FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Dordevic, SV
van der Marel, D
Homes, CC
AF Dordevic, S. V.
van der Marel, D.
Homes, C. C.
TI Fate of quasiparticles in the superconducting state
SO PHYSICAL REVIEW B
LA English
DT Article
ID CONDUCTIVITY; ELECTRODYNAMICS; METALS
AB Quasiparticle properties in the superconducting state are masked by the superfluid and are not directly accessible to infrared spectroscopy. We show how one can use a Kramers-Kronig transformation to separate the quasiparticle from superfluid response and extract intrinsic quasiparticle properties in the superconducting state. We also address the issue of a narrow quasiparticle peak observed in microwave measurements, and demonstrate how it can be combined with infrared measurements to obtain a unified picture of electrodynamic properties of cuprate superconductors.
C1 [Dordevic, S. V.] Univ Akron, Dept Phys, Akron, OH 44325 USA.
[Dordevic, S. V.; van der Marel, D.] Univ Geneva, Dept Phys Mat Condensee, CH-1211 Geneva 4, Switzerland.
[Homes, C. C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
RP Dordevic, SV (reprint author), Univ Akron, Dept Phys, Akron, OH 44325 USA.
EM dsasa@uakron.edu
RI van der Marel, Dirk/G-4618-2012
OI van der Marel, Dirk/0000-0001-5266-9847
FU Swiss National Science Foundation (SNSF) [200020-140761]
FX This work was supported by the Swiss National Science Foundation (SNSF)
through Grant No. 200020-140761.
NR 20
TC 1
Z9 1
U1 0
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 17
PY 2014
VL 90
IS 17
AR 174508
DI 10.1103/PhysRevB.90.174508
PG 6
WC Physics, Condensed Matter
SC Physics
GA AU5HU
UT WOS:000345638400008
ER
PT J
AU Forst, M
Frano, A
Kaiser, S
Mankowsky, R
Hunt, CR
Turner, JJ
Dakovski, GL
Minitti, MP
Robinson, J
Loew, T
Le Tacon, M
Keimer, B
Hill, JP
Cavalleri, A
Dhesi, SS
AF Foerst, M.
Frano, A.
Kaiser, S.
Mankowsky, R.
Hunt, C. R.
Turner, J. J.
Dakovski, G. L.
Minitti, M. P.
Robinson, J.
Loew, T.
Le Tacon, M.
Keimer, B.
Hill, J. P.
Cavalleri, A.
Dhesi, S. S.
TI Femtosecond x rays link melting of charge-density wave correlations and
light-enhanced coherent transport in YBa2Cu3O6.6
SO PHYSICAL REVIEW B
LA English
DT Article
ID ORDER; SUPERCONDUCTIVITY; FLUCTUATIONS; PSEUDOGAP
AB We use femtosecond resonant soft x-ray diffraction to measure the optically stimulated ultrafast changes of charge-density wave correlations in underdoped YBa2Cu3O6.6. We find that when coherent interlayer transport is enhanced by optical excitation of the apical oxygen distortions, at least 50% of the in-plane charge-density wave order is melted. These results indicate that charge ordering and superconductivity may be competing up to the charge ordering transition temperature, with the latter becoming a hidden phase that is accessible only by nonlinear phonon excitation.
C1 [Foerst, M.; Kaiser, S.; Mankowsky, R.; Hunt, C. R.; Cavalleri, A.] Max Planck Inst Struct & Dynam Matter, D-22761 Hamburg, Germany.
[Foerst, M.; Kaiser, S.; Mankowsky, R.; Hunt, C. R.; Cavalleri, A.] Ctr Free Electron Laser Sci, D-22761 Hamburg, Germany.
[Frano, A.; Loew, T.; Le Tacon, M.; Keimer, B.] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany.
[Frano, A.] Helmholtz Zentrum Berlin Mat & Energie, D-12489 Berlin, Germany.
[Hunt, C. R.] Univ Illinois, Dept Phys, Urbana, IL 61802 USA.
[Turner, J. J.; Dakovski, G. L.; Minitti, M. P.; Robinson, J.] Natl Accelerator Lab, Stanford Linear Accelerator Ctr, Linac Coherent Light Source, Menlo Pk, CA 94025 USA.
[Hill, J. P.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
[Cavalleri, A.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England.
[Dhesi, S. S.] Diamond Light Source, Didcot OX11 0QX, Oxon, England.
RP Forst, M (reprint author), Max Planck Inst Struct & Dynam Matter, D-22761 Hamburg, Germany.
RI Forst, Michael/D-8924-2012; Kaiser, Stefan/B-7788-2008; Le Tacon,
Mathieu/D-8023-2011
OI Kaiser, Stefan/0000-0001-9862-2788; Le Tacon,
Mathieu/0000-0002-5838-3724
FU LCLS; University of Hamburg through the BMBF [FSP 301]; Center for Free
Electron Laser Science (CFEL); European Research Council under the
European Union's Seventh Framework Programme (FP7)/ERC [319286];
Department of Energy, Division of Materials Science and Engineering
[DE-AC02-98CH10886]; Stanford University, through the Stanford Institute
for Materials Energy Sciences (SIMES); Lawrence Berkeley National
Laboratory (LBNL) [DE-AC02-05CH11231]
FX Portions of this research were carried out on the SXR Instrument at the
Linac Coherent Light Source (LCLS), a division of SLAC National
Accelerator Laboratory and an Office of Science user facility operated
by Stanford University for the U.S. Department of Energy. The SXR
Instrument is funded by a consortium whose membership includes the LCLS,
Stanford University, through the Stanford Institute for Materials Energy
Sciences (SIMES), Lawrence Berkeley National Laboratory (LBNL, Contract
No. DE-AC02-05CH11231), University of Hamburg through the BMBF priority
program FSP 301, and the Center for Free Electron Laser Science (CFEL).
The research leading to these results has received funding from the
European Research Council under the European Union's Seventh Framework
Programme (FP7/2007-2013)/ERC Grant Agreement No. 319286 (Q-MAC). Work
at Brookhaven National Laboratory was funded by the Department of
Energy, Division of Materials Science and Engineering, under Contract
No. DE-AC02-98CH10886.
NR 25
TC 18
Z9 18
U1 2
U2 28
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 17
PY 2014
VL 90
IS 18
AR 184514
DI 10.1103/PhysRevB.90.184514
PG 4
WC Physics, Condensed Matter
SC Physics
GA AU5IQ
UT WOS:000345640600007
ER
PT J
AU Lemery, F
Piot, P
AF Lemery, F.
Piot, P.
TI Ballistic bunching of photoinjected electron bunches with
dielectric-lined waveguides
SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS
LA English
DT Article
ID WAKE-FIELD; ACCELERATION; LASER; BEAM; COMPRESSION; GUN
AB We describe a simple technique to passively bunch non-ultra-relativistic (less than or similar to 10 MeV) electron bunches produced in conventional photoinjectors. The scheme employs a dielectric-lined waveguide located downstream of the electron source to impress an energy modulation on a picosecond bunch. The energy modulation is then converted into a density modulation via ballistic bunching. The method is shown to support the generation of subpicosecond bunch trains with multi-kA peak currents. The relatively simple technique is expected to find applications in compact, accelerator-based, light sources and advanced beam-driven accelerator methods.
C1 [Lemery, F.; Piot, P.] No Illinois Univ, Northern Illinois Ctr Accelerator & Detector Dev, De Kalb, IL 60115 USA.
[Lemery, F.; Piot, P.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
[Piot, P.] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA.
RP Lemery, F (reprint author), No Illinois Univ, Northern Illinois Ctr Accelerator & Detector Dev, De Kalb, IL 60115 USA.
OI piot, philippe/0000-0002-4799-292X
FU Defense Threat Reduction Agency, Basic Research Award
[HDTRA1-10-1-0051]; Department of Energy [DE-FG02-08ER41532,
DE-SC0011831]; Northern Illinois University; DOE [DE-AC02-07CH11359]
FX This work was supported by the Defense Threat Reduction Agency, Basic
Research Award No. HDTRA1-10-1-0051, to Northern Illinois University and
by the Department of Energy Contracts No. DE-FG02-08ER41532 and No.
DE-SC0011831 with Northern Illinois University. P. P. is partially
supported by DOE Contract No. DE-AC02-07CH11359 to the Fermi research
alliance LLC.
NR 51
TC 4
Z9 4
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-4402
J9 PHYS REV SPEC TOP-AC
JI Phys. Rev. Spec. Top.-Accel. Beams
PD NOV 17
PY 2014
VL 17
IS 11
AR 112804
DI 10.1103/PhysRevSTAB.17.112804
PG 10
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA AU6DH
UT WOS:000345692500002
ER
PT J
AU Han, R
Ha, JW
Xiao, CX
Pei, YC
Qi, ZY
Dong, B
Bormann, NL
Huang, WY
Fang, N
AF Han, Rui
Ha, Ji Won
Xiao, Chaoxian
Pei, Yuchen
Qi, Zhiyuan
Dong, Bin
Bormann, Nicholas L.
Huang, Wenyu
Fang, Ning
TI Geometry-Assisted Three-Dimensional Superlocalization Imaging of
Single-Molecule Catalysis on Modular Multilayer Nanocatalysts
SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
LA English
DT Article
DE heterogeneous catalysis; mesoporous silica; multilayer nanocatalysts;
platinum; three-dimensional imaging
ID CORE-SHELL NANOCATALYSTS; FLUORESCENCE MICROSCOPY; PROPANE
DEHYDROGENATION; CARBON NANOTUBES; CRYSTAL SURFACES; IN-SITU; SILICA;
ELECTRON; NANOCRYSTALS; REACTIVITY
AB To establish the structure-catalytic property relationships of heterogeneous catalysts, a detailed characterization of the three-dimensional (3D) distribution of active sites on a single catalyst is essential. Single-particle catalysis of a modular multilayer catalytic platform that consists of a solid silica core, a mesoporous silica shell, and uniformly distributed Pt nanoparticles sandwiched in between these layers is presented. The first 3D high-resolution super-localization imaging of single fluorescent molecules produced at active sites on the core-shell model nanocatalysts is demonstrated. The 3D mapping is aided by the well-defined geometry and a correlation study in scanning electron microscopy and total internal reflection fluorescence and scattering microscopy. This approach can be generalized to study other nano- and mesoscale structures.
C1 [Han, Rui; Ha, Ji Won; Xiao, Chaoxian; Pei, Yuchen; Qi, Zhiyuan; Dong, Bin; Bormann, Nicholas L.; Huang, Wenyu; Fang, Ning] Iowa State Univ, Ames Lab, USDA, Ames, IA 50011 USA.
[Han, Rui; Ha, Ji Won; Xiao, Chaoxian; Pei, Yuchen; Qi, Zhiyuan; Dong, Bin; Bormann, Nicholas L.; Huang, Wenyu; Fang, Ning] Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
[Ha, Ji Won] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
RP Huang, WY (reprint author), Iowa State Univ, Ames Lab, USDA, Ames, IA 50011 USA.
EM whuang@iastate.edu; nfang@iastate.edu
RI Xiao, Chaoxian/E-7339-2013; Huang, Wenyu/L-3784-2014
OI Xiao, Chaoxian/0000-0002-4012-0539; Huang, Wenyu/0000-0003-2327-7259
FU Iowa State University; Ames Laboratory (Royalty Account); U.S.
Department of Energy by Iowa State University [DE-AC02-07CH11358]
FX This work was supported by U.S. Department of Energy, Office of Basic
Energy Sciences, Chemical Sciences, Geosciences, and Biosciences
Division (instrument development) and by the Laboratory Directed
Research and Development (LDRD) program of the Ames Laboratory
(catalysis, platform synthesis). W. H. also thanks Iowa State University
and the Ames Laboratory (Royalty Account) for startup funds. The Ames
Laboratory is operated for the U.S. Department of Energy by Iowa State
University under contract no. DE-AC02-07CH11358.
NR 44
TC 8
Z9 8
U1 9
U2 57
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1433-7851
EI 1521-3773
J9 ANGEW CHEM INT EDIT
JI Angew. Chem.-Int. Edit.
PD NOV 17
PY 2014
VL 53
IS 47
BP 12865
EP 12869
DI 10.1002/anie.201407140
PG 5
WC Chemistry, Multidisciplinary
SC Chemistry
GA AT2UY
UT WOS:000344793400034
PM 25257929
ER
PT J
AU Gleber, SC
Wojcik, M
Liu, J
Roehrig, C
Cummings, M
Vila-Comamala, J
Li, K
Lai, B
Shu, DM
Vogt, S
AF Gleber, Sophie-Charlotte
Wojcik, Michael
Liu, Jie
Roehrig, Chris
Cummings, Marvin
Vila-Comamala, Joan
Li, Kenan
Lai, Barry
Shu, Deming
Vogt, Stefan
TI Fresnel zone plate stacking in the intermediate field for high
efficiency focusing in the hard X-ray regime
SO OPTICS EXPRESS
LA English
DT Article
ID MICROSCOPY; RESOLUTION; OPTICS
AB Focusing efficiency of Fresnel zone plates (FZPs) for X-rays depends on zone height, while the achievable spatial resolution depends on the width of the finest zones. FZPs with optimal efficiency and sub-100-nm spatial resolution require high aspect ratio structures which are difficult to fabricate with current technology especially for the hard X-ray regime. A possible solution is to stack several zone plates. To increase the number of FZPs within one stack, we first demonstrate intermediate-field stacking and apply this method by stacks of up to five FZPs with adjusted diameters. Approaching the respective optimum zone height, we maximized efficiencies for high resolution focusing at three different energies, 10, 11.8, and 25 keV. (C)2014 Optical Society of America
C1 [Gleber, Sophie-Charlotte; Wojcik, Michael; Liu, Jie; Roehrig, Chris; Cummings, Marvin; Vila-Comamala, Joan; Lai, Barry; Shu, Deming; Vogt, Stefan] Argonne Natl Lab, Argonne, IL 60439 USA.
[Li, Kenan] Northwestern Univ, Evanston, IL 60208 USA.
RP Gleber, SC (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM gleber@aps.anl.gov
RI Vila-Comamala, Joan/E-2106-2017
FU U.S. Department of Energy (DOE) Office of Science; U.S. DOE
[DE-AC02-06CH11357]
FX We would like to acknowledge Liliana Stan, Leonidas E. Ocola and Ed
Wrobel with their assistance during the research presented. Data was
collected on beamlines 2-ID-D and 2-ID-E at the Advanced Photon Source,
Argonne National Laboratory. Use of the Advanced Photon Source, an
Office of Science User Facility operated for the U.S. Department of
Energy (DOE) Office of Science by Argonne National Laboratory, and
Center for Nanoscale Materials was supported by the U.S. DOE under
Contract No. DE-AC02-06CH11357.
NR 27
TC 8
Z9 8
U1 0
U2 9
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD NOV 17
PY 2014
VL 22
IS 23
BP 28142
EP 28153
DI 10.1364/OE.22.028142
PG 12
WC Optics
SC Optics
GA AT9TI
UT WOS:000345268500035
PM 25402054
ER
PT J
AU Huang, ZX
Droulias, S
Koschny, T
Soukoulis, CM
AF Huang, Zhixiang
Droulias, Sotiris
Koschny, Thomas
Soukoulis, Costas M.
TI Mechanism of the metallic metamaterials coupled to the gain material
SO OPTICS EXPRESS
LA English
DT Article
ID INDEX
AB We present evidence of strong coupling between the gain material and the metallic metamaterials. It is of vital importance to understand the mechanism of the coupling of metamaterials with the gain medium. Using a four-level gain system, the numerical pump-probe experiments are performed in several configurations (split-ring resonators (SRRs), inverse SRRs and fishnets) of metamaterials, demonstrating reduction of the resonator damping in all cases and hence the possibility for loss compensation. We find that the differential transmittance Delta T/T can be negative in different SRR configurations, such as SRRs on the top of the gain substrate, gain in the SRR gap and gain covering the SRR structure, while in the fishnet metamaterial with gain Delta T/T is positive. (C) 2014 Optical Society of America
C1 [Huang, Zhixiang; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Huang, Zhixiang; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Huang, Zhixiang] Anhui Univ, Key Lab Intelligent Comp & Signal Proc, Hefei 230039, Peoples R China.
[Droulias, Sotiris; Soukoulis, Costas M.] FORTH, Inst Elect Struct & Laser, Iraklion 71110, Greece.
RP Droulias, S (reprint author), FORTH, Inst Elect Struct & Laser, Iraklion 71110, Greece.
EM sdroulias@iesl.forth.gr
RI Huang, Zhixiang/C-3416-2014; Soukoulis, Costas/A-5295-2008
OI Huang, Zhixiang/0000-0002-8023-9075;
FU U.S. Dept. of Energy, Basic Energy Science, Materials Science and
Engineering [DE-AC02-07CH11358]; European Research Council under the ERC
Advanced Grant [320081]
FX Work at Ames Lab was partially supported by the U.S. Dept. of Energy,
Basic Energy Science, Materials Science and Engineering, Contract no.
DE-AC02-07CH11358. Simulation work at FORTH (theory) was supported by
the European Research Council under the ERC Advanced Grant no. 320081
(PHOTOMETA).
NR 22
TC 3
Z9 3
U1 2
U2 42
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD NOV 17
PY 2014
VL 22
IS 23
BP 28596
EP 28605
DI 10.1364/OE.22.028596
PG 10
WC Optics
SC Optics
GA AT9TI
UT WOS:000345268500082
PM 25402101
ER
PT J
AU Demos, SG
Ehnnann, PR
Qiu, SR
Schaffers, KI
Suratwala, TI
AF Demos, Stavros G.
Ehnnann, Paul R.
Qiu, S. Roger
Schaffers, Kathleen I.
Suratwala, Tayyab I.
TI Dynamics of defects in Ce3+ doped silica affecting its performance as
protective filter in ultraviolet high-power lasers
SO OPTICS EXPRESS
LA English
DT Article
ID SPECTROSCOPIC PROPERTIES; PHOSPHATE-GLASSES; CERIUM; ABSORPTION;
FLUORESCENCE; EFFICIENT; BORATE
AB We investigate defects forming in Ce3+-doped fused silica samples following exposure to nanosecond ultraviolet laser pulses and their relaxation as a function of time and exposure to low intensity light at different wavelengths. A subset of these defects are responsible for inducing absorption in the visible and near infrared spectral range, which is of critical importance for the use of this material as ultraviolet light absorbing filter in high power laser systems. The dependence of the induced absorption as a function of laser fluence and methods to most efficiently mitigate this effect are presented. Experiments simulating the operation of the material as a UV protection filter for high power laser systems were performed in order to determine limitations and practical operational conditions. (C) 2014 Optical Society of America
C1 [Demos, Stavros G.; Ehnnann, Paul R.; Qiu, S. Roger; Schaffers, Kathleen I.; Suratwala, Tayyab I.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Demos, SG (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA.
EM demos1@llnl.gov
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344, LLNL-JRNL-439171]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. LLNL-JRNL-439171. We thank Raluca A. Negres and Mary
A. Norton for helping with execution of experiments. The authors also
wish to acknowledge Asahi Glass Company (AGC) and Heraeus Quartz America
for contributing the Ce:Silica glass samples that were studied in this
work.
NR 24
TC 3
Z9 3
U1 4
U2 19
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD NOV 17
PY 2014
VL 22
IS 23
BP 28798
EP 28809
DI 10.1364/OE.22.028798
PG 12
WC Optics
SC Optics
GA AT9TI
UT WOS:000345268500100
PM 25402119
ER
PT J
AU Liao, ZM
Raymond, B
Gaylord, J
Fallejo, R
Bude, J
Wegner, P
AF Liao, Zhi M.
Raymond, B.
Gaylord, J.
Fallejo, R.
Bude, J.
Wegner, P.
TI Damage modeling and statistical analysis of optics damage performance in
MJ-class laser systems
SO OPTICS EXPRESS
LA English
DT Article
ID FUSED-SILICA OPTICS; GROWTH; NIF; MITIGATION
AB Modeling the lifetime of a fused silica optic is described for a multiple beam, MJ-class laser system. This entails combining optic processing data along with laser shot data to account for complete history of optic processing and shot exposure. Integrating with online inspection data allows for the construction of a performance metric to describe how an optic performs with respect to the model. This methodology helps to validate the damage model as well as allows strategic planning and identifying potential hidden parameters that are affecting the optic's performance. (C) 2014 Optical Society of America
C1 [Liao, Zhi M.; Raymond, B.; Gaylord, J.; Fallejo, R.; Bude, J.; Wegner, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Liao, ZM (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
EM zman@llnl.gov
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; LLNL office of LDRD [LLNL-JRNL-660594]
FX The authors would like to acknowledge our wonderful colleagues at NIF
for their contributions: Kris Fury for editing, T. Suratwala, M.
Nostrand, P. Whitman for helpful discussions; W. Carr, D. Cross, M.
Negres, M. Norton, and OSL team for all the offline damage data and
rules that are the heart of the damage model, and finally M. Spaeth for
setting us on this path so many years ago. This work is performed under
the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344 and funded through
LLNL office of LDRD. (LLNL-JRNL-660594)
NR 20
TC 6
Z9 7
U1 0
U2 16
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD NOV 17
PY 2014
VL 22
IS 23
BP 28845
EP 28856
DI 10.1364/OE.22.028845
PG 12
WC Optics
SC Optics
GA AT9TI
UT WOS:000345268500105
PM 25402124
ER
PT J
AU Eftink, BP
Mara, NA
Kingstedt, OT
Safarik, DJ
Lambros, J
Robertson, IM
AF Eftink, B. P.
Mara, N. A.
Kingstedt, O. T.
Safarik, D. J.
Lambros, J.
Robertson, I. M.
TI Anomalous deformation twinning in coarse-grained Cu in Ag60Cu40
composites under high strain-rate compressive loading
SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
MICROSTRUCTURE AND PROCESSING
LA English
DT Article
DE Twinning; Copper; Silver; Slip
ID ROOM-TEMPERATURE; EUTECTIC ALLOY; FCC METALS; COPPER; AG; SLIP;
INTERFACES; STRENGTH; BOUNDARIES; LAMELLAE
AB The deformation response of a directionally solidified Ag60Cu40 eutectic alloy with a cube-on-cube orientation relationship between Ag and Cu subjected to high strain-rate 10(3) s(-1) compressive loading was examined. Loading at 45 degrees and 90 degrees to the growth axis, near [001] and [11 (1) over bar] local crystal orientations, respectively, resulted in deformation twinning and dislocation slip in both Ag and Cu under conditions where deformation twinning would not normally be expected in Cu. In contrast, loading at 0 degrees and 90 degrees to the growth axis, near < 101 > local crystal orientations, resulted in the primary deformation mode being dislocation slip. These results are interpreted in terms of the influence of loading axis with respect to the local crystal orientation in the directionally solidified alloy and on slip transmission from Ag into Cu. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Eftink, B. P.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA.
[Mara, N. A.] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA.
[Kingstedt, O. T.; Lambros, J.] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA.
[Safarik, D. J.] Los Alamos Natl Lab, MST 6, Los Alamos, NM 87545 USA.
[Robertson, I. M.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA.
RP Eftink, BP (reprint author), Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA.
EM beftink2@illinois.edu
RI Mara, Nathan/J-4509-2014;
OI Safarik, Douglas/0000-0001-8648-9377
FU National Nuclear Security Administration of the Department of Energy
[DE-FG52-09NA29463]; National Nuclear Security Administration of the
U.S. Department of Energy [DE-AC52-06NA25396]
FX This work was performed, in part, at the University of Illinois
Urbana-Champaign by a grant from the National Nuclear Security
Administration of the Department of Energy under contract
DE-FG52-09NA29463. This work was also performed, in part, at the Center
for Integrated Nanotechnologies, an Office of Science User Facility
operated for the U.S. Department of Energy (DOE) Office of Science. Los
Alamos National Laboratory, an affirmative action equal opportunity
employer, is operated by Los Alamos National Security, LLC, for the
National Nuclear Security Administration of the U.S. Department of
Energy under contract DE-AC52-06NA25396. Compression testing assistance
was provided by the Advanced Materials Testing and Evolution Laboratory
(AMTEL) through Dr. Gavin Horn, Fire Service Institute, University of
Illinois at Urbana-Champaign. Electron Microscopy was carried out in the
Frederick Seitz Materials Research Laboratory Central Facilities at the
University of Illinois in addition to the Electron Microscopy Laboratory
at Los Alamos National Laboratory.
NR 39
TC 4
Z9 4
U1 3
U2 18
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5093
EI 1873-4936
J9 MAT SCI ENG A-STRUCT
JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
PD NOV 17
PY 2014
VL 618
BP 254
EP 261
DI 10.1016/j.msea.2014.08.082
PG 8
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA AS7MG
UT WOS:000344439500031
ER
PT J
AU Stinson, JL
Kathmann, SM
Ford, IJ
AF Stinson, Jake L.
Kathmann, Shawn M.
Ford, Ian J.
TI Dynamical consequences of a constraint on the Langevin thermostat in
molecular cluster simulation
SO MOLECULAR PHYSICS
LA English
DT Article
DE Langevin thermostat; small system; constraints
AB We investigate some unusual behaviour observed while performing molecular dynamics simulations of small molecular clusters using a constrained Langevin thermostat. Atoms appear to be thermalised to different temperatures that depend on their mass and on the total number of particles in the system. The deviation from the zeroth law of thermodynamics can be considerable for small systems of heavy and light particles. We trace this behaviour to the absence of thermal noise acting on the centre of mass of the system. This is demonstrated by solving the stochastic dynamics for the constrained thermostat and comparing the results with simulation data. By removing the constraint, the Langevin thermostat may be restored to its intended behaviour. We also investigate a Langevin thermostat constrained to have zero total force acting on its centre of mass, and find similar deficiencies.
C1 [Stinson, Jake L.; Ford, Ian J.] UCL, Dept Phys & Astron, London, England.
[Stinson, Jake L.; Ford, Ian J.] UCL, London Ctr Nanotechnol, London, England.
[Kathmann, Shawn M.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA.
RP Stinson, JL (reprint author), UCL, Dept Phys & Astron, London, England.
EM j.stinson@ucl.ac.uk
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Chemical Sciences, Geosciences, and Biosciences; Pacific Northwest
National Laboratory; IMPACT scheme at University College London
FX We thank Ilian Todorov for assistance and comments. S. M. Kathmann was
supported by the U.S. Department of Energy, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.
J.L. Stinson acknowledges Pacific Northwest National Laboratory and the
IMPACT scheme at University College London for funding. We thank an
anonymous referee for drawing our attention to the use of Gauss'
principle of least constraint.
NR 6
TC 0
Z9 0
U1 0
U2 4
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0026-8976
EI 1362-3028
J9 MOL PHYS
JI Mol. Phys.
PD NOV 17
PY 2014
VL 112
IS 22
BP 2920
EP 2923
DI 10.1080/00268976.2014.917732
PG 4
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AT9UU
UT WOS:000345272700005
ER
PT J
AU Hagos, S
Feng, Z
Burleyson, CD
Lim, KSS
Long, CN
Wu, D
Thompson, G
AF Hagos, Samson
Feng, Zhe
Burleyson, Casey D.
Lim, Kyo-Sun Sunny
Long, Charles N.
Wu, Di
Thompson, Greg
TI Evaluation of convection-permitting model simulations of cloud
populations associated with the Madden-Julian Oscillation using data
collected during the AMIE/DYNAMO field campaign
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE dynamo; cold pools; s-pol radar; cloud permitting; tropical convection;
Madden-Julian oscillation
ID MICROPHYSICS PARAMETERIZATION; PART I; RESOLVING MODEL; CLIMATE MODELS;
RADAR; PRECIPITATION; ORGANIZATION; EXPLICIT; SCHEME; SNOW
AB Regional convection-permitting model simulations of cloud populations observed during the 2011 Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation Investigation Experiment/Dynamics of the Madden-Julian Oscillation Experiment (AMIE/DYNAMO) field campaign are evaluated against ground-based radar and ship-based observations. Sensitivity of model simulated reflectivity, surface rain rate, and cold pool statistics to variations of raindrop breakup/self-collection parameters in four state-of-the-art two-moment bulk microphysics schemes in the Weather Research and Forecasting (WRF) model is examined. The model simulations generally overestimate reflectivity from large and deep convective cells, and underestimate stratiform rain and the frequency of cold pools. In the sensitivity experiments, introduction of more aggressive raindrop breakup or decreasing the self-collection efficiency increases the cold pool occurrence frequency in all of the simulations, and slightly reduces the reflectivity and precipitation statistics bias in some schemes but has little effect on the overall mean surface precipitation. Both the radar observations and model simulations of cloud populations show an approximate power law relationship between convective echo-top height and equivalent convective cell radius.
C1 [Hagos, Samson; Feng, Zhe; Burleyson, Casey D.; Lim, Kyo-Sun Sunny; Long, Charles N.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Wu, Di] NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Processes Lab, Greenbelt, MD 20771 USA.
[Wu, Di] Sci Syst & Applicat Inc, Lanham, MD USA.
[Thompson, Greg] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
RP Hagos, S (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM samson.hagos@pnnl.gov
RI Lim, Kyo-Sun/I-3811-2012; Burleyson, Casey/F-1833-2016; Feng,
Zhe/E-1877-2015
OI Burleyson, Casey/0000-0001-6218-9361; Feng, Zhe/0000-0002-7540-9017
FU Office of Biological and Environmental Research of the U.S. Department
of Energy (DOE) as part of the Regional and Global Climate Modeling
Program; Office of Biological and Environmental Research of the U.S.
Department of Energy (DOE) as part of the Atmospheric System Research
Program; DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830]
FX The authors thank Yun Qian for his comments and suggestions. The data
for this paper are available at NCAR's Earth Observing Laboratory's
DYNAMO Data Catalogue https://www.eol.ucar.edu/field_projects/dynamo.
The data set names are, R/V Roger Revelle Flux, Near-Surface
Meteorology, and Navigation Data and S-PolKa Radar, fully corrected,
merged, final moments data in cfRadial format. The S-Polka data were
regridded by Stacy Brodzik (brodzik@atmos.washington.edu) at the
University of Washington. This research is based on work supported by
the Office of Biological and Environmental Research of the U.S.
Department of Energy (DOE) as part of the Regional and Global Climate
Modeling Program and Atmospheric System Research Program. Computing
resources for the simulations are provided by the National Energy
Research Scientific Computing Center (NERSC) and Oak Ridge Leadership
Computing Facility (OLCF). The Pacific Northwest National Laboratory is
operated for DOE by Battelle Memorial Institute under contract
DE-AC06-76RLO 1830.
NR 39
TC 11
Z9 11
U1 2
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD NOV 16
PY 2014
VL 119
IS 21
BP 12052
EP 12068
DI 10.1002/2014JD022143
PG 17
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA AU6EQ
UT WOS:000345696600031
ER
PT J
AU Niemann, C
Gekelman, W
Constantin, CG
Everson, ET
Schaeffer, DB
Bondarenko, AS
Clark, SE
Winske, D
Vincena, S
Van Compernolle, B
Pribyl, P
AF Niemann, C.
Gekelman, W.
Constantin, C. G.
Everson, E. T.
Schaeffer, D. B.
Bondarenko, A. S.
Clark, S. E.
Winske, D.
Vincena, S.
Van Compernolle, B.
Pribyl, P.
TI Observation of collisionless shocks in a large current-free laboratory
plasma
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID EXPANSION; DESIGN
AB We report the first measurements of the formation and structure of a magnetized collisionless shock by a laser-driven magnetic piston in a current-free laboratory plasma. This new class of experiments combines a high-energy laser system and a large magnetized plasma to transfer energy from a laser plasma plume to the ambient ions through collisionless coupling, until a self-sustained M-A similar to 2 magnetosonic shock separates from the piston. The ambient plasma is highly magnetized, current free, and large enough (17 m x 0.6 m) to support Alfven waves. Magnetic field measurements of the structure and evolution of the shock are consistent with two-dimensional hybrid simulations, which show Larmor coupling between the debris and ambient ions and the presence of reflected ions, which provide the dissipation. The measured shock formation time confirms predictions from computational work.
C1 [Niemann, C.; Gekelman, W.; Constantin, C. G.; Everson, E. T.; Schaeffer, D. B.; Bondarenko, A. S.; Clark, S. E.; Vincena, S.; Van Compernolle, B.; Pribyl, P.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Winske, D.] Los Alamos Natl Lab, Los Alamos, NM USA.
RP Niemann, C (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
EM cniemann@ucla.edu
OI Van Compernolle, Bart/0000-0002-5853-6233
FU Defense Threat Reduction Agency [HDTRA1-12-1-0024]; DOE Office of
Science Early Career Research Program [E-FOA-0000395]; DOE/NSF
FX This work was supported by the Defense Threat Reduction Agency under
contract HDTRA1-12-1-0024 and the DOE Office of Science Early Career
Research Program (E-FOA-0000395). The experiments were performed at the
UCLA Basic Plasma Science Facility (BaPSF) supported by DOE/NSF.
NR 23
TC 10
Z9 10
U1 1
U2 20
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD NOV 16
PY 2014
VL 41
IS 21
BP 7413
EP 7418
DI 10.1002/2014GL061820
PG 6
WC Geosciences, Multidisciplinary
SC Geology
GA AU3MT
UT WOS:000345518300001
ER
PT J
AU Airapetian, A
Akopov, N
Akopov, Z
Augustyniak, W
Avetissian, A
Blok, HP
Borissov, A
Bryzgalov, V
Capiluppi, M
Capitani, GP
Cisbani, E
Ciullo, G
Contalbrigo, M
Dalpiaz, PF
Deconinck, W
De Leo, R
De Sanctis, E
Diefenthaler, M
Di Nezza, P
Duren, M
Ehrenfried, M
Elbakian, G
Ellinghaus, F
Etzelmuller, E
Fabbri, R
Felawka, L
Frullani, S
Gabbert, D
Gapienko, G
Gapienko, V
Garibaldi, F
Gavrilov, G
Gharibyan, V
Hartig, M
Hasch, D
Holler, Y
Hristova, I
Ivanilov, A
Jackson, HE
Joosten, S
Kaiser, R
Karyan, G
Keri, T
Kinney, E
Kisselev, A
Korotkov, V
Kozlov, V
Kravchenko, P
Krivokhijine, VG
Lagamba, L
Lapikas, L
Lehmann, I
Lenisa, P
Lorenzon, W
Ma, BQ
Mahon, D
Manaenkov, SI
Mao, Y
Marianski, B
Marukyan, H
Movsisyan, A
Murray, M
Naryshkin, Y
Nass, A
Nowak, WD
Pappalardo, LL
Perez-Benito, R
Petrosyan, A
Reimer, PE
Reolon, AR
Riedl, C
Rith, K
Rostomyan, A
Ryckbosch, D
Schafer, A
Schnell, G
Schuller, KP
Seitz, B
Shibata, TA
Stahl, M
Stancari, M
Statera, M
Steffens, E
Steijger, JJM
Taroian, S
Terkulov, A
Truty, R
Trzcinski, A
Tytgat, M
Van Haarlem, Y
VanHulse, C
Vikhrov, V
Vilardi, I
Wang, S
Yaschenko, S
Yen, S
Zeiler, D
Zihlmann, B
Zupranski, P
AF Airapetian, A.
Akopov, N.
Akopov, Z.
Augustyniak, W.
Avetissian, A.
Blok, H. P.
Borissov, A.
Bryzgalov, V.
Capiluppi, M.
Capitani, G. P.
Cisbani, E.
Ciullo, G.
Contalbrigo, M.
Dalpiaz, P. F.
Deconinck, W.
De Leo, R.
De Sanctis, E.
Diefenthaler, M.
Di Nezza, P.
Dueren, M.
Ehrenfried, M.
Elbakian, G.
Ellinghaus, F.
Etzelmueller, E.
Fabbri, R.
Felawka, L.
Frullani, S.
Gabbert, D.
Gapienko, G.
Gapienko, V.
Garibaldi, F.
Gavrilov, G.
Gharibyan, V.
Hartig, M.
Hasch, D.
Holler, Y.
Hristova, I.
Ivanilov, A.
Jackson, H. E.
Joosten, S.
Kaiser, R.
Karyan, G.
Keri, T.
Kinney, E.
Kisselev, A.
Korotkov, V.
Kozlov, V.
Kravchenko, P.
Krivokhijine, V. G.
Lagamba, L.
Lapikas, L.
Lehmann, I.
Lenisa, P.
Lorenzon, W.
Ma, B. -Q.
Mahon, D.
Manaenkov, S. I.
Mao, Y.
Marianski, B.
Marukyan, H.
Movsisyan, A.
Murray, M.
Naryshkin, Y.
Nass, A.
Nowak, W. -D.
Pappalardo, L. L.
Perez-Benito, R.
Petrosyan, A.
Reimer, P. E.
Reolon, A. R.
Riedl, C.
Rith, K.
Rostomyan, A.
Ryckbosch, D.
Schaefer, A.
Schnell, G.
Schueller, K. P.
Seitz, B.
Shibata, T. -A.
Stahl, M.
Stancari, M.
Statera, M.
Steffens, E.
Steijger, J. J. M.
Taroian, S.
Terkulov, A.
Truty, R.
Trzcinski, A.
Tytgat, M.
Van Haarlem, Y.
VanHulse, C.
Vikhrov, V.
Vilardi, I.
Wang, S.
Yaschenko, S.
Yen, S.
Zeiler, D.
Zihlmann, B.
Zupranski, P.
TI Spin density matrix elements in exclusive omega electroproduction on H-1
and H-2 targets at 27.5 GeV beam energy
SO EUROPEAN PHYSICAL JOURNAL C
LA English
DT Article
ID VECTOR-MESON LEPTOPRODUCTION; VIRTUAL COMPTON-SCATTERING; PARTON
DISTRIBUTIONS; QCD
AB Exclusive electroproduction of. mesons on unpolarized hydrogen and deuterium targets is studied in the kinematic region of Q(2) > 1.0 GeV2, 3.0 GeV < W < 6.3 GeV, and -t ' < 0.2 GeV2. Results on the angular distribution of the omega meson, including its decay products, are presented. The data were accumulated with the HER-MES forward spectrometer during the 1996-2007 running period using the 27.6 GeV longitudinally polarized electron or positron beam of HERA. The determination of the virtual-photon longitudinal-to-transverse cross-section ratio reveals that a considerable part of the cross section arises from transversely polarized photons. Spin density matrix elements are presented in projections of Q(2) or -t '. Violation of s-channel helicity conservation is observed for some of these elements. Asizable contribution from unnatural-parity-exchange amplitudes is found and the phase shift between those amplitudes that describe transverse omega production by longitudinal and transverse virtual photons,gamma(L)* -> omega(T) and gamma(T)* -> omega(T), is determined for the first time. A hierarchy of helicity amplitudes is established, which mainly means that the unnatural-parity-exchange amplitude describing the gamma(T)* -> omega(T) transition dominates over the two natural-parity-exchange amplitudes describing the gamma(L)* -> omega(L) and gamma(T)* -> omega(T) transitions, with the latter two being of similar magnitude. Good agreement is found between the HERMES proton data and results of a pQCD-inspired phenomenological model that includes pion-pole contributions, which are of unnatural parity.
C1 [Jackson, H. E.; Reimer, P. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[De Leo, R.; Lagamba, L.; Vilardi, I.] Ist Nazl Fis Nucl, Sez Bari, I-70124 Bari, Italy.
[Ma, B. -Q.; Mao, Y.; Wang, S.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China.
[Schnell, G.; VanHulse, C.] Univ,Basque Country UPV EHU, Dept Theoret Phys, Bilbao 48080, Spain.
[Schnell, G.] Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain.
[Ellinghaus, F.; Kinney, E.] Univ Colorado, Nucl Phys Lab, Boulder, CO 80309 USA.
[Akopov, Z.; Borissov, A.; Deconinck, W.; Gavrilov, G.; Hartig, M.; Holler, Y.; Rostomyan, A.; Schueller, K. P.; Yaschenko, S.; Zihlmann, B.] DESY, D-22603 Hamburg, Germany.
[Fabbri, R.; Gabbert, D.; Hristova, I.; Nowak, W. -D.; Riedl, C.] DESY, D-15738 Zeuthen, Germany.
[Krivokhijine, V. G.] Joint Inst Nucl Res, Dubna 141980, Russia.
[Diefenthaler, M.; Nass, A.; Rith, K.; Steffens, E.; Yaschenko, S.; Zeiler, D.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany.
[Capiluppi, M.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Lenisa, P.; Movsisyan, A.; Pappalardo, L. L.; Stancari, M.; Statera, M.] Ist Nazl Fis Nucl, Sez Ferrara, I-44122 Ferrara, Italy.
[Capiluppi, M.; Ciullo, G.; Dalpiaz, P. F.; Lenisa, P.; Pappalardo, L. L.; Stancari, M.; Statera, M.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy.
[Capitani, G. P.; De Sanctis, E.; Di Nezza, P.; Hasch, D.; Reolon, A. R.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Joosten, S.; Ryckbosch, D.; Schnell, G.; Tytgat, M.; Van Haarlem, Y.; VanHulse, C.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium.
[Airapetian, A.; Dueren, M.; Ehrenfried, M.; Etzelmueller, E.; Keri, T.; Perez-Benito, R.; Stahl, M.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany.
[Kaiser, R.; Lehmann, I.; Mahon, D.; Murray, M.; Seitz, B.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland.
[Diefenthaler, M.; Joosten, S.; Riedl, C.; Truty, R.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Airapetian, A.; Lorenzon, W.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA.
[Kozlov, V.; Terkulov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia.
[Blok, H. P.; Lapikas, L.; Steijger, J. J. M.] Natl Inst Subat Phys Nikhef, NL-1009 DB Amsterdam, Netherlands.
[Gavrilov, G.; Kisselev, A.; Kravchenko, P.; Manaenkov, S. I.; Naryshkin, Y.; Vikhrov, V.] BP Konstantinov Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Regio, Russia.
[Bryzgalov, V.; Gapienko, G.; Gapienko, V.; Ivanilov, A.; Korotkov, V.] Inst High Energy Phys, Protvino 142281, Moscow Region, Russia.
[Schaefer, A.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany.
[Cisbani, E.; Frullani, S.; Garibaldi, F.] Ist Nazl Fis Nucl, Grp Collegato Sanita, I-00161 Rome, Italy.
[Cisbani, E.; Frullani, S.; Garibaldi, F.] Ist Super Sanita, I-00161 Rome, Italy.
[Felawka, L.; Gavrilov, G.; Yen, S.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan.
[Blok, H. P.] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands.
[Augustyniak, W.; Marianski, B.; Trzcinski, A.; Zupranski, P.] Natl Ctr Nucl Res, PL-00689 Warsaw, Poland.
[Akopov, N.; Avetissian, A.; Elbakian, G.; Gharibyan, V.; Karyan, G.; Marukyan, H.; Movsisyan, A.; Petrosyan, A.; Taroian, S.] Yerevan Phys Inst, Yerevan 375036, Armenia.
RP Airapetian, A (reprint author), Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany.
EM gunar.schnell@desy.de
RI Cisbani, Evaristo/C-9249-2011; Kozlov, Valentin/M-8000-2015; Terkulov,
Adel/M-8581-2015
OI Cisbani, Evaristo/0000-0002-6774-8473;
FU SCOAP3 / License Version CC BY 4.0
FX Funded by SCOAP3 / License Version CC BY 4.0.
NR 28
TC 9
Z9 9
U1 3
U2 11
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1434-6044
EI 1434-6052
J9 EUR PHYS J C
JI Eur. Phys. J. C
PD NOV 15
PY 2014
VL 74
IS 11
AR 3110
DI 10.1140/epjc/s10052-014-3110-1
PG 25
WC Physics, Particles & Fields
SC Physics
GA AX8OZ
UT WOS:000347169800001
ER
PT J
AU Cernuschi, F
Bison, P
Sun, JG
AF Cernuschi, F.
Bison, P.
Sun, J. G.
TI Thermal diffusivity of TBC: Results of a small round robin test and
considerations about the effect of the surface preparation and the
measuring approach
SO SURFACE & COATINGS TECHNOLOGY
LA English
DT Article
DE Thermal barrier coatings; Thermal diffusivity; Blackening layer;
Thermographic technique
ID SPRAYED ZIRCONIA COATINGS; BARRIER COATINGS; MICROSTRUCTURAL
CHARACTERIZATION; THERMOPHYSICAL PROPERTIES; HEAT-TREATMENT; LASER
FLASH; CONDUCTIVITY
AB Among the techniques used to measure the thermal diffusivity of TBC, the Laser Flash is a standard. Nonetheless, this technique shows two main limitations related to the size and the well-defined geometry of the specimens. Furthermore the most reliable data can be typically obtained only on freestanding coatings. On the contrary, other photothermal and thermographic techniques in reflection configuration (the same side is heated and temperature detected) can overcome these limitations. One aspect, only partially studied in the literature, is common to most of the photothermal and thermographic techniques. It concerns the effect of the blackening coating used for guaranteeing the absorption of the heating radiation just within a very shallow outer layer and to make opaque the TBC in the sensitivity range of the IR detector/camera.
For this purpose, an inter-laboratory round robin has been promoted for comparing the thermal diffusivity in dependency of the blackening layer deposition technique, the TBC microstructure (in particular porous APS, columnar EB-PVD and PS-PVD (TM)) and the three different experimental set-ups in terms of spectral range and frame rate of the IR cameras, heating source and data reduction. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Cernuschi, F.] RSE, I-20134 Milan, Italy.
[Bison, P.] CNR ITC, I-35127 Padua, Italy.
[Sun, J. G.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Cernuschi, F (reprint author), RSE, Via Rubattino 54, I-20134 Milan, Italy.
EM federico.cernuschi@rse-web.it
OI Bison, Paolo/0000-0002-8984-1994
FU RSE; Ministry of Economic Development - General Directorate for Nuclear
Energy, Renewable Energy and Energy Efficiency; U.S. Department of
Energy, Office of Fossil Energy, Advanced Research and Technology
Development/Materials Program; EU [AST4-CT-2005-516149]
FX The work at RSE has been partially financed by the Research Fund for the
Italian Electrical System under the Contract Agreement between RSE
(formerly known as ERSE) and the Ministry of Economic Development -
General Directorate for Nuclear Energy, Renewable Energy and Energy
Efficiency stipulated on July 29, 2009 in compliance with the Decree of
March 19, 2009.; The work at Argonne was sponsored by the U.S.
Department of Energy, Office of Fossil Energy, Advanced Research and
Technology Development/Materials Program.; Some samples used within this
work have been manufactured in the frame of the EU project TOPPCOAT
Project No. AST4-CT-2005-516149.
NR 42
TC 3
Z9 3
U1 2
U2 16
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0257-8972
J9 SURF COAT TECH
JI Surf. Coat. Technol.
PD NOV 15
PY 2014
VL 258
BP 284
EP 292
DI 10.1016/j.surfcoat.2014.09.011
PG 9
WC Materials Science, Coatings & Films; Physics, Applied
SC Materials Science; Physics
GA AX4HW
UT WOS:000346895000035
ER
PT J
AU Nordhorn, C
Mucke, R
Unocic, KA
Lance, MJ
Pint, BA
Vassen, R
AF Nordhorn, Christian
Muecke, Robert
Unocic, Kinga A.
Lance, Michael J.
Pint, Bruce A.
Vassen, Robert
TI Effects of thermal cycling parameters on residual stresses in alumina
scales of CoNiCrAlY and NiCoCrAlY bond coats
SO SURFACE & COATINGS TECHNOLOGY
LA English
DT Article
DE Photo-stimulated luminescence-spectroscopy; Thermally grown oxide;
MCrAlY bond coats; Finite-element analysis; Mechanical stress
ID BARRIER COATINGS; WATER-VAPOR; PHOTOLUMINESCENCE PIEZOSPECTROSCOPY;
OXIDATION BEHAVIOR; GROWN OXIDE; SYSTEMS; TBCS; DURABILITY; MECHANISMS;
LIFETIME
AB Furnace cycling experiments were performed on free-standing high-velocity oxygen-fuel bond coat samples to investigate the effect of material composition, surface texture, and cycling conditions on the average stresses in the formed oxide scales after cooling. The oxide scale thicknesses were determined by SEM image analyses and information about the stresses were acquired by photo-stimulated luminescence-spectroscopy. Additionally, the scale thickness dependent stress fields were calculated in finite-element analyses including approximation functions for the surface roughness derived on the basis of profilometry data. The evolution of the average residual stress as a function of oxide scale thickness was subject to stochastic fluctuations predominantly caused by local scale spallations. In comparison to the supplemental modeling results, thermal stresses due to mismatch of thermal expansion coefficients are identified as the main contribution to the residual stresses. The theoretical results emphasize that analyses of spectroscopic data acquired for average stress investigations of alumina scales rely on detailed information about microstructural features. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Nordhorn, Christian; Muecke, Robert; Vassen, Robert] Forschungszentrum Julich, IEK 1, D-52428 Julich, Germany.
[Unocic, Kinga A.; Lance, Michael J.; Pint, Bruce A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Nordhorn, C (reprint author), Forschungszentrum Julich, IEK 1, Wilhelm Johnen Str, D-52428 Julich, Germany.
EM c.nordhorn@fz-juelich.de
RI Pint, Bruce/A-8435-2008; Lance, Michael/I-8417-2016
OI Pint, Bruce/0000-0002-9165-3335; Lance, Michael/0000-0001-5167-5452
FU U.S. Department of Energy, Office of Coal and Power R&D, Office of
Fossil Energy
FX The authors gratefully acknowledge the support of D. Sebold for SEM work
at Julich, G.W. Garner at ORNL for assistance with the thermal cycling
experiments, and T.M. Lowe and T. Jordan for assistance with the
experimental work at ORNL. The experimental work at ORNL was supported
by the U.S. Department of Energy, Office of Coal and Power R&D, Office
of Fossil Energy.
NR 29
TC 2
Z9 2
U1 4
U2 30
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0257-8972
J9 SURF COAT TECH
JI Surf. Coat. Technol.
PD NOV 15
PY 2014
VL 258
BP 608
EP 614
DI 10.1016/j.surfcoat.2014.08.028
PG 7
WC Materials Science, Coatings & Films; Physics, Applied
SC Materials Science; Physics
GA AX4HW
UT WOS:000346895000074
ER
PT J
AU Tripathy, PK
Wurth, LA
Dufek, EJ
Gutknecht, TY
Gese, NJ
Hahn, PA
Frank, SM
Fredrickson, GL
Herring, JS
AF Tripathy, Prabhat K.
Wurth, Laura A.
Dufek, Eric J.
Gutknecht, Toni Y.
Gese, Natalie J.
Hahn, Paula A.
Frank, Steven M.
Fredrickson, Guy L.
Herring, J. Stephen
TI Aluminum electroplating on steel from a fused bromide electrolyte
SO SURFACE & COATINGS TECHNOLOGY
LA English
DT Article
DE Bromide plating bath; Functional electrolyte; Aluminum electro-coating;
Current density; Coating morphology
ID MOLTEN-SALT; CORROSION-RESISTANCE; STAINLESS-STEEL; ELECTRODEPOSITION;
ALCL3-NACL-KCL; DEPOSITION; SUBSTRATE; CHLORIDE; SURFACE; FILMS
AB A quaternary bromide bath (LiBr-KBr-CsBr-AlBr3) was used to electro-coat aluminum on steel substrates. The electrolyte was prepared by the addition of AlBr3 into the eutectic LiBr-KBr-CsBr melt. A smooth, thick, adherent and shiny aluminum coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminum coverage. Both salt immersion and open circuit potential measurement suggested that the coatings did display a good corrosion-resistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminum coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminum coating on both ferrous and non-ferrous metals, including complex surfaces/geometries. Published by Elsevier B.V.
C1 [Tripathy, Prabhat K.; Gese, Natalie J.; Frank, Steven M.; Fredrickson, Guy L.] Idaho Natl Lab, Separat Dept, Nucl Sci & Technol Directorate, Idaho Falls, ID 83415 USA.
[Wurth, Laura A.] ZAF Energy Syst Inc, Columbia Falls, MT 59912 USA.
[Dufek, Eric J.] Idaho Natl Lab, Biol & Chem Proc Dept, Energy & Environm Sci & Technol Directorate, Idaho Falls, ID 83415 USA.
[Gutknecht, Toni Y.] Chalmers, S-41296 Gothenburg, Sweden.
[Hahn, Paula A.] Idaho Natl Lab, Chem & Radiat Measurement Dept, Energy & Environm Sci & Technol Directorate, Idaho Falls, ID 83415 USA.
[Herring, J. Stephen] Idaho Natl Lab, Nucl Sci & Technol Directorate, Nucl & Sci Engn Dept, Idaho Falls, ID 83415 USA.
RP Tripathy, PK (reprint author), Idaho Natl Lab, Separat Dept, Nucl Sci & Technol Directorate, POB 1625, Idaho Falls, ID 83415 USA.
EM Prabhat.Tripathy@inl.gov
RI Dufek, Eric/B-8847-2017; Frank, Steven/B-9046-2017
OI Dufek, Eric/0000-0003-4802-1997; Frank, Steven/0000-0001-8259-6722
FU Idaho National Laboratory Directed Research and Development Program
under DOE Idaho Operations Office; US Department of Energy
[DE-AC07-05ID14517]
FX The authors gratefully acknowledge the Idaho National Laboratory
Directed Research and Development Program under DOE Idaho Operations
Office for supporting the present research and development program. The
manuscript was authorized by Battelle Energy Alliances under the
contract No. DE-AC07-05ID14517, with the US Department of Energy, for
publication. The US government retains and the publisher, by accepting
the manuscript for publication, acknowledges that the US government
retains a non-exclusive, paid up irrevocable worldwide license to
publish or reproduce the published form of this manuscript or allow
others to do so for United States Government purposes.
NR 36
TC 0
Z9 0
U1 4
U2 22
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0257-8972
J9 SURF COAT TECH
JI Surf. Coat. Technol.
PD NOV 15
PY 2014
VL 258
BP 652
EP 663
DI 10.1016/j.surfcoat.2014.08.021
PG 12
WC Materials Science, Coatings & Films; Physics, Applied
SC Materials Science; Physics
GA AX4HW
UT WOS:000346895000080
ER
PT J
AU Garcin, E
Seeger, F
Quintyn, R
Tanimoto, A
Williams, G
Tainer, J
Wysocki, V
AF Garcin, Elsa
Seeger, Franziska
Quintyn, Royston
Tanimoto, Akiko
Williams, Gareth
Tainer, John
Wysocki, Vicki
TI Interfacial residues promote an optimal alignment of the catalytic
center in soluble guanylate cyclase
SO NITRIC OXIDE-BIOLOGY AND CHEMISTRY
LA English
DT Meeting Abstract
DE Soluble guanylate cyclase; Enzyme mechanism; Regulation; X-ray
crystallography; Conformational changes; Domain-domain interactions
C1 [Garcin, Elsa; Seeger, Franziska] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA.
[Quintyn, Royston; Tanimoto, Akiko; Wysocki, Vicki] Ohio State Univ, Columbus, OH 43210 USA.
[Williams, Gareth] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
NR 0
TC 0
Z9 0
U1 0
U2 2
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 1089-8603
EI 1089-8611
J9 NITRIC OXIDE-BIOL CH
JI Nitric Oxide-Biol. Chem.
PD NOV 15
PY 2014
VL 42
MA 2012-1
BP 112
EP 112
DI 10.1016/j.niox.2014.09.042
PG 1
WC Biochemistry & Molecular Biology; Cell Biology
SC Biochemistry & Molecular Biology; Cell Biology
GA AU7XZ
UT WOS:000345812900049
ER
PT J
AU Garcin, E
Seeger, F
Quintyn, R
Tanimoto, A
Williams, G
Tainer, J
Wysocki, V
AF Garcin, Elsa
Seeger, Franziska
Quintyn, Royston
Tanimoto, Akiko
Williams, Gareth
Tainer, John
Wysocki, Vicki
TI Interfacial residues promote an optimal alignment of the catalytic
center in soluble guanylate cyclase
SO NITRIC OXIDE-BIOLOGY AND CHEMISTRY
LA English
DT Meeting Abstract
DE Soluble guanylate cyclase; Enzyme mechanism; Regulation; X-ray
crystallography; Conformational changes; Domain-domain interactions
C1 [Garcin, Elsa; Seeger, Franziska] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA.
[Quintyn, Royston; Tanimoto, Akiko; Wysocki, Vicki] Ohio State Univ, Columbus, OH 43210 USA.
[Williams, Gareth] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
NR 0
TC 0
Z9 0
U1 0
U2 1
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 1089-8603
EI 1089-8611
J9 NITRIC OXIDE-BIOL CH
JI Nitric Oxide-Biol. Chem.
PD NOV 15
PY 2014
VL 42
MA P216
BP 152
EP 153
DI 10.1016/j.niox.2014.09.156
PG 2
WC Biochemistry & Molecular Biology; Cell Biology
SC Biochemistry & Molecular Biology; Cell Biology
GA AU7XZ
UT WOS:000345812900163
ER
PT J
AU Krot, AN
Nagashima, K
Wasserburg, GJ
Huss, GR
Papanastassiou, D
Davis, AM
Hutcheon, ID
Bizzarro, M
AF Krot, Alexander N.
Nagashima, Kazuhide
Wasserburg, Gerald J.
Huss, Gary R.
Papanastassiou, Dimitri
Davis, Andrew M.
Hutcheon, Ian D.
Bizzarro, Martin
TI Calcium-aluminum-rich inclusions with fractionation and unknown nuclear
effects (FUN CAIs): I. Mineralogy, petrology, and oxygen isotopic
compositions
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID UNUSUAL ALLENDE INCLUSION; EARLY SOLAR-SYSTEM; REFRACTORY INCLUSIONS;
CARBONACEOUS CHONDRITES; PROTOPLANETARY DISK; MELILITE CRYSTALS;
TRACE-ELEMENT; CV3 CHONDRITE; HETEROGENEOUS DISTRIBUTION; CAAL2SI2O8
POLYMORPHS
AB We present a detailed characterization of the mineralogy, petrology, and oxygen isotopic compositions of twelve FUN CAIs, including C1 and EK1-4-1 from Allende (CV), that were previously shown to have large isotopic fractionation patterns for magnesium and oxygen, and large isotopic anomalies of several elements. The other samples show more modest patterns of isotopic fractionation and have smaller but significant isotopic anomalies. All FUN CAIs studied are coarse-grained igneous inclusions: Type B, forsterite-bearing Type B, compact Type A, and hibonite-rich. Some inclusions consist of two mineralogically distinct lithologies, forsterite-rich and forsterite-free/poor. All the CV FUN CAIs experienced postcrystallization open-system iron-alkali-halogen metasomatic alteration resulting in the formation of secondary minerals commonly observed in non-FUN CAIs from CV chondrites. The CR FUN CAI GG#3 shows no evidence for alteration. In all samples, clear evidence of oxygen isotopic fractionation was found. Most samples were initially O-16-rich. On a three-oxygen isotope diagram, various minerals in each FUN CAI (spinel, forsterite, hibonite, dmisteinbergite, most fassaite grains, and melilite (only in GG#3)), define mass-dependent fractionation lines with a similar slope of similar to 0.5. The different inclusions have different Delta O-17 values ranging from similar to-25 parts per thousand to similar to-16 parts per thousand. Melilite and plagioclase in the CV FUN CAIs have O-16-poor compositions (Delta O-17 similar to-3 parts per thousand) and plot near the intercept of the Allende CAI line and the terrestrial fractionation line. We infer that mass-dependent fractionation effects of oxygen isotopes in FUN CAI minerals are due to evaporation during melt crystallization. Differences in Delta O-17 values of mass-dependent fractionation lines defined by minerals in individual FUN CAIs are inferred to reflect differences in Delta O-17 values of their precursors. Differences in delta O-18 values of minerals defining the mass-dependent fractionation lines in several FUN CAIs are consistent with their inferred crystallization sequence, suggesting these minerals crystallized during melt evaporation. In other FUN CAIs, no clear correlation between delta O-18 values of individual minerals and their inferred crystallization sequence is observed, possibly indicating gas-melt back reaction and oxygen-isotope exchange in a O-16-rich gaseous reservoir. After oxygen-isotope fractionation, some FUN CAIs could have experienced partial melting and gas-melt oxygen-isotope exchange in a O-16-poor gaseous reservoir that resulted in crystallization of O-16-depleted fassaite, melilite and plagioclase. The final oxygen isotopic compositions of melilite and plagioclase in the CV FUN CAIs may have been established on the CV parent asteroid as a result of isotope exchange with a O-16-poor fluid during hydrothermal alteration.
We conclude that FUN CAIs are part of a general family of refractory inclusions showing various degrees of fractionation effects due to evaporative processes superimposed on sampling of isotopically heterogeneous material. These processes have been experienced both by FUN and non-FUN igneous CAIs. Generally, the inclusions identified as FUN show larger isotope fractionation effects than non-FUN CAIs. There is a wide spread in UN isotopic anomalies in a large number of CAIs not exhibiting large fractionation effects in oxygen, magnesium, and silicon. The question of why some FUN CAIs show more extreme UN isotopic effects is attributed by us to limited sampling and not a special source of isotopically anomalous material. We consider the majority of igneous CAIs to be the result of several stages of thermal processing (evaporation, condensation, and melting) of aggregates of solid precursors composed of incompletely isotopically homogenized materials. The unknown nuclear effects in CAIs are common to both FUN and non-FUN CAIs, and are not a special characteristic of FUN inclusions but represent the spectrum of results from sampling a very heterogeneous medium in the accreting Solar System. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Krot, Alexander N.; Nagashima, Kazuhide; Wasserburg, Gerald J.; Huss, Gary R.] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA.
[Wasserburg, Gerald J.; Papanastassiou, Dimitri] CALTECH, Lunat Asylum, Pasadena, CA 91125 USA.
[Papanastassiou, Dimitri] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Davis, Andrew M.] Lawrence Livermore Natl Lab, Glenn Seaborg Inst, Livermore, CA 94551 USA.
[Hutcheon, Ian D.] Univ Chicago, Enrico Fermi Inst, Dept Geophys Sci, Chicago, IL 60637 USA.
[Hutcheon, Ian D.] Univ Chicago, Chicago Ctr Cosmochem, Chicago, IL 60637 USA.
[Bizzarro, Martin] Univ Copenhagen, Ctr Star & Planet Format, Geol Museum, DK-1350 Copenhagen, Denmark.
RP Krot, AN (reprint author), Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA.
EM sasha@higp.hawaii.edu
RI Bizzarro, Martin/I-8701-2012
OI Bizzarro, Martin/0000-0001-9966-2124
FU NASA [NNX10AH76G, NNX12AJ01G, NNX08AG58G, NNH10AO48I]; Danish National
Research Foundation [DNRF97]
FX We thank Dr. Hisayoshi Yurimoto, the anonymous reviewer, and Dr. Sara S.
Russell for useful comments and suggestions. Editorial handling of the
manuscript by S. S. Russell is highly appreciated.. This work was
supported by NASA grants NNX10AH76G and NNX12AJ01G (A. N. Krot, P. I.),
NNX08AG58G (G. R. Huss, P. I.), and NNH10AO48I (I. D. Hutcheon, P. I.).
The Centre for Star and Planet Formation is financed by the Danish
National Research Foundation (Grant DNRF97). This is Hawai'i Institute
of Geophysics and Planetology publication XXXX and School of Ocean and
Earth Science and Technology publication XXXX.
NR 110
TC 12
Z9 12
U1 4
U2 22
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
EI 1872-9533
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD NOV 15
PY 2014
VL 145
BP 206
EP 247
DI 10.1016/j.gca.2014.09.027
PG 42
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AT4XO
UT WOS:000344945800012
ER
PT J
AU Yan, HP
Park, C
Ahn, G
Hong, S
Keane, DT
Kenney-Benson, C
Chow, P
Xiao, YM
Shen, GY
AF Yan, Hongping
Park, Changyong
Ahn, Gun
Hong, Seungbum
Keane, Denis T.
Kenney-Benson, Curtis
Chow, Paul
Xiao, Yuming
Shen, Guoyin
TI Termination and hydration of forsteritic olivine (010) surface
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID X-RAY REFLECTIVITY; CRYSTAL TRUNCATION RODS; ATOMIC-FORCE MICROSCOPY;
DISSOLUTION KINETICS; COMPUTER-SIMULATION; OCEANIC PERIDOTITES; HYDROGEN
GENERATION; WATER; TEMPERATURE; SERPENTINIZATION
AB Termination and hydration of the forsteritic (Fo90Fa10) olivine (010) surface have been investigated with high-resolution specular X-ray reflectivity and Atomic Force Microscopy. The surface was prepared by polishing a naturally grown {010} face, from which we found the polished surface in acidic (pH 3.5) alumina suspension exhibits regular steps while the basic (pH 9.5) silica polished surface is irregularly roughened, indicating there are two distinguishable mechanochemical processes for the surface dissolution. The quantitative interpretation of the regular steps from the alumina-polished surface suggests that the observed step heights correspond to multiples of crystallographic unit cell. Only this atomically terraced surface is investigated with the high-resolution X-ray reflectivity (HRXR) to determine the surface termination and hydration. The basic silica paste polished surface turned out too rough to measure with X-ray reflectivity. HRXR reveals that the alumina polished olivine (0 1 0) surface in pure water is terminated at a plane including half-occupied metal ion sites (M1), an oxygen vacancy site, and a silicate tetrahedral unit with one of its apices pointing outward with respect to the surface. An ideal termination with the oxygen vacancy would fulfill the stoichiometry of the formula unit; however, in the observation, the vacancy site is filled by an adsorbed water species and about a quarter of the remaining metal ions are further depleted. The terminating plane generates two distinct atomic layers in the laterally averaged electron density profile, on which two highly ordered adsorbed water layers are formed. The first layer formation is likely through the direct interaction with the M1 plane and the second layer is likely through the hydrogen bonding interaction with the first water layer. With this multilayered adsorbed water structure, the surface metal ion is partially hydrated by the vacancy-filling water species and adsorbed water molecules. The bulk water links to these distinct adsorbed water layers, with weak density oscillations that almost completely damp out after the first bulk water layer. The total thickness of the layered water structure including the two distinct adsorbed layers and the first layer of bulk water is slightly less than 1 nm, which corresponds to roughly three molecular layers of water. These results describe the steric constraints of the surface metal ion hydration and the iron redox environment during water-olivine interactions in this particular crystallographic orientation. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Yan, Hongping; Park, Changyong; Kenney-Benson, Curtis; Chow, Paul; Xiao, Yuming; Shen, Guoyin] Carnegie Inst Sci, HPCAT, Geophys Lab, Argonne, IL 60439 USA.
[Ahn, Gun; Hong, Seungbum] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Keane, Denis T.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
RP Yan, HP (reprint author), Carnegie Inst Sci, HPCAT, Geophys Lab, 9700 South Cass Ave,434E, Argonne, IL 60439 USA.
EM hyan@carnegiescience.edu; cpark@carnegiescience.edu
RI Hong, Seungbum/B-7708-2009; Park, Changyong/A-8544-2008;
OI Hong, Seungbum/0000-0002-2667-1983; Park, Changyong/0000-0002-3363-5788;
Yan, Hongping/0000-0001-6235-4523
FU Alfred P. Sloan Foundation in the United States; High-Pressure
Collaborative Access Team (HPCAT); DOE-NNSA [DE-NA0001974]; DOE-BES
[DE-FG02-99ER45775, DE-AC02-06CH11357]; NSF; E.I. DuPont de Nemours Co.;
Dow Chemical Company; Northwestern University; Carnegie/DOE Alliance
Center (CDAC); U.S. Department of Energy, Office of Science, Basic
Energy Sciences, Materials Sciences and Engineering Division
[DE-AC02-06CH11357]
FX This work is a part of the Deep Carbon Observatory-Deep Energy project,
supported by the Alfred P. Sloan Foundation in the United States. H. Yan
is partially supported by the High-Pressure Collaborative Access Team
(HPCAT). HPCAT is supported by DOE-NNSA under Award No. DE-NA0001974 and
DOE-BES under Award no. DE-FG02-99ER45775, with partial instrumental
funding by NSF. Portions of this work were performed at the
DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at
Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by
E.I. DuPont de Nemours & Co., The Dow Chemical Company and Northwestern
University. Some preliminary tests were performed at the HPCAT 16ID-D
beamline through the auspices of Carnegie/DOE Alliance Center (CDAC) for
the beamtime. APS is supported by DOE-BES, under Contract No.
DE-AC02-06CH11357. AFM experiments conducted at Materials Science
Division, Argonne National Laboratory by G. Ahn and S. Hong were
supported by the U.S. Department of Energy, Office of Science, Basic
Energy Sciences, Materials Sciences and Engineering Division under
Contract No. DE-AC02-06CH11357.
NR 51
TC 2
Z9 2
U1 2
U2 19
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
EI 1872-9533
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD NOV 15
PY 2014
VL 145
BP 268
EP 280
DI 10.1016/j.gca.2014.09.005
PG 13
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AT4XO
UT WOS:000344945800014
ER
PT J
AU Anderson, B
Venus, G
Ott, D
Divliansky, I
Dawson, JW
Drachenberg, DR
Messerly, MJ
Pax, PH
Tassano, JB
Glebov, LB
AF Anderson, B.
Venus, G.
Ott, D.
Divliansky, I.
Dawson, J. W.
Drachenberg, D. R.
Messerly, M. J.
Pax, P. H.
Tassano, J. B.
Glebov, L. B.
TI Fundamental mode operation of a ribbon fiber laser by way of volume
Bragg gratings
SO OPTICS LETTERS
LA English
DT Article
ID OPTICAL PARAMETRIC OSCILLATOR; HIGH-ORDER MODE; NARROW-BAND; POWER
AB Selection of the fundamental mode of an active large mode area "ribbon" fiber laser with core dimensions of 107.8 mu m by 8.3 mu m was produced by a transmitting Bragg grating (TBG) in a free-space resonator. The multimode performance of the original laser was characterized to have an M-2 of 11.3 with an absorbed power slope efficiency of 76%. With the TBG aligned to provide maximum diffraction efficiency for the fundamental mode, the M-2 improved to 1.45 at an absorbed power slope efficiency of 54% and enhanced the brightness by 5.1 times. (C) 2014 Optical Society of America.
C1 [Anderson, B.; Venus, G.; Ott, D.; Divliansky, I.; Glebov, L. B.] Univ Cent Florida, Coll Opt & Photon, CREOL, Orlando, FL 32816 USA.
[Dawson, J. W.; Drachenberg, D. R.; Messerly, M. J.; Pax, P. H.; Tassano, J. B.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Anderson, B (reprint author), Univ Cent Florida, Coll Opt & Photon, CREOL, POB 162700, Orlando, FL 32816 USA.
EM bmanders@knights.ucf.edu
RI Divliansky, Ivan/D-4869-2011;
OI Ott, Daniel/0000-0001-5221-8819
FU ARO; HEL-JTO [W911NF-10-1-0441]; Directed Energy Professional Society
(DEPS)
FX This work was supported by the ARO and HEL-JTO contract
W911NF-10-1-0441. The author B. Anderson would like to acknowledge the
support of the Directed Energy Professional Society (DEPS) graduate
student scholarship.
NR 16
TC 6
Z9 6
U1 0
U2 8
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 0146-9592
EI 1539-4794
J9 OPT LETT
JI Opt. Lett.
PD NOV 15
PY 2014
VL 39
IS 22
BP 6498
EP 6500
DI 10.1364/OL.39.006498
PG 3
WC Optics
SC Optics
GA AT5MB
UT WOS:000344986000036
PM 25490503
ER
PT J
AU Otterstrom, N
Pooser, RC
Lawrie, BJ
AF Otterstrom, N.
Pooser, R. C.
Lawrie, B. J.
TI Nonlinear optical magnetometry with accessible in situ optical squeezing
SO OPTICS LETTERS
LA English
DT Article
ID RUBIDIUM VAPOR; ATOMIC MAGNETOMETER; QUANTUM-NOISE; COHERENCE; LIGHT
AB We demonstrate compact and accessible squeezed-light magnetometry using four-wave mixing in a single hot rubidium vapor cell. The strong intrinsic coherence of the four-wave mixing process results in nonlinear magneto-optical rotation (NMOR) on each mode of a two-mode relative-intensity squeezed state. This framework enables 4.7 dB of quantum noise reduction while the opposing polarization rotation signals of the probe and conjugate fields add to increase the total signal to noise ratio. (C) 2014 Optical Society of America
C1 [Otterstrom, N.] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA.
[Otterstrom, N.; Pooser, R. C.; Lawrie, B. J.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Quantum Informat Sci Grp, Oak Ridge, TN 37830 USA.
RP Lawrie, BJ (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Quantum Informat Sci Grp, Oak Ridge, TN 37830 USA.
EM lawriebj@ornl.gov
RI Lawrie, Benjamin/B-7182-2016
OI Pooser, Raphael/0000-0002-2922-453X; Lawrie,
Benjamin/0000-0003-1431-066X
NR 30
TC 8
Z9 8
U1 5
U2 18
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 0146-9592
EI 1539-4794
J9 OPT LETT
JI Opt. Lett.
PD NOV 15
PY 2014
VL 39
IS 22
BP 6533
EP 6536
DI 10.1364/OL.39.006533
PG 4
WC Optics
SC Optics
GA AT5MB
UT WOS:000344986000045
PM 25490512
ER
PT J
AU Cai, ZB
Meyer, HM
Ma, C
Chi, MF
Luo, HM
Qu, J
AF Cai, Zhen-Bing
Meyer, Harry M., III
Ma, Cheng
Chi, Miaofang
Luo, Huimin
Qu, Jun
TI Comparison of the tribological behavior of steel-steel and Si3N4-steel
contacts in lubricants with ZDDP or ionic liquid
SO WEAR
LA English
DT Article
DE ZDDP; Oil-soluble ionic liquid; Anti-wear additive; Wear mechanism;
Tribofilm
ID OIL; ADDITIVES; FRICTION; FILMS
AB Tribological evaluations were conducted on lubricating base oils of different viscosity grades with and without an anti-wear (AW) additive in lubricating steel-steel and ceramic-steel contacts. Two AW additives were applied: a conventional secondary zinc dialkyldithiophosphate (ZDDP) and an oilmiscible phosphonium-phosphate ionic liquid (IL). Tests were carried out using reciprocating ball-on-flat sliding at room temperature. The flat material was AISI A2 tool steel, and the ball material was either AISI 52100 bearing steel or silicon nitride. Four lubricants were tested: Chevron SAE 15W40 and 0W30 base oils, and the 0W30 base oil plus 1 wt% ZDDP or IL For the steel-steel contact, the lower-viscosity 0W30 base oil resulted in a higher wear rate than did the 15W40 base oil, as expected. Both the ZDDP and the IL substantially reduced wear, and the IL-additized 0W30 base oil was the best performer. For the ceramic-steel contact, the ZDDP provided moderate wear protection for both ball and flat. In contrast, the IL reduced the steel flat wear more effectively but increased the ceramic ball wear rate. Crosssectional transmission electron microscopy (TEM) examination and x-ray photoelectron spectroscopy (XPS) chemical analysis were used to reveal the thickness, nanostructure, and composition of the tribofilms formed by ZDDP and IL on the steel and silicon nitride surfaces. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Cai, Zhen-Bing] Southwest Jiaotong Univ, Tribol Res Inst, Key Lab Adv Technol Mat, Chengdu 610031, Peoples R China.
[Cai, Zhen-Bing; Meyer, Harry M., III; Ma, Cheng; Chi, Miaofang; Qu, Jun] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Luo, Huimin] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA.
RP Qu, J (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
EM qujn@ornl.gov
RI Ma, Cheng/C-9120-2014; Chi, Miaofang/Q-2489-2015;
OI Chi, Miaofang/0000-0003-0764-1567; Qu, Jun/0000-0001-9466-3179
FU Vehicle Technologies Office, Office of Energy Efficiency and Renewable
Energy, US Department of Energy (DOE); DOE Office of Basic Energy
Sciences
FX The authors thank Dr. E.A. Bardasz of Lubrizol Corporation for providing
the ZDDP. And thank D.W. Coffey and Dr. Y. Zhou of ORNL for TEM sample
preparation and partial XPS analysis, respectively. This research was
sponsored by The Vehicle Technologies Office, Office of Energy
Efficiency and Renewable Energy, US Department of Energy (DOE). The
characterization work was supported in part by ORNL's SHaRE User
Facility, which is sponsored by The DOE Office of Basic Energy Sciences.
NR 20
TC 12
Z9 12
U1 5
U2 37
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0043-1648
EI 1873-2577
J9 WEAR
JI Wear
PD NOV 15
PY 2014
VL 319
IS 1-2
BP 172
EP 183
DI 10.1016/j.wear.2014.08.002
PG 12
WC Engineering, Mechanical; Materials Science, Multidisciplinary
SC Engineering; Materials Science
GA AT6PP
UT WOS:000345061600019
ER
PT J
AU Ryb, U
Matmon, A
Erel, Y
Haviv, I
Benedetti, L
Hidy, AJ
AF Ryb, U.
Matmon, A.
Erel, Y.
Haviv, I.
Benedetti, L.
Hidy, A. J.
TI Styles and rates of long-term denudation in carbonate terrains under a
Mediterranean to hyper-arid climatic gradient
SO EARTH AND PLANETARY SCIENCE LETTERS
LA English
DT Article
DE denudation; chemical weathering; erosion; carbonate terrains; climatic
gradient; Cl-36
ID CHEMICAL-WEATHERING RATES; SITU-PRODUCED BE-10; DEAD-SEA RIFT;
COSMOGENIC CL-36; LANDSCAPE EVOLUTION; DRAINAGE BASINS; EROSION RATES;
KARST AREAS; LIMESTONE; NUCLIDES
AB Carbonate minerals, unlike silicates, have the potential to dissolve almost completely and with high efficiency. Thus, in carbonate terrains denudation rate and style (the governing process of denudation, mechanical or chemical) should be more sensitive to climatic forcing. Using Cl-36 measurements in 39 carbonate bedrock and sediment samples, we calculate long-term denudation rates across a sharp climatic gradient from Mediterranean to hyper-arid conditions. Our samples were collected along the Arugot watershed, which drains the eastern flank of the Judea Range (central Israel) to the Dead Sea and is characterized by a pronounced rain shadow. Denudation rates of flat-lying bedrock outcrops sampled along interfluves differ by an order of magnitude from similar to 20 mm ka(-1) in the Mediterranean zone to 1-3 mm ka(-1) in the hyper-arid zone. These rates are strongly correlated with precipitation, and thus reflect the importance of carbonate mineral dissolution in the overall denudation process. In contrast, denudation rates of steep bedrock surfaces depend on the hillslope gradient, but only in the hyper-arid climate zone, indicating that mechanical processes dominate the overall hillslope denudation within this zone. The dominance of slope-dependent mechanical erosion in the hyper-arid zone is also reflected by an increase in spatially-average denudation rates from 17-19 mm ka(-1) in the Mediterranean-semi-arid zones to 21-25 mm ka(-1) in the hyper-arid zone. These higher rates are attributed to clast contribution from steep slopes under arid climate. This suggests an increased importance of mechanical processes to the overall denudation in the hyper-arid zone.
We demonstrate that the transition between chemically-dominated denudation to mechanically-dominated denudation occurs between 100 and 200 mm of mean annual precipitation. Long-term denudation rates across the Judea Range indicate that between Mediterranean and hyper-arid climates, chemical weathering rates are limited by precipitation. Nevertheless, in more humid climates, chemical weathering rates are apparently limited by the rates of carbonate mineral dissolution. This study demonstrates that carbonate terrains have the capacity to shift between mechanically and chemically dominated denudation in response to changes in precipitation. Similar transitions in response to changes in temperature or the level of tectonic activity have been previously reported. We suggest that the abrupt nature of such transitions can be primarily attributed to the efficiency of carbonate dissolution processes and the competition between surface and subsurface drainage systems in carbonate terrains. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Ryb, U.; Matmon, A.; Erel, Y.] Fredy & Nadine Herrmann Inst Earth Sci, IL-91904 Jerusalem, Israel.
[Haviv, I.] Ben Gurion Univ Negev, Dept Geol & Environm Sci, IL-84105 Beer Sheva, Israel.
[Benedetti, L.] Aix Marseille Univ, Ctr Rech & Enseignement Gosci Environm CEREGE, Inst Rech Dev, Coll France,Technopole Arbois,CNRS,UM 34, F-13545 Aix En Provence, France.
[Hidy, A. J.] Lawrence Livermore Natl Lab, CAMS, Livermore, CA 94550 USA.
RP Ryb, U (reprint author), Fredy & Nadine Herrmann Inst Earth Sci, Admond J Safra Campus, IL-91904 Jerusalem, Israel.
FU Kaye-Einstein fellowship; Israel Science Foundation [50/10]
FX The authors wish to thank D. Palchan, M. Davis, U. Davidovich, and Y.
Goldsmith for their assistance in the field, to S. Mazze, S. Vainer, and
A. Paldor for assisting in preparing the samples for 36Cl
analyses, and to the staff of ASTER-CEREGE for AMS measurements. We
thank five anonymous reviewers for their critical and detailed reviews.
We also thank the Kaye-Einstein fellowship for their support during this
study. This study was funded by Israel Science Foundation grant 50/10.
This is LLNL-JRNL-658044.
NR 75
TC 10
Z9 10
U1 2
U2 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0012-821X
EI 1385-013X
J9 EARTH PLANET SC LETT
JI Earth Planet. Sci. Lett.
PD NOV 15
PY 2014
VL 406
BP 142
EP 152
DI 10.1016/j.epsl.2014.09.008
PG 11
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AS3YO
UT WOS:000344211200015
ER
PT J
AU Syverson, DD
Pester, NJ
Craddock, PR
Seyfried, WE
AF Syverson, Drew D.
Pester, Nicholas J.
Craddock, Paul R.
Seyfried, William E., Jr.
