria (41.8%) and Bacteroidetes (2.1%) constituting two potentially electrogenic genera: Geobacter (6.8%) and Aeromonas (31.9%). The current production was found to be limited by kinetics during the growth period (33days), and mass transfer, thereafter. The results indicate the necessity of removing spent biomass for efficient long-term operation and treatment of wastewater streams. C1 [Ichihashi, Osamu; Borole, Abhijeet P.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Vishnivetskaya, Tatiana A.; Borole, Abhijeet P.] Univ Tennessee, Ctr Interdisciplinary Res & Educ, Energy Sci & Engn Program, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Ichihashi, Osamu] Tohoku Univ Oosaki Miyagi, Grad Sch Agr Sci, Sendai, Miyagi 9896711, Japan. RP Ichihashi, O (reprint author), Gifu Univ, River Basin Res Ctr, Gifu 5011193, Japan. EM borolea@ornl.gov OI Vishnivetskaya, Tatiana/0000-0002-0660-023X; Borole, Abhijeet/0000-0001-8423-811X FU overseas study program of "International training for construction of sustainable agriculture" - "Institutional Program for Young Researcher Overseas Visits" of the Japan Society for the Promotion of Science; U.S. Department of Energy [DE-AC05-00OR22725]; U.S. Government [DE-AC05-00OR22725] FX Financial support for O.I. was obtained from an overseas study program of "International training for construction of sustainable agriculture," funded by the "Institutional Program for Young Researcher Overseas Visits" of the Japan Society for the Promotion of Science. ORNL is managed by UT-Battelle, Inc. via a contract #DE-AC05-00OR22725 for the U.S. Department of Energy. The authors would like to thank Tse-Luan Lu for help with genomic DNA isolation. The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 34 TC 2 Z9 2 U1 1 U2 18 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2196-0216 J9 CHEMELECTROCHEM JI ChemElectroChem PD NOV 11 PY 2014 VL 1 IS 11 SI SI BP 1940 EP 1947 DI 10.1002/celc.201402206 PG 8 WC Electrochemistry SC Electrochemistry GA AT9GW UT WOS:000345237000026 ER PT J AU Babanova, S Matanovic, I Atanassov, P AF Babanova, Sofia Matanovic, Ivana Atanassov, Plamen TI Quinone-Modified Surfaces for Enhanced Enzyme-Electrode Interactions in Pyrroloquinoline-Quinone-Dependent Glucose Dehydrogenase Anodes SO CHEMELECTROCHEM LA English DT Article DE bioanodes; electron transfer; glucose dehydrogenase; glucose oxidation; surface modification ID BRILLOUIN-ZONE INTEGRATIONS; INITIO MOLECULAR-DYNAMICS; MODIFIED CARBON NANOTUBES; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; BIOFUEL CELL; DIRECT BIOELECTROCATALYSIS; BILIRUBIN OXIDASE; OXYGEN REDUCTION; BASIS-SET AB An approach for enhancing the enzyme-electrode interface reactions with pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase (GDH) is described in this study. Modification of carbonaceous electrodes with ubiquinone or its functional analogues (1,2- and 1,4-benzoquinones) that have the appropriate redox potential to provide a driving force for an electron transfer to occur, along with fast electron-transfer rate through these molecules, creates an electron sink on the electrode surface that can pull electrons from the cofactor, increasing the electron-transfer rate and generating higher current densities. Several important parameters are experimentally evaluated and/or calculated using density functional theory. Among the quinones investigated, 1,4-benzoquinone has the greatest influence on the PQQ-dependent GDH anodes, yielding 5.1-fold higher current densities on single-walled, and 3.3-fold on multi-walled carbon nanotube papers in comparison to unmodified PQQ-dependent GDH anodes. C1 [Babanova, Sofia; Matanovic, Ivana; Atanassov, Plamen] Univ New Mexico, Ctr Emerging Energy Technol, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Matanovic, Ivana] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Babanova, S (reprint author), Univ New Mexico, Ctr Emerging Energy Technol, Dept Chem & Nucl Engn, 1 Univ New Mexico, Albuquerque, NM 87131 USA. EM plamen@unm.edu FU NSF-CBET grant [1158936]; LDRD-DR grant [20120003DR]; Office of Science of the U.S. Department of Energy [DE-AC52-06NA25396]; Department of Energy's Office of Biological and Environmental Research FX This work was supported by NSF-CBET grant number 1158936 and LDRD-DR grant number 20120003DR. Computational work was performed using the computational resources of LANL, supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396 and EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 65 TC 4 Z9 4 U1 2 U2 23 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 2196-0216 J9 CHEMELECTROCHEM JI ChemElectroChem PD NOV 11 PY 2014 VL 1 IS 11 SI SI BP 2017 EP 2028 DI 10.1002/celc.201402104 PG 12 WC Electrochemistry SC Electrochemistry GA AT9GW UT WOS:000345237000035 ER PT J AU Biswas, M Libera, JA Darling, SB Elam, JW AF Biswas, Mahua Libera, Joseph A. Darling, Seth B. Elam, Jeffrey W. TI New Insight into the Mechanism of Sequential Infiltration Synthesis from Infrared Spectroscopy SO CHEMISTRY OF MATERIALS LA English DT Article ID ATOMIC LAYER DEPOSITION; COPOLYMER TEMPLATES; FILMS; TRIMETHYLALUMINUM; NANOSTRUCTURES; POLYMERS; FTIR; PMMA AB Sequential infiltration synthesis (SIS) has been recently demonstrated to increase the etch resistance of optical, e-beam, and block copolymer lithography resists for sub-50 nm pattern transfer. Although SIS can dramatically enhance pattern transfer relevant to device applications, the complex processes involved in SIS are not clearly understood. Fundamental knowledge of the chemistry underlying SIS is necessary to ensure a high degree of perfection in large-scale lithography. To this end, we performed in situ Fourier transform infrared (FTIR) spectroscopic measurements during the SIS of Al2O3 using trimethylaluminum (TMA) and H2O into poly(methyl methacrylate) (PMMA). The FTIR results revealed that TMA reacts quickly with PMMA to form an unstable complex. The subsequent conversion of this intermediate complex into stable AlO linkages is slow and must compete with rapid TMA desorption. We support this interpretation of the FTIR data using density functional theory to calculate plausible structures for the unstable TMAPMMA complex and the covalently linked species. As a consequence of this two-step reaction between TMA and PMMA, the detailed history of the TMA exposure becomes critical to achieving reliable patterns in SIS lithography. We demonstrate this using scanning electron microscopy to image the patterns resulting from SIS treatment of block copolymer films under different TMA exposure conditions. This better understanding of the SIS reaction dynamics should improve reliability in SIS lithography as well as other SIS applications. C1 [Biswas, Mahua; Libera, Joseph A.; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Darling, Seth B.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. RP Darling, SB (reprint author), Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. EM darling@anl.gov; jelam@anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Technology Maturation Grant through the Technology Development and Commercialization Division at Argonne FX Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors want to thank Dr. Wei Chen from Materials Science Division, Argonne National Laboratory, for providing PS-r-PMMA polymer. The authors gratefully acknowledge support from a Technology Maturation Grant through the Technology Development and Commercialization Division at Argonne. NR 29 TC 16 Z9 16 U1 6 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 11 PY 2014 VL 26 IS 21 BP 6135 EP 6141 DI 10.1021/cm502427q PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AT4JL UT WOS:000344905600008 ER PT J AU Oh, SM Myung, ST Hwang, JY Scrosati, B Amine, K Sun, YK AF Oh, Seung-Min Myung, Seung-Taek Hwang, Jang-Yeon Scrosati, Bruno Amine, Khalil Sun, Yang-Kook TI High Capacity O3-Type Na[Li-0.05(Ni0.25Fe0.25Mn0.5)(0.95)]O-2 Cathode for Sodium Ion Batteries SO CHEMISTRY OF MATERIALS LA English DT Article ID ELECTROCHEMICAL PROPERTIES; ENERGY-STORAGE; DRYING METHOD; INTERCALATION; ELECTRODE; NAXCOO2; OXIDE; LI AB In this work we report Na[Li-0.05(Ni0.25Fe(0.25)Mn(0.5))(0.95)]O2 layered cathode materials that were synthesized via a coprecipitation method. The Na[Li-0.05(Ni(0.25)Fe0.25Mn(0.5))(0.95)]O-2 electrode exhibited an exceptionally high capacity (180.1 mA h g1 at 0.1 C-rate) as well as excellent capacity retentions (0.2 C-rate: 89.6%, 0.5 C-rate: 92.1%) and rate capabilities at various C-rates (0.1 C-rate: 180.1 mA h g1, 1 C-rate: 130.9 mA h g1, 5 C-rate: 96.2 mA h g1), which were achieved due to the Li supporting structural stabilization by introduction into the transition metal layer. By contrast, the electrode performance of the lithium-free Na[Ni0.25Fe0.25Mn0.5]O-2 cathode was inferior because of structural disintegration presumably resulting from Fe3+ migration from the transition metal layer to the Na layer during cycling. The long-term cycling using a full cell consisting of a Na[Li-0.05(Ni0(.25)Fe(0.25)Mn(0.5))(0.95)]O-2 cathode was coupled with a hard carbon anode which exhibited promising cycling data including a 76% capacity retention over 200 cycles. C1 [Oh, Seung-Min; Hwang, Jang-Yeon; Sun, Yang-Kook] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea. [Myung, Seung-Taek] Sejong Univ, Dept Nano Engn, Seoul 143747, South Korea. [Scrosati, Bruno] Italian Inst Technol, I-16163 Genoa, Italy. [Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Sun, YK (reprint author), Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea. EM yksun@hanyang.ac.kr FU Global Frontier R&D Program on Center for Hybrid Interface Materials (HIM) - Ministry of Science, ICT & Future Planning [2013M3A6B1078875]; Human Resources Development program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) - Korea government Ministry of Trade, Industry and Energy [20124010203310] FX This work was supported by the Global Frontier R&D Program (2013M3A6B1078875) on Center for Hybrid Interface Materials (HIM) funded by the Ministry of Science, ICT & Future Planning and supported by the Human Resources Development program (No. 20124010203310) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy. NR 28 TC 29 Z9 30 U1 18 U2 144 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 11 PY 2014 VL 26 IS 21 BP 6165 EP 6171 DI 10.1021/cm502481b PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AT4JL UT WOS:000344905600012 ER PT J AU Chung, YG Camp, J Haranczyk, M Sikora, BJ Bury, W Krungleviciute, V Yildirim, T Farha, OK Sholl, DS Snurr, RQ AF Chung, Yongchul G. Camp, Jeffrey Haranczyk, Maciej Sikora, Benjamin J. Bury, Wojciech Krungleviciute, Vaiva Yildirim, Taner Farha, Omar K. Sholl, David S. Snurr, Randall Q. TI Computation-Ready, Experimental Metal-Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals SO CHEMISTRY OF MATERIALS LA English DT Article ID HYDROGEN STORAGE; POROUS MATERIALS; SURFACE-AREAS; ADSORPTION; SEPARATION; ZEOLITES; GEOMETRY; SERIES; LIMITS; MOFS AB Experimentally refined crystal structures for metalorganic frameworks (MOFs) often include solvent molecules and partially occupied or disordered atoms. This creates a major impediment to applying high-throughput computational screening to MOFs. To address this problem, we have constructed a database of MOF structures that are derived from experimental data but are immediately suitable for molecular simulations. The computation-ready, experimental (CoRE) MOF database contains over 4700 porous structures with publically available atomic coordinates. Important physical and chemical properties including the surface area and pore dimensions are reported for these structures. To demonstrate the utility of the database, we performed grand canonical Monte Carlo simulations of methane adsorption on all structures in the CoRE MOF database. We investigated the structural properties of the CoRE MOFs that govern methane storage capacity and found that these relationships agree well with those derived recently from a large database of hypothetical MOFs. C1 [Chung, Yongchul G.; Sikora, Benjamin J.; Snurr, Randall Q.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. [Bury, Wojciech; Farha, Omar K.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Camp, Jeffrey; Sholl, David S.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Haranczyk, Maciej] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Comp Res Div, Berkeley, CA 94720 USA. [Bury, Wojciech] Warsaw Univ Technol, Dept Chem, PL-00664 Warsaw, Poland. [Krungleviciute, Vaiva; Yildirim, Taner] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Krungleviciute, Vaiva; Yildirim, Taner] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Farha, Omar K.] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah 21589, Saudi Arabia. RP Sholl, DS (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, 311 Ferst Dr, Atlanta, GA 30332 USA. RI Snurr, Randall/B-6699-2009; Chung, Yongchul/G-7017-2015; Haranczyk, Maciej/A-6380-2014; Faculty of, Sciences, KAU/E-7305-2017 OI Chung, Yongchul/0000-0002-7756-0589; Haranczyk, Maciej/0000-0001-7146-9568; FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-FG02-12ER16362]; office of the Provost; Office for Research; Northwestern University Information Technology FX This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, under Award DE-FG02-12ER16362. This research was supported in part through the computational resources and staff contributions provided for the Quest high-performance computing facility at Northwestern University, which is jointly supported by the office of the Provost, the Office for Research, and Northwestern University Information Technology. We thank Dr. Diego A. Gomez-Gualdron and Dr. Christopher E. Wilmer for providing methane GCMC data for the hypothetical MOFs. NR 36 TC 53 Z9 54 U1 18 U2 100 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 11 PY 2014 VL 26 IS 21 BP 6185 EP 6192 DI 10.1021/cm502594j PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AT4JL UT WOS:000344905600015 ER PT J AU Strobridge, FC Clement, RJ Leskes, M Middlemiss, DS Borkiewicz, OJ Wiaderek, KM Chapman, KW Chupas, PJ Grey, CP AF Strobridge, Fiona C. Clement, Raphaele J. Leskes, Michal Middlemiss, Derek S. Borkiewicz, Olaf J. Wiaderek, Kamila M. Chapman, Karena W. Chupas, Peter J. Grey, Clare P. TI Identifying the Structure of the Intermediate, Li2/3CoPO4, Formed during Electrochemical Cycling of LiCoPO4 SO CHEMISTRY OF MATERIALS LA English DT Article ID X-RAY-DIFFRACTION; DENSITY-FUNCTIONAL THEORY; TRANSITION-METAL PHOSPHATES; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; SOLID-SOLUTION PHASES; AUGMENTED-WAVE METHOD; LI-ION BATTERY; LITHIUM BATTERIES; LIFEPO4 NANOPARTICLES AB In situ synchrotron diffraction measurements and subsequent Rietveld refinements are used to show that the high energy density cathode material LiCoPO4 (space group Pnma) undergoes two distinct two-phase reactions upon charge and discharge, both occurring via an intermediate Li-2/3(Co2+)(2/3)(Co3+)(1/3)PO4 phase. Two resonances are observed for Li2/3CoPO4 with intensity ratios of 2:1 and 1:1 in the P-31 and 7Li NMR spectra, respectively. An ordering of Co2+/Co3+ oxidation states is proposed within a (a X 3b X c) supercell, and Li+/vacancy ordering is investigated using experimental NMR data in combination with first-principles solid-state DFT calculations. In the lowest energy configuration, both the Co3+ ions and Li vacancies are found to order along the b-axis. Two other low energy Li+/vacancy ordering schemes are found only 5 meV per formula unit higher in energy. All three configurations lie below the LiCoPO4CoPO4 convex hull and they may be readily interconverted by Li+ hops along the b-direction. C1 [Strobridge, Fiona C.; Clement, Raphaele J.; Leskes, Michal; Middlemiss, Derek S.; Grey, Clare P.] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, Cambs, England. [Borkiewicz, Olaf J.; Wiaderek, Kamila M.; Chapman, Karena W.; Chupas, Peter J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Grey, Clare P.