TI Fe isotope fractionation during phase separation in the NaCl-H2O system:
An experimental study with implications for seafloor hydrothermal vents
SO EARTH AND PLANETARY SCIENCE LETTERS
LA English
DT Article
DE Fe isotope fractionation; phase separation; mid-ocean ridge hydrothermal
processes
ID MID-ATLANTIC RIDGE; EAST PACIFIC RISE; IN-SITU XAS; CHLORIDE COMPLEXES;
FLUIDS; IRON; SPECIATION; BENEATH; FIELD
AB Phase separation has been proposed as a possible mechanism contributing to the Fe isotope composition of hydrothermal fluids at mid-ocean ridges. The uncertainty results largely from the emphasis on field data that can involve competing processes that obscure cause and effect of any one process. To better understand the potential significance of phase separation in the NaCl-Fe-H2O system on Fe isotope fractionation, temperature and pressure of a Fe-bearing NaCl fluid in a titanium flow reactor were carefully adjusted to produce vapor +/- liquid +/- halite, while the Fe isotope composition between coexisting phases was monitored. Two different P-T regions were emphasized: (1) 424-420 degrees C, 35.2-31.5 MPa; and (2) 464-466 degrees C, 29.8-24.7 MPa. Both regions were chosen to simulate the range of physical conditions that are experienced by hydrothermal fluids at mid-ocean ridges (MORs). Decompression induced phase separation in both P-T regions results in the vapor phase becoming enriched in the heavier isotopes of Fe, as the Fe/Cl ratio decreases. The coexisting NaCl-rich liquid phase remains essentially constant with respect to Fe/CI ratio and Fe isotope composition. Coinciding with the lowest vapor chlorinity in the vapor-liquid stability field, the Fe/Cl ratio of the vapor abruptly increases, while the Fe isotope fractionation between the vapor and liquid (10(3) ln alpha(56/54)(V/L)) reached a maximum value of +0.145 +/- 0.048 parts per thousand). Subsequently, Fe isotope fractionation decreased upon transition into the vapor-halite stability field (P-T region 2). We infer that the observed Fe isotope fractionation between vapor +/- liquid +/- halite is caused by differences in Fe speciation among coexisting chloride-bearing phases. The experimental study confirms for the first time that measurable Fe isotope variability can result from phase separation in high temperature hydrothermal systems. The species-dependent Fe isotope fractionation reported here is small relative to predicted mineral-mineral and mineral-fluid fractionations, especially if redox effects are involved as might occur during vent fluid-seawater mixing reactions and/or magmatic activity associated with seafloor eruptive episodes. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Syverson, Drew D.; Pester, Nicholas J.; Seyfried, William E., Jr.] Univ Minnesota, Dept Earth Sci, Minneapolis, MN 55455 USA.
[Craddock, Paul R.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA.
[Craddock, Paul R.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Pester, Nicholas J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Craddock, Paul R.] Schlumberger Doll Res Ctr, Cambridge, MA 02139 USA.
RP Syverson, DD (reprint author), Univ Minnesota, Dept Earth Sci, 310 Pillsbury Dr SE, Minneapolis, MN 55455 USA.
EM syve0063@umn.edu
RI Pester, Nicholas/G-2424-2015;
OI Pester, Nicholas/0000-0002-1852-6663; Syverson,
Drew/0000-0003-2838-1522; Craddock, Paul/0000-0003-4702-0204
FU NSF grants OCE [0751771, 1061308, 1232704]; University of Minnesota
FX The authors would like to thank the two anonymous reviewers and the
associate editor, Dr. Bernard Marty, for their constructive comments,
which made this paper undoubtedly more clear. We would also like to
thank Rick Knurr (U. of MN) for providing detailed chemical analyses of
the fluid samples provided. The authors are grateful for the funding
provided by the NSF grants OCE #0751771, 1061308, and 1232704 (WES). The
corresponding author (DDS) also acknowledges funding awarded by the
University of Minnesota through the Doctoral Fellowship during a portion
of this research.
NR 52
TC 4
Z9 4
U1 6
U2 30
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0012-821X
EI 1385-013X
J9 EARTH PLANET SC LETT
JI Earth Planet. Sci. Lett.
PD NOV 15
PY 2014
VL 406
BP 223
EP 232
DI 10.1016/j.epsl.2014.09.020
PG 10
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AS3YO
UT WOS:000344211200022
ER
PT J
AU Litombe, NE
Bollinger, AT
Hoffman, JE
Bozovic, I
AF Litombe, N. E.
Bollinger, A. T.
Hoffman, J. E.
Bozovic, I.
TI La2-xSrxCuO4 superconductor nanowire devices
SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
LA English
DT Article
DE La2-xSrxCuO4; Nanowire; Fabrication; ALL-MBE; Lithography; Critical
current
ID TEMPERATURE; MAGNETORESISTANCE
AB La2-xSrxCuO4 nanowire devices have been fabricated and characterized using electrical transport measurements. Nanowires with widths down to 80 nm are patterned using high-resolution electron beam lithography. However, the narrowest nanowires show incomplete superconducting transitions with some residual resistance at T = 4 K. Here, we report on the refinement of the fabrication process to achieve narrower nanowire devices with complete superconducting transitions, opening the path to the study of novel physics arising from dimension-limited superconductivity on the nanoscale. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Litombe, N. E.; Hoffman, J. E.] Harvard Univ, Cambridge, MA 02138 USA.
[Litombe, N. E.; Bollinger, A. T.; Bozovic, I.] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Bozovic, I (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
EM bozovic@bnl.gov
RI Hoffman, Jennifer/H-4334-2011
OI Hoffman, Jennifer/0000-0003-2752-5379
FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division; U.S. Department of Energy, Office of
Basic Energy Sciences [DE-AC02-98CH10886]
FX Research supported by the U.S. Department of Energy, Office of Basic
Energy Sciences, Materials Sciences and Engineering Division. E-beam
lithography was carried out at the Center for Functional Nanomaterials,
Brookhaven National Laboratory, supported by the U.S. Department of
Energy, Office of Basic Energy Sciences, under Contract No.
DE-AC02-98CH10886.
NR 22
TC 2
Z9 2
U1 2
U2 25
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4534
EI 1873-2143
J9 PHYSICA C
JI Physica C
PD NOV 15
PY 2014
VL 506
SI SI
BP 169
EP 173
DI 10.1016/j.physc.2014.06.010
PG 5
WC Physics, Applied
SC Physics
GA AS4JD
UT WOS:000344240100028
ER
PT J
AU Kresin, V
Ovchinnikov, Y
AF Kresin, Vladimir
Ovchinnikov, Yurii
TI Superconducting state of metallic nanoclusters and Josephson tunneling
networks
SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
LA English
DT Article
DE Nanoclusters; Energy shells; Observables; Networks; Synchronization
ID JUNCTION ARRAYS; CLUSTERS; TEMPERATURE
AB Metallic nanoclusters form a new family of high temperature superconductors. In principle, the value of T-C can be raised up to room temperature. In addition, one can observe the Josephson tunneling between two clusters. One can build the nanocluster-based tunneling network capable to transfer a macroscopic supercurrent at high temperatures. Such a network can be synchronized and radiate as single junction. Published by Elsevier B.V.
C1 [Kresin, Vladimir] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Ovchinnikov, Yurii] RAN, L Landau Inst Theoret Phys, Moscow 117334, Russia.
RP Kresin, V (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
EM vzkresin@lbl.gov
NR 32
TC 0
Z9 0
U1 2
U2 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4534
EI 1873-2143
J9 PHYSICA C
JI Physica C
PD NOV 15
PY 2014
VL 506
SI SI
BP 201
EP 206
DI 10.1016/j.physc.2014.06.001
PG 6
WC Physics, Applied
SC Physics
GA AS4JD
UT WOS:000344240100034
ER
PT J
AU Sun, ZJ
Wells, D
Segebade, C
Quigley, K
Chemerisov, S
AF Sun, Z. J.
Wells, D.
Segebade, C.
Quigley, K.
Chemerisov, S.
TI A comparison of various procedures in photon activation analysis with
the same irradiation setup
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
INTERACTIONS WITH MATERIALS AND ATOMS
LA English
DT Article
DE Photon activation analysis; Quasi-absolute method; Monte Carlo
simulation; LINAC
ID NEUTRON; SAMPLES
AB A sample of known elemental concentrations was activated in the bremsstrahlung photon beam which was created by a pulsed electron LINAC. Several procedures of photon activation analysis, including those applied with/without reference material and with/without photon flux monitor, were conducted to make a comparison of their precision and accuracy in practice. Experimental results have indicated that: (1) relative procedures usually produce better outcome despite that the absolute measurement is straightforward and eliminate the assistance of reference materials; (2) among relative procedures, the method with internal flux monitor yields higher quality of the analytical results. In the article, the pros and cons of each procedure are discussed as well. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Sun, Z. J.; Quigley, K.; Chemerisov, S.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Wells, D.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA.
[Segebade, C.] Idaho State Univ, Idaho Accelerator Ctr, Pocatello, ID 83209 USA.
RP Sun, ZJ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
FU U.S. Department of Energy, National Nuclear Security Administration's
(NNSA's) Office of Defense Nuclear Nonproliferation [DE-AC02-06CH11357]
FX This work is supported by the U.S. Department of Energy, National
Nuclear Security Administration's (NNSA's) Office of Defense Nuclear
Nonproliferation, under Contract DE-AC02-06CH11357. Argonne National
Laboratory is operated for the U.S. Department of Energy by UChicago
Argonne, LLC. The U.S. Government retains for itself, and others acting
on its behalf, a paid-up nonexclusive, irrevocable worldwide license in
said article to reproduce, prepare derivative works, distribute copies
to the public, and perform publicly and display publicly, by or on
behalf of the Government.
NR 29
TC 4
Z9 4
U1 2
U2 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-583X
EI 1872-9584
J9 NUCL INSTRUM METH B
JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
PD NOV 15
PY 2014
VL 339
BP 53
EP 57
DI 10.1016/j.nimb.2014.08.021
PG 5
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Atomic, Molecular & Chemical; Physics, Nuclear
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA AR7UP
UT WOS:000343785500010
ER
PT J
AU Bannister, ME
Hijazi, H
Meyer, HM
Cianciolo, V
Meyer, FW
AF Bannister, M. E.
Hijazi, H.
Meyer, H. M., III
Cianciolo, V.
Meyer, F. W.
TI Surface-conductivity enhancement of PMMA by keV-energy metal-ion
implantation
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
INTERACTIONS WITH MATERIALS AND ATOMS
LA English
DT Article
DE Surface conductivity; Metal-ion implantation; Polymer; Tungsten
ID SYSTEMS; FILMS
AB An experiment has been proposed to measure the neutron electric dipole moment (nEDM) with high precision at the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source. One of the requirements of this experiment is the development of PMMA (Lucite) material with a sufficiently conductive surface to permit its use as a high-voltage electrode while immersed in liquid He. At the ORNL Multicharged Ion Research Facility, an R&D activity is under way to achieve suitable surface conductivity in poly-methyl methacrylate (PMMA) using metal ion implantation. The metal implantation is performed using an electron-cyclotron-resonance (ECR) ion source and a recently developed beam line deceleration module that is capable of providing high flux beams for implantation at energies as low as a few tens of eV. The latter is essential for reaching implantation fluences exceeding 1 x 10(16) cm(-2), where typical percolation thresholds in polymers have been reported. In this contribution, we report results on initial implantation of Lucite by Ti and W beams with keV energies to average fluences in the range 0.5-6.2 x 10(16) cm(-2). Initial measurements of surface-resistivity changes are reported as function of implantation fluence, energy, and sample temperature. We also report X-ray photoelectron spectroscopy (XPS) surface and depth profiling measurements of the ion implanted samples, to identify possible correlations between the near surface and depth resolved implanted W concentrations and the measured surface resistivities. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Bannister, M. E.; Hijazi, H.; Meyer, H. M., III; Cianciolo, V.; Meyer, F. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Meyer, FW (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
EM meyerfw@ornl.gov
FU LDRD Program of Oak Ridge National Laboratory for the U.S. Department of
Energy; Oak Ridge National Laboratory's Shared Research Equipment
(ShaRE) User Program - Office of Basic Energy Sciences, U.S. Department
of Energy
FX This research was sponsored by the LDRD Program of Oak Ridge National
Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of
Energy. HH was appointed through the ORNL Postdoctoral Research
Associates Program administered jointly by Oak Ridge Institute of
Science and Education (ORISE), Oak Ridge Associated Universities (ORAU)
and Oak Ridge National Laboratory (ORNL). XPS instrument supported by
Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User
Program, which is sponsored by the Office of Basic Energy Sciences, U.S.
Department of Energy.
NR 14
TC 5
Z9 5
U1 4
U2 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-583X
EI 1872-9584
J9 NUCL INSTRUM METH B
JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
PD NOV 15
PY 2014
VL 339
BP 75
EP 84
DI 10.1016/j.nimb.2014.02.133
PG 10
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Atomic, Molecular & Chemical; Physics, Nuclear
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA AR7UP
UT WOS:000343785500014
ER
PT J
AU Kim, Y
Ban, KY
Kuciauskas, D
Dippo, PC
Honsberg, CB
AF Kim, Yeongho
Ban, Keun-Yong
Kuciauskas, Darius
Dippo, Patricia C.
Honsberg, Christiana B.
TI Effect of silicon delta-doping density on optical properties of type-II
InAs/GaAsSb quantum dots
SO JOURNAL OF CRYSTAL GROWTH
LA English
DT Article
DE Low dimensional structures; Molecular beans epitaxy; Antimonides;
Semiconducting III-V materials
ID PHOTOLUMINESCENCE; SEMICONDUCTORS; LAYER
AB We have investigated the optical properties of type-II InAs/GaAs0.83Sb0.17 quantum dots (QDs) with different silicon delta-doping densities of 5 x 10(11)), 5 x 10 and 2 x 10(12) cm(-2) using photoluminescence (PL). The PL spectra of the QD ground state (GS) emission peaks for the samples are blueshifted at a slower rate with increasing the doping density due to the enhanced radiative recombination rate of the carriers. The PL intensity ratio of the GS emission to the first excited state emission increases with the doping density, which is indicative of the faster radiative recombination at the GS subbands with the doping density. The redshift rate of the GS emissions becomes faster at a high temperature (> 130 K) as the doping density increases up to 5 x 10(11) cm(-2) resulting from the quantum confined Stark effect by the electric field of the ionized dopants, and decreases at an increased doping density of 2 x 10(12) cm(-2) due to the enhanced QD size uniformity. Time-resolved PL exhibits that the QD sample doped at 5 x 10(10) cm(-2) has a longer total radiative lifetime than the undopal sample, and a further increase in the doping density to 2 x 10(12) cm(-2) decreases the lifetime due to the enhancement of the radiative recombination through fast carrier relaxation. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Kim, Yeongho; Ban, Keun-Yong; Honsberg, Christiana B.] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA.
[Kuciauskas, Darius; Dippo, Patricia C.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Kim, Y (reprint author), Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA.
EM ykim172@asu.edu
FU National Science Foundation (NSF); U.S. Department of Energy (DOE) under
NSF CA [EEC-1041895]; National Renewable Energy Laboratory as a part of
the Non-Proprietary Partnering Program [De-AC36-08-GO28308]; U.S.
Department of Energy
FX This material is based upon work primarily supported by the National
Science Foundation (NSF) and the U.S. Department of Energy (DOE) under
NSF CA No. EEC-1041895. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and
do not necessarily reflect those of NSF or DOE. This work was supported
by the National Renewable Energy Laboratory as a part of the
Non-Proprietary Partnering Program under Contract No. De-AC36-08-GO28308
with the U.S. Department of Energy.
NR 21
TC 2
Z9 2
U1 0
U2 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-0248
EI 1873-5002
J9 J CRYST GROWTH
JI J. Cryst. Growth
PD NOV 15
PY 2014
VL 406
BP 68
EP 71
DI 10.1016/j.jcrysgro.2014.08.009
PG 4
WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied
SC Crystallography; Materials Science; Physics
GA AQ8QC
UT WOS:000343092800012
ER
PT J
AU Dalai, AK
Wang, Y
AF Dalai, Ajay K.
Wang, Yong
TI Preface for the special Issue: Sustainable Fuels and Chemicals
SO CATALYSIS TODAY
LA English
DT Editorial Material
C1 [Dalai, Ajay K.] Univ Saskatchewan, Coll Engn, Dept Chem & Biol Engn, Catalysis & Chem React Engn Lab, Saskatoon, SK S7N 5A9, Canada.
[Wang, Yong] Washington State Univ, Voiland Sch Chem Engn & Bioengn, Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99354 USA.
RP Dalai, AK (reprint author), Univ Saskatchewan, Coll Engn, Dept Chem & Biol Engn, Catalysis & Chem React Engn Lab, Saskatoon, SK S7N 5A9, Canada.
EM akd983@campus.usask.ca
NR 0
TC 0
Z9 0
U1 1
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-5861
EI 1873-4308
J9 CATAL TODAY
JI Catal. Today
PD NOV 15
PY 2014
VL 237
BP 1
EP 2
DI 10.1016/j.cattod.2014.08.004
PG 2
WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA AP2BR
UT WOS:000341877900001
ER
PT J
AU Wang, H
Lu, JL
Marshall, CL
Elam, JW
Miller, JT
Liu, HB
Enterkin, JA
Kennedy, RM
Stair, PC
Poeppelmeier, KR
Marks, LD
AF Wang, Hui
Lu, Junling
Marshall, Christopher L.
Elam, Jeffrey W.
Miller, Jeffrey T.
Liu, HongBo
Enterkin, James A.
Kennedy, Robert M.
Stair, Peter C.
Poeppelmeier, Kenneth R.
Marks, Laurence D.
TI In situ XANES study of methanol decomposition and partial oxidation to
syn-gas over supported Pt catalyst on SrTiO3 nanocubes
SO CATALYSIS TODAY
LA English
DT Article
DE Methanol; Decomposition; Partial oxidation; In situ XANES; SrTiO3
nanocuboid; Platinum nanoparticle
ID HYDROGEN-PRODUCTION; TEMPERATURE; PT/AL2O3; PRETREATMENT
AB A catalyst of Pt nanoparticles was prepared by atomic layer deposition on SrTiO3 nanocuboids and tested for methanol decomposition and partial oxidation. The catalyst had uniform nanoparticle size of 1.58 +/- 0.37 nm and a Pt (1 1 1) surface. In situ X-ray absorption near-edge spectroscopy (XANES) measured in a temperature-programmed reduction showed that the Pt particles were easily reduced. However, the as-received catalyst, a reduced catalyst, and an oxidized catalyst all had catalytic activity, differing slightly in methanol conversion and product selectivity. In situ XANES also revealed that CO adsorbed on the Pt sites was the only observed surface species during both methanol decomposition and partial oxidation. It seemed that the breakage of CH and OH bonds overwhelmingly occurred once methanol was adsorbed, forming H-2 and adsorbed CO. The latter was then released from the catalyst surface or was oxidized to CO2 when O-2 was present. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Wang, Hui; Marshall, Christopher L.; Miller, Jeffrey T.; Liu, HongBo] Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Lu, Junling; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
[Wang, Hui] Univ Saskatchewan, Dept Chem & Biol Engn, Saskatoon, SK S7N 5A9, Canada.
[Enterkin, James A.; Kennedy, Robert M.; Poeppelmeier, Kenneth R.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Marks, Laurence D.] Northwestern Univ, Dept Mat Sci, Evanston, IL 60208 USA.
RP Marshall, CL (reprint author), Chem Sci & Engn Div, Argonne, IL 60439 USA.
EM marshall@anl.gov
RI ID, MRCAT/G-7586-2011; Lu, Junling/F-3791-2010; Marks,
Laurence/B-7527-2009; Marshall, Christopher/D-1493-2015
OI Lu, Junling/0000-0002-7371-8414; Marshall,
Christopher/0000-0002-1285-7648
FU Institute for Atom-efficient Chemical Transformations (IACT), an Energy
Frontier Research Center - U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences; University of Saskatchewan; Argonne
National Laboratory
FX This material is based upon work supported as part of the Institute for
Atom-efficient Chemical Transformations (IACT), an Energy Frontier
Research Center funded by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences. Support for H. Wang was
provided by the University of Saskatchewan and Argonne National
Laboratory.
NR 21
TC 5
Z9 5
U1 7
U2 86
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-5861
EI 1873-4308
J9 CATAL TODAY
JI Catal. Today
PD NOV 15
PY 2014
VL 237
BP 71
EP 79
DI 10.1016/j.cattod.2014.02.008
PG 9
WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA AP2BR
UT WOS:000341877900010
ER
PT J
AU Ramasamy, KK
Wang, Y
AF Ramasamy, Karthikeyan K.
Wang, Yong
TI Ethanol conversion to hydrocarbons on HZSM-5: Effect of reaction
conditions and Si/Al ratio on the product distributions
SO CATALYSIS TODAY
LA English
DT Article
DE HZSM-5; Si/Al ratio; Ethanol to hydrocarbon; Coke deposition; WHSV
ID ZEOLITE CATALYSTS; AQUEOUS-ETHANOL; COKE FORMATION; METHANOL;
DEACTIVATION; H-ZSM-5; MECHANISM; TRANSFORMATION; COKING; ZSM-5
AB The Conversion of ethanol to hydrocarbon over HZSM-5 zeolite with different Si/Al ratios was investigated under various reaction conditions. The catalyst with a higher Si/Al ratio (low acid density) deactivated faster and generated more unsaturated compounds at a similar time-on-stream. Temperature affects the catalytic activity with respect to liquid hydrocarbon generation and the hydrocarbon product composition. At lower temperatures (similar to 300 degrees C), the catalyst deactivated faster with respect to the liquid hydrocarbon formation. Higher temperatures (similar to 400 degrees C) reduced the formation of liquid range hydrocarbons and formed more gaseous fractions. Weight hourly space velocity was also found to affect product selectivity with higher weight hourly space velocity leading to a higher extent of ethylene formation. The experimental results were analyzed in terms of the product composition and the coke content with respect to catalyst time-on-stream and compared with the catalyst lifetime with respect to the variables tested on the conversion of ethanol to hydrocarbon. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Ramasamy, Karthikeyan K.; Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99354 USA.
[Ramasamy, Karthikeyan K.; Wang, Yong] Washington State Univ, Voiland Sch Chem Engn & Bioengn, Pullman, WA 99163 USA.
RP Ramasamy, KK (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA.
EM karthi@pnnl.gov; yong.wang@pnnl.gov
RI Ramasamy, karthikeyan/H-9981-2014
FU U.S. Department of Energy's Bioenergy Technologies Office; Laboratory
Directed Research and Development program at Pacific Northwest National
Laboratory; Battelle Memorial Institute for the U.S. Department of
Energy [DE-AC05-76RL01830]
FX This work was supported by the U.S. Department of Energy's Bioenergy
Technologies Office. The authors also thank the Laboratory Directed
Research and Development program at Pacific Northwest National
Laboratory for funding the project. Pacific Northwest National
Laboratory is operated by the Battelle Memorial Institute for the U.S.
Department of Energy under contract no. DE-AC05-76RL01830.
NR 32
TC 16
Z9 18
U1 3
U2 59
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-5861
EI 1873-4308
J9 CATAL TODAY
JI Catal. Today
PD NOV 15
PY 2014
VL 237
BP 89
EP 99
DI 10.1016/j.cattod.2014.02.044
PG 11
WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA AP2BR
UT WOS:000341877900012
ER
PT J
AU Marin-Flores, OG
Karim, AM
Wang, Y
AF Marin-Flores, Oscar G.
Karim, Ayman M.
Wang, Yong
TI Role of tungsten in the aqueous phase hydrodeoxygenation of ethylene
glycol on tungstated zirconia supported palladium
SO CATALYSIS TODAY
LA English
DT Article
DE Palladium; Tungstated zirconia; Aqueous phase hydrodeoxygenation;
Aqueous phase reforming; Ethylene glycol
ID LIGNOCELLULOSIC BIOMASS; PD CLUSTERS; CATALYSTS; ACIDITY; CONVERSION;
CHEMICALS; ZEOLITES; SORBITOL; SILICA; OXIDE
AB The focus of the present work was specifically on the elucidation of the role played by tungsten on the catalytic activity and selectivity of tungstated zirconia supported palladium (Pd-mWZ) for the aqueous phase hydrodeoxygenation (APHDO) of ethylene glycol (EG). Zirconia supported palladium (Pd-mZ) was used as reference. The catalysts were prepared via incipient wet impregnation and characterized using X-ray diffraction (XRD), temperature-programmed reduction (TPR), CO pulse chemisorption, CO-DRIFTS, ammonia temperature-programmed desorption (NH3-TPD) and pyridine adsorption. The presence of W results in larger Pd particles on supported Pd catalysts, i.e., 0.9 and 6.1 nm Pd particles are for Pd-mZ and Pd-mWZ, respectively. The catalytic activity measurements show that the overall intrinsic activity of Pd-particles on mWZ is 1.9 times higher than on mZ. APHDO process appears to be highly favored on Pd-mWZ whereas Pd-mZ exhibits a higher selectivity for reforming. This difference in terms of selectivity seems to be related to the high concentration of Bronsted acid sites and electron-deficient Pd species present on Pd-mWZ. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Marin-Flores, Oscar G.; Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA.
[Karim, Ayman M.; Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA.
RP Karim, AM (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA.
EM ayman.karim@pnnl.gov; wang42@wsu.edu
RI Karim, Ayman/G-6176-2012
OI Karim, Ayman/0000-0001-7449-542X
FU National Advanced Biofuels Consortium (NABC), Department of Energy's
Office of Biomass Program; Battelle for the United States Department of
Energy [DE-AC05-76RL01830]
FX We would like to acknowledge Virent for their initial work on
Pd/W-ZrO2 for HDO of polyols, and we would like to thank Dr.
Randy Cortright, Ms. Liz Woods and Mr. Brian Blank for numerous
invaluable discussions and suggestions. We acknowledge the financial
support from the National Advanced Biofuels Consortium (NABC) which is
funded by the Department of Energy's Office of Biomass Program with
recovery act funds. The Pacific Northwest National Laboratory is
operated by Battelle for the United States Department of Energy under
Contract DE-AC05-76RL01830.
NR 34
TC 3
Z9 3
U1 4
U2 62
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-5861
EI 1873-4308
J9 CATAL TODAY
JI Catal. Today
PD NOV 15
PY 2014
VL 237
BP 118
EP 124
DI 10.1016/j.cattod.2014.03.068
PG 7
WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA AP2BR
UT WOS:000341877900015
ER
PT J
AU Wickramanayake, S
Hopkinson, D
Myers, C
Hong, L
Feng, J
Seol, Y
Plasynski, D
Zeh, M
Luebke, D
AF Wickramanayake, Shan
Hopkinson, David
Myers, Christina
Hong, Lei
Feng, Jie
Seol, Yongkoo
Plasynski, Devon
Zeh, Matthew
Luebke, David
TI Mechanically robust hollow fiber supported ionic liquid membranes for
CO2 separation applications
SO JOURNAL OF MEMBRANE SCIENCE
LA English
DT Article
DE Torlon; Matrimid; Hollow fiber; Ionic liquid; Strength
ID CARBON-DIOXIDE; MICROFILTRATION MEMBRANES; ELECTRON-MICROGRAPHS;
IMAGE-ANALYSIS; PERMEABILITY
AB Polymeric hollow fiber supported ionic liquid membranes (SILMs) were fabricated utilizing Matrimid (R) and Torlon (R) as the supporting structure and the ionic liquid (IL) 1-hexyl-3-methylimidalzolium bis(trifluoromethylsulfonyl)imide ([C(6)mim][Tf2N]) as the gas transport media. This IL served as a baseline while the polymer and the fiber pore morphology were varied in order to optimize the support structure. By using sufficiently high fiber porosity, and thus maximizing the IL content of the membrane, it was found that the permeance and selectivity for CO2/H-2 separation were comparable for both Matrimid (R) and Torlon (R) supports. However, the mechanical strength of Matrimid (R) supports was low when saturated with IL Therefore Torlon (R) fibers were subsequently investigated because of the higher strength of this material. Molecular modeling was used to investigate the source of the increased strength of Torlon (R), and it was found that the polymer chains in Torlon (R) Lend to interlock with each other to a greater degree than Matrimid (R). Also, the IL [C(6)mim][Tf2N] has less interaction with Torlon (R) than with Matrimid (R). In this work the permeance and selectivity for CO2/H-2 of these hollow fiber SILMs are reported, as well as the tensile strength, Young's modulus, and glass transition temperature. Threshold image analysis was used to determine the volume fractions of polymer, macro-voids, and micro-voids. X-ray computed tomography scanning was used to non-destructively evaluate the location of IL within the fiber wall. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Wickramanayake, Shan; Hopkinson, David; Myers, Christina; Hong, Lei; Feng, Jie; Seol, Yongkoo; Plasynski, Devon; Zeh, Matthew; Luebke, David] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
[Wickramanayake, Shan; Hong, Lei] URS Energy & Construct, Pittsburgh, PA 15236 USA.
[Feng, Jie; Plasynski, Devon; Zeh, Matthew] Oak Ridge Inst Sci & Educ, Pittsburgh, PA 15236 USA.
RP Wickramanayake, S (reprint author), URS Energy & Construct, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA.
EM shan.wickramanayake@urs.com
FU U.S. Department of Energy National Energy Technology Laboratory under
the FY14 Carbon Capture field work proposal; agency of the United States
Government
FX We gratefully acknowledge funding and support from the U.S. Department
of Energy National Energy Technology Laboratory under the FY14 Carbon
Capture field work proposal. This report was prepared as an account of
work sponsored by an agency of the United States Government, Neither the
United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe on privately owned rights.
Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof.
NR 27
TC 7
Z9 7
U1 7
U2 120
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0376-7388
EI 1873-3123
J9 J MEMBRANE SCI
JI J. Membr. Sci.
PD NOV 15
PY 2014
VL 470
BP 52
EP 59
DI 10.1016/j.memsci.2014.07.015
PG 8
WC Engineering, Chemical; Polymer Science
SC Engineering; Polymer Science
GA AO2IB
UT WOS:000341141800006
ER
PT J
AU Mulvenna, RA
Weidman, JL
Jing, BX
Pople, JA
Zhu, YX
Boudouris, BW
Phillip, WA
AF Mulvenna, Ryan A.
Weidman, Jacob L.
Jing, Benxin
Pople, John A.
Zhu, Yingxi
Boudouris, Bryan W.
Phillip, William A.
TI Tunable nanoporous membranes with chemically-tailored pore walls from
triblock polymer templates
SO JOURNAL OF MEMBRANE SCIENCE
LA English
DT Article
DE PI-PS-PUMA triblock polymers; RAFT polymerization; Self-assembly and
non-solvent induced; phase separation (SNIPS); Nanofiltration;
Ultrafiltration
ID LIVING RADICAL POLYMERIZATION; BLOCK-COPOLYMER MEMBRANES;
ULTRAFILTRATION MEMBRANES; NANOFILTRATION MEMBRANES; FILTRATION
MEMBRANES; WATER FILTRATION; PHASE-INVERSION; THIN-FILMS; PERFORMANCE;
SEPARATION
AB Membranes derived from sell assembled block polymers have shown promise as highly selective and highly permeable filters, but the complex synthetic routes and limited pore functionalities of existing systems need to be improved if these materials are to serve as a platform for the next generation of nanostructured membranes. Here, the facile synthesis of a polyisoprene-b-polystyrene-b-poly(N,N-dimethylacrylamide) (PI-PS-PDMA) triblock polymer using a controlled reversible addition fragmentation chain transfer (RAFT) polymerization mechanism is reported. This material is then processed into a membrane using a self assembly and non solvent induced phase separation (SNIPS) technique, which creates an asymmetric, porous structure consisting of a selective layer that contains a high density of PDMA-lined pores (9.4 x 10(13) pores m(-2)) with an average diameter of 8.1 nm, as determined using solute rejection tests. Solvent Bow experiments demonstrate that the PI-PS-PDMA membrane has a pH independent permeability of 6 L m(-2) h(-1) bar(-1). The PDMA moiety lining the pore walls is converted, through simple hydrolysis in the solid stare, to yield a poly(acrylic acid)-lined (PAA-lined) structure. The permeability of the PI-PS-PAA membrane is pH dependent, and ranges from 0.6 L m(-2) h(-1) bar(-1) for solutions with a pH greater than 4 to 16 L m(-2) h-(1) bar(-1) for a solution at pH 1. Solute rejection tests demonstrated a pore size of 3.4 nm for the PI-PS-PAA membrane, which is the smallest pore size reported to date for membranes fabricated horn self-assembled block polymers. The Facile synthesis of the PI-PS-PDMA material, the scalable SNIPS membrane fabrication protocol, and the simple conversion chemistry of the pore functionality demonstrate that these nanostructured membranes are a strong platform for applications within the range of water purification, pharmaceutical separations, sensors, and drug delivery. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Mulvenna, Ryan A.; Boudouris, Bryan W.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA.
[Weidman, Jacob L.; Jing, Benxin; Zhu, Yingxi; Phillip, William A.] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA.
[Pople, John A.] SLAC, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
RP Boudouris, BW (reprint author), Purdue Univ, Sch Chem Engn, 480 Stadium Mall Dr, W Lafayette, IN 47907 USA.
EM boudouris@purdue.edu; wphillip@nd.edu
RI Jing, Benxin/I-4944-2014
OI Jing, Benxin/0000-0002-8400-1937
FU Ralph W. and Grace M. Showalter Research Trust Award at Purdue
University; Indiana Clinical and Translational Sciences Institute;
National Institutes of Health, National Center for Advancing
Translational Sciences, Clinical and Translational Sciences Award
through the Collaboration in Translational Research (CTR) Pilot Program
[TR000006]
FX We gratefully acknowledge support from the Ralph W. and Grace M.
Showalter Research Trust Award at Purdue University, Portions of this
work were made possible with support from the Indiana Clinical and
Translational Sciences Institute funded, in part by Grant number
TR000006 (Project Manager: Dr. Thomas Sors) from the National Institutes
of Health, National Center for Advancing Translational Sciences,
Clinical and Translational Sciences Award through the Collaboration in
Translational Research (CTR) Pilot Program. Portions of this research
were carried out at the Stanford Synchrotron Radiation Lightsource, a
Directorate of SLAC National Accelerator and an Office of Science User
Facility operated for the U.S. Department of Energy Office of Science by
Stanford University. Portions of this research were also performed with
the equipment from the Center for Environmental Science and Technology
(CEST) at Notre Dame and Notre Dame Integrated Imaging Facility (NDIIF).
NR 53
TC 25
Z9 25
U1 12
U2 145
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0376-7388
EI 1873-3123
J9 J MEMBRANE SCI
JI J. Membr. Sci.
PD NOV 15
PY 2014
VL 470
BP 246
EP 256
DI 10.1016/j.memsci.2014.07.021
PG 11
WC Engineering, Chemical; Polymer Science
SC Engineering; Polymer Science
GA AO2IB
UT WOS:000341141800026
ER
PT J
AU Ramirez, AI
Aggarwal, SK
Som, S
Rutter, TP
Longman, DE
AF Ramirez, A. I.
Aggarwal, S. K.
Som, S.
Rutter, T. P.
Longman, D. E.
TI Effects of blending a heavy alcohol (C20H40O with diesel in a heavy-duty
compression-ignition engine
SO FUEL
LA English
DT Article
DE Second-generation biofuel; In-cylinder endoscopy; Bio-derived alcohol;
Cavitation modeling; CO and NOx measurements
ID BIODIESEL FUELS; EMISSIONS; OIL; COMBUSTION; PERFORMANCE; SPRAY
AB There is an extensive worldwide search for alternate fuels that can displace fossil-based resources, yet still fit within existing infrastructure. At Argonne National Laboratory, strains of fuel have been designed that are generated by photosynthetic bacteria, eventually producing a heavy alcohol called phytol (C20H40O). Phytol's physical and chemical properties (cetane number, heat of combustion, heat of vaporization, density, surface tension, etc.) correspond in magnitude to those of diesel fuel, suggesting that phytol might be a good blending agent in compression ignition (CI) engine applications. The main objective of this study is to investigate the feasibility of using phytol as a blending agent with diesel. Three phytol-diesel blends were chosen for evaluation: P5, P10, and P20 (5%, 10%, and 20% phytol by volume). The fuel blends were extensively analyzed to determine their chemical and physical properties, with mostly comparable values, excepting viscosity and vapor pressure. In order to understand the effects of higher viscosity phytol in the fuel injector, three-dimensional simulations of transient, turbulent nozzle flow compared the injection and cavitation characteristics of the various blends. Specifically, area and discharge coefficients and mass flow rates of diesel and phytol blends were compared under corresponding engine operating conditions. Experimental research was performed using a single-cylinder engine under conventional operating conditions to gather comparative performance and emissions characteristics of the various blends of phytol and diesel. The influence of the fuel's chemical composition on performance and emission characteristics was captured by executing an injection timing sweep. Combustion characteristics such as the in-cylinder pressure trace were comparable for the diesel and all the blends with phytol at each of the injection timings. The diesel/phytol blends show similar emissions characteristics as the diesel. The combustion event was depicted by performing high-speed, natural luminosity endoscopic imaging. The conclusion is that phytol may be a suitable blending agent with diesel fuel for CI applications. Published by Elsevier Ltd.
C1 [Ramirez, A. I.; Aggarwal, S. K.] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60680 USA.
[Som, S.; Rutter, T. P.; Longman, D. E.] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA.
RP Ramirez, AI (reprint author), Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60680 USA.
EM aramir12@uic.edu
FU Argonne, a U.S. Department of Energy Office of Science laboratory
[DE-AC02-06CH11357]; DOE's Office of Vehicle Technologies, Office of
Energy Efficiency and Renewable Energy [DE-AC02-06CH11357]
FX The submitted manuscript has been created by UChicago Argonne, LLC,
operator of Argonne National Laboratory (Argonne). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up, nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.; This research was funded
by DOE's Office of Vehicle Technologies, Office of Energy Efficiency and
Renewable Energy under Contract No. DE-AC02-06CH11357. The authors wish
to thank Kevin Stork, program manager at DOE, for his support.
NR 52
TC 4
Z9 4
U1 0
U2 41
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0016-2361
EI 1873-7153
J9 FUEL
JI Fuel
PD NOV 15
PY 2014
VL 136
BP 89
EP 102
DI 10.1016/j.fuel.2014.06.039
PG 14
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA AO4JC
UT WOS:000341302300011
ER
PT J
AU Bhavsar, S
Tackett, B
Veser, G
AF Bhavsar, Saurabh
Tackett, Brian
Veser, Goetz
TI Evaluation of iron- and manganese-based mono- and mixed-metallic oxygen
carriers for chemical looping combustion
SO FUEL
LA English
DT Article
DE Chemical looping combustion; CO2 capture; Iron; Manganese; Mixed oxides
ID FLUIDIZED-BED; CO2 CAPTURE; UNCOUPLING CLOU; SOLID FUELS; OXIDES;
METHANE; REACTOR; GAS; CLC; OXIDATION
AB Chemical looping combustion (CLC) is an emerging technology for clean combustion of fossil fuels with inherent CO2 capture. In the present work, we investigate the use of iron and manganese based mixed oxides (MnxFe1 (x)-CeO2)supported on CeO2 as oxygen carriers in CLC. The low cost and low toxicity of iron and manganese make them interesting candidates for CLC, but both mono-metallic carriers suffer from issues of low reactivity, and manganese is additionally prone to form undesired spinel structures with typical oxide supports. Mono-and bimetallic oxygen carriers were synthesized across the entire spectrum of compositions from pure Mn to pure Fe (with x = 0, 0.1, 0.33, 0.5, 0.8, 0.9, 1), characterized, and tested in thermogravimetric and fixed-bed reactor studies using H-2 and CH4 as fuels. We find that the use of ceria as support results in stable operation for all compositions of the metal phase, including pure Mn. Bimetallic carriers with high Fe content, which contain a FeMnO3 phase, exhibit an unusual, reversible de-alloying/re-alloying behavior during cyclic redox operation, which precludes any synergistic effects between the two metals and results in slowed reduction kinetics. However, Mn-rich carriers show a pronounced increase in carrier reactivity and selectivity for total oxidation of methane due to the addition of small amounts of Fe, indicating the promise of appropriately designed FeMn carriers as low-cost, environmentally benign oxygen carrier materials for chemical looping combustion. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Bhavsar, Saurabh; Tackett, Brian; Veser, Goetz] Univ Pittsburgh, Swanson Sch Engn, Dept Chem Engn, Pittsburgh, PA 15261 USA.
[Bhavsar, Saurabh; Veser, Goetz] US DOE, Natl Energy Technol Lab, Pittsburgh, PA USA.
RP Veser, G (reprint author), Univ Pittsburgh, Swanson Sch Engn, Dept Chem Engn, Pittsburgh, PA 15261 USA.
EM gveser@pitt.edu
FU U.S. Department of Energy's National Energy Technology Laboratory's
on-going research under the RDS [DE-AC26-04NT41817]; National Science
Foundation (CBET) [1159853]; University of Pittsburgh's Mascaro Center
for Sustainable Innovation
FX This technical effort was performed in support of the U.S. Department of
Energy's National Energy Technology Laboratory's on-going research under
the RDS contract DE-AC26-04NT41817. Furthermore, financial support by
the National Science Foundation (CBET # 1159853) and by the University
of Pittsburgh's Mascaro Center for Sustainable Innovation is gratefully
acknowledged. Finally, we would like to thank Prashant Kumta and Karan
Kadakia for their help with Rietveld analysis.
NR 53
TC 14
Z9 14
U1 9
U2 83
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0016-2361
EI 1873-7153
J9 FUEL
JI Fuel
PD NOV 15
PY 2014
VL 136
BP 268
EP 279
DI 10.1016/j.fuel.2014.07.068
PG 12
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA AO4JC
UT WOS:000341302300033
ER
PT J
AU Hyman, JD
Winter, CL
AF Hyman, Jeffrey D.
Winter, C. Larrabee
TI Stochastic generation of explicit pore structures by thresholding
Gaussian random fields
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Porous media; Stochastic methods; Minkowski functionals; Direct
numerical simulation
ID STRONGLY CORRELATED SYSTEMS; POROUS-MEDIA; FLOW; PERCOLATION; BOUNDARY;
SIMULATIONS; GEOMETRIES; HEART; MODEL
AB We provide a description and computational investigation of an efficient method to stochastically generate realistic pore structures. Smolarkiewicz and Winter introduced this specific method in pores resolving simulation of Darcy flows (Smolarkiewicz and Winter, 2010 [1]) without giving a complete formal description or analysis of the method, or indicating how to control the parameterization of the ensemble. We address both issues in this paper. The method consists of two steps. First, a realization of a correlated Gaussian field, or topography, is produced by convolving a prescribed kernel with an initial field of independent, identically distributed random variables. The intrinsic length scales of the kernel determine the correlation structure of the topography. Next, a sample pore space is generated by applying a level threshold to the Gaussian field realization: points are assigned to the void phase or the solid phase depending on whether the topography over them is above or below the threshold. Hence, the topology and geometry of the pore space depend on the form of the kernel and the level threshold. Manipulating these two user prescribed quantities allows good control of pore space observables, in particular the Minkowski functionals. Extensions of the method to generate media with multiple pore structures and preferential flow directions are also discussed. To demonstrate its usefulness, the method is used to generate a pore space with physical and hydrological properties similar to a sample of Berea sandstone. (C) 2014 Elsevier Inc. All rights reserved.
C1 [Hyman, Jeffrey D.; Winter, C. Larrabee] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA.
[Hyman, Jeffrey D.] Los Alamos Natl Lab, Computat Earth Sci Earth & Environm Sci EES 16, Los Alamos, NM 87544 USA.
[Hyman, Jeffrey D.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA.
[Winter, C. Larrabee] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA.
RP Hyman, JD (reprint author), Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA.
EM jhyman@lanl.gov; winter@email.arizona.edu
OI Hyman, Jeffrey /0000-0002-4224-2847
FU U.S. Department of Energy [DE-AC52-06NA25396]
FX We thank M. Zhang for providing the sample of Berea sandstone, J.M.
Hyman, A. Guadagnini and C. M. Newman for several insightful discussions
and encouragement, and B. Berman for helping with image processing. We
gratefully acknowledge the support of the U.S. Department of Energy
through the LANL/LDRD Program for this work (Grant no.
DE-AC52-06NA25396).
NR 56
TC 3
Z9 3
U1 3
U2 29
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
EI 1090-2716
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD NOV 15
PY 2014
VL 277
BP 16
EP 31
DI 10.1016/j.jcp.2014.07.046
PG 16
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA AO4LV
UT WOS:000341311000002
ER
PT J
AU Vogman, GV
Colella, P
Shumlak, U
AF Vogman, G. V.
Colella, P.
Shumlak, U.
TI Dory-Guest-Harris instability as a benchmark for continuum kinetic
Vlasov-Poisson simulations of magnetized plasmas
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Vlasov-Poisson; Dory-Guest-Harris instability; Plasma kinetic theory;
Continuum kinetic benchmark; Electrostatic waves in magnetized plasma;
Phase space
ID SEMI-LAGRANGIAN METHOD; MAXWELL SYSTEM; PERPENDICULAR PROPAGATION;
WEIBEL INSTABILITY; NUMERICAL SCHEME; WAVES; EQUATION; INTEGRATION;
SPACE; FIELD
AB The Dory-Guest-Harris instability is demonstrated to be a well-suited benchmark for continuum kinetic Vlasov-Poisson algorithms. The instability is a special case of perpendicularly-propagating kinetic electrostatic waves in a warm uniformly magnetized plasma. A complete derivation of the closed-form linear theory dispersion relation for the instability is presented. The electric field growth rates and oscillation frequencies specified by the dispersion relation provide concrete measures against which simulation results can be quantitatively compared. A fourth-order continuum kinetic algorithm is benchmarked against the instability, and is demonstrated to have good convergence properties and close agreement with theoretical growth rate and oscillation frequency predictions. Second-order accurate simulations are also shown to be consistent with theoretical predictions, but require higher resolution for convergence. The Dory-Guest-Harris instability benchmark extends the scope of current standard test problems by providing a substantive means of validating continuum kinetic simulations of magnetized plasmas in higher-dimensional 3D (x, v(x), v(y)) phase space. The linear theory analysis, initial conditions, algorithm description, and comparisons between theoretical predictions and simulation results are presented. (C) 2014 Elsevier Inc. All rights reserved.
C1 [Vogman, G. V.] Univ Calif Berkeley, Appl Sci & Technol Program, Berkeley, CA 94720 USA.
[Colella, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.
[Colella, P.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
[Shumlak, U.] Univ Washington, Aerosp & Energet Res Program, Seattle, WA 98195 USA.
RP Vogman, GV (reprint author), Univ Calif Berkeley, Appl Sci & Technol Program, Berkeley, CA 94720 USA.
OI Shumlak, Uri/0000-0002-2918-5446
FU Department of Energy Office of Science Graduate Fellowship Program (DOE
SCGF); Office of Advanced Scientific Computing Research of the US
Department of Energy [DE-AC02-05CH11231]; United States Air Force Office
of Scientific Research [FA9550-11-1-0167]
FX This research was supported by an award from the Department of Energy
Office of Science Graduate Fellowship Program (DOE SCGF), agrant from
the Office of Advanced Scientific Computing Research of the US
Department of Energy under Contract Number DE-AC02-05CH11231, and a
grant from the United States Air Force Office of Scientific Research
under grant number FA9550-11-1-0167.
NR 51
TC 1
Z9 1
U1 0
U2 9
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
EI 1090-2716
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD NOV 15
PY 2014
VL 277
BP 101
EP 120
DI 10.1016/j.jcp.2014.08.014
PG 20
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA AO4LV
UT WOS:000341311000006
ER
PT J
AU Plunkett, P
Hu, J
Siefert, C
Atzberger, PJ
AF Plunkett, Pat
Hu, Jonathan
Siefert, Christopher
Atzberger, Paul J.
TI Spatially adaptive stochastic methods for fluid-structure interactions
subject to thermal fluctuations in domains with complex geometries
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Stochastic Eulerian Lagrangian method; Immersed boundary method;
Adaptive numerical methods; Multigrid; Stochastic numerical methods;
Stochastic partial differential equations
ID IMMERSED BOUNDARY METHOD; NAVIER-STOKES EQUATIONS; MONTE-CARLO METHOD;
HYDRODYNAMIC INTERACTION; MULTIQUADRATIC ACTIONS; PROJECTION METHOD;
DYNAMICS; PARTICLES; VERSION; BODIES
AB We develop stochastic mixed finite element methods for spatially adaptive simulations of fluid-structure interactions when subject to thermal fluctuations. To account for thermal fluctuations, we introduce a discrete fluctuation-dissipation balance condition to develop compatible stochastic driving fields for our discretization. We perform analysis that shows our condition is sufficient to ensure results consistent with statistical mechanics. We show the Gibbs-Boltzmann distribution is invariant under the stochastic dynamics of the semi-discretization. To generate efficiently the required stochastic driving fields, we develop a Gibbs sampler based on iterative methods and multigrid to generate fields with O (N) computational complexity. Our stochastic methods provide an alternative to uniform discretizations on periodic domains that rely on Fast Fourier Transforms. To demonstrate in practice our stochastic computational methods, we investigate within channel geometries having internal obstacles and no-slip walls how the mobility/diffusivity of particles depends on location. Our methods extend the applicability of fluctuating hydrodynamic approaches by allowing for spatially adaptive resolution of the mechanics and for domains that have complex geometries relevant in many applications. (C) 2014 Elsevier Inc. All rights reserved.
C1 [Plunkett, Pat; Atzberger, Paul J.] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA.
[Hu, Jonathan; Siefert, Christopher] Sandia Natl Labs, Livermore, CA 94550 USA.
RP Atzberger, PJ (reprint author), Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA.
EM atzberg@math.ucsb.edu
FU DOE ASCR [CM4]; NSF [DMS-0956210]; W. M. Keck Foundation
FX The authors would like to acknowledge support from DOE ASCR CM4. The
author P. J. A. acknowledges support from research grant NSF CAREER
DMS-0956210 and W. M. Keck Foundation. The Trilinos packages ML and
Epetra were used for the application simulations. The authors thank
Alexander Roma, Boyce Griffith, Mike Parks, and Micheal Minion for
helpful suggestions.
NR 51
TC 6
Z9 6
U1 1
U2 24
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
EI 1090-2716
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD NOV 15
PY 2014
VL 277
BP 121
EP 137
DI 10.1016/j.jcp.2014.07.051
PG 17
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA AO4LV
UT WOS:000341311000007
ER
PT J
AU Long, AR
Gentile, NA
Palmer, TS
AF Long, A. R.
Gentile, N. A.
Palmer, T. S.
TI The iterative thermal emission method: A more implicit modification of
IMC
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Thermal radiative transfer; Implicit Monte Carlo
ID MONTE-CARLO METHOD; RADIATIVE-TRANSFER; TIME
AB For over 40 years, the Implicit Monte Carlo (IMC) method has been used to solve challenging problems in thermal radiative transfer. These problems typically contain regions that are optically thick and diffusive, as a consequence of the high degree of "pseudo-scattering" introduced to model the absorption and reemission of photons from a tightly-coupled, radiating material. IMC has several well-known features that could be improved: a) it can be prohibitively computationally expensive, b) it introduces statistical noise into the material and radiation temperatures, which may be problematic in multiphysics simulations, and c) under certain conditions, solutions can be nonphysical, in that they violate a maximum principle, where IMC-calculated temperatures can be greater than the maximum temperature used to drive the problem.
We have developed a variant of IMC called iterative thermal emission IMC, which is designed to have a reduced parameter space in which the maximum principle is violated. ITE IMC is a more implicit version of IMC in that it uses the information obtained from a series of IMC photon histories to improve the estimate for the end of time step material temperature during a time step. A better estimate of the end of time step material temperature allows for a more implicit estimate of other temperature-dependent quantities: opacity, heat capacity, Fleck factor (probability that a photon absorbed during a time step is not reemitted) and the Planckian emission source.
We have verified the ITE IMC method against 0-D and 1-D analytic solutions and problems from the literature. These results are compared with traditional IMC. We perform an infinite medium stability analysis of ITE IMC and show that it is slightly more numerically stable than traditional IMC. We find that significantly larger time steps can be used with ITE IMC without violating the maximum principle, especially in problems with non-linear material properties. The ITE IMC method does however yield solutions with larger variance because each sub-step uses a different Fleck factor (even at equilibrium). (C) 2014 Elsevier Inc. All rights reserved.
C1 [Long, A. R.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA.
[Gentile, N. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Palmer, T. S.] Oregon State Univ, Corvallis, OR 97333 USA.
RP Long, AR (reprint author), Texas A&M Univ, Dept Nucl Engn, 3133 TAMU, College Stn, TX 77843 USA.
EM arlong.ne@tamu.edu
NR 22
TC 2
Z9 2
U1 1
U2 9
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
EI 1090-2716
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD NOV 15
PY 2014
VL 277
BP 228
EP 247
DI 10.1016/j.jcp.2014.08.017
PG 20
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA AO4LV
UT WOS:000341311000011
ER
PT J
AU Gupta, S
Suresh, KG
Nigam, AK
Mudryk, Y
Paudyal, D
Pecharsky, VK
Gschneidner, KA
AF Gupta, Sachin
Suresh, K. G.
Nigam, A. K.
Mudryk, Y.
Paudyal, D.
Pecharsky, V. K.
Gschneidner, K. A., Jr.
TI The nature of the first order isostructural transition in GdRhSn
SO JOURNAL OF ALLOYS AND COMPOUNDS
LA English
DT Article
DE Rare earth intermetallic; Iso-structural transition; Magnetocaloric
effect
ID SN-119 MOSSBAUER-SPECTROSCOPY; MAGNETIC PHASE-TRANSITIONS; GDPDAL
SINGLE-CRYSTALS; STANNIDES RERHSN RE; ELECTRONIC-STRUCTURE; TBRHSN;
DYRHSN; ANOMALIES; TRANSPORT; HORHSN
AB We present structural, magnetic, thermal, magnetocaloric, and electrical transport properties of polycrystalline GdRhSn. Magnetization data show that it orders antiferromagnetically at T-N = 16.2 K. The compound has the ZrNiAl type hexagonal crystal structure at room temperature and undergoes a first order iso-structural transition in the paramagnetic state at 245 K. The unit cell volume change at the transition is small (-0.07%) but discontinuous, in agreement with the first-order nature of the transition observed by magnetic, transport, and heat capacity measurements. The anisotropic changes of the lattice parameters are Delta alpha/alpha = 0.28% and Delta c/c = 0.64% on cooling. A substantial change in the 4f and conduction electron hybridization, giving rise to an increased integrated DOS, occurs when the high temperature phase transforms to the low temperature phase. A moderate magnetocaloric effect at T-N (Delta S-M = 6.5 J/kg K and Delta T-ad = 4.5 K for Delta H = 50 kOe) has been measured using both magnetization and heat capacity data. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Gupta, Sachin; Suresh, K. G.] Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India.
[Nigam, A. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India.
[Mudryk, Y.; Paudyal, D.; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
RP Suresh, KG (reprint author), Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India.
EM suresh@phy.iitb.ac.in
RI Gupta, Sachin/G-4793-2013
OI Gupta, Sachin/0000-0002-2407-5555
FU CSIR, New Delhi; Iowa State University of Science and Technology for the
US Department of Energy [DE-AC02-07CH11358]; Office of Basic Energy
Sciences, Materials Sciences Division of the Office of Science, US
Department of Energy
FX SG would like to thank CSIR, New Delhi for granting senior research
fellowship. The Ames Laboratory is operated by Iowa State University of
Science and Technology for the US Department of Energy under contract
No. DE-AC02-07CH11358. Work at Ames Laboratory (theoretical calculations
and temperature dependent Xray powder diffraction measurements) is
supported by the Office of Basic Energy Sciences, Materials Sciences
Division of the Office of Science, US Department of Energy.
NR 46
TC 4
Z9 4
U1 3
U2 44
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0925-8388
EI 1873-4669
J9 J ALLOY COMPD
JI J. Alloy. Compd.
PD NOV 15
PY 2014
VL 613
BP 280
EP 287
DI 10.1016/j.jallcom.2014.06.027
PG 8
WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
Metallurgical Engineering
SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering
GA AM7BA
UT WOS:000340018500048
ER
PT J
AU Hanifi, AR
Paulson, S
Torabi, A
Shinbine, A
Tucker, MC
Birss, V
Etsell, TH
Sarkar, P
AF Hanifi, Amir Reza
Paulson, Scott
Torabi, Alireza
Shinbine, Alyssa
Tucker, Michael C.
Birss, Viola
Etsell, Thomas H.
Sarkar, Partha
TI Slip-cast and hot-solution infiltrated porous yttria stabilized zirconia
(YSZ) supported tubular fuel cells.
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Hot solution infiltration; NiO-SDC; LSM; GDC-LSCF; Porous YSZ; Tubular
SOFC
ID NANO-STRUCTURED ELECTRODES; SOFC ANODES; HIGH-PERFORMANCE; DOPED CERIA;
THERMAL-STABILITY; CERMET ANODES; IMPREGNATION; CATHODES; REDOX;
MICROSTRUCTURE
AB Hot solution infiltration was investigated as a flexible and rapid method to incorporate anode and cathode components into fully sintered, porous ceramic tubular templates for use as solid oxide fuel cells (SOFC). Composed of either a porous 8 mol% yttria-stabilized zirconia (YSZ) or 5 wt% NiO-YSZ support structure, a thin Ni-YSZ anode functional layer and an outer ca. 10 gm dense YSZ electrolyte, closed end tubes were first hot solution (ca. 100 degrees C) infiltrated on the inside with NiO-SDC (Sm0.2Ce0.8O1.9) to serve as the anode. Cathodes were either LSM (nominally La0.8Sr0.2MnO3+delta) infiltrated into a thin porous YSZ layer on the outer electrolyte surface, or an LSCF-GDC composite (Gd0.1Ce0.9O1.95-La0.6Sr0.4Co0.2Fe0.8O3-delta) on a thin GDC buffer layer. Although hot solution infiltration of the Ni, Ce and Sm salts into the anode support structure did not result in complete penetration (with the Ni contents in the tube wall ranging between 4 and 10 vol.%), well-sealed full cells produced power densities as high as 275, 196 and 153 mW cm(-2) at 800, 750 and 700 degrees C, respectively. Hot solution infiltration of active SOFC electrode materials is thus shown to be a very flexible approach for the evaluation of their performance. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Hanifi, Amir Reza; Torabi, Alireza; Shinbine, Alyssa; Etsell, Thomas H.] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada.
[Paulson, Scott; Birss, Viola] Univ Calgary, Dept Chem, Calgary, AB T2N 1N4, Canada.
[Tucker, Michael C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
[Sarkar, Partha] Alberta Innovates Technol Futures, Carbon & Energy Management, Edmonton, AB T6N 1E4, Canada.
RP Hanifi, AR (reprint author), Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada.
EM Hanifi@ualberta.ca
FU Natural Sciences and Engineering Research Council (NSERC)
FX This research was supported through funding to the NSERC Solid Oxide
Fuel Cell Canada Strategic Research Network from the Natural Sciences
and Engineering Research Council (NSERC) and other sponsors listed at
www.sofccanada.com. We would also like to acknowledge Dr. Rob Marr at
the University of Calgary Laboratory for Electron Microbeam Analysis
(UCLEMA) for assistance with the electron microprobe analyses.
NR 46
TC 6
Z9 6
U1 7
U2 88
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
EI 1873-2755
J9 J POWER SOURCES
JI J. Power Sources
PD NOV 15
PY 2014
VL 266
BP 121
EP 131
DI 10.1016/j.jpowsour.2014.05.001
PG 11
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA AL0GV
UT WOS:000338806300015
ER
PT J
AU Kan, YC
Hu, Y
Croy, J
Ren, Y
Sun, CJ
Heald, SM
Bareno, J
Bloom, I
Chen, ZH
AF Kan, Yongchun
Hu, Yuan
Croy, Jason
Ren, Yang
Sun, Cheng-Jun
Heald, Steve M.
Bareno, Javier
Bloom, Ira
Chen, Zonghai
TI Formation of Li2MnO3 investigated by in situ synchrotron probes
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE In situ probes; XRD; XANES; Factor analysis; Lithium battery
ID FE-SUBSTITUTED LI2MNO3; LITHIUM-ION BATTERIES; X-RAY-DIFFRACTION;
LAYERED-OXIDE; ELECTROCHEMICAL ACTIVITY; POSITIVE ELECTRODE;
PHASE-TRANSITIONS; CATHODE MATERIALS; LOCAL-STRUCTURE; CAPACITY
AB Both in situ high-energy X-ray diffraction and in situ X-ray absorption spectroscopy were used to investigate the structural evolution of materials during the solid-state synthesis of Li2MnO3. Combing Xray absorption spectroscopy and factor analysis techniques, we were able to capture the spectrum and evolution of an intermediate phase (MnO2) that could not be detected by the diffraction technique. Meanwhile, the X-ray diffraction data clearly showed the anisotropic crystallization of Li2MnO3 during sintering above 600 degrees C. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Kan, Yongchun; Hu, Yuan] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China.
[Kan, Yongchun; Croy, Jason; Bareno, Javier; Bloom, Ira; Chen, Zonghai] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Ren, Yang; Sun, Cheng-Jun; Heald, Steve M.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
RP Chen, ZH (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
EM zonghai.chen@anl.gov
RI Chen, Zonghai/F-1067-2015;
OI Chen, Zonghai/0000-0001-5371-9463; Bareno, Javier/0000-0003-1230-9278
FU U.S. Department of Energy, Vehicle Technologies Office; U.S. Department
of Energy by UChicago Argonne, LLC [DE-AC02-06CH11357]; U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences; US
Department of Energy - Basic Energy Sciences, a Major Resources Support
grant from NSERC; University of Washington; Canadian Light Source;
Advanced Photon Source
FX Research at Argonne National Laboratory was funded by U.S. Department of
Energy, Vehicle Technologies Office. Argonne National Laboratory is
operated for the U.S. Department of Energy by UChicago Argonne, LLC,
under contract DE-AC02-06CH11357. The authors also acknowledge the use
of the Advanced Photon Source of Argonne National Laboratory supported
by the U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences. PNC/XSD facilities at the Advanced Photon Source, and
research at these facilities, are supported by the US Department of
Energy - Basic Energy Sciences, a Major Resources Support grant from
NSERC, the University of Washington, the Canadian Light Source, and the
Advanced Photon Source.
NR 42
TC 8
Z9 8
U1 6
U2 150
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
EI 1873-2755
J9 J POWER SOURCES
JI J. Power Sources
PD NOV 15
PY 2014
VL 266
BP 341
EP 346
DI 10.1016/j.jpowsour.2014.05.032
PG 6
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA AL0GV
UT WOS:000338806300045
ER
PT J
AU Czakon, M
Mitov, A
Papucci, M
Ruderman, JT
Weiler, A
AF Czakon, Michal
Mitov, Alexander
Papucci, Michele
Ruderman, Joshua T.
Weiler, Andreas
TI Removing Gaps in the Exclusion of Top Squark Parameter Space
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID HADRON COLLIDERS; PAIR PRODUCTION; PP COLLISIONS; FERMILAB TEVATRON;
QUARK PRODUCTION; QCD CORRECTIONS; CROSS-SECTION; ROOT-S=8 TEV; SEARCH;
LHC
AB Light stops are a hallmark of the most natural realizations of weak-scale supersymmetry. While stops have been extensively searched for, there remain open gaps around and below the top mass, due to similarities of stop and top signals with current statistics. We propose a new fast-track avenue to improve light stop searches for R-parity-conserving supersymmetry by comparing top cross section measurements to the theoretical prediction. Stop masses below similar to 180 GeV can now be ruled out for a light neutralino. The possibility of a stop signal contaminating the top mass measurement is also briefly addressed.
C1 [Czakon, Michal] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany.
[Mitov, Alexander] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England.
[Papucci, Michele; Ruderman, Joshua T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA.
[Papucci, Michele; Ruderman, Joshua T.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Ruderman, Joshua T.] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA.
[Weiler, Andreas] DESY, D-22607 Hamburg, Germany.
[Weiler, Andreas] CERN, Div Theory, CH-1211 Geneva 23, Switzerland.
RP Czakon, M (reprint author), Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany.
FU German Research Foundation (DFG) via the
Sonderforschungsbereich/Transregio [SFB/TR-9]; Heisenberg programme; UK
Science and Technology Facilities Council [ST/L002760/1, ST/K004883/1];
ERC [291377]; Office of Science, Office of High Energy Physics, of the
U.S. Department of Energy [DE-AC02-05CH11231]; Miller Institute for
Basic Research in Science; German Science Foundation (DFG) under the
Collaborative Research Center [(SFB) 676]
FX We thank Stefan Berge, Kyle Cranmer, Lance Dixon, Ian Low, Michelangelo
Mangano, and Matt Reece for discussions. M. P. and J. T. R. thank the
CERN TH group and the Aspen Center for Physics for their hospitality. J.
T. R. also thanks CFHEP at IHEP for hospitality. The work of M. C. was
supported by the German Research Foundation (DFG) via the
Sonderforschungsbereich/Transregio SFB/TR-9 "Computational Particle
Physics" and the Heisenberg programme. The work of A. M. is supported by
the UK Science and Technology Facilities Council (Grants No.
ST/L002760/1 and No. ST/K004883/1) and in part by ERC Grant No. 291377
"LHCtheory: Theoretical predictions and analyses of LHC physics:
advancing the precision frontier." M. P. was supported in part by the
Director, Office of Science, Office of High Energy Physics, of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231. J. T. R. is
supported by a fellowship from the Miller Institute for Basic Research
in Science. The work of A. W. was supported in part by the German
Science Foundation (DFG) under the Collaborative Research Center (SFB)
676.
NR 91
TC 31
Z9 31
U1 2
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 14
PY 2014
VL 113
IS 20
AR 201803
DI 10.1103/PhysRevLett.113.201803
PG 6
WC Physics, Multidisciplinary
SC Physics
GA CB5JT
UT WOS:000349664000004
PM 25432037
ER
PT J
AU Fatemi, V
Hunt, B
Steinberg, H
Eltinge, SL
Mahmood, F
Butch, NP
Watanabe, K
Taniguchi, T
Gedik, N
Ashoori, RC
Jarillo-Herrero, P
AF Fatemi, Valla
Hunt, Benjamin
Steinberg, Hadar
Eltinge, Stephen L.
Mahmood, Fahad
Butch, Nicholas P.
Watanabe, Kenji
Taniguchi, Takashi
Gedik, Nuh
Ashoori, Raymond C.
Jarillo-Herrero, Pablo
TI Electrostatic Coupling between Two Surfaces of a Topological Insulator
Nanodevice
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID BORON-NITRIDE; GRAPHENE; BI2SE3; STATE; TRANSPORT; BI2TE3
AB We report on electronic transport measurements of dual-gated nanodevices of the low-carrier density topological insulator (TI) Bi1.5Sb0.5Te1.7Se1.3. In all devices, the upper and lower surface states are independently tunable to the Dirac point by the top and bottom gate electrodes. In thin devices, electric fields are found to penetrate through the bulk, indicating finite capacitive coupling between the surface states. A charging model allows us to use the penetrating electric field as a measurement of the intersurface capacitance CTI and the surface state energy-density relationship mu(n), which is found to be consistent with independent angle-resolved photoemission spectroscopy measurements. At high magnetic fields, increased field penetration through the surface states is observed, strongly suggestive of the opening of a surface state band gap due to broken time-reversal symmetry.
C1 [Fatemi, Valla; Hunt, Benjamin; Steinberg, Hadar; Eltinge, Stephen L.; Mahmood, Fahad; Gedik, Nuh; Ashoori, Raymond C.; Jarillo-Herrero, Pablo] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Steinberg, Hadar] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel.
[Butch, Nicholas P.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Butch, Nicholas P.] Univ Maryland, Dept Phys, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA.
[Butch, Nicholas P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Watanabe, Kenji; Taniguchi, Takashi] Natl Inst Mat Sci, Adv Mat Lab, Tsukuba, Ibaraki 3050044, Japan.
RP Fatemi, V (reprint author), MIT, Dept Phys, Cambridge, MA 02139 USA.
EM vfatemi@mit.edu
RI TANIGUCHI, Takashi/H-2718-2011; WATANABE, Kenji/H-2825-2011; Hunt,
Benjamin/C-3395-2017
OI WATANABE, Kenji/0000-0003-3701-8119; Hunt, Benjamin/0000-0002-5008-8042
FU DOE, Basic Energy Sciences Office, Division of Materials Sciences and
Engineering [DE-SC0006418]; Gordon and Betty Moore Foundation
[GBMF2931]; STC Center for Integrated Quantum Materials, NSF
[DMR-1231319]; MIT MRSEC Initiative under NSF [DMR-0819762]; NSF
[DMR-0819762, ECS-0335765]; U.S. Department of Energy, National Nuclear
Security Administration [DE-AC52-07NA27344]
FX This work was partly supported by the DOE, Basic Energy Sciences Office,
Division of Materials Sciences and Engineering, under Award No.
DE-SC0006418 (V. F., S. E., H. S., and P. J. H.), by the Gordon and
Betty Moore Foundation Grant No. GBMF2931 and the STC Center for
Integrated Quantum Materials, NSF Grant No. DMR-1231319 (B. H. and R. C.
A.), and by an MIT MRSEC Initiative under NSF Grant No. DMR-0819762 (F.
M. and N. G.). This work made use of the Materials Research Science and
Engineering Center Shared Experimental Facilities supported by NSF under
Grant No. DMR-0819762. Sample fabrication was performed partly at the
Harvard Center for Nanoscale Science supported by the NSF under Grant
No. ECS-0335765. Sample synthesis and initial characterization were
performed under LDRD (Tracking Code 14-ERD-041) at Lawrence Livermore
National Laboratory (LLNL). LLNL is operated by Lawrence Livermore
National Security, LLC, for the U.S. Department of Energy, National
Nuclear Security Administration, under Contract No. DE-AC52-07NA27344.
We thank A. Stern, Y. Baum, K. Burch, D. Drew, B. Skinner, A. Frenzel,
and J. D. Sanchez-Yamagishi for discussions and J. R. Jeffries for
performing x-ray diffraction measurements.
NR 41
TC 11
Z9 11
U1 5
U2 57
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 14
PY 2014
VL 113
IS 20
AR 206801
DI 10.1103/PhysRevLett.113.206801
PG 5
WC Physics, Multidisciplinary
SC Physics
GA CB5JT
UT WOS:000349664000013
PM 25432050
ER
PT J
AU Michel, P
Divol, L
Turnbull, D
Moody, JD
AF Michel, P.
Divol, L.
Turnbull, D.
Moody, J. D.
TI Dynamic Control of the Polarization of Intense Laser Beams via Optical
Wave Mixing in Plasmas
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID INERTIAL CONFINEMENT FUSION; ULTRAHIGH-POWER LASERS; SUPPRESSION; PROBE;
PUMP
AB When intense laser beams overlap in plasmas, the refractive index modulation created by the beat wave via the ponderomotive force can lead to optical wave mixing phenomena similar to those used in crystals and photorefractive materials. A new comprehensive analytical description of the modification of the polarization state of laser beams crossing at arbitrary angles in a plasma is presented. It is shown that a laser-plasma system can be used to provide full control of the polarization state of a separate "probe" laser beam; simple analytical estimates and practical considerations are provided for the design of novel photonics devices such as laser-plasma polarizers and wave plates.
C1 [Michel, P.; Divol, L.; Turnbull, D.; Moody, J. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Michel, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract No.
DE-AC52-07NA27344.
NR 28
TC 13
Z9 13
U1 3
U2 16
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 14
PY 2014
VL 113
IS 20
AR 205001
DI 10.1103/PhysRevLett.113.205001
PG 5
WC Physics, Multidisciplinary
SC Physics
GA CB5JT
UT WOS:000349664000010
PM 25432044
ER
PT J
AU Appel, HM
Fescemyer, H
Ehlting, J
Weston, D
Rehrig, E
Joshi, T
Xu, D
Bohlmann, J
Schultz, J
AF Appel, Heidi M.
Fescemyer, Howard
Ehlting, Juergen
Weston, David
Rehrig, Erin
Joshi, Trupti
Xu, Dong
Bohlmann, Joerg
Schultz, Jack
TI Transcriptional responses of Arabidopsis thaliana to chewing and sucking
insect herbivores
SO FRONTIERS IN PLANT SCIENCE
LA English
DT Article
DE Arabidopsis thaliana; Spodoptera exigua; Pieris brassicae; Myzus
persicae; Brevicoryne brassicae; herbivory; hormone signaling;
glucosinolates
ID GENE-EXPRESSION; PLANT DEFENSE; NICOTIANA-ATTENUATA; SIGNALING PATHWAYS;
GLUCOSINOLATE ACCUMULATION; COMBINATORIAL CONTROL; REGULATED GENE;
JASMONIC ACID; TRANSFER-RNA; CROSS-TALK
AB We tested the hypothesis that Arabidopsis can recognize and respond differentially to insect species at the transcriptional level using a genome wide microarray. Transcriptional reprogramming was characterized using co-expression analysis in damaged and undamaged leaves at two times in response to mechanical wounding and four insect species. In all, 2778 (10.6%) of annotated genes on the array were differentially expressed in at least one treatment. Responses differed mainly between aphid and caterpillar and sampling times. Responses to aphids and caterpillars shared only 10% of up-regulated and 8% of down-regulated genes. Responses to two caterpillars shared 21 and 12% of up- and down-regulated genes, whereas responses to the two aphids shared only 7 and 4% of up-regulated and down-regulated genes. Overlap in genes expressed between 6 and 24h was 3-15%, and depended on the insect species. Responses in attacked and unattacked leaves differed at 6 h but converged by 24 h. Genes responding to the insects are also responsive to many stressors and included primary metabolism. Aphids down-regulated amino acid catabolism; caterpillars stimulated production of amino acids involved in glucosinolate synthesis. Co-expression analysis revealed 17 response networks. Transcription factors were a major portion of differentially expressed genes throughout and responsive genes shared most of the known or postulated binding sites. However, cis-element composition of genes down regulated by the aphid M. persicae was unique, as were those of genes down-regulated by caterpillars. As many as 20 cis-elements were over-represented in one or more treatments, including some from well-characterized classes and others as yet uncharacterized. We suggest that transcriptional changes elicited by wounding and insects are heavily influenced by transcription factors and involve both enrichment of a common set of cis-elements and a unique enrichment of a few cis-elements in responding genes.
C1 [Appel, Heidi M.; Schultz, Jack] Univ Missouri, Bond Life Sci Ctr, Columbia, MO 65211 USA.
[Appel, Heidi M.; Schultz, Jack] Univ Missouri, Div Plant Sci, Columbia, MO 65211 USA.
[Fescemyer, Howard] Penn State Univ, Dept Biol, University Pk, PA 16802 USA.
[Ehlting, Juergen; Bohlmann, Joerg] Univ Missouri, Bond Life Sci Ctr, Columbia, MO 65211 USA.
[Ehlting, Juergen] Univ Victoria, Dept Biol, Victoria, BC V8W 2Y2, Canada.
[Weston, David] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA.
[Rehrig, Erin] Fitchburg State Univ, Dept Biol & Chem, Fitchburg, MA USA.
[Joshi, Trupti; Xu, Dong] Univ Missouri, Bond Life Sci Ctr, Inst Informat, Dept Comp Sci, Columbia, MO 65211 USA.
RP Appel, HM (reprint author), Univ Missouri, Bond Life Sci Ctr, 1201 Rollins St, Columbia, MO 65211 USA.
EM appelh@missouri.edu
FU NSF Arabidopsis grant [DEB 0313492]
FX We thank two anonymous reviewers for a critical reading of the
manuscript, Chris Frost and Clayton Coffman for help with data analysis,
and the following individuals for help in conducting experiments: Inga
Mewis, Jennifer Heath, JoAnn Snyder, Irmgard Seidl Adams, Nate
McCartney, and Roger Snyder. Funding was provided by an NSF Arabidopsis
2010 grant (DEB 0313492) to Jack Schultz.
NR 103
TC 10
Z9 10
U1 6
U2 64
PU FRONTIERS RESEARCH FOUNDATION
PI LAUSANNE
PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND
SN 1664-462X
J9 FRONT PLANT SCI
JI Front. Plant Sci.
PD NOV 14
PY 2014
VL 5
AR 565
DI 10.3389/fpls.2014.00565
PG 20
WC Plant Sciences
SC Plant Sciences
GA AX6ZC
UT WOS:000347065500001
PM 25452759
ER
PT J
AU Kogan, VG
Prozorov, R
AF Kogan, V. G.
Prozorov, R.
TI Changing the type of superconductivity by magnetic and potential
scattering
SO PHYSICAL REVIEW B
LA English
DT Article
ID PARAMAGNETIC IMPURITIES; ALLOYS
AB By evaluating the upper and thermodynamic critical fields H-c2 and H-c and their ratio H-c2/H-c at arbitrary temperatures, we argue that situations are possible when a type-II material is transformed into type I by adding magnetic impurities.
C1 [Kogan, V. G.] Iowa State Univ, Ames Lab DOE, Ames, IA 50011 USA.
Iowa State Univ, Dept Phys, Ames, IA 50011 USA.
RP Kogan, VG (reprint author), Iowa State Univ, Ames Lab DOE, Ames, IA 50011 USA.
EM kogan@ameslab.gov; prozorov@ameslab.gov
FU Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DE-AC02-07CH11358]
FX The authors are grateful to D. Finnemore, J. Kirtley, J. Thompson, P.
Canfield, S. Bud'ko, V. Taufor, and B. Maple for many helpful
discussions. The Ames Laboratory is supported by the Department of
Energy, Office of Basic Energy Sciences, Division of Materials Sciences
and Engineering under Contract No. DE-AC02-07CH11358.
NR 8
TC 2
Z9 2
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 14
PY 2014
VL 90
IS 18
AR 180502
DI 10.1103/PhysRevB.90.180502
PG 4
WC Physics, Condensed Matter
SC Physics
GA AU2BY
UT WOS:000345422200004
ER
PT J
AU Gunawardana, KGSH
Wilson, SR
Mendelev, MI
Song, XY
AF Gunawardana, K. G. S. H.
Wilson, S. R.
Mendelev, M. I.
Song, Xueyu
TI Theoretical calculation of the melting curve of Cu-Zr binary alloys
SO PHYSICAL REVIEW E
LA English
DT Article
ID HARD-SPHERE FLUID; FUNDAMENTAL MEASURE-THEORY; FREE-ENERGY MODEL;
PERTURBATION-THEORY; METALLIC GLASSES; REPULSIVE FORCES; LIQUID;
SIMULATION; STABILITY; SYSTEM
AB Helmholtz free energies of the dominant binary crystalline solids found in the Cu-Zr system at high temperatures close to the melting curve are calculated. Our theoretical approach combines fundamental measure density functional theory (applied to the hard-sphere reference system) and a perturbative approach to include the attractive interactions. The studied crystalline solids are Cu(fcc), Cu51Zr14(beta), CuZr(B2), CuZr2(C11b), Zr(hcp), and Zr(bcc). The calculated Helmholtz free energies of crystalline solids are in good agreement with results from molecular-dynamics (MD) simulations. Using the same perturbation approach, the liquid phase free energies are calculated as a function of composition and temperature, from which the melting curve of the entire composition range of this system can be obtained. Phase diagrams are determined in this way for two leading embedded atom method potentials, and the results are compared with experimental data. Theoretical melting temperatures are compared both with experimental values and with values obtained directly from MD simulations at several compositions.
C1 [Gunawardana, K. G. S. H.; Wilson, S. R.; Mendelev, M. I.; Song, Xueyu] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Song, Xueyu] Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
RP Gunawardana, KGSH (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
EM xsong@iastate.edu
FU Division of Materials Sciences and Engineering, Office of Basic Energy
Sciences, U.S. Department of Energy [W-7405-ENG-82]; Iowa State
University
FX This research was sponsored by the Division of Materials Sciences and
Engineering, Office of Basic Energy Sciences, U.S. Department of Energy,
under Contract No. W-7405-ENG-82 with Iowa State University. We would
like to thank Shihuai Zhou for providing much of the structural
information used in this study.
NR 41
TC 1
Z9 2
U1 3
U2 31
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0045
EI 2470-0053
J9 PHYS REV E
JI Phys. Rev. E
PD NOV 14
PY 2014
VL 90
IS 5
AR 052403
DI 10.1103/PhysRevE.90.052403
PG 8
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA AU4QB
UT WOS:000345595600010
ER
PT J
AU Bolme, CA
Ramos, KJ
AF Bolme, C. A.
Ramos, K. J.
TI The elastic tensor of single crystal RDX determined by Brillouin
spectroscopy
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID CYCLOTRIMETHYLENE TRINITRAMINE RDX; CONSTANTS
AB The elastic tensor of 1,3,5-trinitroperhydro-1,3,5-triazine (also known as RDX, hexogen, and cyclotrimethylene trinitramine) was determined using Brillouin spectroscopy of as-grown single crystals. This study addresses inconsistencies in the literature between the elastic tensor measurements made using Brillouin spectroscopy in the GHz frequency range and the measurements using various techniques in the kHz-MHz frequency range. These Brillouin results are consistent with previous measurements made in the kHz-MHz frequency range using various techniques and are also consistent with velocity measurements at 15 GHz using picosecond acoustic interferometry. These results are in disagreement with the previously published elastic tensor determined using Brillouin spectroscopy, and there are differences of several percent amongst the consistent set of elastic tensor determinations. The origins of the disagreement and differences are discussed. (C) 2014 AIP Publishing LLC.
C1 [Bolme, C. A.; Ramos, K. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Bolme, CA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
OI Bolme, Cynthia/0000-0002-1880-271X
FU National Nuclear Security Administration Science Campaign 2; LANL HE
Crystal Laboratory
FX This work was supported by the National Nuclear Security Administration
Science Campaign 2 and performed at Los Alamos National Laboratory under
DE-AC52-06NA25396. The authors gratefully acknowledge helpful
discussions with Dr. Lewis Stevens, Dr. Dan Hooks, Dr. D. J. Luscher,
and Dr. Marc Cawkwell, machining performed by Timothy Pierce, and
support in the LANL HE Crystal Laboratory from Tate Hamilton.
NR 26
TC 7
Z9 7
U1 1
U2 14
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD NOV 14
PY 2014
VL 116
IS 18
AR 183503
DI 10.1063/1.4901461
PG 7
WC Physics, Applied
SC Physics
GA AT8ZB
UT WOS:000345216300012
ER
PT J
AU Huang, ZY
Fu, H
Hadimani, RL
Balfour, EA
Dembele, SN
Teng, BH
Jiles, DC
AF Huang, Z. Y.
Fu, H.
Hadimani, R. L.
Balfour, E. Agurgo
Dembele, S. N.
Teng, B. H.
Jiles, D. C.
TI Enhancement of magnetocaloric effect in the Gd2Al phase by Co alloying
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID MAGNETIC REFRIGERATION; TEMPERATURE; COMPOUND
AB To understand the effect of Co doping on the magnetic entropy changes in Gd2Al phase, a series of Gd2AlCox alloys with 0 <= x <= 0.6 were synthesized by arc-melting and the crystal structure was analyzed by XRD. The magnetic properties were investigated, and the entropy changes were calculated for a magnetic field change of 50 kOe. All the as-cast alloys doped with Co exhibited greater magnetic entropy changes than the original binary Gd2Al phase. The main reasons attributed to this are the increase of ferromagnetic interaction indicated by the disappearance of cusp and sharp drop in magnetization and the reduction of the critical field required to trigger the field-induced transition below 50K in Gd2Al phase after Co alloying. (C) 2014 AIP Publishing LLC.
C1 [Huang, Z. Y.; Fu, H.; Balfour, E. Agurgo; Dembele, S. N.; Teng, B. H.] Univ Elect Sci & Technol China, Sch Phys Elect, Chengdu 610054, Peoples R China.
[Hadimani, R. L.; Jiles, D. C.] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA.
[Hadimani, R. L.; Jiles, D. C.] US DOE, Ames Lab, Ames, IA 50011 USA.
RP Fu, H (reprint author), Univ Elect Sci & Technol China, Sch Phys Elect, Chengdu 610054, Peoples R China.
EM fuhao@uestc.edu.cn
OI Hadimani, Ravi/0000-0001-5939-556X
FU National Natural Science Foundation of China [51271049]; Barbara and
James Palmer endowment at the Department of Electrical and Computer
Engineering of Iowa State University
FX This work was supported by the National Natural Science Foundation of
China (No. 51271049). This work was also funded by Barbara and James
Palmer endowment at the Department of Electrical and Computer
Engineering of Iowa State University.
NR 18
TC 0
Z9 0
U1 2
U2 14
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD NOV 14
PY 2014
VL 116
IS 18
AR 183908
DI 10.1063/1.4900782
PG 4
WC Physics, Applied
SC Physics
GA AT8ZB
UT WOS:000345216300030
ER
PT J
AU Spirin, RE
Salvadori, MC
Teixeira, FS
Sgubin, LG
Cattani, M
Brown, IG
AF Spirin, R. E.
Salvadori, M. C.
Teixeira, F. S.
Sgubin, L. G.
Cattani, M.
Brown, I. G.
TI Nanocomposite formed by titanium ion implantation into alumina
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID DYNAMIC COMPOSITION CHANGES; GOLD NANOPARTICLES; RESISTIVITY;
SIMULATION; CERAMICS; POLYMER; TRIDYN
AB Composites of titanium nanoparticles in alumina were formed by ion implantation of titanium into alumina, and the surface electrical conductivity measured in situ as the implantation proceeded, thus generating curves of sheet conductivity as a function of dose. The implanted titanium self-conglomerates into nanoparticles, and the spatial dimensions of the buried nanocomposite layer can thus be estimated from the implantation depth profile. Rutherford backscattering spectrometry was performed to measure the implantation depth profile, and was in good agreement with the calculated profile. Transmission electron microscopy of the titanium-implanted alumina was used for direct visualization of the nanoparticles formed. The measured conductivity of the buried layer is explained by percolation theory. We determine that the saturation dose, phi(0), the maximum implantation dose for which the nanocomposite material still remains a composite, is phi(0) = 2.2 x 10(16) cm(-2), and the corresponding saturation conductivity is sigma(0) = 480 S/m. The percolation dose phi(c), below which the nanocomposite still has basically the conductivity of the alumina matrix, was found to be phi(c) = 0.84 x 10(16) cm(-2). The experimental results are discussed and compared with a percolation theory model. (C) 2014 AIP Publishing LLC.
C1 [Spirin, R. E.] Univ Sao Paulo, Polytech Sch, BR-05508970 Sao Paulo, Brazil.
[Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Cattani, M.] Univ Sao Paulo, Inst Phys, BR-05314970 Sao Paulo, Brazil.
[Brown, I. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Salvadori, MC (reprint author), Univ Sao Paulo, Inst Phys, CP 66318, BR-05314970 Sao Paulo, Brazil.
EM mcsalvadori@if.usp.br
RI Salvadori, Maria Cecilia/A-9379-2013
FU Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Conselho
Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil
FX This work was supported by the Fundacao de Amparo a Pesquisa do Estado
de Sao Paulo (FAPESP) and the Conselho Nacional de Desenvolvimento
Cientifico e Tecnologico (CNPq), Brazil. We are grateful to the
Institute of Ion Beam Physics and Materials Research at the
Forschungszentrum Dresden-Rossendorf, Germany, for the TRIDYN-FZR
computer simulation code.
NR 30
TC 0
Z9 0
U1 2
U2 14
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD NOV 14
PY 2014
VL 116
IS 18
AR 184306
DI 10.1063/1.4901643
PG 6
WC Physics, Applied
SC Physics
GA AT8ZB
UT WOS:000345216300041
ER
PT J
AU Yang, C
Zarkadoula, E
Dove, MT
Todorov, IT
Geisler, T
Brazhkin, VV
Trachenko, K
AF Yang, C.
Zarkadoula, E.
Dove, M. T.
Todorov, I. T.
Geisler, T.
Brazhkin, V. V.
Trachenko, K.
TI Solid-state diffusion in amorphous zirconolite
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID RADIATION-DAMAGE; MOLECULAR-DYNAMICS; NUCLEAR-WASTE; PLUTONIUM;
IMMOBILIZATION; CERAMICS; AMORPHIZATION; DISPOSITION
AB We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste. (C) 2014 AIP Publishing LLC.
C1 [Yang, C.; Zarkadoula, E.; Dove, M. T.; Trachenko, K.] Queen Mary Univ London, Sch Phys & Astron, London E1 4NS, England.
[Zarkadoula, E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Todorov, I. T.] STFC Daresbury Lab, Warrington WA4 1EP, Cheshire, England.
[Geisler, T.] Univ Bonn, Steinmann Inst Geol Mineral & Palaontol, D-53115 Bonn, Germany.
[Brazhkin, V. V.] RAS, Inst High Pressure Phys, Moscow 142190, Russia.
RP Yang, C (reprint author), Queen Mary Univ London, Sch Phys & Astron, Mile End Rd, London E1 4NS, England.
RI Yang, Chenxing/B-4609-2016;
OI Zarkadoula, Eva/0000-0002-6886-9664
FU QMUL Research-IT; EPSRC [EP/K000128/1]; CSC
FX This research utilised Queen Mary's MidPlus computational facilities,
supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1. We
are grateful to E. Maddrell for discussions and to CSC for support.
NR 28
TC 1
Z9 1
U1 3
U2 28
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD NOV 14
PY 2014
VL 116
IS 18
AR 184901
DI 10.1063/1.4901326
PG 6
WC Physics, Applied
SC Physics
GA AT8ZB
UT WOS:000345216300054
ER
PT J
AU Neau, DB
Bender, G
Boeglin, WE
Bartlett, SG
Brash, AR
Newcomer, ME
AF Neau, David B.
Bender, Gunes
Boeglin, William E.
Bartlett, Sue G.
Brash, Alan R.
Newcomer, Marcia E.
TI Crystal Structure of a Lipoxygenase in Complex with Substrate THE
ARACHIDONIC ACID-BINDING SITE OF 8R-LIPOXYGENASE
SO JOURNAL OF BIOLOGICAL CHEMISTRY
LA English
DT Article
DE Arachidonic Acid (AA) (ARA); Eicosanoid Biosynthesis; Lipid Signaling;
Lipoxygenase Pathway; Protein Structure; X-ray Crystallography
ID ACTIVE-SITE; SOYBEAN LIPOXYGENASE-1; ARACHIDONIC-ACID; DATA QUALITY;
FATTY-ACIDS; INHIBITION; SPECIFICITY; OXYGENATION; CATALYSIS;
15-LIPOXYGENASE
AB Background: Lipoxygenases (LOX) catalyze the oxygenation of polyunsaturated fatty acids but generate distinct products from a common substrate. Results: We report the first structure of a LOX-substrate complex. Conclusion: The structure provides a context for understanding product specificity in enzymes that metabolize arachidonic acid. Significance: With roles in the production of potent lipid mediators, LOX are targets for drug design.
Lipoxygenases (LOX) play critical roles in mammalian biology in the generation of potent lipid mediators of the inflammatory response; consequently, they are targets for the development of isoform-specific inhibitors. The regio- and stereo-specificity of the oxygenation of polyunsaturated fatty acids by the enzymes is understood in terms of the chemistry, but structural observation of the enzyme-substrate interactions is lacking. Although several LOX crystal structures are available, heretofore the rapid oxygenation of bound substrate has precluded capture of the enzyme-substrate complex, leaving a gap between chemical and structural insights. In this report, we describe the 2.0 angstrom resolution structure of 8R-LOX in complex with arachidonic acid obtained under anaerobic conditions. Subtle rearrangements, primarily in the side chains of three amino acids, allow binding of arachidonic acid in a catalytically competent conformation. Accompanying experimental work supports a model in which both substrate tethering and cavity depth contribute to positioning the appropriate carbon at the catalytic machinery.
C1 [Bender, Gunes; Bartlett, Sue G.; Newcomer, Marcia E.] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA.
[Neau, David B.] Cornell Univ, Argonne Natl Lab, Dept Chem & Chem Biol, Northeastern Collaborat Access Team, Argonne, IL 60439 USA.
[Boeglin, William E.; Brash, Alan R.] Vanderbilt Univ, Dept Pharmacol, Sch Med, Nashville, TN 37232 USA.
RP Newcomer, ME (reprint author), Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA.
EM newcomer@lsu.edu
FU Nation Institute of General Medical Sciences from the National
Institutes of Health [P41 GM103403]; U. S. Department of Energy
[DE-AC02-06CH11357]
FX This work includes research conducted at the Advanced Photon Source on
the Northeastern Collaborative Access Team beamlines, which are
supported by a grant from the Nation Institute of General Medical
Sciences (P41 GM103403) from the National Institutes of Health. Use of
the Advanced Photon Source, an Office of Science User Facility operated
for the U. S. Department of Energy Office of Science by Argonne National
Laboratory, was supported by the U. S. Department of Energy under
Contract DE-AC02-06CH11357.
NR 44
TC 14
Z9 15
U1 2
U2 15
PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA
SN 0021-9258
EI 1083-351X
J9 J BIOL CHEM
JI J. Biol. Chem.
PD NOV 14
PY 2014
VL 289
IS 46
BP 31905
EP 31913
DI 10.1074/jbc.M114.599662
PG 9
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA AU0LP
UT WOS:000345314700021
PM 25231982
ER
PT J
AU Howe, JY
Allard, LF
Bigelow, WC
Demers, H
Overbury, SH
AF Howe, Jane Y.
Allard, Lawrence F.
Bigelow, Wilbur C.
Demers, Hendrix
Overbury, Steven H.
TI Understanding catalyst behavior during in situ heating through
simultaneous secondary and transmitted electron imaging
SO NANOSCALE RESEARCH LETTERS
LA English
DT Article
DE Scanning transmission electron microscopy; Scanning electron microscopy;
Catalyst; Phase transformation; In situ characterization
ID HYDROGENATION REACTIONS; GOLD CATALYSTS; SINGLE ATOMS; MICROSCOPY;
RESOLUTION; TEMPERATURES; PERFORMANCE; HEMATITE; SIZE
AB By coupling techniques of simultaneous secondary (SE) and transmitted electron (TE) imaging at high resolution in a modern scanning transmission electron microscope (STEM), with the ability to heat specimens using a highly stable MEMS-based heating platform, we obtained synergistic information to clarify the behavior of catalysts during in situ thermal treatments. Au/iron oxide catalyst 'leached' to remove surface Au was heated to temperatures as high as 700 degrees C. The Fe2O3 support particle structure tended to reduce to Fe3O4 and formed surface terraces; the formation, coalescence, and mobility of 1- to 2-nm particles on the terraces were characterized in SE, STEM-ADF, and TEM-BF modes. If combined with simultaneous nanoprobe spectroscopy, this approach will open the door to a new way of studying the kinetics of nano-scaled phenomena.
C1 [Howe, Jane Y.; Allard, Lawrence F.; Overbury, Steven H.] Oak Ridge Natl Lab, Phys Sci Directorate, Oak Ridge, TN 37831 USA.
[Bigelow, Wilbur C.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48104 USA.
[Demers, Hendrix] McGill Univ, Dept Min & Mat Engn, Montreal, PQ H3A 2B2, Canada.
[Howe, Jane Y.] Hitachi High Technol Canada Inc, Toronto, ON M9W 6A4, Canada.
RP Howe, JY (reprint author), Oak Ridge Natl Lab, Phys Sci Directorate, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
EM jane.howe@gmail.com
RI Overbury, Steven/C-5108-2016; Howe, Jane/G-2890-2011
OI Overbury, Steven/0000-0002-5137-3961;
FU US Department of Energy, Office of Energy Efficiency and Renewable
Energy, Vehicle Technologies Office, Propulsion Materials Program
FX Microscopy research at the Oak Ridge National Laboratory's High
Temperature Materials Laboratory was sponsored by the US Department of
Energy, Office of Energy Efficiency and Renewable Energy, Vehicle
Technologies Office, Propulsion Materials Program. This is a contributed
paper and published as part of the Proceedings of the Microscopy and
Microanalysis 2010, Portland, OR, USA, August, 2010.
NR 24
TC 2
Z9 2
U1 4
U2 34
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1556-276X
J9 NANOSCALE RES LETT
JI Nanoscale Res. Lett.
PD NOV 14
PY 2014
VL 9
AR 614
DI 10.1186/1556-276X-9-614
PG 6
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA AU2CH
UT WOS:000345423100001
PM 25419195
ER
PT J
AU Muller, A
Schippers, S
Esteves-Macaluso, D
Habibi, M
Aguilar, A
Kilcoyne, ALD
Phaneuf, RA
Ballance, CP
McLaughlin, BM
AF Mueller, A.
Schippers, S.
Esteves-Macaluso, D.
Habibi, M.
Aguilar, A.
Kilcoyne, A. L. D.
Phaneuf, R. A.
Ballance, C. P.
McLaughlin, B. M.
TI Valence-shell photoionization of Ag-like Xe7+ ions: experiment and
theory
SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS
LA English
DT Article
DE photoionization; xenon ions; cross sections; experiment; theory
ID ELECTRON-IMPACT EXCITATION; SINGLY-CHARGED XE; R-MATRIX METHOD; 4D
PHOTOIONIZATION; ENERGY REGION; SCATTERING; KRYPTON
AB We report on experimental and theoretical results for the photoionization of Ag-like xenon ions, Xe7+, in the photon energy range 95-145 eV. The measurements were carried out at the Advanced Light Source at an energy resolution of Delta E = 65 meV with additional measurements made at Delta E = 28 meV and 39 meV. Small resonance features below the ground-state ionization threshold, at about 106 eV, are due to the presence of metastable Xe7+(4d(10)4f F-2 degrees(5/2, 7/2)) ions in the ion beam. On the basis of the accompanying theoretical calculations using the Dirac atomic R-matrix codes (DARC), an admixture of only a few percent of metastable ions in the parent ion beam is inferred, with almost 100% of the parent ions in the (4d(10)5s S-2(1/2)) ground level. The cross section is dominated by a very strong resonance associated with 4d -> 5f excitation and subsequent autoionization. This prominent feature in the measured spectrum is the 4d(9)5s5f(2)P degrees resonance located at (122.139 +/- 0.01) eV. An absolute peak cross section of 1.2 Gigabarns was measured at 38 meV energy resolution. The experimental natural width Gamma = 76 +/- 3 meV of this resonance compares well with the theoretical estimate of 88 meV obtained from the DARC calculation with 249 target states. Given the complexity of the system, overall satisfactory agreement between theory and experiment is obtained for the photon energy region investigated.
C1 [Mueller, A.; Schippers, S.] Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany.
[Esteves-Macaluso, D.; Aguilar, A.; Kilcoyne, A. L. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Esteves-Macaluso, D.; Habibi, M.; Phaneuf, R. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA.
[Ballance, C. P.] Auburn Univ, Dept Phys, Allison Lab 206, Auburn, AL 36849 USA.
[McLaughlin, B. M.] Queens Univ Belfast, Sch Math & Phys, CTAMOP, Belfast BT7 1NN, Antrim, North Ireland.
[McLaughlin, B. M.] Harvard Smithsonian Ctr Astrophys, Inst Theoret Atom & Mol Phys, Cambridge, MA 02138 USA.
RP Muller, A (reprint author), Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany.
EM Alfred.Mueller@iamp.physik.uni-giessen.de; b.mclaughlin@qub.ac.uk
RI Muller, Alfred/A-3548-2009; Kilcoyne, David/I-1465-2013; Schippers,
Stefan/A-7786-2008
OI Muller, Alfred/0000-0002-0030-6929; Schippers,
Stefan/0000-0002-6166-7138
FU Deutsche Forschungsgemeinschaft [Mu 1068/10]; US Department of Energy
(DOE) [DE-AC03-76SF-00098, DE-FG02-03ER15424]; US Department of Energy
(DoE) through Auburn University; US National Science Foundation; Queen's
University Belfast; National Science Foundation [OCI-1053575]; Office of
Science, Office of Basic Energy Sciences, of the US Department of Energy
[DE-AC02-05CH11231]
FX We acknowledge support by Deutsche Forschungsgemeinschaft under project
number Mu 1068/10 as well as by the US Department of Energy (DOE) under
contract DE-AC03-76SF-00098 and grant DE-FG02-03ER15424. C P Ballance
was supported by US Department of Energy (DoE) grants through Auburn
University. B M McLaughlin acknowledges support by the US National
Science Foundation through a grant to ITAMP at the Harvard-Smithsonian
Center for Astrophysics, a visiting research fellowship (VRF) from
Queen's University Belfast and the hospitality of AM, SS and the
University of Giessen. The computational work was carried out at the
National Energy Research Scientific Computing Center in Oakland, CA,
USA, the Kraken XT5 facility at the National Institute for Computational
Science (NICS) in Knoxville, TN, USA and at the High Performance
Computing Center Stuttgart (HLRS) of the University of Stuttgart,
Stuttgart, Germany. The Kraken XT5 facility is a resource of the Extreme
Science and Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation grant number OCI-1053575. The
Advanced Light Source is supported by the Director, Office of Science,
Office of Basic Energy Sciences, of the US Department of Energy under
Contract No. DE-AC02-05CH11231.
NR 44
TC 9
Z9 10
U1 0
U2 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-4075
EI 1361-6455
J9 J PHYS B-AT MOL OPT
JI J. Phys. B-At. Mol. Opt. Phys.
PD NOV 14
PY 2014
VL 47
IS 21
AR 215202
DI 10.1088/0953-4075/47/21/215202
PG 10
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA AS8KH
UT WOS:000344497400009
ER
PT J
AU Schilter, D
Pelmenschikov, V
Wang, HX
Meier, F
Gee, LB
Yoda, Y
Kaupp, M
Rauchfuss, TB
Cramer, SP
AF Schilter, David
Pelmenschikov, Vladimir
Wang, Hongxin
Meier, Florian
Gee, Leland B.
Yoda, Yoshitaka
Kaupp, Martin
Rauchfuss, Thomas B.
Cramer, Stephen P.
TI Synthesis and vibrational spectroscopy of Fe-57-labeled models of [NiFe]
hydrogenase: first direct observation of a nickel-iron interaction
SO CHEMICAL COMMUNICATIONS
LA English
DT Article
ID NUCLEAR RESONANT SCATTERING; ACTIVE-SITE; METAL-METAL; ELECTRON
LOCALIZABILITY; DENSITY ANALYSIS; LOCALIZATION; PRECURSORS; COMPLEXES;
STATE; RAMAN
AB A new route to iron carbonyls has enabled synthesis of Fe-57-labeled [NiFe] hydrogenase mimic (OC)(3)Fe-57(pdt)Ni(dppe). Its study by nuclear resonance vibrational spectroscopy revealed Ni-Fe-57 vibrations, as confirmed by calculations. The modes are absent for [(OC)(3)Fe-57(pdt)Ni(dppe)](+), which lacks Ni-Fe-57 bonding, underscoring the utility of the analyses in identifying metal-metal interactions.
C1 [Schilter, David; Rauchfuss, Thomas B.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA.
[Pelmenschikov, Vladimir; Meier, Florian; Kaupp, Martin] Tech Univ Berlin, Inst Chem, D-10623 Berlin, Germany.
[Wang, Hongxin; Gee, Leland B.; Cramer, Stephen P.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA.
[Wang, Hongxin; Cramer, Stephen P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Yoda, Yoshitaka] JASRI, Sayo, Hyogo 6795198, Japan.
RP Schilter, D (reprint author), Univ Illinois, Dept Chem, Urbana, IL 61801 USA.
EM schilter@illinois.edu; spjcramer@ucdavis.edu
RI Gee, Leland/H-1742-2014; Dr. Kaupp, Martin/K-9569-2016;
OI Gee, Leland/0000-0002-5817-3997; Schilter, David/0000-0002-5720-6806
FU National Institutes of Health [GM061153-10, GM-65440]; U.S. Department
of Energy Office of Biological and Environmental Research (DOE OBER);
'Unifying Concepts in Catalysis' initiative of the German Research
Council; JASRI [2013A0032]
FX Thanks are given to Drs Mark J. Nilges and Haijun Yao for assistance
with EPR and LI-FDI-MS, respectively. Financial support was provided by
the National Institutes of Health (GM061153-10 to T.B.R. and GM-65440 to
S.P.C.), U.S. Department of Energy Office of Biological and
Environmental Research (DOE OBER) (S.P.C.), and the 'Unifying Concepts
in Catalysis' initiative of the German Research Council (V.P., F.M., and
M.K.). NRVS experiments performed at SPring-8 BL09XU were funded by
JASRI (beamtime proposal 2013A0032).
NR 34
TC 4
Z9 4
U1 1
U2 48
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1359-7345
EI 1364-548X
J9 CHEM COMMUN
JI Chem. Commun.
PD NOV 14
PY 2014
VL 50
IS 88
BP 13469
EP 13472
DI 10.1039/c4cc04572f
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA AS0KE
UT WOS:000343965300010
PM 25237680
ER
PT J
AU Al-Hamdani, YS
Alfe, D
von Lilienfeld, OA
Michaelides, A
AF Al-Hamdani, Yasmine S.
Alfe, Dario
von Lilienfeld, O. Anatole
Michaelides, Angelos
TI Water on BN doped benzene: A hard test for exchange-correlation
functionals and the impact of exact exchange on weak binding
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID BASIS-SET CONVERGENCE; HARTREE-FOCK PSEUDOPOTENTIALS; INITIO
MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; DER-WAALS INTERACTIONS;
DIFFUSION MONTE-CARLO; AUGMENTED-WAVE METHOD; GAUSSIAN-BASIS SETS;
BORON-NITRIDE; NONCOVALENT INTERACTIONS
AB Density functional theory (DFT) studies of weakly interacting complexes have recently focused on the importance of van der Waals dispersion forces, whereas the role of exchange has received far less attention. Here, by exploiting the subtle binding between water and a boron and nitrogen doped benzene derivative (1,2-azaborine) we show how exact exchange can alter the binding conformation within a complex. Benchmark values have been calculated for three orientations of the water monomer on 1,2-azaborine from explicitly correlated quantum chemical methods, and we have also used diffusion quantum Monte Carlo. For a host of popular DFT exchange-correlation functionals we show that the lack of exact exchange leads to the wrong lowest energy orientation of water on 1,2-azaborine. As such, we suggest that a high proportion of exact exchange and the associated improvement in the electronic structure could be needed for the accurate prediction of physisorption sites on doped surfaces and in complex organic molecules. Meanwhile to predict correct absolute interaction energies an accurate description of exchange needs to be augmented by dispersion inclusive functionals, and certain non-local van der Waals functionals (optB88- and optB86b-vdW) perform very well for absolute interaction energies. Through a comparison with water on benzene and borazine (B3N3H6) we show that these results could have implications for the interaction of water with doped graphene surfaces, and suggest a possible way of tuning the interaction energy. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
C1 [Al-Hamdani, Yasmine S.; Alfe, Dario; Michaelides, Angelos] Thomas Young Ctr, London WC1H 0AH, England.
[Al-Hamdani, Yasmine S.; Alfe, Dario; Michaelides, Angelos] London Ctr Nanotechnol, London WC1H 0AH, England.
[Al-Hamdani, Yasmine S.; Michaelides, Angelos] UCL, Dept Chem, London WC1H 0AJ, England.
[Alfe, Dario] UCL, Dept Earth Sci, London WC1E 6BT, England.
[von Lilienfeld, O. Anatole] Univ Basel, Inst Phys Chem, Dept Chem, CH-4056 Basel, Switzerland.
[von Lilienfeld, O. Anatole] Argonne Natl Labs, Lemont, IL 60439 USA.
RP Al-Hamdani, YS (reprint author), Thomas Young Ctr, 17-19 Gordon St, London WC1H 0AH, England.
EM angelos.michaelides@ucl.ac.uk
RI von Lilienfeld, O. Anatole/D-8529-2011; Alfe`, Dario/C-1521-2008;
OI Alfe`, Dario/0000-0002-9741-8678; Michaelides,
Angelos/0000-0002-9169-169X
FU University College London; Argonne National Laboratory (ANL) through
Thomas Young Centre-ANL initiative; European Research Council under
European Union [616121]; Royal Society; Swiss National Science
foundation [PPOOP2 138932]; Office of Science of the U.S. Department of
Energy (DOE) [DEAC05-00OR22725]; Office of Science of the U.S. DOE
[DE-AC02-06CH11357]
FX We are grateful for support from University College London and Argonne
National Laboratory (ANL) through the Thomas Young Centre-ANL
initiative. Some of the research leading to these results has received
funding from the European Research Council under the European Union's
Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No.
616121 (HeteroIce project). A. M. is supported by the Royal Society
through a Wolfson Research Merit Award. O.A.v.L. acknowledges funding
from the Swiss National Science foundation (Grant No. PPOOP2 138932).
This research used resources as part of an INCITE project (awarded to D.
A.) at the Oak Ridge National Laboratory (Titan) which is supported by
the Office of Science of the U. S. Department of Energy (DOE) under
Contract No. DEAC05-00OR22725. This research also used resources of the
Argonne Leadership Computing Facility at Argonne National Laboratory,
which is supported by the Office of Science of the U. S. DOE under
Contract No. DE-AC02-06CH11357. In addition, we are grateful for
computing resources provided by the London Centre for Nanotechnology and
University College London. We would like to thank G. Tocci, C.
Gattinoni, and R. Ramakrishnan for useful discussions.
NR 110
TC 12
Z9 12
U1 1
U2 32
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD NOV 14
PY 2014
VL 141
IS 18
AR 18C530
DI 10.1063/1.4898356
PG 8
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AT3PZ
UT WOS:000344847600074
PM 25399195
ER
PT J
AU Feng, RR
Guo, Y
Wang, HF
AF Feng, Ran-Ran
Guo, Yuan
Wang, Hong-Fei
TI Reorientation of the "free OH" group in the top-most layer of air/water
interface of sodium fluoride aqueous solution probed with sum-frequency
generation vibrational spectroscopy
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID SURFACE 2ND-HARMONIC GENERATION; LIQUID WATER-SURFACE;
MOLECULAR-STRUCTURE; SFG-VS; THEORETICAL-ANALYSIS; SALT-SOLUTIONS;
WATER/VAPOR INTERFACE; LANGMUIR MONOLAYER; HALIDE INTERFACES;
ORIENTATION
AB Many experimental and theoretical studies have established the specific anion, as well as cation, effects on the hydrogen-bond structures at the air/water interface of electrolyte solutions. However, the ion effects on the top-most layer of the air/water interface, which is signified by the non-hydrogenbonded so-called "free OH" group, have not been explicitly discussed or studied. In this report, we present the measurement of changes of the orientational angle of the "free OH" group at the air/water interface of the sodium fluoride (NaF) solutions at different concentrations using the interface selective sum-frequency generation vibrational spectroscopy (SFG-VS) in the ssp and ppp polarizations. The polarization dependent SFG-VS results show that the average tilt angle of the "free OH" changes from about 36.6 degrees +/- 0.5 degrees to 44.1 degrees +/- 0.6 degrees as the NaF concentration increases from 0 to 0.94 M (nearly saturated). Such tilt angle change is around the axis of the other O-H group of the same water molecule at the top-most layer at the air/water interface that is hydrogen-bonded to the water molecules below the top-most layer. These results provide quantitative molecular details of the ion effects of the NaF salt on the structure of the water molecules at the top-most layer of the air/water interface, even though both the Na+ cation and the F- anion are believed to be among the most excluded ions from the air/water interface. (C) 2014 AIP Publishing LLC.
C1 [Feng, Ran-Ran] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China.
[Guo, Yuan] Chinese Acad Sci, Beijing Natl Lab Mol Sci, Inst Chem, Beijing 100190, Peoples R China.
[Wang, Hong-Fei] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Wang, HF (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA.
EM hongfei.wang@pnnl.gov
RI Wang, Hongfei/B-1263-2010
OI Wang, Hongfei/0000-0001-8238-1641
FU Natural Science Foundation of China (NSFC) [20425309, 20533070,
20773143, 20673122]; Ministry of Science and Technology of China (MOST)
[2007CB815205]; Pacific Northwest National Laboratory (PNNL) LDRD
program; Department of Energy's Office of Biological and Environmental
Research (BER)
FX SFG-VS data in this report were collected at the Beijing National
Laboratory for Molecular Sciences, Institute of Chemistry, the Chinese
Academy of Sciences, where R.-R.F. was a graduate student during
2005-2010, and H.-F.W. was a professor during 1999-2009. R.-R.F. thanks
the helpful discussion from Wei Gan, Zhen Zhang, and Hong-Tao Bian.
H.-F.W. thanks the helpful discussion from Chuanshan Tian. H.-F.W. also
thanks the support by the Natural Science Foundation of China (NSFC,
Grant Nos. 20425309, 20533070, and 20773143) and the Ministry of Science
and Technology of China (MOST No. 2007CB815205). Y.G. thanks the support
by the Natural Science Foundation of China (NSFC, Grant No. 20673122).
Part of this work was supported by the Pacific Northwest National
Laboratory (PNNL) LDRD program, and was conducted at the William R.
Wiley Environmental Molecular Sciences Laboratory (EMSL), a national
scientific user facility located at the Pacific Northwest National
Laboratory and sponsored by the Department of Energy's Office of
Biological and Environmental Research (BER).
NR 102
TC 6
Z9 6
U1 4
U2 47
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD NOV 14
PY 2014
VL 141
IS 18
AR 18C507
DI 10.1063/1.4895561
PG 10
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AT3PZ
UT WOS:000344847600051
PM 25399172
ER
PT J
AU Jones, RE
Ward, DK
Templeton, JA
AF Jones, R. E.
Ward, D. K.
Templeton, J. A.
TI Spatial resolution of the electrical conductance of ionic fluids using a
Green-Kubo method
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; STATISTICAL-MECHANICAL THEORY;
TRANSPORT-COEFFICIENTS; IRREVERSIBLE-PROCESSES; THERMAL-CONDUCTIVITY;
ATOMISTIC SIMULATION; RECIPROCAL RELATIONS; LIQUID FLOW; FORMULAS;
SYSTEMS
AB We present a Green-Kubo method to spatially resolve transport coefficients in compositionally heterogeneous mixtures. We develop the underlying theory based on well-known results from mixture theory, Irving-Kirkwood field estimation, and linear response theory. Then, using standard molecular dynamics techniques, we apply the methodology to representative systems. With a homogeneous salt water system, where the expectation of the distribution of conductivity is clear, we demonstrate the sensitivities of the method to system size, and other physical and algorithmic parameters. Then we present a simple model of an electrochemical double layer where we explore the resolution limit of the method. In this system, we observe significant anisotropy in the wall-normal vs. transverse ionic conductances, as well as near wall effects. Finally, we discuss extensions and applications to more realistic systems such as batteries where detailed understanding of the transport properties in the vicinity of the electrodes is of technological importance. (C) 2014 AIP Publishing LLC.
C1 [Jones, R. E.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA.
[Ward, D. K.] Sandia Natl Labs, Mat Chem Dept, Livermore, CA 94550 USA.
[Templeton, J. A.] Sandia Natl Labs, Thermal Fluid Sci & Engn Dept, Livermore, CA 94550 USA.
RP Jones, RE (reprint author), Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA.
FU Laboratory Directed Research and Development (LDRD) program at Sandia
National Laboratory; Advanced Simulation and Computing (ASC) program at
Sandia National Laboratory; U.S. Department of Energy's National Nuclear
Security Administration [DE-AC04-94AL85000]
FX This work was supported by the Laboratory Directed Research and
Development (LDRD) and Advanced Simulation and Computing (ASC) programs
at Sandia National Laboratories. Sandia is a multiprogram laboratory
managed and operated by Sandia Corporation, a wholly-owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under Contract No.
DE-AC04-94AL85000. The authors are grateful to J. Lechman, K. Mandadapu,
and J. Zimmerman for helpful comments on a draft of this paper.
NR 78
TC 1
Z9 1
U1 1
U2 9
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD NOV 14
PY 2014
VL 141
IS 18
AR 184110
DI 10.1063/1.4901035
PG 13
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AT3PZ
UT WOS:000344847600014
PM 25399135
ER
PT J
AU Kimmel, GA
Zubkov, T
Smith, RS
Petrik, NG
Kay, BD
AF Kimmel, Greg A.
Zubkov, Tykhon
Smith, R. Scott
Petrik, Nikolay G.
Kay, Bruce D.
TI Turning things downside up: Adsorbate induced water flipping on Pt(111)
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID AMORPHOUS SOLID WATER; MOLECULAR-DYNAMICS; FUNDAMENTAL-ASPECTS;
QUADRUPOLE-MOMENTS; METAL-SURFACES; ICE FILMS; ADSORPTION; INTERFACES;
KINETICS; GROWTH
AB We have examined the adsorption of the weakly bound species N-2, O-2, CO, and Kr on the (root 37 x root 37)R25.3 degrees water monolayer on Pt(111) using a combination of molecular beam dosing, infrared reflection absorption spectroscopy, and temperature programmed desorption. In contrast to multilayer crystalline ice, the adsorbate-free water monolayer is characterized by a lack of dangling OH bonds protruding into the vacuum (H-up). Instead, the non-hydrogen-bonded OH groups are oriented downward (H-down) to maximize their interaction with the underlying Pt(111) substrate. Adsorption of Kr and O-2 have little effect on the structure and vibrational spectrum of the "root 37" water monolayer while adsorption of both N-2, and CO are effective in "flipping" H-down water molecules into an H-up configuration. This "flipping" occurs readily upon adsorption at temperatures as low as 20 K and the water monolayer transforms back to the H-down, "root 37" structure upon adsorbate desorption above 35 K, indicating small energy differences and barriers between the H-down and H-up configurations. The results suggest that converting water in the first layer from H-down to Hup is mediated by the electrostatic interactions between the water and the adsorbates. (C) 2014 AIP Publishing LLC.
C1 [Kimmel, Greg A.; Zubkov, Tykhon; Smith, R. Scott; Petrik, Nikolay G.; Kay, Bruce D.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA.
RP Kimmel, GA (reprint author), Pacific NW Natl Lab, Div Phys Sci, MSIN K8-88,POB 999, Richland, WA 99352 USA.
EM gregory.kimmel@pnnl.gov; bruce.kay@pnnl.gov
RI Smith, Scott/G-2310-2015; Petrik, Nikolay/G-3267-2015;
OI Smith, Scott/0000-0002-7145-1963; Petrik, Nikolay/0000-0001-7129-0752;
Kimmel, Greg/0000-0003-4447-2440
FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences, and Biosciences; DOE's
Office of Biological and Environmental Research; DOE [DE-AC05-76RL01830]
FX This work was supported by the U.S. Department of Energy (DOE), Office
of Basic Energy Sciences, Division of Chemical Sciences, Geosciences,
and Biosciences. The research was performed using EMSL, a national
scientific user facility sponsored by DOE's Office of Biological and
Environmental Research and located at Pacific Northwest National
Laboratory, which is operated by Battelle operated for the DOE under
Contract No. DE-AC05-76RL01830.
NR 55
TC 4
Z9 4
U1 1
U2 37
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD NOV 14
PY 2014
VL 141
IS 18
AR 18C515
DI 10.1063/1.4896226
PG 8
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AT3PZ
UT WOS:000344847600059
PM 25399180
ER
PT J
AU Molinero, V
Kay, BD
AF Molinero, Valeria
Kay, Bruce D.
TI Preface: Special Topic on Interfacial and Confined Water
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Editorial Material
AB This special topic on the chemical physics of interfacial and confined water contains a collection of original research papers that showcase recent theoretical and experimental advances in the field. These papers provide a timely discussion of fundamental aspects of interfacial and confined water that are important in both natural environments and engineered applications. (C) 2014 AIP Publishing LLC.
C1 [Molinero, Valeria] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA.
[Kay, Bruce D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA.
RP Molinero, V (reprint author), Univ Utah, Dept Chem, 315 South 1400 East, Salt Lake City, UT 84112 USA.
EM valeria.molinero@utah.edu; bruce.kay@pnnl.gov
NR 0
TC 1
Z9 1
U1 1
U2 24
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD NOV 14
PY 2014
VL 141
IS 18
AR 18C101
DI 10.1063/1.4900822
PG 2
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AT3PZ
UT WOS:000344847600044
PM 25399165
ER
PT J
AU Sellner, B
Kathmann, SM
AF Sellner, Bernhard
Kathmann, Shawn M.
TI A matter of quantum voltages
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID CORRELATED MOLECULAR CALCULATIONS; ATOMIC SCATTERING FACTORS;
GAUSSIAN-BASIS SETS; ELECTRON HOLOGRAPHY; PROGRAM SYSTEM; FREE-ENERGY;
DENSITY; POTENTIALS; WATER; APPROXIMATION
AB Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (V-o) - the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate V-o from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of V-o for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict V-o as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms. (C) 2014 AIP Publishing LLC.
C1 [Sellner, Bernhard; Kathmann, Shawn M.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA.
RP Kathmann, SM (reprint author), Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA.
EM Shawn.Kathmann@pnnl.gov
FU Office of Science of the U.S. Department of Energy [DEAC02-05CH11231]
FX We would like to gratefully acknowledge helpful discussions with Bernd
Kabius, Christopher J. Mundy, and Gregory K. Schenter. This work was
supported by the U. S. Department of Energy, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences & Biosciences.
Pacific Northwest National Laboratory (PNNL) is a multiprogram national
laboratory operated for the U.S. Department of Energy (DOE) by Battelle.
This research used resources of the National Energy Research Scientific
Computing Center, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DEAC02-05CH11231.
NR 60
TC 7
Z9 7
U1 0
U2 18
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD NOV 14
PY 2014
VL 141
IS 18
AR 18C534
DI 10.1063/1.4898797
PG 13
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AT3PZ
UT WOS:000344847600078
PM 25399199
ER
PT J
AU Thurmer, K
Nie, S
Feibelman, PJ
Bartelt, NC
AF Thuermer, Konrad
Nie, Shu
Feibelman, Peter J.
Bartelt, Norman C.
TI Clusters, molecular layers, and 3D crystals of water on Ni(111)
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; BASIS-SET; ADSORPTION;
H2O; ICE; PT(111); METALS; OXYGEN; NUCLEATION
AB We examined the growth and stability of ice layers on Ni(111) up to similar to 7 molecular layers (ML) thick using scanning tunneling microscopy. At low coverage, films were comprised of similar to 1 nm wide two-dimensional (2D) clusters. Only above similar to 0.5 ML did patches of continuous 2D layers emerge, coexisting with the clusters until the first ML was complete. The structure of the continuous layer is clearly different from that of the 2D clusters. Subsequently, a second molecular layer grew on top of the first. 3D crystallites started to form only after this 2nd ML was complete. 2D clusters re-appeared when thicker films were partially evaporated, implying that these clusters represent the equilibrium configuration at low coverage. Binding energies and image simulations computed with density functional theory suggest that the 2D clusters are partially dissociated and surrounded by H adatoms. The complete 2D layer contains only intact water molecules because of the lack of favorable binding sites for H atoms. We propose molecular structures for the 2D layer that are composed of the same pentagon-heptagon binding motif and water density observed on Pt(111). The similarity of the water structures on Pt and Ni suggests a general prescription for generating low-energy configurations on close-packed metal substrates. (C) 2014 AIP Publishing LLC.
C1 [Thuermer, Konrad; Nie, Shu; Bartelt, Norman C.] Sandia Natl Labs, Livermore, CA 94550 USA.
[Feibelman, Peter J.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Thurmer, K (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA.
RI Thurmer, Konrad/L-4699-2013
OI Thurmer, Konrad/0000-0002-3078-7372
FU DOE Office of Basic Energy Sciences, Division of Materials Science and
Engineering; U.S. Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX This work was supported by the DOE Office of Basic Energy Sciences,
Division of Materials Science and Engineering. Sandia is operated by the
Lockheed Martin Co. for the U.S. Department of Energy's National Nuclear
Security Administration under Contract No. DE-AC04-94AL85000. VASP was
developed at T. U. Wien's Institut fur Theoretische Physik. We thank an
anonymous reviewer for making the interesting suggestion that
configurational entropy might favor low coverage clusters.
NR 48
TC 3
Z9 4
U1 9
U2 52
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD NOV 14
PY 2014
VL 141
IS 18
AR 18C520
DI 10.1063/1.4896300
PG 10
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AT3PZ
UT WOS:000344847600064
PM 25399185
ER
PT J
AU White, AJ
Gorshkov, VN
Wang, RX
Tretiak, S
Mozyrsky, D
AF White, Alexander J.
Gorshkov, Vyacheslav N.
Wang, Ruixi
Tretiak, Sergei
Mozyrsky, Dmitry
TI Semiclassical Monte Carlo: A first principles approach to non-adiabatic
molecular dynamics
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID QUANTUM-CLASSICAL DYNAMICS; EXCITED-STATE DYNAMICS; BORN-OPPENHEIMER
TRAJECTORIES; DENSITY-FUNCTIONAL THEORY; CHARGE-TRANSFER; ELECTRONIC
DEGREES; SCATTERING THEORY; TIME; SYSTEMS; DECOHERENCE
AB Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement. (C) 2014 AIP Publishing LLC.
C1 [White, Alexander J.; Gorshkov, Vyacheslav N.; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[White, Alexander J.; Tretiak, Sergei] Los Alamos Natl Lab, Ctr Nonlinear Studies CNLS, Los Alamos, NM 87545 USA.
[Gorshkov, Vyacheslav N.] Natl Tech Univ Ukraine, UA-03056 Kiev, Ukraine.
[Wang, Ruixi] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA.
[Tretiak, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA.
RP White, AJ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
EM serg@lanl.gov; mozyrsky@lanl.gov
RI Tretiak, Sergei/B-5556-2009; Gorshkov, Vyacheslav/J-3329-2015; White,
Alexander/D-8754-2014;
OI Tretiak, Sergei/0000-0001-5547-3647; Gorshkov,
Vyacheslav/0000-0002-7700-5649; White, Alexander/0000-0002-7771-3899;
Mozyrsky, Dima/0000-0001-5305-4617
FU U.S. Department of Energy through the Los Alamos National Laboratory
(LANL) LDRD Program; U.S. Department of Energy [DE-AC52-06NA25396];
Center for Nonlinear Studies (CNLS); Center for Integrated
Nanotechnology (CINT) at LANL
FX We acknowledge the support of the U.S. Department of Energy through the
Los Alamos National Laboratory (LANL) LDRD Program. LANL is operated by
Los Alamos National Security, LLC, for the National Nuclear Security
Administration of the U.S. Department of Energy under Contract No.
DE-AC52-06NA25396. We acknowledge the support of the Center for
Nonlinear Studies (CNLS) and the Center for Integrated Nanotechnology
(CINT) at LANL. We also thank J.E. Subotnik for sharing his numerical
results reported in Ref. 48.
NR 83
TC 6
Z9 6
U1 1
U2 34
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD NOV 14
PY 2014
VL 141
IS 18
AR 184101
DI 10.1063/1.4900988
PG 12
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AT3PZ
UT WOS:000344847600005
PM 25399126
ER
PT J
AU Campbell, PG
Merrill, MD
Wood, BC
Montalvo, E
Worsley, MA
Baumann, TF
Biener, J
AF Campbell, P. G.
Merrill, M. D.
Wood, B. C.
Montalvo, E.
Worsley, M. A.
Baumann, T. F.
Biener, J.
TI Battery/supercapacitor hybrid via non-covalent functionalization of
graphene macro-assemblies
SO JOURNAL OF MATERIALS CHEMISTRY A
LA English
DT Article
ID ELECTROCHEMICAL ENERGY-STORAGE; HIGH-SURFACE-AREA; CARBON NANOTUBES;
SUPERCAPACITOR ELECTRODES; NEUTRON-SCATTERING; ANTHRAQUINONE;
PERFORMANCE; CAPACITORS; PHENANTHRENEQUINONE; DEPOSITION
AB Binder-free, monolithic, high surface area graphene macro-assemblies (GMAs) are promising materials for supercapacitor electrodes, but, like all graphitic carbon based supercapacitor electrodes, still tack sufficient energy density for demanding practical applications. Here, we demonstrate that the energy storage capacity of GMAs can be increased nearly 3-fold (up to 23 W h kg(-1)) by facile, non-covalent surface modification with anthraquinone (AQ). AQ provides battery-like redox charge storage (927 C g(-1)) without affecting the conductivity and capacitance of the GMA support. The resulting AQ-GMA battery/supercapacitor hybrid electrodes demonstrate excellent power performance, show remarkable long-term cycling stability and, by virtue of their excellent mechanical properties, allow for further increases in volumetric energy density by mechanical compression of the treated electrode. Our measured capacity is very close to the theoretical maximum obtained using detailed density functional theory calculations, suggesting nearly all incorporated AQ is made available for charge storage.
C1 [Campbell, P. G.; Merrill, M. D.; Wood, B. C.; Montalvo, E.; Worsley, M. A.; Baumann, T. F.; Biener, J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Campbell, PG (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave L-367, Livermore, CA 94550 USA.
EM campbell82@llnl.gov
OI Campbell, Patrick/0000-0003-0167-4624; Worsley,
Marcus/0000-0002-8012-7727
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; DOE Office of Energy Efficiency and Renewable
Energy; Lawrence Livermore National Laboratory Directed Research and
Development (LDRD) [12-ERD-035]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Funding was provided by the DOE Office of Energy
Efficiency and Renewable Energy, and the Lawrence Livermore National
Laboratory Directed Research and Development (LDRD) Grant 12-ERD-035.
NR 36
TC 12
Z9 12
U1 9
U2 71
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2050-7488
EI 2050-7496
J9 J MATER CHEM A
JI J. Mater. Chem. A
PD NOV 14
PY 2014
VL 2
IS 42
BP 17764
EP 17770
DI 10.1039/c4ta03605k
PG 7
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary
SC Chemistry; Energy & Fuels; Materials Science
GA AS0IO
UT WOS:000343961300009
ER
PT J
AU Mancini, A
Barbieri, VR
Neuefeind, JC
Page, K
Malavasi, L
AF Mancini, Alessandro
Barbieri, Victoria Raissa
Neuefeind, Joerg C.
Page, Katharine
Malavasi, Lorenzo
TI Correlation between the local scale structure and the electrochemical
properties in lithium orthosilicate cathode materials
SO JOURNAL OF MATERIALS CHEMISTRY A
LA English
DT Article
ID ELECTRICAL ENERGY-STORAGE; CRYSTAL-STRUCTURE; LI2MNSIO4; LI2FESIO4;
BATTERY; POLYMORPH; CHEMISTRY
AB Lithium metal orthosilicates with general formula Li2MSiO4 (M = Mn, Fe and Co) are among the most attractive new materials as potential high-specific-energy cathodes for lithium batteries. All the members of this family present a rich polymorphism with at least three clearly identified crystal structures of each Li2MSiO4 compound. Several theoretical investigations have highlighted that the energy stability of the different polymorphs is very close to each other irrespective of their average crystal structures. At the same time, the calculated and experimental electrochemical performances are again very similar among different polymorphs. By means of neutron total scattering investigation of different polymorphs (monoclinic and orthorhombic) of Li2FeSiO4 and Li2MnSiO4 orthosilicates coupled to Pair Distribution Function (PDF) analysis we showed that, at the local scale, all the polymorphs have the same structure (in particular the structure of the monoclinic polymorph) irrespective of the average structure they possess. This experimental evidence of a strong similarity at the local scale can be correlated with the observed electrochemical similarity (such as the lithium extraction voltages) among the different orthosilicate polymorphs, thus providing an approach to elucidate the relevance of local versus long-range structure.
C1 [Mancini, Alessandro; Barbieri, Victoria Raissa; Malavasi, Lorenzo] Univ Pavia, Dept Chem, I-27100 Pavia, Italy.
[Mancini, Alessandro; Barbieri, Victoria Raissa; Malavasi, Lorenzo] Univ Pavia, INSTM, I-27100 Pavia, Italy.
[Neuefeind, Joerg C.; Page, Katharine] Oak Ridge Natl Lab, Chem & Engn Mat Div, Spallat Neutron Source, Oak Ridge, TN 37831 USA.
[Page, Katharine] Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA.
RP Malavasi, L (reprint author), Univ Pavia, Dept Chem, I-27100 Pavia, Italy.
EM lorenzo.malavasi@unipv.it
RI Page, Katharine/C-9726-2009; Neuefeind, Joerg/D-9990-2015; Malavasi,
Lorenzo/P-1966-2016;
OI Page, Katharine/0000-0002-9071-3383; Neuefeind,
Joerg/0000-0002-0563-1544; Malavasi, Lorenzo/0000-0003-4724-2376
FU INTSM-RL research project "ATLANTE"; Scientific User Facilities
Division, Office of Basic Energy Sciences; US Department of Energy;
Department of Energy Office of Basic Energy Sciences
FX Funding from the INTSM-RL research project "ATLANTE" is acknowledged.
Research conducted at the ORNL's Spallation Neutron Source was sponsored
by the Scientific User Facilities Division, Office of Basic Energy
Sciences, and US Department of Energy. This work has benefited from the
use of the Lujan Center at the Los Alamos Neutron Science Center, funded
by the Department of Energy Office of Basic Energy Sciences.
NR 23
TC 3
Z9 3
U1 9
U2 41
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2050-7488
EI 2050-7496
J9 J MATER CHEM A
JI J. Mater. Chem. A
PD NOV 14
PY 2014
VL 2
IS 42
BP 17867
EP 17874
DI 10.1039/c4ta04063e
PG 8
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary
SC Chemistry; Energy & Fuels; Materials Science
GA AS0IO
UT WOS:000343961300021
ER
PT J
AU Chen, L
Liu, YZ
Ashuri, M
Liu, CH
Shaw, LL
AF Chen, Lin
Liu, Yuzi
Ashuri, Maziar
Liu, Caihong
Shaw, Leon L.
TI Li2S encapsulated by nitrogen-doped carbon for lithium sulfur batteries
SO JOURNAL OF MATERIALS CHEMISTRY A
LA English
DT Article
ID CATHODE MATERIAL; ION BATTERIES; HIGH-CAPACITY; S BATTERIES; CYCLE LIFE;
PERFORMANCE; PARTICLES; COMPOSITE; SILICON; CELLS
AB Using high-energy ball milling of the Li2S plus carbon black mixture followed by carbonization of pyrrole, we have established a facile approach to synthesize Li2S-plus-C composite particles of average size similar to 400 nm, encapsulated by a nitrogen-doped carbon shell. Such an engineered core-shell structure exhibits an ultrahigh initial discharge specific capacity (1029 mA h g(-1)), reaching 88% of the theoretical capacity (1165 mA h g(-1) of Li2S) and thus offering the highest utilization of Li2S in the cathode among all of the reported works for the encapsulated Li2S cathodes. This Li2S/C composite core with a nitrogen-doped carbon shell can still retain 652 mA h g(-1) after prolonged 100 cycles. These superior properties are attributed to the nitrogen-doped carbon shell that can improve the conductivity to enhance the utilization of Li2S in the cathode. Fine particle sizes and the presence of carbon black within the Li2S core may also play a role in high utilization of Li2S in the cathode.
C1 [Chen, Lin; Ashuri, Maziar; Liu, Caihong; Shaw, Leon L.] Wanger Inst Sustainable Energy Res, Chicago, IL 60616 USA.
[Chen, Lin; Ashuri, Maziar; Liu, Caihong; Shaw, Leon L.] IIT, Dept Mech Mat & Aerosp Engn, Chicago, IL 60616 USA.
[Liu, Yuzi] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Chen, L (reprint author), Wanger Inst Sustainable Energy Res, Chicago, IL 60616 USA.
EM lshaw2@iit.edu
RI Ashuri, Maziar/K-3413-2015; Liu, Caihong/I-3222-2014; Liu,
Yuzi/C-6849-2011
OI Ashuri, Maziar/0000-0001-8610-1643; Liu, Caihong/0000-0002-8582-912X;
FU U. S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX The use of the Center for Nanoscale Materials was supported by the U. S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract no. DE-AC02-06CH11357. The authors also would
like to thank Jose Orozco for training of multiply instruments at IIT,
Dr Nancy L. Dietz Rago for FESEM training at ANL, and Dr Xiao-min Lin at
ANL for offering us the Gatan vacuum transfer holder for EFTEM
measurement.
NR 39
TC 33
Z9 33
U1 8
U2 135
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2050-7488
EI 2050-7496
J9 J MATER CHEM A
JI J. Mater. Chem. A
PD NOV 14
PY 2014
VL 2
IS 42
BP 18026
EP 18032
DI 10.1039/c4ta04103h
PG 7
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary
SC Chemistry; Energy & Fuels; Materials Science
GA AS0IO
UT WOS:000343961300041
ER
PT J
AU Velasco-Velez, JJ
Wu, CH
Pascal, TA
Wan, LWF
Guo, JH
Prendergast, D
Salmeron, M
AF Velasco-Velez, Juan-Jesus
Wu, Cheng Hao
Pascal, Tod A.
Wan, Liwen F.
Guo, Jinghua
Prendergast, David
Salmeron, Miquel
TI The structure of interfacial water on gold electrodes studied by x-ray
absorption spectroscopy
SO SCIENCE
LA English
DT Article
ID FREQUENCY VIBRATIONAL SPECTROSCOPY; AU(111) SURFACE; MOLECULES;
ADSORPTION; RU(0001); FORCE; LAYER
AB The molecular structure of the electrical double layer determines the chemistry in all electrochemical processes. Using x-ray absorption spectroscopy (XAS), we probed the structure of water near gold electrodes and its bias dependence. Electron yield XAS detected at the gold electrode revealed that the interfacial water molecules have a different structure from those in the bulk. First principles calculations revealed that similar to 50% of the molecules lie flat on the surface with saturated hydrogen bonds and another substantial fraction with broken hydrogen bonds that do not contribute to the XAS spectrum because their core-excited states are delocalized by coupling with the gold substrate. At negative bias, the population of flat-lying molecules with broken hydrogen bonds increases, producing a spectrum similar to that of bulk water.
C1 [Velasco-Velez, Juan-Jesus; Wu, Cheng Hao; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Wu, Cheng Hao] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Pascal, Tod A.; Wan, Liwen F.; Prendergast, David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Joint Ctr Energy Storage Res, Berkeley, CA 94720 USA.
[Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Guo, Jinghua] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA.
[Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
EM mbsalmeron@lbl.gov
RI Wu, Cheng Hao/C-9565-2014; Foundry, Molecular/G-9968-2014
FU Office of Basic Energy Sciences (BES), Division of Materials Sciences
and Engineering, of the U.S. Department of Energy (DOE)
[DE-AC02-05CH11231]; Alexander von Humboldt Foundation, Germany; Joint
Center for Energy Storage Research, an Energy Innovation Hub - U.S. DOE;
DOE-BES; DOE-Advanced Scientific Computing Research; DOE Office of
Science [DE-AC02-05CH11231]
FX This work was supported by the Office of Basic Energy Sciences (BES),
Division of Materials Sciences and Engineering, of the U.S. Department
of Energy (DOE) under contract no. DE-AC02-05CH11231 (through the
Chemical and Mechanical Properties of Surfaces, Interfaces and
Nanostructures program). J.-J.V.-V. acknowledges financial support from
the Alexander von Humboldt Foundation, Germany. C.H.W. acknowledges the
Advanced Light Source (ALS) Doctoral Fellowship in Residence. Theory and
simulations by T.A.P., L.F.W., and D.P. were supported by the Joint
Center for Energy Storage Research, an Energy Innovation Hub funded by
the U.S. DOE and facilitated by a user project at the Molecular Foundry.
Computations were performed with the computing resources of the National
Energy Research Scientific Computing Center (NERSC). The ALS and
Molecular Foundry (supported by DOE-BES) and NERSC (supported by
DOE-Advanced Scientific Computing Research) are DOE Office of Science
User Facilities, supported by the DOE Office of Science under contract
no. DE-AC02-05CH11231. We thank C.-H. Chuang, B.-Y. Wang, D. Zhang, X.
Feng, and M. W. West for support at the beamline. We also thank J. Zhang
for help with AFM imaging and C. Das Pemmaraju, C. Schwartz, P. Ross, J.
Colchero, G. Thornton, H. Fang, and S. Harris for useful discussions.
NR 34
TC 55
Z9 56
U1 24
U2 193
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
EI 1095-9203
J9 SCIENCE
JI Science
PD NOV 14
PY 2014
VL 346
IS 6211
BP 831
EP 834
DI 10.1126/science.1259437
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AT0YL
UT WOS:000344659900039
PM 25342657
ER
PT J
AU Romps, DM
Seeley, JT
Vollaro, D
Molinari, J
AF Romps, David M.
Seeley, Jacob T.
Vollaro, David
Molinari, John
TI Projected increase in lightning strikes in the United States due to
global warming
SO SCIENCE
LA English
DT Article
ID CLIMATE-CHANGE; CONVECTIVE RAINFALL; PRECIPITATION; DISTRIBUTIONS;
FREQUENCY; PARAMETERIZATION; RADAR; FIRE; NOX
AB Lightning plays an important role in atmospheric chemistry and in the initiation of wildfires, but the impact of global warming on lightning rates is poorly constrained. Here we propose that the lightning flash rate is proportional to the convective available potential energy (CAPE) times the precipitation rate. Using observations, the product of CAPE and precipitation explains 77% of the variance in the time series of total cloud-toground lightning flashes over the contiguous United States (CONUS). Storms convert CAPE times precipitated water mass to discharged lightning energy with an efficiency of 1%. When this proxy is applied to 11 climate models, CONUS lightning strikes are predicted to increase 12 +/- 5% per degree Celsius of global warming and about 50% over this century.
C1 [Romps, David M.; Seeley, Jacob T.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
[Romps, David M.; Seeley, Jacob T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Vollaro, David; Molinari, John] SUNY Albany, Dept Atmospher & Environm Sci, Albany, NY 12222 USA.
RP Romps, DM (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
EM romps@berkeley.edu
RI Romps, David/F-8285-2011;
OI Seeley, Jacob/0000-0003-0769-292X
FU Scientific Discovery through Advanced Computing (SciDAC) program - U.S.
Department of Energy Office of Advanced Scientific Computing Research
and Office of Biological and Environmental Research; U.S. Department of
Energy's Earth System Modeling, an Office of Science, Office of
Biological and Environmental Research program [DE-AC02-05CH11231];
National Science Foundation (NSF) Graduate Research Fellowship
[DGE1106400]; NSF [AGS1132576]
FX D.M.R. acknowledges support from the Scientific Discovery through
Advanced Computing (SciDAC) program funded by the U.S. Department of
Energy Office of Advanced Scientific Computing Research and Office of
Biological and Environmental Research, and by the U.S. Department of
Energy's Earth System Modeling, an Office of Science, Office of
Biological and Environmental Research program under contract no.
DE-AC02-05CH11231. J.T.S. acknowledges support from the National Science
Foundation (NSF) Graduate Research Fellowship under grant no.
DGE1106400. D.V. and J.M. acknowledge support from NSF under grant no.
AGS1132576. Thanks are due to the SPARC data center for archiving the
high-resolution radiosonde data and making them publicly available. The
authors are also grateful to J. Paul, B. Lawrence, K. Sugioka, and N.
Jeevanjee for their help with the precipitation data. Thanks also to
three anonymous reviewers. Data sources are described in the online
supplementary materials.
NR 38
TC 51
Z9 51
U1 7
U2 89
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
EI 1095-9203
J9 SCIENCE
JI Science
PD NOV 14
PY 2014
VL 346
IS 6211
BP 851
EP 854
DI 10.1126/science.1259100
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AT0YL
UT WOS:000344659900045
PM 25395536
ER
PT J
AU Agakishiev, G
Arnold, O
Belver, D
Belyaev, A
Berger-Chen, JC
Blanco, A
Bohmer, M
Boyard, JL
Cabanelas, P
Chernenko, S
Dybczak, A
Epple, E
Fabbietti, L
Fateev, O
Finocchiaro, P
Fonte, P
Friese, J
Frohlich, I
Galatyuk, T
Garzon, JA
Gernhauser, R
Gobel, K
Golubeva, M
Gonzalez-Diaz, D
Guber, F
Gumbcridzc, M
Hcinz, T
Hcnnino, T
Holzmann, R
Icrusalimov, A
Iori, I
Ivashkin, A
Jurkovic, M
Kampfer, B
Karavicheva, T
Koenig, I
Koenig, W
Kolb, BW
Korcyl, G
Kornakov, G
Kotte, R
Krasa, A
Krizek, F
Krucken, R
Kuc, H
Kuhn, W
Kugler, A
Kunz, T
Kurepin, A
Ladygin, V
Lalik, R
Lapidus, K
Lebedev, A
Lopes, L
Lorenz, M
Maier, L
Mangiarotti, A
Markert, J
Metag, V
Michel, J
Muntz, C
Munzer, R
Naumann, L
Pachmayer, YC
Palka, M
Parpottas, Y
Pechenov, V
Pechenova, O
Pietraszko, J
Przygoda, W
Ramstein, B
Reshetin, A
Rustamov, A
Sadovsky, A
Salabura, P
Schmah, A
Schwab, E
Siebenson, J
Sobolev, YG
Spruck, B
Strobele, II
Stroth, J
Sturm, C
Tarantola, A
Teilab, K
Tlusty, P
Traxler, M
Tsertos, H
Vasiliev, T
Wagner, V
Weber, M
Wendisch, C
Wustenfeld, J
Yurevich, S
Zanevsky, Y
Gaitanos, T
Weil, J
AF Agakishiev, G.
Arnold, O.
Belver, D.
Belyaev, A.
Berger-Chen, J. C.
Blanco, A.
Boehmer, M.
Boyard, J. L.
Cabanelas, P.
Chernenko, S.
Dybczak, A.
Epple, E.
Fabbietti, L.
Fateev, O.
Finocchiaro, P.
Fonte, P.
Friese, J.
Froehlich, I.
Galatyuk, T.
Garzon, J. A.
Gernhaeuser, R.
Goebel, K.
Golubeva, M.
Gonzalez-Diaz, D.
Guber, F.
Gumbcridzc, M.
Hcinz, T.
Hcnnino, T.
Holzmann, R.
Icrusalimov, A.
Iori, I.
Ivashkin, A.
Jurkovic, M.
Kaempfer, B.
Karavicheva, T.
Koenig, I.
Koenig, W.
Kolb, B. W.
Korcyl, G.
Kornakov, G.
Kotte, R.
Krasa, A.
Krizek, F.
Kruecken, R.
Kuc, H.
Kuehn, W.
Kugler, A.
Kunz, T.
Kurepin, A.
Ladygin, V.
Lalik, R.
Lapidus, K.
Lebedev, A.
Lopes, L.
Lorenz, M.
Maier, L.
Mangiarotti, A.
Markert, J.
Metag, V.
Michel, J.
Muentz, C.
Muenzer, R.
Naumann, L.
Pachmayer, Y. C.
Palka, M.
Parpottas, Y.
Pechenov, V.
Pechenova, O.
Pietraszko, J.
Przygoda, W.
Ramstein, B.
Reshetin, A.
Rustamov, A.
Sadovsky, A.
Salabura, P.
Schmah, A.
Schwab, E.
Siebenson, J.
Sobolev, Yu. G.
Spruck, B.
Stroebele, I. I.
Stroth, J.
Sturm, C.
Tarantola, A.
Teilab, K.
Tlusty, P.
Traxler, M.
Tsertos, H.
Vasiliev, T.
Wagner, V.
Weber, M.
Wendisch, C.
Wuestenfeld, J.
Yurevich, S.
Zanevsky, Y.
Gaitanos, T.
Weil, J.
CA HADES Collaboration
TI Medium effects in proton-induced K-0 production at 3.5 GeV
SO PHYSICAL REVIEW C
LA English
DT Article
ID HEAVY-ION COLLISIONS; STRANGE-PARTICLE PRODUCTION; K+-NUCLEUS
SCATTERING; KAON PRODUCTION; P COLLISIONS; BEAM ENERGY; MATTER;
CONDENSATION; MESONS; FLOW
AB We present the analysis of the inclusive K-0 production in p + p and p + Nb collisions measured with the HADES detector (GSI Helmholtzzentrum for Heavy-Ion Research, Darmstadt) at a beam kinetic energy of 3.5 GeV. Data are compared to the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) transport model. The data suggest the presence of a repulsive momentum-dependent kaon potential as predicted by the chiral perturbation theory (ChPT). For the kaon at rest and at normal nuclear density, the ChPT potential amounts to approximate to 35 MeV. A detailed tuning of the kaon production cross sections implemented in the model has been carried out to reproduce the experimental data measured in p + p collisions. The uncertainties in the parameters of the model were examined with respect to the sensitivity of the experimental results from p + Nb collisions to the in-medium kaon potential.
C1 [Agakishiev, G.; Belyaev, A.; Chernenko, S.; Fateev, O.; Icrusalimov, A.; Ladygin, V.; Vasiliev, T.; Zanevsky, Y.] Joint Inst Nucl Res, Dubna 141980, Russia.
[Arnold, O.; Berger-Chen, J. C.; Boehmer, M.; Epple, E.; Fabbietti, L.; Friese, J.; Gernhaeuser, R.; Jurkovic, M.; Kruecken, R.; Kunz, T.; Lalik, R.; Lapidus, K.; Maier, L.; Muenzer, R.; Siebenson, J.; Weber, M.] Tech Univ Munich, Dept Phys E12, D-85748 Garching, Germany.
[Arnold, O.; Berger-Chen, J. C.; Epple, E.; Fabbietti, L.; Lalik, R.; Lapidus, K.; Muenzer, R.; Siebenson, J.] Origin & Struct Univ, Excellence Cluster, D-85748 Garching, Germany.
[Belver, D.; Cabanelas, P.; Garzon, J. A.] Univ Santiago, Fac Fis, LabCAF, Santiago De Compostela 15706, Spain.
[Blanco, A.; Fonte, P.; Lopes, L.; Mangiarotti, A.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-3004516 Coimbra, Portugal.
[Boyard, J. L.; Hcnnino, T.; Kuc, H.; Ramstein, B.] Univ Paris 11, CNRS IN2P3, UMR 8608, Inst Phys Nucl, F-91406 Orsay, France.
[Dybczak, A.; Korcyl, G.; Kuc, H.; Palka, M.; Przygoda, W.; Salabura, P.] Jagiellonian Univ, Smoluchowski Inst Phys, PL-30059 Krakow, Poland.
[Finocchiaro, P.] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95125 Catania, Italy.
[Froehlich, I.; Goebel, K.; Lorenz, M.; Markert, J.; Michel, J.; Muentz, C.; Pachmayer, Y. C.; Pechenova, O.; Rustamov, A.; Stroebele, I. I.; Tarantola, A.; Teilab, K.] Goethe Univ, Inst Kernphys, D-60438 Frankfurt, Germany.
[Galatyuk, T.; Gonzalez-Diaz, D.; Gumbcridzc, M.; Kornakov, G.] Tech Univ Darmstadt, D-64289 Darmstadt, Germany.
[Golubeva, M.; Guber, F.; Ivashkin, A.; Karavicheva, T.; Kurepin, A.; Reshetin, A.; Sadovsky, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia.
[Hcinz, T.; Holzmann, R.; Koenig, I.; Koenig, W.; Kolb, B. W.; Pechenov, V.; Pietraszko, J.; Schwab, E.; Stroth, J.; Sturm, C.; Traxler, M.; Yurevich, S.] GSI Helmholtzzentrum Schwerionenforsch, GmbH, D-64291 Darmstadt, Germany.
[Iori, I.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
[Kaempfer, B.; Kotte, R.; Wendisch, C.; Wuestenfeld, J.] Helmholtz Zentrum Dresden Rossendorf, Inst Strahlenphys, D-01314 Dresden, Germany.
[Krasa, A.; Krizek, F.; Kugler, A.; Sobolev, Yu. G.; Tlusty, P.; Wagner, V.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic.
[Kuehn, W.; Metag, V.; Spruck, B.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany.
[Lebedev, A.] Inst Theoret & Expt Phys, Moscow 117218, Russia.
[Parpottas, Y.; Tsertos, H.] Univ Cyprus, Dept Phys, CY-1678 Nicosia, Cyprus.
[Schmah, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Gaitanos, T.] Inst Theoret Phys I, D-35392 Giessen, Germany.
[Weil, J.] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany.
[Fonte, P.] ISEC Coimbra, Coimbra, Portugal.
[Galatyuk, T.; Gumbcridzc, M.] EMMI, ExtreMe Matter Inst, D-64291 Darmstadt, Germany.
[Galatyuk, T.; Gumbcridzc, M.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy.
[Kaempfer, B.; Wendisch, C.] Tech Univ Dresden, D-01062 Dresden, Germany.
[Parpottas, Y.] Frederick Univ, CY-1036 Nicosia, Cyprus.
RP Lapidus, K (reprint author), Tech Univ Munich, Dept Phys E12, D-85748 Garching, Germany.
EM kirill.lapidus@ph.tum.de
RI Mangiarotti, Alessio/I-1072-2012; Kruecken, Reiner/A-1640-2013; Blanco,
Alberto/L-2520-2014; Guber, Fedor/I-4271-2013; Fonte, Paulo/B-1842-2008;
Gonzalez Diaz, Diego/K-7265-2014; Cabanelas, Pablo/B-2034-2016; Gobel,
Kathrin/B-8531-2016; Kurepin, Alexey/H-4852-2013
OI Tsertos, Charalambos/0000-0001-5966-343X; Finocchiaro,
Paolo/0000-0001-7502-2229; Mangiarotti, Alessio/0000-0001-7837-6057;
Kruecken, Reiner/0000-0002-2755-8042; Guber, Fedor/0000-0001-8790-3218;
Fonte, Paulo/0000-0002-2275-9099; Weil, Janus/0000-0003-1218-0574;
Blanco, Alberto/0000-0001-9827-8294; Gonzalez Diaz,
Diego/0000-0002-6809-5996; Cabanelas, Pablo/0000-0002-5416-4647; Gobel,
Kathrin/0000-0003-2832-8465; Kurepin, Alexey/0000-0002-1851-4136
FU LIP Coimbra, Coimbra (Portugal) [PTDC/FIS/113339/2009]; SIP JUC Cracow,
Cracow (Poland) [NN202286038, NN202198639]; HZ Dresden-Rossendorf
(HZDR), Dresden (Germany) [BMBF 06DR9059D]; TU Munchen, Garching
(Germany)
FX The HADES Collaboration gratefully acknowledges support by the grants
LIP Coimbra, Coimbra (Portugal): PTDC/FIS/113339/2009; SIP JUC Cracow,
Cracow (Poland): NN202286038 28-JAN-2010 and NN202198639 01-OCT-2010; HZ
Dresden-Rossendorf (HZDR), Dresden (Germany): BMBF 06DR9059D; TU
Munchen, Garching (Germany): MLL Munchen, DFG EClust 153, VH-NG-330,
BMBF 06MT9156 TP5, GSI TMKrue 1012; NPI AS CR, Rez, Rez (Czech
Republic): MSMT LC07050, GAASCR IAA100480803; USC S. de Compostela,
Santiago de Compostela (Spain): CPAN:CSD2007-00042; Goethe University,
Frankfurt (Germany): HA216/EMMI HIC for FAIR (LOEWE), BMBF:06FY9100I,
GSI F&E EU Contract No. HP3-283286.
NR 61
TC 7
Z9 7
U1 0
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD NOV 13
PY 2014
VL 90
IS 5
AR UNSP 054906
DI 10.1103/PhysRevC.90.054906
PG 12
WC Physics, Nuclear
SC Physics
GA CA2WR
UT WOS:000348766900004
ER
PT J
AU Tkachenko, S
Dutta, D
Ent, R
Ispiryan, M
AF Tkachenko, S.
Dutta, D.
Ent, R.
Ispiryan, M.
CA CLAS Collaboration
TI Measurement of the structure function of the nearly free neutron using
spectator tagging in inelastic H-2(e, e' p(s)) X scattering with CLAS
(vol 89, 045206, 2014)
SO PHYSICAL REVIEW C
LA English
DT Correction
C1 [Dutta, D.] Mississippi State Univ, Mississippi State, MS 39762 USA.
[Ent, R.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
[Ispiryan, M.] Univ Houston, Houston, TX 77004 USA.
NR 1
TC 0
Z9 0
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD NOV 13
PY 2014
VL 90
IS 5
AR 059901
DI 10.1103/PhysRevC.90.059901
PG 1
WC Physics, Nuclear
SC Physics
GA CA2WR
UT WOS:000348766900007
ER
PT J
AU Wu, JJ
Lee, TSH
Thomas, AW
Young, RD
AF Wu, Jia-Jun
Lee, T. -S. H.
Thomas, A. W.
Young, R. D.
TI Finite-volume Hamiltonian method for coupled-channels interactions in
lattice QCD
SO PHYSICAL REVIEW C
LA English
DT Article
ID NUCLEON RESONANCE REGION; MESON PRODUCTION; BAG MODEL; STATES
AB Within a multichannel formulation of pp scattering, we investigate the use of the finite-volume Hamiltonian approach to resolve scattering observables from lattice QCD spectra. The asymptotic matching of the well-known Luscher formalism encodes a unique finite-volume spectrum. Nevertheless, in many practical situations, such as coupled-channels systems, it is advantageous to interpolate isolated lattice spectra in order to extract physical scattering parameters. Here we study the use of the Hamiltonian framework as a parametrization that can be fit directly to lattice spectra. We find that, with a modest amount of lattice data, the scattering parameters can be reproduced rather well, with only a minor degree of model dependence.
C1 [Wu, Jia-Jun; Lee, T. -S. H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Thomas, A. W.; Young, R. D.] Univ Adelaide, Spec Res Ctr Subatom Struct Matter CSSM, Sch Chem & Phys, Adelaide, SA 5005, Australia.
[Thomas, A. W.; Young, R. D.] Univ Adelaide, ARC, Ctr Excellence Particle Phys Terascale, Sch Chem & Phys, Adelaide, SA 5005, Australia.
RP Wu, JJ (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
RI Thomas, Anthony/G-4194-2012
OI Thomas, Anthony/0000-0003-0026-499X
FU U.S. Department of Energy, Office of Nuclear Physics Division
[DE-AC02-06CH11357]; Office of Science of the U.S. Department of Energy
[DE-AC02-05CH11231]; University of Adelaide; Australian Research Council
through the ARC Centre of Excellence for Particle Physics at the
Terascale [FL0992247, DP140103067, FT120100821]
FX We wish to thank Raul Briceno for helpful correspondence. This work is
supported by the U.S. Department of Energy, Office of Nuclear Physics
Division, under Contract No. DE-AC02-06CH11357. This research used
resources of the National Energy Research Scientific Computing Center,
which is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231, and resources provided on
the Fusion, 320-node computing cluster operated by the Laboratory
Computing Resource Center at Argonne National Laboratory. This work was
also supported by the University of Adelaide and the Australian Research
Council through the ARC Centre of Excellence for Particle Physics at the
Terascale and Grants No. FL0992247 (AWT), No. DP140103067, and No.
FT120100821 (RDY).
NR 44
TC 11
Z9 11
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD NOV 13
PY 2014
VL 90
IS 5
AR 055206
DI 10.1103/PhysRevC.90.055206
PG 14
WC Physics, Nuclear
SC Physics
GA CA2WR
UT WOS:000348766900006
ER
PT J
AU Sun, YP
Emma, P
Raubenheimer, T
Wu, JH
AF Sun, Yipeng
Emma, Paul
Raubenheimer, Tor
Wu, Juhao
TI X-band rf driven free electron laser driver with optics linearization
SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS
LA English
DT Article
ID OPERATION
AB In this paper, a compact hard X-ray free electron lasers (FEL) design is proposed with all X-band rf acceleration and two stage bunch compression. It eliminates the need of a harmonic rf linearization section by employing optics linearization in its first stage bunch compression. Quadrupoles and sextupoles are employed in a bunch compressor one (BC1) design, in such a way that second order longitudinal dispersion of BC1 cancels the second order energy correlation in the electron beam. Start-to-end 6-D simulations are performed with all the collective effects included. Emittance growth in the horizontal plane due to coherent synchrotron radiation is investigated and minimized, to be on a similar level with the successfully operating Linac coherent light source (LCLS). At a FEL radiation wavelength of 0.15 nm, a saturation length of 40 meters can be achieved by employing an undulator with a period of 1.5 cm. Without tapering, a FEL radiation power above 10 GW is achieved with a photon pulse length of 50 fs, which is LCLS-like performance. The overall length of the accelerator plus undulator is around 250 meters which is much shorter than the LCLS length of 1230 meters. That makes it possible to build hard X-ray FEL in a laboratory with limited size.
C1 [Emma, Paul; Raubenheimer, Tor; Wu, Juhao] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Sun, Yipeng] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Sun, YP (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM yisun@aps.anl.gov
FU U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]; U.S.
Department of Energy [DE-AC02-76SF00515]
FX Most of the work was done at SLAC National Accelerator Laboratory. The
paper was finished at Argonne National Laboratory. Work supported by the
U.S. Department of Energy, Office of Science, under Contract No.
DE-AC02-06CH11357. Work also supported by the U.S. Department of Energy
under Contract DE-AC02-76SF00515. The authors would like to thank M.
Woodley, A. Chao, Z. Huang, C. Adolphsen, Y. Ding, C. Limborg-Deprey for
helpful discussions, C. Adolphsen for the proofreading.
NR 31
TC 0
Z9 0
U1 3
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-4402
J9 PHYS REV SPEC TOP-AC
JI Phys. Rev. Spec. Top.-Accel. Beams
PD NOV 13
PY 2014
VL 17
IS 11
AR 110703
DI 10.1103/PhysRevSTAB.17.110703
PG 12
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA CA2XS
UT WOS:000348770000001
ER
PT J
AU Croken, MM
Ma, YF
Markillie, LM
Taylor, RC
Orr, G
Weiss, LM
Kim, K
AF Croken, Matthew McKnight
Ma, Yanfen
Markillie, Lye Meng
Taylor, Ronald C.
Orr, Galya
Weiss, Louis M.
Kim, Kami
TI Distinct Strains of Toxoplasma gondii Feature Divergent Transcriptomes
Regardless of Developmental Stage
SO PLOS ONE
LA English
DT Article
ID GENE-EXPRESSION; RNA-SEQ; PSEUDOKINASES; VIRULENCE; PARASITES; DATABASE;
FAMILY; CYST
AB Using high through-put RNA sequencing, we assayed the transcriptomes of three different strains of Toxoplasma gondii representing three common genotypes under both in vitro tachyzoite and in vitro bradyzoite-inducing alkaline stress culture conditions. Strikingly, the differences in transcriptional profiles between the strains, RH, PLK, and CTG, is much greater than differences between tachyzoites and alkaline stressed in vitro bradyzoites. With an FDR of 10%, we identified 241 genes differentially expressed between CTG tachyzoites and in vitro bradyzoites, including 5 putative AP2 transcription factors. We also observed a close association between cell cycle regulated genes and differentiation. By Gene Set Enrichment Analysis (GSEA), there are a number of KEGG pathways associated with the in vitro bradyzoite transcriptomes of PLK and CTG, including pyrimidine metabolism and DNA replication. These functions are likely associated with cell-cycle arrest. When comparing mRNA levels between strains, we identified 1,526 genes that were differentially expressed regardless of culture-condition as well as 846 differentially expressed only in bradyzoites and 542 differentially expressed only in tachyzoites between at least two strains. Using GSEA, we identified that ribosomal proteins were expressed at significantly higher levels in the CTG strain than in either the RH or PLK strains. This association holds true regardless of life cycle stage.
C1 [Croken, Matthew McKnight; Kim, Kami] Albert Einstein Coll Med, Dept Microbiol & Immunol, Bronx, NY 10467 USA.
[Ma, Yanfen; Weiss, Louis M.; Kim, Kami] Albert Einstein Coll Med, Dept Pathol, Bronx, NY 10467 USA.
[Markillie, Lye Meng; Orr, Galya] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
[Taylor, Ronald C.] Pacific NW Natl Lab, Div Biol Sci, Computat Biol & Bioinformat Grp, Richland, WA 99352 USA.
[Weiss, Louis M.; Kim, Kami] Albert Einstein Coll Med, Dept Med, Bronx, NY 10467 USA.
RP Weiss, LM (reprint author), Albert Einstein Coll Med, Dept Pathol, Bronx, NY 10467 USA.
EM louis.weiss@einstein.yu.edu; kami.kim@einstein.yu.edu
OI Taylor, Ronald/0000-0001-9777-9767; Kim, Kami/0000-0003-3384-152X
FU National Institutes of Health (NIH) [AI095094]
FX Research was supported by National Institutes of Health (NIH) grants
AI095094 (LMW), AI087625 (KK), and by grant 40070 (LMW) from
Environmental Molecular Sciences Laboratory (EMSL) Pacific Northwest
National Laboratory. MMC was supported by the Training Program in
Cellular and Molecular Biology and Genetics, funded by NIH T32 GM007491
awarded to the Albert Einstein College of Medicine. A portion of the
research was performed using EMSL, a national scientific user facility
sponsored by the Department of Energy's Office of Biological and
Environmental Research and located at Pacific Northwest National Lab.
This work was also supported in part by the Center for AIDS Research at
the Albert Einstein College of Medicine and Montefiore Medical Center
funded by the National Institutes of Health (NIH AI-051519). The funders
had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.
NR 34
TC 5
Z9 5
U1 1
U2 9
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD NOV 13
PY 2014
VL 9
IS 11
AR e111297
DI 10.1371/journal.pone.0111297
PG 10
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AY6YT
UT WOS:000347709300014
PM 25393307
ER
PT J
AU Soler, MA
Nelson, T
Roitberg, AE
Tretiak, S
Femandez-Alberti, S
AF Soler, Miguel A.
Nelson, Tarnmie
Roitberg, Adrian E.