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Grey, CP (reprint author), Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, Cambs, England. EM cpg27@cam.ac.uk RI Leskes, Michal/J-4674-2015 OI Leskes, Michal/0000-0002-7172-9689 FU EPSRC for a Doctoral Training Partnership Award; Department of Energy (DOE); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001294]; EU; Marie Curie intra-European fellowship; U.S. Department of Energy [DE-AC02-06CH11357]; U.S. DOE, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We thank the EPSRC for a Doctoral Training Partnership Award (support to FCS) and the Department of Energy (DOE) for support via the Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001294 (FCS, CPG, OJB, KMW, KWC, PJC). We thank the EU for financial support via an EU-ERC Advanced Fellowship (RJC) and a Marie Curie intra-European fellowship (ML). Work done at Argonne and use of the Advanced Photon Source (APS), an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory, were supported by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. An allocation of time upon the NANO computer cluster at the Center for Functional Nanomaterials, Brookhaven National Laboratory, U.S.A., which is supported by the U.S. DOE, Office of Basic Energy Sciences, under Contract DE-AC02-98CH10886, is acknowledged. This work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). We thank Hao Liu, Xiao Hua, Ieuan Seymour, Dr. Phoebe Allan and Dr. Sylvia Britto for their help and discussions, Dr. Matthew Suchomel for instrument support, and Dr. Jan Ilavsky for help with the Irena software. NR 79 TC 11 Z9 12 U1 10 U2 121 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 11 PY 2014 VL 26 IS 21 BP 6193 EP 6205 DI 10.1021/cm502680w PG 13 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AT4JL UT WOS:000344905600016 ER PT J AU Omenya, F Miller, JK Fang, J Wen, BH Zhang, RB Wang, Q Chernova, NA Whittingham, MS AF Omenya, Fredrick Miller, Joel K. Fang, Jin Wen, Bohua Zhang, Ruibo Wang, Qi Chernova, Natasha A. Whittingham, M. Stanley TI Single-Phase Lithiation and Delithiation of Simferite Compounds Li(Mg,Mn,Fe)PO4 SO CHEMISTRY OF MATERIALS LA English DT Article ID ROOM-TEMPERATURE; SOLID-SOLUTION; LIFEPO4; LIXFEPO4; CATHODE; LI-X(MNYFE1-Y)PO4; DEINTERCALATION; SUBSTITUTION; DIFFRACTION; BATTERIES AB Understanding the phase transformation behavior of electrode materials for lithium ion batteries is critical in determining the electrode kinetics and battery performance. Here, we demonstrate the lithiation/delithiation mechanism and electrochemical behavior of the simferite compound, LiMg0.5Fe0.3Mn0.2PO4. In contrast to the equilibrium two-phase nature of LiFePO4, LiMg(0.5)Fe(0.3)Mn(0.)2PO(4) undergoes a one-phase reaction mechanism as confirmed by ex situ X-ray diffraction at different states of delithiation and electrochemical measurements. The equilibrium voltage measurement by galvanostatic intermittent titration technique shows a continuous change in voltage at Mn3+/Mn2+ redox couple with addition of Mg2+ in LiMn0.4Fe0.6PO4 olivine structure. There is, however, no significant change in the Fe3+/Fe2+ redox potential. C1 [Omenya, Fredrick; Miller, Joel K.; Fang, Jin; Wen, Bohua; Zhang, Ruibo; Wang, Qi; Chernova, Natasha A.; Whittingham, M. Stanley] SUNY Binghamton, Binghamton, NY 13902 USA. [Wang, Qi] Brookhaven Natl Lab, Upton, NY 11973 USA. [Whittingham, M. Stanley] SUNY Stony Brook, Dept Chem, Northeastern Ctr Chem Energy Storage, Stony Brook, NY 11794 USA. RP Whittingham, MS (reprint author), SUNY Binghamton, Binghamton, NY 13902 USA. EM stanwhit@gmail.com RI Zhang, Ruibo/B-4659-2015 FU Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0001294]; U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC02-06CH11357, DE-AC02-98CH10886] FX This research is supported as part of the Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award Number DE-SC0001294. Use of the Advanced Photon Source at Argonne National Laboratory and the National Synchrotron Light Source at Brookhaven National Laboratory is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract Nos. DE-AC02-06CH11357 and DE-AC02-98CH10886, respectively. We also acknowledge the support of the National Institute of Standards and Technology U.S. Department of Commerce, in providing the neutron research facilities used in this work. We thank Dr. Hui Wu of NIST for her help with neutron data collection and analysis. NR 27 TC 3 Z9 3 U1 2 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 11 PY 2014 VL 26 IS 21 BP 6206 EP 6212 DI 10.1021/cm502832b PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AT4JL UT WOS:000344905600017 ER PT J AU Mohanty, D Li, JL Abraham, DP Huq, A Payzant, EA Wood, DL Daniel, C AF Mohanty, Debasish Li, Jianlin Abraham, Daniel P. Huq, Ashfia Payzant, E. Andrew Wood, David L., III Daniel, Claus TI Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion SO CHEMISTRY OF MATERIALS LA English DT Article ID LAYERED COMPOSITE CATHODE; DIFFRACTION; ELECTRODES; OXIDES; TRANSFORMATION; HYSTERESIS; NEUTRON AB High-voltage layered lithium- and manganese-rich (LMR) oxides have the potential to dramatically enhance the energy density of current Li-ion energy storage systems. However, these materials are currently not used commonly; one reason is their inability to maintain a consistent voltage profile (voltage fade) during electrochemical cycling. This report rationalizes the cause of this voltage fade by providing evidence of layered to spinel (LS) structural evolution pathways in the host Li1.2Mn0.55Ni0.15Co0.1O2 oxide. By employing neutron powder diffraction, we show that LS structural rearrangement in the LMR oxide occurs through a tetrahedral cation intermediate via the following: (i) diffusion of lithium atoms from octahedral to tetrahedral sites of the lithium layer [(LiLioct -> LiLitet] which is followed by the dispersal of the lithium ions from the adjacent octahedral site of the metal layer to the tetrahedral sites of lithium layer [LiTMoct -> LiLitet]; (ii) migration of Mn from the octahedral sites of the transition-metal layer to the permanent octahedral site of lithium layer via tetrahedral site of lithium layer [MnTMoct -> MnLitet -> MnLioct)]. These findings open the door to potential routes to mitigate this atomic restructuring in the high-voltage LMR composite oxide by manipulating their composition/structure for practical use in high-energy-density lithium-ion batteries. C1 [Mohanty, Debasish; Li, Jianlin; Wood, David L., III; Daniel, Claus] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. [Huq, Ashfia; Payzant, E. Andrew] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Abraham, Daniel P.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Wood, David L., III; Daniel, Claus] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA. RP Mohanty, D (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. EM mohantyd@ornl.gov; wooddl@ornl.gov; danielc@ornl.gov RI Payzant, Edward/B-5449-2009; Huq, Ashfia/J-8772-2013; Daniel, Claus/A-2060-2008; Mohanty, Debasish/B-6207-2012; Li, Jianlin/D-3476-2011; OI Payzant, Edward/0000-0002-3447-2060; Huq, Ashfia/0000-0002-8445-9649; Daniel, Claus/0000-0002-0571-6054; Mohanty, Debasish/0000-0003-1141-0657; Li, Jianlin/0000-0002-8710-9847; Wood, David/0000-0002-2471-4214 FU U.S. Department of Energy (DOE) [DE-AC05-000R22725]; Office of Energy Efficiency and Renewable Energy for the Vehicle Technologies Office's Applied Battery Research Program (Program Managers: Peter Faguy and David Howell); Scientific User Facilities Division, Office of Basic Energy Sciences; VTO's ABR Program FX This research at Oak Ridge National Laboratory, managed by UT Battelle, LLC, for the U.S. Department of Energy (DOE), under contract DE-AC05-000R22725, was sponsored by the Office of Energy Efficiency and Renewable Energy for the Vehicle Technologies Office's Applied Battery Research Program (Program Managers: Peter Faguy and David Howell). Part of this research was supported by the ORNL's User Facility at the Spa Ration Neutron Source, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences. The HES050 material was obtained from Argonne National Laboratory, in collaboration with Andrew Jansen and Bryant Polzin. The electrodes and cell fabrication, and pouch cell testing, were carried out at the DOE's Battery Manufacturing R&D Facility at Oak Ridge National Laboratory, which is supported by VTO's ABR Program. We thank Roberta A. Meisner at ORNL for her help in XRD data collection. NR 31 TC 45 Z9 45 U1 11 U2 93 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 11 PY 2014 VL 26 IS 21 BP 6272 EP 6280 DI 10.1021/cm5031415 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AT4JL UT WOS:000344905600026 ER PT J AU Zhou, Y Dyck, J Graham, TW Luo, HM Leonard, DN Qu, J AF Zhou, Yan Dyck, Jeffrey Graham, Todd W. Luo, Huimin Leonard, Donovan N. Qu, Jun TI Ionic Liquids Composed of Phosphonium Cations and Organophosphate, Carboxylate, and Sulfonate Anions as Lubricant Antiwear Additives SO LANGMUIR LA English DT Article ID SOLUBILITY PARAMETERS; TRIBOLOGICAL PERFORMANCE; NEAT LUBRICANTS; FATTY-ACIDS; OFHC COPPER; PART 2; OIL; DECOMPOSITION; HYDROCARBON; MECHANISMS AB Oil-soluble phosphonium-based ionic liquids (ILs) have recently been reported as potential ashless lubricant additives. This study is to expand the IL chemistry envelope and to achieve fundamental correlations between the ion structures and ILs physiochemical and tribological properties. Here we present eight ILs containing two different phosphonium cations and seven different anions from three groups: organophosphate, carboxylate, and sulfonate. The oil solubility of ILs seems largely governed by the IL molecule size and structure complexity. When used as oil additives, the ranking of effectiveness in wear protection for the anions are organophosphate > carboxylate > sulfonate. All selected ILs outperformed a commercial ashless antiwear additive. Surface characterization from the top and the cross-section revealed the nanostructures and compositions of the tribo-films formed by the ILs. Some fundamental insights were achieved: branched and long alkyls improve the ILs oil solubility, anions of a phosphonium-phosphate IL contribute most phosphorus in the tribo-film, and carboxylate anions, though free of P, S, N, or halogen, can promote the formation of an antiwear tribo-film. C1 [Zhou, Yan; Leonard, Donovan N.; Qu, Jun] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. [Zhou, Yan] Texas A&M Univ, College Stn, TX 77843 USA. [Dyck, Jeffrey; Graham, Todd W.] Cytec Canada, Applicat Technol Grp, Niagara Falls, ON L2H 6S5, Canada. [Luo, Huimin] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. RP Qu, J (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. EM qujn@ornl.gov OI Qu, Jun/0000-0001-9466-3179 FU Vehicle Technologies Program, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE); U.S. Department of Energy [DE-AC05-00OR22725] FX The authors thank Dr. H. M. Meyer of Oak Ridge National Laboratory (ORNL) for his advice on XPS analysis and W. C. Barnhill of ORNL for exposure corrosion testing. Research sponsored by the Vehicle Technologies Program, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE). Y.Z. was appointed to ORNL through the Oak Ridge Associated Universities/Oak Ridge Institute for Science and Engineering's Advanced Short-Term Research Opportunity program. The authors also thank the Laboratory for Molecular Simulation at Texas A&M University for providing the access to Materials Studio. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. NR 53 TC 20 Z9 20 U1 5 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 11 PY 2014 VL 30 IS 44 BP 13301 EP 13311 DI 10.1021/la5032366 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AT4JG UT WOS:000344905100021 PM 25330413 ER PT J AU Oliver, RC Lipfert, J Fox, DA Lo, RH Kim, JJ Doniach, S Columbus, L AF Oliver, Ryan C. Lipfert, Jan Fox, Daniel A. Lo, Ryan H. Kim, Justin J. Doniach, Sebastian Columbus, Linda TI Tuning Micelle Dimensions and Properties with Binary Surfactant Mixtures SO LANGMUIR LA English DT Article ID SMALL-ANGLE SCATTERING; ADVANCED PHOTON SOURCE; X-RAY-SCATTERING; MEMBRANE-PROTEINS; DETERGENTS; MODEL; MICELLIZATION; REMEDIATION; SYSTEMS; DRUGS AB Detergent micelles are used in many areas of research and technology, in particular, as mimics of the cellular membranes in the purification and biochemical and structural characterization of membrane proteins. Applications of detergent micelles are often hindered by the limited set of properties of commercially available detergents. Mixtures of micelle-forming detergents provide a means to systematically obtain additional micellar properties and expand the repertoire of micelle features available; however, our understanding of the properties of detergent mixtures is still limited. In this study, the shape and size of binary mixtures of seven different detergents commonly used in molecular host-guest systems and membrane protein research were investigated. The data suggests that the detergents form ideally mixed micelles with sizes and shapes different from those of pure individual micelles. For most measurements of size, the mixtures varied linearly with detergent mole fraction and therefore can be calculated from the values of the pure detergents. We propose that properties such as the geometry, size, and surface charge can be systematically and predictably tuned for specific applications. C1 [Oliver, Ryan C.; Fox, Daniel A.; Lo, Ryan H.; Kim, Justin J.; Columbus, Linda] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. [Lipfert, Jan] Univ Munich, Dept Phys, Munich, Germany. [Lipfert, Jan] Univ Munich, Ctr Nanosci CeNS, Munich, Germany. [Doniach, Sebastian] Stanford Univ, Dept Phys, Biophys Program, Stanford, CA 94305 USA. [Doniach, Sebastian] Stanford Univ, Dept Appl Phys, Biophys Program, Stanford, CA 94305 USA. [Doniach, Sebastian] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. RP Columbus, L (reprint author), Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. EM columbus@virginia.edu OI Columbus, Linda/0000-0002-2574-0561 FU National Science Foundation [MCB 0845668]; Netherlands Organisation for Scientific Research (NWO) FX This research was funded by a National Science Foundation CAREER award (MCB 0845668) and is supported by The Netherlands Organisation for Scientific Research (NWO). NR 31 TC 5 Z9 5 U1 2 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 11 PY 2014 VL 30 IS 44 BP 13353 EP 13361 DI 10.1021/la503458n PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AT4JG UT WOS:000344905100027 PM 25312254 ER PT J AU Wang, WW Wang, WY Lu, XY Bobade, S Chen, JH Kang, NG Zhang, QY Mays, J AF Wang, Wenwen Wang, Weiyu Lu, Xinyi Bobade, Sachin Chen, Jihua Kang, Nam-Goo Zhang, Qiuyu Mays, Jimmy TI Synthesis and Characterization of Comb and Centipede Multigraft Copolymers PnBA-g-PS with High Molecular Weight Using Miniemulsion Polymerization SO MACROMOLECULES LA English DT Article ID FREE-RADICAL POLYMERIZATION; THERMOPLASTIC ELASTOMERS; ANIONIC-POLYMERIZATION; GRAFT-COPOLYMERS; EMULSION POLYMERIZATION; BLOCK-COPOLYMERS; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; CLICK CHEMISTRY; LATEX-PARTICLES AB Comb and centipede multigraft copolymers, poly(n-butyl acrylate)-g-polystyrene (PnBA-g-PS) with PnBA backbones and PS side chains, were synthesized via high-vacuum anionic polymerization and miniemulsion polymerization. Single-tailed and double-tailed PS macromonomers were synthesized by anionic polymerization and Steglich esterification. Subsequently, the copolymerization of each macromonomer and nBA was carried out in miniemulsion, and multigraft copolymers were obtained. The latex particles of multigraft copolymers were characterized using dynamic light scattering. The molecular weights of macromonomers and multigraft copolymers were analyzed by size exclusion chromatography. Moreover, the molecular weights and structures of macromonomers were investigated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and H-1 nuclear magnetic resonance spectroscopy. The weight contents of PS in comb and centipede multigraft copolymers were calculated by H-1 nuclear magnetic resonance spectroscopy. The thermal properties of multigraft copolymers were characterized by thermogravimetric analysis and differential scanning calorimetry. The microphase separation of multigraft copolymers was observed by atomic force microscopy and transmission electronic microscopy. Rheological measurements showed that comb and centipede multigraft copolymers have elastic properties when the weight content of PS side chains is 2632 wt %. Centipede multigraft copolymers possess better elastic properties than comb multigraft copolymers with the similar weight content of PS. These findings are similar to previous results on poly(isoprene-g-polystyrene) comb and centipede copolymers made by anionic polymerization. C1 [Wang, Wenwen; Zhang, Qiuyu] Northwestern Polytech Univ, Sch Sci, Minist Educ, Key Lab Appl Phys & Chem Space, Xian 710072, Peoples R China. [Wang, Weiyu; Lu, Xinyi; Bobade, Sachin; Kang, Nam-Goo; Mays, Jimmy] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Chen, Jihua] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Zhang, QY (reprint author), Northwestern Polytech Univ, Sch Sci, Minist Educ, Key Lab Appl Phys & Chem Space, Xian 710072, Peoples R China. EM qyzhang1803@gmail.com; jimmy@utk.edu RI Chen, Jihua/F-1417-2011; Wang, Weiyu/A-6317-2016 OI Chen, Jihua/0000-0001-6879-5936; Wang, Weiyu/0000-0002-2914-1638 NR 45 TC 9 Z9 9 U1 4 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD NOV 11 PY 2014 VL 47 IS 21 BP 7284 EP 7295 DI 10.1021/ma501866t PG 12 WC Polymer Science SC Polymer Science GA AT4JN UT WOS:000344905800003 ER PT J AU Cotanda, P Sudre, G Modestino, MA Chen, XC Balsara, NP AF Cotanda, Pepa Sudre, Guillaume Modestino, Miguel A. Chen, X. Chelsea Balsara, Nitash P. TI High Anion Conductivity and Low Water Uptake of Phosphonium Containing Diblock Copolymer Membranes SO MACROMOLECULES LA English DT Article ID POLYMER-ELECTROLYTE MEMBRANES; LIQUID BLOCK-COPOLYMERS; ALKALINE