Tretiak, Sergei
Femandez-Alberti, Sebastian
TI Signature of Nonadiabatic Coupling in Excited-State Vibrational Modes
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID UNIDIRECTIONAL ENERGY-TRANSFER; CONICAL INTERSECTIONS; CONJUGATED
MOLECULES; ELECTRONIC COHERENCE; EXCITONIC COUPLINGS; QUANTUM-CHEMISTRY;
EMISSION-SPECTRA; DYNAMICS; ABSORPTION; SIMULATION
AB Using analytical excited-state gradients, vibrational normal modes have been calculated at the minimum of the electronic excited-state potential energy surfaces for a set of extended conjugated molecules with different coupling between them. Molecular model systems composed of units of polyphenylene ethynylene (PPE), polyphenylenevinylene (PPV), and naphthacene/pentacene (NP) have been considered. In all cases except the NP model, the influence of the nonadiabatic coupling on the excited-state equilibrium normal modes is revealed as a unique highest frequency adiabatic vibrational mode that overlaps with the coupling vector. This feature is removed by using a locally diabatic representation in which the effect of NA interaction is removed. Comparison of the original adiabatic modes with a set of vibrational modes computed in the locally diabatic representation demonstrates that the effect of nonadiabaticity is confined to only a few modes. This suggests that the nonadiabatic character of a molecular system may be detected spectroscopically by identifying these unique state-specific high frequency vibrational modes.
C1 [Soler, Miguel A.; Femandez-Alberti, Sebastian] Univ Nacl Quilmes, Bernal, Argentina.
[Nelson, Tarnmie; Tretiak, Sergei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Roitberg, Adrian E.] Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA.
RP Tretiak, S (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
EM serg@lanl.gov; sfalberti@gmail.com
RI Tretiak, Sergei/B-5556-2009;
OI Tretiak, Sergei/0000-0001-5547-3647; SOLER, MIGUEL/0000-0002-5780-9949
FU CONICET; UNQ; ANPCyT [PICT-2010-2375]; National Science Foundation
[CHE-0239129, CHE-0808910]; U.S. Department of Energy; Los Alamos LDRD;
National Nuclear Security Administration of the U.S. Department of
Energy [DE-AC5206NA25396]; Center for Integrated Nanotechnologies
(CINT); Center for Nonlinear Studies (CNLS) at LANL
FX This work was partially supported by CONICET, UNQ, ANPCyT
(PICT-2010-2375), National Science Foundation Grant No. CHE-0239129 and
CHE-0808910, and U.S. Department of Energy and Los Alamos LDRD funds.
Los Alamos National Laboratory is operated by Los Alamos National
Security, LLC, for the National Nuclear Security Administration of the
U.S. Department of Energy under contract DE-AC5206NA25396. The authors
acknowledge support from the Center for Integrated Nanotechnologies
(CINT) and the Center for Nonlinear Studies (CNLS) at LANL.
NR 59
TC 5
Z9 5
U1 0
U2 15
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD NOV 13
PY 2014
VL 118
IS 45
BP 10372
EP 10379
DI 10.1021/jp503350k
PG 8
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AT5IK
UT WOS:000344976900011
PM 24844735
ER
PT J
AU Hong, J
Jeon, S
Kim, JJ
Devi, D
Chacon-Madrid, K
Lee, W
Koo, SM
Wideman, J
Sfeir, MY
Peteanu, LA
AF Hong, Jiyun
Jeon, Sukyung
Kim, Janice J.
Devi, Diane
Chacon-Madrid, Kelly
Lee, Wynee
Koo, Seung Moh
Wideman, Jurjen
Sfeir, Matthew Y.
Peteanu, Linda A.
TI The Effects of Side-Chain-Induced Disorder on the Emission Spectra and
Quantum Yields of Oligothiophene Nanoaggregates: A Combined Experimental
and MD-TDDFT Study
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; INTERCHAIN INTERACTIONS;
ENERGY-TRANSFER; ALPHA-OLIGOTHIOPHENES; CHEMICAL CALCULATIONS;
ELECTRONIC-STRUCTURES; COMPUTER EXPERIMENTS; CONJUGATED POLYMERS;
PACKING STRUCTURES; OPTICAL-PROPERTIES
AB Oligomeric thiophenes are commonly used components in organic electronics and solar cells. These molecules stack and/or aggregate readily under the processing conditions used to form thin films for these applications, significantly altering their optical and charge-transport properties. To determine how these effects depend on the substitution pattern of the thiophene main chains, nanoaggregates of three sexithiophene oligomers having different alkyl substitution patterns were formed using solvent-poisoning techniques and studied using steady-state and time-resolved emission spectroscopy. The results indicate the substantial role played by the side-chain substituents in determining the emissive properties of these species. Both the measured spectral changes and their dependence on substitution are well-modeled by combined quantum chemistry and molecular dynamics simulations. The simulations connect the side-chain-induced disorder, which determines the favorable chain-packing configurations within the aggregates, with their measured electronic spectra.
C1 [Hong, Jiyun; Jeon, Sukyung; Kim, Janice J.; Devi, Diane; Chacon-Madrid, Kelly; Lee, Wynee; Koo, Seung Moh; Peteanu, Linda A.] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA.
[Wideman, Jurjen] Zernike Inst Adv Mat Nijenborgh, NL-49747 AG Groningen, Netherlands.
[Sfeir, Matthew Y.] Brookhaven Natl Lab, CFN, Upton, NY 11973 USA.
RP Peteanu, LA (reprint author), Carnegie Mellon Univ, Dept Chem, 4400 Fifth Ave, Pittsburgh, PA 15213 USA.
EM peteanu@cmu.edu
RI Wen, Jin/G-6039-2014;
OI Wen, Jin/0000-0001-6136-8771; Koo, Seung Moh/0000-0001-9331-4786; Sfeir,
Matthew/0000-0001-5619-5722
FU NSF [CHE-1012529]; U.S. Department of Energy, Office of Basic Energy
Sciences [DE-AC02-98CH10886]; National Natural Science Foundation of
China [21290192, 21273102]
FX L.A.P. acknowledges NSF (Grant CHE-1012529) for financial support. This
work was performed in part at the Center for Functional Nanomaterials at
Brookhaven National Laboratory, which is supported by the U.S.
Department of Energy, Office of Basic Energy Sciences, under Contract
DE-AC02-98CH10886. J.M. thanks the National Natural Science Foundation
of China (Grants 21290192 and 21273102) for support and the High
Performance Computing Center of Nanjing University for providing the IBM
Blade cluster system.
NR 55
TC 4
Z9 4
U1 2
U2 27
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD NOV 13
PY 2014
VL 118
IS 45
BP 10464
EP 10473
DI 10.1021/jp504254a
PG 10
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AT5IK
UT WOS:000344976900021
PM 24992478
ER
PT J
AU Fransted, KA
Jackson, NE
Zong, R
Mara, MW
Huang, J
Harpham, MR
Shelby, ML
Thununel, RP
Chen, LX
AF Fransted, Kelly A.
Jackson, Nicholas E.
Zong, Ruifa
Mara, Michael W.
Huang, Jier
Harpham, Michael R.
Shelby, Megan L.
Thummel, Randolph P.
Chen, Lin X.
TI Ultrafast Structural Dynamics of Cu(I)-Bicinchoninic Acid and Their
Implications for Solar Energy Applications
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID ABSORPTION FINE-STRUCTURE; COPPER(I) DIIMINE COMPLEXES; TRANSFER
EXCITED-STATES; X-RAY; CU(NN)2+ SYSTEMS; CU(I) COMPLEXES; SPECTROSCOPY;
CELLS; ELECTRON; HAMILTONIANS
AB In this study, ultrafast optical transient absorption and X-ray transient absorption (XTA) spectroscopy are used to probe the excited-state dynamics and structural evolution of copper(I) bicinchoninic acid ([Cu(I)(BCA)(2)](+)), which has similar but less frequently studied biquinoline-based ligands compared to phenanthroline-based complexes. The optical transient absorption measurements performed on the complex in a series of polar protic solvents demonstrate a strong solvent dependency for the excited lifetime, which ranges from approximately 40 ps in water to over 300 ps in 2-methoxyethanol. The XTA experiments showed a reduction of the prominent 1s -> 4pz edge peak in the excited-state X-ray absorption near-edge structure (XANES) spectrum, which is indicative of an interaction with a fifth ligand, most likely the solvent. Analysis of the extended X-ray absorption fine structure (EXAFS) spectrum shows a shortening of the metal-ligand bond in the excited state and an increase in the coordination number for the Cu(II) metal center. A flattened structure is supported by DFT calculations that show that the system relaxes into a flattened geometry with a lowest-energy triplet state that has a dipole-forbidden transition to the ground state. While the short excited-state lifetime relative to previously studied Cu(I) diimine complexes could be attributed to this dark triplet state, the strong solvent dependency and the reduction of the 1s -> 4pz peak in the XTA data suggest that solvent interaction could also play a role. This detailed study of the dynamics in different solvents provides guidance for modulating excited-state pathways and lifetimes through structural factors such as solvent accessibility to fulfill the excited-state property requirements for efficient light harvesting and electron injection.
C1 [Fransted, Kelly A.; Mara, Michael W.; Huang, Jier; Harpham, Michael R.; Shelby, Megan L.; Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Jackson, Nicholas E.; Mara, Michael W.; Shelby, Megan L.; Chen, Lin X.] Northwestern Univ, Dept Chem, Evanston, IL 60439 USA.
[Zong, Ruifa; Thummel, Randolph P.] Univ Houston, Dept Chem, Houston, TX 77204 USA.
RP Thununel, RP (reprint author), Univ Houston, Dept Chem, 4800 Calhoun Rd, Houston, TX 77204 USA.
EM thummel@uh.edu; Ichen@anl.gov
FU Division of Chemical Sciences, Biosciences, Office of Basic Energy
Sciences of the U.S. Department of Energy [DE-AC02-06CH11357,
DE-FG02-07ER15888]; Robert A. Welch Foundation [E-621]; U.S. DOE
[DE-AC02-06CH11357]
FX We would like to acknowledge support from the Division of Chemical
Sciences, Biosciences, Office of Basic Energy Sciences of the U.S.
Department of Energy through Grant DE-AC02-06CH11357 (K.A.F. and
L.X.C.), as well as DE-AC02-06CH11357 and DE-FG02-07ER15888 (R.Z. and
R.P.T.) for support of this work. R.Z. and R.P.T. also thank the Robert
A. Welch Foundation (Grant E-621). The authors would like to thank Dr.
Xiaoyi Zhang of 11-ID-D at the Advanced Photon Source for her help with
the XTA measurements. Use of beamline 11-ID-D at the Advanced Photon
Source was supported by the U.S. DOE under Contract No.
DE-AC02-06CH11357. The authors would also like to thank Dr. Dugan Hayes
for his advice on experimental design.
NR 60
TC 7
Z9 7
U1 4
U2 18
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD NOV 13
PY 2014
VL 118
IS 45
BP 10497
EP 10506
DI 10.1021/jp504294j
PG 10
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AT5IK
UT WOS:000344976900024
PM 25015003
ER
PT J
AU Llansola-Portoles, MJ
Bergkamp, JJ
Finkelstein-Shapiro, D
Sherman, BD
Kodis, G
Dimitrijevic, NM
Gust, D
Moore, TA
Moore, AL
AF Llansola-Portoles, Manuel J.
Bergkamp, Jesse J.
Finkelstein-Shapiro, Daniel
Sherman, Benjamin D.
Kodis, Gerdenis
Dimitrijevic, Nada M.
Gust, Devens
Moore, Thomas A.
Moore, Ana L.
TI Controlling Surface Defects and Photophysics in TiO2 Nanoparticles
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID TITANIUM-DIOXIDE; SEMICONDUCTOR NANOCLUSTERS; PHOTOCATALYTIC REDUCTION;
PARTICLES; SCIENCE; OXYGEN; EFFICIENCY; NANOTUBES; MOLECULES; STATES
AB Titanium dioxide (TiO2) is widely used for photocatalysis and solar cell applications, and the electronic structure of bulk TiO2 is well understood. However, the surface structure of nanoparticulate TiO2, which has a key role in properties such as solubility and catalytic activity, still remains controversial. Detailed understanding of surface defect structures may help explain reactivity and overall materials performance in a wide range of applications. In this work we address the solubility problem and surface defects control on TiO2 nanoparticles. We report the synthesis and characterization of similar to 4 nm TiO2 anatase spherical nanoparticles that are soluble and stable in a wide range of organic solvents and water. By controlling the temperature during the synthesis, we are able to tailor the density of defect states on the surface of the TiO2 nanoparticles without affecting parameters such as size, shape, core crystallinity, and solubility. The morphology of both kinds of nanoparticles was determined by TEM. EPR experiments were used to characterize the surface defects, and transient absorption measurements demonstrate the influence of the TiO2 defect states on photoinduced electron transfer dynamics.
C1 [Llansola-Portoles, Manuel J.; Bergkamp, Jesse J.; Finkelstein-Shapiro, Daniel; Sherman, Benjamin D.; Kodis, Gerdenis; Gust, Devens; Moore, Thomas A.; Moore, Ana L.] Arizona State Univ, Dept Chem & Biochem, Ctr Bioenergy & Photosynth, Tempe, AZ 85287 USA.
[Dimitrijevic, Nada M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Dimitrijevic, Nada M.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Llansola-Portoles, MJ (reprint author), Arizona State Univ, Dept Chem & Biochem, Ctr Bioenergy & Photosynth, Tempe, AZ 85287 USA.
EM mjllansola@gmail.com
OI Llansola-Portoles, Manuel Jose/0000-0002-8065-9459; Finkelstein Shapiro,
Daniel/0000-0001-8015-5376
FU Center for Bio-Inspired Solar Fuel Production, an Energy Frontier
Research Center - U.S. Department of Energy, Office of Science, Office
of Basic Energy Sciences [DE-SC0001016]; National Science Foundation
[CHB-1124895]; Department of Energy, Office of Science, Office of Basic
Energy Sciences [DE-AC02-06CH11357]
FX The work at ASU was supported by the Center for Bio-Inspired Solar Fuel
Production, an Energy Frontier Research Center funded by the U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
under Award Number DE-SC0001016, National Science Foundation
CHB-1124895, and the research at ANL was supported by the Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No DE-AC02-06CH11357.
NR 50
TC 7
Z9 7
U1 3
U2 51
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD NOV 13
PY 2014
VL 118
IS 45
BP 10631
EP 10638
DI 10.1021/jp506284q
PG 8
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AT5IK
UT WOS:000344976900037
PM 25109403
ER
PT J
AU Pistner, AJ
Pupillo, RC
Yap, GPA
Lutterman, DA
Ma, YZ
Rosenthal, J
AF Pistner, Allen J.
Pupillo, Rachel C.
Yap, Glenn P. A.
Lutterman, Daniel A.
Ma, Ying-Zhong
Rosenthal, Joel
TI Electrochemical, Spectroscopic, and O-1(2) Sensitization Characteristics
of 10,10-Dimethylbiladiene Complexes of Zinc and Copper
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID PHOTODYNAMIC THERAPY; LINEAR TETRAPYRROLES; COBALT COMPLEXES;
ELECTRON-TRANSFER; PHOTOSENSITIZERS; PORPHYRIN; CHEMISTRY;
OCTAETHYLBILINDIONE; LIGANDS; DENSITY
AB The synthesis, electrochemistry, and photophysical characterization of a 10,10-dimethylbiladiene tetrapyrrole bearing ancillary pentafluorophenyl groups at the 5- and 15-meso positions (DMBil1) is presented. This nonmacrocyclic tetrapyrrole platform is robust and can serve as an excellent ligand scaffold for Zn2+ and Cu2+ centers. X-ray diffraction studies conducted for DMBil1 along with the corresponding Zn[DMBil1] and Cu[DMBil1] complexes show that this ligand scaffold binds a single metal ion within the tetrapyrrole core. Additionally, electrochemical experiments revealed that all three of the aforementioned compounds display an interesting redox chemistry as the DMBil1 framework can be both oxidized and reduced by two electrons. Spectroscopic and photophysical experiments carried out for DMBil1, Zn[DMBil1], and Cu[DMBil1] provide a basic picture of the electronic properties of these platforms. All three biladiene derivatives strongly absorb light in the visible region and are weakly emissive. The ability of these compounds to sensitize the formation of O-1(2) at wavelengths longer than 500 nm was probed. Both the free base and Zn2+ 10,10-dimethylbiladiene architectures show modest efficiencies for O-1(2) sensitization. The combination of structural, electrochemical, and photophysical data detailed herein provides a basis for the design of additional biladiene constructs for the activation of O-2 and other small molecules.
C1 [Pistner, Allen J.; Pupillo, Rachel C.; Yap, Glenn P. A.; Rosenthal, Joel] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA.
[Lutterman, Daniel A.; Ma, Ying-Zhong] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Rosenthal, J (reprint author), Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA.
EM joelr@udel.edu
RI Lutterman, Daniel/C-9704-2016; Ma, Yingzhong/L-6261-2016
OI Lutterman, Daniel/0000-0002-4875-6056; Ma, Yingzhong/0000-0002-8154-1006
FU American Chemical Society Petroleum Research Fund; NSF CAREER Award
[CHE1352120]; U.S. Department of Energy, Office of Science, Basic Energy
Sciences, Chemical Sciences, Geo-sciences, and Biosciences Division
FX J.R. thanks Oak Ridge Associated Universities for a Ralph E. Powe Junior
Faculty Enhancement Award. Additional financial support for this work
was provided in part by the American Chemical Society Petroleum Research
Fund and NSF CAREER Award CHE1352120. Work by D.A.L. and Y.-Z.M. was
supported by the U.S. Department of Energy, Office of Science, Basic
Energy Sciences, Chemical Sciences, Geo-sciences, and Biosciences
Division. NMR and other data were acquired at UD using instrumentation
obtained with assistance from the NSF and NIH (NSF MIR 0421224, NSF CRIF
MU CHE0840401 and CHE0541775, NIH P20 RR017716).
NR 63
TC 1
Z9 1
U1 3
U2 20
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD NOV 13
PY 2014
VL 118
IS 45
BP 10639
EP 10648
DI 10.1021/jp506412r
PG 10
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AT5IK
UT WOS:000344976900038
PM 25187099
ER
PT J
AU Popolan-Vaida, DM
Wilson, KR
Leone, SR
AF Popolan-Vaida, Denisia M.
Wilson, Kevin R.
Leone, Stephen R.
TI Reaction of Iodine Atoms with Submicrometer Squalane and Squalene
Droplets: Mechanistic Insights into Heterogeneous Reactions
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID GENERATING PARTICLE BEAMS; CATALYZED ISOMERIZATION; CONTROLLED
DIMENSIONS; AERODYNAMIC LENSES; NOZZLE EXPANSIONS; N-BUTENES; KINETICS;
RADICALS; AEROSOLS; HEAT
AB The gas-phase reaction of iodine atoms with hydrocarbon molecules is energetically unfavorable, and there is no direct evidence for iodinated product formation by either H abstraction or I addiction reactions at ambient termperature. Here we consider the possible heterogeneous reaction of I atoms with submicrometer droplets composed of a saturated alkane, squalane (Sq), and an unsaturated alkene, squalene (Sqe). The investigations are performed in an atmospheric pressure photochemical flow tube reactor in conjunction with a vacuum ultraviolet photoionization aerosol mass spectrometer and a scanning mobility particle sizer. Squalane, a branched alkane, is unreactive toward I atoms within the signal-to-noise, and an upper limit of the effective reactive uptake coefficient is estimated to be g(I)(Sq) = 8.58 x 10(-7). In contrast, the reaction of I atoms with unsaturated submicrometer squalene droplets results in observable iodinated squalene products. The effective reactive uptake coefficient of I atom with squalene particles is determined to be g(I)(Sqe) = (1.20 +/- 0.52) x 10(-4) at an average I concentration of 1.5 x 10(14) molecules cm(-3).
C1 [Popolan-Vaida, Denisia M.; Wilson, Kevin R.; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Popolan-Vaida, Denisia M.; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
RP Leone, SR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
EM srl@berkeley.edu
FU Office of Energy Research, Office of Basic Energy Sciences, Chemical
Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231];
Alexander von Humboldt Foundation
FX This work was supported by the Director, Office of Energy Research,
Office of Basic Energy Sciences, Chemical Sciences Division of the U.S.
Department of Energy under Contract DE-AC02-05CH11231. The authors
acknowledge constructive discussions with Dr. M. D. Ward and the
technical assistance from Dr. D. J. Taube. In particular, D.M.P.-V. is
grateful to the Alexander von Humboldt Foundation for a Feodor Lynen
fellowship.
NR 39
TC 2
Z9 2
U1 4
U2 18
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD NOV 13
PY 2014
VL 118
IS 45
BP 10688
EP 10698
DI 10.1021/jp5085247
PG 11
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AT5IK
UT WOS:000344976900043
PM 25327465
ER
PT J
AU Ondarse-Alvarez, D
Oldani, N
Tretiak, S
Fernandez-Alberti, S
AF Ondarse-Alvarez, D.
Oldani, N.
Tretiak, S.
Fernandez-Alberti, S.
TI Computational Study of Photoexcited Dynamics in Bichromophoric
Cross-Shaped Oligofluorene
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID LIGHT-EMITTING-DIODES; UNIDIRECTIONAL ENERGY-TRANSFER; STATE
MOLECULAR-DYNAMICS; CONJUGATED POLYMERS; OPTOELECTRONIC DEVICES;
NONLINEAR POLARIZABILITIES; SUBSTITUTED POLYTHIOPHENES; POLYFLUORENE
DERIVATIVES; NONADIABATIC COUPLINGS; ELECTRONIC COHERENCE
AB The non-adiabatic excited state molecular dynamics (NA-ESMD) approach is applied to investigate photoexcited dynamics and relaxation pathways in a spiro-linked conjugated polyfluorene at room (T = 300 K) and low (T = 10 K) temperatures. This dimeric aggregate consists of two perpendicularly oriented weakly interacting a-polyfluorene oligomers. The negligible coupling between the monomer chains results in an initial absorption band composed of equal contributions of the two lowest excited electronic states, each localized on one of the two chains. After photoexcitation, an efficient ultrafast localization of the entire electronic population to the lowest excited state is observed on the time scale of about 100 fs. Both internal conversion between excited electronic states and vibronic energy relaxation on a single electronic state contribute to this process. Thus, photoexcited dynamics of the polyfluorene dimer follows two distinct pathways with substantial temperature dependence on their efficiency. One relaxation channel involves resonance electronic energy transfer between the monomer chains, whereas the second pathway concerns the relaxation of the electronic energy on the same chain that has been initially excited due to electron-phonon coupling. Despite the slower vibrational relaxation, a more efficient ultrafast electronic relaxation is observed at low temperature. Our numerical simulations analyze the effects of molecular geometry distortion during the electronic energy redistribution and suggest spectroscopic signatures reflecting complex electron-vibrational dynamics.
C1 [Ondarse-Alvarez, D.; Oldani, N.; Fernandez-Alberti, S.] Univ Nacl Quilmes, Bernal, Argentina.
[Tretiak, S.] Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies CNLS, Los Alamos, NM 87545 USA.
[Tretiak, S.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA.
RP Fernandez-Alberti, S (reprint author), Univ Nacl Quilmes, Roque Saenz Pena 352,B1876BXD, Bernal, Argentina.
EM sfalberti@gmail.com
RI Tretiak, Sergei/B-5556-2009
OI Tretiak, Sergei/0000-0001-5547-3647
FU CONICET; UNQ; ANPCyT [PICT-2010-2375]; U.S. Department of Energy; Los
Alamos LDRD funds; National Nuclear Security Administration of the U.S.
Department of Energy [DE-AC52-06NA25396]; Center for Integrated
Nanotechnology (CINT) at LANL; Center for Nonlinear Studies (CNLS) at
LANL
FX This work was partially supported by CONICET, UNQ, ANPCyT
(PICT-2010-2375) and the U.S. Department of Energy and Los Alamos LDRD
funds. Los Alamos National Laboratory is operated by Los Alamos National
Security, LLC, for the National Nuclear Security Administration of the
U.S. Department of Energy under contract DE-AC52-06NA25396. We
acknowledge support of Center for Integrated Nanotechnology (CINT) and
Center for Nonlinear Studies (CNLS) at LANL.
NR 96
TC 4
Z9 4
U1 2
U2 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD NOV 13
PY 2014
VL 118
IS 45
BP 10742
EP 10753
DI 10.1021/jp504720n
PG 12
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AT5IK
UT WOS:000344976900050
PM 25341055
ER
PT J
AU Ryberg, E
Forssen, C
Hammer, HW
Platter, L
AF Ryberg, Emil
Forssen, Christian
Hammer, H. -W.
Platter, Lucas
TI Constraining low-energy proton capture on beryllium-7 through charge
radius measurements
SO EUROPEAN PHYSICAL JOURNAL A
LA English
DT Article
ID EFFECTIVE-FIELD THEORY; CROSS-SECTION; HALO NUCLEI; SCATTERING; BE-7(P;
EFT
AB In this paper, we point out that a measurement of the charge radius of boron-8 provides indirect access to the S-factor for radiative proton capture on beryllium-7 at low energies. We use leading-order halo effective field theory to explore this correlation and we give a relation between the charge radius and the S-factor. Furthermore, we present important technical aspects relevant to the renormalization of point-like P -wave interactions in the presence of a repulsive Coulomb interaction.
C1 [Ryberg, Emil; Forssen, Christian; Platter, Lucas] Chalmers, Dept Fundamental Phys, S-41296 Gothenburg, Sweden.
[Hammer, H. -W.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany.
[Hammer, H. -W.] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany.
[Platter, Lucas] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
RP Ryberg, E (reprint author), Chalmers, Dept Fundamental Phys, S-41296 Gothenburg, Sweden.
EM emilr@chalmers.se
RI Forssen, Christian/C-6093-2008; Platter, Lucas/N-3887-2013
OI Forssen, Christian/0000-0003-3458-0480; Platter,
Lucas/0000-0001-6632-8250
FU Swedish Research Council [dnr. 2010-4078]; European Research Council
under the European Community's Seventh Framework Programme [240603];
BMBF [05P12PDFTE]; DFG [SFB 634]; Office of Nuclear Physics, U.S.
Department of Energy [DE-AC02-06CH11357]; Helmholtz Association
[HA216/EMMI]
FX We thank D.R. Phillips and H. Esbensen for useful discussions. This
research was supported in part by the Swedish Research Council (dnr.
2010-4078), the European Research Council under the European Community's
Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no.
240603, the BMBF under grant 05P12PDFTE, the DFG through SFB 634, the
Office of Nuclear Physics, U.S. Department of Energy under contract no.
DE-AC02-06CH11357 and by the Helmholtz Association under contract
HA216/EMMI. We express our appreciation to the Extreme Matter Institute
at GSI and the Institute for Nuclear Theory in Seattle, where part of
this work was carried out.
NR 44
TC 7
Z9 7
U1 0
U2 2
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1434-6001
EI 1434-601X
J9 EUR PHYS J A
JI Eur. Phys. J. A
PD NOV 13
PY 2014
VL 50
IS 11
AR 170
DI 10.1140/epja/i2014-14170-2
PG 13
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA AT7XO
UT WOS:000345148000001
ER
PT J
AU Krogstad, DV
Choi, SH
Lynd, NA
Audus, DJ
Perry, SL
Gopez, JD
Hawker, CJ
Kramer, EJ
Tirrell, MV
AF Krogstad, Daniel V.
Choi, Soo-Hyung
Lynd, Nathaniel A.
Audus, Debra J.
Perry, Sarah L.
Gopez, Jeffrey D.
Hawker, Craig J.
Kramer, Edward J.
Tirrell, Matthew V.
TI Small Angle Neutron Scattering Study of Complex Coacervate Micelles and
Hydrogels Formed from Ionic Diblock and Triblock Copolymers
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID CHARGED BLOCK-COPOLYMERS; CORE; PROTEINS; BEHAVIOR; LENGTH; WATER
AB A complex coacervate is a fluid phase that results from the electrostatic interactions between two oppositely charged macromolecules. The nature of the coacervate core structure of hydrogels and micelles formed from complexation between pairs of diblock or triblock copolymers containing oppositely charged end-blocks as a function of polymer and salt concentration was investigated. Both ABA triblock copolymers of poly[(allyl glycidyl ether)-b-(ethylene oxide)-b-(allyl glycidyl ether)] and analogous poly[(allyl glycidyl ether)-b-(ethylene oxide)] diblock copolymers, which were synthesized to be nearly one-half of the symmetrical triblock copolymers, were studied. The poly(allyl glycidyl ether) blocks were functionalized with either guanidinium or sulfonate groups via postpolymerization modification. Mixing of oppositely charged block copolymers resulted in the formation of nanometer-scale coacervate domains. Small angle neutron scattering (SANS) experiments were used to investigate the size and spacing of the coacervate domains. The SANS patterns were fit using a previously vetted, detailed model consisting of polydisperse coreshell micelles with a randomly distributed sphere or body-centered cubic (BCC) structure factor. For increasing polymer concentration, the size of the coacervate domains remained constant while the spatial extent of the poly(ethylene oxide) (PEO) corona decreased. However, increasing salt concentration resulted in a decrease in both the coacervate domain size and the corona size due to a combination of the electrostatic interactions being screened and the shrinkage of the neutral PEO blocks. Additionally, for the triblock copolymers that formed BCC ordered domains, the water content in the coacervate domains was calculated to increase from approximately 16.8% to 27.5% as the polymer concentration decreased from 20 to 15 wt %.
C1 [Krogstad, Daniel V.; Hawker, Craig J.; Kramer, Edward J.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA.
[Krogstad, Daniel V.; Choi, Soo-Hyung; Lynd, Nathaniel A.; Audus, Debra J.; Gopez, Jeffrey D.; Hawker, Craig J.; Kramer, Edward J.] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA.
[Audus, Debra J.; Gopez, Jeffrey D.; Kramer, Edward J.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA.
[Hawker, Craig J.] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA.
[Choi, Soo-Hyung] Hongik Univ, Dept Chem Engn, Seoul 121791, South Korea.
[Perry, Sarah L.; Tirrell, Matthew V.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA.
[Tirrell, Matthew V.] Argonne Natl Lab, Lemont, IL 60439 USA.
RP Tirrell, MV (reprint author), Jones Lab 222, 5747 South Ellis Ave, Chicago, IL 60637 USA.
EM mtirrell@uchicago.edu
RI Choi, Soo-hyung/H-9734-2012;
OI Choi, Soo-hyung/0000-0002-4078-6285; Perry, Sarah/0000-0003-2301-6710
FU National Science Foundation [DMR 1121053]; Argonne National Laboratory
under U.S. Department of Energy [DE-ACO2-06CH11357]; Scientific User
Facilities Division, Office of Basic Energy Sciences, US Department of
Energy
FX The synthesis, SANS and microscopy work reported here was partially
supported by the IVIRSEC Program of the National Science Foundation
under Award No. DMR 1121053 (D.V.K, NA.L, S.-H.C., DJ.A., J.G., CJ.H.,
and EJ.K.). SANS, interpretation, and writing were supported by the
University of Chicago (D.V.K, S.L.P., M.V.T.), and by the Laboratory
Directed Research and Development Program of the Argonne National
Laboratory under U.S. Department of Energy Contract No.
DE-ACO2-06CH11357 (M.V.T.). The research conducted at the ORNL's High
Flux Isotope Reactor was sponsored by the Scientific User Facilities
Division, Office of Basic Energy Sciences, US Department of Energy. The
authors would like to thank Dr. Urban Volker and Dr. Sai Venkatesh
Pingali for their help and support with the SANS experiment.
NR 36
TC 19
Z9 19
U1 6
U2 67
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 13
PY 2014
VL 118
IS 45
BP 13011
EP 13018
DI 10.1021/jp509175a
PG 8
WC Chemistry, Physical
SC Chemistry
GA AT5IH
UT WOS:000344976600022
PM 25338302
ER
PT J
AU Jiang, QL
Sheng, X
Shi, B
Feng, XJ
Xu, T
AF Jiang, Qinglong
Sheng, Xia
Shi, Bing
Feng, Xinjian
Xu, Tao
TI Nickel-Cathoded Perovskite Solar Cells
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID INORGANIC HOLE CONDUCTOR; CHARGE-TRANSPORT; SENSITIZED TIO2; DEPOSITION;
EFFICIENCY; IODIDE
AB Current lead halide perovskite solar cells use high work function (phi) precious metals, such as gold (phi = 5.1 eV), as the back cathode to maximize the attainable photovoltage. We report herein a set of perovskite-type solar cells that use nickel (phi = 5.04 eV), an earth-abundant element and non-precious metal, as back cathode and achieve the same open-circuit voltage as gold and an efficiency of 10.4%. This work opens a nickel-and-dimed (low-cost) way toward high-efficient perovskite solar cells.
C1 [Jiang, Qinglong; Feng, Xinjian; Xu, Tao] No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA.
[Sheng, Xia; Feng, Xinjian] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Jiangsu, Peoples R China.
[Shi, Bing] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Xu, T (reprint author), No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA.
EM txu@niu.edu
FU U.S. National Science Foundation [CBET-1150617]; US DOE office of
Science, Office of Basic energy Sciences [DE-AC02-06CH11357,
DE-AC-02-98CH10886]; [NSFC-21371178]
FX We acknowledge the support from the U.S. National Science Foundation
(CBET-1150617). Ski is supported by the US DOE office of Science, Office
of Basic energy Sciences, under Contract No. DE-AC02-06CH11357 and
DE-AC-02-98CH10886. X.F. acknowledges the support from NSFC-21371178.
NR 20
TC 19
Z9 20
U1 10
U2 87
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD NOV 13
PY 2014
VL 118
IS 45
BP 25878
EP 25883
DI 10.1021/jp506991x
PG 6
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AT5IW
UT WOS:000344978000007
ER
PT J
AU Seo, DM
Afroz, T
Allen, JL
Boyle, PD
Trulove, PC
De Long, HC
Henderson, WA
AF Seo, Daniel M.
Afroz, Taliman
Allen, Joshua L.
Boyle, Paul D.
Trulove, Paul C.
De Long, Hugh C.
Henderson, Wesley A.
TI Structural Interactions within Lithium Salt Solvates: Cyclic Carbonates
and Esters
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID AMORPHOUS CONCENTRATED LIQUID; PROPYLENE CARBONATE; ETHYLENE CARBONATE;
GAMMA-BUTYROLACTONE; CRYSTAL-STRUCTURE; AB-INITIO; IONIC ASSOCIATION;
LOW-TEMPERATURE; NONAQUEOUS ELECTROLYTES; VIBRATIONAL FREQUENCIES
AB Only limited information is available regarding the manner in which cyclic carbonate and ester solvents coordinate Li+ cations in electrolyte solutions for lithium batteries. One approach to gleaning significant insight into these interactions is to examine crystalline solvate structures. To this end, eight new solvate structures are reported with ethylene carbonate, gamma-butyrolactone, and gamma-valerolactone: (EC)(3):LiClO4, (EC)(2):LiClO4, (EC)(2):LiBF4, (GBL)(4):LiPF6, (GBL)(1):LiClO4, (GVL)(1):LiClO4, (GBL)(1):LiBF4, and (GBL)(1):LiCF3SO3. The crystal structure of (EC)(1):LiCF3SO3 is also re-reported for comparison. These structures enable the factors that govern the manner in which the ions are coordinated and the ion/solvent packing-in the solid-state-to be scrutinized in detail.
C1 [Seo, Daniel M.; Afroz, Taliman; Allen, Joshua L.; Henderson, Wesley A.] N Carolina State Univ, Dept Chem & Biomol Engn, Ion Liquids & Electrolytes Energy Technol ILEET L, Raleigh, NC 27695 USA.
[Boyle, Paul D.] N Carolina State Univ, Dept Chem, Xray Struct Facil, Raleigh, NC 27695 USA.
[Trulove, Paul C.] US Naval Acad, Dept Chem, Annapolis, MD 21402 USA.
[De Long, Hugh C.] Air Force Off Sci Res, Arlington, VA 22203 USA.
[Henderson, Wesley A.] Pacific NW Natl Lab, Electrochem Mat & Syst Grp, Energy & Environm Directorate, Richland, WA 99352 USA.
RP Henderson, WA (reprint author), N Carolina State Univ, Dept Chem & Biomol Engn, Ion Liquids & Electrolytes Energy Technol ILEET L, Raleigh, NC 27695 USA.
EM Wesley.Henderson@pnnl.gov
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DE-SC0002169]
FX The authors wish to express their gratitude to the U.S. Department of
Energy, Office of Basic Energy Sciences, Division of Materials Sciences
and Engineering, which supported this research under Award DE-SC0002169.
NR 60
TC 7
Z9 7
U1 6
U2 34
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD NOV 13
PY 2014
VL 118
IS 45
BP 25884
EP 25889
DI 10.1021/jp5079168
PG 6
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AT5IW
UT WOS:000344978000008
ER
PT J
AU Deshlahra, P
Igesia, E
AF Deshlahra, Prashant
Igesia, Enrique
TI Methanol Oxidative Dehydrogenation on Oxide Catalysts: Molecular and
Dissociative Routes and Hydrogen Addition Energies as Descriptors of
Reactivity
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; SELECTIVE OXIDATION; HETEROPOLY COMPOUNDS;
SURFACE-CHEMISTRY; MOLYBDENUM OXIDE; REDOX PROPERTIES; DIMETHYL ETHER;
ACID CATALYSIS; METAL-OXIDES; SILICA
AB The oxidative dehydrogenation (ODH) of alkanols on oxide catalysts is generally described as involving H-abstraction from alkoxy species formed via OH dissociation. Kinetic and isotopic data cannot discern between such routes and those involving kinetically-relevant H-abstraction from undissociated alkanols. Here, we combine such experiments with theoretical estimates of activation energies and entropies to show that the latter molecular routes prevail over dissociative routes for methanol reactions on polyoxometalate (POM) clusters at all practical reaction temperatures. The stability of the late transition states that mediate H-abstraction depend predominantly on the stability of the OH bond formed, making H-addition energies (HAE) accurate and single-valued descriptors of reactivity. Density functional theory-derived activation energies depend linearly on HAE values at each O-atom location on clusters with a range of composition (H3PMo12, H4SiMo12, H3PW12, H4PV1Mo11, and H4PV1W11); both barriers and HAE values reflect the lowest unoccupied molecular orbital energy of metal centers that accept the electron and the protonation energy of O-atoms that accept the proton involved in the H-atom transfer. Bridging O-atoms form OH bonds that are stronger than those of terminal atoms and therefore exhibit more negative HAE values and higher ODH reactivity on all POM clusters. For each cluster composition, ODH turnover rates reflect the reactivity-averaged HAE of all accessible O-atoms, which can be evaluated for each cluster composition to provide a rigorous and accurate predictor of ODH reactivity for catalysts with known structure. These relations together with oxidation reactivity measurements can then be used to estimate HAE values and to infer plausible structures for catalysts with uncertain active site structures.
C1 [Deshlahra, Prashant; Igesia, Enrique] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA.
[Igesia, Enrique] EO Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Igesia, E (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA.
EM iglesia@berkeley.edu
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC05-76RL0-1830]; DOE [47582]; National Science Foundation
[ACI-1053575, CHE-0840505]
FX This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
contract DE-AC05-76RL0-1830. Computational facilities were provided by
the Environmental Molecular Science Laboratory (EMSL) at Pacific
Northwest National Laboratory (PNNL), a DOE Office of Science User
Facility, under proposal 47582. The use of molecular DFT calculations
using Gaussian program was made possible by the Extreme Science and
Engineering Discovery Environment (XSEDE) and a UC Berkeley College of
Chemistry facility, which are supported by National Science Foundation
grants (ACI-1053575 and CHE-0840505, respectively). We thank Dr. David
Hibbitts (UC-Berkeley) for assistance with the statistical mechanics
treatments and Dr. Robert Carr, Mr. William Knaeble, and Mr. Nee lay
Phadke (UC-Berkeley) for technical discussions and a critical review of
the concepts developed in this manuscript.
NR 52
TC 8
Z9 8
U1 3
U2 24
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD NOV 13
PY 2014
VL 118
IS 45
BP 26115
EP 26129
DI 10.1021/jp507922u
PG 15
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AT5IW
UT WOS:000344978000034
ER
PT J
AU Yang, CT
Wood, BC
Bhethanabotla, VR
Joseph, B
AF Yang, Chi-Ta
Wood, Brandon C.
Bhethanabotla, Venkat R.
Joseph, Babu
TI CO2 Adsorption on Anatase TiO2 (101) Surfaces in the Presence of
Subnanometer Ag/Pt Clusters: Implications for CO2 Photoreduction
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID TOTAL-ENERGY CALCULATIONS; ELASTIC BAND METHOD; WAVE BASIS-SET;
CARBON-DIOXIDE; PHOTOCATALYTIC CONVERSION; TIO2(101) SURFACE;
HYDROCARBON FUELS; OXYGEN VACANCIES; SADDLE-POINTS; REDUCTION
AB Using density functional theory calculations, we show how CO2 adsorption on perfect and reduced anatase TiO2 (101) surfaces can be substantially modified by the presence of surface Ag and Pt octamer clusters. We find that adsorption is affected even at sites where the adsorbate is not in direct contact with the octamer, which we attribute to charge donation to CO2 from the Ag/Pt-modified surface, as well as an electrostatic competition between attractive (Ti-O) and repulsive (Ti-C) interactions. In addition, TiO2-supported Pt octamers offer key advantages that could be leveraged for CO2 photoreduction, including providing additional stable adsorption sites for bent CO2 species and facilitating charge transfer to aid in CO2- anion formation. Electronic structure analysis suggests these factors arise primarily from the hybridization of the bonding molecular orbitals of CO2 with d orbitals of the Pt atoms. Our results show that, for adsorption on TiO(2-)supported Pt octamers, the O-C-O bending and C-O asymmetric stretching frequencies can be used as reliable indicators of the presence of the CO2- anion intermediate as well as to distinguish unique adsorption geometries or sites. Finally, we suggest a possible pathway for subsequent CO2 dissociation to CO at the surface of a reduced anatase TiO2 (101)-supported Pt octamer, which has a computed energy barrier of 1.01 eV.
C1 [Yang, Chi-Ta; Bhethanabotla, Venkat R.; Joseph, Babu] Univ S Florida, Dept Chem & Biomed Engn, Tampa, FL 33620 USA.
[Wood, Brandon C.] Lawrence Livermore Natl Lab, Quantum Simulat Grp, Livermore, CA 94550 USA.
RP Joseph, B (reprint author), Univ S Florida, Dept Chem & Biomed Engn, Tampa, FL 33620 USA.
EM bjoseph@usf.edu
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX The authors thank the USE supercomputing center for computing time and
support along with XSEDE and NERSC supercomputing resources. A portion
of this work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.
NR 63
TC 10
Z9 10
U1 9
U2 98
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD NOV 13
PY 2014
VL 118
IS 45
BP 26236
EP 26248
DI 10.1021/jp509219n
PG 13
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AT5IW
UT WOS:000344978000046
ER
PT J
AU Espinosa-Faller, FJ
Conradson, DR
Riha, SC
Martucci, MB
Fredrick, SJ
Vogel, S
Prieto, AL
Conradson, SD
AF Espinosa-Faller, Francisco J.
Conradson, Dylan R.
Riha, Shannon C.
Martucci, Mary B.
Fredrick, Sarah J.
Vogel, Sven
Prieto, Amy L.
Conradson, Steven D.
TI Neutron Diffraction and X-ray Absorption Fine Structure Evidence for
Local Lattice Distortions and Aperiodic Antisite Substitution in
Cu2ZnSnS4 Nanoparticles
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID SOLAR-CELLS; SEMICONDUCTOR NANOCRYSTALS; HETEROGENEOUS CATALYSIS;
ABSORBER; PHOTOVOLTAICS; KESTERITE; INK
AB A thorough structure determination has been performed on Cu2ZnSnS4 nanoparticles, a popular photovoltaic material, using neutron diffractionto characterize the long-range average crystal structureand X-ray absorption fine structure (XAFS) spectroscopy at the Cu, Zn, and Sn K-edges to elucidate the element-specific local structure. This is the first combined multiscale approach on nanoparticles of this material. The results indicate the presence of aperiodic disorder on the cation sites that is diminished by annealing. This disorder involves local lattice distortions around the crystallographic sites rather than the presence of interstitial atoms. It is most consistent with the known antisite substitutions that are integral to CZTS (referring to the ordering of the Cu, Zn, and Sn between planes). However, instead of being confined within single unit cells so as to maintain the crystallographic symmetry, periodicity, and homogeneity, the substitutional disorder appears to extend over larger regions consisting of multiple unit cells but still smaller than the physical dimensions of the nanoparticles. These results therefore imply the presence of nanoscale domains characterized by local fluctuations in composition that cause the individual domains to be enriched in certain metal ions and depleted in others. These will be mirrored by domains with the opposite fluctuations at other locations in the crystal so that the overall composition remains close to the stoichiometric Cu2ZnSnS4. This disorder is likely pronounced in these samples due to the relatively low temperature reaction (300 degrees C) and annealing (350 degrees C) conditions and can be expected to have a significant effect on the resulting physical properties of the material and its photovoltaic performance.
C1 [Conradson, Dylan R.; Martucci, Mary B.; Vogel, Sven; Conradson, Steven D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Riha, Shannon C.; Martucci, Mary B.; Fredrick, Sarah J.; Prieto, Amy L.] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA.
[Espinosa-Faller, Francisco J.] Univ Marista Merida, Merida 97300, Yucatan, Mexico.
RP Prieto, AL (reprint author), Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA.
EM amy.prieto@colostate.edu; steven.conradson@synchrotron-soleil.fr
FU DOE-Basic Energy Sciences under FWP [2012LANLE389]; Conacyt-Mexico
[169108]; Heavy Element Chemistry Program of the Division of Chemical
Sciences, Biosdences, and Geosciences, Office of Basic Energy Sciences
at Los Alamos National Laboratory that is operated by Los Alamos
National Security, LLC; National Nuclear Security Administration of U.S.
Department of Energy [DE-AC52-06NA2S396]; Colorado State University;
Center for Revolutionary Solar Photoconversion (CRSP); NSF Graduate
Fellowship program
FX Part of this research was performed on the HIPPO instrument at the Lujan
Center at Los Alamos National Laboratory supported by DOE-Basic Energy
Sciences under FWP #2012LANLE389. Portions of this research were carried
out at the Stanford Synchrotron Radiation Lightsource, a Directorate of
SLAC National Accelerator Laboratory and an Office of Science User
Facility operated for the U.S. Department of Energy Office of Science by
Stanford University. FJEF would like to thank Conacyt-Mexico for
financial support (Grant No. 169108). SDC and MBM were supported by the
Heavy Element Chemistry Program of the Division of Chemical Sciences,
Biosdences, and Geosciences, Office of Basic Energy Sciences at Los
Alamos National Laboratory that is operated by Los Alamos National
Security, LLC, for the National Nuclear Security Administration of U.S.
Department of Energy under Contract DE-AC52-06NA2S396. TEM imaging was
supported in part by the Microscopy Imaging Network core infrastructure
grant from Colorado State University. ALP and SCR thank the Center for
Revolutionary Solar Photoconversion (CRSP) for funding. SJF thanks the
NSF Graduate Fellowship program for funding.
NR 42
TC 7
Z9 7
U1 3
U2 31
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD NOV 13
PY 2014
VL 118
IS 45
BP 26292
EP 26303
DI 10.1021/jp502150s
PG 12
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AT5IW
UT WOS:000344978000052
ER
PT J
AU Cherakara, MJ
Germann, TC
Kober, EM
Strachan, A
AF Cherakara, Mathew J.
Germann, Timothy C.
Kober, Edward M.
Strachan, Alejandro
TI Shock Loading of Granular Ni/Al Composites. Part 1: Mechanics of Loading
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID SOLID-STATE REACTIONS; NI-AL SYSTEM; MOLECULAR-DYNAMICS; SIMULATIONS;
EXPLOSIVES; MODEL
AB We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (mu(p) less than or similar to 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. The mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion and fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (mu(p) less than or similar to 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components in addition to the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.
C1 [Cherakara, Mathew J.; Strachan, Alejandro] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA.
[Cherakara, Mathew J.; Strachan, Alejandro] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA.
[Cherakara, Mathew J.; Germann, Timothy C.; Kober, Edward M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Strachan, A (reprint author), Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA.
EM strachan@purdue.edu
OI Germann, Timothy/0000-0002-6813-238X
FU U.S. Defense Threat Reduction Agency [HDTRA1-10-1-0119]; U.S. Department
of Energy National Nuclear Security Administration [t
DE-AC52-06NA25396]; Institute for Materials Science (LANL); ExMatEx
project
FX We thank John Barber for discussions and suggestions regarding the
polygon packing problem. This work was supported by the U.S. Defense
Threat Reduction Agency, HDTRA1-10-1-0119 (Program Manager Suhithi
Peiris) and used resources provided by the Los Alamos National
Laboratory Institutional Computing Program, which is supported by the
U.S. Department of Energy National Nuclear Security Administration under
Contract DE-AC52-06NA25396. E.M.K. acknowledges support from the
Institute for Materials Science (LANL), and T.C.G. acknowledges support
from the ExMatEx project.
NR 45
TC 4
Z9 4
U1 5
U2 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD NOV 13
PY 2014
VL 118
IS 45
BP 26377
EP 26386
DI 10.1021/jp507795w
PG 10
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AT5IW
UT WOS:000344978000061
ER
PT J
AU Lee, JJ
Schmitt, FT
Moore, RG
Johnston, S
Cui, YT
Li, W
Yi, M
Liu, ZK
Hashimoto, M
Zhang, Y
Lu, DH
Devereaux, TP
Lee, DH
Shen, ZX
AF Lee, J. J.
Schmitt, F. T.
Moore, R. G.
Johnston, S.
Cui, Y. -T.
Li, W.
Yi, M.
Liu, Z. K.
Hashimoto, M.
Zhang, Y.
Lu, D. H.
Devereaux, T. P.
Lee, D. -H.
Shen, Z. -X.
TI Interfacial mode coupling as the origin of the enhancement of T-c in
FeSe films on SrTiO3
SO NATURE
LA English
DT Article
ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; PHOTOEMISSION
AB Films of iron selenide (FeSe) one unit cell thick grown on strontium titanate (SrTiO3 or STO) substrates have recently shown(1-4) superconducting energy gaps opening at temperatures close to the boiling point of liquid nitrogen (77 kelvin), which is a record for the iron-based superconductors. The gap opening temperature usually sets the superconducting transition temperature T-c, as the gap signals the formation of Cooper pairs, the bound electron states responsible for superconductivity. To understand why Cooper pairs form at such high temperatures, we examine the role of the SrTiO3 substrate. Here we report high-resolution angle-resolved photoemission spectroscopy results that reveal an unexpected characteristic of the single-unit-cell FeSe/SrTiO3 system: shake-off bands suggesting the presence of bosonic modes, most probably oxygen optical phonons in SrTiO3 (refs 5-7), which couple to the FeSe electrons with only a small momentum transfer. Such interfacial coupling assists superconductivity in most channels, including those mediated by spin fluctuations(8-14). Our calculations suggest that this coupling is responsible for raising the superconducting gap opening temperature in single-unit-cell FeSe/SrTiO3.
C1 [Lee, J. J.; Schmitt, F. T.; Moore, R. G.; Cui, Y. -T.; Li, W.; Yi, M.; Liu, Z. K.; Zhang, Y.; Devereaux, T. P.; Shen, Z. -X.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA.
[Lee, J. J.; Yi, M.; Liu, Z. K.; Shen, Z. -X.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Lee, J. J.; Yi, M.; Liu, Z. K.; Shen, Z. -X.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA.
[Lee, J. J.; Yi, M.; Liu, Z. K.; Shen, Z. -X.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA.
[Johnston, S.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
[Johnston, S.] Univ British Columbia, Quantum Matter Inst, Vancouver, BC V6T 1Z4, Canada.
[Johnston, S.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Hashimoto, M.; Lu, D. H.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
[Zhang, Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Lee, D. -H.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Lee, D. -H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Shen, ZX (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA.
EM zxshen@stanford.edu
RI Cui, Yong-Tao/G-8505-2015; Johnston, Steven/J-7777-2016
OI Cui, Yong-Tao/0000-0002-8015-1049;
FU US Department of Energy, Office of Science, Basic Energy Sciences,
Materials Sciences and Engineering Division; Department of Energy,
Office of Basic Energy Sciences, Division of Materials Science, under
the Quantum Material programme [DE-AC02-05CH11231]
FX This work was supported by the US Department of Energy, Office of
Science, Basic Energy Sciences, Materials Sciences and Engineering
Division. D.-H.L. is supported by the Department of Energy, Office of
Basic Energy Sciences, Division of Materials Science, under the Quantum
Material programme DE-AC02-05CH11231. Measurements were performed at the
Stanford Synchrotron Radiation Lightsource, a national user facility
operated by Stanford University on behalf of the US Department of
Energy, Office of Basic Energy Sciences.
NR 27
TC 131
Z9 133
U1 22
U2 207
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
EI 1476-4687
J9 NATURE
JI Nature
PD NOV 13
PY 2014
VL 515
IS 7526
BP 245
EP U207
DI 10.1038/nature13894
PG 12
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AT0MZ
UT WOS:000344631400045
PM 25391962
ER
PT J
AU Xie, JJ
Wu, JJ
Zou, BS
AF Xie, Ju-Jun
Wu, Jia-Jun
Zou, Bing-Song
TI Role of the possible Sigma*(1/2(-)) state in the Lambda p -> Lambda p
pi(0) reaction
SO PHYSICAL REVIEW C
LA English
DT Article
AB The Lambda p -> Lambda p pi(0) reaction near threshold is studied within an effective Lagrangian method. The production process is described by single-pion and single-kaon exchange. In addition to the role played by the Sigma*(1385) resonance of spin-parity J(P) = 3/2(+), the effects of a newly proposed Sigma* (J(P) = 1/2(-)) state with mass and width around 1380 MeV and 120 MeV are investigated. We show that our model leads to a good description of the experimental data on the total cross section of the Lambda p -> Lambda p pi(0) reaction by including the contributions from the possible Sigma* (1/2(-)) state. However, the theoretical calculations by considering only the Sigma*(1385) resonance fail to reproduce the experimental data, especially for the enhancement close to the reaction threshold. On the other hand, it is found that the single-pion exchange is dominant. Furthermore, we also demonstrate that the angular distributions provide direct information of this reaction, hence could be useful for the investigation of the existence of the Sigma*(1/2(-)) state and may be tested by future experiments.
C1 [Xie, Ju-Jun] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China.
[Xie, Ju-Jun] Chinese Acad Sci, Inst Modern Phys, Res Ctr Hadron, Lanzhou 730000, Peoples R China.
[Xie, Ju-Jun] Chinese Acad Sci, Inst Modern Phys, CSR Phys, Lanzhou 730000, Peoples R China.
[Xie, Ju-Jun] Lanzhou Univ, Lanzhou 730000, Peoples R China.
[Xie, Ju-Jun; Zou, Bing-Song] Chinese Acad Sci, Inst Theoret Phys, State Key Lab Theoret Phys, Beijing 100190, Peoples R China.
[Wu, Jia-Jun] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
RP Xie, JJ (reprint author), Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China.
EM xiejujun@impcas.ac.cn; zoubs@itp.ac.cn
FU National Natural Science Foundation of China [11105126, 11035006,
11121092, 11261130311]; Chinese Academy of Sciences [KJCX2-EW-N01];
Ministry of Science and Technology of China [2009CB825200]; U.S.
Department of Energy, Office of Science, Office of Nuclear Physics
[DE-AC02-06CH11357]
FX We would like to thank Prof. T.-S. H. Lee and Xu Cao for useful
discussions. This work is partly supported by the National Natural
Science Foundation of China under Grants No. 11105126, No. 11035006, No.
11121092, No. 11261130311 (RC110 by DFG and NSFC), the Chinese Academy
of Sciences under Project No. KJCX2-EW-N01, and the Ministry of Science
and Technology of China (2009CB825200). This material is based upon work
supported by the U.S. Department of Energy, Office of Science, Office of
Nuclear Physics, under Contract No. DE-AC02-06CH11357.
NR 33
TC 0
Z9 0
U1 1
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD NOV 12
PY 2014
VL 90
IS 5
AR 055204
DI 10.1103/PhysRevC.90.055204
PG 6
WC Physics, Nuclear
SC Physics
GA CJ0UP
UT WOS:000355194400003
ER
PT J
AU Yu, T
Tyson, TA
Gao, P
Wu, T
Hong, X
Ghose, S
Chen, YS
AF Yu, T.
Tyson, T. A.
Gao, P.
Wu, T.
Hong, X.
Ghose, S.
Chen, Y. -S.
TI Structural changes related to the magnetic transitions in hexagonal
InMnO3
SO PHYSICAL REVIEW B
LA English
DT Article
ID PAIR DISTRIBUTION FUNCTION; LUMNO3; PHASE
AB Two magnetic ordering transitions are found in InMnO3, the paramagnetic to antiferromagnetic transition at similar to 118 K and a lower possible spin rotation transition near 42 K. Multiple length scale structural measurements reveal enhanced local distortion found to be connected with tilting of the MnO5 polyhedra as temperature is reduced. Coupling is observed between the lattice and the spin manifested as changes in the structure near both of the magnetic ordering temperatures (at similar to 42 and similar to 118 K). External parameters, such as pressure, are expected to modify the coupling.
C1 [Yu, T.; Tyson, T. A.; Gao, P.; Wu, T.] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA.
[Hong, X.] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA.
[Ghose, S.] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA.
[Chen, Y. -S.] Univ Chicago, ChemMatCARS, Argonne, IL 60439 USA.
[Chen, Y. -S.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Tyson, TA (reprint author), New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA.
EM tyson@njit.edu
FU DOE Grant [DE-FG02-07ER46402]; US Department of Energy; National Science
Foundation; Department of Energy [NSF/CHE-1346572]; U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]; NSF MRI Grant [DMR-0923032]
FX This work was supported by DOE Grant No. DE-FG02-07ER46402. Synchrotron
powder x-ray diffraction and x-ray absorption data acquisition were
performed at Brookhaven National Laboratory's NSLS, which is funded by
the US Department of Energy. Single-crystal x-ray diffraction
measurements were performed at the beamline 15-ID-B, Advanced Photon
Source, Argonne National Laboratory. ChemMat-CARS Sector 15 is
principally supported by the National Science Foundation and Department
of Energy under Grant No. NSF/CHE-1346572. Use of the Advanced Photon
Source was supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. The physical properties measurement system was
acquired under NSF MRI Grant No. DMR-0923032 (ARRA award).
NR 25
TC 1
Z9 1
U1 0
U2 48
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 12
PY 2014
VL 90
IS 17
AR 174106
DI 10.1103/PhysRevB.90.174106
PG 9
WC Physics, Condensed Matter
SC Physics
GA CA2YT
UT WOS:000348773000002
ER
PT J
AU Aad, G
Abbott, B
Abdallah, J
Khalek, SA
Abdinov, O
Aben, R
Abi, B
Abolins, M
AbouZeid, OS
Abramowicz, H
Abreu, H
Abreu, R
Abulaiti, Y
Acharya, BS
Adamczyk, L
Adams, DL
Adelman, J
Adomeit, S
Adye, T
Agatonovic-Jovin, T
Aguilar-Saavedra, JA
Agustoni, M
Ahlen, SP
Ahmadov, F
Aielli, G
Akerstedt, H
Akesson, TPA
Akimoto, G
Akimov, AV
Alberghi, GL
Albert, J
Albrand, S
Verzini, MJA
Aleksa, M
Aleksandrov, IN
Alexa, C
Alexander, G
Alexandre, G
Alexopoulos, T
Alhroob, M
Alimonti, G
Alio, L
Alison, J
Allbrooke, BMM
Allison, LJ
Allport, PP
Aloisio, A
Alonso, A
Alonso, F
Alpigiani, C
Altheimer, A
Gonzalez, BA
Alviggi, MG
Amako, K
Coutinho, YA
Amelung, C
Amidei, D
Dos Santos, SPA
Amorim, A
Amoroso, S
Amram, N
Amundsen, G
Anastopoulos, C
Ancu, LS
Andari, N
Andeen, T
Anders, CF
Anders, G
Anderson, KJ
Andreazza, A
Andrei, V
Anduaga, XS
Angelidakis, S
Angelozzi, I
Anger, P
Angerami, A
Anghinolfi, F
Anisenkov, AV
Anjos, N
Annovi, A
Antonaki, A
Antonelli, M
Antonov, A
Antos, J
Anulli, F
Aoki, M
Bella, LA
Apolle, R
Arabidze, G
Aracena, I
Arai, Y
Araque, JP
Arce, ATH
Arduh, FA
Arguin, JF
Argyropoulos, S
Arik, M
Armbruster, AJ
Arnaez, O
Arnal, V
Arnold, H
Arratia, M
Arslan, O
Artamonov, A
Artoni, G
Asai, S
Asbah, N
Ashkenazi, A
Asman, B
Asquith, L
Assamagan, K
Astalos, R
Atkinson, M
Atlay, NB
Auerbach, B
Augsten, K
Aurousseau, M
Avolio, G
Axen, B
Azuelos, G
Azuma, Y
Baak, MA
Baas, AE
Bacci, C
Bachacou, H
Bachas, K
Backes, M
Backhaus, M
Mayes, JB
Badescu, E
Bagiacchi, P
Bagnaia, P
Bai, Y
Bain, T
Baines, JT
Baker, OK
Balek, P
Balli, F
Banas, E
Banerjee, S
Bannoura, AAE
Bansal, V
Bansil, HS
Barak, L
Baranov, SP
Barberio, EL
Barberis, D
Barbero, M
Barillari, T
Barisonzi, M
Barklow, T
Barlow, N
Barnes, SL
Barnett, BM
Barnett, RM
Barnovska, Z
Baroncelli, A
Barone, G
Barr, AJ
Barreiro, F
da Costa, JBG
Bartoldus, R
Barton, AE
Bartos, P
Bartsch, V
Bassalat, A
Basye, A
Bates, RL
Batista, SJ
Batley, JR
Battaglia, M
Battistin, M
Bauer, F
Bawa, HS
Beattie, MD
Beau, T
Beauchemin, PH
Beccherle, R
Bechtle, P
Beck, HP
Becker, K
Becker, S
Beckingham, M
Becot, C
Beddall, AJ
Beddall, A
Bedikian, S
Bednyakov, VA
Bee, CP
Beemster, LJ
Beermann, TA
Begel, M
Behr, K
Belanger-Champagne, C
Bell, PJ
Bell, WH
Bella, G
Bellagamba, L
Bellerive, A
Bellomo, M
Belotskiy, K
Beltramello, O
Benary, O
Benchekroun, D
Bendtz, K
Benekos, N
Benhammou, Y
Noccioli, EB
Garcia, JAB
Benjamin, DP
Bensinger, JR
Bentvelsen, S
Berge, D
Kuutmann, EB
Berger, N
Berghaus, F
Beringer, J
Bernard, C
Bernat, P
Bernius, C
Bernlochner, FU
Berry, T
Berta, P
Bertella, C
Bertoli, G
Bertolucci, F
Bertsche, C
Bertsche, D
Besana, MI
Besjes, GJ
Bessidskaia, O
Bessner, M
Besson, N
Betancourt, C
Bethke, S
Bhimji, W
Bianchi, RM
Bianchini, L
Bianco, M
Biebel, O
Bieniek, SP
Bierwagen, K
Biesiada, J
Biglietti, M
De Mendizabal, JB
Bilokon, H
Bindi, M
Binet, S
Bingul, A
Bini, C
Black, CW
Black, JE
Black, KM
Blackburn, D
Blair, RE
Blanchard, JB
Blazek, T
Bloch, I
Blocker, C
Blum, W
Blumenschein, U
Bobbink, GJ
Bobrovnikov, VS
Bocchetta, SS
Bocci, A
Bock, C
Boddy, CR
Boehler, M
Boek, TT
Bogaerts, JA
Bogdanchikov, AG
Bogouch, A
Bohm, C
Bohm, J
Boisvert, V
Bold, T
Boldea, V
Boldyrev, AS
Bomben, M
Bona, M
Boonekamp, M
Borisov, A
Borissov, G
Borri, M
Borroni, S
Bortfeldt, J
Bortolotto, V
Bos, K
Boscherini, D
Bosman, M
Boterenbrood, H
Boudreau, J
Bouffard, J
Bouhova-Thacker, EV
Boumediene, D
Bourdarios, C
Bousson, N
Boutouil, S
Boveia, A
Boyd, J
Boyko, IR
Bozic, I
Bracinik, J
Brandt, A
Brandt, G
Brandt, O
Bratzler, U
Brau, B
Brau, JE
Braun, HM
Brazzale, SF
Brelier, B
Brendlinger, K
Brennan, AJ
Brenner, R
Bressler, S
Bristow, K
Bristow, TM
Britton, D
Brochu, FM
Brock, I
Brock, R
Bromberg, C
Bronner, J
Brooijmans, G
Brooks, T
Brooks, WK
Brosamer, J
Brost, E
Brown, J
de Renstrom, PAB
Bruncko, D
Bruneliere, R
Brunet, S
Bruni, A
Bruni, G
Bruschi, M
Bryngemark, L
Buanes, T
Buat, Q
Bucci, F
Buchholz, P
Buckingham, RM
Buckley, AG
Buda, SI
Budagov, IA
Buehrer, F
Bugge, L
Bugge, MK
Bulekov, O
Bundock, AC
Burckhart, H
Burdin, S
Burghgrave, B
Burke, S
Burmeister, I
Busato, E
Buscher, D
Buscher, V
Bussey, P
Buszello, CP
Butler, B
Butler, JM
Butt, AI
Buttar, CM
Butterworth, JM
Butti, P
Buttinger, W
Buzatu, A
Byszewski, M
Urban, SC
Caforio, D
Cakir, O
Calafiura, P
Calandri, A
Calderini, G
Calfayan, P
Calkins, R
Caloba, LP
Calvet, D
Calvet, S
Toro, RC
Camarda, S
Cameron, D
Caminada, LM
Armadans, RC
Campana, S
Campanelli, M
Campoverde, A
Canale, V
Canepa, A
Bret, MC
Cantero, J
Cantrill, R
Cao, T
Garrido, MDMC
Caprini, I
Caprini, M
Capua, M
Caputo, R
Cardarelli, R
Carli, T
Carlino, G
Carminati, L
Caron, S
Carquin, E
Carrillo-Montoya, GD
Carter, JR
Carvalho, J
Casadei, D
Casado, MP
Casolino, M
Castaneda-Miranda, E
Castelli, A
Gimenez, VC
Castro, NF
Catastini, P
Catinaccio, A
Catmore, JR
Cattai, A
Cattani, G
Caudron, J
Cavaliere, V
Cavalli, D
Cavalli-Sforza, M
Cavasinni, V
Ceradini, F
Cerio, BC
Cerny, K
Cerqueira, AS
Cerri, A
Cerrito, L
Cerutti, F
Cerv, M
Cervelli, A
Cetin, SA
Chafaq, A
Chakraborty, D
Chalupkova, I
Chang, P
Chapleau, B
Chapman, JD
Charfeddine, D
Charlton, DG
Chau, CC
Barajas, CAC
Cheatham, S
Chegwidden, A
Chekanov, S
Chekulaev, SV
Chelkov, GA
Chelstowska, MA
Chen, C
Chen, H
Chen, K
Chen, L
Chen, S
Chen, X
Chen, Y
Chen, Y
Cheng, HC
Cheng, Y
Cheplakov, A
El Moursli, RC
Chernyatin, V
Cheu, E
Chevalier, L
Chiarella, V
Chiefari, G
Childers, JT
Chilingarov, A
Chiodini, G
Chisholm, AS
Chislett, RT
Chitan, A
Chizhov, MV
Chouridou, S
Chow, BKB
Chromek-Burckhart, D
Chu, ML
Chudoba, J
Chwastowski, JJ
Chytka, L
Ciapetti, G
Ciftci, AK
Ciftci, R
Cinca, D
Cindro, V
Ciocio, A
Citron, ZH
Citterio, M
Ciubancan, M
Clark, A
Clark, PJ
Clarke, RN
Cleland, W
Clemens, JC
Clement, C
Coadou, Y
Cobal, M
Coccaro, A
Cochran, J
Coffey, L
Cogan, JG
Cole, B
Cole, S
Colijn, AP
Collot, J
Colombo, T
Compostella, G
Muino, PC
Coniavitis, E
Connell, SH
Connelly, IA
Consonni, SM
Consorti, V
Constantinescu, S
Conta, C
Conti, G
Conventi, F
Cooke, M
Cooper, BD
Cooper-Sarkar, AM
Cooper-Smith, NJ
Copic, K
Cornelissen, T
Corradi, M
Corriveau, F
Corso-Radu, A
Cortes-Gonzalez, A
Cortiana, G
Costa, G
Costa, MJ
Costanzo, D
Cote, D
Cottin, G
Cowan, G
Cox, BE
Cranmer, K
Cree, G
Crepe-Renaudin, S
Crescioli, F
Cribbs, WA
Ortuzar, MC
Cristinziani, M
Croft, V
Crosetti, G
Cuciuc, CM
Donszelmann, TC
Cummings, J
Curatolo, M
Cuthbert, C
Czirr, H
Czodrowski, P
D'Auria, S
D'Onofrio, M
De Sousa, MJDS
Da Via, C
Dabrowski, W
Dafinca, A
Dai, T
Dale, O
Dallaire, F
Dallapiccola, C
Dam, M
Daniells, AC
Hoffmann, MD
Dao, V
Darbo, G
Darmora, S
Dassoulas, J
Dattagupta, A
Davey, W
David, C
Davidek, T
Davies, E
Davies, M
Davignon, O
Davison, AR
Davison, P
Davygora, Y
Dawe, E
Dawson, I
Daya-Ishmukhametova, RK
De, K
de Asmundis, R
De Castro, S
De Cecco, S
De Groot, N
de Jong, P
De la Torre, H
De Lorenzi, F
De Nooij, L
De Pedis, D
De Salvo, A
De Sanctis, U
De Santo, A
De Regie, JBD
Dearnaley, WJ
Debbe, R
Debenedetti, C
Dechenaux, B
Dedovich, DV
Deigaard, I
Del Peso, J
Del Prete, T
Deliot, F
Delitzsch, CM
Deliyergiyev, M
Dell'Acqua, A
Dell'Asta, L
Dell'Orso, M
Della Pietra, M
della Volpe, D
Delmastro, M
Delsart, PA
Deluca, C
DeMarco, DA
Demers, S
Demichev, M
Demilly, A
Denisov, SP
Derendarz, D
Derkaoui, JE
Derue, F
Dervan, P
Desch, K
Deterre, C
Deviveiros, PO
Dewhurst, A
Dhaliwal, S
Di Ciaccio, A
Di Ciaccio, L
Di Domenico, A
Di Donato, C
Di Girolamo, A
Di Girolamo, B
Di Mattia, A
Di Micco, B
Di Nardo, R
Di Simone, A
Di Sipio, R
Di Valentino, D
Dias, FA
Diaz, MA
Diehl, EB
Dietrich, J
Dietzsch, TA
Diglio, S
Dimitrievska, A
Dingfelder, J
Dita, P
Dita, S
Dittus, F
Djama, F
Djobava, T
Djuvsland, JI
do Vale, MAB
Wemans, AD
Dobos, D
Doglioni, C
Doherty, T
Dohmae, T
Dolejsi, J
Dolezal, Z
Dolgoshein, BA
Donadelli, M
Donati, S
Dondero, P
Donini, J
Dopke, J
Doria, A
Dova, MT
Doyle, AT
Dris, M
Dubbert, J
Dube, S
Dubreuil, E
Duchovni, E
Duckeck, G
Ducu, OA
Duda, D
Dudarev, A
Dudziak, F
Duflot, L
Duguid, L
Duhrssen, M
Dunford, M
Yildiz, HD
Duren, M
Durglishvili, A
Dwuznik, M
Dyndal, M
Ebke, J
Edson, W
Edwards, NC
Ehrenfeld, W
Eifert, T
Eigen, G
Einsweiler, K
Ekelof, T
Kacimi, M
Ellert, M
Elles, S
Ellinghaus, F
Ellis, N
Elmsheuser, J
Elsing, M
Emeliyanov, D
Enari, Y
Endner, OC
Endo, M
Engelmann, R
Erdmann, J
Ereditato, A
Eriksson, D
Ernis, G
Ernst, J
Ernst, M
Ernwein, J
Errede, D
Errede, S
Ertel, E
Escalier, M
Esch, H
Escobar, C
Esposito, B
Etienvre, AI
Etzion, E
Evans, H
Ezhilov, A
Fabbri, L
Facini, G
Fakhrutdinov, RM
Falciano, S
Falla, RJ
Faltova, J
Fang, Y
Fanti, M
Farbin, A
Farilla, A
Farooque, T
Farrell, S
Farrington, SM
Farthouat, P
Fassi, F
Fassnacht, P
Fassouliotis, D
Favareto, A
Fayard, L
Federic, P
Fedin, OL
Fedorko, W
Fehling-Kaschek, M
Feigl, S
Feligioni, L
Feng, C
Feng, EJ
Feng, H
Fenyuk, AB
Perez, SF
Ferrag, S
Ferrando, J
Ferrari, A
Ferrari, P
Ferrari, R
de Lima, DEF
Ferrer, A
Ferrere, D
Ferretti, C
Parodi, AF
Fiascaris, M
Fiedler, F
Filipcic, A
Filipuzzi, M
Filthaut, F
Fincke-Keeler, M
Finelli, KD
Fiolhais, MCN
Fiorini, L
Firan, A
Fischer, A
Fischer, J
Fisher, WC
Fitzgerald, EA
Flechl, M
Fleck, I
Fleischmann, P
Fleischmann, S
Fletcher, GT
Fletcher, G
Flick, T
Floderus, A
Castillo, LRF
Bustos, ACF
Flowerdew, MJ
Formica, A
Forti, A
Fortin, D
Fournier, D
Fox, H
Fracchia, S
Francavilla, P
Franchini, M
Franchino, S
Francis, D
Franconi, L
Franklin, M
Franz, S
Fraternali, M
French, ST
Friedrich, C
Friedrich, F
Froidevaux, D
Frost, JA
Fukunaga, C
Torregrosa, EF
Fulsom, BG
Fuster, J
Gabaldon, C
Gabizon, O
Gabrielli, A
Gabrielli, A
Gadatsch, S
Gadomski, S
Gagliardi, G
Gagnon, P
Galea, C
Galhardo, B
Gallas, EJ
Gallo, V
Gallop, BJ
Gallus, P
Galster, G
Gan, KK
Gao, J
Gao, YS
Walls, FMG
Garberson, F
Garcia, C
Navarro, JEG
Garcia-Sciveres, M
Gardner, RW
Garelli, N
Garonne, V
Gatti, C
Gaudio, G
Gaur, B
Gauthier, L
Gauzzi, P
Gavrilenko, IL
Gay, C
Gaycken, G
Gazis, EN
Ge, P
Gecse, Z
Gee, CNP
Geerts, DAA
Geich-Gimbel, C
Gellerstedt, K
Gemme, C
Gemmell, A
Genest, MH
Gentile, S
George, M
George, S
Gerbaudo, D
Gershon, A
Ghazlane, H
Ghodbane, N
Giacobbe, B
Giagu, S
Giangiobbe, V
Giannetti, P
Gianotti, F
Gibbard, B
Gibson, SM
Gilchriese, M
Gillam, TPS
Gillberg, D
Gilles, G
Gingrich, DM
Giokaris, N
Giordani, MP
Giordano, R
Giorgi, FM
Giorgi, FM
Giraud, PF
Giugni, D
Giuliani, C
Giulini, M
Gjelsten, BK
Gkaitatzis, S
Gkialas, I
Gkougkousis, EL
Gladilin, LK
Glasman, C
Glatzer, J
Glaysher, PCF
Glazov, A
Glonti, GL
Goblirsch-Kolb, M
Goddard, JR
Godlewski, J
Goeringer, C
Goldfarb, S
Golling, T
Golubkov, D
Gomes, A
Fajardo, LSG
Goncalo, R
Da Costa, JGPF
Gonella, L
de la Hoz, SG
Parra, GG
Gonzalez-Sevilla, S
Goossens, L
Gorbounov, PA
Gordon, HA
Gorelov, I
Gorini, B
Gorini, E
Gorisek, A
Gornicki, E
Goshaw, AT
Gossling, C
Gostkin, MI
Gouighri, M
Goujdami, D
Goulette, MP
Goussiou, AG
Goy, C
Grabas, HMX
Graber, L
Grabowska-Bold, I
Grafstrom, P
Grahn, KJ
Gramling, J
Gramstad, E
Grancagnolo, S
Grassi, V
Gratchev, V
Gray, HM
Graziani, E
Grebenyuk, OG
Greenwood, ZD
Gregersen, K
Gregor, IM
Grenier, P
Griffiths, J
Grillo, AA
Grimm, K
Grinstein, S
Gris, P
Grishkevich, YV
Grivaz, JF
Grohs, JP
Grohsjean, A
Gross, E
Grosse-Knetter, J
Grossi, GC
Groth-Jensen, J
Grout, ZJ
Guan, L
Guenther, J
Guescini, F
Guest, D
Gueta, O
Guicheney, C
Guido, E
Guillemin, T
Guindon, S
Gul, U
Gumpert, C
Guo, J
Gupta, S
Gutierrez, P
Ortiz, NGG
Gutschow, C
Guttman, N
Guyot, C
Gwenlan, C
Gwilliam, CB
Haas, A
Haber, C
Hadavand, HK
Haddad, N
Haefner, P
Hagebock, S
Hajduk, Z
Hakobyan, H
Haleem, M
Hall, D
Halladjian, G
Hamacher, K
Hamal, P
Hamano, K
Hamer, M
Hamilton, A
Hamilton, S
Hamity, GN
Hamnett, PG
Han, L
Hanagaki, K
Hanawa, K
Hance, M
Hanke, P
Hanna, R
Hansen, JB
Hansen, JD
Hansen, PH
Hara, K
Hard, AS
Harenberg, T
Hariri, F
Harkusha, S
Harper, D
Harrington, RD
Harris, OM
Harrison, PF
Hartjes, F
Hasegawa, M
Hasegawa, S
Hasegawa, Y
Hasib, A
Hassani, S
Haug, S
Hauschild, M
Hauser, R
Hauswald, L
Havranek, M
Hawkes, CM
Hawkings, RJ
Hawkins, AD
Hayashi, T
Hayden, D
Hays, CP
Hayward, HS
Haywood, SJ
Head, SJ
Heck, T
Hedberg, V
Heelan, L
Heim, S
Heim, T
Heinemann, B
Heinrich, L
Hejbal, J
Helary, L
Heller, C
Heller, M
Hellman, S
Hellmich, D
Helsens, C
Henderson, J
Henderson, RCW
Heng, Y
Hengler, C
Henrichs, A
Correia, AMH
Henrot-Versille, S
Herbert, GH
Jimenez, YH
Herrberg-Schubert, R
Herten, G
Hertenberger, R
Hervas, L
Hesketh, GG
Hessey, NP
Hickling, R
Higon-Rodriguez, E
Hill, E
Hill, JC
Hiller, KH
Hillert, S
Hillier, SJ
Hinchliffe, I
Hines, E
Hirose, M
Hirschbuehl, D
Hobbs, J
Hod, N
Hodgkinson, MC
Hodgson, P
Hoecker, A
Hoeferkamp, MR
Hoenig, F
Hoffman, J
Hoffmann, D
Hohlfeld, M
Holmes, TR
Hong, TM
van Huysduynen, LH
Hopkins, WH
Horii, Y
Hostachy, JY
Hou, S
Hoummada, A
Howard, J
Howarth, J
Hrabovsky, M
Hristova, I
Hrivnac, J
Hryn'ova, T
Hsu, C
Hsu, PJ
Hsu, SC
Hu, D
Hu, X
Huang, Y
Hubacek, Z
Hubaut, F
Huegging, F
Huffman, TB
Hughes, EW
Hughes, G
Huhtinen, M
Hulsing, TA
Hurwitz, M
Huseynov, N
Huston, J
Huth, J
Iacobucci, G
Iakovidis, G
Ibragimov, I
Iconomidou-Fayard, L
Ideal, E
Idrissi, Z
Iengo, P
Igonkina, O
Iizawa, T
Ikegami, Y
Ikematsu, K
Ikeno, M
Ilchenko, Y
Iliadis, D
Ilic, N
Inamaru, Y
Ince, T
Ioannou, P
Iodice, M
Iordanidou, K
Ippolito, V
Quiles, AI
Isaksson, C
Ishino, M
Ishitsuka, M
Ishmukhametov, R
Issever, C
Istin, S
Ponce, JMI
Iuppa, R
Ivarsson, J
Iwanski, W
Iwasaki, H
Izen, JM
Izzo, V
Jackson, B
Jackson, M
Jackson, P
Jaekel, MR
Jain, V
Jakobs, K
Jakobsen, S
Jakoubek, T
Jakubek, J
Jamin, DO
Jana, DK
Jansen, E
Jansen, H
Janssen, J
Janus, M
Jarlskog, G
Javadov, N
Javurek, T
Jeanty, L
Jejelava, J
Jeng, GY
Jennens, D
Jenni, P
Jentzsch, J
Jeske, C
Jezequel, S
Ji, H
Jia, J
Jiang, Y
Belenguer, MJ
Jin, S
Jinaru, A
Jinnouchi, O
Joergensen, MD
Johansson, KE
Johansson, P
Johns, KA
Jon-And, K
Jones, G
Jones, RWL
Jones, TJ
Jongmanns, J
Jorge, PM
Joshi, KD
Jovicevic, J
Ju, X
Jung, CA
Jungst, RM
Jussel, P
Rozas, AJ
Kaci, M
Kaczmarska, A
Kado, M
Kagan, H
Kagan, M
Kajomovitz, E
Kalderon, CW
Kama, S
Kamenshchikov, A
Kanaya, N
Kaneda, M
Kaneti, S
Kantserov, VA
Kanzaki, J
Kaplan, B
Kapliy, A
Kar, D
Karakostas, K
Karastathis, N
Kareem, MJ
Karnevskiy, M
Karpov, SN
Karpova, ZM
Karthik, K
Kartvelishvili, V
Karyukhin, AN
Kashif, L
Kasieczka, G
Kass, RD
Kastanas, A
Kataoka, Y
Katre, A
Katzy, J
Kaushik, V
Kawagoe, K
Kawamoto, T
Kawamura, G
Kazama, S
Kazanin, VF
Kazarinov, MY
Keeler, R
Kehoe, R
Keil, M
Keller, JS
Kempster, JJ
Keoshkerian, H
Kepka, O
Kersevan, BP
Kersten, S
Kessoku, K
Keung, J
Khalil-Zada, F
Khandanyan, H
Khanov, A
Khodinov, A
Khomich, A
Khoo, TJ
Khoriauli, G
Khoroshilov, A
Khovanskiy, V
Khramov, E
Khubuab, J
Kim, HY
Kim, H
Kim, SH
Kimura, N
Kind, O
King, BT
King, M
King, RSB
King, SB
Kirk, J
Kiryunin, AE
Kishimoto, T
Kisielewska, D
Kiss, F
Kiuchi, K
Kladiva, E
Klein, M
Klein, U
Kleinknecht, K
Klimek, P
Klimentov, A
Klingenberg, R
Klinger, JA
Klioutchnikova, T
Klok, PF
Kluge, EE
Kluit, P
Kluth, S
Kneringer, E
Knoops, EBFG
Knue, A
Kobayashi, D
Kobayashi, T
Kobel, M
Kocian, M
Kodys, P
Koffas, T
Koffeman, E
Kogan, LA
Kohlmann, S
Kohout, Z
Kohriki, T
Koi, T
Kolanoski, H
Koletsou, I
Koll, J
Komar, AA
Komori, Y
Kondo, T
Kondrashova, N
Koneke, K
Konig, AC
Konig, S
Kono, T
Konoplich, R
Konstantinidis, N
Kopeliansky, R
Koperny, S
Kopke, L
Kopp, AK
Korcyl, K
Kordas, K
Korn, A
Korol, AA
Korolkov, I
Korolkova, EV
Korotkov, VA
Kortner, O
Kortner, S
Kostyukhin, VV
Kotov, VM
Kotwal, A
Kourkoumelis, C
Kouskoura, V
Koutsman, A
Kowalewski, R
Kowalski, TZ
Kozanecki, W
Kozhin, AS
Kramarenko, VA
Kramberger, G
Krasnopevtsev, D
Krasny, MW
Krasznahorkay, A
Kraus, JK
Kravchenko, A
Kreiss, S
Kretz, M
Kretzschmar, J
Kreutzfeldt, K
Krieger, P
Kroeninger, K
Kroha, H
Kroll, J
Kroseberg, J
Krstic, J
Kruchonak, U
Kruger, H
Kruker, T
Krumnack, N
Krumshteyn, ZV
Kruse, A
Kruse, MC
Kruskal, M
Kubota, T
Kucuk, H
Kuday, S
Kuehn, S
Kugel, A
Kuhl, A
Kuhl, T
Kukhtin, V
Kulchitsky, Y
Kuleshov, S
Kuna, M
Kunkle, J
Kupco, A
Kurashige, H
Kurochkin, YA
Kurumida, R
Kus, V
Kuwertz, ES
Kuze, M
Kvita, J
La Rosa, A
La Rotonda, L
Lacasta, C
Lacava, F
Lacey, J
Lacker, H
Lacour, D
Lacuesta, VR
Ladygin, E
Lafaye, R
Laforge, B
Lagouri, T
Lai, S
Laier, H
Lambourne, L
Lammers, S
Lampen, CL
Lampl, W
Lancon, E
Landgraf, U
Landon, MPJ
Lang, VS
Lankford, AJ
Lanni, F
Lantzsch, K
Laplace, S
Lapoire, C
Laporte, JF
Lari, T
Manghi, FL
Lassnig, M
Laurelli, P
Lavrijsen, W
Law, AT
Laycock, P
Le Dortz, O
Le Guirriec, E
Le Menedeu, E
LeCompte, T
Ledroit-Guillon, F
Lee, CA
Lee, H
Lee, JSH
Lee, SC
Lee, L
Lefebvre, G
Lefebvre, M
Legger, F
Leggett, C
Lehan, A
Miotto, GL
Lei, X
Leight, WA
Leisos, A
Leister, AG
Leite, MAL
Leitner, R
Lellouch, D
Lemmer, B
Leney, KJC
Lenz, T
Lenzen, G
Lenzi, B
Leone, R
Leone, S
Leonidopoulos, C
Leontsinis, S
Leroy, C
Lester, CG
Lester, CM
Levchenko, M
Leveque, J
Levin, D
Levinson, LJ
Levy, M
Lewis, A
Lewis, GH
Leyko, AM
Leyton, M
Li, B
Li, B
Li, H
Li, HL
Li, L
Li, L
Li, S
Li, Y
Liang, Z
Liao, H
Liberti, B
Lichard, P
Lie, K
Liebal, J
Liebig, W
Limbach, C
Limosani, A
Lin, SC
Lin, TH
Linde, F
Lindquist, BE
Linnemann, JT
Lipeles, E
Lipniacka, A
Lisovyi, M
Liss, TM
Lissauer, D
Lister, A
Litke, AM
Liu, B
Liu, D
Liu, JB
Liu, K
Liu, L
Liu, M
Liu, M
Liu, Y
Livan, M
Lleres, A
Merino, JL
Lloyd, SL
Lo Sterzo, F
Lobodzinska, E
Loch, P
Lockman, WS
Loebinger, FK
Loevschall-Jensen, AE
Loginov, A
Lohse, T
Lohwasser, K
Lokajicek, M
Lombardo, VP
Long, BA
Long, JD
Long, RE
Lopes, L
Mateos, DL
Paredes, BL
Paz, IL
Lorenz, J
Martinez, NL
Losada, M
Loscutoff, P
Lou, X
Lounis, A
Love, J
Love, PA
Lowe, AJ
Lu, F
Lu, N
Lubatti, HJ
Luci, C
Lucotte, A
Luehring, F
Lukas, W
Luminari, L
Lundberg, O
Lund-Jensen, B
Lungwitz, M
Lynn, D
Lysak, R
Lytken, E
Ma, H
Ma, LL
Maccarrone, G
Macchiolo, A
Miguens, JM
Macina, D
Madaffari, D
Madar, R
Maddocks, HJ
Mader, WF
Madsen, A
Maeno, M
Maeno, T
Maevskiy, A
Magradze, E
Mahboubi, K
Mahlstedt, J
Mahmoud, S
Maiani, C
Maidantchik, C
Maier, AA
Maio, A
Majewski, S
Makida, Y
Makovec, N
Mal, P
Malaescu, B
Malecki, P
Maleev, VP
Malek, F
Mallik, U
Malon, D
Malone, C
Maltezos, S
Malyshev, VM
Malyukov, S
Mamuzic, J
Mandelli, B
Mandelli, L
Mandic, I
Mandrysch, R
Maneira, J
Manfredini, A
de Andrade, LM
Ramosb, JAM
Mann, A
Manning, PM
Manousakis-Katsikakis, A
Mansoulie, B
Mantifel, R
Mapelli, L
March, L
Marchand, JF
Marchiori, G
Marcisovsky, M
Marino, CP
Marjanovic, M
Marques, CN
Marroquim, F
Marsden, SP
Marshall, Z
Marti, LF
Marti-Garcia, S
Martin, B
Martin, B
Martin, TA
Martin, VJ
Latour, BMD
Martinez, H
Martinez, M
Martin-Haugh, S
Martyniuk, AC
Marx, M
Marzano, F
Marzin, A
Masetti, L
Mashimo, T
Mashinistov, R
Masik, J
Maslennikov, AL
Massa, I
Massa, L
Massol, N
Mastrandrea, P
Mastroberardino, A
Masubuchi, T
Mattig, P
Mattmann, J
Maurer, J
Maxfield, SJ
Maximov, DA
Mazini, R
Mazzaferro, L
Mc Goldrick, G
Mc Kee, SP
McCarn, A
McCarthy, RL
McCarthy, TG
McCubbin, NA
McFarlane, KW
Mcfayden, JA
Mchedlidze, G
McMahon, SJ
McPherson, RA
Mechnich, J
Medinnis, M
Meehan, S
Mehlhase, S
Mehta, A
Meier, K
Meineck, C
Meirose, B
Melachrinos, C
Garcia, BRM
Meloni, F
Mengarelli, A
Menke, S
Meoni, E
Mercurio, KM
Mergelmeyer, S
Meric, N
Mermod, P
Merola, L
Meroni, C
Merritt, FS
Merritt, H
Merritt, H
Messina, A
Metcalfe, J
Mete, AS
Meyer, C
Meyer, C
Meyer, JP
Meyer, J
Middleton, RP
Migas, S
Mijovic, L
Mikenberg, G
Mikestikova, M
Mikuz, M
Milic, A
Miller, DW
Mills, C
Milov, A
Milstead, DA
Milstein, D
Minaenko, AA
Minami, Y
Minashvili, IA
Mincer, AI
Mindur, B
Mineev, M
Ming, Y
Mir, LM
Mirabelli, G
Mitani, T
Mitrevski, J
Mitsou, VA
Miucci, A
Miyagawa, PS
Mjornmark, JU
Moa, T
Mochizuki, K
Mohapatra, S
Mohr, W
Molander, S
Moles-Valls, R
Monig, K
Monini, C
Monk, J
Monnier, E
Berlingen, JM
Monticelli, F
Monzani, S
Moore, RW
Morange, N
Moreno, D
Llacer, MM
Morettini, P
Morgenstern, M
Morii, M
Morisbak, V
Moritz, S
Morley, AK
Mornacchi, G
Morris, JD
Morvaj, L
Moser, HG
Mosidze, M
Moss, J
Motohashi, K
Mount, R
Mountricha, E
Mouraviev, SV
Moyse, EJW
Muanza, S
Mudd, RD
Mueller, F
Mueller, J
Mueller, K
Mueller, T
Mueller, T
Muenstermann, D
Munwes, Y
Quijada, JAM
Murray, WJ
Musheghyan, H
Musto, E
Myagkov, AG
Myska, M
Nackenhorst, O
Nadal, J
Nagai, K
Nagai, R
Nagai, Y
Nagano, K
Nagarkar, A
Nagasaka, Y
Nagata, K
Nagel, M
Nairz, AM
Nakahama, Y
Nakamura, K
Nakamura, T
Nakano, I
Namasivayam, H
Nanava, G
Garcia, RFN
Narayan, R
Nattermann, T
Naumann, T
Navarro, G
Nayyar, R
Neal, HA
Nechaeva, PY
Neep, TJ
Nef, PD
Negri, A
Negri, G
Negrini, M
Nektarijevic, S
Nellist, C
Nelson, A
Nelson, TK
Nemecek, S
Nemethy, P
Nepomuceno, AA
Nessi, M
Neubauer, MS
Neumann, M
Neves, RM
Nevski, P
Newman, PR
Nguyen, DH
Nickerson, RB
Nicolaidou, R
Nicquevert, B
Nielsen, J
Nikiforou, N
Nikiforov, A
Nikolaenko, V
Nikolic-Audit, I
Nikolics, K
Nikolopoulos, K
Nilsson, P
Ninomiya, Y
Nisati, A
Nisius, R
Nobe, T
Nodulman, L
Nomachi, M
Nomidis, I
Norberg, S
Nordberg, M
Novgorodova, O
Nowak, S
Nozaki, M
Nozka, L
Ntekas, K
Hanninger, GN
Nunnemann, T
Nurse, E
Nuti, F
O'Brien, BJ
O'grady, F
O'Neil, DC
O'Shea, V
Oakham, FG
Oberlack, H
Obermann, T
Ocariz, J
Ochi, A
Ochoa, MI
Oda, S
Odaka, S
Ogren, H
Oh, A
Oh, SH
Ohm, CC
Ohman, H
Oide, H
Okamura, W
Okawa, H
Okumura, Y
Okuyama, T
Olariu, A
Olchevski, AG
Pino, SAO
Damazio, DO
Garcia, EO
Olszewski, A
Olszowska, J
Onofre, A
Onyisi, PUE
Oram, CJ
Oreglia, MJ
Oren, Y
Orestano, D
Orlando, N
Barrera, CO
Orr, RS
Osculati, B
Ospanov, R
Garzon, GOY
Otono, H
Ouchrif, M
Ouellette, EA
Ould-Saada, F
Ouraou, A
Oussoren, KP
Ouyang, Q
Ovcharova, A
Owen, M
Ozcan, VE
Ozturk, N
Pachal, K
Pages, AP
Aranda, CP
Pagacova, M
Griso, SP
Paganis, E
Pahl, C
Paige, F
Pais, P
Pajchel, K
Palacino, G
Palestini, S
Palka, M
Pallin, D
Palma, A
Palmer, JD
Pan, YB
Panagiotopoulou, E
Vazquez, JGP
Pani, P
Panikashvili, N
Panitkin, S
Pantea, D
Paolozzi, L
Papadopoulou, TD
Papageorgiou, K
Paramonov, A
Hernandez, DP
Parker, MA
Parodi, F
Parsons, JA
Parzefall, U
Pasqualucci, E
Passaggio, S
Passeri, A
Pastore, F
Pastore, F
Pasztor, G
Pataraia, S
Patel, ND
Pater, JR
Patricelli, S
Pauly, T
Pearce, J
Pedersen, LE
Pedersen, M
Lopez, SP
Pedro, R
Peleganchuk, SV
Pelikan, D
Peng, H
Penning, B
Penwell, J
Perepelitsa, DV
Codina, EP
Garcia-Estan, MTP
Perini, L
Pernegger, H
Perrella, S
Perrino, R
Peschke, R
Peshekhonov, VD
Peters, K
Peters, RFY
Petersen, BA
Petersen, TC
Petit, E
Petridis, A
Petridou, C
Petrolo, E
Petrucci, F
Pettersson, NE
Pezoa, R
Phillips, PW
Piacquadio, G
Pianori, E
Picazio, A
Piccaro, E
Piccinini, M
Piegaia, R
Pignotti, DT
Pilcher, JE
Pilkington, AD
Pina, J
Pinamonti, M
Pinder, A
Pinfold, JL
Pingel, A
Pinto, B
Pires, S
Pitt, M
Pizio, C
Plazak, L
Pleier, MA
Pleskot, V
Plotnikova, E
Plucinski, P
Pluth, D
Poddar, S
Podlyski, F
Poettgen, R
Poggioli, L
Pohl, D
Pohl, M
Polesello, G
Policicchio, A
Polifka, R
Polini, A
Pollard, CS
Polychronakos, V
Pommes, K
Pontecorvo, L
Pope, BG
Popeneciu, GA
Popovic, DS
Poppleton, A
Bueso, XP
Pospisil, S
Potamianos, K
Potrap, IN
Potter, CJ
Potter, CT
Poulard, G
Poveda, J
Pozdnyakov, V
Pralavorio, P
Pranko, A
Prasad, S
Pravahan, R
Prell, S
Price, D
Price, J
Price, LE
Prieur, D
Primavera, M
Proissl, M
Prokofiev, K
Prokoshin, F
Protopapadaki, E
Protopopescu, S
Proudfoot, J
Przybycien, M
Przysiezniak, H
Ptacek, E
Puddu, D
Pueschel, E
Puldon, D
Purohit, M
Puzo, P
Qian, J
Qin, G
Qin, Y
Quadt, A
Quarrie, DR
Quayle, WB
Queitsch-Maitland, M
Quilty, D
Qureshi, A
Radeka, V
Radescu, V
Radhakrishnan, SK
Radloff, P
Rados, P
Ragusa, F
Rahal, G
Rajagopalan, S
Rammensee, M
Randle-Conde, AS
Rangel-Smith, C
Rao, K
Rauscher, F
Rave, TC
Ravenscroft, T
Raymond, M
Read, AL
Readioff, NP
Rebuzzi, DM
Redelbach, A
Redlinger, G
Reece, R
Reeves, K
Rehnisch, L
Reisin, H
Relich, M
Rembser, C
Ren, H
Ren, ZL
Renaud, A
Rescigno, M
Resconi, S
Rezanova, OL
Reznicek, P
Rezvani, R
Richter, R
Ridel, M
Rieck, P
Rieger, J
Rijssenbeek, M
Rimoldi, A
Rinaldi, L
Ritsch, E
Riu, I
Rizatdinova, F
Rizvi, E
Robertson, SH
Robichaud-Veronneau, A
Robinson, D
Robinson, JEM
Robson, A
Roda, C
Rodrigues, L
Roe, S
Rohne, O
Rolli, S
Romaniouk, A
Romano, M
Adam, ER
Rompotis, N
Ronzani, M
Roos, L
Ros, E
Rosati, S
Rosbach, K
Rose, M
Rose, P
Rosendahl, PL
Rosenthal, O
Rossetti, V
Rossi, E
Rossi, LP
Rosten, R
Rotaru, M
Roth, I
Rothberg, J
Rousseau, D
Royon, CR
Rozanov, A
Rozen, Y
Ruan, X
Rubbo, F
Rubinskiy, I
Rud, VI
Rudolph, C
Rudolph, MS
Ruhr, F
Ruiz-Martinez, A
Rurikova, Z
Rusakovich, NA
Ruschke, A
Rutherfoord, JP
Ruthmann, N
Ryabov, YF
Rybar, M
Rybkin, G
Ryder, NC
Saavedra, AF
Sabato, G
Sacerdoti, S
Saddique, A
Sadeh, I
Sadrozinski, HFW
Sadykov, R
Tehrani, FS
Sakamoto, H
Sakurai, Y
Salamanna, G
Salamon, A
Saleem, M
Salek, D
De Bruin, PHS
Salihagic, D
Salnikov, A
Salt, J
Salvatore, D
Salvatore, F
Salvucci, A
Salzburger, A
Sampsonidis, D
Sanchez, A
Sanchez, J
Martinez, VS
Sandaker, H
Sandbach, RL
Sander, HG
Sanders, MP
Sandhoff, M
Sandoval, T
Sandoval, C
Sandstroem, R
Sankey, DPC
Sansoni, A
Santoni, C
Santonico, R
Santos, H
Castillo, IS
Sapp, K
Sapronov, A
Saraiva, JG
Sarrazin, B
Sartisohn, G
Sasaki, O
Sasaki, Y
Sauvage, G
Sauvan, E
Savard, P
Savu, DO
Sawyer, C
Sawyer, L
Saxon, DH
Saxon, J
Sbarraa, C
Sbrizzi, A
Scanlon, T
Scannicchio, DA
Scarcella, M
Scarfone, V
Schaarschmidt, J
Schacht, P
Schaefer, D
Schaefer, R
Schaepe, S
Schaetzel, S
Schafer, U
Schaffer, AC
Schaile, D
Schamberger, RD
Scharf, V
Schegelsky, VA
Scheirich, D
Schernau, M
Scherzer, MI
Schiavi, C
Schieck, J
Schillo, C
Schioppa, M
Schlenker, S
Schmidt, E
Schmieden, K
Schmitt, C
Schmitt, S
Schneider, B
Schnellbach, YJ
Schnoor, U
Schoeffel, L
Schoening, A
Schoenrock, BD
Schorlemmer, ALS
Schott, M
Schouten, D
Schovancova, J
Schramm, S
Schreyer, M
Schroeder, C
Schuh, N
Schultens, MJ
Schultz-Coulon, HC
Schulz, H
Schumacher, M
Schumm, BA
Schune, P
Schwanenberger, C
Schwartzman, A
Schwarz, TA
Schwegler, P
Schwemling, P
Schwienhorst, R
Schwindling, J
Schwindt, T
Schwoerer, M
Sciacca, FG
Scifo, E
Sciolla, G
Scott, WG
Scuri, F
Scutti, F
Searcy, J
Sedov, G
Sedykh, E
Seema, P
Seidel, SC
Seiden, A
Seifert, F
Seixas, JM
Sekhniaidze, G
Sekula, SJ
Selbach, KE
Seliverstov, DM
Sellers, G
Semprini-Cesari, N
Serfon, C
Serin, L
Serkin, L
Serre, T
Seuster, R
Severini, H
Sfiligoj, T
Sforza, F
Sfyrla, A
Shabalina, E
Shamim, M
Shan, LY
Shang, R
Shank, JT
Shapiro, M
Shatalov, PB
Shaw, K
Shehu, CY
Sherwood, P
Shi, L
Shimizu, S
Shimmin, CO
Shimojima, M
Shiyakova, M
Shmeleva, A
Shochet, MJ
Short, D
Shrestha, S
Shulga, E
Shupe, MA
Shushkevich, S
Sicho, P
Sidiropoulou, O
Sidorov, D
Sidoti, A
Siegert, F
Sijacki, D
Silva, J
Silver, Y
Silverstein, D
Silverstein, SB
Simak, V
Simard, O
Simic, L
Simion, S
Simioni, E
Simmons, B
Simoniello, R
Sinervo, P
Sinev, NB
Siragusa, G
Sircar, A
Sisakyan, AN
Sivoklokov, SY
Sjolin, J
Sjursen, TB
Skottowe, HP
Skovpen, KY
Skubic, P
Slater, M
Slavicek, T
Slawinska, M
Sliwa, K
Smakhtin, V
Smart, BH
Smestad, L
Smirnov, SY
Smirnov, Y
Smirnova, LN
Smirnova, O
Smith, KM
Smizanska, M
Smolek, K
Snesarev, AA
Snidero, G
Snyder, S
Sobie, R
Socher, F
Soffer, A
Soh, DA
Solans, CA
Solar, M
Solc, J
Soldatov, EY
Soldevila, U
Solodkov, AA
Soloshenko, A
Solovyanov, OV
Solovyev, V
Sommer, P
Song, HY
Soni, N
Sood, A
Sopczak, A
Sopko, B
Sopko, V
Sorin, V
Sosebee, M
Soualah, R
Soueid, P
Soukharev, AM
South, D
Spagnolo, S
Spano, F
Spearman, WR
Spettel, F
Spighi, R
Spigo, G
Spiller, LA
Spousta, M
Spreitzer, T
Spurlock, B
Denis, RDS
Staerz, S
Stahlman, J
Stamen, R
Stamm, S
Stanecka, E
Stanek, RW
Stanescu, C
Stanescu-Bellu, M
Stanitzki, MM
Stapnes, S
Starchenko, EA
Stark, J
Staroba, P
Starovoitov, P
Staszewski, R
Stavina, P
Steinberg, P
Stelzer, B
Stelzer, HJ
Stelzer-Chilton, O
Stenzel, H
Stern, S
Stewart, GA
Stillings, JA
Stockton, MC
Stoebe, M
Stoicea, G
Stolte, P
Stonjek, S
Stradling, AR
Straessner, A
Stramaglia, ME
Strandberg, J
Strandberg, S
Strandlie, A
Strauss, E
Strauss, M
Strizenec, P
Strohmer, R
Strom, DM
Stroynowski, R
Strubig, A
Stucci, SA
Stugu, B
Styles, NA
Su, D
Su, J
Subramaniam, R
Succurro, A
Sugaya, Y
Suhr, C
Suk, M
Sulin, VV
Sultansoy, S
Sumida, T
Sun, S
Sun, X
Sundermann, JE
Suruliz, K
Susinno, G
Sutton, MR
Suzuki, Y
Svatos, M
Swedish, S
Swiatlowski, M
Sykora, I
Sykora, T
Ta, D
Taccini, C
Tackmann, K
Taenzer, J
Taffard, A
Tafirout, R
Taiblum, N
Takai, H
Takashima, R
Takeda, H
Takeshita, T
Takubo, Y
Talby, M
Talyshev, AA
Tam, JYC
Tan, KG
Tanaka, J
Tanaka, R
Tanaka, S
Tanaka, S
Tanasijczuk, AJ
Tannenwald, BB
Tannoury, N
Tapprogge, S
Tarem, S
Tarrade, F
Tartarelli, GF
Tas, P
Tasevsky, M
Tashiro, T
Tassi, E
Delgado, AT
Tayalati, Y
Taylor, FE
Taylor, GN
Taylor, W
Teischinger, FA
Castanheira, MTD
Teixeira-Dias, P
Temming, KK
Ten Kate, H
Teng, PK
Teoh, JJ
Terada, S
Terashi, K
Terron, J
Terzo, S
Testa, M
Teuscher, RJ
Therhaag, J
Theveneaux-Pelzer, T
Thomas, JP
Thomas-Wilsker, J
Thompson, EN
Thompson, PD
Thompson, PD
Thompson, RJ
Thompson, AS
Thomsen, LA
Thomson, E
Thomson, M
Thong, WM
Thun, RP
Tian, F
Tibbetts, MJ
Tikhomirov, VO
Tikhonov, YA
Timoshenko, S
Tiouchichine, E
Tipton, P
Tisserant, S
Todorov, T
Todorova-Nova, S
Tojo, J
Tokar, S
Tokushuku, K
Tollefson, K
Tolley, E
Tomlinson, L
Tomoto, M
Tompkins, L
Toms, K
Topilin, ND
Torrence, E
Torres, H
Pastor, ET
Toth, J
Touchard, F
Tovey, DR
Tran, HL
Trefzger, T
Tremblet, L
Tricoli, A
Trigger, IM
Trincaz-Duvoid, S
Tripiana, MF
Trischuk, W
Trocme, B
Troncon, C
Trottier-McDonald, M
Trovatelli, M
True, P
Trzebinski, M
Trzupek, A
Tsarouchas, C
Tseng, JCL
Tsiareshka, PV
Tsionou, D
Tsipolitis, G
Tsirintanis, N
Tsiskaridze, S
Tsiskaridze, V
Tskhadadze, EG
Tsukerman, II
Tsulaia, V
Tsuno, S
Tsybychev, D
Tudorache, A
Tudorache, V
Tuna, AN
Tupputi, SA
Turchikhin, S
Turecek, D
Cakir, IT
Turra, R
Turvey, AJ
Tuts, PM
Tykhonov, A
Tylmad, M
Tyndel, M
Uchida, K
Ueda, I
Ueno, R
Ughetto, M
Ugland, M
Uhlenbrock, M
Ukegawa, F
Unal, G
Undrus, A
Unel, G
Ungaro, FC
Unno, Y
Unverdorben, C
Urbaniec, D
Urquijo, P
Usai, G
Usanova, A
Vacavant, L
Vacek, V
Vachon, B
Valencic, N
Valentinetti, S
Valero, A
Valery, L
Valkar, S
Gallego, EV
Vallecorsa, S
Ferrer, JAV
Van Den Wollenberg, W
Van Der Deijl, PCD
van der Geer, R
Van der Graaf, H
van der Leeuw, R
van der Ster, D
van Eldik, N
van Gemmeren, P
Van Nieuwkoop, J
van Vulpen, I
van Woerden, MC
Vanadia, M
Vandelli, W
Vanguri, R
Vaniachine, A
Vankov, P
Vannucci, F
Vardanyan, G
Vari, R
Varnes, EW
Varol, T
Varouchas, D
Vartapetian, A
Varvell, KE
Vazeille, F
Schroeder, TV
Veatch, J
Veloso, F
Velz, T
Veneziano, S
Ventura, A
Ventura, D
Venturi, M
Venturi, N
Venturini, A
Vercesi, V
Verducci, M
Verkerke, W
Vermeulen, JC
Vest, A
Vetterli, MC
Viazlo, O
Vichou, I
Vickey, T
Boeriu, OEV
Viehhauser, GHA
Viel, S
Vigne, R
Villa, M
Perez, MV
Vilucchi, E
Vincter, MG
Vinogradov, VB
Virzi, J
Vivarelli, I
Vaque, FV
Vlachos, S
Vladoiu, D
Vlasak, M
Vogel, A
Vogel, M
Vokac, P
Volpi, G
Volpi, M
von der Schmitt, H
Von Radziewski, H
von Toerne, E
Vorobel, V
Vorobev, K
Vos, M
Voss, R
Vossebeld, JH
Vranjes, N
Milosavljevica, MV
Vrba, V
Vreeswijk, M
Anh, TV
Vuillermet, R
Vukotic, I
Vykydal, Z
Wagner, P
Wagner, W
Wahlberg, H
Wahrmund, S
Wakabayashi, J
Walder, J
Walker, R
Walkowiak, W
Wall, R
Waller, P
Walsh, B
Wang, C
Wang, C
Wang, F
Wang, H
Wang, H
Wang, J
Wang, J
Wang, K
Wang, R
Wang, SM
Wang, T
Wang, X
Wanotayaroj, C
Warburton, A
Ward, CP
Wardrope, DR
Warsinsky, M
Washbrook, A
Wasicki, C
Watkins, PM
Watson, AT
Watson, IJ
Watson, MF
Watts, G
Watts, S
Waugh, BM
Webb, S
Weber, MS
Weber, SW
Webster, JS
Weidberg, AR
Weinert, B
Weingarten, J
Weiser, C
Weits, H
Wells, PS
Wenaus, T
Wendland, D
Weng, Z
Wengler, T
Wenig, S
Wermes, N
Werner, M
Werner, P
Wessels, M
Wetter, J
Whalen, K
White, A
White, MJ
White, R
White, S
Whiteson, D
Wicke, D
Wickens, FJ
Wiedenmann, W
Wielers, M
Wienemann, P
Wiglesworth, C
Wiik-Fuchs, LAM
Wijeratne, PA
Wildauer, A
Wildt, MA
Wilkens, HG
Williams, HH
Williams, S
Willis, C
Willocq, S
Wilson, A
Wilson, JA
Wingerter-Seez, I
Winklmeier, F
Winter, BT
Wittgen, M
Wittig, T
Wittkowski, J
Wollstadt, SJ
Wolter, MW
Wolters, H
Wosiek, BK
Wotschack, J
Woudstra, MJ
Wozniak, KW
Wright, M
Wu, M
Wu, SL
Wu, X
Wu, Y
Wulf, E
Wyatt, TR
Wynne, BM
Xella, S
Xiao, M
Xu, D
Xu, L
Yabsley, B
Yacoob, S
Yakabe, R
Yamada, M
Yamaguchi, H
Yamaguchi, Y
Yamamoto, A
Yamamoto, K
Yamamoto, S
Yamamura, T
Yamanaka, T
Yamauchi, K
Yamazaki, Y
Yan, Z
Yang, H
Yang, H
Yang, UK
Yang, Y
Yanush, S
Yao, L
Yao, WM
Yasu, Y
Yatsenko, E
Wong, KHY
Ye, J
Ye, S
Yeletskikh, I
Yen, AL
Yildirim, E
Yilmaz, M
Yoosoofmiya, R
Yorita, K
Yoshida, R
Yoshihara, K
Young, C
Young, CJS
Youssef, S
Yu, DR
Yu, J
Yu, JM
Yu, J
Yuan, L
Yurkewicz, A
Yusuff, I
Zabinski, B
Zaidan, R
Zaitsev, AM
Zaman, A
Zambito, S
Zanello, L
Zanzi, D
Zeitnitz, C
Zeman, M
Zemla, A
Zengel, K
Zenin, O
Zenis, T
Zerwas, D
Porta, GZ
Zhang, D
Zhang, F
Zhang, H
Zhang, J
Zhang, L
Zhang, X
Zhang, Z
Zhao, Y
Zhao, Z
Zhemchugov, A
Zhong, J
Zhou, B
Zhou, L
Zhou, N
Zhu, CG
Zhu, H
Zhu, J
Zhu, Y
Zhuang, X
Zhukov, K
Zibell, A
Zieminska, D
Zimine, NI
Zimmermann, C
Zimmermann, R
Zimmermann, S
Zimmermann, S
Zinonos, Z
Ziolkowski, M
Zobernig, G
Zoccoli, A
zur Nedden, M
Zurzolo, G
Zutshi, V
Zwalinski, L
AF Aad, G.
Abbott, B.
Abdallah, J.
Khalek, S. Abdel
Abdinov, O.
Aben, R.
Abi, B.
Abolins, M.
AbouZeid, O. S.
Abramowicz, H.
Abreu, H.
Abreu, R.
Abulaiti, Y.
Acharya, B. S.
Adamczyk, L.
Adams, D. L.
Adelman, J.
Adomeit, S.
Adye, T.
Agatonovic-Jovin, T.
Aguilar-Saavedra, J. A.
Agustoni, M.
Ahlen, S. P.
Ahmadov, F.
Aielli, G.
Akerstedt, H.
Akesson, T. P. A.
Akimoto, G.
Akimov, A. V.
Alberghi, G. L.
Albert, J.
Albrand, S.
Verzini, M. J. Alconada
Aleksa, M.
Aleksandrov, I. N.
Alexa, C.
Alexander, G.
Alexandre, G.
Alexopoulos, T.
Alhroob, M.
Alimonti, G.
Alio, L.
Alison, J.
Allbrooke, B. M. M.
Allison, L. J.
Allport, P. P.
Aloisio, A.
Alonso, A.
Alonso, F.
Alpigiani, C.
Altheimer, A.
Gonzalez, B. Alvarez
Alviggi, M. G.
Amako, K.
Coutinho, Y. Amaral
Amelung, C.
Amidei, D.
Dos Santos, S. P. Amor
Amorim, A.
Amoroso, S.
Amram, N.
Amundsen, G.
Anastopoulos, C.
Ancu, L. S.
Andari, N.
Andeen, T.
Anders, C. F.
Anders, G.
Anderson, K. J.
Andreazza, A.
Andrei, V.
Anduaga, X. S.
Angelidakis, S.
Angelozzi, I.
Anger, P.
Angerami, A.
Anghinolfi, F.
Anisenkov, A. V.
Anjos, N.
Annovi, A.
Antonaki, A.
Antonelli, M.
Antonov, A.
Antos, J.
Anulli, F.
Aoki, M.
Bella, L. Aperio
Apolle, R.
Arabidze, G.
Aracena, I.
Arai, Y.
Araque, J. P.
Arce, A. T. H.
Arduh, F. A.
Arguin, J-F.
Argyropoulos, S.
Arik, M.
Armbruster, A. J.
Arnaez, O.
Arnal, V.
Arnold, H.
Arratia, M.
Arslan, O.
Artamonov, A.
Artoni, G.
Asai, S.
Asbah, N.
Ashkenazi, A.
Asman, B.
Asquith, L.
Assamagan, K.
Astalos, R.
Atkinson, M.
Atlay, N. B.
Auerbach, B.
Augsten, K.
Aurousseau, M.
Avolio, G.
Axen, B.
Azuelos, G.
Azuma, Y.
Baak, M. A.
Baas, A. E.
Bacci, C.
Bachacou, H.
Bachas, K.
Backes, M.
Backhaus, M.
Mayes, J. Backus
Badescu, E.
Bagiacchi, P.
Bagnaia, P.
Bai, Y.
Bain, T.
Baines, J. T.
Baker, O. K.
Balek, P.
Balli, F.
Banas, E.
Banerjee, Sw.
Bannoura, A. A. E.
Bansal, V.
Bansil, H. S.
Barak, L.
Baranov, S. P.
Barberio, E. L.
Barberis, D.
Barbero, M.
Barillari, T.
Barisonzi, M.
Barklow, T.
Barlow, N.
Barnes, S. L.
Barnett, B. M.
Barnett, R. M.
Barnovska, Z.
Baroncelli, A.
Barone, G.
Barr, A. J.
Barreiro, F.
da Costa, J. Barreiro Guimaraes
Bartoldus, R.
Barton, A. E.
Bartos, P.
Bartsch, V.
Bassalat, A.
Basye, A.
Bates, R. L.
Batista, S. J.
Batley, J. R.
Battaglia, M.
Battistin, M.
Bauer, F.
Bawa, H. S.
Beattie, M. D.
Beau, T.
Beauchemin, P. H.
Beccherle, R.
Bechtle, P.
Beck, H. P.
Becker, K.
Becker, S.
Beckingham, M.
Becot, C.
Beddall, A. J.
Beddall, A.
Bedikian, S.
Bednyakov, V. A.
Bee, C. P.
Beemster, L. J.
Beermann, T. A.
Begel, M.
Behr, K.
Belanger-Champagne, C.
Bell, P. J.
Bell, W. H.
Bella, G.
Bellagamba, L.
Bellerive, A.
Bellomo, M.
Belotskiy, K.
Beltramello, O.
Benary, O.
Benchekroun, D.
Bendtz, K.
Benekos, N.
Benhammou, Y.
Noccioli, E. Benhar
Garcia, J. A. Benitez
Benjamin, D. P.
Bensinger, J. R.
Bentvelsen, S.
Berge, D.
Kuutmann, E. Bergeaas
Berger, N.
Berghaus, F.
Beringer, J.
Bernard, C.
Bernat, P.
Bernius, C.
Bernlochner, F. U.
Berry, T.
Berta, P.
Bertella, C.
Bertoli, G.
Bertolucci, F.
Bertsche, C.
Bertsche, D.
Besana, M. I.
Besjes, G. J.
Bessidskaia, O.
Bessner, M.
Besson, N.
Betancourt, C.
Bethke, S.
Bhimji, W.
Bianchi, R. M.
Bianchini, L.
Bianco, M.
Biebel, O.
Bieniek, S. P.
Bierwagen, K.
Biesiada, J.
Biglietti, M.
De Mendizabal, J. Bilbao
Bilokon, H.
Bindi, M.
Binet, S.
Bingul, A.
Bini, C.
Black, C. W.
Black, J. E.
Black, K. M.
Blackburn, D.
Blair, R. E.
Blanchard, J. -B.
Blazek, T.
Bloch, I.
Blocker, C.
Blum, W.
Blumenschein, U.
Bobbink, G. J.
Bobrovnikov, V. S.
Bocchetta, S. S.
Bocci, A.
Bock, C.
Boddy, C. R.
Boehler, M.
Boek, T. T.
Bogaerts, J. A.
Bogdanchikov, A. G.
Bogouch, A.
Bohm, C.
Bohm, J.
Boisvert, V.
Bold, T.
Boldea, V.
Boldyrev, A. S.
Bomben, M.
Bona, M.
Boonekamp, M.
Borisov, A.
Borissov, G.
Borri, M.
Borroni, S.
Bortfeldt, J.
Bortolotto, V.
Bos, K.
Boscherini, D.
Bosman, M.
Boterenbrood, H.
Boudreau, J.
Bouffard, J.
Bouhova-Thacker, E. V.
Boumediene, D.
Bourdarios, C.
Bousson, N.
Boutouil, S.
Boveia, A.
Boyd, J.
Boyko, I. R.
Bozic, I.
Bracinik, J.
Brandt, A.
Brandt, G.
Brandt, O.
Bratzler, U.
Brau, B.
Brau, J. E.
Braun, H. M.
Brazzale, S. F.
Brelier, B.
Brendlinger, K.
Brennan, A. J.
Brenner, R.
Bressler, S.
Bristow, K.
Bristow, T. M.
Britton, D.
Brochu, F. M.
Brock, I.
Brock, R.
Bromberg, C.
Bronner, J.
Brooijmans, G.
Brooks, T.
Brooks, W. K.
Brosamer, J.
Brost, E.
Brown, J.
de Renstrom, P. A. Bruckman
Bruncko, D.
Bruneliere, R.
Brunet, S.
Bruni, A.
Bruni, G.
Bruschi, M.
Bryngemark, L.
Buanes, T.
Buat, Q.
Bucci, F.
Buchholz, P.
Buckingham, R. M.
Buckley, A. G.
Buda, S. I.
Budagov, I. A.
Buehrer, F.
Bugge, L.
Bugge, M. K.
Bulekov, O.
Bundock, A. C.
Burckhart, H.
Burdin, S.
Burghgrave, B.
Burke, S.
Burmeister, I.
Busato, E.
Buscher, D.
Buscher, V.
Bussey, P.
Buszello, C. P.
Butler, B.
Butler, J. M.
Butt, A. I.
Buttar, C. M.
Butterworth, J. M.
Butti, P.
Buttinger, W.
Buzatu, A.
Byszewski, M.
Urban, S. Cabrera
Caforio, D.
Cakir, O.
Calafiura, P.
Calandri, A.
Calderini, G.
Calfayan, P.
Calkins, R.
Caloba, L. P.
Calvet, D.
Calvet, S.
Toro, R. Camacho
Camarda, S.
Cameron, D.
Caminada, L. M.
Armadans, R. Caminal
Campana, S.
Campanelli, M.
Campoverde, A.
Canale, V.
Canepa, A.
Bret, M. Cano
Cantero, J.
Cantrill, R.
Cao, T.
Garrido, M. D. M. Capeans
Caprini, I.
Caprini, M.
Capua, M.
Caputo, R.
Cardarelli, R.
Carli, T.
Carlino, G.
Carminati, L.
Caron, S.
Carquin, E.
Carrillo-Montoya, G. D.
Carter, J. R.
Carvalho, J.
Casadei, D.
Casado, M. P.
Casolino, M.
Castaneda-Miranda, E.
Castelli, A.
Gimenez, V. Castillo
Castro, N. F.
Catastini, P.
Catinaccio, A.
Catmore, J. R.
Cattai, A.
Cattani, G.
Caudron, J.
Cavaliere, V.
Cavalli, D.
Cavalli-Sforza, M.
Cavasinni, V.
Ceradini, F.
Cerio, B. C.
Cerny, K.
Cerqueira, A. S.
Cerri, A.
Cerrito, L.
Cerutti, F.
Cerv, M.
Cervelli, A.
Cetin, S. A.
Chafaq, A.
Chakraborty, D.
Chalupkova, I.
Chang, P.
Chapleau, B.
Chapman, J. D.
Charfeddine, D.
Charlton, D. G.
Chau, C. C.
Barajas, C. A. Chavez
Cheatham, S.
Chegwidden, A.
Chekanov, S.
Chekulaev, S. V.
Chelkov, G. A.
Chelstowska, M. A.
Chen, C.
Chen, H.
Chen, K.
Chen, L.
Chen, S.
Chen, X.
Chen, Y.
Chen, Y.
Cheng, H. C.
Cheng, Y.
Cheplakov, A.
El Moursli, R. Cherkaoui
Chernyatin, V.
Cheu, E.
Chevalier, L.
Chiarella, V.
Chiefari, G.
Childers, J. T.
Chilingarov, A.
Chiodini, G.
Chisholm, A. S.
Chislett, R. T.
Chitan, A.
Chizhov, M. V.
Chouridou, S.
Chow, B. K. B.
Chromek-Burckhart, D.
Chu, M. L.
Chudoba, J.
Chwastowski, J. J.
Chytka, L.
Ciapetti, G.
Ciftci, A. K.
Ciftci, R.
Cinca, D.
Cindro, V.
Ciocio, A.
Citron, Z. H.
Citterio, M.
Ciubancan, M.
Clark, A.
Clark, P. J.
Clarke, R. N.
Cleland, W.
Clemens, J. C.
Clement, C.
Coadou, Y.
Cobal, M.
Coccaro, A.
Cochran, J.
Coffey, L.
Cogan, J. G.
Cole, B.
Cole, S.
Colijn, A. P.
Collot, J.
Colombo, T.
Compostella, G.
Muino, P. Conde
Coniavitis, E.
Connell, S. H.
Connelly, I. A.
Consonni, S. M.
Consorti, V.
Constantinescu, S.
Conta, C.
Conti, G.
Conventi, F.
Cooke, M.
Cooper, B. D.
Cooper-Sarkar, A. M.
Cooper-Smith, N. J.
Copic, K.
Cornelissen, T.
Corradi, M.
Corriveau, F.
Corso-Radu, A.
Cortes-Gonzalez, A.
Cortiana, G.
Costa, G.
Costa, M. J.
Costanzo, D.
Cote, D.
Cottin, G.
Cowan, G.
Cox, B. E.
Cranmer, K.
Cree, G.
Crepe-Renaudin, S.
Crescioli, F.
Cribbs, W. A.
Ortuzar, M. Crispin
Cristinziani, M.
Croft, V.
Crosetti, G.
Cuciuc, C. -M.
Donszelmann, T. Cuhadar
Cummings, J.
Curatolo, M.
Cuthbert, C.
Czirr, H.
Czodrowski, P.
D'Auria, S.
D'Onofrio, M.
Da Cunha Sargedas De Sousa, M. J.
Da Via, C.
Dabrowski, W.
Dafinca, A.
Dai, T.
Dale, O.
Dallaire, F.
Dallapiccola, C.
Dam, M.
Daniells, A. C.
Hoffmann, M. Dano
Dao, V.
Darbo, G.
Darmora, S.
Dassoulas, J.
Dattagupta, A.
Davey, W.
David, C.
Davidek, T.
Davies, E.
Davies, M.
Davignon, O.
Davison, A. R.
Davison, P.
Davygora, Y.
Dawe, E.
Dawson, I.
Daya-Ishmukhametova, R. K.
De, K.
de Asmundis, R.
De Castro, S.
De Cecco, S.
De Groot, N.
de Jong, P.
De la Torre, H.
De Lorenzi, F.
De Nooij, L.
De Pedis, D.
De Salvo, A.
De Sanctis, U.
De Santo, A.
De Vivie De Regie, J. B.
Dearnaley, W. J.
Debbe, R.
Debenedetti, C.
Dechenaux, B.
Dedovich, D. V.
Deigaard, I.
Del Peso, J.
Del Prete, T.
Deliot, F.
Delitzsch, C. M.
Deliyergiyev, M.
Dell'Acqua, A.
Dell'Asta, L.
Dell'Orso, M.
Della Pietra, M.
della Volpe, D.
Delmastro, M.
Delsart, P. A.
Deluca, C.
DeMarco, D. A.
Demers, S.
Demichev, M.
Demilly, A.
Denisov, S. P.
Derendarz, D.
Derkaoui, J. E.
Derue, F.
Dervan, P.
Desch, K.
Deterre, C.
Deviveiros, P. O.
Dewhurst, A.
Dhaliwal, S.
Di Ciaccio, A.
Di Ciaccio, L.
Di Domenico, A.
Di Donato, C.
Di Girolamo, A.
Di Girolamo, B.
Di Mattia, A.
Di Micco, B.
Di Nardo, R.
Di Simone, A.
Di Sipio, R.
Di Valentino, D.
Dias, F. A.
Diaz, M. A.
Diehl, E. B.
Dietrich, J.
Dietzsch, T. A.
Diglio, S.
Dimitrievska, A.
Dingfelder, J.
Dita, P.
Dita, S.
Dittus, F.
Djama, F.
Djobava, T.
Djuvsland, J. I.
do Vale, M. A. B.
Do Valle Wemans, A.
Dobos, D.
Doglioni, C.
Doherty, T.
Dohmae, T.
Dolejsi, J.
Dolezal, Z.
Dolgoshein, B. A.
Donadelli, M.
Donati, S.
Dondero, P.
Donini, J.
Dopke, J.
Doria, A.
Dova, M. T.
Doyle, A. T.
Dris, M.
Dubbert, J.
Dube, S.
Dubreuil, E.
Duchovni, E.
Duckeck, G.
Ducu, O. A.
Duda, D.
Dudarev, A.
Dudziak, F.
Duflot, L.
Duguid, L.
Duhrssen, M.
Dunford, M.
Yildiz, H. Duran
Duren, M.
Durglishvili, A.
Dwuznik, M.
Dyndal, M.
Ebke, J.
Edson, W.
Edwards, N. C.
Ehrenfeld, W.
Eifert, T.
Eigen, G.
Einsweiler, K.
Ekelof, T.
El Kacimi, M.
Ellert, M.
Elles, S.
Ellinghaus, F.
Ellis, N.
Elmsheuser, J.
Elsing, M.
Emeliyanov, D.
Enari, Y.
Endner, O. C.
Endo, M.
Engelmann, R.
Erdmann, J.
Ereditato, A.
Eriksson, D.
Ernis, G.
Ernst, J.
Ernst, M.
Ernwein, J.
Errede, D.
Errede, S.
Ertel, E.
Escalier, M.
Esch, H.
Escobar, C.
Esposito, B.
Etienvre, A. I.
Etzion, E.
Evans, H.
Ezhilov, A.
Fabbri, L.
Facini, G.
Fakhrutdinov, R. M.
Falciano, S.
Falla, R. J.
Faltova, J.
Fang, Y.
Fanti, M.
Farbin, A.
Farilla, A.
Farooque, T.
Farrell, S.
Farrington, S. M.
Farthouat, P.
Fassi, F.
Fassnacht, P.
Fassouliotis, D.
Favareto, A.
Fayard, L.
Federic, P.
Fedin, O. L.
Fedorko, W.
Fehling-Kaschek, M.
Feigl, S.
Feligioni, L.
Feng, C.
Feng, E. J.
Feng, H.
Fenyuk, A. B.
Perez, S. Fernandez
Ferrag, S.
Ferrando, J.
Ferrari, A.
Ferrari, P.
Ferrari, R.
de Lima, D. E. Ferreira
Ferrer, A.
Ferrere, D.
Ferretti, C.
Parodi, A. Ferretto
Fiascaris, M.
Fiedler, F.
Filipcic, A.
Filipuzzi, M.
Filthaut, F.
Fincke-Keeler, M.
Finelli, K. D.
Fiolhais, M. C. N.
Fiorini, L.
Firan, A.
Fischer, A.
Fischer, J.
Fisher, W. C.
Fitzgerald, E. A.
Flechl, M.
Fleck, I.
Fleischmann, P.
Fleischmann, S.
Fletcher, G. T.
Fletcher, G.
Flick, T.
Floderus, A.
Castillo, L. R. Flores
Bustos, A. C. Florez
Flowerdew, M. J.
Formica, A.
Forti, A.
Fortin, D.
Fournier, D.
Fox, H.
Fracchia, S.
Francavilla, P.
Franchini, M.
Franchino, S.
Francis, D.
Franconi, L.
Franklin, M.
Franz, S.
Fraternali, M.
French, S. T.
Friedrich, C.
Friedrich, F.
Froidevaux, D.
Frost, J. A.
Fukunaga, C.
Torregrosa, E. Fullana
Fulsom, B. G.
Fuster, J.
Gabaldon, C.
Gabizon, O.
Gabrielli, A.
Gabrielli, A.
Gadatsch, S.
Gadomski, S.
Gagliardi, G.
Gagnon, P.
Galea, C.
Galhardo, B.
Gallas, E. J.
Gallo, V.
Gallop, B. J.
Gallus, P.
Galster, G.
Gan, K. K.
Gao, J.
Gao, Y. S.
Walls, F. M. Garay
Garberson, F.
Garcia, C.
Navarro, J. E. Garcia
Garcia-Sciveres, M.
Gardner, R. W.
Garelli, N.
Garonne, V.
Gatti, C.
Gaudio, G.
Gaur, B.
Gauthier, L.
Gauzzi, P.
Gavrilenko, I. L.
Gay, C.
Gaycken, G.
Gazis, E. N.
Ge, P.
Gecse, Z.
Gee, C. N. P.
Geerts, D. A. A.
Geich-Gimbel, Ch.
Gellerstedt, K.
Gemme, C.
Gemmell, A.
Genest, M. H.
Gentile, S.
George, M.
George, S.
Gerbaudo, D.
Gershon, A.
Ghazlane, H.
Ghodbane, N.
Giacobbe, B.
Giagu, S.
Giangiobbe, V.
Giannetti, P.
Gianotti, F.
Gibbard, B.
Gibson, S. M.
Gilchriese, M.
Gillam, T. P. S.
Gillberg, D.
Gilles, G.
Gingrich, D. M.
Giokaris, N.
Giordani, M. P.
Giordano, R.
Giorgi, F. M.
Giorgi, F. M.
Giraud, P. F.
Giugni, D.
Giuliani, C.
Giulini, M.
Gjelsten, B. K.
Gkaitatzis, S.
Gkialas, I.
Gkougkousis, E. L.
Gladilin, L. K.
Glasman, C.
Glatzer, J.
Glaysher, P. C. F.
Glazov, A.
Glonti, G. L.
Goblirsch-Kolb, M.
Goddard, J. R.
Godlewski, J.
Goeringer, C.
Goldfarb, S.
Golling, T.
Golubkov, D.
Gomes, A.
Fajardo, L. S. Gomez
Goncalo, R.
Goncalves Pinto Firmino Da Costa, J.
Gonella, L.
de la Hoz, S. Gonzalez
Parra, G. Gonzalez
Gonzalez-Sevilla, S.
Goossens, L.
Gorbounov, P. A.
Gordon, H. A.
Gorelov, I.
Gorini, B.
Gorini, E.
Gorisek, A.
Gornicki, E.
Goshaw, A. T.
Gossling, C.
Gostkin, M. I.
Gouighri, M.
Goujdami, D.
Goulette, M. P.
Goussiou, A. G.
Goy, C.
Grabas, H. M. X.
Graber, L.
Grabowska-Bold, I.
Grafstrom, P.
Grahn, K-J.
Gramling, J.
Gramstad, E.
Grancagnolo, S.
Grassi, V.
Gratchev, V.
Gray, H. M.
Graziani, E.
Grebenyuk, O. G.
Greenwood, Z. D.
Gregersen, K.
Gregor, I. M.
Grenier, P.
Griffiths, J.
Grillo, A. A.
Grimm, K.
Grinstein, S.
Gris, Ph.
Grishkevich, Y. V.
Grivaz, J. -F.
Grohs, J. P.
Grohsjean, A.
Gross, E.
Grosse-Knetter, J.
Grossi, G. C.
Groth-Jensen, J.
Grout, Z. J.
Guan, L.
Guenther, J.
Guescini, F.
Guest, D.
Gueta, O.
Guicheney, C.
Guido, E.
Guillemin, T.
Guindon, S.
Gul, U.
Gumpert, C.
Guo, J.
Gupta, S.
Gutierrez, P.
Ortiz, N. G. Gutierrez
Gutschow, C.
Guttman, N.
Guyot, C.
Gwenlan, C.
Gwilliam, C. B.
Haas, A.
Haber, C.
Hadavand, H. K.
Haddad, N.
Haefner, P.
Hagebock, S.
Hajduk, Z.
Hakobyan, H.
Haleem, M.
Hall, D.
Halladjian, G.
Hamacher, K.
Hamal, P.
Hamano, K.
Hamer, M.
Hamilton, A.
Hamilton, S.
Hamity, G. N.
Hamnett, P. G.
Han, L.
Hanagaki, K.
Hanawa, K.
Hance, M.
Hanke, P.
Hanna, R.
Hansen, J. B.
Hansen, J. D.
Hansen, P. H.
Hara, K.
Hard, A. S.
Harenberg, T.
Hariri, F.
Harkusha, S.
Harper, D.
Harrington, R. D.
Harris, O. M.
Harrison, P. F.
Hartjes, F.
Hasegawa, M.
Hasegawa, S.
Hasegawa, Y.
Hasib, A.
Hassani, S.
Haug, S.
Hauschild, M.
Hauser, R.
Hauswald, L.
Havranek, M.
Hawkes, C. M.
Hawkings, R. J.
Hawkins, A. D.
Hayashi, T.
Hayden, D.
Hays, C. P.
Hayward, H. S.
Haywood, S. J.
Head, S. J.
Heck, T.
Hedberg, V.
Heelan, L.
Heim, S.
Heim, T.
Heinemann, B.
Heinrich, L.
Hejbal, J.
Helary, L.
Heller, C.
Heller, M.
Hellman, S.
Hellmich, D.
Helsens, C.
Henderson, J.
Henderson, R. C. W.
Heng, Y.
Hengler, C.
Henrichs, A.
Correia, A. M. Henriques
Henrot-Versille, S.
Herbert, G. H.
Jimenez, Y. Hernandez
Herrberg-Schubert, R.
Herten, G.
Hertenberger, R.
Hervas, L.
Hesketh, G. G.
Hessey, N. P.
Hickling, R.
Higon-Rodriguez, E.
Hill, E.
Hill, J. C.
Hiller, K. H.
Hillert, S.
Hillier, S. J.
Hinchliffe, I.
Hines, E.
Hirose, M.
Hirschbuehl, D.
Hobbs, J.
Hod, N.
Hodgkinson, M. C.
Hodgson, P.
Hoecker, A.
Hoeferkamp, M. R.
Hoenig, F.
Hoffman, J.
Hoffmann, D.
Hohlfeld, M.
Holmes, T. R.
Hong, T. M.
van Huysduynen, L. Hooft
Hopkins, W. H.
Horii, Y.
Hostachy, J-Y.
Hou, S.
Hoummada, A.
Howard, J.
Howarth, J.
Hrabovsky, M.
Hristova, I.
Hrivnac, J.
Hryn'ova, T.
Hsu, C.
Hsu, P. J.
Hsu, S. -C.
Hu, D.
Hu, X.
Huang, Y.
Hubacek, Z.
Hubaut, F.
Huegging, F.
Huffman, T. B.
Hughes, E. W.
Hughes, G.
Huhtinen, M.
Hulsing, T. A.
Hurwitz, M.
Huseynov, N.
Huston, J.
Huth, J.
Iacobucci, G.
Iakovidis, G.
Ibragimov, I.
Iconomidou-Fayard, L.
Ideal, E.
Idrissi, Z.
Iengo, P.
Igonkina, O.
Iizawa, T.
Ikegami, Y.
Ikematsu, K.
Ikeno, M.
Ilchenko, Y.
Iliadis, D.
Ilic, N.
Inamaru, Y.
Ince, T.
Ioannou, P.
Iodice, M.
Iordanidou, K.
Ippolito, V.
Quiles, A. Irles
Isaksson, C.
Ishino, M.
Ishitsuka, M.
Ishmukhametov, R.
Issever, C.
Istin, S.
Ponce, J. M. Iturbe
Iuppa, R.
Ivarsson, J.
Iwanski, W.
Iwasaki, H.
Izen, J. M.
Izzo, V.
Jackson, B.
Jackson, M.
Jackson, P.
Jaekel, M. R.
Jain, V.
Jakobs, K.
Jakobsen, S.
Jakoubek, T.
Jakubek, J.
Jamin, D. O.
Jana, D. K.
Jansen, E.
Jansen, H.
Janssen, J.
Janus, M.
Jarlskog, G.
Javadov, N.
Javurek, T.
Jeanty, L.
Jejelava, J.
Jeng, G. -Y.
Jennens, D.
Jenni, P.
Jentzsch, J.
Jeske, C.
Jezequel, S.
Ji, H.
Jia, J.
Jiang, Y.
Belenguer, M. Jimenez
Jin, S.
Jinaru, A.
Jinnouchi, O.
Joergensen, M. D.
Johansson, K. E.
Johansson, P.
Johns, K. A.
Jon-And, K.
Jones, G.
Jones, R. W. L.
Jones, T. J.
Jongmanns, J.
Jorge, P. M.
Joshi, K. D.
Jovicevic, J.
Ju, X.
Jung, C. A.
Jungst, R. M.
Jussel, P.
Rozas, A. Juste
Kaci, M.
Kaczmarska, A.
Kado, M.
Kagan, H.
Kagan, M.
Kajomovitz, E.
Kalderon, C. W.
Kama, S.
Kamenshchikov, A.
Kanaya, N.
Kaneda, M.
Kaneti, S.
Kantserov, V. A.
Kanzaki, J.
Kaplan, B.
Kapliy, A.
Kar, D.
Karakostas, K.
Karastathis, N.
Kareem, M. J.
Karnevskiy, M.
Karpov, S. N.
Karpova, Z. M.
Karthik, K.
Kartvelishvili, V.
Karyukhin, A. N.
Kashif, L.
Kasieczka, G.
Kass, R. D.
Kastanas, A.
Kataoka, Y.
Katre, A.
Katzy, J.
Kaushik, V.
Kawagoe, K.
Kawamoto, T.
Kawamura, G.
Kazama, S.
Kazanin, V. F.
Kazarinov, M. Y.
Keeler, R.
Kehoe, R.
Keil, M.
Keller, J. S.
Kempster, J. J.
Keoshkerian, H.
Kepka, O.
Kersevan, B. P.
Kersten, S.
Kessoku, K.
Keung, J.
Khalil-Zada, F.
Khandanyan, H.
Khanov, A.
Khodinov, A.
Khomich, A.
Khoo, T. J.
Khoriauli, G.
Khoroshilov, A.
Khovanskiy, V.
Khramov, E.
Khubuab, J.
Kim, H. Y.
Kim, H.
Kim, S. H.
Kimura, N.
Kind, O.
King, B. T.
King, M.
King, R. S. B.
King, S. B.
Kirk, J.
Kiryunin, A. E.
Kishimoto, T.
Kisielewska, D.
Kiss, F.
Kiuchi, K.
Kladiva, E.
Klein, M.
Klein, U.
Kleinknecht, K.
Klimek, P.
Klimentov, A.
Klingenberg, R.
Klinger, J. A.
Klioutchnikova, T.
Klok, P. F.
Kluge, E. -E.
Kluit, P.
Kluth, S.
Kneringer, E.
Knoops, E. B. F. G.
Knue, A.
Kobayashi, D.
Kobayashi, T.
Kobel, M.
Kocian, M.
Kodys, P.
Koffas, T.
Koffeman, E.
Kogan, L. A.
Kohlmann, S.
Kohout, Z.
Kohriki, T.
Koi, T.
Kolanoski, H.
Koletsou, I.
Koll, J.
Komar, A. A.
Komori, Y.
Kondo, T.
Kondrashova, N.
Koneke, K.
Konig, A. C.
Konig, S.
Kono, T.
Konoplich, R.
Konstantinidis, N.
Kopeliansky, R.
Koperny, S.
Kopke, L.
Kopp, A. K.
Korcyl, K.
Kordas, K.
Korn, A.
Korol, A. A.
Korolkov, I.
Korolkova, E. V.
Korotkov, V. A.
Kortner, O.
Kortner, S.
Kostyukhin, V. V.
Kotov, V. M.
Kotwal, A.
Kourkoumelis, C.
Kouskoura, V.
Koutsman, A.
Kowalewski, R.
Kowalski, T. Z.
Kozanecki, W.
Kozhin, A. S.
Kramarenko, V. A.
Kramberger, G.
Krasnopevtsev, D.
Krasny, M. W.
Krasznahorkay, A.
Kraus, J. K.
Kravchenko, A.
Kreiss, S.
Kretz, M.
Kretzschmar, J.
Kreutzfeldt, K.
Krieger, P.
Kroeninger, K.
Kroha, H.
Kroll, J.
Kroseberg, J.
Krstic, J.
Kruchonak, U.
Kruger, H.
Kruker, T.
Krumnack, N.
Krumshteyn, Z. V.
Kruse, A.
Kruse, M. C.
Kruskal, M.
Kubota, T.
Kucuk, H.
Kuday, S.
Kuehn, S.
Kugel, A.
Kuhl, A.
Kuhl, T.
Kukhtin, V.
Kulchitsky, Y.
Kuleshov, S.
Kuna, M.
Kunkle, J.
Kupco, A.
Kurashige, H.
Kurochkin, Y. A.
Kurumida, R.
Kus, V.
Kuwertz, E. S.
Kuze, M.
Kvita, J.
La Rosa, A.
La Rotonda, L.
Lacasta, C.
Lacava, F.
Lacey, J.
Lacker, H.
Lacour, D.
Lacuesta, V. R.
Ladygin, E.
Lafaye, R.
Laforge, B.
Lagouri, T.
Lai, S.
Laier, H.
Lambourne, L.
Lammers, S.
Lampen, C. L.
Lampl, W.
Lancon, E.
Landgraf, U.
Landon, M. P. J.
Lang, V. S.
Lankford, A. J.
Lanni, F.
Lantzsch, K.
Laplace, S.
Lapoire, C.
Laporte, J. F.
Lari, T.
Manghi, F. Lasagni
Lassnig, M.
Laurelli, P.
Lavrijsen, W.
Law, A. T.
Laycock, P.
Le Dortz, O.
Le Guirriec, E.
Le Menedeu, E.
LeCompte, T.
Ledroit-Guillon, F.
Lee, C. A.
Lee, H.
Lee, J. S. H.
Lee, S. C.
Lee, L.
Lefebvre, G.
Lefebvre, M.
Legger, F.
Leggett, C.
Lehan, A.
Miotto, G. Lehmann
Lei, X.
Leight, W. A.
Leisos, A.
Leister, A. G.
Leite, M. A. L.
Leitner, R.
Lellouch, D.
Lemmer, B.
Leney, K. J. C.
Lenz, T.
Lenzen, G.
Lenzi, B.
Leone, R.
Leone, S.
Leonidopoulos, C.
Leontsinis, S.
Leroy, C.
Lester, C. G.
Lester, C. M.
Levchenko, M.
Leveque, J.
Levin, D.
Levinson, L. J.
Levy, M.
Lewis, A.
Lewis, G. H.
Leyko, A. M.
Leyton, M.
Li, B.
Li, B.
Li, H.
Li, H. L.
Li, L.
Li, L.
Li, S.
Li, Y.
Liang, Z.
Liao, H.
Liberti, B.
Lichard, P.
Lie, K.
Liebal, J.
Liebig, W.
Limbach, C.
Limosani, A.
Lin, S. C.
Lin, T. H.
Linde, F.
Lindquist, B. E.
Linnemann, J. T.
Lipeles, E.
Lipniacka, A.
Lisovyi, M.
Liss, T. M.
Lissauer, D.
Lister, A.
Litke, A. M.
Liu, B.
Liu, D.
Liu, J. B.
Liu, K.
Liu, L.
Liu, M.
Liu, M.
Liu, Y.
Livan, M.
Lleres, A.
Merino, J. Llorente
Lloyd, S. L.
Lo Sterzo, F.
Lobodzinska, E.
Loch, P.
Lockman, W. S.
Loebinger, F. K.
Loevschall-Jensen, A. E.
Loginov, A.
Lohse, T.
Lohwasser, K.
Lokajicek, M.
Lombardo, V. P.
Long, B. A.
Long, J. D.
Long, R. E.
Lopes, L.
Mateos, D. Lopez
Paredes, B. Lopez
Paz, I. Lopez
Lorenz, J.
Martinez, N. Lorenzo
Losada, M.
Loscutoff, P.
Lou, X.
Lounis, A.
Love, J.
Love, P. A.
Lowe, A. J.
Lu, F.
Lu, N.
Lubatti, H. J.
Luci, C.
Lucotte, A.
Luehring, F.
Lukas, W.
Luminari, L.
Lundberg, O.
Lund-Jensen, B.
Lungwitz, M.
Lynn, D.
Lysak, R.
Lytken, E.
Ma, H.
Ma, L. L.
Maccarrone, G.
Macchiolo, A.
Miguens, J. Machado
Macina, D.
Madaffari, D.
Madar, R.
Maddocks, H. J.
Mader, W. F.
Madsen, A.
Maeno, M.
Maeno, T.
Maevskiy, A.
Magradze, E.
Mahboubi, K.
Mahlstedt, J.
Mahmoud, S.
Maiani, C.
Maidantchik, C.
Maier, A. A.
Maio, A.
Majewski, S.
Makida, Y.
Makovec, N.
Mal, P.
Malaescu, B.
Malecki, Pa.
Maleev, V. P.
Malek, F.
Mallik, U.
Malon, D.
Malone, C.
Maltezos, S.
Malyshev, V. M.
Malyukov, S.
Mamuzic, J.
Mandelli, B.
Mandelli, L.
Mandic, I.
Mandrysch, R.
Maneira, J.
Manfredini, A.
de Andrade Filho, L. Manhaes
Ramos, J. A. Manjarres
Mann, A.
Manning, P. M.
Manousakis-Katsikakis, A.
Mansoulie, B.
Mantifel, R.
Mapelli, L.
March, L.
Marchand, J. F.
Marchiori, G.
Marcisovsky, M.
Marino, C. P.
Marjanovic, M.
Marques, C. N.
Marroquim, F.
Marsden, S. P.
Marshall, Z.
Marti, L. F.
Marti-Garcia, S.
Martin, B.
Martin, B.
Martin, T. A.
Martin, V. J.
Latour, B. Martin Dit
Martinez, H.
Martinez, M.
Martin-Haugh, S.
Martyniuk, A. C.
Marx, M.
Marzano, F.
Marzin, A.
Masetti, L.
Mashimo, T.
Mashinistov, R.
Masik, J.
Maslennikov, A. L.
Massa, I.
Massa, L.
Massol, N.
Mastrandrea, P.
Mastroberardino, A.
Masubuchi, T.
Mattig, P.
Mattmann, J.
Maurer, J.
Maxfield, S. J.
Maximov, D. A.
Mazini, R.
Mazzaferro, L.
Mc Goldrick, G.
Mc Kee, S. P.
McCarn, A.
McCarthy, R. L.
McCarthy, T. G.
McCubbin, N. A.
McFarlane, K. W.
Mcfayden, J. A.
Mchedlidze, G.
McMahon, S. J.
McPherson, R. A.
Mechnich, J.
Medinnis, M.
Meehan, S.
Mehlhase, S.
Mehta, A.
Meier, K.
Meineck, C.
Meirose, B.
Melachrinos, C.
Garcia, B. R. Mellado
Meloni, F.
Mengarelli, A.
Menke, S.
Meoni, E.
Mercurio, K. M.
Mergelmeyer, S.
Meric, N.
Mermod, P.
Merola, L.
Meroni, C.
Merritt, F. S.
Merritt, H.
Merritt, H.
Messina, A.
Metcalfe, J.
Mete, A. S.
Meyer, C.
Meyer, C.
Meyer, J-P.
Meyer, J.
Middleton, R. P.
Migas, S.
Mijovic, L.
Mikenberg, G.
Mikestikova, M.
Mikuz, M.
Milic, A.
Miller, D. W.
Mills, C.
Milov, A.
Milstead, D. A.
Milstein, D.
Minaenko, A. A.
Minami, Y.
Minashvili, I. A.
Mincer, A. I.
Mindur, B.
Mineev, M.
Ming, Y.
Mir, L. M.
Mirabelli, G.
Mitani, T.
Mitrevski, J.
Mitsou, V. A.
Miucci, A.
Miyagawa, P. S.
Mjornmark, J. U.
Moa, T.
Mochizuki, K.
Mohapatra, S.
Mohr, W.
Molander, S.
Moles-Valls, R.
Monig, K.
Monini, C.
Monk, J.
Monnier, E.
Berlingen, J. Montejo
Monticelli, F.
Monzani, S.
Moore, R. W.
Morange, N.
Moreno, D.
Llacer, M. Moreno
Morettini, P.
Morgenstern, M.
Morii, M.
Morisbak, V.
Moritz, S.
Morley, A. K.
Mornacchi, G.
Morris, J. D.
Morvaj, L.
Moser, H. G.
Mosidze, M.
Moss, J.
Motohashi, K.
Mount, R.
Mountricha, E.
Mouraviev, S. V.
Moyse, E. J. W.
Muanza, S.
Mudd, R. D.
Mueller, F.
Mueller, J.
Mueller, K.
Mueller, T.
Mueller, T.
Muenstermann, D.
Munwes, Y.
Quijada, J. A. Murillo
Murray, W. J.
Musheghyan, H.
Musto, E.
Myagkov, A. G.
Myska, M.
Nackenhorst, O.
Nadal, J.
Nagai, K.
Nagai, R.
Nagai, Y.
Nagano, K.
Nagarkar, A.
Nagasaka, Y.
Nagata, K.
Nagel, M.
Nairz, A. M.
Nakahama, Y.
Nakamura, K.
Nakamura, T.
Nakano, I.
Namasivayam, H.
Nanava, G.
Garcia, R. F. Naranjo
Narayan, R.
Nattermann, T.
Naumann, T.
Navarro, G.
Nayyar, R.
Neal, H. A.
Nechaeva, P. Yu.
Neep, T. J.
Nef, P. D.
Negri, A.
Negri, G.
Negrini, M.
Nektarijevic, S.
Nellist, C.
Nelson, A.
Nelson, T. K.
Nemecek, S.
Nemethy, P.
Nepomuceno, A. A.
Nessi, M.
Neubauer, M. S.
Neumann, M.
Neves, R. M.
Nevski, P.
Newman, P. R.
Nguyen, D. H.
Nickerson, R. B.
Nicolaidou, R.
Nicquevert, B.
Nielsen, J.
Nikiforou, N.
Nikiforov, A.
Nikolaenko, V.
Nikolic-Audit, I.
Nikolics, K.
Nikolopoulos, K.
Nilsson, P.
Ninomiya, Y.
Nisati, A.
Nisius, R.
Nobe, T.
Nodulman, L.
Nomachi, M.
Nomidis, I.
Norberg, S.
Nordberg, M.
Novgorodova, O.
Nowak, S.
Nozaki, M.
Nozka, L.
Ntekas, K.
Hanninger, G. Nunes
Nunnemann, T.
Nurse, E.
Nuti, F.
O'Brien, B. J.
O'grady, F.
O'Neil, D. C.
O'Shea, V.
Oakham, F. G.
Oberlack, H.
Obermann, T.
Ocariz, J.
Ochi, A.
Ochoa, M. I.
Oda, S.
Odaka, S.
Ogren, H.
Oh, A.
Oh, S. H.
Ohm, C. C.
Ohman, H.
Oide, H.
Okamura, W.
Okawa, H.
Okumura, Y.
Okuyama, T.
Olariu, A.
Olchevski, A. G.
Pino, S. A. Olivares
Damazio, D. Oliveira
Garcia, E. Oliver
Olszewski, A.
Olszowska, J.
Onofre, A.
Onyisi, P. U. E.
Oram, C. J.
Oreglia, M. J.
Oren, Y.
Orestano, D.
Orlando, N.
Barrera, C. Oropeza
Orr, R. S.
Osculati, B.
Ospanov, R.
Otero y Garzon, G.
Otono, H.
Ouchrif, M.
Ouellette, E. A.
Ould-Saada, F.
Ouraou, A.
Oussoren, K. P.
Ouyang, Q.
Ovcharova, A.
Owen, M.
Ozcan, V. E.
Ozturk, N.
Pachal, K.
Pages, A. Pacheco
Aranda, C. Padilla
Pagacova, M.
Griso, S. Pagan
Paganis, E.
Pahl, C.
Paige, F.
Pais, P.
Pajchel, K.
Palacino, G.
Palestini, S.
Palka, M.
Pallin, D.
Palma, A.
Palmer, J. D.
Pan, Y. B.
Panagiotopoulou, E.
Vazquez, J. G. Panduro
Pani, P.
Panikashvili, N.
Panitkin, S.
Pantea, D.
Paolozzi, L.
Papadopoulou, Th. D.
Papageorgiou, K.
Paramonov, A.
Hernandez, D. Paredes
Parker, M. A.
Parodi, F.
Parsons, J. A.
Parzefall, U.
Pasqualucci, E.
Passaggio, S.
Passeri, A.
Pastore, F.
Pastore, Fr.
Pasztor, G.
Pataraia, S.
Patel, N. D.
Pater, J. R.
Patricelli, S.
Pauly, T.
Pearce, J.
Pedersen, L. E.
Pedersen, M.
Lopez, S. Pedraza
Pedro, R.
Peleganchuk, S. V.
Pelikan, D.
Peng, H.
Penning, B.
Penwell, J.
Perepelitsa, D. V.
Codina, E. Perez
Garcia-Estan, M. T. Perez
Perini, L.
Pernegger, H.
Perrella, S.
Perrino, R.
Peschke, R.
Peshekhonov, V. D.
Peters, K.
Peters, R. F. Y.
Petersen, B. A.
Petersen, T. C.
Petit, E.
Petridis, A.
Petridou, C.
Petrolo, E.
Petrucci, F.
Pettersson, N. E.
Pezoa, R.
Phillips, P. W.
Piacquadio, G.
Pianori, E.
Picazio, A.
Piccaro, E.
Piccinini, M.
Piegaia, R.
Pignotti, D. T.
Pilcher, J. E.
Pilkington, A. D.
Pina, J.
Pinamonti, M.
Pinder, A.
Pinfold, J. L.
Pingel, A.
Pinto, B.
Pires, S.
Pitt, M.
Pizio, C.
Plazak, L.
Pleier, M. -A.
Pleskot, V.
Plotnikova, E.
Plucinski, P.
Pluth, D.
Poddar, S.
Podlyski, F.
Poettgen, R.
Poggioli, L.
Pohl, D.
Pohl, M.
Polesello, G.
Policicchio, A.
Polifka, R.
Polini, A.
Pollard, C. S.
Polychronakos, V.
Pommes, K.
Pontecorvo, L.
Pope, B. G.
Popeneciu, G. A.
Popovic, D. S.
Poppleton, A.
Bueso, X. Portell
Pospisil, S.
Potamianos, K.
Potrap, I. N.
Potter, C. J.
Potter, C. T.
Poulard, G.
Poveda, J.
Pozdnyakov, V.
Pralavorio, P.
Pranko, A.
Prasad, S.
Pravahan, R.
Prell, S.
Price, D.
Price, J.
Price, L. E.
Prieur, D.
Primavera, M.
Proissl, M.
Prokofiev, K.
Prokoshin, F.
Protopapadaki, E.
Protopopescu, S.
Proudfoot, J.
Przybycien, M.
Przysiezniak, H.
Ptacek, E.
Puddu, D.
Pueschel, E.
Puldon, D.
Purohit, M.
Puzo, P.
Qian, J.
Qin, G.
Qin, Y.
Quadt, A.
Quarrie, D. R.
Quayle, W. B.
Queitsch-Maitland, M.
Quilty, D.
Qureshi, A.
Radeka, V.
Radescu, V.
Radhakrishnan, S. K.
Radloff, P.
Rados, P.
Ragusa, F.
Rahal, G.
Rajagopalan, S.
Rammensee, M.
Randle-Conde, A. S.
Rangel-Smith, C.
Rao, K.
Rauscher, F.
Rave, T. C.
Ravenscroft, T.
Raymond, M.
Read, A. L.
Readioff, N. P.
Rebuzzi, D. M.
Redelbach, A.
Redlinger, G.
Reece, R.
Reeves, K.
Rehnisch, L.
Reisin, H.
Relich, M.
Rembser, C.
Ren, H.
Ren, Z. L.
Renaud, A.
Rescigno, M.
Resconi, S.
Rezanova, O. L.
Reznicek, P.
Rezvani, R.
Richter, R.
Ridel, M.
Rieck, P.
Rieger, J.
Rijssenbeek, M.
Rimoldi, A.
Rinaldi, L.
Ritsch, E.
Riu, I.
Rizatdinova, F.
Rizvi, E.
Robertson, S. H.
Robichaud-Veronneau, A.
Robinson, D.
Robinson, J. E. M.
Robson, A.
Roda, C.
Rodrigues, L.
Roe, S.
Rohne, O.
Rolli, S.
Romaniouk, A.
Romano, M.
Adam, E. Romero
Rompotis, N.
Ronzani, M.
Roos, L.
Ros, E.
Rosati, S.
Rosbach, K.
Rose, M.
Rose, P.
Rosendahl, P. L.
Rosenthal, O.
Rossetti, V.
Rossi, E.
Rossi, L. P.
Rosten, R.
Rotaru, M.
Roth, I.
Rothberg, J.
Rousseau, D.
Royon, C. R.
Rozanov, A.
Rozen, Y.
Ruan, X.
Rubbo, F.
Rubinskiy, I.
Rud, V. I.
Rudolph, C.
Rudolph, M. S.
Ruhr, F.
Ruiz-Martinez, A.
Rurikova, Z.
Rusakovich, N. A.
Ruschke, A.
Rutherfoord, J. P.
Ruthmann, N.
Ryabov, Y. F.
Rybar, M.
Rybkin, G.
Ryder, N. C.
Saavedra, A. F.
Sabato, G.
Sacerdoti, S.
Saddique, A.
Sadeh, I.
Sadrozinski, H. F-W.
Sadykov, R.
Tehrani, F. Safai
Sakamoto, H.
Sakurai, Y.
Salamanna, G.
Salamon, A.
Saleem, M.
Salek, D.
De Bruin, P. H. Sales
Salihagic, D.
Salnikov, A.
Salt, J.
Salvatore, D.
Salvatore, F.
Salvucci, A.
Salzburger, A.
Sampsonidis, D.
Sanchez, A.
Sanchez, J.
Martinez, V. Sanchez
Sandaker, H.
Sandbach, R. L.
Sander, H. G.
Sanders, M. P.
Sandhoff, M.
Sandoval, T.
Sandoval, C.
Sandstroem, R.
Sankey, D. P. C.
Sansoni, A.
Santoni, C.
Santonico, R.
Santos, H.
Castillo, I. Santoyo
Sapp, K.
Sapronov, A.
Saraiva, J. G.
Sarrazin, B.
Sartisohn, G.
Sasaki, O.
Sasaki, Y.
Sauvage, G.
Sauvan, E.
Savard, P.
Savu, D. O.
Sawyer, C.
Sawyer, L.
Saxon, D. H.
Saxon, J.
Sbarraa, C.
Sbrizzi, A.
Scanlon, T.
Scannicchio, D. A.
Scarcella, M.
Scarfone, V.
Schaarschmidt, J.
Schacht, P.
Schaefer, D.
Schaefer, R.
Schaepe, S.
Schaetzel, S.
Schafer, U.
Schaffer, A. C.
Schaile, D.
Schamberger, R. D.
Scharf, V.
Schegelsky, V. A.
Scheirich, D.
Schernau, M.
Scherzer, M. I.
Schiavi, C.
Schieck, J.
Schillo, C.
Schioppa, M.
Schlenker, S.
Schmidt, E.
Schmieden, K.
Schmitt, C.
Schmitt, S.
Schneider, B.
Schnellbach, Y. J.
Schnoor, U.
Schoeffel, L.
Schoening, A.
Schoenrock, B. D.
Schorlemmer, A. L. S.
Schott, M.
Schouten, D.
Schovancova, J.
Schramm, S.
Schreyer, M.
Schroeder, C.
Schuh, N.
Schultens, M. J.
Schultz-Coulon, H. -C.
Schulz, H.
Schumacher, M.
Schumm, B. A.
Schune, Ph.
Schwanenberger, C.
Schwartzman, A.
Schwarz, T. A.
Schwegler, Ph.
Schwemling, Ph.
Schwienhorst, R.
Schwindling, J.
Schwindt, T.
Schwoerer, M.
Sciacca, F. G.
Scifo, E.
Sciolla, G.
Scott, W. G.
Scuri, F.
Scutti, F.
Searcy, J.
Sedov, G.
Sedykh, E.
Seema, P.
Seidel, S. C.
Seiden, A.
Seifert, F.
Seixas, J. M.
Sekhniaidze, G.
Sekula, S. J.
Selbach, K. E.
Seliverstov, D. M.
Sellers, G.
Semprini-Cesari, N.
Serfon, C.
Serin, L.
Serkin, L.
Serre, T.
Seuster, R.
Severini, H.
Sfiligoj, T.
Sforza, F.
Sfyrla, A.
Shabalina, E.
Shamim, M.
Shan, L. Y.
Shang, R.
Shank, J. T.
Shapiro, M.
Shatalov, P. B.
Shaw, K.
Shehu, C. Y.
Sherwood, P.
Shi, L.
Shimizu, S.
Shimmin, C. O.
Shimojima, M.
Shiyakova, M.
Shmeleva, A.
Shochet, M. J.
Short, D.
Shrestha, S.
Shulga, E.
Shupe, M. A.