FUEL-CELLS; IONIC-LIQUID; EXCHANGE MEMBRANES; RADICAL POLYMERIZATION; MOLECULAR-WEIGHT; RAFT PROCESS; MORPHOLOGY; TRANSPORT AB Poly[(styrene)-block-((2-acryloxy)ethyltributylphosphonium bromide)] diblock copolymers (STBP) were synthesized in two steps. First, reversible additionfragmentation chain transfer polymerization was used to synthesize the diblock copolymer precursors poly[(styrene)-block-(bromoethyl acrylate)] (SBEA), followed by functionalization with tributylphosphine. Copolymers with overall molecular weights ranging from 31 to 87 kg/mol were synthesized. The volume fraction of the ion-containing monomers in the copolymers was fixed at about 0.57. Self-assembly of these copolymers into ordered morphologies with tunable domain sizes was demonstrated by small-angle X-ray scattering. The effect of morphology on water uptake and bromide ion conductivity was explored in samples equilibrated in liquid water. The use of the pendant tributylphosphonium cations, which have some hydrophobic character, results in low water uptake and high anionic conductivity. The conductivity increases with increasing domain size while water uptake is unaffected by domain size. C1 [Cotanda, Pepa; Sudre, Guillaume; Modestino, Miguel A.; Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Cotanda, Pepa; Sudre, Guillaume; Modestino, Miguel A.; Chen, X. Chelsea; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Chen, X. Chelsea; Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. EM nbalsara@berkeley.edu RI Sudre, Guillaume/A-3061-2013 OI Sudre, Guillaume/0000-0003-3545-7046 FU Office of Science of the U.S. Department of Energy [DE-SC0004993]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award DE-SC0004993. SAXS experiments were performed at Lawrence Berkeley National Laboratory's Advance Light Source, Beamline 7.3.3. Beamline 7.3.3 of the Advanced Light Source is supported by the Director of the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 58 TC 22 Z9 23 U1 16 U2 106 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD NOV 11 PY 2014 VL 47 IS 21 BP 7540 EP 7547 DI 10.1021/ma501744w PG 8 WC Polymer Science SC Polymer Science GA AT4JN UT WOS:000344905800031 ER PT J AU Iyer-Biswas, S Wright, CS Henry, JT Lo, K Burov, S Lin, YH Crooks, GE Crosson, S Dinner, AR Scherer, NF AF Iyer-Biswas, Srividya Wright, Charles S. Henry, Jonathan T. Lo, Klevin Burov, Stanislav Lin, Yihan Crooks, Gavin E. Crosson, Sean Dinner, Aaron R. Scherer, Norbert F. TI Scaling laws governing stochastic growth and division of single bacterial cells SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE single-cell dynamics; cell-to-cell variability; exponential growth; Hinshelwood cycle; Arrhenius law ID ESCHERICHIA-COLI; GENE-EXPRESSION; CYCLE; TEMPERATURE; SIZE; SYNCHRONIZATION; VARIABILITY; KINETICS; CULTURES; NOISE AB Uncovering the quantitative laws that govern the growth and division of single cells remains a major challenge. Using a unique combination of technologies that yields unprecedented statistical precision, we find that the sizes of individual Caulobacter crescentus cells increase exponentially in time. We also establish that they divide upon reaching a critical multiple (approximate to 1.8) of their initial sizes, rather than an absolute size. We show that when the temperature is varied, the growth and division timescales scale proportionally with each other over the physiological temperature range. Strikingly, the cell-size and division-time distributions can both be rescaled by their mean values such that the condition-specific distributions collapse to universal curves. We account for these observations with a minimal stochastic model that is based on an autocatalytic cycle. It predicts the scalings, as well as specific functional forms for the universal curves. Our experimental and theoretical analysis reveals a simple physical principle governing these complex biological processes: a single temperature-dependent scale of cellular time governs the stochastic dynamics of growth and division in balanced growth conditions. C1 [Iyer-Biswas, Srividya; Wright, Charles S.; Lo, Klevin; Burov, Stanislav; Dinner, Aaron R.; Scherer, Norbert F.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Iyer-Biswas, Srividya; Wright, Charles S.; Lo, Klevin; Burov, Stanislav; Dinner, Aaron R.; Scherer, Norbert F.] Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA. [Henry, Jonathan T.; Crosson, Sean] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. [Dinner, Aaron R.; Scherer, Norbert F.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Lin, Yihan] CALTECH, Dept Biol, Pasadena, CA 91125 USA. [Crooks, Gavin E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Dinner, AR (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM dinner@uchicago.edu; nfschere@uchicago.edu OI Wright, Charles/0000-0003-4268-3965 FU National Science Foundation (NSF) [NSF PHY-1305542, NSF DMR-MRSEC 0820054]; W. M. Keck Foundation; University of Chicago Materials Research Science and Engineering Center FX We thank Aretha Fiebig, Ariel Amir, Rutger Hermsen, Gurol Suel, Kingshuk Ghosh, Matt Scott, Terry Hwa, William Loomis, and Leo Kadanoff for insightful discussions. We thank the National Science Foundation (NSF) (NSF PHY-1305542) and the W. M. Keck Foundation for financial support. We also acknowledge partial financial and central facilities assistance of the University of Chicago Materials Research Science and Engineering Center, supported by the NSF (NSF DMR-MRSEC 0820054). NR 53 TC 32 Z9 32 U1 3 U2 33 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 11 PY 2014 VL 111 IS 45 BP 15912 EP 15917 DI 10.1073/pnas.1403232111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AS8WW UT WOS:000344526800029 PM 25349411 ER PT J AU Bogorad, IW Chen, CT Theisen, MK Wu, TY Schlenz, AR Lam, AT Liao, JC AF Bogorad, Igor W. Chen, Chang-Ting Theisen, Matthew K. Wu, Tung-Yun Schlenz, Alicia R. Lam, Albert T. Liao, James C. TI Building carbon-carbon bonds using a biocatalytic methanol condensation cycle SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE methanol metabolism; metabolic engineering; cell-free synthesis; bio-ethanol; bio-butanol ID PYRUVATE FORMATE-LYASE; ESCHERICHIA-COLI; BACILLUS-METHANOLICUS; LIQUID FUELS; DEHYDROGENASE; FRUCTOSE-6-PHOSPHATE; CHROMATOGRAPHY; HYDROCARBONS; PERFORMANCE; METABOLISM AB Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through C-13-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives. C1 [Bogorad, Igor W.; Chen, Chang-Ting; Theisen, Matthew K.; Wu, Tung-Yun; Schlenz, Alicia R.; Lam, Albert T.; Liao, James C.] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. [Bogorad, Igor W.; Theisen, Matthew K.; Liao, James C.] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA. [Liao, James C.] Univ Calif Los Angeles, DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Liao, JC (reprint author), Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. EM liaoj@ucla.edu FU Reducing Emissions using Methanotrophic Organisms for Transportation Energy (REMOTE) program of the Advanced Research Projects Agency-Energy [DE-AR0000430]; National Science Foundation [0963183] FX This work is supported by the Reducing Emissions using Methanotrophic Organisms for Transportation Energy (REMOTE) program of the Advanced Research Projects Agency-Energy (Award DE-AR0000430). This material is based on research performed in a renovated collaboratory by National Science Foundation Grant 0963183, which is an award funded under the American Recovery and Reinvestment Act of 2009. NR 35 TC 18 Z9 18 U1 3 U2 42 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 11 PY 2014 VL 111 IS 45 BP 15928 EP 15933 DI 10.1073/pnas.1413470111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AS8WW UT WOS:000344526800032 PM 25355907 ER PT J AU Heber, EM Hawthorne, MF Kueffer, PJ Garabalino, MA Thorp, SI Pozzi, ECC Hughes, AM Maitz, CA Jalisatgi, SS Nigg, DW Curotto, P Trivillin, VA Schwint, AE AF Heber, Elisa M. Hawthorne, M. Frederick Kueffer, Peter J. Garabalino, Marcela A. Thorp, Silvia I. Pozzi, Emiliano C. C. Hughes, Andrea Monti Maitz, Charles A. Jalisatgi, Satish S. Nigg, David W. Curotto, Paula Trivillin, Veronica A. Schwint, Amanda E. TI Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE oncology; cancer; boronated liposomes; BNCT; neutron radiation ID MURINE TUMORS; UNILAMELLAR LIPOSOMES; SELECTIVE DELIVERY; RECURRENT HEAD; NECK-CANCER; BNCT; FACILITY; BORONOPHENYLALANINE; CARCINOGENESIS; NORMALIZATION AB The application of boron neutron capture therapy (BNCT) mediated by liposomes containing B-10-enriched polyhedral borane and carborane derivatives for the treatment of head and neck cancer in the hamster cheek pouch oral cancer model is presented. These liposomes are composed of an equimolar ratio of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)(15)-7,8-C2B9H11] (MAC) in the bilayer membrane while encapsulating the hydrophilic species Na-3[ae-B20H17NH3] (TAC) in the aqueous core. Unilamellar liposomes with a mean diameter of 83 nm were administered i.v. in hamsters. After 48 h, the boron concentration in tumors was 67 +/- 16 ppm whereas the precancerous tissue contained 11 +/- 6 ppm, and the tumor/normal pouch tissue boron concentration ratio was 10:1. Neutron irradiation giving a 5-Gy dose to precancerous tissue (corresponding to 21 Gy in tumor) resulted in an overall tumor response (OR) of 70% after a 4-wk posttreatment period. In contrast, the beam-only protocol gave an OR rate of only 28%. Once-repeated BNCT treatment with readministration of liposomes at an interval of 4, 6, or 8 wk resulted in OR rates of 70-88%, of which the complete response ranged from 37% to 52%. Because of the good therapeutic outcome, it was possible to extend the follow-up of BNCT treatment groups to 16 wk after the first treatment. No radiotoxicity to normal tissue was observed. A salient advantage of these liposomes was that only mild mucositis was observed in dose-limiting precancerous tissue with a sustained tumor response of 70-88%. C1 [Heber, Elisa M.; Garabalino, Marcela A.; Thorp, Silvia I.; Pozzi, Emiliano C. C.; Hughes, Andrea Monti; Curotto, Paula; Trivillin, Veronica A.; Schwint, Amanda E.] Comis Nacl Energia Atom, San Martin B1650KNA, Buenos Aires, DF, Argentina. [Hawthorne, M. Frederick; Kueffer, Peter J.; Maitz, Charles A.; Jalisatgi, Satish S.] Univ Missouri, Int Inst Nano & Mol Med, Columbia, MO 65211 USA. [Nigg, David W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Trivillin, Veronica A.; Schwint, Amanda E.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. RP Hawthorne, MF (reprint author), Univ Missouri, Int Inst Nano & Mol Med, Columbia, MO 65211 USA. EM hawthornem@missouri.edu; schwint@cnea.gov.ar FU University of Missouri through the International Institute for Nano and Molecular Medicine; US Department of Energy through Idaho National Laboratory; Agencia Nacional de Promocion Cientifica y Tecnologica; Consejo Nacional de Investigaciones Cientificas y Tecnicas of Argentina FX The authors acknowledge the expert staff of Reactor Argentino 3 nuclear reactor. This study was supported in part by the University of Missouri through the International Institute for Nano and Molecular Medicine, by the US Department of Energy through Idaho National Laboratory, and by grants from Agencia Nacional de Promocion Cientifica y Tecnologica and Consejo Nacional de Investigaciones Cientificas y Tecnicas of Argentina. NR 51 TC 9 Z9 9 U1 3 U2 27 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 11 PY 2014 VL 111 IS 45 BP 16077 EP 16081 DI 10.1073/pnas.1410865111 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AS8WW UT WOS:000344526800057 PM 25349432 ER PT J AU Lorbeer, C Mudring, AV AF Lorbeer, C. Mudring, A. -V. TI Quantum cutting in nanoparticles producing two green photons SO CHEMICAL COMMUNICATIONS LA English DT Article ID DOWNCONVERSION; LIGDF4-EU3+ AB A synthetic route to nanoscale NaGdF4:Ln is presented which allows for quantum cutting based on the Gd-Er-Tb system. This shows, that cross-relaxation and other energy transfer processes necessary for multiphoton emission can be achieved in nanoparticles even if the large surface and the potentially huge amount of killer traps would suggest a lack of subsequent emission. C1 [Lorbeer, C.; Mudring, A. -V.] Ruhr Univ Bochum, D-44801 Bochum, Germany. [Mudring, A. -V.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50010 USA. [Mudring, A. -V.] Ames Lab DOE, Crit Mat Inst, Ames, IA 50010 USA. RP Mudring, AV (reprint author), Ruhr Univ Bochum, Univ Str 150, D-44801 Bochum, Germany. EM mudring@iastate.edu FU Critical Materials Institute, an Energy Innovation Hub - U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office; European Research Council with an ERC starting grant ("EMIL") [200475]; Fonds der Chemischen Industrie for a Dozentenstipendium; Fonds der Chemischen Industrie FX This work was supported in part by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office and the European Research Council with an ERC starting grant ("EMIL", contract no. 200475). A.-V. M. thanks the Fonds der Chemischen Industrie for a Dozentenstipendium, C. L. thanks the Fonds der Chemischen Industrie for a doctoral scholarship. DESY (proposal no. II-20090181) is acknowledged for access to synchrotron facilities. NR 13 TC 5 Z9 5 U1 0 U2 29 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PD NOV 11 PY 2014 VL 50 IS 87 BP 13282 EP 13284 DI 10.1039/c4cc04400b PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA AS0KI UT WOS:000343965700021 PM 25229069 ER PT J AU Maguire, K Sullivan, M Pan, YC Gal-Yam, A Hook, IM Howell, DA Nugent, PE Mazzali, P Chotard, N Clubb, KI Filippenko, AV Kasliwal, MM Kandrashoff, MT Poznanski, D Saunders, CM Silverman, JM Walker, E Xu, D AF Maguire, K. Sullivan, M. Pan, Y. -C. Gal-Yam, A. Hook, I. M. Howell, D. A. Nugent, P. E. Mazzali, P. Chotard, N. Clubb, K. I. Filippenko, A. V. Kasliwal, M. M. Kandrashoff, M. T. Poznanski, D. Saunders, C. M. Silverman, J. M. Walker, E. Xu, D. TI Exploring the spectral diversity of low-redshift Type Ia supernovae using the Palomar Transient Factory SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE supernovae: general; galaxies: general; distance scale ID HUBBLE-SPACE-TELESCOPE; HIGH-VELOCITY FEATURES; DELAYED-DETONATION MODELS; TIME OPTICAL-SPECTRA; DIGITAL SKY SURVEY; WHITE-DWARF STAR; LEGACY SURVEY; DARK-ENERGY; SN 2011FE; CIRCUMSTELLAR MATERIAL AB We present an investigation of the optical spectra of 264 low-redshift (z < 0.2) Type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory, an untargeted transient survey. We focus on velocity and pseudo-equivalent width measurements of the Si II 4130, 5972, and 6355 angstrom lines, as well those of the Ca II near-infrared (NIR) triplet, up to +5 days relative to the SN B-band maximum light. We find that a high-velocity component of the Ca II NIR triplet is needed to explain the spectrum in similar to 95 per cent of SNe Ia observed before-5 days, decreasing to similar to 80 per cent at maximum. The average velocity of the Ca II high-velocity component is similar to 8500 km s(-1) higher than the photospheric component. We confirm previous results that SNe Ia around maximum light with a larger contribution from the high-velocity component relative to the photospheric component in their Ca II NIR feature have, on average, broader light curves and lower Ca II NIR photospheric velocities. We find that these relations are driven by both a stronger high-velocity component and a weaker contribution from the photospheric Ca II NIR component in broader light curve SNe Ia. We identify the presence of C II in very-early-time SN Ia spectra (before - 10 days), finding that >40 per cent of SNe Ia observed at these phases show signs of unburnt material in their spectra, and that C II features are more likely to be found in SNe Ia having narrower light curves. C1 [Maguire, K.] European Southern Observ Astron Res Southern Hemi, D-85748 Garching, Germany. [Sullivan, M.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Pan, Y. -C.; Hook, I. M.] Univ Oxford, DWB, Dept Phys Astrophys, Oxford OX1 3RH, England. [Gal-Yam, A.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Hook, I. M.] INAF Osservatorio Astron Roma, I-00040 Rome, Italy. [Howell, D. A.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Howell, D. A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Nugent, P. E.; Clubb, K. I.; Filippenko, A. V.; Kandrashoff, M. T.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Nugent, P. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Mazzali, P.] Liverpool John Moores Univ, Astrophys Res Inst, IC2, Liverpool L3 5RF, Merseyside, England. [Mazzali, P.] INAF Osservatorio Astron, I-35122 Padua, Italy. [Mazzali, P.] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Chotard, N.] Univ Lyon 1, CNRS, Inst Phys Nucl Lyon, IN2P3, F-69622 Villeurbanne, France. [Kasliwal, M. M.] Carnegie Inst Sci, Pasadena, CA 91101 USA. [Poznanski, D.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Saunders, C. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Saunders, C. M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Silverman, J. M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Walker, E.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Xu, D.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark. RP Maguire, K (reprint author), European Southern Observ Astron Res Southern Hemi, Karl Schwarzschild Str 2, D-85748 Garching, Germany. EM kate.maguire@eso.org OI Sullivan, Mark/0000-0001-9053-4820; Hook, Isobel/0000-0002-2960-978X FU European Community; Royal Society; EU/FP7-ERC [307260]; Quantum Universe I-Core program by the Israeli Committee for planning and funding; ISF; GIF; Minerva; Kimmel award; ARCHES award; Lyon Institute of Origins [ANR-10-LABX-66]; Hubble Fellowship; Carnegie-Princeton Fellowship; NSF [AST-1302771, AST-1211916]; Christopher R. Redlich Fund; Richard and Rhoda Goldman Fund; TABASGO Foundation; UK Science and Technology Facilities Council; W.M. Keck Foundation; European Organization for Astronomical Research in the Southern hemisphere, Chile [084.A-0149(A), 085.A-0777(A)]; NASA FX KM is supported by a Marie Curie Intra-European Fellowship, within the 7th European Community Framework Programme (FP7). MS acknowledges support from the Royal Society. AGY is supported by the EU/FP7-ERC grant no [307260], the Quantum Universe I-Core program by the Israeli Committee for planning and funding, the ISF, GIF, Minerva, and ISF grants, and Kimmel and ARCHES awards. NC acknowledges support from the Lyon Institute of Origins under grant ANR-10-LABX-66. MMK acknowledges generous support from the Hubble Fellowship and Carnegie-Princeton Fellowship. JMS is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-1302771. AVF's supernova group at UC Berkeley has received generous financial assistance from Gary and Cynthia Bengier, the Christopher R. Redlich Fund, the Richard and Rhoda Goldman Fund, the TABASGO Foundation, and NSF grant AST-1211916.; The LT is operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council. This work also makes use of observations from the LCOGT network. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration (NASA). The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. We thank the dedicated staffs at all the observatories we used for their excellent assistance with the observations. Based on data taken at the European Organization for Astronomical Research in the Southern hemisphere, Chile, under program IDs 084.A-0149(A) and 085.A-0777(A). Observations obtained with the SuperNova Integral Field Spectrograph on the University of Hawaii 2.2-m telescope as part of the Nearby Supernova Factory II project, a scientific collaboration between the Centre de Recherche Astronomique de Lyon, Institut de Physique Nucleaire de Lyon, Laboratoire de Physique Nucleaire et des Hautes Energies, Lawrence Berkeley National Laboratory, Yale University, University of Bonn, Max Planck Institute for Astrophysics, Tsinghua Center for Astrophysics, and Centre de Physique des Particules de Marseille. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 106 TC 24 Z9 24 U1 1 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 11 PY 2014 VL 444 IS 4 BP 3258 EP 3274 DI 10.1093/mnras/stu1607 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AR2FW UT WOS:000343400100019 ER PT J AU Beutler, F Saito, S Brownstein, JR Chuang, CH Cuesta, AJ Percival, WJ Ross, AJ Ross, NP Schneider, DP Samushia, L Sanchez, AG Seo, HJ Tinker, JL Wagner, C Weaver, BA AF Beutler, Florian Saito, Shun Brownstein, Joel R. Chuang, Chia-Hsun Cuesta, Antonio J. Percival, Will J. Ross, Ashley J. Ross, Nicholas P. Schneider, Donald P. Samushia, Lado Sanchez, Ariel G. Seo, Hee-Jong Tinker, Jeremy L. Wagner, Christian Weaver, Benjamin A. TI The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: signs of neutrino mass in current cosmological data sets SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE surveys; cosmological parameters; cosmology: observations; large-scale structure of Universe ID DIGITAL SKY SURVEY; TELESCOPE LENSING SURVEY; BACKGROUND POWER SPECTRUM; TRITIUM BETA-SPECTRUM; SOUTH-POLE TELESCOPE; DATA RELEASE; GROWTH-RATE; HUBBLE CONSTANT; ACOUSTIC-OSCILLATIONS; CFHTLENS AB We investigate the cosmological implications of the latest growth of structure measurement from the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS Data Release 11 with particular focus on the sum of the neutrino masses, Sigma m(nu). We examine the robustness of the cosmological constraints from the baryon acoustic oscillation (BAO) scale, the Alcock-Paczynski effect and redshift-space distortions (DV/r(s), F-AP, f sigma(8)) of Beutler et al., when introducing a neutrino mass in the power spectrum template. We then discuss how the neutrino mass relaxes discrepancies between the cosmic microwave background (CMB) and other low-redshift measurements within Lambda cold dark matter. Combining our cosmological constraints with 9-year Wilkinson Microwave Anisotropy Probe (WMAP9) yields Sigma m(nu) = 0.36 +/- 0.14 eV (68 per cent c. l.), which represents a 2.6 sigma preference for non-zero neutrino mass. The significance can be increased to 3.3 sigma when including weak lensing results and other BAO constraints, yielding Sigma m(nu) = 0.35 +/- 0.10 eV (68 per cent c. l.). However, combining CMASS with Planck data reduces the preference for neutrino mass to similar to 2 sigma. When removing the CMB lensing effect in the Planck temperature power spectrum (by marginalizing over A(L)), we see shifts of similar to 1 sigma in sigma(8) and Omega(m), which have a significant effect on the neutrino mass constraints. In the case of CMASS plus Planck without the A(L) lensing signal, we find a preference for a neutrino mass of Sigma m(nu) = 0.34 +/- 0.14 eV (68 per cent c.l.), in excellent agreement with the WMAP9+CMASS value. The constraint can be tightened to 3.4 sigma yielding Sigma m(nu) = 0.36 +/- 0.10 eV (68 per cent c.l.) when weak lensing data and other BAO constraints are included. C1 [Beutler, Florian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Saito, Shun] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Univers WPI, Chiba 2778582, Japan. [Brownstein, Joel R.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Chuang, Chia-Hsun] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, E-28049 Madrid, Spain. [Cuesta, Antonio J.] Univ Barcelona, Inst Ciencies Cosmos, IEEC UB, E-08028 Barcelona, Spain. [Percival, Will J.; Ross, Ashley J.; Samushia, Lado] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Ross, Nicholas P.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Sanchez, Ariel G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Seo, Hee-Jong] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Tinker, Jeremy L.; Weaver, Benjamin A.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Wagner, Christian] Max Planck Inst Astrophys, D-85748 Garching, Germany. RP Beutler, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM fbeutler@lbl.gov OI Beutler, Florian/0000-0003-0467-5438; Cuesta Vazquez, Antonio Jose/0000-0002-4153-9470 FU Japan Society for the Promotion of Science (JSPS) [25887012]; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX We would like to thank Renee Hlozek for providing the MCMC chains for the Planck re-analysis. FB would like to thank Martin Kilbinger and Catherine Heymans for help with the CFHTLenS data set and COSMOPMC. FB would also like to thank Martin White, Uros Seljak, Eric Linder, Daniel Dwyer, Morag Scrimgeour, Michael Mortonson, Marcel Schmittful and Blake Sherwin for helpful discussion. SS would like to thank Kiyotomo Ichiki and Masahiro Takada for providing their MCMC code for weak lensing analysis and for useful discussions. SS is supported by a Grant-in-Aid for Young Scientists (Start-up) from the Japan Society for the Promotion of Science (JSPS) (No. 25887012).; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation and the US Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington and Yale University.; This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 109 TC 48 Z9 48 U1 1 U2 19 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 11 PY 2014 VL 444 IS 4 BP 3501 EP + DI 10.1093/mnras/stu1702 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AR2FW UT WOS:000343400100035 ER PT J AU Arnold, CW Tovesson, F Meierbachtol, K Bredeweg, T Jandel, M Jorgenson, HJ Laptev, A Rusev, G Shields, DW White, M Blakeley, RE Mader, DM Hecht, AA AF Arnold, C. W. Tovesson, F. Meierbachtol, K. Bredeweg, T. Jandel, M. Jorgenson, H. J. Laptev, A. Rusev, G. Shields, D. W. White, M. Blakeley, R. E. Mader, D. M. Hecht, A. A. TI Development of position-sensitive time-of-flight spectrometer for fission fragment research SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Spectrometers; Fission; Fission product yields; TOF; 2E-2v ID MASS-SPECTROMETER; PRODUCTS; ENERGY AB A position sensitive, high resolution time detector for fission fragments has been developed. The SPectrometer for Ion DEtermination in fission Research (SPIDER) is a 2E-2v spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick off detector pairs to be used in SPIDER have been tested with alpha-particles from Th-229 and its decay chain and alpha-particles and spontaneous fission fragments from Cf-252. Each detector module is comprised of thin electron conversion foil, electrostatic mirror, microchannel plates, and delay line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flight Limes were measured with 250 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to a precision of 0.5%. An ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for modestly efficient measurements of light fission fragments with unit mass resolution. (C) 2014 Elsevier B.V. All rights reserved, C1 [Arnold, C. W.; Tovesson, F.; Meierbachtol, K.; Bredeweg, T.; Jandel, M.; Jorgenson, H. J.; Laptev, A.; Rusev, G.; Shields, D. W.; White, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Shields, D. W.] Colorado Sch Mines, Golden, CO 80401 USA. [Blakeley, R. E.; Mader, D. M.; Hecht, A. A.] Univ New Mexico, Albuquerque, NM 87131 USA. RP Arnold, CW (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM arnold@lanl.gov RI Laptev, Alexander/D-4686-2009; OI Laptev, Alexander/0000-0002-9759-9907; Rusev, Gencho/0000-0001-7563-1518; White, Morgan/0000-0003-3876-421X; Tovesson, Fredrik/0000-0002-3509-978X FU U.S. Department of Energy at Los Alamos National Laboratory; Los Alamos National Security, LLC [DE-AC52-06NA25396] FX This work was performed under the auspices of the U.S. Department of Energy at Los Alamos National Laboratory operated by the Los Alamos National Security, LLC under Contract No, DE-AC52-06NA25396. NR 13 TC 1 Z9 1 U1 3 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2014 VL 764 BP 53 EP 58 DI 10.1016/j.nima.2014.07.001 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AP3OT UT WOS:000341987000009 ER PT J AU Mashnik, SG Kerby, LM AF Mashnik, Stepan G. Kerby, Leslie M. TI MCNP6 fragmentation of light nuclei at intermediate energies SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Monte Carlo; Transport codes; MCNP6; Cascade-exciton model (CEM); Los Alamos version of the quark-gluon string model (LAQGSM) ID REACTION CROSS-SECTIONS; PROTON-INDUCED REACTIONS; CASCADE-EXCITON MODEL; QUARK-GLUON STRINGS; SHIELD-HIT; COLLISIONS; CARBON; PARTICLE; TARGETS; HYDROGEN AB Fragmentation reactions induced on light target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the latest Los Alamos Monte Carlo transport code MCNP6 and with its cascade-exciton model (CEM) and Los Alamos version of the quark-gluon string model (LAQGSM) event generators, version 03.03, used as stand-alone codes. Such reactions are involved in different applications, like cosmic-ray-induced single event upsets (SEU's), radiation protection, and cancer therapy with proton and ion beams, among others; therefore, it is important that MCNP6 simulates them as well as possible. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), Followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. Both CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to He-4 from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes. (C) 2014 Elsevier B.V. All rights reserved. C1 [Mashnik, Stepan G.; Kerby, Leslie M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kerby, Leslie M.] Univ Idaho, Moscow, ID 83844 USA. RP Mashnik, SG (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mashnik@lanl.gov OI Kerby, Leslie/0000-0002-4496-6427 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA253996]; M. Hildred Blewett Fellowship of the American Physical Society FX this study was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA253996.; This work is supported in part (for L.M.K.) by the M. Hildred Blewett Fellowship of the American Physical Society, www.aps.org NR 70 TC 7 Z9 7 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2014 VL 764 BP 59 EP 81 DI 10.1016/j.nima.2014.07.016 PG 23 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AP3OT UT WOS:000341987000010 ER PT J AU Haines, JR McManamy, TJ Gabriel, TA Battle, RE Chipley, KK Crabtree, JA Jacobs, LL Lousteau, DC Rennich, MJ Riemer, BW AF Haines, J. R. McManamy, T. J. Gabriel, T. A. Battle, R. E. Chipley, K. K. Crabtree, J. A. Jacobs, L. L. Lousteau, D. C. Rennich, M. J. Riemer, B. W. TI Spallation neutron source target station design, development, and commissioning SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Targets; High power; Spallation; Mercury; Particle accelerator ID MERCURY TARGET; VESSELS AB The spallation neutron source target station is designed to safely, reliably, and efficiently convert a 1 GeV beam of protons to a high flux of about 1 meV neutrons that are available at 24 neutron scattering instrument beam lines. Research and development findings, design requirements, design description, initial checkout testing, and results from early operation with beam are discussed for each of the primary target subsystems, including the mercury target, neutron moderators and reflector, surrounding vessels and shielding, utilities, remote handling equipment, and instrumentation and controls. Future plans for the mercury target development program are also briefly discussed. (C) 2014 Elsevier B.V. All rights reserved. C1 [Haines, J. R.; McManamy, T. J.; Gabriel, T. A.; Battle, R. E.; Chipley, K. K.; Crabtree, J. A.; Jacobs, L. L.; Lousteau, D. C.; Rennich, M. J.; Riemer, B. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Haines, JR (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM hainesjr@ornl.gov OI Rennich, Mark/0000-0001-6945-0075; Riemer, Bernard/0000-0002-6922-3056 NR 27 TC 2 Z9 2 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2014 VL 764 BP 94 EP 115 DI 10.1016/j.nima.2014.03.068 PG 22 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AP3OT UT WOS:000341987000012 ER PT J AU Hoppe, EW Aalseth, CE Farmer, OT Hossbach, TW Liezers, M Miley, HS Overman, NR Reeves, JH AF Hoppe, E. W. Aalseth, C. E. Farmer, O. T. Hossbach, T. W. Liezers, M. Miley, H. S. Overman, N. R. Reeves, J. H. TI Reduction of radioactive backgrounds in electroformed copper for ultra-sensitive radiation detectors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Low background; Copper; Electroforming; Thorium; Uranium; ICP-MS ID DOUBLE-BETA DECAY; INTERNATIONAL GERMANIUM EXPERIMENT; UNDERGROUND MEASUREMENTS; SPECTROMETERS; SAMPLES AB Ultra-pure construction materials are required for the next generation of neutrino physics, dark matter and environmental science applications. These materials are also important for use in high-purity germanium spectrometers used in screening materials for radiopurity. The next-generation science applications require materials with radiopurity levels at or below 1 mu Bq/kg Th-232 and U-238. Yet radiometric analysis lacks sensitivity below similar to 10 mu Bq/kg for the U and Th decay chains. This limits both the selection of clean materials and the validation of purification processes. Copper is an important high-purity material for low-background experiments due to the ease with which it can be purified by electrochemical methods. Electroplating for purification into near-final shapes, known as electroforming, is one such method. Continued refinement of the copper electroforming process is underway, for the First time guided by an ICP-MS based assay method that can measure Th-232 and U-238 near the desired purity levels. An assay of electroformed copper at a mu Bq/kg level has been achieved and is described. The implications of electroformed copper at or better than this purity on next-generation low-background experiments are discussed. (C) 2014 Elsevier B.V. All rights reserved. C1 [Reeves, J. H.] Reeves & Son LW, Richland, WA 99352 USA. [Hoppe, E. W.; Aalseth, C. E.; Farmer, O. T.; Hossbach, T. W.; Liezers, M.; Miley, H. S.; Overman, N. R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hoppe, EW (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM cric.hoppe@pnnl.gov FU United States Department of Energy, NNSA Office of Research and Engineering [NA-22]; Office of Nuclear Physics in the DOE Office of Science; Battelle Memorial Institute [DE-AC05-76RLO1830] FX The authors would like to acknowledge the United States Department of Energy, NNSA Office of Research and Engineering (NA-22), and the Office of Nuclear Physics in the DOE Office of Science for their support of this work, Pacific Northwest National Laboratory is managed by Battelle Memorial Institute under Contract DE-AC05-76RLO1830. Further, the authors wish to gratefully acknowledge the scientific leadership of our deceased colleague, Ronald L. Brodzinski, who with humor and resolution inspired us to confidently approach the unknown again and again. NR 27 TC 10 Z9 10 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2014 VL 764 BP 116 EP 121 DI 10.1016/j.nima.2014.06.082 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AP3OT UT WOS:000341987000013 ER PT J AU Ball, R Beene, JR Ben-Moshe, M Benhammou, Y Bensimon, B Chapman, JW Etzion, E Ferretti, C Friedman, PS Levin, DS Silver, Y Varner, RL Weaverdyck, C Wetzel, R Zhou, B Anderson, T McKinny, K Bentefour, EH AF Ball, R. Beene, J. R. Ben-Moshe, M. Benhammou, Y. Bensimon, B. Chapman, J. W. Etzion, E. Ferretti, C. Friedman, P. S. Levin, D. S. Silver, Y. Varner, R. L. Weaverdyck, C. Wetzel, R. Zhou, B. Anderson, T. McKinny, K. Bentefour, E. H. TI Development of a plasma panel radiation detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Radiation detector; Gaseous ionization detector; Micropattern gaseous detectors; Neutron detectors; Plasma panels; Pixel radiation detector AB This article reports on the development and experimental results of commercial plasma display panels adapted for their potential use as micropattern gas radiation detectors. The plasma panel sensor (PPS) design and materials include glass substrates, metal electrodes and inert gas mixtures which provide a physically robust, hermetically sealed device. Plasma display panels used as detectors were tested with cosmic ray muons, beta rays and gamma rays, protons, and thermal neutrons. The results demonstrated rise times and time resolution of a few nanoseconds, as well as sub-millimeter spatial resolution compatible with the pixel pitch. (C) 2014 Elsevier B.V. All rights reserved. C1 [Ball, R.; Chapman, J. W.; Ferretti, C.; Levin, D. S.; Weaverdyck, C.; Wetzel, R.; Zhou, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Beene, J. R.; Varner, R. L.