Shushkevich, S.
Sicho, P.
Sidiropoulou, O.
Sidorov, D.
Sidoti, A.
Siegert, F.
Sijacki, Dj.
Silva, J.
Silver, Y.
Silverstein, D.
Silverstein, S. B.
Simak, V.
Simard, O.
Simic, Lj.
Simion, S.
Simioni, E.
Simmons, B.
Simoniello, R.
Sinervo, P.
Sinev, N. B.
Siragusa, G.
Sircar, A.
Sisakyan, A. N.
Sivoklokov, S. Yu.
Sjolin, J.
Sjursen, T. B.
Skottowe, H. P.
Skovpen, K. Yu.
Skubic, P.
Slater, M.
Slavicek, T.
Slawinska, M.
Sliwa, K.
Smakhtin, V.
Smart, B. H.
Smestad, L.
Smirnov, S. Yu.
Smirnov, Y.
Smirnova, L. N.
Smirnova, O.
Smith, K. M.
Smizanska, M.
Smolek, K.
Snesarev, A. A.
Snidero, G.
Snyder, S.
Sobie, R.
Socher, F.
Soffer, A.
Soh, D. A.
Solans, C. A.
Solar, M.
Solc, J.
Soldatov, E. Yu.
Soldevila, U.
Solodkov, A. A.
Soloshenko, A.
Solovyanov, O. V.
Solovyev, V.
Sommer, P.
Song, H. Y.
Soni, N.
Sood, A.
Sopczak, A.
Sopko, B.
Sopko, V.
Sorin, V.
Sosebee, M.
Soualah, R.
Soueid, P.
Soukharev, A. M.
South, D.
Spagnolo, S.
Spano, F.
Spearman, W. R.
Spettel, F.
Spighi, R.
Spigo, G.
Spiller, L. A.
Spousta, M.
Spreitzer, T.
Spurlock, B.
Denis, R. D. St.
Staerz, S.
Stahlman, J.
Stamen, R.
Stamm, S.
Stanecka, E.
Stanek, R. W.
Stanescu, C.
Stanescu-Bellu, M.
Stanitzki, M. M.
Stapnes, S.
Starchenko, E. A.
Stark, J.
Staroba, P.
Starovoitov, P.
Staszewski, R.
Stavina, P.
Steinberg, P.
Stelzer, B.
Stelzer, H. J.
Stelzer-Chilton, O.
Stenzel, H.
Stern, S.
Stewart, G. A.
Stillings, J. A.
Stockton, M. C.
Stoebe, M.
Stoicea, G.
Stolte, P.
Stonjek, S.
Stradling, A. R.
Straessner, A.
Stramaglia, M. E.
Strandberg, J.
Strandberg, S.
Strandlie, A.
Strauss, E.
Strauss, M.
Strizenec, P.
Strohmer, R.
Strom, D. M.
Stroynowski, R.
Strubig, A.
Stucci, S. A.
Stugu, B.
Styles, N. A.
Su, D.
Su, J.
Subramaniam, R.
Succurro, A.
Sugaya, Y.
Suhr, C.
Suk, M.
Sulin, V. V.
Sultansoy, S.
Sumida, T.
Sun, S.
Sun, X.
Sundermann, J. E.
Suruliz, K.
Susinno, G.
Sutton, M. R.
Suzuki, Y.
Svatos, M.
Swedish, S.
Swiatlowski, M.
Sykora, I.
Sykora, T.
Ta, D.
Taccini, C.
Tackmann, K.
Taenzer, J.
Taffard, A.
Tafirout, R.
Taiblum, N.
Takai, H.
Takashima, R.
Takeda, H.
Takeshita, T.
Takubo, Y.
Talby, M.
Talyshev, A. A.
Tam, J. Y. C.
Tan, K. G.
Tanaka, J.
Tanaka, R.
Tanaka, S.
Tanaka, S.
Tanasijczuk, A. J.
Tannenwald, B. B.
Tannoury, N.
Tapprogge, S.
Tarem, S.
Tarrade, F.
Tartarelli, G. F.
Tas, P.
Tasevsky, M.
Tashiro, T.
Tassi, E.
Delgado, A. Tavares
Tayalati, Y.
Taylor, F. E.
Taylor, G. N.
Taylor, W.
Teischinger, F. A.
Castanheira, M. Teixeira Dias
Teixeira-Dias, P.
Temming, K. K.
Ten Kate, H.
Teng, P. K.
Teoh, J. J.
Terada, S.
Terashi, K.
Terron, J.
Terzo, S.
Testa, M.
Teuscher, R. J.
Therhaag, J.
Theveneaux-Pelzer, T.
Thomas, J. P.
Thomas-Wilsker, J.
Thompson, E. N.
Thompson, P. D.
Thompson, P. D.
Thompson, R. J.
Thompson, A. S.
Thomsen, L. A.
Thomson, E.
Thomson, M.
Thong, W. M.
Thun, R. P.
Tian, F.
Tibbetts, M. J.
Tikhomirov, V. O.
Tikhonov, Yu. A.
Timoshenko, S.
Tiouchichine, E.
Tipton, P.
Tisserant, S.
Todorov, T.
Todorova-Nova, S.
Tojo, J.
Tokar, S.
Tokushuku, K.
Tollefson, K.
Tolley, E.
Tomlinson, L.
Tomoto, M.
Tompkins, L.
Toms, K.
Topilin, N. D.
Torrence, E.
Torres, H.
Pastor, E. Torro
Toth, J.
Touchard, F.
Tovey, D. R.
Tran, H. L.
Trefzger, T.
Tremblet, L.
Tricoli, A.
Trigger, I. M.
Trincaz-Duvoid, S.
Tripiana, M. F.
Trischuk, W.
Trocme, B.
Troncon, C.
Trottier-McDonald, M.
Trovatelli, M.
True, P.
Trzebinski, M.
Trzupek, A.
Tsarouchas, C.
Tseng, J. C-L.
Tsiareshka, P. V.
Tsionou, D.
Tsipolitis, G.
Tsirintanis, N.
Tsiskaridze, S.
Tsiskaridze, V.
Tskhadadze, E. G.
Tsukerman, I. I.
Tsulaia, V.
Tsuno, S.
Tsybychev, D.
Tudorache, A.
Tudorache, V.
Tuna, A. N.
Tupputi, S. A.
Turchikhin, S.
Turecek, D.
Cakir, I. Turk
Turra, R.
Turvey, A. J.
Tuts, P. M.
Tykhonov, A.
Tylmad, M.
Tyndel, M.
Uchida, K.
Ueda, I.
Ueno, R.
Ughetto, M.
Ugland, M.
Uhlenbrock, M.
Ukegawa, F.
Unal, G.
Undrus, A.
Unel, G.
Ungaro, F. C.
Unno, Y.
Unverdorben, C.
Urbaniec, D.
Urquijo, P.
Usai, G.
Usanova, A.
Vacavant, L.
Vacek, V.
Vachon, B.
Valencic, N.
Valentinetti, S.
Valero, A.
Valery, L.
Valkar, S.
Gallego, E. Valladolid
Vallecorsa, S.
Ferrer, J. A. Valls
Van Den Wollenberg, W.
Van Der Deijl, P. C.
van der Geer, R.
van der Graaf, H.
Van der Leeuw, R.
van der Ster, D.
van Eldik, N.
van Gemmeren, P.
Van Nieuwkoop, J.
van Vulpen, I.
van Woerden, M. C.
Vanadia, M.
Vandelli, W.
Vanguri, R.
Vaniachine, A.
Vankov, P.
Vannucci, F.
Vardanyan, G.
Vari, R.
Varnes, E. W.
Varol, T.
Varouchas, D.
Vartapetian, A.
Varvell, K. E.
Vazeille, F.
Schroeder, T. Vazquez
Veatch, J.
Veloso, F.
Velz, T.
Veneziano, S.
Ventura, A.
Ventura, D.
Venturi, M.
Venturi, N.
Venturini, A.
Vercesi, V.
Verducci, M.
Verkerke, W.
Vermeulen, J. C.
Vest, A.
Vetterli, M. C.
Viazlo, O.
Vichou, I.
Vickey, T.
Boeriu, O. E. Vickey
Viehhauser, G. H. A.
Viel, S.
Vigne, R.
Villa, M.
Perez, M. Villaplana
Vilucchi, E.
Vincter, M. G.
Vinogradov, V. B.
Virzi, J.
Vivarelli, I.
Vaque, F. Vives
Vlachos, S.
Vladoiu, D.
Vlasak, M.
Vogel, A.
Vogel, M.
Vokac, P.
Volpi, G.
Volpi, M.
von der Schmitt, H.
von Radziewski, H.
von Toerne, E.
vorobel, V.
Vorobev, K.
Vos, M.
Voss, R.
Vossebeld, J. H.
Vranjes, N.
Milosavljevica, M. Vranjes
Vrba, V.
Vreeswijk, M.
Anh, T. Vu
Vuillermet, R.
Vukotic, I.
Vykydal, Z.
Wagner, P.
Wagner, W.
Wahlberg, H.
Wahrmund, S.
Wakabayashi, J.
Walder, J.
Walker, R.
Walkowiak, W.
Wall, R.
Waller, P.
Walsh, B.
Wang, C.
Wang, C.
Wang, F.
Wang, H.
Wang, H.
Wang, J.
Wang, J.
Wang, K.
Wang, R.
Wang, S. M.
Wang, T.
Wang, X.
Wanotayaroj, C.
Warburton, A.
Ward, C. P.
Wardrope, D. R.
Warsinsky, M.
Washbrook, A.
Wasicki, C.
Watkins, P. M.
Watson, A. T.
Watson, I. J.
Watson, M. F.
Watts, G.
Watts, S.
Waugh, B. M.
Webb, S.
Weber, M. S.
Weber, S. W.
Webster, J. S.
Weidberg, A. R.
Weinert, B.
Weingarten, J.
Weiser, C.
Weits, H.
Wells, P. S.
Wenaus, T.
Wendland, D.
Weng, Z.
Wengler, T.
Wenig, S.
Wermes, N.
Werner, M.
Werner, P.
Wessels, M.
Wetter, J.
Whalen, K.
White, A.
White, M. J.
White, R.
White, S.
Whiteson, D.
Wicke, D.
Wickens, F. J.
Wiedenmann, W.
Wielers, M.
Wienemann, P.
Wiglesworth, C.
Wiik-Fuchs, L. A. M.
Wijeratne, P. A.
Wildauer, A.
Wildt, M. A.
Wilkens, H. G.
Williams, H. H.
Williams, S.
Willis, C.
Willocq, S.
Wilson, A.
Wilson, J. A.
Wingerter-Seez, I.
Winklmeier, F.
Winter, B. T.
Wittgen, M.
Wittig, T.
Wittkowski, J.
Wollstadt, S. J.
Wolter, M. W.
Wolters, H.
Wosiek, B. K.
Wotschack, J.
Woudstra, M. J.
Wozniak, K. W.
Wright, M.
Wu, M.
Wu, S. L.
Wu, X.
Wu, Y.
Wulf, E.
Wyatt, T. R.
Wynne, B. M.
Xella, S.
Xiao, M.
Xu, D.
Xu, L.
Yabsley, B.
Yacoob, S.
Yakabe, R.
Yamada, M.
Yamaguchi, H.
Yamaguchi, Y.
Yamamoto, A.
Yamamoto, K.
Yamamoto, S.
Yamamura, T.
Yamanaka, T.
Yamauchi, K.
Yamazaki, Y.
Yan, Z.
Yang, H.
Yang, H.
Yang, U. K.
Yang, Y.
Yanush, S.
Yao, L.
Yao, W-M.
Yasu, Y.
Yatsenko, E.
Wong, K. H. Yau
Ye, J.
Ye, S.
Yeletskikh, I.
Yen, A. L.
Yildirim, E.
Yilmaz, M.
Yoosoofmiya, R.
Yorita, K.
Yoshida, R.
Yoshihara, K.
Young, C.
Young, C. J. S.
Youssef, S.
Yu, D. R.
Yu, J.
Yu, J. M.
Yu, J.
Yuan, L.
Yurkewicz, A.
Yusuff, I.
Zabinski, B.
Zaidan, R.
Zaitsev, A. M.
Zaman, A.
Zambito, S.
Zanello, L.
Zanzi, D.
Zeitnitz, C.
Zeman, M.
Zemla, A.
Zengel, K.
Zenin, O.
Zenis, T.
Zerwas, D.
della Porta, G. Zevi
Zhang, D.
Zhang, F.
Zhang, H.
Zhang, J.
Zhang, L.
Zhang, X.
Zhang, Z.
Zhao, Y.
Zhao, Z.
Zhemchugov, A.
Zhong, J.
Zhou, B.
Zhou, L.
Zhou, N.
Zhu, C. G.
Zhu, H.
Zhu, J.
Zhu, Y.
Zhuang, X.
Zhukov, K.
Zibell, A.
Zieminska, D.
Zimine, N. I.
Zimmermann, C.
Zimmermann, R.
Zimmermann, S.
Zimmermann, S.
Zinonos, Z.
Ziolkowski, M.
Zobernig, G.
Zoccoli, A.
zur Nedden, M.
Zurzolo, G.
Zutshi, V.
Zwalinski, L.
CA ATLAS Collaboration
TI Search for neutral Higgs bosons of the minimal supersymmetric standard
model in pp collisions at root s=8 TeV with the ATLAS detector
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Article
DE Hadron-Hadron Scattering
ID BENCHMARK SCENARIOS; MASSLESS PARTICLES; BROKEN SYMMETRIES; MONTE-CARLO;
MSSM; LHC; MASSES; PROGRAM; DISCOVERY; COUPLINGS
AB A search for the neutral Higgs bosons predicted by the Minimal Supersymmetric Standard Model (MSSM) is reported. The analysis is performed on data from proton-proton collisions at a centre-of-mass energy of 8 TeV collected with the ATLAS detector at the Large Hadron Collider. The samples used for this search were collected in 2012 and correspond to integrated luminosities in the range 19.5-20.3 fb(-1). The MSSM Higgs bosons are searched for in the tau tau final state. No significant excess over the expected background is observed, and exclusion limits are derived for the production cross section times branching fraction of a scalar particle as a function of its mass. The results are also interpreted in the MSSM parameter space for various benchmark scenarios.
C1 [Jackson, P.; Lee, L.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia.
[Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA.
[Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada.
[Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey.
[Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey.
[Kuday, S.; Cakir, I. Turk] Istanbul Aydin Univ, Istanbul, Turkey.
[Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey.
[Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France.
[Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
[Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA.
[Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece.
[Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece.
[Abdinov, O.; Khalil-Zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan.
[Anjos, N.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Anjos, N.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain.
[Agatonovic-Jovin, T.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia.
[Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia.
[Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin Dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway.
[Axen, B.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooper, B. D.; Cornelissen, T.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Krieger, P.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
[Axen, B.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooper, B. D.; Cornelissen, T.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Krieger, P.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Stamm, S.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany.
[Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.; Yorita, K.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland.
[Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.; Yorita, K.] Univ Bern, High Energy Phys Lab, Bern, Switzerland.
[Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England.
[Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey.
[Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey.
[Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey.
[Alberghi, G. L.; Aloisio, A.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corriveau, F.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarraa, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] INFN Sez Bologna, Bologna, Italy.
[Alberghi, G. L.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Menke, S.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy.
[Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Gonella, L.; Haefner, P.; Hagebock, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Kruger, H.; Lapoire, C.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Meric, N.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Velz, T.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany.
[Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA.
[Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA.
[Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE IF, Rio De Janeiro, Brazil.
[Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Univ Fed Juiz de Fora, Juiz De Fora, Brazil.
[do Vale, M. A. B.] Univ Fed Sao Joao del Rei, Sao Joao Del Rei, Brazil.
[Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil.
[Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania.
[Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania.
Univ Politehn Bucuresti, 026c, Bucharest, Romania.
West Univ Timisoara, 026d, Timisoara, Romania.
[Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina.
[Arratia, M.; Barlow, N.; Barone, G.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England.
[Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada.
[Abreu, R.; Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland.
[Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Crosetti, G.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, H.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Milosavljevica, M. Vranjes; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile.
[Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile.
[Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China.
[Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China.
[Chen, S.; Li, Y.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China.
[Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhao, Y.; Zhao, Z.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China.
[Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China.
[Chen, X.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France.
[Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Huseynov, N.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA.
[Aloisio, A.; Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
[Capua, M.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Collegato Cosenza, Lab Nazl Frascati, Arcavacata Di Rende, Italy.
[Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy.
[Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Knue, A.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland.
[Palka, M.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland.
[Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland.
[Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA.
[Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Dallas, TX 75230 USA.
[Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Monig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany.
[Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Monig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany.
[Burmeister, I.; Esch, H.; Gossling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany.
[Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Pohl, M.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany.
[Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA.
[Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Okamura, W.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland.
[Annovi, A.; Antonelli, M.; Bilokon, H.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buscher, D.; Coniavitis, E.; Consorti, V.; Dao, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ronzani, M.; Ruhr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany.
[Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Merola, L.; Muenstermann, D.; Nektarijevic, S.; Nikolics, K.; Picazio, A.; Rosbach, K.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland.
[Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy.
[Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia.
[Djobava, T.; Durglishvili, A.; Khubuab, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, GE-380086 Tbilisi, Rep of Georgia.
[Duren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35390 Giessen, Germany.
[Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland.
[Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Kareem, M. J.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany.
[Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France.
[McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA.
[da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conventi, F.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mergelmeyer, S.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA.
[Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Djuvsland, J. I.; Dunford, M.; Hanke, P.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany.
[Anders, C. F.; Giulini, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany.
[Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany.
[Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan.
[Bortolotto, V.; Castillo, L. R. Flores] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China.
Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China.
[Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA.
[Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria.
[Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA.
[Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Pluth, D.; Prell, S.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA.
[Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huston, J.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia.
[Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan.
[Aloisio, A.; Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan.
[Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan.
[Takashima, R.] Kyoto Univ, Kyoto 612, Japan.
[Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan.
[Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina.
[Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina.
[Allison, L. J.; Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England.
[Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy.
[Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat Fis, Lecce, Italy.
[Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England.
[Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia.
[Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England.
[Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Copic, K.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England.
[Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Cooper-Sarkar, A. M.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England.
[Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France.
[Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden.
[Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain.
[Blum, W.; Buscher, V.; Caputo, R.; Caudron, J.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Hulsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Konig, S.; Kopke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schafer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
[Barnes, S. L.; Borri, M.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England.
[Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France.
[Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France.
[Bellomo, M.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Koffas, T.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA.
[Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corso-Radu, A.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada.
[Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia.
[Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Goldfarb, S.; Harper, D.; Hu, X.; Levin, D.; Liu, L.; Long, J. D.; Lu, N.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Merritt, F. S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
[Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy.
[Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus.
[Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus.
[Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Aloisio, A.; Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada.
[Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia.
[Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia.
[Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia.
[Adomeit, S.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany.
[Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kneringer, E.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Meoni, E.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany.
[Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan.
[Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan.
[Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Cooke, M.; de Asmundis, R.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Meroni, C.; Patricelli, S.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Meroni, C.; Patricelli, S.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy.
[Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
[Besjes, G. J.; Caron, S.; Chekulaev, S. V.; Croft, V.; De Groot, N.; Filthaut, F.; Fortin, D.; Galea, C.; Klok, P. F.; Kneringer, E.; Konig, A. C.; Ramos, J. A. Manjarres; Palacino, G.; Codina, E. Perez; Salvucci, A.; Seuster, R.; Strubig, A.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands.
[Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.] Nikhef, Natl Inst Subat Phys, Amsterdam, Netherlands.
[Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands.
[Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA.
[Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia.
[Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Meroni, C.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY USA.
[Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Tannenwald, B. B.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan.
[Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA.
[Abi, B.; Bousson, N.; Donszelmann, T. Cuhadar; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA.
[Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic.
[Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA.
[Khalek, S. Abdel; Adelman, J.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Vivie De Regie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France.
[Khalek, S. Abdel; Adelman, J.; Aloisio, A.; Alonso, A.; Altheimer, A.; Amorim, A.; Andreazza, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Vivie De Regie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France.
[Endo, M.; Hanagaki, K.; Lee, J. S. H.; Nomachi, M.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan.
[Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway.
[Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Bruni, A.; Buckingham, R. M.; Cooper-Smith, N. J.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England.
[Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Geich-Gimbel, Ch.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Univ Pavia, INFN Sez Pavia, I-27100 Pavia, Italy.
[Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Geich-Gimbel, Ch.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy.
[Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Meyer, C.; Ospanov, R.; Saxon, J.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA.
[Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia.
[Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, INFN Sez Pisa, Pisa, Italy.
[Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy.
[Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Do Valle Wemans, A.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal.
[Amorim, A.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, P-1699 Lisbon, Portugal.
[Dos Santos, S. P. Amor; Carvalho, J.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal.
[Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal.
[Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal.
[Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain.
[Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain.
[Do Valle Wemans, A.] Univ Nova Lisboa, Dept Fis, Caparica, Portugal.
[Do Valle Wemans, A.] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal.
[Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic.
[Augsten, K.; Gallus, P.; Guenther, J.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic.
[Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic.
[Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia.
[Adye, T.; Aloisio, A.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England.
[Tanaka, S.] Ritsumeikan Univ, Shiga, Japan.
[Aloisio, A.; Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, INFN Sez Roma, I-00185 Rome, Italy.
[Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, INFN Sez Roma Tor Vergata, Rome, Italy.
[Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy.
[Bacci, C.; Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Univ Rome Tre, INFN Sez Roma Tre, I-00146 Rome, Italy.
[Bacci, C.; Baroncelli, A.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy.
[Benchekroun, D.; Boutouil, S.; Chafaq, A.; El Moursli, R. Cherkaoui; Derkaoui, J. E.; El Kacimi, M.; Fassi, F.; Ghazlane, H.; Gouighri, M.; Goujdami, D.; Haddad, N.; Hoummada, A.; Idrissi, Z.; Ouchrif, M.; Tayalati, Y.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco.
[Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco.
[El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Cadi Ayyad, LPHEA, Fac Sci Semlalia, Marrakech, Morocco.
[Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco.
[Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco.
[El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco.
[Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Goncalves Pinto Firmino Da Costa, J.; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Mermod, P.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, IRFU, DSM, Commissariat Energie Atom & Energies Alternat, F-91191 Gif Sur Yvette, France.
[Battaglia, M.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Sadrozinski, H. F-W.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Aloisio, A.; Alonso, A.; Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England.
[Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan.
[Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany.
[Buat, Q.; Dawe, E.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada.
[Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nef, P. D.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA.
[Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia.
[Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia.
[Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa.
[Aurousseau, M.; Castaneda-Miranda, E.; Lee, C. A.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa.
[Bristow, K.; Carrillo-Montoya, G. D.; Hamity, G. N.; Hsu, C.; March, L.; Garcia, B. R. Mellado; Ruan, X.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa.
[Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bassalat, A.; Bendtz, K.; Bertoli, G.; Bessidskaia, O.; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden.
[Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bessidskaia, O.; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden.
[Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden.
[Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Miucci, A.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron & Chem, Stony Brook, NY 11794 USA.
[Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England.
[Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
[Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan.
[Abreu, H.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel.
[Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Papageorgiou, K.; Hernandez, D. Paredes; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece.
[Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan.
[Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan.
[Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan.
[Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan.
[AbouZeid, O. S.; Batista, S. J.; Brelier, B.; Chau, C. C.; DeMarco, D. A.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada.
[Canepa, A.; Koutsman, A.; Oram, C. J.; Schouten, D.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Garcia, J. A. Benitez; Bustos, A. C. Florez; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada.
[Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan.
[Beauchemin, P. H.; Hamilton, S.; Mercurio, K. M.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA.
[Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia.
[Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA.
[Acharya, B. S.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Kotov, V. M.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy.
[Acharya, B. S.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy.
[Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy.
[Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Errede, D.; Errede, S.; Giordani, M. P.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Kuutmann, E. Bergeaas; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.
[Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain.
[Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain.
[Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain.
[Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, IMB CNM, Valencia, Spain.
[Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain.
[Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC V5Z 1M9, Canada.
[Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada.
[Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan.
[Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.; Ventura, A.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel.
[Banerjee, Sw.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Redelbach, A.; Schreyer, M.; Siragusa, G.; Strohmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany.
[Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, T. T.; Braun, H. M.; Corradi, M.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Mattig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany.
[Baker, O. K.; Bedikian, S.; Cummings, J.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA.
[Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France.
[Acharya, B. S.] Kings Coll London, Dept Phys, London WC2R 2LS, England.
[Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan.
[Anisenkov, A. V.; Bobrovnikov, V. S.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia.
[Apolle, R.; Davies, E.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England.
[Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA.
[Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia.
[Chen, L.; Gao, J.] Aix Marseille Univ, CPPM, Marseille, France.
[Chen, L.; Gao, J.] IN2P3, CNRS, Marseille, France.
[Cooke, M.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy.
[Corso-Radu, A.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] IPP, Thornhill, ON, Canada.
[Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia.
[Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece.
[Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA.
[Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Barcelona, Spain.
[Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA.
[Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia.
[Jenni, P.] CERN, Geneva, Switzerland.
[Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan.
[Konoplich, R.] Manhattan Coll, New York, NY USA.
[Li, B.] Acad Sinica, Inst Phys, Taipei, Taiwan.
[Li, Y.] Univ Paris 11, LAL, Orsay, France.
[Li, Y.] IN2P3, CNRS, Orsay, France.
[Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan.
[Liu, K.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.
[Liu, K.] Univ Paris Diderot, Paris, France.
[Liu, K.] IN2P3, CNRS, Paris, France.
[Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India.
[Messina, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys, Dolgoprudnyi, Russia.
[Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Technol State Univ, Dolgoprudnyi, Russia.
[Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland.
[Pinamonti, M.] SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy.
[Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA.
[Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China.
[Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia.
[Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia.
[Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary.
[Vickey, T.] Univ Oxford, Dept Phys, Oxford, England.
[Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China.
[Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany.
[Xu, L.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa.
[Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia.
RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France.
RI Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Maneira,
Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV,
ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Goncalo,
Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Mindur,
Bartosz/A-2253-2017; Fabbri, Laura/H-3442-2012; Solodkov,
Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk,
Sergey/J-6722-2014; Yang, Haijun/O-1055-2015; Aguilar Saavedra, Juan
Antonio/F-1256-2016; Wemans, Andre/A-6738-2012; Leyton,
Michael/G-2214-2016; Jones, Roger/H-5578-2011; Perrino,
Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva,
Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy,
Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Kantserov,
Vadim/M-9761-2015; Vanadia, Marco/K-5870-2016; Ippolito,
Valerio/L-1435-2016; Tikhomirov, Vladimir/M-6194-2015; Chekulaev,
Sergey/O-1145-2015; Warburton, Andreas/N-8028-2013; Gorelov,
Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; De, Kaushik/N-1953-2013;
Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Buttar,
Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo,
Jun/O-5202-2015; Marti-Garcia, Salvador/F-3085-2011; Della Pietra,
Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci,
Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer,
Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; Doyle,
Anthony/C-5889-2009; spagnolo, stefania/A-6359-2012; Ciubancan, Liviu
Mihai/L-2412-2015; Zhukov, Konstantin/M-6027-2015; Shmeleva,
Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Connell,
Simon/F-2962-2015; Livan, Michele/D-7531-2012; Smirnova,
Oxana/A-4401-2013; Bosman, Martine/J-9917-2014; Joergensen,
Morten/E-6847-2015; Mitsou, Vasiliki/D-1967-2009; Villa,
Mauro/C-9883-2009; Riu, Imma/L-7385-2014; Mir, Lluisa-Maria/G-7212-2015;
White, Ryan/E-2979-2015; Brooks, William/C-8636-2013; Di Domenico,
Antonio/G-6301-2011
OI Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207;
Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399;
KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo,
Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Mindur,
Bartosz/0000-0002-5511-2611; Fabbri, Laura/0000-0002-4002-8353;
Solodkov, Alexander/0000-0002-2737-8674; Zaitsev,
Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592;
Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Wemans,
Andre/0000-0002-9669-9500; Leyton, Michael/0000-0002-0727-8107; Jones,
Roger/0000-0002-6427-3513; Perrino, Roberto/0000-0002-5764-7337; SULIN,
VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672;
Olshevskiy, Alexander/0000-0002-8902-1793; Kantserov,
Vadim/0000-0001-8255-416X; Vanadia, Marco/0000-0003-2684-276X; Ippolito,
Valerio/0000-0001-5126-1620; Tikhomirov, Vladimir/0000-0002-9634-0581;
Warburton, Andreas/0000-0002-2298-7315; Gorelov,
Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; De,
Kaushik/0000-0002-5647-4489; Carvalho, Joao/0000-0002-3015-7821;
Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz,
Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Della
Pietra, Massimo/0000-0003-4446-3368; Petrucci,
Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963;
Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo,
Sergio/0000-0001-8490-8304; Doyle, Anthony/0000-0001-6322-6195;
spagnolo, stefania/0000-0001-7482-6348; Ciubancan, Liviu
Mihai/0000-0003-1837-2841; Connell, Simon/0000-0001-6000-7245; Livan,
Michele/0000-0002-5877-0062; Smirnova, Oxana/0000-0003-2517-531X;
Bosman, Martine/0000-0002-7290-643X; Joergensen,
Morten/0000-0002-6790-9361; Mitsou, Vasiliki/0000-0002-1533-8886; Villa,
Mauro/0000-0002-9181-8048; Riu, Imma/0000-0002-3742-4582; Mir,
Lluisa-Maria/0000-0002-4276-715X; White, Ryan/0000-0003-3589-5900;
Brooks, William/0000-0001-6161-3570; Di Domenico,
Antonio/0000-0001-8078-2759
FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF,
Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil;
NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC,
China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech
Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and
NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia;
BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece;
ISF, MIN-ERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy;
MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and
RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA,
Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD,
Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa;
MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and
Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey;
STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and
NSF, United States of America
FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC,
Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq
and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile;
CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and
VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark;
EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France;
GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and
NSRF, Greece; ISF, MIN-ERVA, GIF, I-CORE and Benoziyo Center, Israel;
INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO,
Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT,
Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian
Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia;
DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation,
Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC,
Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust,
United Kingdom; DOE and NSF, United States of America.
NR 91
TC 56
Z9 56
U1 6
U2 64
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD NOV 12
PY 2014
IS 11
AR 056
DI 10.1007/JHEP11(2014)056
PG 47
WC Physics, Particles & Fields
SC Physics
GA AZ0AC
UT WOS:000347908000003
ER
PT J
AU Liang, SH
Mukherjee, A
Patel, ND
Bishop, CB
Dagotto, E
Moreo, A
AF Liang, Shuhua
Mukherjee, Anamitra
Patel, Niravkumar D.
Bishop, Christopher B.
Dagotto, Elbio
Moreo, Adriana
TI Diverging nematic susceptibility, physical meaning of T* scale, and
pseudogap in the spin fermion model for the pnictides
SO PHYSICAL REVIEW B
LA English
DT Article
ID IRON ARSENIDE SUPERCONDUCTOR; TRANSITION; MAGNETISM; ORDER
AB Using Monte Carlo simulations with a tunable uniaxial strain, the nematic susceptibility of the spin fermion model for the pnictides is calculated. The results are in excellent agreement with the experiments by Chu et al. [Science 337, 710 (2012)]. Via a Ginzburg-Landau analysis, our study suggests a nematicity in the spin fermion model primarily originating in magnetism, but with the lattice/orbital also playing a key role by boosting up critical temperatures and separating the structural T-S and Neel T-N transitions. At T > T-S, Curie-Weiss behavior is observed with a characteristic temperature T* being the T-N of the purely electronic system. In this temperature regime, short-range magnetic order with wave vectors (pi, 0)-(0, pi) induce local nematic fluctuations and a density-of-states pseudogap, compatible with several experiments. The present analysis relies on the study of a particular model for the iron superconductors; thus further studies are needed to conclusively establish the driver of nematicity in real materials.
C1 [Liang, Shuhua; Dagotto, Elbio; Moreo, Adriana] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Liang, Shuhua; Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Christopher B.; Dagotto, Elbio; Moreo, Adriana] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
RP Liang, SH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
NR 41
TC 8
Z9 8
U1 4
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 12
PY 2014
VL 90
IS 18
AR 184507
DI 10.1103/PhysRevB.90.184507
PG 10
WC Physics, Condensed Matter
SC Physics
GA CA2YZ
UT WOS:000348773600003
ER
PT J
AU Chatrchyan, S
Khachatryan, V
Sirunyan, AM
Tumasyan, A
Adam, W
Bergauer, T
Dragicevic, M
Ero, J
Fabjan, C
Friedl, M
Fruehwirth, R
Ghete, VM
Hartl, C
Hormann, N
Hrubec, J
Jeitler, M
Kiesenhofer, W
Knunz, V
Krammer, M
Kratschmer, I
Liko, D
Mikulec, I
Rabady, D
Rahbaran, B
Rohringer, H
Schofbeck, R
Strauss, J
Taurok, A
Treberer-Treberspurg, W
Waltenberger, W
Wulz, CE
Mossolov, V
Shumeiko, N
Gonzalez, JS
Alderweireldt, S
Bansal, M
Bansal, S
Cornelis, T
De Wolf, EA
Janssen, X
Knutsson, A
Luyckx, S
Ochesanu, S
Roland, B
Rougny, R
Van Haevermaet, H
Van Mechelen, P
Van Remortel, N
Van Spilbeeck, A
Blekman, F
Blyweert, S
D'Hondt, J
Heracleous, N
Kalogeropoulos, A
Keaveney, J
Kim, TJ
Lowette, S
Maes, M
Olbrechts, A
Strom, D
Tavernier, S
Van Doninck, W
Van Mulders, P
Van Onsem, GP
Villella, I
Caillol, C
Clerbaux, B
De Lentdecker, G
Favart, L
Gay, APR
Leonard, A
Marage, PE
Mohammadi, A
Pernie, L
Reis, T
Seva, T
Thomas, L
Vander Velde, C
Vanlaer, P
Wang, J
Adler, V
Beernaert, K
Benucci, L
Cimmino, A
Costantini, S
Crucy, S
Dildick, S
Garcia, G
Klein, B
Lellouch, J
Mccartin, J
Rios, AAO
Ryckbosch, D
Diblen, SS
Sigamani, M
Strobbe, N
Thyssen, F
Tytgat, M
Walsh, S
Yazgan, E
Zaganidis, N
Basegmez, S
Beluffi, C
Bruno, G
Castello, R
Caudron, A
Ceard, L
Da Silveira, GG
Delaere, C
du Pree, T
Favart, D
Forthomme, L
Giammanco, A
Hollar, J
Jez, P
Komm, M
Lemaitre, V
Liao, J
Militaru, O
Nuttens, C
Pagano, D
Pin, A
Piotrzkowski, K
Popov, A
Quertenmont, L
Selvaggi, M
Marono, MV
Garcia, JMV
Beliy, N
Caebergs, T
Daubie, E
Hammad, GH
Alves, GA
Martins, MC
Martins, TD
Pol, ME
Souza, MHG
Alda, WL
Carvalho, W
Chinellato, J
Custodio, A
Da Costa, EM
Damiao, DD
Martins, CD
De Souza, SF
Malbouisson, H
Malek, M
Figueiredo, DM
Mundim, L
Nogima, H
Da Silva, WLP
Santaolalla, J
Santoro, A
Sznajder, A
Manganote, EJT
Pereira, AV
Bernardes, CA
Dias, FA
Tomei, TRFP
Gregores, EM
Mercadante, PG
Novaes, SF
Padula, SS
Genchev, V
Iaydjiev, P
Marinov, A
Piperov, S
Rodozov, M
Sultanov, G
Vutova, M
Dimitrov, A
Glushkov, I
Hadjiiska, R
Kozhuharov, V
Litov, L
Pavlov, B
Petkov, P
Bian, JG
Chen, GM
Chen, HS
Chen, M
Du, R
Jiang, CH
Liang, D
Liang, S
Meng, X
Plestina, R
Tao, J
Wang, X
Wang, Z
Asawatangtrakuldee, C
Ban, Y
Guo, Y
Li, Q
Li, W
Liu, S
Mao, Y
Qian, SJ
Wang, D
Zhang, L
Zou, W
Avila, C
Sierra, LFC
Florez, C
Gomez, JP
Moreno, BG
Sanabria, JC
Godinovic, N
Lelas, D
Polic, D
Puljak, I
Antunovic, Z
Kovac, M
Brigljevic, V
Kadija, K
Luetic, J
Mekterovic, D
Morovic, S
Sudic, L
Attikis, A
Mavromanolakis, G
Mousa, J
Nicolaou, C
Ptochos, F
Razis, PA
Finger, M
Finger, M
Assran, Y
Elgammal, S
Kamel, AE
Mahmoud, MA
Mahrous, A
Radi, A
Kadastik, M
Muntel, M
Murumaa, M
Raidal, M
Tiko, A
Eerola, P
Fedi, G
Voutilainen, M
Harkonen, J
Karimaki, V
Kinnunen, R
Kortelainen, MJ
Lampen, T
Lassila-Perini, K
Lehti, S
Linden, T
Luukka, P
Maenpaa, T
Peltola, T
Tuominen, E
Tuominiemi, J
Tuovinen, E
Wendland, L
Tuuva, T
Besancon, M
Couderc, F
Dejardin, M
Denegri, D
Fabbro, B
Faure, JL
Ferri, F
Ganjour, S
Givernaud, A
Gras, P
de Monchenault, GH
Jarry, P
Locci, E
Malcles, J
Nayak, A
Rander, J
Rosowsky, A
Titov, M
Baffioni, S
Beaudette, F
Busson, P
Charlot, C
Daci, N
Dahms, T
Dalchenko, M
Dobrzynski, L
Filipovic, N
Florent, A
de Cassagnac, RG
Mastrolorenzo, L
Mine, P
Mironov, C
Naranjo, IN
Nguyen, M
Ochando, C
Paganini, P
Sabes, D
Salerno, R
Sauvan, JB
Sirois, Y
Veelken, C
Yilmaz, Y
Zabi, A
Agram, JL
Andrea, J
Bloch, D
Brom, JM
Chabert, EC
Collard, C
Conte, E
Drouhin, F
Fontaine, JC
Gele, D
Goerlach, U
Goetzmann, C
Juillot, P
Le Bihan, AC
Van Hove, P
Gadrat, S
Beauceron, S
Beaupere, N
Boudoul, G
Brochet, S
Montoya, CAC
Chasserat, J
Chierici, R
Contardo, D
Depasse, P
El Mamouni, H
Fan, J
Fay, J
Gascon, S
Gouzevitch, M
Ille, B
Kurca, T
Lethuillier, M
Mirabito, L
Perries, S
Alvarez, JDR
Sgandurra, L
Sordini, V
Donckt, MV
Verdier, P
Viret, S
Xiao, H
Tsamalaidze, Z
Autermann, C
Beranek, S
Bontenackels, M
Calpas, B
Edelhoff, M
Feld, L
Hindrichs, O
Klein, K
Ostapchuk, A
Perieanu, A
Raupach, F
Sammet, J
Schael, S
Sprenger, D
Weber, H
Wittmer, B
Zhukov, V
Ata, M
Caudron, J
Dietz-Laursonn, E
Duchardt, D
Erdmann, M
Fischer, R
Guth, A
Hebbeker, T
Heidemann, C
Hoepfner, K
Klingebiel, D
Knutzen, S
Kreuzer, P
Merschmeyer, M
Meyer, A
Olschewski, M
Padeken, K
Papacz, P
Reithler, H
Schmitz, SA
Sonnenschein, L
Teyssier, D
Thuer, S
Weber, M
Cherepanov, V
Erdogan, Y
Flugge, G
Geenen, H
Geisler, M
Ahmad, WH
Hoehle, F
Kargoll, B
Kress, T
Kuessel, Y
Lingemann, J
Nowack, A
Nugent, IM
Perchalla, L
Pooth, O
Stahl, A
Asin, I
Bartosik, N
Behr, J
Behrenhoff, W
Behrens, U
Bell, AJ
Bergholz, M
Bethani, A
Borras, K
Burgmeier, A
Cakir, A
Calligaris, L
Campbell, A
Choudhury, S
Costanza, F
Pardos, CD
Dooling, S
Dorland, T
Eckerlin, G
Eckstein, D
Eichhorn, T
Flucke, G
Geiser, A
Grebenyuk, A
Gunnellini, P
Habib, S
Hauk, J
Hellwig, G
Hempel, M
Horton, D
Jung, H
Kasemann, M
Katsas, P
Kieseler, J
Kleinwort, C
Kraemer, M
Kruecker, D
Lange, W
Leonard, J
Lipka, K
Lohmann, W
Lutz, B
Mankel, R
Marfin, I
Melzer-Pellmann, IA
Meyer, AB
Mnich, J
Mussgiller, A
Naumann-Emme, S
Novgorodova, O
Nowak, F
Ntomari, E
Perrey, H
Petrukhin, A
Pitzl, D
Placakyte, R
Raspereza, A
Cipriano, PMR
Riedl, C
Ron, E
Sahin, MO
Salfeld-Nebgen, J
Saxena, P
Schmidt, R
Schoerner-Sadenius, T
Schrder, M
Stein, M
Trevino, ADRV
Walsh, R
Wissing, C
Martin, MA
Blobel, V
Enderle, H
Erfle, J
Garutti, E
Goebel, K
Gorner, M
Gosselink, M
Haller, J
Hoing, RS
Kirschenmann, H
Klanner, R
Kogler, R
Lange, J
Lapsien, T
Lenz, T
Marchesini, I
Ott, J
Peiffer, T
Pietsch, N
Rathjens, D
Sander, C
Schettler, H
Schleper, P
Schlieckau, E
Schmidt, A
Seidel, M
Sibille, J
Sola, V
Stadie, H
Steinbruck, G
Troendle, D
Usai, E
Vanelderen, L
Barth, C
Baus, C
Berger, J
Boser, C
Butz, E
Chwalek, T
De Boer, W
Descroix, A
Dierlamm, A
Feindt, M
Guthoff, M
Hartmann, F
Hauth, T
Held, H
Hoffmann, KH
Husemann, U
Katkov, I
Kornmayer, A
Kuznetsova, E
Pardo, PL
Martschei, D
Mozer, MU
Muller, T
Niegel, M
Nurnberg, A
Oberst, O
Quast, G
Rabbertz, K
Ratnikov, F
Rocker, S
Schilling, FP
Schott, G
Simonis, HJ
Stober, FM
Ulrich, R
Wagner-Kuhr, J
Wayand, S
Weiler, T
Wolf, R
Zeise, M
Anagnostou, G
Daskalakis, G
Geralis, T
Kesisoglou, S
Kyriakis, A
Loukas, D
Markou, A
Markou, C
Psallidas, A
Topsis-Giotis, I
Gouskos, L
Panagiotou, A
Saoulidou, N
Stiliaris, E
Aslanoglou, X
Evangelou, I
Flouris, G
Foudas, C
Jones, J
Kokkas, P
Manthos, N
Papadopoulos, I
Paradas, E
Bencze, G
Hajdu, C
Hidas, P
Horvath, D
Sikler, F
Veszpremi, V
Vesztergombi, G
Zsigmond, AJ
Beni, N
Czellar, S
Molnar, J
Palinkas, J
Szillasi, Z
Karancsi, J
Raics, P
Trocsanyi, ZL
Ujvari, B
Swain, SK
Beri, SB
Bhatnagar, V
Dhingra, N
Gupta, R
Kaur, M
Mittal, M
Nishu, N
Sharma, A
Singh, JB
Kumar, A
Kumar, A
Ahuja, S
Bhardwaj, A
Choudhary, BC
Kumar, A
Malhotra, S
Naimuddin, M
Ranjan, K
Sharma, V
Shivpuri, RK
Banerjee, S
Bhattacharya, S
Chatterjee, K
Dutta, S
Gomber, B
Jain, S
Jain, S
Khurana, R
Modak, A
Mukherjee, S
Roy, D
Sarkar, S
Sharan, M
Singh, AP
Abdulsalam, A
Dutta, D
Kailas, S
Kumar, V
Mohanty, AK
Pant, LM
Shukla, P
Topkar, A
Aziz, T
Banerjee, S
Chatterjee, RM
Dugad, S
Ganguly, S
Ghosh, S
Guchait, M
Gurtu, A
Kole, G
Kumar, S
Maity, M
Majumder, G
Mazumdar, K
Mohanty, GB
Parida, B
Sudhakar, K
Wickramage, N
Arfaei, H
Bakhshiansohi, H
Behnamian, H
Etesami, SM
Fahim, A
Jafari, A
Khakzad, M
Najafabadi, MM
Naseri, M
Mehdiabadi, SP
Safarzadeh, B
Zeinali, M
Grunewald, M
Abbrescia, M
Barbone, L
Calabria, C
Chhibra, SS
Colaleo, A
Creanza, D
De Filippis, N
De Palma, M
Fiore, L
Iaselli, G
Maggi, G
Maggi, M
Marangelli, B
My, S
Nuzzo, S
Pacifico, N
Pompili, A
Pugliese, G
Radogna, R
Selvaggi, G
Silvestris, L
Singh, G
Venditti, R
Verwilligen, P
Zito, G
Abbiendi, G
Benvenuti, AC
Bonacorsi, D
Braibant-Giacomelli, S
Brigliadori, L
Campanini, R
Capiluppi, P
Castro, A
Cavallo, FR
Codispoti, G
Cuffiani, M
Dallavalle, GM
Fabbri, F
Fanfani, A
Fasanella, D
Giacomelli, P
Grandi, C
Guiducci, L
Marcellini, S
Masetti, G
Meneghelli, M
Montanari, A
Navarria, FL
Odorici, F
Perrotta, A
Primavera, F
Rossi, AM
Rovelli, T
Siroli, GP
Tosi, N
Travaglini, R
Albergo, S
Cappello, G
Chiorboli, M
Costa, S
Giordano, F
Potenza, R
Tricomi, A
Tuve, C
Barbagli, G
Ciulli, V
Civinini, C
D'Alessandro, R
Focardi, E
Gallo, E
Gonzi, S
Gori, V
Lenzi, P
Meschini, M
Paoletti, S
Sguazzoni, G
Tropiano, A
Benussi, L
Bianco, S
Fabbri, F
Piccolo, D
Fabbricatore, P
Ferretti, R
Ferro, F
Lo Vetere, M
Musenich, R
Robutti, E
Tosi, S
Dinardo, ME
Fiorendi, S
Gennai, S
Geros, R
Ghezzi, A
Govoni, P
Lucchini, MT
Malvezzi, S
Manzoni, RA
Martelli, A
Marzocchi, B
Menasce, D
Moroni, L
Paganoni, M
Pedrini, D
Ragazzi, S
Redaelli, N
de Fatis, TT
Buontempo, S
Cavallo, N
Di Guida, S
Fabozzi, F
Iorio, AOM
Lista, L
Meola, S
Merola, M
Paolucci, P
Azzi, P
Bellato, M
Biasotto, M
Bisello, D
Branca, A
Checchia, P
Dorigo, T
Dosselli, U
Fanzago, F
Galanti, M
Gasparini, F
Gasparini, U
Giubilato, P
Gonella, F
Gozzelino, A
Kanishchev, K
Lacaprara, S
Lazzizzera, I
Margoni, M
Meneguzzo, AT
Pazzini, J
Pozzobon, N
Ronchese, P
Simonetto, F
Torassa, E
Tosi, M
Zotto, P
Zucchetta, A
Zumerle, G
Gabusi, M
Ratti, SP
Riccardi, C
Salvini, P
Vitulo, P
Biasini, M
Bilei, GM
Fano, L
Lariccia, P
Mantovani, G
Menichelli, M
Romeo, F
Saha, A
Santocchia, A
Spiezia, A
Androsov, K
Azzurri, P
Bagliesi, G
Bernardini, J
Boccali, T
Broccolo, G
Castaldi, R
Ciocci, MA
Dell'Orsoa, R
Donato, S
Fiori, F
Foa, L
Giassi, A
Grippo, MT
Kraan, A
Ligabue, F
Lomtadze, T
Martini, L
Messineo, A
Moon, CS
Palla, F
Rizzi, A
Savoy-Navarro, A
Serban, AT
Spagnolo, P
Squillacioti, P
Tenchini, R
Tonelli, G
Venturi, A
Verdini, PG
Vernieri, C
Barone, L
Cavallari, F
Del Re, D
Diemoz, M
Grassi, M
Jorda, C
Longo, E
Margaroli, F
Meridiani, P
Micheli, F
Nourbakhsh, S
Organtini, G
Paramatti, R
Rahatlou, S
Rovelli, C
Soffi, L
Traczyk, P
Amapane, N
Arcidiacono, R
Argiro, S
Arneodo, M
Bellan, R
Biino, C
Cartiglia, N
Casasso, S
Costa, M
Degano, A
Demaria, N
Mariotti, C
Maselli, S
Migliore, E
Monaco, V
Musich, M
Obertino, MM
Ortona, G
Pacher, L
Pastrone, N
Pelliccioni, M
Potenza, A
Romero, A
Ruspa, M
Sacchi, R
Solano, A
Staiano, A
Tamponi, U
Belforte, S
Candelise, V
Casarsa, M
Cossutti, F
Della Ricca, G
Gobbo, B
La Licata, C
Marone, M
Montanino, D
Penzo, A
Schizzi, A
Umer, T
Zanetti, A
Chang, S
Kim, TY
Nam, SK
Kim, DH
Kim, GN
Kim, JE
Kim, MS
Kong, DJ
Lee, S
Oh, YD
Park, H
Sakharov, A
Son, DC
Kim, JY
Kim, ZJ
Song, S
Choi, S
Gyun, D
Hong, B
Jo, M
Kim, H
Kim, Y
Lee, B
Lee, KS
Park, SK
Roh, Y
Choi, M
Kim, JH
Park, C
Park, IC
Park, S
Ryu, G
Choi, Y
Choi, YK
Goh, J
Kwon, E
Lee, J
Seo, H
Yu, I
Juodagalvis, A
Komaragiri, JR
Castilla-Valdez, H
De la Cruz-Burelo, E
Heredia-de La Cruz, I
Lopez-Fernandez, R
Martinez-Ortega, J
Sanchez-Hernandez, A
Villasenor-Cendejas, LM
Moreno, SC
Valencia, FV
Ibarguen, HAS
Linares, EC
Pineda, AM
Krofcheck, D
Butler, PH
Doesburg, R
Reucroft, S
Ahmad, A
Ahmad, M
Asghar, MI
Butt, J
Hassan, Q
Hoorani, HR
Khan, WA
Khurshid, T
Qazi, S
Shah, MA
Shoaib, M
Bialkowska, H
Bluj, M
Boimska, B
Frueboes, T
Gorski, M
Kazana, M
Nawrocki, K
Romanowska-Rybinska, K
Szleper, M
Wrochna, G
Zalewski, P
Brona, G
Bunkowski, K
Cwiok, M
Dominik, W
Doroba, K
Kalinowski, A
Konecki, M
Krolikowski, J
Misiura, M
Wolszczak, W
Bargassa, P
Silva, CBDCE
Faccioli, P
Parracho, PGF
Gallinaro, M
Nguyen, F
Antunes, JR
Seixas, J
Varela, J
Vischia, P
Golutvin, I
Karjavin, V
Konoplyanikov, V
Korenkov, V
Kozlov, G
Lanev, A
Malakhov, A
Matveev, V
Mitsyn, VV
Moisenz, P
Palichik, V
Perelygin, V
Shmatov, S
Shulha, S
Skatchkov, N
Smirnov, V
Tikhonenko, E
Zarubin, A
Golovtsov, V
Ivanov, Y
Kim, V
Levchenko, P
Murzin, V
Oreshkin, V
Smirnov, I
Sulimov, V
Uvarov, L
Vavilov, S
Vorobyev, A
Vorobyev, A
Andreev, Y
Dermenev, A
Gninenko, S
Golubev, N
Kirsanov, M
Krasnikov, N
Pashenkov, A
Tlisov, D
Toropin, A
Epshteyn, V
Gavrilov, V
Lychkovskaya, N
Popov, V
Safronov, G
Semenov, S
Spiridonov, A
Stolin, V
Vlasov, E
Zhokin, A
Andreev, V
Azarkin, M
Dremin, I
Kirakosyan, M
Leonidov, A
Mesyats, G
Rusakov, SV
Vinogradov, A
Belyaev, A
Boos, E
Dubinin, M
Dudko, L
Ershov, A
Gribushin, A
Klyukhin, V
Kodolova, O
Lokhtin, I
Obraztsov, S
Petrushanko, S
Savrin, V
Snigirev, A
Azhgirey, I
Bayshev, I
Bitioukov, S
Kachanov, V
Kalinin, A
Konstantinov, D
Krychkine, V
Petrov, V
Ryutin, R
Sobol, A
Tourtchanovitch, L
Troshin, S
Tyurin, N
Uzunian, A
Volkov, A
Adzic, P
Dordevic, M
Ekmedzic, M
Milosevic, J
Aguilar-Benitez, M
Maestre, JA
Battilana, C
Calvo, E
Cerrada, M
Llatas, MC
Colino, N
De la Cruz, B
Peris, AD
Vazquez, DD
Bedoya, CF
Ramos, JPF
Ferrando, A
Flix, J
Fouz, MC
Garcia-Abia, P
Lopez, OG
Lopez, SG
Hernandez, JM
Josa, MI
Merino, G
De Martino, EN
Yzquierdo, APC
Pelayo, JP
Olmeda, AQ
Redondo, I
Romero, L
Soares, MS
Willmott, C
Albajar, C
de Troconiz, JF
Missiroli, M
Brun, H
Cuevas, J
Menendez, JF
Folgueras, S
Caballero, IG
Iglesias, LL
Cifuentes, JAB
Cabrillo, IJ
Calderon, A
Campderros, JD
Fernandez, M
Gomez, G
Sanchez, JG
Graziano, A
Virto, AL
Marco, J
Marco, R
Rivero, CM
Matorras, F
Sanchez, FJM
Gomez, JP
Rodrigo, T
Rodrguez-Marrero, AY
Ruiz-Jimeno, A
Scodellaro, L
Vila, I
Cortabitarte, RV
Abbaneo, D
Auffray, E
Auzinger, G
Bachtis, M
Baillon, P
Ball, AH
Barney, D
Benaglia, A
Bendavid, J
Benhabib, L
Benitez, JF
Bernet, C
Bianchi, G
Bloch, P
Bocci, A
Bonato, A
Bondu, O
Botta, C
Breuker, H
Camporesi, T
Cerminara, G
Christiansen, T
Perez, JAC
Colafranceschi, S
D'Alfonso, M
d'Enterria, D
Dabrowski, A
David, A
De Guio, F
De Roeck, A
De Visscher, S
Dobson, M
Dupont-Sagorin, N
Elliott-Peisert, A
Eugster, J
Franzoni, G
Funk, W
Giffels, M
Gigi, D
Gill, K
Giordano, D
Girone, M
Giunta, M
Glege, F
Garrido, RGR
Gowdy, S
Guida, R
Hammer, J
Hansen, M
Harris, P
Hegeman, J
Innocente, V
Janot, P
Karavakis, E
Kousouris, K
Krajczar, K
Lecoq, P
Lourenco, C
Magini, N
Malgeri, L
Mannelli, M
Masetti, L
Meijers, F
Mersi, S
Meschi, E
Moortgat, F
Mulders, M
Musella, P
Orsini, L
Cortezon, EP
Pape, L
Perez, E
Perrozzi, L
Petrilli, A
Petrucciani, G
Pfeiffer, A
Pierini, M
Pimia, M
Piparo, D
Plagge, M
Racz, A
Reece, W
Rolandi, G
Rovere, M
Sakulin, H
Santanastasio, F
Sch,Fer, C
Schwick, C
Sekmen, S
Sharma, A
Siegrist, P
Silva, P
Simon, M
Sphicas, P
Spiga, D
Steggemann, J
Stieger, B
Stoye, M
Treille, D
Tsirou, A
Veres, GI
Vlimant, JR
Wohri, HK
Zeuner, WD
Bertl, W
Deiters, K
Erdmann, W
Horisberger, R
Ingram, Q
Kaestli, HC
Konig, S
Kotlinski, D
Langenegger, U
Renker, D
Rohe, T
Bachmair, F
Bani, L
Bianchini, L
Bortignon, P
Buchmann, MA
Casal, B
Chanon, N
Deisher, A
Dissertori, G
Dittmar, M
Donega, M
Dunser, M
Eller, P
Grab, C
Hits, D
Lustermann, W
Mangano, B
Marini, AC
Del Arbol, PMR
Meister, D
Mohr, N
Nageli, C
Nef, P
Nessi-Tedaldi, F
Pandolfi, F
Pauss, F
Peruzzi, M
Quittnat, M
Rebane, L
Ronga, FJ
Rossini, M
Starodumov, A
Takahashi, M
Theofilatos, K
Wallny, R
Weber, HA
Amsler, C
Canelli, MF
Chiochia, V
De Cosa, A
Favaro, C
Hinzmann, A
Hreus, T
Rikova, MI
Kilminster, B
Mejias, BM
Ngadiuba, J
Robmann, P
Snoek, H
Taroni, S
Verzetti, M
Yang, Y
Cardaci, M
Chen, KH
Ferro, C
Kuo, CM
Li, SW
Lin, W
Lu, YJ
Volpe, R
Yu, SS
Bartalini, P
Chang, P
Chang, YH
Chang, YW
Chao, Y
Chen, KF
Chen, PH
Dietz, C
Grundler, U
Hou, WS
Hsiung, Y
Kao, KY
Lei, YJ
Liu, YF
Lu, RS
Majumder, D
Petrakou, E
Shi, X
Shiu, JG
Tzeng, YM
Wang, M
Wilken, R
Asavapibhop, B
Suwonjandee, N
Adiguzel, A
Bakirci, MN
Cerci, S
Dozen, C
Dumanoglu, I
Eskut, E
Girgis, S
Gokbulut, G
Gurpinar, E
Hos, I
Kangal, EE
Topaksu, AK
Onengut, G
Ozdemir, K
Ozturk, S
Polatoz, A
Sogut, K
Cerci, DS
Tali, B
Topakli, H
Vergili, M
Akin, IV
Aliev, T
Bilin, B
Bilmis, S
Deniz, M
Gamsizkan, H
Guler, AM
Karapinar, G
Ocalan, K
Ozpineci, A
Serin, M
Sever, R
Surat, UE
Yalvac, M
Zeyrek, M
Gulmez, E
Isildak, B
Kaya, M
Kaya, O
Ozkorucuklu, S
Bahtiyar, H
Barlas, E
Cankocak, K
Gunaydin, YO
Vardarli, FI
Yucel, M
Levchuk, L
Sorokin, P
Brooke, JJ
Clement, E
Cussans, D
Flacher, H
Frazier, R
Goldstein, J
Grimes, M
Heath, GP
Heath, HF
Jacob, J
Kreczko, L
Lucas, C
Meng, Z
Newbold, DM
Paramesvaran, S
Poll, A
Senkin, S
Smith, VJ
Williams, T
Bell, KW
Belyaev, A
Brew, C
Brown, RM
Cockerill, DJA
Coughlan, JA
Harder, K
Harper, S
Ilic, J
Olaiya, E
Petyt, D
Shepherd-Themistocleous, CH
Thea, A
Tomalin, IR
Womersley, WJ
Worm, SD
Baber, M
Bainbridge, R
Buchmuller, O
Burton, D
Colling, D
Cripps, N
Cutajar, M
Dauncey, P
Davies, G
Della Negra, M
Ferguson, W
Fulcher, J
Futyan, D
Gilbert, A
Bryer, AG
Hall, G
Hatherell, Z
Hays, J
Iles, G
Jarvis, M
Karapostoli, G
Kenzie, M
Lane, R
Lucas, R
Lyons, L
Magnan, AM
Marrouche, J
Mathias, B
Nandi, R
Nash, J
Nikitenko, A
Pela, J
Pesaresi, M
Petridis, K
Pioppi, M
Raymond, DM
Rogerson, S
Rose, A
Seez, C
Sharp, P
Sparrow, A
Tapper, A
Acosta, MV
Virdee, T
Wakefield, S
Wardle, N
Cole, JE
Hobson, PR
Khan, A
Kyberd, P
Leggat, D
Leslie, D
Martin, W
Reid, ID
Symonds, P
Teodorescu, L
Turner, M
Dittmann, J
Hatakeyama, K
Kasmi, A
Liu, H
Scarborough, T
Charaf, O
Cooper, SI
Henderson, C
Rumerio, P
Avetisyan, A
Bose, T
Fantasia, C
Heister, A
Lawson, P
Lazic, D
Richardson, C
Rohlf, J
Sperka, D
St John, J
Sulak, L
Alimena, J
Bhattacharya, S
Christopher, G
Cutts, D
Demiragli, Z
Ferapontov, A
Garabedian, A
Heintz, U
Jabeen, S
Kukartsev, G
Laird, E
Landsberg, G
Luk, M
Narain, M
Segala, M
Sinthuprasith, T
Speer, T
Swanson, J
Breedon, R
Breto, G
Sanchez, MCD
Chauhan, S
Chertok, M
Conway, J
Conway, R
Cox, PT
Erbacher, R
Gardner, M
Ko, W
Kopecky, A
Lander, R
Miceli, T
Mulhearn, M
Pellett, D
Pilot, J
Ricci-Tam, F
Rutherford, B
Searle, M
Shalhout, S
Smith, J
Squires, M
Tripathi, M
Wilbur, S
Yohay, R
Andreev, V
Cline, D
Cousins, R
Erhan, S
Everaerts, P
Farrell, C
Felcini, M
Hauser, J
Ignatenko, M
Jarvis, C
Rakness, G
Schlein, P
Takasugi, E
Valuev, V
Weber, M
Babb, J
Clare, R
Ellison, J
Gary, JW
Hanson, G
Heilman, J
Jandir, P
Lacroix, F
Liu, H
Long, OR
Luthra, A
Malberti, M
Nguyen, H
Shrinivas, A
Sturdy, J
Sumowidagdo, S
Wimpenny, S
Andrews, W
Branson, JG
Cerati, GB
Cittolin, S
D'Agnolo, RT
Evans, D
Holzner, A
Kelley, R
Kovalskyi, D
Lebourgeois, M
Letts, J
Macneill, I
Padhi, S
Palmer, C
Pieri, M
Sani, M
Sharma, V
Simon, S
Sudano, E
Tadel, M
Tu, Y
Vartak, A
Wasserbaech, S
Wurthwein, F
Yagil, A
Yoo, J
Barge, D
Bradmiller-Feld, J
Campagnari, C
Danielson, T
Dishaw, A
Flowers, K
Sevilla, MF
Geffert, P
George, C
Golf, F
Incandela, J
Justus, C
Villalba, RM
Mccoll, N
Pavlunin, V
Richman, J
Rossin, R
Stuart, D
To, W
West, C
Apresyan, A
Bornheim, A
Bunn, J
Chen, Y
Di Marco, E
Duarte, J
Kcira, D
Mott, A
Newman, HB
Pena, C
Rogan, C
Spiropulu, M
Timciuc, V
Wilkinson, R
Xie, S
Zhu, RY
Azzolini, V
Calamba, A
Carroll, R
Ferguson, T
Iiyama, Y
Jang, DW
Paulini, M
Russ, J
Vogel, H
Vorobiev, I
Cumalat, JP
Drell, BR
Ford, WT
Gaz, A
Lopez, EL
Nauenberg, U
Smith, JG
Stenson, K
Ulmer, KA
Wagner, SR
Alexander, J
Chatterjee, A
Chu, J
Eggert, N
Gibbons, LK
Hopkins, W
Khukhunaishvili, A
Kreis, B
Mirman, N
Kaufman, GN
Patterson, JR
Ryd, A
Salvati, E
Sun, W
Teo, WD
Thom, J
Thompson, J
Tucker, J
Weng, Y
Winstrom, L
Wittich, P
Winn, D
Abdullin, S
Albrow, M
Anderson, J
Apollinari, G
Bauerdick, LAT
Beretvas, A
Berryhill, J
Bhat, PC
Burkett, K
Butler, JN
Chetluru, V
Cheung, HWK
Chlebana, F
Cihangir, S
Elvira, VD
Fisk, I
Freeman, J
Gao, Y
Gottschalk, E
Gray, L
Green, D
Grunendahl, S
Gutsche, O
Hare, D
Harris, RM
Hirschauer, J
Hooberman, B
Jindariani, S
Johnson, M
Joshi, U
Kaadze, K
Klima, B
Kwan, S
Linacre, J
Lincoln, D
Lipton, R
Lykken, J
Maeshima, K
Marraffino, JM
Outschoorn, VIM
Maruyama, S
Mason, D
McBride, P
Mishra, K
Mrenna, S
Musienko, Y
Nahn, S
Newman-Holmes, C
O'Dell, V
Prokofyev, O
Ratnikova, N
Sexton-Kennedy, E
Sharma, S
Spalding, WJ
Spiegel, L
Taylor, L
Tkaczyk, S
Tran, NV
Uplegger, L
Vaandering, EW
Vidal, R
Whitbeck, A
Whitmore, J
Wu, W
Yang, F
Yun, JC
Acosta, D
Avery, P
Bourilkov, D
Cheng, T
Das, S
De Gruttola, M
Di Giovanni, GP
Dobur, D
Field, RD
Fisher, M
Fu, Y
Furic, IK
Hugon, J
Kim, B
Konigsberg, J
Korytov, A
Kropivnitskaya, A
Kypreos, T
Low, JF
Matchev, K
Milenovic, P
Mitselmakher, G
Muniz, L
Rinkevicius, A
Shchutska, L
Skhirtladze, N
Snowball, M
Yelton, J
Zakaria, M
Gaultney, V
Hewamanage, S
Linn, S
Markowitz, P
Martinez, G
Rodriguez, JL
Adams, T
Askew, A
Bochenek, J
Chen, J
Diamond, B
Haas, J
Hagopian, S
Hagopian, V
Johnson, KF
Prosper, H
Veeraraghavan, V
Weinberg, M
Baarmand, MM
Dorney, B
Hohlmann, M
Kalakhety, H
Yumiceva, F
Adams, MR
Apanasevich, L
Bazterra, VE
Betts, RR
Bucinskaite, I
Cavanaugh, R
Evdokimov, O
Gauthier, L
Gerber, CE
Hofman, DJ
Khalatyan, S
Kurt, P
Moon, DH
O'Brien, C
Silkworth, C
Turner, P
Varelas, N
Akgun, U
Albayrak, EA
Bilki, B
Clarida, W
Dilsiz, K
Duru, F
Haytmyradov, M
Merlo, JP
Mermerkaya, H
Mestvirishvili, A
Moeller, A
Nachtman, J
Ogul, H
Onel, Y
Ozok, F
Rahmat, R
Sen, S
Tan, P
Tiras, E
Wetzel, J
Yetkin, T
Yi, K
Barnett, BA
Blumenfeld, B
Bolognesi, S
Fehling, D
Gritsan, AV
Maksimovic, P
Martin, C
Swartz, M
Baringer, P
Bean, A
Benelli, G
Gray, J
Kenny, RP
Murray, M
Noonan, D
Sanders, S
Sekaric, J
Stringer, R
Wang, Q
Wood, JS
Barfuss, AF
Chakaberia, I
Ivanov, A
Khalil, S
Makouski, M
Maravin, Y
Saini, LK
Shrestha, S
Svintradze, I
Gronberg, J
Lange, D
Rebassoo, F
Wright, D
Baden, A
Calvert, B
Eno, SC
Gomez, JA
Hadley, NJ
Kellogg, RG
Kolberg, T
Lu, Y
Marionneau, M
Mignerey, AC
Pedro, K
Skuja, A
Temple, J
Tonjes, MB
Tonwar, SC
Apyan, A
Barbieri, R
Bauer, G
Busza, W
Cali, IA
Chan, M
Di Matteo, L
Dutta, V
Ceballos, GG
Goncharov, M
Gulhan, D
Klute, M
Lai, YS
Lee, YJ
Levin, A
Luckey, PD
Ma, T
Paus, C
Ralph, D
Roland, C
Roland, G
Stephans, GSF
Stockli, F
Sumorok, K
Velicanu, D
Veverka, J
Wyslouch, B
Yang, M
Yoon, AS
Zanetti, M
Zhukova, V
Dahmes, B
De Benedetti, A
Gude, A
Kao, SC
Klapoetke, K
Kubota, Y
Mans, J
Pastika, N
Rusack, R
Singovsky, A
Tambe, N
Turkewitz, J
Acosta, JG
Cremaldi, LM
Kroeger, R
Oliveros, S
Perera, L
Sanders, DA
Summers, D
Avdeeva, E
Bloom, K
Bose, S
Claes, DR
Dominguez, A
Suarez, RG
Keller, J
Knowlton, D
Kravchenko, I
Lazo-Flores, J
Malik, S
Meier, F
Snow, GR
Dolen, J
Godshalk, A
Iashvili, I
Jain, S
Kharchilava, A
Kumar, A
Rappoccio, S
Alverson, G
Barberis, E
Baumgartel, D
Chasco, M
Haley, J
Massironi, A
Nash, D
Orimoto, T
Trocino, D
Wood, D
Zhang, J
Anastassov, A
Hahn, KA
Kubik, A
Lusito, L
Mucia, N
Odell, N
Pollack, B
Pozdnyakov, A
Schmitt, M
Stoynev, S
Sung, K
Velasco, M
Won, S
Berry, D
Brinkerhoff, A
Chan, KM
Drozdetskiy, A
Hildreth, M
Jessop, C
Karmgard, DJ
Kellams, N
Kolb, J
Lannon, K
Luo, W
Lynch, S
Marinelli, N
Morse, DM
Pearson, T
Planer, M
Ruchti, R
Slaunwhite, J
Valls, N
Wayne, M
Wolf, M
Woodard, A
Antonelli, L
Bylsma, B
Durkin, LS
Flowers, S
Hill, C
Hughes, R
Kotov, K
Ling, TY
Puigh, D
Rodenburg, M
Smith, G
Vuosalo, C
Winer, BL
Wolfe, H
Wulsin, HW
Berry, E
Elmer, P
Halyo, V
Hebda, P
Hunt, A
Jindal, P
Koay, SA
Lujan, P
Marlow, D
Medvedeva, T
Mooney, M
Olsen, J
Piroue, P
Quan, X
Raval, A
Saka, H
Stickland, D
Tully, C
Werner, JS
Zenz, SC
Zuranski, A
Brownson, E
Lopez, A
Mendez, H
Vargas, JER
Alagoz, E
Benedetti, D
Bolla, G
Bortoletto, D
De Mattia, M
Everett, A
Hu, Z
Jha, MK
Jones, M
Jung, K
Kress, M
Leonardo, N
Pegna, DL
Maroussov, V
Merkel, P
Miller, DH
Neumeister, N
Radburn-Smith, BC
Shipsey, I
Silvers, D
Svyatkovskiy, A
Wang, F
Xie, W
Xu, L
Yoo, HD
Zablocki, J
Zheng, Y
Parashar, N
Adair, A
Akgun, B
Ecklund, KM
Geurts, FJM
Li, W
Michlin, B
Padley, BP
Redjimi, R
Roberts, J
Zabel, J
Betchart, B
Bodek, A
Covarelli, R
de Barbaro, P
Demina, R
Eshaq, Y
Ferbel, T
Garcia-Bellido, A
Goldenzweig, P
Han, J
Harel, A
Miner, DC
Petrillo, G
Vishnevskiy, D
Zielinski, M
Bhatti, A
Ciesielski, R
Demortier, L
Goulianos, K
Lungu, G
Malik, S
Mesropian, C
Arora, S
Barker, A
Chou, JP
Contreras-Campana, C
Contreras-Campana, E
Duggan, D
Ferencek, D
Gershtein, Y
Gray, R
Halkiadakis, E
Hidas, D
Lath, A
Panwalkar, S
Park, M
Patel, R
Rekovic, V
Robles, J
Salur, S
Schnetzer, S
Seitz, C
Somalwar, S
Stone, R
Thomas, S
Thomassen, P
Walker, M
Rose, K
Spanier, S
Yang, ZC
York, A
Bouhali, O
Eusebi, R
Flanagan, W
Gilmore, J
Kamon, T
Khotilovich, V
Krutelyov, V
Montalvo, R
Osipenkov, I
Pakhotin, Y
Perloff, A
Roe, J
Safonov, A
Sakuma, T
Suarez, I
Tatarinov, A
Toback, D
Akchurin, N
Cowden, C
Damgov, J
Dragoiu, C
Dudero, PR
Faulkner, J
Kovitanggoon, K
Kunori, S
Lee, SW
Libeiro, T
Volobouev, I
Appelt, E
Delannoy, AG
Greene, S
Gurrola, A
Johns, W
Maguire, C
Mao, Y
Melo, A
Sharma, M
Sheldon, P
Snook, B
Tuo, S
Velkovska, J
Arenton, MW
Boutle, S
Cox, B
Francis, B
Goodell, J
Hirosky, R
Ledovskoy, A
Li, H
Lin, C
Neu, C
Wood, J
Gollapinni, S
Harr, R
Karchin, PE
Don, CKK
Lamichhane, P
Belknap, DA
Borrello, L
Carlsmith, D
Cepeda, M
Dasu, S
Duric, S
Friis, E
Grothe, M
Hall-Wilton, R
Herndon, M
Herve, A
Klabbers, P
Klukas, J
Lanaro, A
Lazaridis, C
Levine, A
Loveless, R
Mohapatra, A
Ojalvo, I
Perry, T
Pierro, GA
Polese, G
Ross, I
Sarangi, T
Savin, A
Smith, WH
Woods, N
AF Chatrchyan, S.
Khachatryan, V.
Sirunyan, A. M.
Tumasyan, A.
Adam, W.
Bergauer, T.
Dragicevic, M.
Eroe, J.
Fabjan, C.
Friedl, M.
Fruehwirth, R.
Ghete, V. M.
Hartl, C.
Hoermann, N.
Hrubec, J.
Jeitler, M.
Kiesenhofer, W.
Knuenz, V.
Krammer, M.
Kraetschmer, I.
Liko, D.
Mikulec, I.
Rabady, D.
Rahbaran, B.
Rohringer, H.
Schoefbeck, R.
Strauss, J.
Taurok, A.
Treberer-Treberspurg, W.
Waltenberger, W.
Wulz, C. -E.
Mossolov, V.
Shumeiko, N.
Gonzalez, J. Suarez
Alderweireldt, S.
Bansal, M.
Bansal, S.
Cornelis, T.
De Wolf, E. A.
Janssen, X.
Knutsson, A.
Luyckx, S.
Ochesanu, S.
Roland, B.
Rougny, R.
Van Haevermaet, H.
Van Mechelen, P.
Van Remortel, N.
Van Spilbeeck, A.
Blekman, F.
Blyweert, S.
D'Hondt, J.
Heracleous, N.
Kalogeropoulos, A.
Keaveney, J.
Kim, T. J.
Lowette, S.
Maes, M.
Olbrechts, A.
Strom, D.
Tavernier, S.
Van Doninck, W.
Van Mulders, P.
Van Onsem, G. P.
Villella, I.
Caillol, C.
Clerbaux, B.
De Lentdecker, G.
Favart, L.
Gay, A. P. R.
Leonard, A.
Marage, P. E.
Mohammadi, A.
Pernie, L.
Reis, T.
Seva, T.
Thomas, L.
Vander Velde, C.
Vanlaer, P.
Wang, J.
Adler, V.
Beernaert, K.
Benucci, L.
Cimmino, A.
Costantini, S.
Crucy, S.
Dildick, S.
Garcia, G.
Klein, B.
Lellouch, J.
Mccartin, J.
Rios, A. A. Ocampo
Ryckbosch, D.
Diblen, S. Salva
Sigamani, M.
Strobbe, N.
Thyssen, F.
Tytgat, M.
Walsh, S.
Yazgan, E.
Zaganidis, N.
Basegmez, S.
Beluffi, C.
Bruno, G.
Castello, R.
Caudron, A.
Ceard, L.
Da Silveira, G. G.
Delaere, C.
du Pree, T.
Favart, D.
Forthomme, L.
Giammanco, A.
Hollar, J.
Jez, P.
Komm, M.
Lemaitre, V.
Liao, J.
Militaru, O.
Nuttens, C.
Pagano, D.
Pin, A.
Piotrzkowski, K.
Popov, A.
Quertenmont, L.
Selvaggi, M.
Marono, M. Vidal
Garcia, J. M. Vizan
Beliy, N.
Caebergs, T.
Daubie, E.
Hammad, G. H.
Alves, G. A.
Martins Junior, M. Correa
Martins, T. Dos Reis
Pol, M. E.
Souza, M. H. G.
Alda Junior, W. L.
Carvalho, W.
Chinellato, J.
Custodio, A.
Da Costa, E. M.
Damiao, D. De Jesus
Martins, C. De Oliveira
De Souza, S. Fonseca
Malbouisson, H.
Malek, M.
Figueiredo, D. Matos
Mundim, L.
Nogima, H.
Da Silva, W. L. Prado
Santaolalla, J.
Santoro, A.
Sznajder, A.
Manganote, E. J. Tonelli
Pereira, A. Vilela
Bernardes, C. A.
Dias, F. A.
Tomei, T. R. Fernandez Perez
Gregores, E. M.
Mercadante, P. G.
Novaes, S. F.
Padula, Sandra S.
Genchev, V.
Iaydjiev, P.
Marinov, A.
Piperov, S.
Rodozov, M.
Sultanov, G.
Vutova, M.
Dimitrov, A.
Glushkov, I.
Hadjiiska, R.
Kozhuharov, V.
Litov, L.
Pavlov, B.
Petkov, P.
Bian, J. G.
Chen, G. M.
Chen, H. S.
Chen, M.
Du, R.
Jiang, C. H.
Liang, D.
Liang, S.
Meng, X.
Plestina, R.
Tao, J.
Wang, X.
Wang, Z.
Asawatangtrakuldee, C.
Ban, Y.
Guo, Y.
Li, Q.
Li, W.
Liu, S.
Mao, Y.
Qian, S. J.
Wang, D.
Zhang, L.
Zou, W.
Avila, C.
Sierra, L. F. Chaparro
Florez, C.
Gomez, J. P.
Moreno, B. Gomez
Sanabria, J. C.
Godinovic, N.
Lelas, D.
Polic, D.
Puljak, I.
Antunovic, Z.
Kovac, M.
Brigljevic, V.
Kadija, K.
Luetic, J.
Mekterovic, D.
Morovic, S.
Sudic, L.
Attikis, A.
Mavromanolakis, G.
Mousa, J.
Nicolaou, C.
Ptochos, F.
Razis, P. A.
Finger, M.
Finger, M., Jr.
Assran, Y.
Elgammal, S.
Kamel, A. Ellithi
Mahmoud, M. A.
Mahrous, A.
Radi, A.
Kadastik, M.
Muentel, M.
Murumaa, M.
Raidal, M.
Tiko, A.
Eerola, P.
Fedi, G.
Voutilainen, M.
Haerkoenen, J.
Karimaeki, V.
Kinnunen, R.
Kortelainen, M. J.
Lampen, T.
Lassila-Perini, K.
Lehti, S.
Linden, T.
Luukka, P.
Maenpaa, T.
Peltola, T.
Tuominen, E.
Tuominiemi, J.
Tuovinen, E.
Wendland, L.
Tuuva, T.
Besancon, M.
Couderc, F.
Dejardin, M.
Denegri, D.
Fabbro, B.
Faure, J. L.
Ferri, F.
Ganjour, S.
Givernaud, A.
Gras, P.
de Monchenault, G. Hamel
Jarry, P.
Locci, E.
Malcles, J.
Nayak, A.
Rander, J.
Rosowsky, A.
Titov, M.
Baffioni, S.
Beaudette, F.
Busson, P.
Charlot, C.
Daci, N.
Dahms, T.
Dalchenko, M.
Dobrzynski, L.
Filipovic, N.
Florent, A.
de Cassagnac, R. Granier
Mastrolorenzo, L.
Mine, P.
Mironov, C.
Naranjo, I. N.
Nguyen, M.
Ochando, C.
Paganini, P.
Sabes, D.
Salerno, R.
Sauvan, J. B.
Sirois, Y.
Veelken, C.
Yilmaz, Y.
Zabi, A.
Agram, J. -L.
Andrea, J.
Bloch, D.
Brom, J. -M.
Chabert, E. C.
Collard, C.
Conte, E.
Drouhin, F.
Fontaine, J. -C.
Gele, D.
Goerlach, U.
Goetzmann, C.
Juillot, P.
Le Bihan, A. -C.
Van Hove, P.
Gadrat, S.
Beauceron, S.
Beaupere, N.
Boudoul, G.
Brochet, S.
Montoya, C. A. Carrillo
Chasserat, J.
Chierici, R.
Contardo, D.
Depasse, P.
El Mamouni, H.
Fan, J.
Fay, J.
Gascon, S.
Gouzevitch, M.
Ille, B.
Kurca, T.
Lethuillier, M.
Mirabito, L.
Perries, S.
Alvarez, J. D. Ruiz
Sgandurra, L.
Sordini, V.
Donckt, M. Vander
Verdier, P.
Viret, S.
Xiao, H.
Tsamalaidze, Z.
Autermann, C.
Beranek, S.
Bontenackels, M.
Calpas, B.
Edelhoff, M.
Feld, L.
Hindrichs, O.
Klein, K.
Ostapchuk, A.
Perieanu, A.
Raupach, F.
Sammet, J.
Schael, S.
Sprenger, D.
Weber, H.
Wittmer, B.
Zhukov, V.
Ata, M.
Caudron, J.
Dietz-Laursonn, E.
Duchardt, D.
Erdmann, M.
Fischer, R.
Gueth, A.
Hebbeker, T.
Heidemann, C.
Hoepfner, K.
Klingebiel, D.
Knutzen, S.
Kreuzer, P.
Merschmeyer, M.
Meyer, A.
Olschewski, M.
Padeken, K.
Papacz, P.
Reithler, H.
Schmitz, S. A.
Sonnenschein, L.
Teyssier, D.
Thueer, S.
Weber, M.
Cherepanov, V.
Erdogan, Y.
Flugge, G.
Geenen, H.
Geisler, M.
Ahmad, W. Haj
Hoehle, F.
Kargoll, B.
Kress, T.
Kuessel, Y.
Lingemann, J.
Nowack, A.
Nugent, I. M.
Perchalla, L.
Pooth, O.
Stahl, A.
Asin, I.
Bartosik, N.
Behr, J.
Behrenhoff, W.
Behrens, U.
Bell, A. J.
Bergholz, M.
Bethani, A.
Borras, K.
Burgmeier, A.
Cakir, A.
Calligaris, L.
Campbell, A.
Choudhury, S.
Costanza, F.
Pardos, C. Diez
Dooling, S.
Dorland, T.
Eckerlin, G.
Eckstein, D.
Eichhorn, T.
Flucke, G.
Geiser, A.
Grebenyuk, A.
Gunnellini, P.
Habib, S.
Hauk, J.
Hellwig, G.
Hempel, M.
Horton, D.
Jung, H.
Kasemann, M.
Katsas, P.
Kieseler, J.
Kleinwort, C.
Kraemer, M.
Kruecker, D.
Lange, W.
Leonard, J.
Lipka, K.
Lohmann, W.
Lutz, B.
Mankel, R.
Marfin, I.
Melzer-Pellmann, I-A.
Meyer, A. B.
Mnich, J.
Mussgiller, A.
Naumann-Emme, S.
Novgorodova, O.
Nowak, F.
Ntomari, E.
Perrey, H.
Petrukhin, A.
Pitzl, D.
Placakyte, R.
Raspereza, A.
Cipriano, P. M. Ribeiro
Riedl, C.
Ron, E.
Sahin, M. O.
Salfeld-Nebgen, J.
Saxena, P.
Schmidt, R.
Schoerner-Sadenius, T.
Schrder, M.
Stein, M.
Trevino, A. D. R. Vargas
Walsh, R.
Wissing, C.
Martin, M. Aldaya
Blobel, V.
Enderle, H.
Erfle, J.
Garutti, E.
Goebel, K.
Gorner, M.
Gosselink, M.
Haller, J.
Hoing, R. S.
Kirschenmann, H.
Klanner, R.
Kogler, R.
Lange, J.
Lapsien, T.
Lenz, T.
Marchesini, I.
Ott, J.
Peiffer, T.
Pietsch, N.
Rathjens, D.
Sander, C.
Schettler, H.
Schleper, P.
Schlieckau, E.
Schmidt, A.
Seidel, M.
Sibille, J.
Sola, V.
Stadie, H.
Steinbruck, G.
Troendle, D.
Usai, E.
Vanelderen, L.
Barth, C.
Baus, C.
Berger, J.
Boser, C.
Butz, E.
Chwalek, T.
De Boer, W.
Descroix, A.
Dierlamm, A.
Feindt, M.
Guthoff, M.
Hartmann, F.
Hauth, T.
Held, H.
Hoffmann, K. H.
Husemann, U.
Katkov, I.
Kornmayer, A.
Kuznetsova, E.
Pardo, P. Lobelle
Martschei, D.
Mozer, M. U.
Muller, Th.
Niegel, M.
Nurnberg, A.
Oberst, O.
Quast, G.
Rabbertz, K.
Ratnikov, F.
Rocker, S.
Schilling, F. -P.
Schott, G.
Simonis, H. J.
Stober, F. M.
Ulrich, R.
Wagner-Kuhr, J.
Wayand, S.
Weiler, T.
Wolf, R.
Zeise, M.
Anagnostou, G.
Daskalakis, G.
Geralis, T.
Kesisoglou, S.
Kyriakis, A.
Loukas, D.
Markou, A.
Markou, C.
Psallidas, A.
Topsis-Giotis, I.
Gouskos, L.
Panagiotou, A.
Saoulidou, N.
Stiliaris, E.
Aslanoglou, X.
Evangelou, I.
Flouris, G.
Foudas, C.
Jones, J.
Kokkas, P.
Manthos, N.
Papadopoulos, I.
Paradas, E.
Bencze, G.
Hajdu, C.
Hidas, P.
Horvath, D.
Sikler, F.
Veszpremi, V.
Vesztergombi, G.
Zsigmond, A. J.
Beni, N.
Czellar, S.
Molnar, J.
Palinkas, J.
Szillasi, Z.
Karancsi, J.
Raics, P.
Trocsanyi, Z. L.
Ujvari, B.
Swain, S. K.
Beri, S. B.
Bhatnagar, V.
Dhingra, N.
Gupta, R.
Kaur, M.
Mittal, M.
Nishu, N.
Sharma, A.
Singh, J. B.
Kumar, Ashok
Kumar, Arun
Ahuja, S.
Bhardwaj, A.
Choudhary, B. C.
Kumar, A.
Malhotra, S.
Naimuddin, M.
Ranjan, K.
Sharma, V.
Shivpuri, R. K.
Banerjee, S.
Bhattacharya, S.
Chatterjee, K.
Dutta, S.
Gomber, B.
Jain, Sa.
Jain, Sh.
Khurana, R.
Modak, A.
Mukherjee, S.
Roy, D.
Sarkar, S.
Sharan, M.
Singh, A. P.
Abdulsalam, A.
Dutta, D.
Kailas, S.
Kumar, V.
Mohanty, A. K.
Pant, L. M.
Shukla, P.
Topkar, A.
Aziz, T.
Banerjee, S.
Chatterjee, R. M.
Dugad, S.
Ganguly, S.
Ghosh, S.
Guchait, M.
Gurtu, A.
Kole, G.
Kumar, S.
Maity, M.
Majumder, G.
Mazumdar, K.
Mohanty, G. B.
Parida, B.
Sudhakar, K.
Wickramage, N.
Arfaei, H.
Bakhshiansohi, H.
Behnamian, H.
Etesami, S. M.
Fahim, A.
Jafari, A.
Khakzad, M.
Najafabadi, M. Mohammadi
Naseri, M.
Mehdiabadi, S. Paktinat
Safarzadeh, B.
Zeinali, M.
Grunewald, M.
Abbrescia, M.
Barbone, L.
Calabria, C.
Chhibra, S. S.
Colaleo, A.
Creanza, D.
De Filippis, N.
De Palma, M.
Fiore, L.
Iaselli, G.
Maggi, G.
Maggi, M.
Marangelli, B.
My, S.
Nuzzo, S.
Pacifico, N.
Pompili, A.
Pugliese, G.
Radogna, R.
Selvaggi, G.
Silvestris, L.
Singh, G.
Venditti, R.
Verwilligen, P.
Zito, G.
Abbiendi, G.
Benvenuti, A. C.
Bonacorsi, D.
Braibant-Giacomelli, S.
Brigliadori, L.
Campanini, R.
Capiluppi, P.
Castro, A.
Cavallo, F. R.
Codispoti, G.
Cuffiani, M.
Dallavalle, G. M.
Fabbri, F.
Fanfani, A.
Fasanella, D.
Giacomelli, P.
Grandi, C.
Guiducci, L.
Marcellini, S.
Masetti, G.
Meneghelli, M.
Montanari, A.
Navarria, F. L.
Odorici, F.
Perrotta, A.
Primavera, F.
Rossi, A. M.
Rovelli, T.
Siroli, G. P.
Tosi, N.
Travaglini, R.
Albergo, S.
Cappello, G.
Chiorboli, M.
Costa, S.
Giordano, F.
Potenza, R.
Tricomi, A.
Tuve, C.
Barbagli, G.
Ciulli, V.
Civinini, C.
D'Alessandro, R.
Focardi, E.
Gallo, E.
Gonzi, S.
Gori, V.
Lenzi, P.
Meschini, M.
Paoletti, S.
Sguazzoni, G.
Tropiano, A.
Benussi, L.
Bianco, S.
Fabbri, F.
Piccolo, D.
Fabbricatore, P.
Ferretti, R.
Ferro, F.
Lo Vetere, M.
Musenich, R.
Robutti, E.
Tosi, S.
Dinardo, M. E.
Fiorendi, S.
Gennai, S.
Geros, R.
Ghezzi, A.
Govoni, P.
Lucchini, M. T.
Malvezzi, S.
Manzoni, R. A.
Martelli, A.
Marzocchi, B.
Menasce, D.
Moroni, L.
Paganoni, M.
Pedrini, D.
Ragazzi, S.
Redaelli, N.
de Fatis, T. Tabarelli
Buontempo, S.
Cavallo, N.
Di Guida, S.
Fabozzi, F.
Iorio, A. O. M.
Lista, L.
Meola, S.
Merola, M.
Paolucci, P.
Azzi, P.
Bellato, M.
Biasotto, M.
Bisello, D.
Branca, A.
Checchia, P.
Dorigo, T.
Dosselli, U.
Fanzago, F.
Galanti, M.
Gasparini, F.
Gasparini, U.
Giubilato, P.
Gonella, F.
Gozzelino, A.
Kanishchev, K.
Lacaprara, S.
Lazzizzera, I.
Margoni, M.
Meneguzzo, A. T.
Pazzini, J.
Pozzobon, N.
Ronchese, P.
Simonetto, F.
Torassa, E.
Tosi, M.
Zotto, P.
Zucchetta, A.
Zumerle, G.
Gabusi, M.
Ratti, S. P.
Riccardi, C.
Salvini, P.
Vitulo, P.
Biasini, M.
Bilei, G. M.
Fano, L.
Lariccia, P.
Mantovani, G.
Menichelli, M.
Romeo, F.
Saha, A.
Santocchia, A.
Spiezia, A.
Androsov, K.
Azzurri, P.
Bagliesi, G.
Bernardini, J.
Boccali, T.
Broccolo, G.
Castaldi, R.
Ciocci, M. A.
Dell'Orsoa, R.
Donato, S.
Fiori, F.
Foa, L.
Giassi, A.
Grippo, M. T.
Kraan, A.
Ligabue, F.
Lomtadze, T.
Martini, L.
Messineo, A.
Moon, C. S.
Palla, F.
Rizzi, A.
Savoy-Navarro, A.
Serban, A. T.
Spagnolo, P.
Squillacioti, P.
Tenchini, R.
Tonelli, G.
Venturi, A.
Verdini, P. G.
Vernieri, C.
Barone, L.
Cavallari, F.
Del Re, D.
Diemoz, M.
Grassi, M.
Jorda, C.
Longo, E.
Margaroli, F.
Meridiani, P.
Micheli, F.
Nourbakhsh, S.
Organtini, G.
Paramatti, R.
Rahatlou, S.
Rovelli, C.
Soffi, L.
Traczyk, P.
Amapane, N.
Arcidiacono, R.
Argiro, S.
Arneodo, M.
Bellan, R.
Biino, C.
Cartiglia, N.
Casasso, S.
Costa, M.
Degano, A.
Demaria, N.
Mariotti, C.
Maselli, S.
Migliore, E.
Monaco, V.
Musich, M.
Obertino, M. M.
Ortona, G.
Pacher, L.
Pastrone, N.
Pelliccioni, M.
Potenza, A.
Romero, A.
Ruspa, M.
Sacchi, R.
Solano, A.
Staiano, A.
Tamponi, U.
Belforte, S.
Candelise, V.
Casarsa, M.
Cossutti, F.
Della Ricca, G.
Gobbo, B.
La Licata, C.
Marone, M.
Montanino, D.
Penzo, A.
Schizzi, A.
Umer, T.
Zanetti, A.
Chang, S.
Kim, T. Y.
Nam, S. K.
Kim, D. H.
Kim, G. N.
Kim, J. E.
Kim, M. S.
Kong, D. J.
Lee, S.
Oh, Y. D.
Park, H.
Sakharov, A.
Son, D. C.
Kim, J. Y.
Kim, Zero J.
Song, S.
Choi, S.
Gyun, D.
Hong, B.
Jo, M.
Kim, H.
Kim, Y.
Lee, B.
Lee, K. S.
Park, S. K.
Roh, Y.
Choi, M.
Kim, J. H.
Park, C.
Park, I. C.
Park, S.
Ryu, G.
Choi, Y.
Choi, Y. K.
Goh, J.
Kwon, E.
Lee, J.
Seo, H.
Yu, I.
Juodagalvis, A.
Komaragiri, J. R.
Castilla-Valdez, H.
De la Cruz-Burelo, E.
Heredia-de la Cruz, I.
Lopez-Fernandez, R.
Martinez-Ortega, J.
Sanchez-Hernandez, A.
Villasenor-Cendejas, L. M.
Moreno, S. Carrillo
Valencia, F. Vazquez
Ibarguen, H. A. Salazar
Linares, E. Casimiro
Pineda, A. Morelos
Krofcheck, D.
Butler, P. H.
Doesburg, R.
Reucroft, S.
Ahmad, A.
Ahmad, M.
Asghar, M. I.
Butt, J.
Hassan, Q.
Hoorani, H. R.
Khan, W. A.
Khurshid, T.
Qazi, S.
Shah, M. A.
Shoaib, M.
Bialkowska, H.
Bluj, M.
Boimska, B.
Frueboes, T.
Gorski, M.
Kazana, M.
Nawrocki, K.
Romanowska-Rybinska, K.
Szleper, M.
Wrochna, G.
Zalewski, P.
Brona, G.
Bunkowski, K.
Cwiok, M.
Dominik, W.
Doroba, K.
Kalinowski, A.
Konecki, M.
Krolikowski, J.
Misiura, M.
Wolszczak, W.
Bargassa, P.
Silva, C. Beirao Da Cruz E.
Faccioli, P.
Parracho, P. G. Ferreira
Gallinaro, M.
Nguyen, F.
Antunes, J. Rodrigues
Seixas, J.
Varela, J.
Vischia, P.
Golutvin, I.
Karjavin, V.
Konoplyanikov, V.
Korenkov, V.
Kozlov, G.
Lanev, A.
Malakhov, A.
Matveev, V.
Mitsyn, V. V.
Moisenz, P.
Palichik, V.
Perelygin, V.
Shmatov, S.
Shulha, S.
Skatchkov, N.
Smirnov, V.
Tikhonenko, E.
Zarubin, A.
Golovtsov, V.
Ivanov, Y.
Kim, V.
Levchenko, P.
Murzin, V.
Oreshkin, V.
Smirnov, I.
Sulimov, V.
Uvarov, L.
Vavilov, S.
Vorobyev, A.
Vorobyev, An.
Andreev, Yu.
Dermenev, A.
Gninenko, S.
Golubev, N.
Kirsanov, M.
Krasnikov, N.
Pashenkov, A.
Tlisov, D.
Toropin, A.
Epshteyn, V.
Gavrilov, V.
Lychkovskaya, N.
Popov, V.
Safronov, G.
Semenov, S.
Spiridonov, A.
Stolin, V.
Vlasov, E.
Zhokin, A.
Andreev, V.
Azarkin, M.
Dremin, I.
Kirakosyan, M.
Leonidov, A.
Mesyats, G.
Rusakov, S. V.
Vinogradov, A.
Belyaev, A.
Boos, E.
Dubinin, M.
Dudko, L.
Ershov, A.
Gribushin, A.
Klyukhin, V.
Kodolova, O.
Lokhtin, I.
Obraztsov, S.
Petrushanko, S.
Savrin, V.
Snigirev, A.
Azhgirey, I.
Bayshev, I.
Bitioukov, S.
Kachanov, V.
Kalinin, A.
Konstantinov, D.
Krychkine, V.
Petrov, V.
Ryutin, R.
Sobol, A.
Tourtchanovitch, L.
Troshin, S.
Tyurin, N.
Uzunian, A.
Volkov, A.
Adzic, P.
Dordevic, M.
Ekmedzic, M.
Milosevic, J.
Aguilar-Benitez, M.
Maestre, J. Alcaraz
Battilana, C.
Calvo, E.
Cerrada, M.
Llatas, M. Chamizo
Colino, N.
De la Cruz, B.
Peris, A. Delgado
Vazquez, D. Dominguez
Bedoya, C. Fernandez
Ramos, J. P. Fernandez
Ferrando, A.
Flix, J.
Fouz, M. C.
Garcia-Abia, P.
Lopez, O. Gonzalez
Lopez, S. Goy
Hernandez, J. M.
Josa, M. I.
Merino, G.
De Martino, E. Navarro
Yzquierdo, A. Perez-Calero
Pelayo, J. Puerta
Olmeda, A. Quintario
Redondo, I.
Romero, L.
Soares, M. S.
Willmott, C.
Albajar, C.
de Troconiz, J. F.
Missiroli, M.
Brun, H.
Cuevas, J.
Menendez, J. Fernandez
Folgueras, S.
Caballero, I. Gonzalez
Iglesias, L. Lloret
Cifuentes, J. A. Brochero
Cabrillo, I. J.
Calderon, A.
Campderros, J. Duarte
Fernandez, M.
Gomez, G.
Sanchez, J. Gonzalez
Graziano, A.
Virto, A. Lopez
Marco, J.
Marco, R.
Rivero, C. Martinez
Matorras, F.
Sanchez, F. J. Munoz
Gomez, J. Piedra
Rodrigo, T.
Rodrguez-Marrero, A. Y.
Ruiz-Jimeno, A.
Scodellaro, L.
Vila, I.
Cortabitarte, R. Vilar
Abbaneo, D.
Auffray, E.
Auzinger, G.
Bachtis, M.
Baillon, P.
Ball, A. H.
Barney, D.
Benaglia, A.
Bendavid, J.
Benhabib, L.
Benitez, J. F.
Bernet, C.
Bianchi, G.
Bloch, P.
Bocci, A.
Bonato, A.
Bondu, O.
Botta, C.
Breuker, H.
Camporesi, T.
Cerminara, G.
Christiansen, T.
Perez, J. A. Coarasa
Colafranceschi, S.
D'Alfonso, M.
d'Enterria, D.
Dabrowski, A.
David, A.
De Guio, F.
De Roeck, A.
De Visscher, S.
Dobson, M.
Dupont-Sagorin, N.
Elliott-Peisert, A.
Eugster, J.
Franzoni, G.
Funk, W.
Giffels, M.
Gigi, D.
Gill, K.
Giordano, D.
Girone, M.
Giunta, M.
Glege, F.
Garrido, R. Gomez-Reino
Gowdy, S.
Guida, R.
Hammer, J.
Hansen, M.
Harris, P.
Hegeman, J.
Innocente, V.
Janot, P.
Karavakis, E.
Kousouris, K.
Krajczar, K.
Lecoq, P.
Lourenco, C.
Magini, N.
Malgeri, L.
Mannelli, M.
Masetti, L.
Meijers, F.
Mersi, S.
Meschi, E.
Moortgat, F.
Mulders, M.
Musella, P.
Orsini, L.
Cortezon, E. Palencia
Pape, L.
Perez, E.
Perrozzi, L.
Petrilli, A.
Petrucciani, G.
Pfeiffer, A.
Pierini, M.
Pimia, M.
Piparo, D.
Plagge, M.
Racz, A.
Reece, W.
Rolandi, G.
Rovere, M.
Sakulin, H.
Santanastasio, F.
Sch, C. Fer
Schwick, C.
Sekmen, S.
Sharma, A.
Siegrist, P.
Silva, P.
Simon, M.
Sphicas, P.
Spiga, D.
Steggemann, J.
Stieger, B.
Stoye, M.
Treille, D.
Tsirou, A.
Veres, G. I.
Vlimant, J. R.
Wohri, H. K.
Zeuner, W. D.
Bertl, W.
Deiters, K.
Erdmann, W.
Horisberger, R.
Ingram, Q.
Kaestli, H. C.
Konig, S.
Kotlinski, D.
Langenegger, U.
Renker, D.
Rohe, T.
Bachmair, F.
Bani, L.
Bianchini, L.
Bortignon, P.
Buchmann, M. A.
Casal, B.
Chanon, N.
Deisher, A.
Dissertori, G.
Dittmar, M.
Donega, M.
Dunser, M.
Eller, P.
Grab, C.
Hits, D.
Lustermann, W.
Mangano, B.
Marini, A. C.
Del Arbol, P. Martinez Ruiz
Meister, D.
Mohr, N.
Nageli, C.
Nef, P.
Nessi-Tedaldi, F.
Pandolfi, F.
Pauss, F.
Peruzzi, M.
Quittnat, M.
Rebane, L.
Ronga, F. J.
Rossini, M.
Starodumov, A.
Takahashi, M.
Theofilatos, K.
Wallny, R.
Weber, H. A.
Amsler, C.
Canelli, M. F.
Chiochia, V.
De Cosa, A.
Favaro, C.
Hinzmann, A.
Hreus, T.
Rikova, M. Ivova
Kilminster, B.
Mejias, B. Millan
Ngadiuba, J.
Robmann, P.
Snoek, H.
Taroni, S.
Verzetti, M.
Yang, Y.
Cardaci, M.
Chen, K. H.
Ferro, C.
Kuo, C. M.
Li, S. W.
Lin, W.
Lu, Y. J.
Volpe, R.
Yu, S. S.
Bartalini, P.
Chang, P.
Chang, Y. H.
Chang, Y. W.
Chao, Y.
Chen, K. F.
Chen, P. H.
Dietz, C.
Grundler, U.
Hou, W. -S.
Hsiung, Y.
Kao, K. Y.
Lei, Y. J.
Liu, Y. F.
Lu, R. -S.
Majumder, D.
Petrakou, E.
Shi, X.
Shiu, J. G.
Tzeng, Y. M.
Wang, M.
Wilken, R.
Asavapibhop, B.
Suwonjandee, N.
Adiguzel, A.
Bakirci, M. N.
Cerci, S.
Dozen, C.
Dumanoglu, I.
Eskut, E.
Girgis, S.
Gokbulut, G.
Gurpinar, E.
Hos, I.
Kangal, E. E.
Topaksu, A. Kayis
Onengut, G.
Ozdemir, K.
Ozturk, S.
Polatoz, A.
Sogut, K.
Cerci, D. Sunar
Tali, B.
Topakli, H.
Vergili, M.
Akin, I. V.
Aliev, T.
Bilin, B.
Bilmis, S.
Deniz, M.
Gamsizkan, H.
Guler, A. M.
Karapinar, G.
Ocalan, K.
Ozpineci, A.
Serin, M.
Sever, R.
Surat, U. E.
Yalvac, M.
Zeyrek, M.
Gulmez, E.
Isildak, B.
Kaya, M.
Kaya, O.
Ozkorucuklu, S.
Bahtiyar, H.
Barlas, E.
Cankocak, K.
Gunaydin, Y. O.
Vardarli, F. I.
Yucel, M.
Levchuk, L.
Sorokin, P.
Brooke, J. J.
Clement, E.
Cussans, D.
Flacher, H.
Frazier, R.
Goldstein, J.
Grimes, M.
Heath, G. P.
Heath, H. F.
Jacob, J.
Kreczko, L.
Lucas, C.
Meng, Z.
Newbold, D. M.
Paramesvaran, S.
Poll, A.
Senkin, S.
Smith, V. J.
Williams, T.
Bell, K. W.
Belyaev, A.
Brew, C.
Brown, R. M.
Cockerill, D. J. A.
Coughlan, J. A.
Harder, K.
Harper, S.
Ilic, J.
Olaiya, E.
Petyt, D.
Shepherd-Themistocleous, C. H.
Thea, A.
Tomalin, I. R.
Womersley, W. J.
Worm, S. D.
Baber, M.
Bainbridge, R.
Buchmuller, O.
Burton, D.
Colling, D.
Cripps, N.
Cutajar, M.
Dauncey, P.
Davies, G.
Della Negra, M.
Ferguson, W.
Fulcher, J.
Futyan, D.
Gilbert, A.
Bryer, A. Guneratne
Hall, G.
Hatherell, Z.
Hays, J.
Iles, G.
Jarvis, M.
Karapostoli, G.
Kenzie, M.
Lane, R.
Lucas, R.
Lyons, L.
Magnan, A. -M.
Marrouche, J.
Mathias, B.
Nandi, R.
Nash, J.
Nikitenko, A.
Pela, J.
Pesaresi, M.
Petridis, K.
Pioppi, M.
Raymond, D. M.
Rogerson, S.
Rose, A.
Seez, C.
Sharp, P.
Sparrow, A.
Tapper, A.
Acosta, M. Vazquez
Virdee, T.
Wakefield, S.
Wardle, N.
Cole, J. E.
Hobson, P. R.
Khan, A.
Kyberd, P.
Leggat, D.
Leslie, D.
Martin, W.
Reid, I. D.
Symonds, P.
Teodorescu, L.
Turner, M.
Dittmann, J.
Hatakeyama, K.
Kasmi, A.
Liu, H.
Scarborough, T.
Charaf, O.
Cooper, S. I.
Henderson, C.
Rumerio, P.
Avetisyan, A.
Bose, T.
Fantasia, C.
Heister, A.
Lawson, P.
Lazic, D.
Richardson, C.
Rohlf, J.
Sperka, D.
St John, J.
Sulak, L.
Alimena, J.
Bhattacharya, S.
Christopher, G.
Cutts, D.
Demiragli, Z.
Ferapontov, A.
Garabedian, A.
Heintz, U.
Jabeen, S.
Kukartsev, G.
Laird, E.
Landsberg, G.
Luk, M.
Narain, M.
Segala, M.
Sinthuprasith, T.
Speer, T.
Swanson, J.
Breedon, R.
Breto, G.
Sanchez, M. Calderon De la Barca
Chauhan, S.
Chertok, M.
Conway, J.
Conway, R.
Cox, P. T.
Erbacher, R.
Gardner, M.
Ko, W.
Kopecky, A.
Lander, R.
Miceli, T.
Mulhearn, M.
Pellett, D.
Pilot, J.
Ricci-Tam, F.
Rutherford, B.
Searle, M.
Shalhout, S.
Smith, J.
Squires, M.
Tripathi, M.
Wilbur, S.
Yohay, R.
Andreev, V.
Cline, D.
Cousins, R.
Erhan, S.
Everaerts, P.
Farrell, C.
Felcini, M.
Hauser, J.
Ignatenko, M.
Jarvis, C.
Rakness, G.
Schlein, P.
Takasugi, E.
Valuev, V.
Weber, M.
Babb, J.
Clare, R.
Ellison, J.
Gary, J. W.
Hanson, G.
Heilman, J.
Jandir, P.
Lacroix, F.
Liu, H.
Long, O. R.
Luthra, A.
Malberti, M.
Nguyen, H.
Shrinivas, A.
Sturdy, J.
Sumowidagdo, S.
Wimpenny, S.
Andrews, W.
Branson, J. G.
Cerati, G. B.
Cittolin, S.
D'Agnolo, R. T.
Evans, D.
Holzner, A.
Kelley, R.
Kovalskyi, D.
Lebourgeois, M.
Letts, J.
Macneill, I.
Padhi, S.
Palmer, C.
Pieri, M.
Sani, M.
Sharma, V.
Simon, S.
Sudano, E.
Tadel, M.
Tu, Y.
Vartak, A.
Wasserbaech, S.
Wurthwein, F.
Yagil, A.
Yoo, J.
Barge, D.
Bradmiller-Feld, J.
Campagnari, C.
Danielson, T.
Dishaw, A.
Flowers, K.
Sevilla, M. Franco
Geffert, P.
George, C.
Golf, F.
Incandela, J.
Justus, C.
Villalba, R. Magana
Mccoll, N.
Pavlunin, V.
Richman, J.
Rossin, R.
Stuart, D.
To, W.
West, C.
Apresyan, A.
Bornheim, A.
Bunn, J.
Chen, Y.
Di Marco, E.
Duarte, J.
Kcira, D.
Mott, A.
Newman, H. B.
Pena, C.
Rogan, C.
Spiropulu, M.
Timciuc, V.
Wilkinson, R.
Xie, S.
Zhu, R. Y.
Azzolini, V.
Calamba, A.
Carroll, R.
Ferguson, T.
Iiyama, Y.
Jang, D. W.
Paulini, M.
Russ, J.
Vogel, H.
Vorobiev, I.
Cumalat, J. P.
Drell, B. R.
Ford, W. T.
Gaz, A.
Lopez, E. Luiggi
Nauenberg, U.
Smith, J. G.
Stenson, K.
Ulmer, K. A.
Wagner, S. R.
Alexander, J.
Chatterjee, A.
Chu, J.
Eggert, N.
Gibbons, L. K.
Hopkins, W.
Khukhunaishvili, A.
Kreis, B.
Mirman, N.
Kaufman, G. Nicolas
Patterson, J. R.
Ryd, A.
Salvati, E.
Sun, W.
Teo, W. D.
Thom, J.
Thompson, J.
Tucker, J.
Weng, Y.
Winstrom, L.
Wittich, P.
Winn, D.
Abdullin, S.
Albrow, M.
Anderson, J.
Apollinari, G.
Bauerdick, L. A. T.
Beretvas, A.
Berryhill, J.
Bhat, P. C.
Burkett, K.
Butler, J. N.
Chetluru, V.
Cheung, H. W. K.
Chlebana, F.
Cihangir, S.
Elvira, V. D.
Fisk, I.
Freeman, J.
Gao, Y.
Gottschalk, E.
Gray, L.
Green, D.
Grunendahl, S.
Gutsche, O.
Hare, D.
Harris, R. M.
Hirschauer, J.
Hooberman, B.
Jindariani, S.
Johnson, M.
Joshi, U.
Kaadze, K.
Klima, B.
Kwan, S.
Linacre, J.
Lincoln, D.
Lipton, R.
Lykken, J.
Maeshima, K.
Marraffino, J. M.
Outschoorn, V. I. Martinez
Maruyama, S.
Mason, D.
McBride, P.
Mishra, K.
Mrenna, S.
Musienko, Y.
Nahn, S.
Newman-Holmes, C.
O'Dell, V.
Prokofyev, O.
Ratnikova, N.
Sexton-Kennedy, E.
Sharma, S.
Spalding, W. J.
Spiegel, L.
Taylor, L.
Tkaczyk, S.
Tran, N. V.
Uplegger, L.
Vaandering, E. W.
Vidal, R.
Whitbeck, A.
Whitmore, J.
Wu, W.
Yang, F.
Yun, J. C.
Acosta, D.
Avery, P.
Bourilkov, D.
Cheng, T.
Das, S.
De Gruttola, M.
Di Giovanni, G. P.
Dobur, D.
Field, R. D.
Fisher, M.
Fu, Y.
Furic, I. K.
Hugon, J.
Kim, B.
Konigsberg, J.
Korytov, A.
Kropivnitskaya, A.
Kypreos, T.
Low, J. F.
Matchev, K.
Milenovic, P.
Mitselmakher, G.
Muniz, L.
Rinkevicius, A.
Shchutska, L.
Skhirtladze, N.
Snowball, M.
Yelton, J.
Zakaria, M.
Gaultney, V.
Hewamanage, S.
Linn, S.
Markowitz, P.
Martinez, G.
Rodriguez, J. L.
Adams, T.
Askew, A.
Bochenek, J.
Chen, J.
Diamond, B.
Haas, J.
Hagopian, S.
Hagopian, V.
Johnson, K. F.
Prosper, H.
Veeraraghavan, V.
Weinberg, M.
Baarmand, M. M.
Dorney, B.
Hohlmann, M.
Kalakhety, H.
Yumiceva, F.
Adams, M. R.
Apanasevich, L.
Bazterra, V. E.
Betts, R. R.
Bucinskaite, I.
Cavanaugh, R.
Evdokimov, O.
Gauthier, L.
Gerber, C. E.
Hofman, D. J.
Khalatyan, S.
Kurt, P.
Moon, D. H.
O'Brien, C.
Silkworth, C.
Turner, P.
Varelas, N.
Akgun, U.
Albayrak, E. A.
Bilki, B.
Clarida, W.
Dilsiz, K.
Duru, F.
Haytmyradov, M.
Merlo, J. -P.
Mermerkaya, H.
Mestvirishvili, A.
Moeller, A.
Nachtman, J.
Ogul, H.
Onel, Y.
Ozok, F.
Rahmat, R.
Sen, S.
Tan, P.
Tiras, E.
Wetzel, J.
Yetkin, T.
Yi, K.
Barnett, B. A.
Blumenfeld, B.
Bolognesi, S.
Fehling, D.
Gritsan, A. V.
Maksimovic, P.
Martin, C.
Swartz, M.
Baringer, P.
Bean, A.
Benelli, G.
Gray, J.
Kenny, R. P., III
Murray, M.
Noonan, D.
Sanders, S.
Sekaric, J.
Stringer, R.
Wang, Q.
Wood, J. S.
Barfuss, A. F.
Chakaberia, I.
Ivanov, A.
Khalil, S.
Makouski, M.
Maravin, Y.
Saini, L. K.
Shrestha, S.
Svintradze, I.
Gronberg, J.
Lange, D.
Rebassoo, F.
Wright, D.
Baden, A.
Calvert, B.
Eno, S. C.
Gomez, J. A.
Hadley, N. J.
Kellogg, R. G.
Kolberg, T.
Lu, Y.
Marionneau, M.
Mignerey, A. C.
Pedro, K.
Skuja, A.
Temple, J.
Tonjes, M. B.
Tonwar, S. C.
Apyan, A.
Barbieri, R.
Bauer, G.
Busza, W.
Cali, I. A.
Chan, M.
Di Matteo, L.
Dutta, V.
Ceballos, G. Gomez
Goncharov, M.
Gulhan, D.
Klute, M.
Lai, Y. S.
Lee, Y. -J.
Levin, A.
Luckey, P. D.
Ma, T.
Paus, C.
Ralph, D.
Roland, C.
Roland, G.
Stephans, G. S. F.
Stockli, F.
Sumorok, K.
Velicanu, D.
Veverka, J.
Wyslouch, B.
Yang, M.
Yoon, A. S.
Zanetti, M.
Zhukova, V.
Dahmes, B.
De Benedetti, A.
Gude, A.
Kao, S. C.
Klapoetke, K.
Kubota, Y.
Mans, J.
Pastika, N.
Rusack, R.
Singovsky, A.
Tambe, N.
Turkewitz, J.
Acosta, J. G.
Cremaldi, L. M.
Kroeger, R.
Oliveros, S.
Perera, L.
Sanders, D. A.
Summers, D.
Avdeeva, E.
Bloom, K.
Bose, S.
Claes, D. R.
Dominguez, A.
Suarez, R. Gonzalez
Keller, J.
Knowlton, D.
Kravchenko, I.
Lazo-Flores, J.
Malik, S.
Meier, F.
Snow, G. R.
Dolen, J.
Godshalk, A.
Iashvili, I.
Jain, S.
Kharchilava, A.
Kumar, A.
Rappoccio, S.
Alverson, G.
Barberis, E.
Baumgartel, D.
Chasco, M.
Haley, J.
Massironi, A.
Nash, D.
Orimoto, T.
Trocino, D.
Wood, D.
Zhang, J.
Anastassov, A.
Hahn, K. A.
Kubik, A.
Lusito, L.
Mucia, N.
Odell, N.
Pollack, B.
Pozdnyakov, A.
Schmitt, M.
Stoynev, S.
Sung, K.
Velasco, M.
Won, S.
Berry, D.
Brinkerhoff, A.
Chan, K. M.
Drozdetskiy, A.
Hildreth, M.
Jessop, C.
Karmgard, D. J.
Kellams, N.
Kolb, J.
Lannon, K.
Luo, W.
Lynch, S.
Marinelli, N.
Morse, D. M.
Pearson, T.
Planer, M.
Ruchti, R.
Slaunwhite, J.
Valls, N.
Wayne, M.
Wolf, M.
Woodard, A.
Antonelli, L.
Bylsma, B.
Durkin, L. S.
Flowers, S.
Hill, C.
Hughes, R.
Kotov, K.
Ling, T. Y.
Puigh, D.
Rodenburg, M.
Smith, G.
Vuosalo, C.
Winer, B. L.
Wolfe, H.
Wulsin, H. W.
Berry, E.
Elmer, P.
Halyo, V.
Hebda, P.
Hunt, A.
Jindal, P.
Koay, S. A.
Lujan, P.
Marlow, D.
Medvedeva, T.
Mooney, M.
Olsen, J.
Piroue, P.
Quan, X.
Raval, A.
Saka, H.
Stickland, D.
Tully, C.
Werner, J. S.
Zenz, S. C.
Zuranski, A.
Brownson, E.
Lopez, A.
Mendez, H.
Vargas, J. E. Ramirez
Alagoz, E.
Benedetti, D.
Bolla, G.
Bortoletto, D.
De Mattia, M.
Everett, A.
Hu, Z.
Jha, M. K.
Jones, M.
Jung, K.
Kress, M.
Leonardo, N.
Pegna, D. Lopes
Maroussov, V.
Merkel, P.
Miller, D. H.
Neumeister, N.
Radburn-Smith, B. C.
Shipsey, I.
Silvers, D.
Svyatkovskiy, A.
Wang, F.
Xie, W.
Xu, L.
Yoo, H. D.
Zablocki, J.
Zheng, Y.
Parashar, N.
Adair, A.
Akgun, B.
Ecklund, K. M.
Geurts, F. J. M.
Li, W.
Michlin, B.
Padley, B. P.
Redjimi, R.
Roberts, J.
Zabel, J.
Betchart, B.
Bodek, A.
Covarelli, R.
de Barbaro, P.
Demina, R.
Eshaq, Y.
Ferbel, T.
Garcia-Bellido, A.
Goldenzweig, P.
Han, J.
Harel, A.
Miner, D. C.
Petrillo, G.
Vishnevskiy, D.
Zielinski, M.
Bhatti, A.
Ciesielski, R.
Demortier, L.
Goulianos, K.
Lungu, G.
Malik, S.
Mesropian, C.
Arora, S.
Barker, A.
Chou, J. P.
Contreras-Campana, C.
Contreras-Campana, E.
Duggan, D.
Ferencek, D.
Gershtein, Y.
Gray, R.
Halkiadakis, E.
Hidas, D.
Lath, A.
Panwalkar, S.
Park, M.
Patel, R.
Rekovic, V.
Robles, J.
Salur, S.
Schnetzer, S.
Seitz, C.
Somalwar, S.
Stone, R.
Thomas, S.
Thomassen, P.
Walker, M.
Rose, K.
Spanier, S.
Yang, Z. C.
York, A.
Bouhali, O.
Eusebi, R.
Flanagan, W.
Gilmore, J.
Kamon, T.
Khotilovich, V.
Krutelyov, V.
Montalvo, R.
Osipenkov, I.
Pakhotin, Y.
Perloff, A.
Roe, J.
Safonov, A.
Sakuma, T.
Suarez, I.
Tatarinov, A.
Toback, D.
Akchurin, N.
Cowden, C.
Damgov, J.
Dragoiu, C.
Dudero, P. R.
Faulkner, J.
Kovitanggoon, K.
Kunori, S.
Lee, S. W.
Libeiro, T.
Volobouev, I.
Appelt, E.
Delannoy, A. G.
Greene, S.
Gurrola, A.
Johns, W.
Maguire, C.
Mao, Y.
Melo, A.
Sharma, M.
Sheldon, P.
Snook, B.
Tuo, S.
Velkovska, J.
Arenton, M. W.
Boutle, S.
Cox, B.
Francis, B.
Goodell, J.
Hirosky, R.
Ledovskoy, A.
Li, H.
Lin, C.
Neu, C.
Wood, J.
Gollapinni, S.
Harr, R.
Karchin, P. E.
Don, C. Kottachchi Kankanamge
Lamichhane, P.
Belknap, D. A.
Borrello, L.
Carlsmith, D.
Cepeda, M.
Dasu, S.
Duric, S.
Friis, E.
Grothe, M.
Hall-Wilton, R.
Herndon, M.
Herve, A.
Klabbers, P.
Klukas, J.
Lanaro, A.
Lazaridis, C.
Levine, A.
Loveless, R.
Mohapatra, A.
Ojalvo, I.
Perry, T.
Pierro, G. A.
Polese, G.
Ross, I.
Sarangi, T.
Savin, A.
Smith, W. H.
Woods, N.
CA CMS Collaboration
TI Measurement of differential cross sections for the production of a pair
of isolated photons in pp collisions at root s=7TeV
SO EUROPEAN PHYSICAL JOURNAL C
LA English
DT Article
ID LHC; HIERARCHY; BOSON; MASS
AB A measurement of differential cross sections for the production of a pair of isolated photons in proton-proton collisions at root s = 7 TeV is presented. The data sample corresponds to an integrated luminosity of 5.0 fb(-1) collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25 GeV respectively, in the pseudorapidity range vertical bar eta vertical bar < 2.5, vertical bar eta vertical bar (sic) [1.44, 1.57] and with an angular separation Delta R > 0.45, is 17.2 +/-0.2 (stat) +/-1.9 (syst) +/- 0.4 (lumi) pb. Differential cross sections are measured as a function of the diphoton invariant mass, the diphoton transverse momentum, the azimuthal angle difference between the two photons, and the cosine of the polar angle in the Collins-Soper reference frame of the diphoton system. The results are compared to theoretical predictions at leading, next-to-leading, and next-to-next-to-leading order in quantum chromodynamics.
C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria.
[Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus.
[Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium.
[Blekman, F.; Blyweert, S.; D'Hondt, J.; Heracleous, N.; Kalogeropoulos, A.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium.
[Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium.
[Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium.
[Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan] Catholic Univ Louvain, Louvain La Neuve, Belgium.
[Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium.
[Alves, G. A.; Martins Junior, M. Correa; Martins, T. Dos Reis; Pol, M. E.; De Souza, S. Fonseca] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil.
[Alda Junior, W. L.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; Damiao, D. De Jesus; Martins, C. De Oliveira; De Souza, S. Fonseca; Malbouisson, H.; Malek, M.; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Da Silva, W. L. Prado; Santaolalla, J.; Santoro, A.; Sznajder, A.; Manganote, E. J. Tonelli; Pereira, A. Vilela] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil.
[Dias, F. A.; Tomei, T. R. Fernandez Perez; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil.
[Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil.
[Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria.
[Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria.
[Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China.
[Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China.
[Avila, C.; Sierra, L. F. Chaparro; Florez, C.; Gomez, J. P.; Moreno, B. Gomez; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia.
[Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia.
[Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia.
[Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Sudic, L.] Rudjer Boskovic Inst, Zagreb, Croatia.
[Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus.
[Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic.
[Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Mahmoud, M. A.; Mahrous, A.; Radi, A.] Egyptian Network High Energy Phys, Acad Sci Res & Technol Arab Republ Egypt, Cairo, Egypt.
[Kadastik, M.; Muentel, M.; Murumaa, M.; Raidal, M.; Tiko, A.] NICPB, Tallinn, Estonia.
[Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland.
[Haerkoenen, J.; Karimaeki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland.
[Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland.
[Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France.
[Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Daci, N.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Dahmes, B.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Agram, J. -L.; Andrea, J.; Bloch, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France.
[Gadrat, S.] IN2P3, CNRS, Ctr Calcul, Villeurbanne, France.
[Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France.
[Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia.
[Klein, B.; Autermann, C.; Beranek, S.; Bontenackels, M.; Calpas, B.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukova, V.] Rhein Westfal TH Aachen, Phys Inst 1, Aachen, Germany.
[Caudron, A.; Weber, H.; Ata, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany.
[Cherepanov, V.; Erdogan, Y.; Flugge, G.; Geenen, H.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Geiser, A.; Kress, M.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany.
[Leonard, A.; Meyer, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Geiser, A.; Grebenyuk, A.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Hempel, M.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Kraemer, M.; Kruecker, D.; Lange, W.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I-A.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Ntomari, E.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Sahin, M. O.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schrder, M.; Stein, M.; Trevino, A. D. R. Vargas; Walsh, R.; Wissing, C.; Schmidt, A.; Choudhary, B. C.] DESY, Hamburg, Germany.
[Martin, M. Aldaya; Blobel, V.; Enderle, H.; Erfle, J.; Garutti, E.; Goebel, K.; Gorner, M.; Gosselink, M.; Haller, J.; Hoing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sibille, J.; Stadie, H.; Steinbruck, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Solano, A.] Univ Hamburg, Hamburg, Germany.
[Barth, C.; Baus, C.; Berger, J.; Boser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hartmann, F.; Hauth, T.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Pardo, P. Lobelle; Martschei, D.; Mozer, M. U.; Muller, Th.; Niegel, M.; Nurnberg, A.; Oberst, O.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Rocker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany.
[Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, INPP, Aghia Paraskevi, Greece.
[Gouskos, L.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.] Univ Athens, Athens, Greece.
[Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Jones, J.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece.
[Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Hidas, D.] Wigner Res Ctr Phys, Budapest, Hungary.
[Bencze, G.; Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary.
[Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary.
[Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India.
[Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mittal, M.; Nishu, N.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India.
[Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India.
[Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Gomber, B.; Jain, Sa.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Singh, A. P.; Dutta, D.] Saha Inst Nucl Phys, Kolkata, India.
[Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India.
[Banerjee, S.; Aziz, T.; Chatterjee, R. M.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Majumder, D.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India.
[Mohammadi, A.; Arfaei, H.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran.
[Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland.
[Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy.
[Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy.
[Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.; Tosi, M.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy.
[Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy.
[Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Giordano, D.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy.
[Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy.
[Giordano, F.] CSFNSM, Catania, Italy.
[Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy.
[Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy.
[Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Fabbricatore, P.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Musenich, R.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Ferretti, R.; Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy.
[Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy.
[Dinardo, M. E.; Fiorendi, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy.
[Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy.
[Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy.
[Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy.
[Di Guida, S.; Meola, S.] Univ G Marconi, Rome, Italy.
[Azzi, P.; Bellato, M.; Biasotto, M.; Bisello, D.; Branca, A.; Checchia, P.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy.
[Bisello, D.; Branca, A.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy.
[Kanishchev, K.; Lazzizzera, I.] Univ Trent, Trento, Italy.
[Gabusi, M.; Ratti, S. P.; Riccardi, C.; Salvini, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy.
[Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy.
[Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy.
[Biasini, M.; Fano, L.; Lariccia, P.; Mantovani, G.; Romeo, F.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy.
[Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orsoa, R.; Donato, S.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy.
[Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy.
[Broccolo, G.; Donato, S.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy.
[Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Soffi, L.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy.
[Barone, L.; Del Re, D.; Grassi, M.; Longo, E.; Margaroli, F.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.; Traczyk, P.] Univ Rome, Rome, Italy.
[Costa, S.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Degano, A.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.
[Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Degano, A.; Migliore, E.; Monaco, V.; Ortona, G.; Pacher, L.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy.
[Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy.
[Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Umer, T.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy.
[Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.] Univ Trieste, Trieste, Italy.
[Chang, S.; Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea.
[Kim, D. H.; Kim, G. N.; Kim, J. E.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.] Kyungpook Natl Univ, Taegu 702701, South Korea.
[Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea.
[Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea.
[Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea.
[Choi, Y.; Choi, Y. K.; Goh, J.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea.
[Juodagalvis, A.] Vilnius Univ, Vilnius, Lithuania.
[Komaragiri, J. R.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia.
[Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-de la Cruz, I.; Lopez-Fernandez, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico.
[Moreno, S. Carrillo; Valencia, F. Vazquez] Univ Iberoamer, Mexico City, DF, Mexico.
[Ibarguen, H. A. Salazar] Benemerita Univ Autonoma Puebla, Puebla, Mexico.
[Linares, E. Casimiro; Pineda, A. Morelos] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico.
[Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand.
[Butler, P. H.; Doesburg, R.; Reucroft, S.] Univ Canterbury, Christchurch 1, New Zealand.
[Ahmad, A.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan.
[Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland.
[Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland.
[Bargassa, P.; Silva, C. Beirao Da Cruz E.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Nguyen, F.; Antunes, J. Rodrigues; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao Fis Expt Particulas, Lisbon, Portugal.
[Golutvin, I.; Karjavin, V.; Konoplyanikov, V.; Korenkov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia.
[Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, Gatchina, St Petersburg, Russia.
[Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia.
[Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia.
[Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
[Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia.
[Adzic, P.; Dordevic, M.; Ekmedzic, M.; Milosevic, J.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia.
[Adzic, P.; Dordevic, M.; Ekmedzic, M.; Milosevic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia.
[Aguilar-Benitez, M.; Maestre, J. Alcaraz; Battilana, C.; Calvo, E.; Cerrada, M.; Llatas, M. Chamizo; Colino, N.; De la Cruz, B.; Peris, A. Delgado; Vazquez, D. Dominguez; Bedoya, C. Fernandez; Ramos, J. P. Fernandez; Ferrando, A.; Flix, J.; Fouz, M. C.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Merino, G.; De Martino, E. Navarro; Yzquierdo, A. Perez-Calero; Pelayo, J. Puerta; Olmeda, A. Quintario; Redondo, I.; Romero, L.; Soares, M. S.; Willmott, C.; Garcia-Bellido, A.] CIEMAT, E-28040 Madrid, Spain.
[Albajar, C.; de Troconiz, J. F.; Missiroli, M.] Univ Autonoma Madrid, Madrid, Spain.
[Brun, H.; Cuevas, J.; Menendez, J. Fernandez; Folgueras, S.; Caballero, I. Gonzalez; Iglesias, L. Lloret] Univ Oviedo, Oviedo, Spain.
[Cifuentes, J. A. Brochero; Cabrillo, I. J.; Calderon, A.; Campderros, J. Duarte; Fernandez, M.; Gomez, G.; Sanchez, J. Gonzalez; Graziano, A.; Virto, A. Lopez; Marco, J.; Marco, R.; Rivero, C. Martinez; Matorras, F.; Sanchez, F. J. Munoz; Gomez, J. Piedra; Rodrigo, T.; Rodrguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Cortabitarte, R. Vilar] CSIC Univ Cantabria, IFCA, Santander, Spain.
[Moreno, B. Gomez; Bloch, D.; Sharma, A.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Mulders, M.; Musella, P.; Orsini, L.; Cortezon, E. Palencia; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimia, M.; Piparo, D.; Plagge, M.; Racz, A.; Reece, W.; Rolandi, G.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Sch, C. Fer; Schwick, C.; Sekmen, S.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wohri, H. K.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland.
[Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Konig, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland.
[Bachmair, F.; Bani, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Dunser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; Del Arbol, P. Martinez Ruiz; Meister, D.; Mohr, N.; Nageli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Ronga, F. J.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Paus, C.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland.
[Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Favaro, C.; Hinzmann, A.; Hreus, T.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Ngadiuba, J.; Robmann, P.; Snoek, H.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland.
[Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Volpe, R.; Yu, S. S.; Lu, Y.] Natl Cent Univ, Chungli 32054, Taiwan.
[Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Lei, Y. J.; Liu, Y. F.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Wilken, R.; Kao, S. C.] Natl Taiwan Univ, Taipei 10764, Taiwan.
[Asavapibhop, B.; Suwonjandee, N.] Chulalongkorn Univ, Bangkok, Thailand.
[Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey.
[Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey.
[Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.] Bogazici Univ, Istanbul, Turkey.
[Bahtiyar, H.; Barlas, E.; Cankocak, K.; Gunaydin, Y. O.; Vardarli, F. I.; Yucel, M.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey.
[Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine.
[Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England.
[Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Ilic, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Della Ricca, G.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.] Univ London Imperial Coll Sci Technol & Med, London, England.
[Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England.
[Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA.
[Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA.
[Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Richardson, C.; Rohlf, J.; Sperka, D.; St John, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA.
[Bhattacharya, S.; Alimena, J.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.] Brown Univ, Providence, RI 02912 USA.
[Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA.
[Weber, H.; Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Takasugi, E.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA.
[Liu, H.; Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Shrinivas, A.; Sturdy, J.; Sumowidagdo, S.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Sharma, V.; Simon, M.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Kovalskyi, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wurthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Villalba, R. Magana; Mccoll, N.; Pavlunin, V.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA.
[Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA.
[Alexander, J.; Chatterjee, A.; Chu, J.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA.
[Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA.
[Yang, Y.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Grunendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Joshi, U.; Kaadze, K.; Klima, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Ratnikova, N.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Wu, W.; Yun, J. C.; Johnson, K. F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Acosta, D.; Avery, P.; Bourilkov, D.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA.
[Gaultney, V.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA.
[Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA.
[Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA.
[Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.] Univ Illinois, Chicago, IL USA.
[Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA.
[Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.] Johns Hopkins Univ, Baltimore, MD USA.
[Baringer, P.; Bean, A.; Benelli, G.; Gray, J.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Sanders, D. A.] Univ Kansas, Lawrence, KS 66045 USA.
[Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA.
[Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA.
[Zhukov, V.; Zanetti, A.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stockli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Yoon, A. S.] MIT, Cambridge, MA 02139 USA.
[Dahmes, B.; De Benedetti, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA.
[Acosta, J. G.; Cremaldi, L. M.; Kroeger, R.; Oliveros, S.; Perera, L.; Sanders, D. A.; Summers, D.] Univ Mississippi, Oxford, MS USA.
[Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.] Univ Nebraska Lincoln, Lincoln, NE USA.
[Kumar, A.; Dolen, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA.
[Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA.
[Chan, M.; Berry, D.; Brinkerhoff, A.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Flowers, K.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA.
[Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hunt, A.; Jindal, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA.
[Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA.
[Alagoz, E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA.
[Parashar, N.] Purdue Univ Calumet, Hammond, LA USA.
[Li, W.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA.
[Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, MN USA.
[Malik, S.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA.
[Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA.
[Rose, K.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA.
[Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA.
[Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA.
[Mao, Y.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA.
[Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA.
[Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.] Wayne State Univ, Detroit, MI USA.
[Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Woods, N.] Univ Wisconsin, Madison, WI USA.
[Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria.
[Rabady, D.; Genchev, V.; Iaydjiev, P.; Contardo, D.; Lingemann, J.; Guthoff, M.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Evangelou, I.; Foudas, C.; Bencze, G.; Mohanty, A. K.; Fiorendi, S.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Meola, S.; Paolucci, P.; Galanti, M.; Palla, F.; Pelliccioni, M.; Llatas, M. Chamizo; Avetisyan, A.; Anastassov, A.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland.
[Beluffi, C.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France.
[Giammanco, A.] NICPB, Tallinn, Estonia.
[Popov, A.; Zhukov, V.; Katkov, I.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
[Chinellato, J.; Manganote, E. J. Tonelli] Univ Estadual Campinas, Campinas, SP, Brazil.
[Dias, F. A.] CALTECH, Pasadena, CA 91125 USA.
[Plestina, R.; Bernet, C.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France.
[Assran, Y.] Suez Univ, Suez, Egypt.
[Elgammal, S.; Radi, A.] British Univ Egypt, Cairo, Egypt.
[Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt.
[Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt.
[Mahrous, A.] Helwan Univ Univ, Cairo, Egypt.
Univ Haute Alsace, Mulhouse, France.
[Tsamalaidze, Z.] Joint Inst Nucl Res, Dubna, Russia.
[Behrenhoff, W.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany.
[Sibille, J.] Univ Kansas, Lawrence, KS 66045 USA.
[Horvath, D.] Inst Nucl Res ATOMKI, Debrecen, Hungary.
[Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary.
[Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India.
[Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka.
[Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran.
[Fahim, A.] Sharif Univ Technol, Tehran, Iran.
[Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran.
[Biasotto, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
[Androsov, K.; Grippo, M. T.; Squillacioti, P.] Univ Siena, I-53100 Siena, Italy.
[Moon, C. S.] CNRS, IN2P3, Paris, France.
[Savoy-Navarro, A.] Purdue Univ, W Lafayette, IN 47907 USA.
[Heredia-de la Cruz, I.] Univ Michoacana, Morelia, Michoacan, Mexico.
[Matveev, V.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia.
[Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia.
[Adzic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia.
[Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy.
[Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy.
[Sphicas, P.] Univ Athens, Athens, Greece.
[Nageli, C.] Paul Scherrer Inst, Villigen, Switzerland.
[Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland.
[Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey.
[Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey.
[Onengut, G.] Cag Univ, Mersin, Turkey.
[Sogut, K.] Mersin Univ, Mersin, Turkey.
[Karapinar, G.] Izmir Inst Technol, Izmir, Turkey.
[Isildak, B.] Ozyegin Univ, Istanbul, Turkey.
[Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey.
[Ozkorucuklu, S.] Istanbul Univ, Fac Sci, Istanbul, Turkey.
[Bahtiyar, H.; Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey.
[Gunaydin, Y. O.] Kahramanmaras Sutcu Imam Univ, Kahramanmaras, Turkey.
[Newbold, D. M.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England.
[Pioppi, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy.
[Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy.
[Wasserbaech, S.] Utah Valley Univ, Orem, UT USA.
[Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia.
[Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia.
[Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Haytmyradov, M.] Erzincan Univ, Erzincan, Turkey.
[Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey.
[Bouhali, O.] Texas A&M Univ Qatar, Doha, Qatar.
[Kamon, T.] Kyungpook Natl Univ, Taegu 702701, South Korea.
[CMS Collaboration] CERN, CH-1211 Geneva 23, Switzerland.
RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia.
RI Ligabue, Franco/F-3432-2014; Yazgan, Efe/C-4521-2014; Paulini,
Manfred/N-7794-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017;
Menasce, Dario Livio/A-2168-2016; Rolandi, Luigi (Gigi)/E-8563-2013;
Sguazzoni, Giacomo/J-4620-2015; Vilela Pereira, Antonio/L-4142-2016;
Sznajder, Andre/L-1621-2016; Da Silveira, Gustavo Gil/N-7279-2014;
Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Konecki,
Marcin/G-4164-2015; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016;
Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni,
Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Calvo Alamillo,
Enrique/L-1203-2014; Flix, Josep/G-5414-2012; Cerrada,
Marcos/J-6934-2014; Perez-Calero Yzquierdo, Antonio/F-2235-2013; Novaes,
Sergio/D-3532-2012; Della Ricca, Giuseppe/B-6826-2013; Tomei,
Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Stahl,
Achim/E-8846-2011; Kirakosyan, Martin/N-2701-2015; Gulmez,
Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Rovelli,
Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani,
Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev,
Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; Matorras,
Francisco/I-4983-2015; TUVE', Cristina/P-3933-2015; Dudko,
Lev/D-7127-2012; KIM, Tae Jeong/P-7848-2015; Paganoni,
Marco/A-4235-2016; Azarkin, Maxim/N-2578-2015; de Jesus Damiao,
Dilson/G-6218-2012; Lazzizzera, Ignazio/E-9678-2015; Sen,
Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Wulz,
Claudia-Elisabeth/H-5657-2011; Belyaev, Alexander/F-6637-2015;
Trocsanyi, Zoltan/A-5598-2009; Montanari, Alessandro/J-2420-2012;
Hernandez Calama, Jose Maria/H-9127-2015; ciocci, maria agnese
/I-2153-2015; My, Salvatore/I-5160-2015; Lo Vetere,
Maurizio/J-5049-2012; Ragazzi, Stefano/D-2463-2009; Manganote,
Edmilson/K-8251-2013; Lokhtin, Igor/D-7004-2012; da Cruz e Silva,
Cristovao/K-7229-2013; Grandi, Claudio/B-5654-2015; Chinellato, Jose
Augusto/I-7972-2012; Leonidov, Andrey/P-3197-2014; Benussi,
Luigi/O-9684-2014; Petrushanko, Sergey/D-6880-2012; Bernardes, Cesar
Augusto/D-2408-2015; Raidal, Martti/F-4436-2012; Calderon,
Alicia/K-3658-2014; VARDARLI, Fuat Ilkehan/B-6360-2013
OI da Cruz e silva, Cristovao/0000-0002-1231-3819; Casarsa,
Massimo/0000-0002-1353-8964; Ligabue, Franco/0000-0002-1549-7107;
Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia
Rita/0000-0002-5071-5501; bianco, stefano/0000-0002-8300-4124; Demaria,
Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450;
Ciulli, Vitaliano/0000-0003-1947-3396; Androsov,
Konstantin/0000-0003-2694-6542; Fiorendi, Sara/0000-0003-3273-9419;
Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538;
Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787;
Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand,
Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce,
Dario Livio/0000-0002-9918-1686; Gerosa, Raffaele/0000-0001-8359-3734;
Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki,
Burak/0000-0001-9515-3306; Rolandi, Luigi (Gigi)/0000-0002-0635-274X;
Sguazzoni, Giacomo/0000-0002-0791-3350; Vilela Pereira,
Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Da
Silveira, Gustavo Gil/0000-0003-3514-7056; Mundim,
Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Konecki,
Marcin/0000-0001-9482-4841; Xie, Si/0000-0003-2509-5731; Leonardo,
Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz,
Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301;
Tuominen, Eija/0000-0002-7073-7767; Calvo Alamillo,
Enrique/0000-0002-1100-2963; Flix, Josep/0000-0003-2688-8047; Cerrada,
Marcos/0000-0003-0112-1691; Perez-Calero Yzquierdo,
Antonio/0000-0003-3036-7965; Novaes, Sergio/0000-0003-0471-8549; Della
Ricca, Giuseppe/0000-0003-2831-6982; Tomei, Thiago/0000-0002-1809-5226;
Dubinin, Mikhail/0000-0002-7766-7175; Stahl, Achim/0000-0002-8369-7506;
Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre
David/0000-0001-5854-7699; Rovelli, Tiziano/0000-0002-9746-4842;
Matorras, Francisco/0000-0003-4295-5668; TUVE',
Cristina/0000-0003-0739-3153; Dudko, Lev/0000-0002-4462-3192; KIM, Tae
Jeong/0000-0001-8336-2434; Paganoni, Marco/0000-0003-2461-275X; de Jesus
Damiao, Dilson/0000-0002-3769-1680; Lazzizzera,
Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087;
D'Alessandro, Raffaello/0000-0001-7997-0306; Wulz,
Claudia-Elisabeth/0000-0001-9226-5812; Belyaev,
Alexander/0000-0002-1733-4408; Trocsanyi, Zoltan/0000-0002-2129-1279;
Montanari, Alessandro/0000-0003-2748-6373; Hernandez Calama, Jose
Maria/0000-0001-6436-7547; ciocci, maria agnese /0000-0003-0002-5462;
My, Salvatore/0000-0002-9938-2680; Lo Vetere,
Maurizio/0000-0002-6520-4480; Ragazzi, Stefano/0000-0001-8219-2074;
Korenkov, Vladimir/0000-0002-2342-7862; Giubilato,
Piero/0000-0003-4358-5355; Gallinaro, Michele/0000-0003-1261-2277;
Sogut, Kenan/0000-0002-9682-2855; Grandi, Claudio/0000-0001-5998-3070;
Chinellato, Jose Augusto/0000-0002-3240-6270; Benussi,
Luigi/0000-0002-2363-8889;
FU SCOAP3
FX Funded by SCOAP3 / License Version CC BY 4.0.
NR 36
TC 6
Z9 6
U1 11
U2 65
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1434-6044
EI 1434-6052
J9 EUR PHYS J C
JI Eur. Phys. J. C
PD NOV 12
PY 2014
VL 74
IS 11
AR 3129
DI 10.1140/epjc/s10052-014-3129-3
PG 30
WC Physics, Particles & Fields
SC Physics
GA AX8PK
UT WOS:000347170900001
ER
PT J
AU Browning, JF
Baggetto, L
Jungjohann, KL
Wang, Y
Tenhaeff, WE
Keum, JK
Wood, DL
Veith, GM
AF Browning, James F.
Baggetto, Loic
Jungjohann, Katherine L.
Wang, Yongqiang
Tenhaeff, Wyatt E.
Keum, Jong K.
Wood, David L., III
Veith, Gabriel M.
TI In Situ Determination of the Liquid/Solid Interface Thickness and
Composition for the Li Ion Cathode LiMn1.5Ni0.5O4
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE liquid-solid interface; Li ion batteries; SEI layer; in situ battery;
neutron reflectometry
ID X-RAY REFLECTOMETRY; ELECTRODE/ELECTROLYTE INTERFACE; SEI FORMATION;
LITHIUM; BATTERIES; ELECTRODES; SURFACE; MODEL; ELECTROLYTES; LITHIATION
AB Using neutron reflectometry, we have determined the thickness and scattering length density profile of the electrode electrolyte interface for the high-voltage cathode LiMn1.5Ni0.5O4 in situ at open circuit voltage and fully delithiated. Upon exposure to a liquid electrolyte, a thin 3.3 nm Li-rich interface forms due to the ordering of the electrolyte on the cathode surface. This interface changes in composition, as evident by an increase in the scattering length density of the new layer, with charging as the condensed layer evolves from being lithium rich to one containing a much higher concentration of F from the LiPF6 salt. These results show the surface chemistry evolves as a function of the potential.
C1 [Browning, James F.; Keum, Jong K.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA.
[Baggetto, Loic; Tenhaeff, Wyatt E.; Wood, David L., III; Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Jungjohann, Katherine L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA.
[Wang, Yongqiang] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA.
RP Veith, GM (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
EM veithgm@ornl.gov
RI Browning, James/C-9841-2016; Keum, Jong/N-4412-2015; Baggetto,
Loic/D-5542-2017
OI Browning, James/0000-0001-8379-259X; Keum, Jong/0000-0002-5529-1373;
Baggetto, Loic/0000-0002-9029-2363
FU Materials Sciences and Engineering Division, Office of Basic Energy
Sciences, U.S. Department of Energy (DOE) under UT-Battelle, LLC;
Laboratory Directed Research and Development Program of Oak Ridge
National Laboratory; Scientific User Facilities Division, Office of
Basic Energy Sciences, U.S. DOE; U.S. DOE's National Nuclear Security
Administration [DE-AC04-94AL85000]; National Nuclear Security
Administration of the U.S. DOE [DE-AC52-06NA25396]
FX This research was supported by the Materials Sciences and Engineering
Division, Office of Basic Energy Sciences, U.S. Department of Energy
(DOE), under contract with UT-Battelle, LLC (G.M.V.). A portion of this
work was sponsored by the Laboratory Directed Research and Development
Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC,
for the U.S. DOE (L.B., W.E.T., D.L.W.). Neutron reflectometry
measurements were carried out on the liquids reflectometer at the
Spallation Neutron Source, which is sponsored by the Scientific User
Facilities Division, Office of Basic Energy Sciences, U.S. DOE (J.F.B.,
J.K.K.). STEM imaging and RBS experiments were performed at the Center
for Integrated Nanotechnologies, an Office of Science User Facility
operated for the U.S. DOE Office of Science. Sandia National
Laboratories is a multiprogram laboratory operated by Sandia Corp., a
wholly owned subsidiary of Lockheed Martin Co., for the U.S. DOE's
National Nuclear Security Administration under Contract
DE-AC04-94AL85000 (K.L.J.). RBS experiments were performed at the Center
for Integrated Nanotechnologies, an Office of Science User Facility
operated for the U.S. DOE Office of Science. Los Alamos National
Laboratory, an affirmative action equal opportunity employer, is
operated by Los Alamos National Security, LLC, for the National Nuclear
Security Administration of the U.S. DOE under Contract DE-AC52-06NA25396
(Y.W.).
NR 33
TC 12
Z9 12
U1 13
U2 95
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD NOV 12
PY 2014
VL 6
IS 21
BP 18569
EP 18576
DI 10.1021/am5032055
PG 8
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA AT5IY
UT WOS:000344978200029
PM 25285852
ER
PT J
AU Verde, MG
Liu, HD
Carroll, KJ
Baggetto, L
Veith, GM
Meng, YS
AF Verde, Michael G.
Liu, Haodong
Carroll, Kyler J.
Baggetto, Loic
Veith, Gabriel M.
Meng, Y. Shirley
TI Effect of Morphology and Manganese Valence on the Voltage Fade and
Capacity Retention of Li[Li2/12Ni3/12Mn7/12]O-2
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE Li-rich; Li-excess; Li-ion battery; cathode; high energy density;
surface; XPS
ID LITHIUM-ION BATTERIES; X-RAY-DIFFRACTION; CATHODE MATERIALS;
PHOTOELECTRON-SPECTROSCOPY; LAYERED OXIDES; SOLID-SOLUTION; LI2MNO3;
LI1.20MN0.54CO0.13NI0.13O2; ELECTRODES; MECHANISM
AB We have determined the electrochemical characteristics of the high voltage, high capacity Li-ion battery cathode material Li[Li2/12Ni3/12Mn7/12]O-2 prepared using three different synthesis routes: sol-gel, hydroxide coprecipitation, and carbonate coprecipitation. Each route leads to distinct morphologies and surface areas while maintaining the same crystal structures. X-ray photoelectron spectroscopy (XPS) measurements reveal differences in their surface chemistries upon cycling, which correlate with voltage fading. Indeed, we observe the valence state of Mn on the surface to decrease upon lithiation, and this reduction is specifically correlated to discharging below 3.6 V. Furthermore, the data shows a correlation of the formation of Li2CO3 with the Mn oxidation state from the decomposition of electrolyte. These phenomena are related to each material's electrochemistry in order to expand upon the reaction mechanisms taking place-specifically in terms of the particle morphology produced by each synthetic approach.
C1 [Verde, Michael G.; Liu, Haodong; Carroll, Kyler J.; Meng, Y. Shirley] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA.
[Baggetto, Loic; Veith, Gabriel M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Verde, MG (reprint author), Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA.
EM mverdejr@gmail.com; shmeng@ucsd.edu
RI Baggetto, Loic/D-5542-2017
OI Baggetto, Loic/0000-0002-9029-2363
FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office
of Vehicle Technologies of the U.S. Department of Energy
[AC02-05CH11231, 7056412]; U.S. Department of Energy (DOE), Basic Energy
Sciences (BES), Materials Sciences and Engineering Division
FX The authors are grateful for the financial support from the Assistant
Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle
Technologies of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231, Subcontract No. 7056412 under the Batteries for
Advanced Transportation Technologies (BATT) Program. The U.S. Department
of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and
Engineering Division supported a portion of this work (BET, XPS LB,
GMV). We are also grateful for the contributions from undergraduate
research assistants at the University of California San Diego (UCSD),
Han Nguyen and Michael Tang.
NR 56
TC 22
Z9 22
U1 8
U2 108
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD NOV 12
PY 2014
VL 6
IS 21
BP 18868
EP 18877
DI 10.1021/am504701s
PG 10
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA AT5IY
UT WOS:000344978200064
PM 25275709
ER
PT J
AU Yildirim, H
Greeley, JP
Sankaranarayanan, SKRS
AF Yildirim, Handan
Greeley, Jeffrey P.
Sankaranarayanan, Subramanian K. R. S.
TI Localized Order-Disorder Transitions Induced by Li Segregation in
Amorphous TiO2 Nanoparticles
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE amorphous titania; nanoparticle; lithiation; segregation; diffusion;
Li-ion batteries
ID TITANIUM-DIOXIDE NANOPARTICLES; MOLECULAR-DYNAMICS SIMULATION;
LITHIUM-ION BATTERIES; RATE PERFORMANCE; ENERGY-STORAGE; ANATASE TIO2;
ADSORPTION; INSERTION; SURFACE; NANOSTRUCTURES
AB Li segregation and transport characteristics in amorphous TiO2 nanopartides (NPs) are studied using molecular dynamics (MD) simulations. A strong intrapartide segregation of Li is observed, and the degree of segregation is found to correlate with Li concentration. With increasing Li concentration, Li diffusivity and segregation are enhanced, and this behavior is tied to the structural response of the NPs with increasing lithiation. The atoms in the amorphous NPs undergo rearrangement in the regions of high Li concentration, introducing new pathways for Li transport and segregation. These localized atomic rearrangements, in turn, induce preferential crystallization near the surfaces of the NPs. Such rich, dynamical responses are not expected for crystalline NPs, where the presence of well-defined lattice sites leads to limited segregation and transport at high Li concentrations. The preferential crystallization in the near-surface region in amorphous NPs may offer enhanced stability and fast Li transport for Li-ion battery applications, in addition to having potentially useful properties for other materials science applications.
C1 [Yildirim, Handan; Greeley, Jeffrey P.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA.
[Sankaranarayanan, Subramanian K. R. S.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Greeley, JP (reprint author), Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA.
EM jgreeley@purdue.edu; skrssank@anl.gov
FU DOE Early Career Award through the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences/Chemical Sciences; U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]; Office of Science of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX A DOE Early Career Award for J.G. through the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences/Chemical Sciences, is
acknowledged. Use of the Center for Nanoscale Materials was supported by
the U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No: DE-AC02-06CH11357. The authors also
acknowledge the use of computational resources through the National
Energy Research Scientific Computing Center (NERSC). This research used
resources of the National Energy Research Scientific Computing Center, a
DOE Office of Science User Facility supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
NR 66
TC 3
Z9 3
U1 4
U2 30
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD NOV 12
PY 2014
VL 6
IS 21
BP 18962
EP 18970
DI 10.1021/am5048398
PG 9
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA AT5IY
UT WOS:000344978200074
PM 25303039
ER
PT J
AU Chaukulkar, RP
de Peuter, K
Stradins, P
Pylypenko, S
Bell, JP
Yang, YA
Agarwal, S
AF Chaukulkar, Rohan P.
de Peuter, Koen
Stradins, Paul
Pylypenko, Svitlana
Bell, Jacob P.
Yang, Yongan
Agarwal, Sumit
TI Single-Step Plasma Synthesis of Carbon-Coated Silicon Nanoparticles
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE Si nanoparticles; radio frequency plasmas; nanoparticle synthesis
ID LITHIUM-ION BATTERIES; GAS-PHASE HYDROSILYLATION; AMORPHOUS-CARBON;
CARBIDE FILMS; METAL NANOPARTICLES; ANODE MATERIAL; CRITICAL SIZE;
QUANTUM DOTS; SIC MATRIX; CORE-LEVEL
AB We have developed a novel single-step technique based on nonthermal, radio frequency (rf) plasmas to synthesize sub-10 nm, core-shell, carbon-coated crystalline Si (c-Si) nanoparticles (NPs) for potential application in Li+ batteries and as fluorescent markers. Hydrogen-terminated c-Si NPs nucleate and grow in a SiH4-containing, low-temperature plasma in the upstream section of a tubular quartz reactor. The c-Si NPs are then transported downstream by gas flow, and are coated with amorphous carbon (a-C) in a second C2H2-containing plasma. X-ray diffraction (XRD), X-ray photoelectron spectroscopy, and in situ attenuated total reflection Fourier transform infrared spectroscopy show that a thin, < 1 rim, 3C-SiC layer forms at the c-Si/a-C interface. By varying the downstream C2H2 plasma rf power, we can alter the nature of the a-C coating as well as the thickness of the interfacial 3C-SiC layer. The transmission electron microscopy (TEM) analysis is in agreement with the Si NP core size determined by Raman spectroscopy, photoluminescence spectroscopy, and XRD analysis. The size of the c-Si NP core, and the corresponding light emission from these NPs, was directly controlled by varying the thickness of the interfacial 3C-SiC layer. This size tunable emission thus also demonstrates the versatility of this technique for synthesizing c-Si NPs for potential applications in light emitting diodes, biological markers, and nanocrystal inks.
C1 [Chaukulkar, Rohan P.; Agarwal, Sumit] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA.
[de Peuter, Koen] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands.
[Stradins, Paul] Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA.
[Pylypenko, Svitlana] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA.
[Bell, Jacob P.; Yang, Yongan] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA.
RP Agarwal, S (reprint author), Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA.
EM sagarwal@mines.edu
RI Yang, Yongan/C-2688-2011; Agarwal, Sumit/D-8950-2011
OI Yang, Yongan/0000-0003-1451-2923;
FU NSF CAREER program [CBET-0846923]; U.S. Department of Energy
[DE-AC36-08-GO28308]; National Renewable Energy Laboratory; Eindhoven
University of Technology
FX We gratefully acknowledge support from the NSF CAREER program (Grant No.
CBET-0846923). P.S. acknowledges support from U.S. Department of Energy
under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy
Laboratory. K.d.P. acknowledges support from the Eindhoven University of
Technology. The authors would like to thank H. A. MacPherson and Dr. C.
R. Stoldt at the University of Colorado for the Raman measurements, and
the surface analysis group at the National Renewable Energy Laboratory
for support and access to the XPS.
NR 70
TC 7
Z9 7
U1 15
U2 133
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD NOV 12
PY 2014
VL 6
IS 21
BP 19026
EP 19034
DI 10.1021/am504913n
PG 9
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA AT5IY
UT WOS:000344978200081
PM 25275941
ER
PT J
AU Tan, HQ
Zhao, Z
Zhu, WB
Coker, EN
Li, BS
Zheng, M
Yu, WX
Fan, HY
Sun, ZC
AF Tan, Huaqiao
Zhao, Zhao
Zhu, Wan-bin
Coker, Eric N.
Li, Binsong
Zheng, Min
Yu, Weixing
Fan, Hongyou
Sun, Zaicheng
TI Oxygen Vacancy Enhanced Photocatalytic Activity of Pervoskite SrTiO3
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE SrTiO3; NaBH4; oxygen vacancy; core/shell nanostructure; photocatlytic
H-2 generation
ID VISIBLE-LIGHT; HYDROGEN-PRODUCTION; WATER OXIDATION; H-2 EVOLUTION;
DOPED ZNO; TIO2; NANOPARTICLES; PERFORMANCE; COCATALYSTS; ABSORPTION
C1 [Tan, Huaqiao; Zhao, Zhao; Zheng, Min; Sun, Zaicheng] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Luminescence & Applicat, Changchun 130033, Peoples R China.
[Zhao, Zhao] Univ Chinese Acad Sci, Beijing 100000, Peoples R China.
[Zhu, Wan-bin; Yu, Weixing] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Appl Opt, Changchun 130033, Peoples R China.
[Coker, Eric N.; Li, Binsong; Fan, Hongyou] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87185 USA.
[Fan, Hongyou] Univ New Mexico, Dept Chem & Nucl Engn, Ctr Microengn & Mat, Albuquerque, NM 87106 USA.
RP Sun, ZC (reprint author), Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Luminescence & Applicat, 3888 East Nanhu Rd, Changchun 130033, Peoples R China.
EM sunzc@ciomp.ac.cn
RI Zheng, Min/B-6267-2013; Sun, Zaicheng/B-5397-2012; Yu,
Weixing/G-3658-2012
OI Sun, Zaicheng/0000-0001-5277-5308; Yu, Weixing/0000-0002-3216-526X
FU "Hundred Talent Program" of CAS; open research fund program of State Key
Laboratory of Luminescence and Applications (Changchun Institute of
Optics, Fine Mechanics and Physics, CAS); Key Laboratory of Functional
Inorganic Material Chemistry (Heilongjiang University), Ministry of
Education, P. R. China; U.S. Department of Energy, Office of Basic
Energy Sciences, Division of Materials Sciences and Engineering; U.S.
Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX The authors thank the National Natural Science Foundation of China (No.
21301166, 21201159, 61361166004, and 61176016); Science and Technology
Department of Jilin Province (No. 20130522127JH and 20121801) are
gratefully acknowledged. Z.S. thanks the support of the "Hundred Talent
Program" of CAS. Supported by open research fund program of State Key
Laboratory of Luminescence and Applications (Changchun Institute of
Optics, Fine Mechanics and Physics, CAS) and Key Laboratory of
Functional Inorganic Material Chemistry (Heilongjiang University),
Ministry of Education, P. R. China. HF acknowledges the support from the
U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under Contract DE-AC04-94AL85000.
NR 41
TC 50
Z9 50
U1 35
U2 205
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD NOV 12
PY 2014
VL 6
IS 21
BP 19184
EP 19190
DI 10.1021/am5051907
PG 7
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA AT5IY
UT WOS:000344978200100
PM 25311356
ER
PT J
AU Braid, JL
Koldemir, U
Sellinger, A
Collins, RT
Furtak, TE
Olson, DC
AF Braid, Jennifer L.
Koldemir, Unsal
Sellinger, Alan
Collins, Reuben T.
Furtak, Thomas E.
Olson, Dana C.
TI Conjugated Phosphonic Acid Modified Zinc Oxide Electron Transport Layers
for Improved Performance in Organic Solar Cells
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE organic photovoltaics; inverted devices; work function tuning;
phosphonic acid; conjugated linkage
ID SELF-ASSEMBLED MONOLAYERS; INDIUM-TIN OXIDE; WORK FUNCTION;
BENZYLPHOSPHONIC ACIDS; SURFACE-PROPERTIES; BINDING
AB Phosphonic acid modification of zinc oxide (ZnO) electron transport layers in inverted P3HT:ICBA solar cells was studied to determine the effect of conjugated linkages between the aromatic and phosphonic add attachment groups. For example, zinc oxide treated with 2,6-difluorophenylvinylphosphonic acid, having a conjugated vinyl group connecting the aromatic moiety to the phosphonic add group, showed a 0.78 eV decrease in the effective work function versus unmodified ZnO, whereas nonconjugated 2,6-difluorophenyle-thylphosphonic acid resulted in a 0.57 eV decrease, as measured by Kelvin probe. This resulted in an average power conversion efficiency of 5.89% for conjugated 2,6-difluorophenyvinylphosphonic add modified solar cells, an improvement over unmodified (5.24%) and nonconjugated phosphonic add modified devices (5.64%), indicating the importance of the conjugated linkage.
C1 [Braid, Jennifer L.; Collins, Reuben T.; Furtak, Thomas E.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA.
[Koldemir, Unsal; Sellinger, Alan] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA.
[Braid, Jennifer L.; Sellinger, Alan; Olson, Dana C.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Olson, DC (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM aselli@mines.edu; rtcollin@mines.edu; dana.olson@nrel.gov
RI Sellinger, Alan/C-6250-2015; Collins, Reuben/O-2545-2014; Braid,
Jennifer/A-7705-2017
OI Sellinger, Alan/0000-0001-6705-1548; Collins,
Reuben/0000-0001-7910-3819; Braid, Jennifer/0000-0002-0677-7756
FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable
Energy Laboratory through the DOE SETP program; National Science
Foundation [DMR-0907409]; Renewable Energy Materials Research Science
and Engineering Center
FX This work was supported by the U.S. Department of Energy under Contract
DE-AC36-08-GO28308 with the National Renewable Energy Laboratory through
the DOE SETP program. Partial support from the National Science
Foundation through Grant DMR-0907409 and the Renewable Energy Materials
Research Science and Engineering Center is also acknowledged for RTC and
TEF.
NR 34
TC 11
Z9 11
U1 1
U2 46
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD NOV 12
PY 2014
VL 6
IS 21
BP 19229
EP 19234
DI 10.1021/am505182c
PG 6
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA AT5IY
UT WOS:000344978200105
PM 25329245
ER
PT J
AU Bhaway, SM
Kisslinger, K
Zhang, LH
Yager, KG
Schmitt, AL
Mahanthappa, MK
Karim, A
Vogt, BD
AF Bhaway, Sarang M.
Kisslinger, Kim
Zhang, Lihua
Yager, Kevin G.
Schmitt, Andrew L.
Mahanthappa, Mahesh K.
Karim, Alamgir
Vogt, Bryan D.
TI Mesoporous Carbon-Vanadium Oxide Films by Resol-Assisted, Triblock
Copolymer-Templated Cooperative Self-Assembly
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE block copolymer; self-assembly; vanadia; templated synthesis; nanopores;
FDU-16
ID ENVIRONMENTAL ELLIPSOMETRIC POROSIMETRY; TRANSITION-METAL OXIDES;
LITHIUM-ION BATTERIES; HYBRID THIN-FILMS; MOLECULAR-SIEVES; SOLAR-CELLS;
TIO2; PERFORMANCE; ELECTRODE; REDUCTION
AB Unlike other crystalline metal oxides amenable to templating by the combined assemblies of soft and hard chemistries (CASH) method, vanadium oxide nanostructures templated by poly(ethylene oxide-b-1,4-butadiene-b-ethylene oxide) (OBO) triblock copolymers are not preserved upon high temperature calcination in argon. Triconstituent cooperative assembly of a phenolic resin oligomer (resol) and an OBO triblock in a VOCl3 precursor solution enhances the carbon yield and can prevent breakout crystallization of the vanadia during calcination. However, the calcination environment significantly influences the observed mesoporous morphology in these composite thin films. Use of an argon atmosphere in this processing protocol leads to nearly complete loss of carbon vanadium oxide thin film mesostructure, due to carbothermal reduction of vanadium oxide. This reduction mechanism also explains why the CASH method is not more generally successful for the fabrication of ordered mesoporous vanadia. Carbonization under a nitrogen atmosphere at temperatures up to 800 degrees C instead enables formation of a block copolymer-templated mesoporous structure, which apparently stems from the formation of a minor fraction of a stabilizing vanadium oxynitride. Thus, judicious selection of the inert gas for template removal is critical for the synthesis of well-defined, mesoporous vanadia carbon composite films. This resol-assisted assembly method may generally apply to the fabrication of other mesoporous materials, wherein inorganic framework crystallization is problematic due to kinetically competitive carbothermal reduction processes.