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Ben-Moshe, M.; Benhammou, Y.; Bensimon, B.; Etzion, E.; Silver, Y.] Tel Aviv Univ, Beverly & Raymond Suckler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Friedman, P. S.] Integrated Sensors LLC, Ottawa Hills, OH 43606 USA. [Anderson, T.; McKinny, K.] GE Measurement & Control, Twinsburg, OH 44087 USA. [Bentefour, E. H.] Ion Beam Applicat SA, B-1348 Louvain La Neuve, Belgium. RP Levin, DS (reprint author), Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. FU U.S. Department of Energy (DOE) - Office of Nuclear Physics Small Business Innovation Research grant [DE-SC0006204, DE-FG02-07ER84749]; U.S. DOE, Office of Nuclear Physics, Applications of Nuclear Science and Technology grant [DE-FG02-12ER41788]; I-CORE Program of the Planning and Budgeting Committee; Israel Science Foundation [1937/12]; Israel-American Binational Science Foundation [1008123]; agency of the United States Government FX Development of the PPS project was funded by the U.S. Department of Energy (DOE) - Office of Nuclear Physics Small Business Innovation Research grant award numbers DE-SC0006204 and DE-FG02-07ER84749 to Integrated Sensors, U.S. DOE, Office of Nuclear Physics, Applications of Nuclear Science and Technology grant to Oak Ridge National Laboratory, operated by UT-Battelle, LLC for the U.S. DOE, and DOE - Office of High Energy Physics grant number DE-FG02-12ER41788 to the University of Michigan. The research at Tel Aviv University was supported by the I-CORE Program of the Planning and Budgeting Committee and the Israel Science Foundation (Grant number 1937/12). Funding for scientific exchange and collaboration between Tel Aviv University and the University of Michigan was provided by the Israel-American Binational Science Foundation, Grant number 1008123.; Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 33 TC 2 Z9 2 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2014 VL 764 BP 122 EP 132 DI 10.1016/j.nima.2014.07.028 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AP3OT UT WOS:000341987000014 ER PT J AU Arnold, O Bilheux, JC Borreguero, JM Buts, A Campbell, SI Chapon, L Doucet, M Draper, N Leal, RF Gigg, MA Lynch, VE Markvardsen, A Mikkelson, DJ Mikkelson, RL Miller, R Palmen, K Parker, P Passos, G Perring, TG Peterson, PF Ren, S Reuter, MA Savici, AT Taylor, JW Taylor, RJ Tolchenoy, R Zhou, W Zikoysky, J AF Arnold, O. Bilheux, J. C. Borreguero, J. M. Buts, A. Campbell, S. I. Chapon, L. Doucet, M. Draper, N. Leal, R. Ferraz Gigg, M. A. Lynch, V. E. Markvardsen, A. Mikkelson, D. J. Mikkelson, R. L. Miller, R. Palmen, K. Parker, P. Passos, G. Perring, T. G. Peterson, P. F. Ren, S. Reuter, M. A. Savici, A. T. Taylor, J. W. Taylor, R. J. Tolchenoy, R. Zhou, W. Zikoysky, J. TI Mantid-Data analysis and visualization package for neutron scattering and mu SR experiments SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Data analysis; Data visualization; Computer interfaces AB The Mantid framework is a software solution developed for the analysis and visualization of neutron scattering and muon spin measurements. The framework is jointly developed by software engineers and scientists at the ISIS Neutron and Muon Facility and the Oak Ridge National Laboratory. The objectives, functionality and novel design aspects of Mantid are described. Published by Elsevier B.V. C1 [Arnold, O.; Buts, A.; Chapon, L.; Draper, N.; Gigg, M. A.; Markvardsen, A.; Palmen, K.; Parker, P.; Passos, G.; Perring, T. G.; Savici, A. T.; Taylor, J. W.; Taylor, R. J.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Arnold, O.; Draper, N.; Gigg, M. A.; Tolchenoy, R.] Tessella Ltd, Abingdon, Oxon, England. [Bilheux, J. C.; Borreguero, J. M.; Campbell, S. I.; Doucet, M.; Lynch, V. E.; Mikkelson, D. J.; Mikkelson, R. L.; Peterson, P. F.; Ren, S.; Reuter, M. A.; Savici, A. T.; Zikoysky, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Chapon, L.; Leal, R. Ferraz] Inst Laue Langevin, Grenoble, France. [Mikkelson, D. J.; Mikkelson, R. L.] Univ Wisconsin Stout, Menomonie, WI USA. [Miller, R.] Oak Ridge Natl Lab, Comp & Computat Sci Directorate, Oak Ridge, TN USA. [Taylor, J. W.] Tessellu Inc, Newton, MA USA. RP Savici, AT (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM saviciat@ornl.gov RI Lynch, Vickie/J-4647-2012; Borreguero, Jose/B-2446-2009; Doucet, Mathieu/A-5333-2010; Savici, Andrei/F-2790-2013; Campbell, Stuart/A-8485-2010; Bilheux, Jean/A-2823-2016 OI Lynch, Vickie/0000-0002-5836-7636; Borreguero, Jose/0000-0002-0866-8158; Doucet, Mathieu/0000-0002-5560-6478; Savici, Andrei/0000-0001-5127-8967; Campbell, Stuart/0000-0001-7079-0878; Bilheux, Jean/0000-0003-2172-6487 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; Science and Technology Facilities Council (STFC) UK; NMI3 [WP6] FX The development team would like to thank all instrument scientists and students at ISIS and SNS for their feedback and contributions, R Radaelli, and R. McGreevy for championing the project at ISIS in the initial stages, and R. McGreevy, I. Anderson, and M. Hagen for forging the collaboration between ORNL and STFC. We acknowledge A. Hillier for contributions to this paper. Work at ORNL was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Work at the ISIS facility was funded by the Science and Technology Facilities Council (STFC) UK. Development for ILL instruments was funded by NMI3 (WP6). NR 13 TC 100 Z9 100 U1 6 U2 52 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2014 VL 764 BP 156 EP 166 DI 10.1016/j.nima.2014.07.029 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AP3OT UT WOS:000341987000018 ER PT J AU Pelliccia, D Sen, T AF Pelliccia, Daniele Sen, Tanaji TI A two-step method for retrieving the longitudinal profile of an electron bunch from its coherent radiation SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Phase retrieval; Electron bunch longitudinal profile; Kramers-Kronig; Iterative method; Coherent transition radiation; Photoinjector ID CHARGED-PARTICLE-BUNCH; PHASE RETRIEVAL; X-RAY; TRANSITION RADIATION; SHAPE; SPECTRUM; RECONSTRUCTION; DIFFRACTION; SYNCHROTRON; OBJECT AB The coherent radiation emitted by an electron bunch provides a diagnostic signal that can be used to estimate its longitudinal distribution. Commonly only the amplitude of the intensity spectrum can be measured and the associated phase must be calculated to obtain the bunch profile. Very recently an iterative method was proposed to retrieve this phase. However ambiguities associated with non-uniqueness of the solution are always present in the phase retrieval procedure. Here we present a method to overcome the ambiguity problem by first performing multiple independent runs of the phase retrieval procedure and then second, sorting the good solutions by means of cross-correlation analysis. Results obtained with simulated bunches of various shapes and experimental measured spectra are presented, discussed and compared with the established Kramers-Kronig method It is shown that even when the effect of the ambiguities is strong, as is the case for a double peak in the profile, the cross-correlation post-processing is able to filter out unwanted solutions. We show that, unlike the Kramers-Kronig method, the combined approach presented is able to faithfully reconstruct complicated bunch profiles. (C) 2014 Elsevier B.V. All rights reserved. C1 [Pelliccia, Daniele] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. [Sen, Tanaji] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. RP Sen, T (reprint author), Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA. RI Pelliccia, Daniele/A-3140-2012 OI Pelliccia, Daniele/0000-0001-8751-2620 FU Australian Research Council [DE120101504]; Fermi Research Alliance, LLC [DE-AC02-07CH11359]; United States Department of Energy FX D.P. acknowledges the support of the Australian Research Council (Grant no. DE120101504). T.S. thanks Charles Thangaraj and Randy Thurman-Keup for generously sharing their data and useful discussions. Fermilab is operated by Fermi Research Alliance, LLC under Contract no. DE-AC02-07CH11359 with the United States Department of Energy. NR 33 TC 2 Z9 2 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2014 VL 764 BP 206 EP 214 DI 10.1016/j.nima.2014.07.024 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AP3OT UT WOS:000341987000024 ER PT J AU Wang, ZH Morris, CL Bacon, JD Brockwell, MI Ramsey, JC AF Wang, Zhehui Morris, C. L. Bacon, J. D. Brockwell, M. I. Ramsey, J. C. TI A double-helix neutron detector using micron-size B-10 powder SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Double-helix electrode configuration; B-10 powder; Neutron detection efficiency; Detector lifetime ID PROPORTIONAL COUNTER AB A double-helix electrode configuration is combined with a B-10 powder coating technique to build large-area (9 in. x 36 in., or about 23 cm by 91 cm) neutron detectors. The neutron detection efficiency for each of the four prototypes is comparable to 3.7 x 10(3) cm(3) of He-3 inside a cylindrical tube 91 cm long. One unit has been operational continuously for 18 months and the change of efficiency is less than 1%. An analytic model for pulse height spectra is described and the predicted mean film thicknesses agree with the experiment to within 30%. Further detector optimization is possible through film texture, powder size, moderator box and gas. The estimated production cost per unit is less than 3k US$ and the technology is thus suitable for deployment in large numbers. (C) 2014 Elsevier B.V. All rights reserved, C1 [Wang, Zhehui; Morris, C. L.; Bacon, J. D.; Brockwell, M. I.; Ramsey, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wang, ZH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM zwang@lanl.gov FU CRADA agreement with TSA systems, Longmont, CO, USA FX We thank Mr, Michael Everhart-Erickson, Ms. Laura Barber and Ms, Erica Sullivan for their efforts in commercialization of the 10B-based neutron detector technology. This work was supported in part by a CRADA agreement with TSA systems, Longmont, CO, USA. NR 13 TC 1 Z9 1 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2014 VL 764 BP 261 EP 267 DI 10.1016/j.nima.2014.07.056 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AP3OT UT WOS:000341987000033 ER PT J AU Abe, Y dos Anjos, JC Barriere, JC Baussan, E Bekman, I Bergevin, M Bezerra, TJC Bezrukov, L Blucher, E Buck, C Busenitz, J Cabrera, A Caden, E Camilleri, L Carr, R Cerrada, M Chang, PJ Chauveau, E Chimenti, P Collin, AP Conover, E Conrad, JM Crespo-Anadon, JI Crum, K Cucoanes, A Damon, E Dawson, JV Dhooghe, J Dietrich, D Djurcic, Z Dracos, M Elnimr, M Etenko, A Fallot, M von Feilitzsch, F Felde, J Fernandes, SM Fischer, V Franco, D Franke, M Furuta, H Gil-Botella, I Giot, L Goger-Neff, M Gonzalez, LFG Goodenough, L Goodman, MC Grant, C Haag, N Hara, T Haser, J Hofmann, M Horton-Smith, GA Hourlier, A Ishitsuka, M Jochum, J Jollet, C Kaether, F Kalousis, LN Kamyshkov, Y Kaplan, DM Kawasaki, T Kemp, E de Kerret, H Kryn, D Kuze, M Lachenmaier, T Lane, CE Lasserre, T Letourneau, A Lhuillier, D Lima, HP Lindner, M Lopez-Castano, JM LoSecco, JM Lubsandorzhiev, B Lucht, S Maeda, J Mariani, C Maricic, J Martino, J Matsubara, T Mention, G Meregaglia, A Miletic, T Milincic, R Minotti, A Nagasaka, Y Nikitenko, Y Novella, P Oberauer, L Obolensky, M Onillon, A Osborn, A Palomares, C Pepe, IM Perasso, S Pfahler, P Porta, A Pronost, G Reichenbacher, J Reinhold, B Rohling, M Roncin, R Roth, S Rybolt, B Sakamoto, Y Santorelli, R Schilithz, AC Schonert, S Schoppmann, S Shaevitz, MH Sharankova, R Shimojima, S Shrestha, D Sibille, V Sinev, V Skorokhvatov, M Smith, E Spitz, J Stahl, A Stancu, I Stokes, LFF Strait, M Stuken, A Suekane, F Sukhotin, S Sumiyoshi, T Sun, Y Svoboda, R Terao, K Tonazzo, A Thi, HHT Valdiviesso, G Vassilopoulos, N Veyssiere, C Vivier, M Wagner, S Walsh, N Watanabe, H Wiebusch, C Winslow, L Wurm, M Yang, G Yermia, F Zimmer, V AF Abe, Y. dos Anjos, J. C. Barriere, J. C. Baussan, E. Bekman, I. Bergevin, M. Bezerra, T. J. C. Bezrukov, L. Blucher, E. Buck, C. Busenitz, J. Cabrera, A. Caden, E. Camilleri, L. Carr, R. Cerrada, M. Chang, P. -J. Chauveau, E. Chimenti, P. Collin, A. P. Conover, E. Conrad, J. M. Crespo-Anadon, J. I. Crum, K. Cucoanes, A. Damon, E. Dawson, J. V. Dhooghe, J. Dietrich, D. Djurcic, Z. Dracos, M. Elnimr, M. Etenko, A. Fallot, M. von Feilitzsch, F. Felde, J. Fernandes, S. M. Fischer, V. Franco, D. Franke, M. Furuta, H. Gil-Botella, I. Giot, L. Goeger-Neff, M. Gonzalez, L. F. G. Goodenough, L. Goodman, M. C. Grant, C. Haag, N. Hara, T. Haser, J. Hofmann, M. Horton-Smith, G. A. Hourlier, A. Ishitsuka, M. Jochum, J. Jollet, C. Kaether, F. Kalousis, L. N. Kamyshkov, Y. Kaplan, D. M. Kawasaki, T. Kemp, E. de Kerret, H. Kryn, D. Kuze, M. Lachenmaier, T. Lane, C. E. Lasserre, T. Letourneau, A. Lhuillier, D. Lima, H. P., Jr. Lindner, M. Lopez-Castano, J. M. LoSecco, J. M. Lubsandorzhiev, B. Lucht, S. Maeda, J. Mariani, C. Maricic, J. Martino, J. Matsubara, T. Mention, G. Meregaglia, A. Miletic, T. Milincic, R. Minotti, A. Nagasaka, Y. Nikitenko, Y. Novella, P. Oberauer, L. Obolensky, M. Onillon, A. Osborn, A. Palomares, C. Pepe, I. M. Perasso, S. Pfahler, P. Porta, A. Pronost, G. Reichenbacher, J. Reinhold, B. Roehling, M. Roncin, R. Roth, S. Rybolt, B. Sakamoto, Y. Santorelli, R. Schilithz, A. C. Schoenert, S. Schoppmann, S. Shaevitz, M. H. Sharankova, R. Shimojima, S. Shrestha, D. Sibille, V. Sinev, V. Skorokhvatov, M. Smith, E. Spitz, J. Stahl, A. Stancu, I. Stokes, L. F. F. Strait, M. Stueken, A. Suekane, F. Sukhotin, S. Sumiyoshi, T. Sun, Y. Svoboda, R. Terao, K. Tonazzo, A. Thi, H. H. Trinh Valdiviesso, G. Vassilopoulos, N. Veyssiere, C. Vivier, M. Wagner, S. Walsh, N. Watanabe, H. Wiebusch, C. Winslow, L. Wurm, M. Yang, G. Yermia, F. Zimmer, V. TI Precision muon reconstruction in Double Chooz SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Double Chooz; Munn reconstruction; Neutrino detector AB We describe a muon track reconstruction algorithm for the reactor anti-neutrino experiment Double Chooz, The Double Chooz detector consists of two optically isolated volumes of the liquid scintillator viewed by PMTs, and an Outer Veto above these made of crossed scintillator strips. Muons are reconstructed by their Outer Veto hit positions along with timing information from the other two detector volumes. All muons are fit under the hypothesis that they are through-going and ultrarelativistic, If the energy depositions suggest that the muon may have stopped, the reconstruction fits also for this hypothesis and chooses between the two via the relative goodness-of-fit. In the ideal case of a through-going muon intersecting the center of the detector, the resolution is similar to 40 mm in each transverse dimension. High quality muon reconstruction is an important tool for reducing the impact of the cosmogenic isotope background in Double Chooz. (C) 2014 Elsevier B.V. All rights reserved. C1 [Bekman, I.; Lucht, S.; Roth, S.; Schoppmann, S.; Stahl, A.; Stueken, A.; Wiebusch, C.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Busenitz, J.; Elnimr, M.; Fernandes, S. M.; Reichenbacher, J.; Stancu, I.; Sun, Y.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Djurcic, Z.; Goodenough, L.; Goodman, M. C.; Yang, G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cabrera, A.; Dawson, J. V.; Franco, D.; Hourlier, A.; de Kerret, H.; Kryn, D.; Lasserre, T.; Novella, P.; Obolensky, M.; Perasso, S.; Roncin, R.; Tonazzo, A.] Univ Paris Diderot, Sorbonne Paris Cite, Observ Paris, CEA IRFU,CNRS IN2P3,AstroParticule & Cosmol, F-75205 Paris 13, France. [dos Anjos, J. C.; Lima, H. P., Jr.; Pepe, I. M.; Schilithz, A. C.; Valdiviesso, G.] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil. [Blucher, E.; Conover, E.; Crum, K.; Strait, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Cerrada, M.; Crespo-Anadon, J. I.; Gil-Botella, I.; Lopez-Castano, J. M.; Palomares, C.; Santorelli, R.] CIEMAT, E-28040 Madrid, Spain. [Camilleri, L.; Carr, R.; Shaevitz, M. H.] Columbia Univ, New York, NY 10027 USA. [Bergevin, M.; Dhooghe, J.; Felde, J.; Grant, C.; Svoboda, R.; Walsh, N.] Univ Calif Davis, Davis, CA 95616 USA. [Caden, E.; Damon, E.; Lane, C. E.; Maricic, J.; Miletic, T.; Milincic, R.; Smith, E.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Nagasaka, Y.] Hiroshima Inst Technol, Hiroshima 7315193, Japan. [Kaplan, D. M.; Yang, G.] IIT, Dept Phys, Chicago, IL 60616 USA. [Bezrukov, L.; Lubsandorzhiev, B.; Nikitenko, Y.; Sinev, V.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Barriere, J. C.; Fischer, V.; Lasserre, T.; Lhuillier, D.; Mention, G.; Sibille, V.; Veyssiere, C.; Vivier, M.] IRFU, Ctr Saclay, Commissariat Energies Atom & Energies Alternat, F-91191 Gif Sur Yvette, France. [Chang, P. -J.; Horton-Smith, G. A.; Shrestha, D.] Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA. [Hara, T.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. [Cabrera, A.; Etenko, A.; Skorokhvatov, M.; Sukhotin, S.] NRC Kurchatov Inst, Moscow 123182, Russia. [Conrad, J. M.; Spitz, J.; Terao, K.; Winslow, L.] MIT, Cambridge, MA 02139 USA. [Buck, C.; Collin, A. P.; Haser, J.; Kaether, F.; Lindner, M.; Reinhold, B.; Wagner, S.; Watanabe, H.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Kawasaki, T.] Niigata Univ, Dept Phys, Niigata 9502181, Japan. [LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Baussan, E.; Dracos, M.; Jollet, C.; Meregaglia, A.; Minotti, A.; Vassilopoulos, N.] Univ Strasbourg, CNRS IN2P3, IPHC, F-67037 Strasbourg, France. [Cucoanes, A.; Fallot, M.; Giot, L.; Martino, J.; Onillon, A.; Porta, A.; Pronost, G.; Yermia, F.] Univ Nantes, Ecole Mines Nantes, CNRS IN2P3, SUBATECH, F-44307 Nantes, France. [Kamyshkov, Y.; Osborn, A.; Rybolt, B.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Bezerra, T. J. C.; Chauveau, E.; Furuta, H.; Suekane, F.] Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan. [Sakamoto, Y.] Tohoku Gakuin Univ, Sendai, Miyagi 9813193, Japan. [Abe, Y.; Ishitsuka, M.; Kuze, M.; Sharankova, R.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Maeda, J.; Matsubara, T.; Shimojima, S.; Sumiyoshi, T.] Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan. [von Feilitzsch, F.; Franke, M.; Goeger-Neff, M.; Haag, N.; Hofmann, M.; Oberauer, L.; Pfahler, P.; Schoenert, S.; Thi, H. H. Trinh; Zimmer, V.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Dietrich, D.; Jochum, J.; Lachenmaier, T.; Roehling, M.; Stokes, L. F. F.; Wurm, M.] Univ Tubingen, Kepler Ctr Astro & Particle Phys, D-72076 Tubingen, Germany. [Chimenti, P.] Univ Fed Abc, BR-09210580 Santo Andre, SP, Brazil. [Gonzalez, L. F. G.; Kemp, E.] Univ Estadual Campinas, BR-13083970 Campinas, SP, Brazil. [Kalousis, L. N.; Mariani, C.] Virginia Tech, Ctr Neutrino Phys, Blacksburg, VA 24061 USA. RP Strait, M (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM strait@hep.uchiago.edu RI Skorokhvatov, Mikhail/R-9735-2016; Wiebusch, Christopher/G-6490-2012; Inst. of Physics, Gleb Wataghin/A-9780-2017; Santorelli, Roberto/L-6017-2015; Horton-Smith, Glenn/A-4409-2011; Chimenti, Pietro/F-9898-2012; Mariani, Camillo/J-6070-2015; Cerrada, Marcos/J-6934-2014; Valdiviesso, Gustavo/G-3404-2011; Junqueira de Castro Bezerra, Thiago/F-1610-2013; Stahl, Achim/E-8846-2011; Gil Botella, Ines/H-8991-2015; Bezrukov, Leonid/M-5654-2013; Schoppmann, Stefan/M-3057-2015; Palomares, Carmen/H-7783-2015; Roth, Stefan/J-2757-2016; Kamyshkov, Yuri/J-7999-2016 OI Wiebusch, Christopher/0000-0002-6418-3008; Santorelli, Roberto/0000-0002-0012-2644; Horton-Smith, Glenn/0000-0001-9677-9167; Spitz, Joshua/0000-0002-6288-7028; Franco, Davide/0000-0001-5604-2531; Lindner, Manfred/0000-0002-3704-6016; Chimenti, Pietro/0000-0002-9755-5066; Mariani, Camillo/0000-0003-3284-4681; Cerrada, Marcos/0000-0003-0112-1691; Valdiviesso, Gustavo/0000-0002-0381-3619; Junqueira de Castro Bezerra, Thiago/0000-0002-0424-7903; Stahl, Achim/0000-0002-8369-7506; Schoppmann, Stefan/0000-0002-7208-0578; Palomares, Carmen/0000-0003-4374-9065; Roth, Stefan/0000-0003-3616-2223; Kamyshkov, Yuri/0000-0002-3789-7152 FU CEA; CNRS/IN2P3; LabEx UnivEarthS in France [ANR-11-1DEX-0005-02]; Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT); Japan Society for the Promotion of Science (JSPS); Department of Energy; National Science Foundation of the United States; Ministerio de Ciencia e Innovacion (MICINN) of Spain; Max Planck Gesellschaft; Deutsche Forschungsgemeinschaft DEG [SBH WI 2152]; Transregional Collaborative Research Center TR27; excellence cluster "Origin and Structure of the Universe"; Maier-Leibnitz-Laboratorium Garching in Germany; Russian Academy of Science; Kurchatov Institute and RFBR (the Russian Foundation for Basic Research); Brazilian Ministry of Science, Technology and Innovation (MCTI); Financiadora de Estudos c Projetos (FINEP); Conselho Nacional de Desenvolvimento Cientifico e Tecnoleigico (CNPq); Sao Paulo Research Foundation (FAPESP); Brazilian Network for High Energy Physics (RENAFAE) in Brazil; the computer center CCIN2P3 FX We thank the French electricity company EDF; the European fund FEDER; the Region de Champagne Ardenne; the Departement des Ardennes; and the Communaute des Communes Ardennes Rives acknowledge the support from the CEA, CNRS/IN2P3, the computer center CCIN2P3, and LabEx UnivEarthS in France (ANR-11-1DEX-0005-02); the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) and the Japan Society for the Promotion of Science (JSPS); the Department of Energy and the National Science Foundation of the United States; the Ministerio de Ciencia e Innovacion (MICINN) of Spain; the Max Planck Gesellschaft, and the Deutsche Forschungsgemeinschaft DEG (SBH WI 2152), the Transregional Collaborative Research Center TR27, the excellence cluster "Origin and Structure of the Universe", and the Maier-Leibnitz-Laboratorium Garching in Germany; the Russian Academy of Science, the Kurchatov Institute and RFBR (the Russian Foundation for Basic Research); the Brazilian Ministry of Science, Technology and Innovation (MCTI), the Financiadora de Estudos c Projetos (FINEP), the Conselho Nacional de Desenvolvimento Cientifico e Tecnoleigico (CNPq), the Sao Paulo Research Foundation (FAPESP), and the Brazilian Network for High Energy Physics (RENAFAE) in Brazil. NR 15 TC 4 Z9 4 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2014 VL 764 BP 330 EP 339 DI 10.1016/j.nima.2014.07.058 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AP3OT UT WOS:000341987000044 ER PT J AU Kaplan, AC Henzl, V Menloye, HO Swinhoe, MT Behan, AP Flaska, M Pozzi, SA AF Kaplan, Alexis C. Henzl, Vladimir Menlove, Howard O. Swinhoe, Martyn T. Belian, Anthony P. Flaska, Marek Pozzi, Sara A. TI Determination of total plutonium content in spent nuclear fuel assemblies with the differential die-away self-interrogation instrument SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Nondestructive assay; Plutonium measurement; DDSI; Spent fuel AB As a part of the Next Generation Safeguards Initiative Spent Fuel project, we simulate the response of the Differential Die-away Self-Interrogation (DDSI) instrument to determine total elemental plutonium content in an assayed spent nuclear fuel assembly (SFA). We apply recently developed concepts that relate total plutonium mass with SFA multiplication and passive neutron count rate. In this work, the multiplication of the SFA is determined from the die-away time in the early time domain of the Rossi-Alpha distributions measured directly by the DDSI instrument. We utilize MCNP to test the method against 44 pressurized water reactor SFAs from a simulated spent fuel library with a wide dynamic range of characteristic parameters such as initial enrichment, burnup, and cooling time. Under ideal conditions, discounting possible errors of a real world measurement, a root mean square agreement between true and determined total Pu mass of 2.1% is achieved. Published by Elsevier B.V. C1 [Kaplan, Alexis C.; Henzl, Vladimir; Menlove, Howard O.; Swinhoe, Martyn T.; Belian, Anthony P.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Kaplan, Alexis C.; Flaska, Marek; Pozzi, Sara A.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. RP Kaplan, AC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. FU U.S. Department of Homeland Security [2012-DN-130-NF0001-02]; Next Generation Safeguards Initiative (NGSI); Office of Nonproliferation and International Security (NIS); National Nuclear Security Administration (NNSA); U.S. Department of Homeland Security or the National Nuclear Security Administration [LA-UR-13-29465] FX This material is partially based upon work supported by the U.S. Department of Homeland Security under Grant award no, 2012-DN-130-NF0001-02. The authors also would like to acknowledge the support of the Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and International Security (NIS), the National Nuclear Security Administration (NNSA). The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security or the National Nuclear Security Administration, LA-UR-13-29465. NR 10 TC 0 Z9 0 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2014 VL 764 BP 347 EP 351 DI 10.1016/j.nima.2014.08.003 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AP3OT UT WOS:000341987000046 ER PT J AU Barletta, W Battaglia, M Klute, M Mangano, M Prestemon, S Rossi, L Skands, P AF Barletta, William Battaglia, Marco Klute, Markus Mangano, Michelangelo Prestemon, Soren Rossi, Lucio Skands, Peter TI Future hadron colliders: From physics perspectives to technology R&D SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Future hadron colliders; Superconducting magnet technology; High energy proton beams ID CROSS-SECTIONS; LHC; NB3SN; COLLISIONS; PARTICLE; MAGNETS; BOSON AB High energy hadron colliders have been instrumental to discoveries in particle physics at the energy frontier and their role as discovery machines will remain unchallenged for the foreseeable future. The full exploitation of the WC is now the highest priority of the energy frontier collider program. This includes the high luminosity LHC project which is made possible by a successful technology readiness program for Nb3Sn superconductor and magnet engineering based on long-term high field magnet R&D programs. These programs open the path towards collisions with luminosity of 5 x 10(34) cm(-2) S-1 and represents the foundation to consider future proton colliders of higher energies. This paper discusses physics requirements, experimental conditions, technological aspects and design challenges for the development towards proton colliders of increasing energy and luminosity. (C) 2014 Elsevier B.V. All rights reserved. C1 [Barletta, William] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Barletta, William; Klute, Markus] MIT, Dept Phys, Cambridge, MA 02139 USA. [Battaglia, Marco] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Battaglia, Marco; Prestemon, Soren] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Battaglia, Marco; Mangano, Michelangelo; Rossi, Lucio; Skands, Peter] CERN, CH-1211 Geneva, Switzerland. RP Battaglia, M (reprint author), Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. EM MBattaglia@lbl.gov NR 52 TC 12 Z9 12 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2014 VL 764 BP 352 EP 368 DI 10.1016/j.nima.2014.07.010 PG 17 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AP3OT UT WOS:000341987000047 ER PT J AU Vojta, D Matanovic, I Kovacevic, G Baranovic, G AF Vojta, Danijela Matanovic, Ivana Kovacevic, Goran Baranovic, Goran TI The study of secondary effects in vibrational and hydrogen bonding properties of 2-and 3-ethynylpyridine and ethynylbenzene by IR spectroscopy SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY LA English DT Article DE Ethynylpyridine; Ethynylbenzene; Hydrogen bonding; IR wavenumber shifts; Anharmonic wavenumbers ID CENTER-DOT-N; AB-INITIO; PHENOL; PHENYLACETYLENE; COMPLEXES; PYRIDINE; METHANOL; SCALE; WATER; TETRACHLOROMETHANE AB Weak hydrogen bonds formed by 2- and 3-ethynylpyridine and ethynylbenzene with trimethylphosphate and phenol were characterized by IR spectroscopy and DFT calculations (B3LYP/6-311++G(d, p)). The structure and stability of ethynylpyridines and ethynylbenzene in the gas phase and in the complexes with trimethylphosphate and phenol are discussed in terms of geometry and electronic charge redistribution. Anharmonic effects are taken into account when calculating vibrational wavenumbers of these systems what lead to partial improvement of agreement with experiment. The changes in the electronic charge distribution are behind the frequency shifts of the C C stretching in opposite direction depending on the role the ethyne molecule has in a hydrogen bonded complex (Delta(nu) over tilde = +9 cm(-1) in trimethylphosphate complexes, Delta(nu) over tilde = -3 cm(-1) in phenol complexes). The association constants were determined by keeping the concentrations of proton donors approximately constant and low enough to avoid self-association and the proton acceptors were present in excess. The values obtained for the association constants and enthalpy changes in C2Cl4 (for trimethylphosphate complexes K approximate to 0.5-1.0 mol(-1) dm(3) and -Delta H-r(circle minus) approximate to 6-8 kJ mol(-1), for phenol complexes K approximate to 20-40 mol(-1) dm(3) -Delta H-r(circle minus) approximate to 17-22 kJ mol(-1)) are in good agreement with literature data. (C) 2014 Elsevier B.V. All rights reserved. C1 [Vojta, Danijela; Baranovic, Goran] Rudjer Boskovic Inst, Div Organ Chem & Biochem, Zagreb 10001, Croatia. [Matanovic, Ivana] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Kovacevic, Goran] Rudjer Boskovic Inst, Div Mat Phys, Zagreb 10001, Croatia. RP Baranovic, G (reprint author), Rudjer Boskovic Inst, Div Organ Chem & Biochem, Bijenicka C 54, Zagreb 10001, Croatia. EM goran.baranovic@irb.hr FU Ministry of Science, Education and Sport of the Croatian Government [0982904-2927]; LANL LDRD program, U.S. Department of Energy, Energy Efficiency and Renewable Energy; U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by a Grant No. 0982904-2927 from the Ministry of Science, Education and Sport of the Croatian Government. D. Vojta and G. Baranovic thank to J. Aleric and T. Parlic-Risovic from Croatian Metrology Institute for the measurements of densities of liquids. I. Matanovic thanks the LANL LDRD program for a postdoctoral fellowship, U.S. Department of Energy, Energy Efficiency and Renewable Energy for financial support. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. This paper has been designated LA-UR-12-26989. NR 36 TC 3 Z9 3 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1386-1425 J9 SPECTROCHIM ACTA A JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. PD NOV 11 PY 2014 VL 132 BP 215 EP 224 DI 10.1016/j.saa.2014.04.166 PG 10 WC Spectroscopy SC Spectroscopy GA AN1GN UT WOS:000340330800026 PM 24866088 ER PT J AU Fu, W Li, H Lubow, S Li, ST Liang, E AF Fu, Wen Li, Hui Lubow, Stephen Li, Shengtai Liang, Edison TI EFFECTS OF DUST FEEDBACK ON VORTICES IN PROTOPLANETARY DISKS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE accretion, accretion disks; hydrodynamics; instabilities; protoplanetary disks ID ROSSBY-WAVE INSTABILITY; TRANSITIONAL DISKS; ACCRETION DISKS; GAP EDGES; PLANET; DISCS; DISTRIBUTIONS; SIMULATIONS; FILTRATION; PARTICLES AB We carried out two-dimensional, high-resolution simulations to study the effect of dust feedback on the evolution of vortices induced by massive planets in protoplanetary disks. Various initial dust to gas disk surface density ratios (0.001-0.01) and dust particle sizes (Stokes number 4 x 10(-4)-0.16) are considered. We found that while dust particles migrate inward, vortices are very effective at collecting them. When dust density becomes comparable to gas density within the vortex, a dynamical instability is excited and it alters the coherent vorticity pattern and destroys the vortex. This dust feedback effect is stronger with a higher initial dust/gas density ratio and larger dust grain. Consequently, we found that the disk vortex lifetime can be reduced up to a factor of 10. We discuss the implications of our findings on the survivability of vortices in protoplanetary disks and planet formation. C1 [Fu, Wen; Liang, Edison] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Fu, Wen; Li, Hui; Li, Shengtai] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lubow, Stephen] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Fu, W (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. EM wf5@rice.edu OI Li, Shengtai/0000-0002-4142-3080 FU LDRD program; UC laboratory fees research program; DOE/Office of Fusion Energy Science through CMSO at LANL; NASA [NNX11AK61G]; IGPP program FX Simulations in this work were performed using the Institutional Computing Facilities at LANL. We thank Geoffroy Lesur and Andrea Isella for helpful discussions. W.F., H.L., and S.L. gratefully acknowledge support by the LDRD and IGPP programs, the UC laboratory fees research program, and the DOE/Office of Fusion Energy Science through CMSO at LANL. W.F. and S.L. also acknowledge support from NASA grant NNX11AK61G. NR 31 TC 12 Z9 12 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 10 PY 2014 VL 795 IS 2 AR L39 DI 10.1088/2041-8205/795/2/L39 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AU3FY UT WOS:000345499000015 ER PT J AU Lee, J Prasankumar, RP AF Lee, Jinho Prasankumar, Rohit P. TI Correlation between quantum charge fluctuations and magnetic ordering in multiferroic LuFe2O4 SO EUROPEAN PHYSICAL JOURNAL B LA English DT Article AB We examine the interplay between quantum charge fluctuations and magnetic ordering in multiferroic LuFe2O4 and show that this can couple spin and charge degrees of freedom in a LuFe2O4 bilayer below the Neel temperature T-N. Our analysis supports the idea that the double exchange mechanism normally used in metallic systems can be applied to charge-ordered insulators. This causes ferrimagnetic spin order to reduce the transfer integrals between Fe2+ and Fe3+ in LuFe2O4, decreasing charge fluctuations and increasing the polarization in this system below T-N. This work thus provides a more detailed understanding of the mechanism for spin-charge coupling in LuFe2O4. C1 [Lee, Jinho; Prasankumar, Rohit P.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Lee, J (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM rpprasan@lanl.gov FU LANL Laboratory Directed Research and Development Program; National Nuclear Security administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX The authors would like to acknowledge Dr. S. A. Trugman, Dr. C. D. Batista, Dr. D. A. Yarotski, and Dr. A.J. Taylor of Los Alamos National Laboratory, Prof. D. Talbayev at Tulane University, Dr. C. L. Zhang and Prof. S.-W. Cheong at Rutgers University, and Prof. X. S. Xu at the University of Nebraska for their contributions to this work. This work was performed at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences (BES) user facility and was also supported by the LANL Laboratory Directed Research and Development Program. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 17 TC 2 Z9 2 U1 2 U2 31 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6028 EI 1434-6036 J9 EUR PHYS J B JI Eur. Phys. J. B PD NOV 10 PY 2014 VL 87 IS 11 AR 267 DI 10.1140/epjb/e2014-50177-2 PG 5 WC Physics, Condensed Matter SC Physics GA AT5WK UT WOS:000345010400004 ER PT J AU Adamczyk, L Guryn, W Turnau, J AF Adamczyk, Leszek Guryn, Wlodek Turnau, Jacek TI Central exclusive production at RHIC SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article DE Diffraction; QCD; exotics ID REACTION POMERON-POMERON; 450 GEV/C; GLUEBALLS AB The present status and future plans of the physics program of Central Exclusive Production (CEP) at RHIC are described. The measurements are based on the detection of the forward protons from the Double Pomeron Exchange (DPE) process in the Roman Pot system and of the recoil system of charged particles from the DPE process measured in the STAR experiment's Time Projection Chamber (TPC). The data described here were taken using polarized proton-proton collisions at root s = 200 GeV. The preliminary spectra of two-pion mass reconstructed by STAR TPC in central region of pseudorapidity vertical bar eta vertical bar < 1, are presented. Near future plans to take data with the current system at center-of-mass energy root s = 200 GeV and plans to upgrade the forward proton tagging system are presented. Also a possible addition of the RPs to the sPHENIX detector is discussed. C1 [Adamczyk, Leszek] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Guryn, Wlodek] Brookhaven Natl Lab, Upton, NY 11973 USA. [Turnau, Jacek] Inst Nucl Phys, PL-31342 Krakow, Poland. RP Adamczyk, L (reprint author), AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. EM Leszek.Adamczyk@agh.edu.pl; guryn@bnl.gov; Jacek.Turnau@ifj.edu.pl FU Office of NP within the U.S. DOE Office of Science; Polish National Science Centre [UMO-2011/01/M/ST2/04126] FX This work was supported in part by the Office of NP within the U.S. DOE Office of Science and by the Polish National Science Centre under contract UMO-2011/01/M/ST2/04126. We also thank our colleagues from the Ultraperipheral Collisions Physics Working Group at STAR for many helpful discussions. NR 26 TC 10 Z9 10 U1 0 U2 2 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD NOV 10 PY 2014 VL 29 IS 28 SI SI AR 1446010 DI 10.1142/S0217751X14460105 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AU3LU UT WOS:000345515500011 ER PT J AU Albrow, M AF Albrow, Michael CA CDF Collaboration TI Central exclusive production at the Tevatron SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article DE QCD; diffraction; charmonia ID MESON PAIR PRODUCTION; HADRON COLLIDERS AB The Collider Detector at Fermilab, CDF, observed for the first time in hadron-hadron collisions photon-photon (gamma + gamma -> e(+)e(-), mu(+)mu(-)) and photon-pomeron (gamma + P -> J/psi, psi(2S)) interactions, as well as p + (p) over bar -> p + chi(c) + (p) over bar by double pomeron exchange, P + P or DPE. Exclusive pi(+)pi(-) production was also measured at root s = 900 GeV and 1960 GeV; resonance structures are discussed. C1 [Albrow, Michael; CDF Collaboration] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Albrow, M (reprint author), Fermilab Natl Accelerator Lab, POB 500,Wilson Rd, Batavia, IL 60510 USA. EM albrow@fnal.gov NR 36 TC 4 Z9 4 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD NOV 10 PY 2014 VL 29 IS 28 SI SI AR 1446009 DI 10.1142/S0217751X14460099 PG 14 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AU3LU UT WOS:000345515500010 ER PT J AU Albrow, M AF Albrow, Michael TI Central exclusive production issue: Introduction SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article DE QCD; diffraction; pomeron; glueball AB I give a brief introduction to central exclusive production in hadron-hadron collisions, the subject of this special issue of the International Journal of Modern Physics A. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Albrow, M (reprint author), Fermilab Natl Accelerator Lab, POB 500,Wilson Rd, Batavia, IL 60510 USA. EM albrow@fnal.gov FU US Department of Energy through Fermilab FX I acknowledge with thanks Valery Khoze and Christophe Royon, co-editors of this special edition, and all the authors of the contributed papers. I also acknowledge support from the US Department of Energy through Fermilab. NR 20 TC 3 Z9 3 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD NOV 10 PY 2014 VL 29 IS 28 SI SI AR 1402006 DI 10.1142/S0217751X14020060 PG 4 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AU3LU UT WOS:000345515500001 ER PT J AU Albrow, M AF Albrow, Michael TI Double pomeron exchange at the CERN Intersecting Storage Rings and Sp(p)over-barS Collider SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article DE QCD; diffraction; pomeron; glueball ID PP COLLISIONS; GEV-C; ISR; SCATTERING; ENERGIES; SEARCH; MODEL AB The CERN Intersecting Storage Rings, with root s(pp) from 22 GeV to 63 GeV and root s(alpha alpha) = 126 GeV, allowed the first observations of p + p -> p + X + p with two leading protons (x(F) > 0.95) or two rapidity gaps Delta y > 3. Studies of the central hadronic system (X) were made to search for glueballs, finding f(0) and f(2) resonances, and to advance our understanding of hadronic diffraction. I review the experiments, not including those at the Split Field Magnet (SFM) facility covered elsewhere in this volume. Some double pomeron exchange studies at the CERN Sp (p) over barS Collider are also covered. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Albrow, M (reprint author), Fermilab Natl Accelerator Lab, POB 500,Wilson Rd, Batavia, IL 60510 USA. EM albrow@fnal.gov NR 34 TC 3 Z9 3 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD NOV 10 PY 2014 VL 29 IS 28 SI SI AR 1446014 DI 10.1142/S0217751X14460142 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AU3LU UT WOS:000345515500015 ER PT J AU Albrow, M Collins, P Penzo, A AF Albrow, Michael Collins, Paula Penzo, Aldo CA FSC Team CMS Collaboration HERSCHEL Team LHCb Collaboration TI Forward shower counters for diffractive physics at the LHC SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article DE QCD; diffraction; pomeron AB The LHC detectors have incomplete angular coverage in the forward direction, for example in the region 6 less than or similar to vertical bar eta vertical bar less than or similar to 8, which can be improved with the addition of simple scintillation counters around the beam pipes about 50 m to 120 m from the intersection point. These counters detect showers created by particles hitting the beam pipes and nearby material. The absence of signals in these counters in low pileup conditions is an indication of a forward rapidity gap as a signature of diffraction. In addition, they can be used to detect hadrons from low mass diffractive excitations of the proton, not accompanied by a leading proton but adjacent to a rapidity gap over (e. g.) 3 less than or similar to vertical bar eta vertical bar less than or similar to 6. Such a set of forward shower counters, originally used at CDF, was used in CMS (FSC) for high-beta* running with TOTEM during LHC Run-1. During LS1 the CMS FSC system is being upgraded for future low pileup runs. A similar system, called HERSCHEL is being installed in LHCb. ALICE is implementing scintillation counters, ADA and ADC, with 4.5 less than or similar to vertical bar eta vertical bar less than or similar to 6.4. C1 [Albrow, Michael] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Collins, Paula] CERN, PH Div, CH-1211 Geneva 23, Switzerland. [Penzo, Aldo] Ist Nazl Fis Nucl, Area Ric, I-34149 Trieste, Italy. [Penzo, Aldo] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. RP Albrow, M (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM albrow@fnal.gov; Paula.Collins@cern.ch; Aldo.Penzo@ts.infn.it NR 17 TC 5 Z9 5 U1 1 U2 2 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD NOV 10 PY 2014 VL 29 IS 28 SI SI AR 1446018 DI 10.1142/S0217751X1446018X PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AU3LU UT WOS:000345515500019 ER PT J AU Bjorken, JD AF Bjorken, J. D. TI Double diffraction at zero impact parameter SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article DE QCD; diffraction AB Protons may sometimes have the configuration of a compact diquark, separated transversely from the quark by a string. If both protons in a collision have this form, the strings may be parallel, giving final states with high multiplicity, ellipticity and a ridge structure, or transverse, with leading protons and (sometimes) rapidity gaps. Simple considerations lead one to expect, at root s(pp) approximate to 100 GeV, central masses in the few GeV/c(2) range, appropriate for glueball states. C1 Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Bjorken, JD (reprint author), Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM bjorken@slac.stanford.edu NR 2 TC 2 Z9 2 U1 3 U2 3 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD NOV 10 PY 2014 VL 29 IS 28 SI SI AR 1446006 DI 10.1142/S0217751X14460063 PG 4 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AU3LU UT WOS:000345515500007 ER PT J AU Gutierrez, G Reyes, MA AF Gutierrez, Gaston Reyes, Marco A. TI Fixed target experiments at the Fermilab Tevatron SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article DE Glueballs; exotics; double pomeron exchange ID SPIN-PARITY ANALYSIS; PHI-MESON PRODUCTION; K-P INTERACTIONS; 300 GEV/C; SYSTEM; STATISTICS; STATES; MODEL AB This paper presents a review of the study of Exclusive Central Production at a center-of- mass energy of root s = 40 GeV at the Fermilab Fixed Target program. In all reactions reviewed in this paper, protons with an energy of 800 GeV were extracted from the Tevatron accelerator at Fermilab and directed to a Liquid Hydrogen target. The states reviewed include pi(+) pi(-), K-s(0) K-s(0), K-s(0) K-+/- pi(inverted perpendicular), phi phi and D*(+/-). Partial Wave Analysis results will be presented on the light states but only the cross-section will be reviewed in the diffractive production of D*(+/-). C1 [Gutierrez, Gaston] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Reyes, Marco A.] Univ Guanajuato, Dept Phys, Guanajuato 37150, Mexico. RP Gutierrez, G (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM gaston@fnal.gov; marco@fisica.ugto.mx FU US Department of Energy; CONACYT Mexico FX We would like to thank many people who provided information about the Fermilab FT program. This work was funded by the US Department of Energy and CONACYT Mexico. M. A. Reyes would like to thank CONACYT for supporting a sabbatical stay at Fermilab while this paper was being written. NR 44 TC 4 Z9 4 U1 1 U2 2 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD NOV 10 PY 2014 VL 29 IS 28 SI SI AR 1446008 DI 10.1142/S0217751X14460087 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AU3LU UT WOS:000345515500009 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S AlconadaVerzini, MJ Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Almond, J Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Baker, S Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batkova, L Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertolia, G Bertolucci, F Bertsche, D Besana, MI Besjes, GJ Bessidskaia, O Bessner, MF Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, J Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, G Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clark, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cuciuc, CM Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, JA Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gandrajula, RP Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudioa, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godfrey, J Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstroma, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Guan, L Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hageboeck, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Heisterkamp, S Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johanssona, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Karnevskiy, M Karpov, SN Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, A Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le, BT Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leonhardt, K Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matsushita, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Meade, A Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Moeller, V Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moraes, A Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petteni, M Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidzea, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, V Sopko, B Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spighi, R Spigo, G Spousta, M Spreitzer, T Spurlock, B Denis, RDS Staerz, S Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramania, HS Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Der Deijl, PC van der Geer, R van der Graaf, H Van Der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, H Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, W Wagner, P Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wanga, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigell, P Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wilson, A Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccolia, A zur Nedden, M Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. AlconadaVerzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Almond, J. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arguin, J. -F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Baker, S. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, M. Battistin, M. Bauer, F. Bawa, H. S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertolia, G. Bertolucci, F. Bertsche, D. Besana, M. I. Besjes, G. J. Bessidskaia, O. Bessner, M. F. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boddy, C. R. Boehler, M. Boek, J. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, G. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clark, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Colon, G. Compostella, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cuciuc, C. -M. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. A. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gandrajula, R. P. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudioa, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godfrey, J. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstroema, P. Grahn, K. -J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Groth-Jensen, J. Grout, Z. J. Guan, L. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Gunther, J. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Heisterkamp, S. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Hernndez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hostachy, J. -Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johanssona, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalderon, C. W. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Karnevskiy, M. Karpov, S. N. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le, B. T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leonhardt, K. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lopez Paz, I. Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. de Andrade Filho, L. Manhaes Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matsushita, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mc kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J. -P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Moeller, V. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Moraes, A. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Oliver Garcia, E. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petteni, M. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Portell Bueso, X. Pospelov, G. E. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Romero Adam, E. Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidzea, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, V. Sopko, B. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spighi, R. Spigo, G. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Staerz, S. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramania, H. S. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Ferrer, J. A. Valls Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. Van Der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, W. Wagner, P. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wanga, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigell, P. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wilson, A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W. -M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccolia, A. zur Nedden, M. Zurzolo, G. Zutshi, V. Zwalinski, L. CA Atlas Collaboration TI Measurement of the cross section of high transverse momentum Z -> b(b)over-bar production in proton-proton collisions at root s=8 TeV with the ATLAS detector SO PHYSICS LETTERS B LA English DT Article DE LHC; Boosted b(b)over-bar topologies ID TEVATRON; PAIR AB This Letter reports the observation of a high transverse momentum Z -> b (b) over bar signal in proton-proton collisions at root s = 8TeVand the measurement of its production cross section. The data analysed were collected in 2012 with the ATLAS detector at the LHC and correspond to an integrated luminosity of 19.5 fb(-1). The Z -> b (b) over bar decay is reconstructed from a pair of b-tagged jets, clustered with the anti- k(t) jet algorithm with R = 0.4, that have low angular separation and form a dijet with p(T) > 200 GeV. The signal yield is extracted from a fit to the dijet invariant mass distribution, with the dominant, multi-jet background mass shape estimated by employing a fully data-driven technique that reduces the dependence of the analysis on simulation. The fiducial cross section is determined to be sigma(fid)(Z -> b (b) over bar) = 2.02 +/- 0.20 (stat.) +/- 0.25 (syst.) +/- 0.06 (lumi.) pb = 2.02 +/- 0.33 pb, in good agreement with next-to-leading-order theoretical predictions. Published by Elsevier B.V. C1 [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Chan, K.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Huseynov, N.; Javadov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Cirkovic, P.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin Dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clark, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W. -M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clark, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W. -M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Goussiou, A. G.; Grafstroema, P.; Massa, I.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccolia, A.] Univ Bologna, Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Bruni, A.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Goussiou, A. G.; Grafstroema, P.; Massa, I.; Mengarelli, A.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccolia, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Univ Fed Juiz de Fora, Juiz de Fora, Brazil. [do Vale, M. A. B.] Univ Fed Sao Joao del Rei, Sao Joao del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Chen, H.; Gibbard, B.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Mountricha, E.; Damazio, D. Oliveira; Paige, F.; Perepelitsa, D. V.; Redlinger, G.; Undrus, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Romeo, G.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Aloisio, A.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Jenni, P.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wanga, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Mehlhase, S.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Ist Nazl Fis Nucl, Lab Nazl Frascati, Grp Collegato Cosenza, I-87036 Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Goulette, M. P.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Palka, M.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K. -J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K. -J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Debenedetti, C.; Edwards, N. C.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Consorti, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Mathemat & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Picazio, A.; Pohl, M.; Rosbach, K.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Univ Genoa, Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland. [Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Goujdami, D.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J. -Y.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Hofmann, J. I.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Cinca, D.; Gandrajula, R. P.; Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimine, N. I.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Inamaru, Y.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Kurumida, R.; Matsushita, T.; Ochi, A.; Shimizu, S.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [AlconadaVerzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [AlconadaVerzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Salamanna, G.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Blum, W.; Buescher, V.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Ji, W.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, A.; Loebinger, F. K.; Masik, J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Tomlinson, L.; Woudstra, M. J.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Petersen, B. A.; Rados, P.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Levin, D.; Liu, L.; Long, J. D.; Mc kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Xu, L.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Univ Milan, Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J. -F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Moscow Phys Engn Inst MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidzea, G.; Zurzolo, G.] Univ Naples Federico II, Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; Dao, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Konig, A. C.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] RAS, Budker Inst Nucl Phys, SB, Novosibirsk, Russia. [Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudioa, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Univ Pavia, Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Ospanov, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Ist Nazl Fis Nucl, Sez Pisa, I-56100 Pisa, Italy. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Araque, J. P.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Wemans, A. Do Valle] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Fis, Caparica, Portugal. [Wemans, A. Do Valle] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, V.; Sopko, B.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vanadia, M.; Vari, R.; Veneziano, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Camillocci, E. Solfaroli; Vanadia, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Grossi, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.; Trovatelli, M.] Univ Roma Tre, Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Grabas, H. M. X.; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J. -P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, DSM IRFU, Inst Rech Lois Fondamentales Univers, Commissariat Energie Atom & Energies Alternat, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Blackburn, D.; Coccaro, A.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; Godfrey, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Trottier-McDonald, M.; van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Campoverde, A.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Batkova, L.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Chen, X.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertolia, G.; Bessidskaia, O.; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johanssona, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertolia, G.; Bessidskaia, O.; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Nomidis, I.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Farrell, S.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; De Sanctis, U.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernndez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular, IFIC, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernndez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernndez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernndez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, IMB CNM, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Loh, C. W.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Castillo, L. R. Flores; Hard, A. S.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Redelbach, A.; Schreyer, M.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Chen, L.; Gao, J.] CNRS, IN2P3, Marseille, France. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Vancouver, BC, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Barcelona, Spain. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Korol, A. A.; Maximov, D. A.; Rezanova, O. L.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Pinamonti, M.] Scuola Int Super Studi Avanzati, SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Toth, J.] Inst Particle & Nucl Phys, Wigner Res Ctr Phys, Budapest, Hungary. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Brooks, William/C-8636-2013; Connell, Simon/F-2962-2015; Bosman, Martine/J-9917-2014; Joergensen, Morten/E-6847-2015; Mitsou, Vasiliki/D-1967-2009; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Mir, Lluisa-Maria/G-7212-2015; Garcia, Jose /H-6339-2015; Marti-Garcia, Salvador/F-3085-2011; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Castro, Nuno/D-5260-2011; Boyko, Igor/J-3659-2013; Nemecek, Stanislav/G-5931-2014; Gutierrez, Phillip/C-1161-2011; Di Domenico, Antonio/G-6301-2011; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; De, Kaushik/N-1953-2013; Moraes, Arthur/F-6478-2010; Smirnova, Oxana/A-4401-2013; Villa, Mauro/C-9883-2009; Wemans, Andre/A-6738-2012; White, Ryan/E-2979-2015; Li, Liang/O-1107-2015; Pacheco Pages, Andres/C-5353-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Kantserov, Vadim/M-9761-2015; Solfaroli Camillocci, Elena/J-1596-2012; BESSON, NATHALIE/L-6250-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Mindur, Bartosz/A-2253-2017; Fabbri, Laura/H-3442-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Monzani, Simone/D-6328-2017; Warburton, Andreas/N-8028-2013; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; Doyle, Anthony/C-5889-2009; spagnolo, stefania/A-6359-2012; Ciubancan, Liviu Mihai/L-2412-2015; Zhukov, Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Yang, Haijun/O-1055-2015; Chekulaev, Sergey/O-1145-2015 OI Brooks, William/0000-0001-6161-3570; Connell, Simon/0000-0001-6000-7245; Bosman, Martine/0000-0002-7290-643X; Joergensen, Morten/0000-0002-6790-9361; Mitsou, Vasiliki/0000-0002-1533-8886; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Della Pietra, Massimo/0000-0003-4446-3368; Castro, Nuno/0000-0001-8491-4376; Boyko, Igor/0000-0002-3355-4662; Di Domenico, Antonio/0000-0001-8078-2759; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; De, Kaushik/0000-0002-5647-4489; Moraes, Arthur/0000-0002-5157-5686; Smirnova, Oxana/0000-0003-2517-531X; Villa, Mauro/0000-0002-9181-8048; Wemans, Andre/0000-0002-9669-9500; White, Ryan/0000-0003-3589-5900; Li, Liang/0000-0001-6411-6107; Pacheco Pages, Andres/0000-0001-8210-1734; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Kantserov, Vadim/0000-0001-8255-416X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Monzani, Simone/0000-0002-0479-2207; Warburton, Andreas/0000-0002-2298-7315; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; Doyle, Anthony/0000-0001-6322-6195; spagnolo, stefania/0000-0001-7482-6348; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Tikhomirov, Vladimir/0000-0002-9634-0581; FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COL-CIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF; European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States; NSF, United States FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COL-CIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States. NR 40 TC 5 Z9 5 U1 8 U2 87 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV 10 PY 2014 VL 738 BP 25 EP 43 DI 10.1016/j.physletb.2014.09.020 PG 19 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AT0KK UT WOS:000344624900005 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Adye, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TP Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Almond, J Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Baas, A Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bessidskaia, O Bessner, MF Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Camacho Toro, R Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarellia, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, D Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A CastilloGimenez, V Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cuciuc, CM Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dai, T Dallaire, F Dallapiccola, C Dam, M Daniells, AC DanoHoffmann, M Dao, V Darbo, G Darmora, S Dassoulas, JA Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C DiGirolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Dias, FA Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franconi, L Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godfrey, J Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Gomez Fajardo, LS Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Guan, L Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, M Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Horii, Y Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, G Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-Zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubuab, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kudaya, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leone, S Leonhardt, K Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JA Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurera, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Meade, A Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minashvili, IA Mincer, AI Mindura, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K NunesHanninger, G Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculatia, B Ospanov, R Garzo, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovica, DS Poppleton, A Bueso, XP Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E