C1 [Bhaway, Sarang M.; Karim, Alamgir; Vogt, Bryan D.] Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA.
[Kisslinger, Kim; Zhang, Lihua; Yager, Kevin G.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Schmitt, Andrew L.; Mahanthappa, Mahesh K.] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA.
RP Vogt, BD (reprint author), Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA.
EM vogt@uakron.edu
RI Vogt, Bryan/H-1986-2012; Zhang, Lihua/F-4502-2014; Yager,
Kevin/F-9804-2011; Kisslinger, Kim/F-4485-2014;
OI Vogt, Bryan/0000-0003-1916-7145; Yager, Kevin/0000-0001-7745-2513;
Mahanthappa, Mahesh/0000-0002-9871-804X
FU National Science Foundation [CBET-1336057]; NSF American Competitiveness
in Chemistry Postdoctoral Fellowship [CHE-1041975]; U.S. Department of
Energy, Office of Basic EnergySciences [DE-AC02-98CH10886]; U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]; Ohio Research Scholars Program Research Cluster on
Surfaces in Advanced Materials
FX This work has been partial supported by the National Science Foundation
under grant CBET-1336057. A.L.S. gratefully acknowledges financial
support from a NSF American Competitiveness in Chemistry Postdoctoral
Fellowship (CHE-1041975). Research carried out at the Center for
Functional Nanomaterials, Brookhaven National Laboratory, was supported
by the U.S. Department of Energy, Office of Basic EnergySciences, under
Contract No. DE-AC02-98CH10886. Use of the Sector 8-ID-E beamline of the
Advanced Photon Source at Argonne National Laboratory for GISAXS
measurements was supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. The authors also thank Dr. Zhorro Nikolov for his
assistance with XPS data analysis. Changhuai Ye and Zhe Qiang are
acknowledged for help with GISAXS measurements. Some TEM data were
obtained at the (cryo) TEM facility at the Liquid Crystal Institute,
Kent State University, supported by the Ohio Research Scholars Program
Research Cluster on Surfaces in Advanced Materials. S.M.B. thanks Dr.
Min Gao for assistance with the TEM.
NR 62
TC 4
Z9 4
U1 5
U2 72
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD NOV 12
PY 2014
VL 6
IS 21
BP 19288
EP 19298
DI 10.1021/am505307t
PG 11
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA AT5IY
UT WOS:000344978200113
PM 25317954
ER
PT J
AU Ren, XD
Lau, KC
Yu, MZ
Bi, XX
Kreidler, E
Curtiss, LA
Wu, YY
AF Ren, Xiaodi
Lau, Kah Chun
Yu, Mingzhe
Bi, Xuanxuan
Kreidler, Eric
Curtiss, Larry A.
Wu, Yiying
TI Understanding Side Reactions in K-O-2 Batteries for Improved Cycle Life
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE metal-air batteries; potassium-oxygen battery; side reactions; O-2
crossover; ion selective separator
ID SUPEROXIDE NAO2 BATTERY; NONAQUEOUS LI-O-2; POTASSIUM SUPEROXIDE;
LITHIUM BATTERIES; ORGANIC-SOLVENTS; CARBON ELECTRODE; AIR BATTERIES;
CHALLENGES; STABILITY; CATIONS
AB Superoxide based metal-air (or metal-oxygen) batteries, including potassium and sodium-oxygen batteries, have emerged as promising alternative chemistries in the metal-air battery family because of much improved round-trip efficiencies (>90%). In order to improve the cycle life of these batteries, it is crucial to understand and control the side reactions between the electrodes and the electrolyte. For potassium-oxygen batteries using ether-based electrolytes, the side reactions on the potassium anode have been identified as the main cause of battery failure. The composition of the side products formed on the anode, including some reaction intermediates, have been identified and quantified. Combined experimental studies and density functional theory (DFT) calculations show the side reactions are likely driven by the interaction of potassium with ether molecules and the crossover of oxygen from the cathode. To inhibit these side reactions, the incorporation of a polymeric potassium ion selective membrane (Nafion-K+) as a battery separator is demonstrated that significantly improves the battery cycle life. The K-O-2 battery with the Nafion-K+ separator can be discharged and charged for more than 40 cycles without increases in charging overpotential.
C1 [Ren, Xiaodi; Yu, Mingzhe; Bi, Xuanxuan; Wu, Yiying] Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA.
[Lau, Kah Chun; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Lau, Kah Chun; Curtiss, Larry A.] Argonne Natl Lab, Joint Ctr Energy Storage Res, Argonne, IL 60439 USA.
[Kreidler, Eric] Honda Res Inst USA Inc, Columbus, OH 43212 USA.
RP Wu, YY (reprint author), Ohio State Univ, Dept Chem & Biochem, 100 West 18th Ave, Columbus, OH 43210 USA.
EM wu@chemistry.ohio-state.edu
RI Lau, Kah Chun/A-9348-2013; Ren, Xiaodi/M-5843-2014; Yu,
Mingzhe/N-5907-2016
OI Lau, Kah Chun/0000-0002-4925-3397; Ren, Xiaodi/0000-0002-2025-7554;
FU Honda Research Institute USA; CNM Carbon Cluster at Argonne National
Laboratory; ALCF Fusion Cluster at Argonne National Laboratory; Joint
Center for Energy Storage Research (JCESR), an Energy Innovation Hub -
U.S. Department of Energy, Office of Science, Basic Energy Sciences
FX We are thankful for the financial support from Honda Research Institute
USA. We acknowledge grants of computer time through the CNM Carbon
Cluster at Argonne National Laboratory, the ALCF Fusion Cluster at
Argonne National Laboratory. K.C.L. and L.A.C. were supported as part of
the Joint Center for Energy Storage Research (JCESR), an Energy
Innovation Hub funded by the U.S. Department of Energy, Office of
Science, Basic Energy Sciences.
NR 30
TC 17
Z9 17
U1 18
U2 88
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD NOV 12
PY 2014
VL 6
IS 21
BP 19299
EP 19307
DI 10.1021/am505351s
PG 9
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA AT5IY
UT WOS:000344978200114
PM 25295518
ER
PT J
AU Song, CK
Eckstein, BJ
Tam, TLD
Trahey, L
Marks, TJ
AF Song, Charles Kiseok
Eckstein, Brian J.
Tam, Teck Lip Dexter
Trahey, Lynn
Marks, Tobin J.
TI Conjugated Polymer Energy Level Shifts in Lithium-Ion Battery
Electrolytes
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE lithium-ion battery; conjugated polymer; electron affinity; cyclic
voltammetry; electrolyte; organic photovoltaics
ID HETEROJUNCTION SOLAR-CELLS; LIGHT-EMITTING-DIODES; CONDUCTING POLYMER;
SIDE-CHAINS; ELECTRODES; POTENTIALS; LI; REDUCTION; ANODE;
POLYTHIOPHENES
AB The ionization potentials (IPs) and electron affinities (EAs) of widely used conjugated polymers are evaluated by cyclic voltammetry (CV) in conventional electrochemical and lithium-ion battery media, and also by ultraviolet photoelectron spectroscopy (UPS) in vacuo. By comparing the data obtained in the different systems, it is found that the IPs of the conjugated polymer films determined by conventional CV (IPC) can be correlated with UPS-measured HOMO energy levels (E-H,E-UPS) by the relationship E-H,E-UPS = (1.14 +/- 0.23) X qIP(C) + (4.62 +/- 0.10) eV, where q is the electron charge. It is also found that the EAs of the conjugated polymer films measured via CV in conventional (EA(C)) and Li+ battery (EA(B)) media can be linearly correlated by the relationship EA(B) = (1.07 +/- 0.13) x EA(C) + (2.84 +/- 0.22) V. The slopes and intercepts of these equations can be correlated with the dielectric constants of the polymer film environments and the redox potentials of the reference electrodes, as modified by the surrounding electrolyte, respectively.
C1 [Song, Charles Kiseok; Eckstein, Brian J.; Tam, Teck Lip Dexter; Marks, Tobin J.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Trahey, Lynn] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Marks, Tobin J.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
RP Trahey, L (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM trahey@anl.gov; t-marks@northwestern.edu
FU Institute for Sustainability and Energy at Northwestern (ISEN);
Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy
Frontier Research Center - U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences [DE-SC0001059]; Agency of Science,
Technology and Research (A*STAR); Northwestern U., the NSF [CHE-0923236,
CHE-9871268]; Pfizer; State of Illinois; Northwestern U., the State of
Illinois; Keck foundation; NSF-MRSEC; NSF-NSEC
FX This research was supported in part by the Institute for Sustainability
and Energy at Northwestern (ISEN) (C.K.S.) and by the
Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy
Frontier Research Center funded by the U.S. Department of Energy, Office
of Science, Office of Basic Energy Sciences, under Award Number
DE-SC0001059 (B.J.E.). This research was also supported by the Agency of
Science, Technology and Research (A*STAR; T.L.D.T.). We acknowledge the
Integrated Molecular Structure Education and Research Center (IMSERC)
for molecular characterization facilities for NMR spectroscopy supported
by Northwestern U., the NSF under grants CHE-0923236 and CHE-9871268,
Pfizer, and the State of Illinois. We also thank the Nanoscale
Integrated Fabrication, Testing, and Instrument (NIFTI) and Keck
Interdisciplinary Surface Science (KECK-II) facilities of Northwestern
University's Atomic and Nanoscale Characterization Experimental (NUANCE)
Center for UPS experiments, supported by Northwestern U., the State of
Illinois, the Keck foundation, NSF-MRSEC, and NSF-NSEC. Finally, we
thank Dr. Antonio Facchetti, J. T. Shin, and J. L. Song for helpful
discussions.
NR 57
TC 7
Z9 7
U1 6
U2 42
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD NOV 12
PY 2014
VL 6
IS 21
BP 19347
EP 19354
DI 10.1021/am505416m
PG 8
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA AT5IY
UT WOS:000344978200119
PM 25329000
ER
PT J
AU Li, YZ
Rios, O
Kessler, MR
AF Li, Yuzhan
Rios, Orlando
Kessler, Michael R.
TI Thermomagnetic Processing of Liquid-Crystalline Epoxy Resins and Their
Mechanical Characterization Using Nanoindentation
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE liquid-crystalline epoxy resins; thermomagnetic processing; molecular
orientation; mechanical properties
ID HIGH MAGNETIC-FIELD; RIGID-ROD; SENSING INDENTATION; BIPHENYL MESOGEN;
SINGLE-CRYSTALS; THERMOSETS; ANISOTROPY; ORIENTATION; POLYMERS; KINETICS
AB A thermomagnetic processing method was used to produce a biphenyl-based liquid-crystalline epoxy resin (LCER) with oriented liquid-crystalline (LC) domains. The orientation of the LCER was confirmed and quantified using two-dimensional X-ray diffraction. The effect of molecular alignment on the mechanical and thermomechanical properties of the LCER was investigated using nanoindentation and thermomechanical analysis, respectively. The effect of the orientation on the fracture behavior was also examined. The results showed that macroscopic orientation of the LC domains was achieved, resulting in an epoxy network with an anisotropic modulus, hardness, creep behavior, and thermal expansion.
C1 [Li, Yuzhan; Kessler, Michael R.] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA.
[Rios, Orlando] Oak Ridge Natl Lab, Mat Proc & Mfg Grp, Oak Ridge, TN 37831 USA.
RP Kessler, MR (reprint author), Washington State Univ, Sch Mech & Mat Engn, POB 642920, Pullman, WA 99164 USA.
EM MichaelR.Kessler@wsu.edu
RI Kessler, Michael/C-3153-2008; Rios, Orlando/E-6856-2017
OI Kessler, Michael/0000-0001-8436-3447; Rios, Orlando/0000-0002-1814-7815
FU Critical Materials Institute, an Energy Innovation Hub - U.S. Department
of Energy, Office of Energy Efficiency and Renewable Energy , and
Advanced Manufacturing Office [DE-AC05-00OR22725]; UT-Battelle, LLC; Air
Force Office of Scientific Research [FA9550-12-1-0108]
FX The authors thank Dr. Scott Schlorholtz at the Materials Analysis
Research Laboratory at Iowa State University for his help with the XRD
experiments and Dr. Amy Wo for the helpful discussion regarding the
nanoindentation experiments. The authors also thank Dr. Valerie
Lynch-Holm at the Franceschi Microscopy & Imaging Center at Washington
State University. Research sponsored in part by the Critical Materials
Institute, an Energy Innovation Hub funded by U.S. Department of Energy,
Office of Energy Efficiency and Renewable Energy, and Advanced
Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle,
LLC. Support through the Air Force Office of Scientific Research (Award
FA9550-12-1-0108) is gratefully acknowledged.
NR 37
TC 5
Z9 5
U1 2
U2 41
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD NOV 12
PY 2014
VL 6
IS 21
BP 19456
EP 19464
DI 10.1021/am505874t
PG 9
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA AT5IY
UT WOS:000344978200131
PM 25318760
ER
PT J
AU Berman, D
Deshmukh, SA
Sankaranarayanan, SKRS
Erdemir, A
Sumant, AV
AF Berman, Diana
Deshmukh, Sanket A.
Sankaranarayanan, Subramanian K. R. S.
Erdemir, Ali
Sumant, Anirudha V.
TI Extraordinary Macroscale Wear Resistance of One Atom Thick Graphene
Layer
SO ADVANCED FUNCTIONAL MATERIALS
LA English
DT Article
DE single layer graphene; wear; friction; tribology; MD Simulations
ID DIAMOND-LIKE CARBON; SLIDING STEEL SURFACES; RAMAN-SPECTROSCOPY;
FRICTION; GRAPHITE; DYNAMICS; HYDROGEN; NITROGEN; DEFECTS; FUTURE
AB During the last few years, graphene's unusual friction and wear properties have been demonstrated at nano to micro scales but its industrial tribological potential has not been fully realized. The macroscopic wear resistance of one atom thick graphene coating is reported by subjecting it to pin-on-disc type wear testing against most commonly used steel against steel tribo-pair. It is shown that when tested in hydrogen, a single layer of graphene on steel can last for 6400 sliding cycles, while few-layer graphene (3-4 layers) lasts for 47 000 cycles. Furthermore, these graphene layers are shown to completely cease wear despite the severe sliding conditions including high contact pressures (approximate to 0.5 GPa) observed typically in macroscale wear tests. The computational simulations show that the extraordinary wear performance originates from hydrogen passivation of the dangling bonds in a ruptured graphene, leading to significant stability and longer lifetime of the graphene protection layer. Also, the electronic properties of these graphene sheets are theoretically evaluated and the improved wear resistance is demonstrated to preserve the electronic properties of graphene and to have significant potential for flexible electronics. The findings demonstrate that tuning the atomistic scale chemical interactions holds the promise of realizing extraordinary tribological properties of monolayer graphene coatings.
C1 [Berman, Diana; Deshmukh, Sanket A.; Sankaranarayanan, Subramanian K. R. S.; Sumant, Anirudha V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Erdemir, Ali] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
RP Berman, D (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM sumant@anl.gov
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]; Office of Science of the U.S. Department
of Energy [DE-AC02-05CH11231]
FX Use of the Center for Nanoscale Materials was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357. This research used
resources of the National Energy Research Scientific Computing Center, a
DOE Office of Science User Facility supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
NR 41
TC 23
Z9 23
U1 10
U2 99
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1616-301X
EI 1616-3028
J9 ADV FUNCT MATER
JI Adv. Funct. Mater.
PD NOV 12
PY 2014
VL 24
IS 42
BP 6640
EP 6646
DI 10.1002/adfm.201401755
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA AT2QC
UT WOS:000344778200008
ER
PT J
AU Shao, M
Keum, JK
Kumar, R
Chen, JH
Browning, JF
Das, S
Chen, W
Hou, JH
Do, C
Littrell, KC
Rondinone, A
Geohegan, DB
Sumpter, BG
Xiao, K
AF Shao, Ming
Keum, Jong Kahk
Kumar, Rajeev
Chen, Jihua
Browning, James F.
Das, Sanjib
Chen, Wei
Hou, Jianhui
Do, Changwoo
Littrell, Kenneth C.
Rondinone, Adam
Geohegan, David B.
Sumpter, Bobby G.
Xiao, Kai
TI Understanding How Processing Additives Tune the Nanoscale Morphology of
High Efficiency Organic Photovoltaic Blends: From Casting Solution to
Spun-Cast Thin Film
SO ADVANCED FUNCTIONAL MATERIALS
LA English
DT Article
DE polymer photovoltaics; morphology; neutron scattering; reflectometry;
Flory-Huggins theory
ID POLYMER SOLAR-CELLS; PERFORMANCE; DEVICES
AB Adding a small amount of a processing additive to the casting solution of photoactive organic blends has been demonstrated to be an effective method for achieving improved power conversion efficiency (PCE) in organic photovoltaics (OPVs). However, an understanding of the nano-structural evolution occurring in the transformation from casting solution to thin photoactive films is still lacking. In this report, the effects of the processing additive diiodooctane (DIO) on the morphology of the established blend of PBDTTT-C-T polymer and the fullerene derivative PC71BM used for OPVs are investigated, starting in the casting solution and tracing the effects in spun-cast thin films by using neutron/X-ray scattering, neutron reflectometry, and other characterization techniques. The results reveal that DIO has no observable effect on the structures of PBDTTT-C-T and PC71BM in solution; however, in the spun-cast films, it significantly promotes their molecular ordering and phase segregation, resulting in improved PCE. Thermodynamic analysis based on Flory-Huggins theory provides a rationale for the effects of DIO on different characteristics of phase segregation due to changes in concentration resulting from evaporation of the solvent and additive during film formation. Such information may help improve the rational design of ternary blends to more consistently achieve improved PCE for OPVs.
C1 [Shao, Ming; Keum, Jong Kahk; Kumar, Rajeev; Chen, Jihua; Rondinone, Adam; Geohegan, David B.; Sumpter, Bobby G.; Xiao, Kai] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Keum, Jong Kahk; Browning, James F.; Do, Changwoo; Littrell, Kenneth C.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
[Kumar, Rajeev; Sumpter, Bobby G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.
[Das, Sanjib] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA.
[Chen, Wei] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Hou, Jianhui] Chinese Acad Sci, Inst Chem, Beijing 10080, Peoples R China.
RP Shao, M (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM xiaok@ornl.gov
RI Littrell, Kenneth/D-2106-2013; Geohegan, David/D-3599-2013; KUMAR,
RAJEEV/D-2562-2010; Do, Changwoo/A-9670-2011; Das, Sanjib/A-9255-2017;
Chen, Jihua/F-1417-2011; Hou, Jianhui /E-5824-2011; Chen,
Wei/G-6055-2011; Sumpter, Bobby/C-9459-2013; Kumar, Rajeev/Q-2255-2015;
Rondinone, Adam/F-6489-2013; Browning, James/C-9841-2016; Keum,
Jong/N-4412-2015
OI Littrell, Kenneth/0000-0003-2308-8618; Geohegan,
David/0000-0003-0273-3139; Do, Changwoo/0000-0001-8358-8417; Das,
Sanjib/0000-0002-5281-4458; Chen, Jihua/0000-0001-6879-5936; Hou,
Jianhui /0000-0002-2105-6922; Chen, Wei/0000-0001-8906-4278; Sumpter,
Bobby/0000-0001-6341-0355; Kumar, Rajeev/0000-0001-9494-3488; Rondinone,
Adam/0000-0003-0020-4612; Browning, James/0000-0001-8379-259X; Keum,
Jong/0000-0002-5529-1373
FU Oak Ridge National Laboratory by the Office of Basic Energy Sciences,
U.S. Department of Energy; Laboratory Directed Research and Development
award, Oak Ridge National Laboratory (ORNL)
FX M.S. and J.K. contributed equally for this work. This research was
conducted at the Center for Nanophase Materials Sciences (CNMS), High
Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS) which
are sponsored at Oak Ridge National Laboratory by the Office of Basic
Energy Sciences, U.S. Department of Energy. KX and DBG acknowledge the
support provided by a Laboratory Directed Research and Development award
from the Oak Ridge National Laboratory (ORNL) for the neutron
experiments.
NR 37
TC 16
Z9 16
U1 2
U2 77
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1616-301X
EI 1616-3028
J9 ADV FUNCT MATER
JI Adv. Funct. Mater.
PD NOV 12
PY 2014
VL 24
IS 42
BP 6647
EP 6657
DI 10.1002/adfm.201401547
PG 11
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA AT2QC
UT WOS:000344778200009
ER
PT J
AU Rappe, KG
AF Rappe, Kenneth G.
TI Integrated Selective Catalytic Reduction-Diesel Particulate Filter
Aftertreatment: Insights into Pressure Drop, NOx Conversion, and Passive
Soot Oxidation Behavior
SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
LA English
DT Article
ID ZEOLITE CATALYSTS; CU-SSZ-13; AMMONIA; SITES; FLOW; NH3
AB Integrating urea-selective catalytic reduction (SCR) and diesel particulate filter (DPF) technologies into a single device has the potential to reduce the complexity of current diesel aftertreatment strategies. Fundamental studies were performed to shed light on the pressure drop and reaction behavior of integrated SCR and DPF systems. Details of SCR washcoat amount and location were investigated for effect on pressure drop during soot filtration. The SCR catalyst primarily impacted depth filtration of soot, promoted by increased catalyst located within the upstream portion of the porous filter wall. This effect is believed to be related to the nature of the porous filter substrate and pore network and changing of the rate at which pores plug in the presence of catalyst. SCR catalyst on the wall of the inlet filter channel also had an effect on the pressure rise during cake filtration of soot. NOx reduction efficiency measurements were performed to determine the nature and magnitude of the effect of soot on SCR performance. The effect of soot on the SCR performance is primarily attributed to the contribution of passive soot oxidation, and the propensity for soot oxidation to shift the NO2/NOx fraction relative to 0.5. SCR performance at NO2/NOx < 0.5 is adversely affected by the presence of soot oxidation by increasing the SCR dependency on standard (NO only) SCR reactions; conversely, at NO2/NOx > 0.5, the SCR performance is positively impacted by a decreased dependency on NO2-only SCR reactions. Temperature-programmed oxidation studies were performed to evaluate the impact of SCR on passive soot oxidation. SCR adversely impacts soot oxidation performance via NO2 diffusive effects, decreasing NO2 concentration in the inlet channel. This impact can be minimized or recovered at higher NO2 concentration and NO2/NOx fractions >0.5.
C1 Pacific NW Natl Lab, Richland, WA 99354 USA.
RP Rappe, KG (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99354 USA.
EM ken.rappe@pnnl.gov
FU U.S. Department of Energy (DOE), Office of Energy Efficiency and
Renewable Energy, Vehicle Technologies Program; U.S. Department of
Energy by Battelle Memorial Institute [DE-AC06-76RLO 1830]
FX This work was performed at the Applied Process Engineering Laboratory at
Pacific Northwest National Laboratory (PNNL). The author wishes to thank
Gary Maupin for assistance in operating the soot loading apparatus and
Jarrod Crum and Brian Riley for assistance in acquiring SEM images of
the SCR/DPF samples. The author gratefully acknowledges funding provided
for the research from the U.S. Department of Energy (DOE), Office of
Energy Efficiency and Renewable Energy, Vehicle Technologies Program.
PNNL is a multiprogram national laboratory operated for the U.S.
Department of Energy by Battelle Memorial Institute under Contract
DE-AC06-76RLO 1830. Figure 1 is reused with permission from SAGE
Publications under license number 3466720963654.
NR 30
TC 2
Z9 2
U1 2
U2 48
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0888-5885
J9 IND ENG CHEM RES
JI Ind. Eng. Chem. Res.
PD NOV 12
PY 2014
VL 53
IS 45
BP 17547
EP 17557
DI 10.1021/ie502832f
PG 11
WC Engineering, Chemical
SC Engineering
GA AT4JT
UT WOS:000344906400003
ER
PT J
AU Fu, Y
Li, BS
Jiang, YB
Dunphy, DR
Tsai, A
Tam, SY
Fan, HY
Zhang, HX
Rogers, D
Rempe, S
Atanassov, P
Cecchi, JL
Brinker, CJ
AF Fu, Yaqin
Li, Binsong
Jiang, Ying-Bing
Dunphy, Darren R.
Tsai, Andy
Tam, Siu-Yue
Fan, Hongyou
Zhang, Hongxia
Rogers, David
Rempe, Susan
Atanassov, Plamen
Cecchi, Joseph L.
Brinker, C. Jeffrey
TI Atomic Layer Deposition of L-Alanine Polypeptide
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID SPECTROSCOPY; AGENT
AB L-Alanine polypeptide thin films were synthesized via atomic layer deposition (ALD). Instead of using an amino acid monomer as the precursor, an L-alanine amino acid derivatized with a protecting group was used to prevent self-polymerization, increase the vapor pressure, and allow linear cycle-by-cycle growth emblematic of ALD. The successful deposition of a conformal polypeptide film has been confirmed by FTIR, TEM, and Mass Spectrometry, and the ALD process has been extended to polyvaline.
C1 [Fu, Yaqin; Jiang, Ying-Bing; Dunphy, Darren R.; Atanassov, Plamen; Cecchi, Joseph L.; Brinker, C. Jeffrey] Univ New Mexico, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA.
[Fu, Yaqin; Jiang, Ying-Bing; Dunphy, Darren R.; Atanassov, Plamen; Cecchi, Joseph L.; Brinker, C. Jeffrey] Univ New Mexico, Ctr Microengineered Mat, Albuquerque, NM 87131 USA.
[Jiang, Ying-Bing] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA.
[Tsai, Andy; Tam, Siu-Yue] T3 Sci LLC, Blaine, MN 55449 USA.
[Li, Binsong; Fan, Hongyou; Rogers, David; Rempe, Susan; Brinker, C. Jeffrey] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Zhang, Hongxia] Angstrom Thin Film Technol LLC, Albuquerque, NM 87113 USA.
RP Jiang, YB (reprint author), Univ New Mexico, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA.
EM ybjiang@unm.edu; cjbrink@sandia.gov
FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES)
Catalysis Sciences Program [DE-FG02-02-ER15368]; DOE BES Division of
Materials Sciences and Engineering; Air Force Office of Scientific
Research [FA 9550-10-1-0054]; Sandia National Laboratories (SNL)
Laboratory Directed Research and Development (LDRD) program; U.S.
Department of Energy's NNSA [DE-AC04-94AL85000]
FX Y.F. and D.D. were supported by the U.S. Department of Energy (DOE),
Office of Basic Energy Sciences (BES) Catalysis Sciences Program Grant
DE-FG02-02-ER15368; H.F. and C.J.B. were supported by the DOE BES
Division of Materials Sciences and Engineering; B.L. and Y.-B.J.. were
supported by the Air Force Office of Scientific Research Grant FA
9550-10-1-0054; and D.R. and S.R. were supported by the Sandia National
Laboratories (SNL) Laboratory Directed Research and Development (LDRD)
program. SNL is a multiprogram laboratory operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Company, for
the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.
The authors also want to thank Dr. Ken Sherrell at UNM Dept. of
Chemistry for his help in mass spectrometry measurements.
NR 19
TC 3
Z9 3
U1 4
U2 29
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 12
PY 2014
VL 136
IS 45
BP 15821
EP 15824
DI 10.1021/ja5043403
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA AT4JQ
UT WOS:000344906100004
PM 25355683
ER
PT J
AU Zadrozny, JM
Niklas, J
Poluektov, OG
Freedman, DE
AF Zadrozny, Joseph M.
Niklas, Jens
Poluektov, Oleg G.
Freedman, Danna E.
TI Multiple Quantum Coherences from Hyperfine Transitions in a Vanadium(IV)
Complex
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID SPIN; CRYSTAL; LIGANDS; QUBITS; DECOHERENCE; COMPUTERS; LATTICE; DESIGN;
MAGNET
AB We report a vanadium complex in a nuclear-spin free ligand field that displays two key properties for an ideal candidate qubit system: long coherence times that persist at high temperature, T-2 = 1.2 mu s at 80 K, and the observation of quantum coherences from multiple transitions. The electron paramagnetic resonance (EPR) spectrum of the complex [V(C8S8)(3)](2) displays multiple transitions arising from a manifold of states produced by the hyperfine coupling of the S = 1/2 electron spin and I = 7/2 nuclear spin. Transient nutation experiments reveal Rabi oscillations for multiple transitions. These observations suggest that each pair of hyperfine levels hosted within [V(C8S8)(3)](2) are candidate qubits. The realization of multiple quantum coherences within a transition metal complex illustrates an emerging method of developing scalability and addressability in electron spin qubits. This study presents a rare molecular demonstration of multiple Rabi oscillations originating from separate transitions. These results extend observations of multiple quantum coherences from prior reports in solid-state compounds to the new realm of highly modifiable coordination compounds.
C1 [Zadrozny, Joseph M.; Freedman, Danna E.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Niklas, Jens; Poluektov, Oleg G.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
RP Freedman, DE (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.
EM danna.freedman@northwestern.edu
RI Zadrozny, Joseph/D-8206-2015; Niklas, Jens/I-8598-2016; Zadrozny,
Joseph/A-1429-2017;
OI Zadrozny, Joseph/0000-0002-1309-6545; Niklas, Jens/0000-0002-6462-2680;
Zadrozny, Joseph/0000-0002-1309-6545; Freedman,
Danna/0000-0002-2579-8835
FU Northwestern University; state of Illinois; U.S. Department of Energy
Office of Science, Office of Basic Energy Sciences, Division of Chemical
Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357]
FX We thank Prof. Brian Hoffman and Dr. Veronika Hooke for preliminary
continuous wave X-band EPR spectra and M. S. Fataftah, M. J. Graham for
helpful discussions. We acknowledge support from Northwestern University
and the state of Illinois. This material is based upon work supported by
the U.S. Department of Energy Office of Science, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences, and Biosciences,
under Contract DE-AC02-06CH11357 (J.N. and O.G.P.).
NR 42
TC 20
Z9 20
U1 4
U2 40
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 12
PY 2014
VL 136
IS 45
BP 15841
EP 15844
DI 10.1021/ja507846k
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA AT4JQ
UT WOS:000344906100009
PM 25340518
ER
PT J
AU Zhang, S
Hao, YZ
Su, D
Doan-Nguyen, VVT
Wu, YT
Li, J
Sun, SH
Murray, CB
AF Zhang, Sen
Hao, Yizhou
Su, Dong
Doan-Nguyen, Vicky V. T.
Wu, Yaoting
Li, Jing
Sun, Shouheng
Murray, Christopher B.
TI Monodisperse Core/Shell Ni/FePt Nanoparticles and Their Conversion to
Ni/Pt to Catalyze Oxygen Reduction
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID ALLOY NANOPARTICLES; STRAIN CONTROL; ELECTROCATALYSTS; SHELL; CORE;
MONOLAYER; NANOWIRES; EFFICIENT; PD; ELECTROOXIDATION
AB We report a size-controllable synthesis of monodisperse core/shell Ni/FePt nanoparticles (NPs) via a seed-mediated growth and their subsequent conversion to Ni/Pt NPs. Preventing surface oxidation of the Ni seeds is essential for the growth of uniform FePt shells. These Ni/FePt NPs have a thin (approximate to 1 nm) FePt shell and can be converted to Ni/Pt by acetic acid wash to yield active catalysts for oxygen reduction reaction (ORR). Tuning the core size allows the optimization of their electrocatalytic activity. The specific activity and mass activity of 4.2/0.8 nm core/shell Ni/FePt after acetic acid wash reach 1.95 mA/cm(2) and 490 mA/mg(pt) at 0.9 V (vs reversible hydrogen electrode), which are much higher than those of benchmark commercial Pt catalyst (0.34 mA/cm(2) and 92 mA/mg(pt) at 0.9 V). Our studies provide a robust approach to monodisperse core/shell NPs with nonprecious metal core, making it possible to develop advanced NP catalysts with ultralow Pt content for ORR and many other heterogeneous reactions.
C1 [Zhang, Sen; Wu, Yaoting; Murray, Christopher B.] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA.
[Hao, Yizhou; Doan-Nguyen, Vicky V. T.; Murray, Christopher B.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.
[Su, Dong; Li, Jing] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Sun, Shouheng] Brown Univ, Dept Chem, Providence, RI 02912 USA.
RP Murray, CB (reprint author), Univ Penn, Dept Chem, Philadelphia, PA 19104 USA.
EM cbmurray@sas.upenn.edu
RI Zhang, Sen/E-4226-2015
FU Nature Conservancy; U.S. Department of Energy, Office of Basic Energy
Sciences [DE-AC02-98CH10886]; Catalysis Center for Energy Innovation, an
Energy Frontier Research Center; U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences [DE-SC0001004]; U.S. Department
of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell
Technologies Program; U.S. Army Research Laboratory; U.S. Army Research
Office under the Multi University Research Initiative (MURI)
[W911NF-11-1-0353]
FX This work was supported by NatureNet Science Fellowship from The Nature
Conservancy. Partial work on electron microscopy carried out at the
Center for Functional Nanomaterials, Brookhaven National Laboratory, was
supported by the U.S. Department of Energy, Office of Basic Energy
Sciences, under contract no. DE-AC02-98CH10886. Partial work on Ni
nanoparticle chemistry was supported by the Catalysis Center for Energy
Innovation, an Energy Frontier Research Center funded by the U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
under award no. DE-SC0001004. Partial work on electrochemistry was
supported by the U.S. Department of Energy, Office of Energy Efficiency
and Renewable Energy, Fuel Cell Technologies Program and by the U.S.
Army Research Laboratory and the U.S. Army Research Office under the
Multi University Research Initiative (MURI, grant no. W911NF-11-1-0353)
on "Stress-Controlled Catalysis via Engineered Nanostructures".
NR 47
TC 47
Z9 48
U1 36
U2 294
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 12
PY 2014
VL 136
IS 45
BP 15921
EP 15924
DI 10.1021/ja5099066
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA AT4JQ
UT WOS:000344906100029
PM 25350678
ER
PT J
AU Scott, AD
Pelmenschikov, V
Guo, YS
Yan, LF
Wang, HX
George, SJ
Dapper, CH
Newton, WE
Yoda, Y
Tanaka, Y
Cramer, SP
AF Scott, Aubrey D.
Pelmenschikov, Vladimir
Guo, Yisong
Yan, Lifen
Wang, Hongxin
George, Simon J.
Dapper, Christie H.
Newton, William E.
Yoda, Yoshitaka
Tanaka, Yoshihito
Cramer, Stephen P.
TI Structural Characterization of CO-Inhibited Mo-Nitrogenase by Combined
Application of Nuclear Resonance Vibrational Spectroscopy, Extended
X-ray Absorption Fine Structure, and Density Functional Theory: New
Insights into the Effects of CO Binding and the Role of the Interstitial
Atom
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID AZOTOBACTER-VINELANDII NITROGENASE; IRON-MOLYBDENUM COFACTOR;
ELECTRON-PARAMAGNETIC-RESONANCE; FEMO-COFACTOR; ACTIVE-SITE; VANADIUM
NITROGENASE; CARBON-MONOXIDE; KLEBSIELLA-PNEUMONIAE;
INFRARED-SPECTROSCOPY; CRYSTAL-STRUCTURE
AB The properties of CO-inhibited Azotobacter vinelandii (Av) Mo-nitrogenase (N(2)ase) have been examined by the combined application of nuclear resonance vibrational spectroscopy (NRVS), extended X-ray absorption fine structure (EXAFS), and density functional theory (DFT). Dramatic changes in the NRVS are seen under high-CO conditions, especially in a 188 cm(1) mode associated with symmetric breathing of the central cage of the FeMo-cofactor. Similar changes are reproduced with the alpha-H195Q N(2)ase variant. In the frequency region above 450 cm(1), additional features are seen that are assigned to Fe-CO bending and stretching modes (confirmed by (CO)-C-13 isotope shifts). The EXAFS for wild-type N(2)ase shows evidence for a significant cluster distortion under high-CO conditions, most dramatically in the splitting of the interaction between Mo and the shell of Fe atoms originally at 5.08 angstrom in the resting enzyme. A DFT model with both a terminal -CO and a partially reduced -CHO ligand bound to adjacent Fe sites is consistent with both earlier FT-IR experiments, and the present EXAFS and NRVS observations for the wild-type enzyme. Another DFT model with two terminal CO ligands on the adjacent Fe atoms yields Fe-CO bands consistent with the alpha-H195Q variant NRVS. The calculations also shed light on the vibrational shake modes of the interstitial atom inside the central cage, and their interaction with the Fe-CO modes. Implications for the CO and N-2 reactivity of N(2)ase are discussed.
C1 [Pelmenschikov, Vladimir] Tech Univ Berlin, Inst Chem, D-10623 Berlin, Germany.
[Scott, Aubrey D.; Yan, Lifen; Wang, Hongxin; George, Simon J.; Cramer, Stephen P.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA.
[Guo, Yisong] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA.
[Wang, Hongxin; Cramer, Stephen P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Dapper, Christie H.; Newton, William E.] Virginia Polytech Inst & State Univ, Dept Biochem, Blacksburg, VA 24061 USA.
[Yoda, Yoshitaka] SPring8 JASRI, Res & Utilizat Div, Sayo, Hyogo 6795198, Japan.
[Tanaka, Yoshihito] RIKEN SPring 8 Ctr, SR Mat Sci Instrumentat Unit, Sayo, Hyogo 6795148, Japan.
RP Cramer, SP (reprint author), Univ Calif Davis, Dept Chem, Davis, CA 95616 USA.
EM spjcramer@ucdavis.edu
RI Guo, Yisong/C-7785-2009
OI Guo, Yisong/0000-0002-4132-3565
FU NIH [GM-65440]; NSF [CHE 1308384]; DOE Office of Biological and
Environmental Research; Deutsche Forschungsgemeinschaft (DFG) via the
"Unifying Concepts in Catalysis" (UniCat) Excellence Cluster
FX We thank Saeed Kamali for assistance early on with NRVS data collection
at SPring-8. The experiments at SPring-8 were performed at BL09XU with
the approval of JASRI (Proposal No. 2009A0015-2013B0103), and at BL19LXU
with the approval of RIKEN (Proposal No. 20120107 and 20130022). V.P.
thanks Sven de Marothy for the XYZviewer program. This work was funded
by NIH grant GM-65440 (S.P.C.), NSF grant CHE 1308384 (S.P.C.), the DOE
Office of Biological and Environmental Research (S.P.C.), and the
Deutsche Forschungsgemeinschaft (DFG) via the "Unifying Concepts in
Catalysis" (UniCat) Excellence Cluster (V.P.).
NR 100
TC 8
Z9 8
U1 10
U2 64
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 12
PY 2014
VL 136
IS 45
BP 15942
EP 15954
DI 10.1021/ja505720m
PG 13
WC Chemistry, Multidisciplinary
SC Chemistry
GA AT4JQ
UT WOS:000344906100033
PM 25275608
ER
PT J
AU Senesi, AJ
Eichelsdoerfer, DJ
Brown, KA
Lee, B
Auyeung, E
Choi, CHJ
Macfarlane, RJ
Young, KL
Mirkin, CA
AF Senesi, Andrew J.
Eichelsdoerfer, Daniel J.
Brown, Keith A.
Lee, Byeongdu
Auyeung, Evelyn
Choi, Chung Hang J.
Macfarlane, Robert J.
Young, Kaylie L.
Mirkin, Chad A.
TI Oligonucleotide Flexibility Dictates Crystal Quality in DNA-Programmable
Nanoparticle Superlattices
SO ADVANCED MATERIALS
LA English
DT Article
DE DNA; superlattices; metamaterials; X-ray scattering; ligand flexibility
ID SINGLE-STRANDED-DNA; GRAIN-GROWTH; REFRACTIVE-INDEX; ATOM EQUIVALENTS;
METAMATERIALS; PARTICLES; CRYSTALLIZATION; MOLECULES; RANGE;
NANOSTRUCTURES
C1 [Senesi, Andrew J.; Eichelsdoerfer, Daniel J.; Brown, Keith A.; Choi, Chung Hang J.; Macfarlane, Robert J.; Young, Kaylie L.; Mirkin, Chad A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Senesi, Andrew J.; Lee, Byeongdu] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
[Auyeung, Evelyn; Mirkin, Chad A.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
RP Mirkin, CA (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.
EM chadnano@northwestern.edu
RI Mirkin, Chad/E-3911-2010;
OI Lee, Byeongdu/0000-0003-2514-8805
FU AFOSR Awards [FA9550-11-1-0275, FA9550-12-1-0141]; Department of Defense
[32 CFR 168a]; AFOSR [32 CFR 168a]; Northwestern University's
International Institute for Nanotechnology; Croucher Foundation; U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]
FX This material is based upon work supported by the AFOSR Awards
FA9550-11-1-0275 and FA9550-12-1-0141. D.J.E., E.A. and K.L.Y.
acknowledge the Department of Defense and AFOSR for a National Defense
Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. K.A.B.
gratefully acknowledges support from Northwestern University's
International Institute for Nanotechnology. C.H.J.C. acknowledges a
postdoctoral research fellowship from The Croucher Foundation. The SAXS
experiments were carried out at Sector 5-ID of the
DuPont-Northwestern-Dow Collaborative Access Team and Sector 12-ID-B at
the Advanced Photon Source. Use of the Advanced Photon Source at Argonne
National Laboratory was supported by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. The TEM work was performed at the EPIC facility of
the NU Atomic and Nanoscale Characterization Experimental Center
(NUANCE) at Northwestern University.
NR 56
TC 15
Z9 15
U1 1
U2 43
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0935-9648
EI 1521-4095
J9 ADV MATER
JI Adv. Mater.
PD NOV 12
PY 2014
VL 26
IS 42
BP 7235
EP 7240
DI 10.1002/adma.201402548
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA AT2RS
UT WOS:000344783300013
PM 25244608
ER
PT J
AU Sales, BC
Saparov, B
McGuire, MA
Singh, DJ
Parker, DS
AF Sales, Brian C.
Saparov, Bayrammurad
McGuire, Michael A.
Singh, David J.
Parker, David S.
TI Ferromagnetism of Fe3Sn and Alloys
SO SCIENTIFIC REPORTS
LA English
DT Article
ID HARD MAGNETIC-MATERIALS; INTERMETALLIC COMPOUNDS; SINGLE-CRYSTALS;
DIFFRACTION
AB Hexagonal Fe3Sn has many of the desirable properties for a new permanent magnet phase with a Curie temperature of 725 K, a saturation moment of 1.18 MA/m. and anisotropy energy, K-1 of 1.8 MJ/m(3). However, contrary to earlier experimental reports, we found both experimentally and theoretically that the easy magnetic axis lies in the hexagonal plane, which is undesirable for a permanent magnet material. One possibility for changing the easy axis direction is through alloying. We used first principles calculations to investigate the effect of elemental substitutions. The calculations showed that substitution on the Sn site has the potential to switch the easy axis direction. However, transition metal substitutions with Co or Mn do not have this effect. We attempted synthesis of a number of these alloys and found results in accord with the theoretical predictions for those that were formed. However, the alloys that could be readily made all showed an in-plane easy axis. The electronic structure of Fe3Sn is reported, as are some are magnetic and structural properties for the Fe3Sn2, and Fe5Sn3 compounds, which could be prepared as mm-sized single crystals.
C1 [Sales, Brian C.; Saparov, Bayrammurad; McGuire, Michael A.; Singh, David J.; Parker, David S.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Sales, BC (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
EM salesbc@ornl.gov
RI McGuire, Michael/B-5453-2009
OI McGuire, Michael/0000-0003-1762-9406
FU Critical Materials Institute, an Energy Innovation Hub - U.S. Department
of Energy, Office of Energy Efficiency and Renewable Energy, Advanced
Manufacturing Office; U.S. Department of Energy, Office of Energy
Efficiency and Renewable Energy, Vehicle Technologies, Propulsion
Materials Program
FX This research was supported by the Critical Materials Institute, an
Energy Innovation Hub funded by the U.S. Department of Energy, Office of
Energy Efficiency and Renewable Energy, Advanced Manufacturing Office.
MAM. acknowledges support of the U.S. Department of Energy, Office of
Energy Efficiency and Renewable Energy, Vehicle Technologies, Propulsion
Materials Program.
NR 15
TC 6
Z9 6
U1 13
U2 63
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD NOV 12
PY 2014
VL 4
AR 7024
DI 10.1038/srep07024
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AT2JL
UT WOS:000344760700014
PM 25387850
ER
PT J
AU Laverock, J
Chen, B
Preston, ARH
Newby, D
Piper, LFJ
Tung, LD
Balakrishnan, G
Glans, PA
Guo, JH
Smith, KE
AF Laverock, J.
Chen, B.
Preston, A. R. H.
Newby, D.
Piper, L. F. J.
Tung, L. D.
Balakrishnan, G.
Glans, P-A
Guo, J-H
Smith, K. E.
TI Low-energy V t(2g) orbital excitations in NdVO3
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
DE resonant inelastic x-ray scattering; orbital excitations; crystal field
excitations
ID ELEMENTARY EXCITATIONS; ORDER
AB The electronic structure of NdVO3 and YVO3 has been investigated as a function of sample temperature using resonant inelastic soft x-ray scattering at the V L-3-edge. Most of the observed spectral features are in good agreement with an atomic crystal-field multiplet model. However, a low energy feature is observed at similar to 0.4 eV that cannot be explained by crystal-field arguments. The resonant behaviour of this feature establishes it as due to excitations of the V t(2g) states. Moreover, this feature exhibits a strong sample temperature dependence, reaching maximum intensity in the orbitally-ordered phase of NdVO3, before becoming suppressed at low temperatures. This behaviour indicates that the origin of this feature is a collective orbital excitation, i.e. the bi-orbiton.
C1 [Laverock, J.; Chen, B.; Preston, A. R. H.; Newby, D.; Piper, L. F. J.; Smith, K. E.] Boston Univ, Dept Phys, Boston, MA 02215 USA.
[Piper, L. F. J.] Binghamton Univ, Dept Phys Appl Phys & Astron, Binghamton, NY 13902 USA.
[Tung, L. D.; Balakrishnan, G.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Glans, P-A; Guo, J-H] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Phys, Berkeley, CA 94720 USA.
[Smith, K. E.] Univ Auckland, Sch Chem Sci, Auckland 1142, New Zealand.
[Smith, K. E.] Univ Auckland, MacDiarmid Inst Adv Mat & Nanotechnol, Auckland 1142, New Zealand.
RP Laverock, J (reprint author), Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA.
EM laverock@bu.edu
RI Laverock, Jude/G-4537-2010; Glans, Per-Anders/G-8674-2016; Piper,
Louis/C-2960-2011; Balakrishnan, Geetha/P-5977-2016; Chen,
Bo/C-5428-2017
OI Laverock, Jude/0000-0003-3653-8171; Piper, Louis/0000-0002-3421-3210;
Balakrishnan, Geetha/0000-0002-5890-1149; Chen, Bo/0000-0002-9263-5171
FU Department of Energy [DE-FG02-98ER45680]; US Department of Energy
[DE-AC02-05CH11231, DE-AC02-98CH10886]; EPSRC [EP/I007210/1]
FX The Boston University program is supported in part by the Department of
Energy under Grant No. DE-FG02-98ER45680. The ALS, Berkeley, is
supported by the US Department of Energy under Contract No.
DE-AC02-05CH11231. The NSLS, Brookhaven, is supported by the US
Department of Energy under Contract No. DE-AC02-98CH10886. GB gratefully
acknowledges financial support from EPSRC Grant EP/I007210/1.
NR 38
TC 1
Z9 1
U1 4
U2 21
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
EI 1361-648X
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD NOV 12
PY 2014
VL 26
IS 45
AR 455603
DI 10.1088/0953-8984/26/45/455603
PG 9
WC Physics, Condensed Matter
SC Physics
GA AR7ZT
UT WOS:000343796200011
PM 25336521
ER
PT J
AU Zhao, X
Nguyen, MC
Wang, CZ
Ho, KM
AF Zhao, Xin
Manh Cuong Nguyen
Wang, Cai-Zhuang
Ho, Kai-Ming
TI New stable Re-B phases for ultra-hard materials
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
DE ultra-hard materials; rhenium boride; genetic algorithm;
first-principles calculations
ID SUPERHARD RHENIUM DIBORIDE; AUGMENTED-WAVE METHOD; AMBIENT-PRESSURE;
BORIDES; SUPERCONDUCTIVITY; STABILITY
AB As a distinct class of ultra-hard materials, transition metal borides are found to have superior mechanical properties that challenge the traditional materials. In this work, we explored new stable structures for rhenium borides with different stoichiometries using genetic algorithm in combination with first-principles calculations. Based on theoretical calculations, ReB in a P-3m1 structure is found to be stable against decomposition reactions below 10 GPa and ReB3 in a P-6m2 structure is stable above 22 GPa. Two new phases of Re2B are predicted to be thermodynamically stable at pressures higher than 55 GPa and 80 GPa respectively. We also show that a C2/m structure discovered for ReB4 has energy lower than that of the R-3m structure reported earlier (Wang et al 2013 J. Alloys Compd. 573 20). Elastic and vibrational properties from first-principles calculations indicate that the low-energy structures obtained in our search are mechanically and dynamically stable and are promising targets as new ultra-hard materials.
C1 [Zhao, Xin] US DOE, Ames Lab, Ames, IA 50011 USA.
Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Zhao, X (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA.
EM wangcz@ameslab.gov
RI Nguyen, Manh Cuong/G-2783-2015;
OI Nguyen, Manh Cuong/0000-0001-8027-9029; Zhao, Xin/0000-0002-3580-512X
FU US Department of Energy, Basic Energy Sciences, Division of Materials
Science and Engineering [DE-AC02-07CH11358]
FX Work at Ames Laboratory was supported by the US Department of Energy,
Basic Energy Sciences, Division of Materials Science and Engineering,
under Contract No. DE-AC02-07CH11358, including a grant of computer time
at the National Energy Research Supercomputing Centre (NERSC) in
Berkeley, CA.
NR 28
TC 2
Z9 2
U1 1
U2 23
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
EI 1361-648X
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD NOV 12
PY 2014
VL 26
IS 45
AR 455401
DI 10.1088/0953-8984/26/45/455401
PG 7
WC Physics, Condensed Matter
SC Physics
GA AR7ZT
UT WOS:000343796200007
PM 25318642
ER
PT J
AU Reddi, K
Elgowainy, A
Sutherland, E
AF Reddi, Krishna
Elgowainy, Amgad
Sutherland, Erika
TI Hydrogen refueling station compression and storage optimization with
tube-trailer deliveries
SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
LA English
DT Article
DE Hydrogen refueling station; Tube-trailer; Simulation model; Compression;
Storage; Fuel cell electric vehicles
ID CYLINDER
AB Hydrogen refueling stations require high capital investment, with compression and storage comprising more than half of the installed cost of refueling equipment. Refueling station configurations and operation strategies can reduce capital investment while improving equipment utilization. Argonne National Laboratory developed a refueling model to evaluate the impact of various refueling compression and storage configurations and tube trailer operating strategies on the cost of hydrogen refueling. The modeling results revealed that a number of strategies can be employed to reduce fueling costs. Proper sizing of the high-pressure buffer storage reduces the compression requirement considerably, thus reducing refueling costs. Employing a tube trailer to initially fill the vehicle's tank also reduces the compression and storage requirements, further reducing refueling costs. Reducing the cut-off pressure of the tube trailer for initial vehicle fills can also significantly reduce the refueling costs. Finally, increasing the trailer's return pressure can cut refueling costs, especially for delivery distances less than 100 km, and in early markets, when refueling stations will be grossly underutilized. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
C1 [Reddi, Krishna; Elgowainy, Amgad] Argonne Natl Lab, Argonne, IL 60439 USA.
[Sutherland, Erika] US DOE, Fuel Cell Technol Off, Washington, DC 20585 USA.
RP Reddi, K (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM kreddi@anl.gov
FU Fuel Cell Technologies Office of the U.S. Department of Energy's Office
of Energy Efficiency and Renewable Energy [DE-ACO2-06CH11357]
FX This research effort was supported by the Fuel Cell Technologies Office
of the U.S. Department of Energy's Office of Energy Efficiency and
Renewable Energy under Contract Number DE-ACO2-06CH11357.
NR 35
TC 5
Z9 5
U1 1
U2 16
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-3199
EI 1879-3487
J9 INT J HYDROGEN ENERG
JI Int. J. Hydrog. Energy
PD NOV 11
PY 2014
VL 39
IS 33
BP 19169
EP 19181
DI 10.1016/j.ijhydene.2014.09.099
PG 13
WC Chemistry, Physical; Electrochemistry; Energy & Fuels
SC Chemistry; Electrochemistry; Energy & Fuels
GA AU7TO
UT WOS:000345803900046
ER
PT J
AU Kogan, VG
Mints, RG
AF Kogan, V. G.
Mints, R. G.
TI Effect of current injection into thin-film Josephson junctions
SO PHYSICAL REVIEW B
LA English
DT Article
ID FLUX
AB New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. A method of calculating the distribution of injected currents is proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Lambda = 2 lambda(2)/d; lambda is the bulk London penetration depth of the film material and d is the film thickness.
C1 [Kogan, V. G.] US DOE, Ames Lab, Ames, IA 50011 USA.
[Mints, R. G.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
RP Kogan, VG (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA.
EM kogan@ameslab.gov; mints@post.tau.ac.il
FU Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DE-AC02-07CH11358]
FX The authors are grateful to A. Ustinov for the interest and comments and
to E. Goldobin for sharing experimental information and many helpful
discussions. The Ames Laboratory is supported by the Department of
Energy, Office of Basic Energy Sciences, Division of Materials Sciences
and Engineering under Contract No. DE-AC02-07CH11358.
NR 13
TC 0
Z9 0
U1 2
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 11
PY 2014
VL 90
IS 18
AR 184504
DI 10.1103/PhysRevB.90.184504
PG 5
WC Physics, Condensed Matter
SC Physics
GA AU2RL
UT WOS:000345465300004
ER
PT J
AU Lucy, JM
Ball, MR
Restrepo, OD
Hauser, AJ
Soliz, JR
Freeland, JW
Woodward, PM
Windl, W
Yang, FY
AF Lucy, J. M.
Ball, M. R.
Restrepo, O. D.
Hauser, A. J.
Soliz, J. R.
Freeland, J. W.
Woodward, P. M.
Windl, W.
Yang, F. Y.
TI Strain-tunable extraordinary magnetocrystalline anisotropy in Sr2CrReO6
epitaxial films
SO PHYSICAL REVIEW B
LA English
DT Article
ID INITIO MOLECULAR-DYNAMICS; MAGNETIC-ANISOTROPY; TRANSITION; MOMENT; NI
AB We report the discovery of extraordinarily large anisotropy fields and strain-tunable magnetocrystalline anisotropy in Sr2CrReO6 epitaxial films. We determine the strain-induced tetragonal distortions and octahedral rotations in Sr2CrReO6 epitaxial films grown on (LaAlO3)(0.3)(Sr2AlTaO6)(0.7) (LSAT), SrTiO3 (STO), and SrCr0.5Nb0.5O3/LSAT substrates using x-ray diffraction and density functional theory. The structural distortions drive dramatic changes in magnetocrystalline anisotropy. We use magnetometry measurements and first principles calculations to determine the atomic origins of the large anisotropy observed. These techniques elucidate the interplay between structural deformations and magnetic behavior and lay the groundwork for the study of other strongly correlated systems in this class of ferromagnetic oxides.
C1 [Lucy, J. M.; Yang, F. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Ball, M. R.; Restrepo, O. D.; Windl, W.] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA.
[Hauser, A. J.] Univ Calif Santa Barbara, California Nanosyst Inst, Santa Barbara, CA 93106 USA.
[Soliz, J. R.; Woodward, P. M.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA.
[Freeland, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Lucy, JM (reprint author), Ohio State Univ, Dept Phys, 191 West Woodruff Ave, Columbus, OH 43210 USA.
EM fyyang@physics.osu.edu
FU Center for Emergent Materials at the Ohio State University; NanoSystems
Laboratory; Center for Electron Microscopy and Analysis at The Ohio
State University; U.S. Department of Energy, Office of Science
[DEAC02-06CH11357]; NSF Materials Research Science and Engineering
Center [DMR-1420451]
FX This work is supported by the Center for Emergent Materials at the Ohio
State University, a NSF Materials Research Science and Engineering
Center (DMR-1420451). Partial support is provided by the NanoSystems
Laboratory and the Center for Electron Microscopy and Analysis at The
Ohio State University. Work at Argonne National Laboratory, including
the Advanced Photon Source, is supported by the U.S. Department of
Energy, Office of Science under Grant No. DEAC02-06CH11357.
NR 38
TC 5
Z9 5
U1 2
U2 27
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 11
PY 2014
VL 90
IS 18
AR 180401
DI 10.1103/PhysRevB.90.180401
PG 6
WC Physics, Condensed Matter
SC Physics
GA AU2RL
UT WOS:000345465300001
ER
PT J
AU Mattsson, TR
Root, S
Mattsson, AE
Shulenburger, L
Magyar, RJ
Flicker, DG
AF Mattsson, Thomas R.
Root, Seth
Mattsson, Ann E.
Shulenburger, Luke
Magyar, Rudolph J.
Flicker, Dawn G.
TI Validating density-functional theory simulations at high energy-density
conditions with liquid krypton shock experiments to 850 GPa on Sandia's
Z machine
SO PHYSICAL REVIEW B
LA English
DT Article
ID INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; SOLID KRYPTON;
PHASE-TRANSITIONS; ELECTRON-GAS; STATE; EQUATION; XENON
AB We use Sandia's Z machine and magnetically accelerated flyer plates to shock compress liquid krypton to 850 GPa and compare with results from density-functional theory (DFT) based simulations using the AM05 functional. We also employ quantum Monte Carlo calculations to motivate the choice of AM05. We conclude that the DFT results are sensitive to the quality of the pseudopotential in terms of scattering properties at high energy/temperature. A new Kr projector augmented wave potential was constructed with improved scattering properties which resulted in excellent agreement with the experimental results to 850 GPa and temperatures above 10 eV (110 kK). Finally, we present comparisons of our data from the Z experiments and DFT calculations to current equation of state models of krypton to determine the best model for high energy-density applications.
C1 [Mattsson, Thomas R.; Root, Seth; Mattsson, Ann E.; Shulenburger, Luke; Magyar, Rudolph J.; Flicker, Dawn G.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Mattsson, TR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM trmatts@sandia.gov; sroot@sandia.gov; aematts@sandia.gov;
lshulen@sandia.gov; rjmagya@sandia.gov; dgflick@sandia.gov
FU NNSA Science Campaigns; Predictive Theory and Modeling for Materials and
Chemical Science program; Office of Basic Energy Sciences (BES);
Department of Energy (DOE); U.S. Department of Energy's National Nuclear
Security Administration [DE-AC04-94AL85000]
FX The authors thank all members of the Sandia Z facility that contributed
to the design, fabrication, and fielding of the Z experiments. The
authors especially appreciate the dedicated efforts of the cryo-team: A.
Lopez, J. Lynch, J. Villalva, and K. Shelton as well as the engineering
designs by D. Dalton and the diagnostics by C. Meyer. The work was
supported by the NNSA Science Campaigns. L.S. was supported through the
Predictive Theory and Modeling for Materials and Chemical Science
program by the Office of Basic Energy Sciences (BES), Department of
Energy (DOE). Sandia National Laboratories is a multiprogram laboratory
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Company, for the U.S. Department of Energy's National Nuclear
Security Administration under Contract No. DE-AC04-94AL85000.
NR 53
TC 3
Z9 3
U1 3
U2 18
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 11
PY 2014
VL 90
IS 18
AR 184105
DI 10.1103/PhysRevB.90.184105
PG 10
WC Physics, Condensed Matter
SC Physics
GA AU2RL
UT WOS:000345465300003
ER
PT J
AU Shi, HL
Saparov, B
Singh, DJ
Sefat, AS
Du, MH
AF Shi, Hongliang
Saparov, Bayrammurad
Singh, David J.
Sefat, Athena S.
Du, Mao-Hua
TI Ternary chalcogenides Cs2Zn3Se4 and Cs2Zn3Te4: Potential p-type
transparent conducting materials
SO PHYSICAL REVIEW B
LA English
DT Article
ID MOLECULAR-BEAM EPITAXY; WIDE-BAND-GAP; SEMICONDUCTOR NANOCRYSTALS;
ELECTRICAL-CONDUCTION; DIMENSIONAL REDUCTION; DELAFOSSITE STRUCTURE;
CUPROUS DELAFOSSITES; DEFECT MECHANISMS; THIN-FILMS; OXIDE
AB We report the prediction of two ternary chalcogenides that can potentially be used as p-type transparent conductors along with experimental synthesis and initial characterization of these compounds, Cs(2)Zn(3)Ch(4) (Ch = Se, Te). In particular, the structures are predicted based on density functional calculations and confirmed by experiments. Phase diagrams, electronic structure, optical properties, and defect properties of Cs2Zn3Se4 and Cs2Zn3Te4 are calculated to assess the viability of these materials as p-type transparent conducting materials (TCMs). Cs2Zn3Se4 and Cs2Zn3Te4, which are stable under ambient air, display large optical band gaps (calculated to be 3.61 and 2.83 eV, respectively) and have small hole effective masses (0.5-0.77m(e)) that compare favorably with other proposed p-type TCMs. Defect calculations show that undoped Cs2Zn3Se4 and Cs2Zn3Te4 are p-type materials. However, the free hole concentration may be limited by low-energy native donor defects, e.g., Zn interstitials. Nonequilibrium growth techniques should be useful for suppressing the formation of native donor defects, thereby increasing the hole concentration.
C1 [Shi, Hongliang; Saparov, Bayrammurad; Singh, David J.; Sefat, Athena S.; Du, Mao-Hua] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Shi, HL (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
EM mhdu@ornl.gov
RI Shi, Hongliang/A-7568-2010; Du, Mao-Hua/B-2108-2010; Sefat,
Athena/R-5457-2016
OI Shi, Hongliang/0000-0003-0713-4688; Du, Mao-Hua/0000-0001-8796-167X;
Sefat, Athena/0000-0002-5596-3504
FU Department of Energy, Basic Energy Sciences, Materials Sciences and
Engineering Division
FX This paper was supported by the Department of Energy, Basic Energy
Sciences, Materials Sciences and Engineering Division.
NR 68
TC 3
Z9 3
U1 1
U2 19
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 11
PY 2014
VL 90
IS 18
AR 184104
DI 10.1103/PhysRevB.90.184104
PG 9
WC Physics, Condensed Matter
SC Physics
GA AU2RL
UT WOS:000345465300002
ER
PT J
AU Coloma, P
Minakata, H
Parke, SJ
AF Coloma, Pilar
Minakata, Hisakazu
Parke, Stephen J.
TI Interplay between appearance and disappearance channels for precision
measurements of theta(23) and delta
SO PHYSICAL REVIEW D
LA English
DT Article
ID NEUTRINO OSCILLATION EXPERIMENTS; LINE-EXPERIMENT-SIMULATOR; LEPTONIC CP
VIOLATION; NO-NU-A; SOLAR; BEAM; T2K
AB We discuss how the CP- violating phase delta and the mixing angle theta(23) can be measured precisely in an environment where there are strong correlations between them. This is achieved by paying special attention to the mutual roles and the interplay between the appearance and the disappearance channels in longbaseline neutrino oscillation experiments. We analyze and clarify the general structure of the theta(23) - theta(13) - delta degeneracy for both the appearance and disappearance channels in a more complete fashion than what has previously been discussed in the literature. A full understanding of this degeneracy is of vital importance if theta(23) is close to maximal mixing. The relative importance between the appearance and disappearance channels depends upon the particular setup and how close to maximal mixing nature has chosen the value for theta(23). For facilities that operate with a narrow band beam or a wideband beam centered on the first oscillation extremum, the contribution of the disappearance channel depends critically on the systematic uncertainties assumed for this channel, whereas for facilities that operate at energies above the first oscillation extremum or at the second oscillation extremum, the appearance channels dominate. On the other hand, for d we find that the disappearance channel usually improves the sensitivity, modestly for facilities around the first oscillation extremum and more significantly for facilities operating at an energy above the first oscillation extremum, especially near delta similar to +/-pi 2
C1 [Coloma, Pilar] Virginia Tech, Ctr Neutrino Phys, Blacksburg, VA 24061 USA.
[Minakata, Hisakazu] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
[Parke, Stephen J.] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA.
RP Coloma, P (reprint author), Virginia Tech, Ctr Neutrino Phys, Blacksburg, VA 24061 USA.
EM pcoloma@vt.edu; hisakazu.minakata@gmail.com; parke@fnal.gov
OI Coloma, Pilar/0000-0002-1164-9900; Parke, Stephen/0000-0003-2028-6782
FU NORDITA; organizers of the workshop "NuNews: News in Neutrino Physics,";
KAKENHI through Tokyo Metropolitan University; Japan Society' for the
Promotion of Science [23540315]; European Union FP7 ITN INVISIBLES
(Marie Curie Actions [PITN-GA-2011-289442]; Fermi Research Alliance
[DEACO2-07CH11359]; U.S. Department of Energy [DE-SC0003915]
FX All the authors thank NORDITA and the organizers of the workshop
"NuNews: News in Neutrino Physics," where part of this work was
completed, for financial support and hospitality. P. C. thanks Enrique
Fernandez-Martinez for providing the files needed to simulate the ESSvSB
setup. P. C. and H. M. thank the Fermilab Theory Group for hospitality
during their visits. H. M. thanks Universidade de Sao Paulo for the
great opportunity of a stay as Pesquisador Visitante Internacional. He
is also partially supported by KAKENHI received through Tokyo
Metropolitan University, Grant-inAid for Scientific Research No.
23540315, Japan Society' for the Promotion of Science. S. P.
acknowledges partial support from the European Union FP7 ITN INVISIBLES
(Marie Curie Actions, PITN-GA-2011-289442). Fermilab is operated by the
Fermi Research Alliance under Contract No. DEACO2-07CH11359 with the
U.S. Department of Energy'. Also, this work has been partially supported
by the U.S. Department of Energy under Grant No. DE-SC0003915.
NR 75
TC 16
Z9 16
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
EI 1550-2368
J9 PHYS REV D
JI Phys. Rev. D
PD NOV 11
PY 2014
VL 90
IS 9
AR 093003
DI 10.1103/PhysRevD.90.093003
PG 17
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA AU3SQ
UT WOS:000345534300002
ER
PT J
AU TerAvest, MA
Zajdel, TJ
Ajo-Franklin, CM
AF TerAvest, Michaela A.
Zajdel, Tom J.
Ajo-Franklin, Caroline M.
TI The Mtr Pathway of Shewanella oneidensis MR-1 Couples Substrate
Utilization to Current Production in Escherichia coli
SO CHEMELECTROCHEM
LA English
DT Article
DE bioelectrochemistry; Escherichia coli; metabolic engineering; Shewanella
oneidensis; synthetic biology
ID STRAIN MR-1; CELLS
AB Introducing an electronic interface into Escherichia coli will allow its enormous synthetic biology toolkit to be leveraged in bioelectrochemical applications. While E.coli expressing the Mtr pathway of Shewanella oneidensis MR-1 transfer electrons to an anode, it has remained unclear if this current production alters the intracellular state of E.coli, which is a critical requirement for bioelectronic technologies. Here we address this by characterizing current production in Mtr-expressing E.coli and its effects on cellular viability, substrate consumption, and product generation. We found that cymA-mtr E.coli sustained approximate to 8-fold higher current levels than a control strain. This increased current production did not change E.coli viability or substrate consumption, but it did alter metabolic fluxes. A shift to more oxidized products strongly suggests that the Mtr pathway improves redox balance in E.coli. By demonstrating the Mtr module couples current production to intracellular state, this work establishes Mtr-expressing E.coli as a platform for accelerated development of bioelectronic technologies.
C1 [Ajo-Franklin, Caroline M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Div Mat Sci, Berkeley, CA 94720 USA.
[Ajo-Franklin, Caroline M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Synthet Biol Inst, Berkeley, CA 94720 USA.
[Zajdel, Tom J.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
[TerAvest, Michaela A.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA.
RP TerAvest, MA (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA.
EM cajo-franklin@lbl.gov
RI Foundry, Molecular/G-9968-2014
FU Office of Naval Research [N000141310551]; Office of Science, Office of
Basic Energy Sciences, of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX This work was supported by the Office of Naval Research (award number
N000141310551) and performed at the Molecular Foundry. Work at the
Molecular Foundry was supported by the Office of Science, Office of
Basic Energy Sciences, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. We also thank Dr. Behzad Rad and Dr. Heather
Jensen for helpful discussions related to this work.
NR 15
TC 7
Z9 8
U1 1
U2 29
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 2196-0216
J9 CHEMELECTROCHEM
JI ChemElectroChem
PD NOV 11
PY 2014
VL 1
IS 11
SI SI
BP 1874
EP 1879
DI 10.1002/celc.201402194
PG 6
WC Electrochemistry
SC Electrochemistry
GA AT9GW
UT WOS:000345237000017
ER
PT J
AU Byun, HS
Pirbadian, S
Nakano, A
Shi, L
El-Naggar, MY
AF Byun, Hye Suk
Pirbadian, Sahand
Nakano, Aiichiro
Shi, Liang
El-Naggar, Mohamed Y.
TI Kinetic Monte Carlo Simulations and Molecular Conductance Measurements
of the Bacterial Decaheme Cytochrome MtrF
SO CHEMELECTROCHEM
LA English
DT Article
DE bacteria; cytochromes; electron transfer; Monte Carlo simulations;
respiration
ID SHEWANELLA-ONEIDENSIS MR-1; OUTER-MEMBRANE-CYTOCHROMES; EXTRACELLULAR
ELECTRON-TRANSPORT; C-TYPE CYTOCHROMES; PUTREFACIENS MR-1; METAL
REDUCTION; CHARGE-TRANSFER; FREE-ENERGY; NANOWIRES; OMCA
AB Microorganisms overcome the considerable hurdle of respiring extracellular solid substrates by deploying large multiheme cytochrome complexes that form 20 nanometer conduits to traffic electrons through the periplasm and across the cellular outer membrane. Here we report the first kinetic Monte Carlo simulations and single-molecule scanning tunneling microscopy (STM) measurements of the Shewanella oneidensis MR-1 outer membrane decaheme cytochrome MtrF, which can perform the final electron transfer step from cells to minerals and microbial fuel cell anodes. We find that the calculated electron transport rate through MtrF is consistent with previously reported in vitro measurements of the Shewanella Mtr complex, as well as in vivo respiration rates on electrode surfaces assuming a reasonable (experimentally verified) coverage of cytochromes on the cell surface. The simulations also reveal a rich phase diagram in the overall electron occupation density of the hemes as a function of electron injection and ejection rates. Single-molecule tunneling spectroscopy confirms MtrF's ability to mediate electron transport between an STM tip and an underlying Au(111) surface, but at rates higher than expected from previously calculated heme-to-heme electron transfer rates for solvated molecules.
C1 [Byun, Hye Suk; Pirbadian, Sahand; Nakano, Aiichiro; El-Naggar, Mohamed Y.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA.
[Nakano, Aiichiro] Univ So Calif, Los Angeles, CA 90089 USA.
[Shi, Liang] Pacific NW Natl Lab, Richland, WA 99354 USA.
RP Byun, HS (reprint author), Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA.
EM mnaggar@usc.edu
FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of
Basic Energy Sciences of the US Department of Energy [DE-FG02-13ER16415]
FX This work was funded by the Division of Chemical Sciences, Geosciences,
and Biosciences, Office of Basic Energy Sciences of the US Department of
Energy through grant DE-FG02-13ER16415 to ME-N. We gratefully
acknowledge valuable conversations with J. Blumberger, K. Rosso, and M.
Breuer, who provided the QM/MM calculation results to us ahead of
publication (reference 17c).
NR 56
TC 7
Z9 7
U1 6
U2 37
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 2196-0216
J9 CHEMELECTROCHEM
JI ChemElectroChem
PD NOV 11
PY 2014
VL 1
IS 11
SI SI
BP 1932
EP 1939
DI 10.1002/celc.201402211
PG 8
WC Electrochemistry
SC Electrochemistry
GA AT9GW
UT WOS:000345237000025
ER
PT J
AU Ichihashi, O
Vishnivetskaya, TA
Borole, AP
AF Ichihashi, Osamu
Vishnivetskaya, Tatiana A.
Borole, Abhijeet P.
TI High-Performance Bioanode Development for Fermentable Substrates via
Controlled Electroactive Biofilm Growth
SO CHEMELECTROCHEM
LA English
DT Article
DE biofilms; continuous flow; direct electron transfer; exoelectrogenic
catalysts; microbial fuel cells
ID MICROBIAL FUEL-CELLS; ELECTRICITY-GENERATION; AEROMONAS-HYDROPHILA;
GLUCOSE; METABOLISM; CONVERSION; ANODES
AB A bioanode was optimized to generate current densities reaching 38.4 +/- 4.9Am(-2), which brings bioelectrochemical systems closer to commercial consideration. Glucose and lactate were fed together in a continuous or fed-batch mode. The current density increased from 2.3Am(-2) to 38.4Am(-2) over a 33day period and remained stable thereafter. The Coulombic efficiency ranged from 50% to 80%. A change in substrate concentration from 200mgL(-1) to 5mgL(-1) decreased maximum current density from 38.4Am(-2) to 12.3Am(-2). The anode consortia included Firmicutes (55.0%), Proteobacteria (41.8%) and Bacteroidetes (2.1%) constituting two potentially electrogenic genera: Geobacter (6.8%) and Aeromonas (31.9%). The current production was found to be limited by kinetics during the growth period (33days), and mass transfer, thereafter. The results indicate the necessity of removing spent biomass for efficient long-term operation and treatment of wastewater streams.
C1 [Ichihashi, Osamu; Borole, Abhijeet P.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
[Vishnivetskaya, Tatiana A.; Borole, Abhijeet P.] Univ Tennessee, Ctr Interdisciplinary Res & Educ, Energy Sci & Engn Program, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA.
[Ichihashi, Osamu] Tohoku Univ Oosaki Miyagi, Grad Sch Agr Sci, Sendai, Miyagi 9896711, Japan.
RP Ichihashi, O (reprint author), Gifu Univ, River Basin Res Ctr, Gifu 5011193, Japan.
EM borolea@ornl.gov
OI Vishnivetskaya, Tatiana/0000-0002-0660-023X; Borole,
Abhijeet/0000-0001-8423-811X
FU overseas study program of "International training for construction of
sustainable agriculture" - "Institutional Program for Young Researcher
Overseas Visits" of the Japan Society for the Promotion of Science; U.S.
Department of Energy [DE-AC05-00OR22725]; U.S. Government
[DE-AC05-00OR22725]
FX Financial support for O.I. was obtained from an overseas study program
of "International training for construction of sustainable agriculture,"
funded by the "Institutional Program for Young Researcher Overseas
Visits" of the Japan Society for the Promotion of Science. ORNL is
managed by UT-Battelle, Inc. via a contract #DE-AC05-00OR22725 for the
U.S. Department of Energy. The authors would like to thank Tse-Luan Lu
for help with genomic DNA isolation. The submitted manuscript has been
authored by a contractor of the U.S. Government under contract No.
DE-AC05-00OR22725. Accordingly, the U.S. Government retains a
nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or allow others to do so, for U.S. Government
purposes.
NR 34
TC 2
Z9 2
U1 1
U2 18
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 2196-0216
J9 CHEMELECTROCHEM
JI ChemElectroChem
PD NOV 11
PY 2014
VL 1
IS 11
SI SI
BP 1940
EP 1947
DI 10.1002/celc.201402206
PG 8
WC Electrochemistry
SC Electrochemistry
GA AT9GW
UT WOS:000345237000026
ER
PT J
AU Babanova, S
Matanovic, I
Atanassov, P
AF Babanova, Sofia
Matanovic, Ivana
Atanassov, Plamen
TI Quinone-Modified Surfaces for Enhanced Enzyme-Electrode Interactions in
Pyrroloquinoline-Quinone-Dependent Glucose Dehydrogenase Anodes
SO CHEMELECTROCHEM
LA English
DT Article
DE bioanodes; electron transfer; glucose dehydrogenase; glucose oxidation;
surface modification
ID BRILLOUIN-ZONE INTEGRATIONS; INITIO MOLECULAR-DYNAMICS; MODIFIED CARBON
NANOTUBES; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; BIOFUEL
CELL; DIRECT BIOELECTROCATALYSIS; BILIRUBIN OXIDASE; OXYGEN REDUCTION;
BASIS-SET
AB An approach for enhancing the enzyme-electrode interface reactions with pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase (GDH) is described in this study. Modification of carbonaceous electrodes with ubiquinone or its functional analogues (1,2- and 1,4-benzoquinones) that have the appropriate redox potential to provide a driving force for an electron transfer to occur, along with fast electron-transfer rate through these molecules, creates an electron sink on the electrode surface that can pull electrons from the cofactor, increasing the electron-transfer rate and generating higher current densities. Several important parameters are experimentally evaluated and/or calculated using density functional theory. Among the quinones investigated, 1,4-benzoquinone has the greatest influence on the PQQ-dependent GDH anodes, yielding 5.1-fold higher current densities on single-walled, and 3.3-fold on multi-walled carbon nanotube papers in comparison to unmodified PQQ-dependent GDH anodes.
C1 [Babanova, Sofia; Matanovic, Ivana; Atanassov, Plamen] Univ New Mexico, Ctr Emerging Energy Technol, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA.
[Matanovic, Ivana] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Babanova, S (reprint author), Univ New Mexico, Ctr Emerging Energy Technol, Dept Chem & Nucl Engn, 1 Univ New Mexico, Albuquerque, NM 87131 USA.
EM plamen@unm.edu
FU NSF-CBET grant [1158936]; LDRD-DR grant [20120003DR]; Office of Science
of the U.S. Department of Energy [DE-AC52-06NA25396]; Department of
Energy's Office of Biological and Environmental Research
FX This work was supported by NSF-CBET grant number 1158936 and LDRD-DR
grant number 20120003DR. Computational work was performed using the
computational resources of LANL, supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC52-06NA25396 and
EMSL, a national scientific user facility sponsored by the Department of
Energy's Office of Biological and Environmental Research and located at
Pacific Northwest National Laboratory.
NR 65
TC 4
Z9 4
U1 2
U2 23
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 2196-0216
J9 CHEMELECTROCHEM
JI ChemElectroChem
PD NOV 11
PY 2014
VL 1
IS 11
SI SI
BP 2017
EP 2028
DI 10.1002/celc.201402104
PG 12
WC Electrochemistry
SC Electrochemistry
GA AT9GW
UT WOS:000345237000035
ER
PT J
AU Biswas, M
Libera, JA
Darling, SB
Elam, JW
AF Biswas, Mahua
Libera, Joseph A.
Darling, Seth B.
Elam, Jeffrey W.
TI New Insight into the Mechanism of Sequential Infiltration Synthesis from
Infrared Spectroscopy
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID ATOMIC LAYER DEPOSITION; COPOLYMER TEMPLATES; FILMS; TRIMETHYLALUMINUM;
NANOSTRUCTURES; POLYMERS; FTIR; PMMA
AB Sequential infiltration synthesis (SIS) has been recently demonstrated to increase the etch resistance of optical, e-beam, and block copolymer lithography resists for sub-50 nm pattern transfer. Although SIS can dramatically enhance pattern transfer relevant to device applications, the complex processes involved in SIS are not clearly understood. Fundamental knowledge of the chemistry underlying SIS is necessary to ensure a high degree of perfection in large-scale lithography. To this end, we performed in situ Fourier transform infrared (FTIR) spectroscopic measurements during the SIS of Al2O3 using trimethylaluminum (TMA) and H2O into poly(methyl methacrylate) (PMMA). The FTIR results revealed that TMA reacts quickly with PMMA to form an unstable complex. The subsequent conversion of this intermediate complex into stable AlO linkages is slow and must compete with rapid TMA desorption. We support this interpretation of the FTIR data using density functional theory to calculate plausible structures for the unstable TMAPMMA complex and the covalently linked species. As a consequence of this two-step reaction between TMA and PMMA, the detailed history of the TMA exposure becomes critical to achieving reliable patterns in SIS lithography. We demonstrate this using scanning electron microscopy to image the patterns resulting from SIS treatment of block copolymer films under different TMA exposure conditions. This better understanding of the SIS reaction dynamics should improve reliability in SIS lithography as well as other SIS applications.
C1 [Biswas, Mahua; Libera, Joseph A.; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
[Darling, Seth B.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA.
RP Darling, SB (reprint author), Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA.
EM darling@anl.gov; jelam@anl.gov
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]; Technology Maturation Grant through the
Technology Development and Commercialization Division at Argonne
FX Use of the Center for Nanoscale Materials was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357. The authors want to
thank Dr. Wei Chen from Materials Science Division, Argonne National
Laboratory, for providing PS-r-PMMA polymer. The authors gratefully
acknowledge support from a Technology Maturation Grant through the
Technology Development and Commercialization Division at Argonne.
NR 29
TC 16
Z9 16
U1 6
U2 33
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD NOV 11
PY 2014
VL 26
IS 21
BP 6135
EP 6141
DI 10.1021/cm502427q
PG 7
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA AT4JL
UT WOS:000344905600008
ER
PT J
AU Oh, SM
Myung, ST
Hwang, JY
Scrosati, B
Amine, K
Sun, YK
AF Oh, Seung-Min
Myung, Seung-Taek
Hwang, Jang-Yeon
Scrosati, Bruno
Amine, Khalil
Sun, Yang-Kook
TI High Capacity O3-Type Na[Li-0.05(Ni0.25Fe0.25Mn0.5)(0.95)]O-2 Cathode
for Sodium Ion Batteries
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID ELECTROCHEMICAL PROPERTIES; ENERGY-STORAGE; DRYING METHOD;
INTERCALATION; ELECTRODE; NAXCOO2; OXIDE; LI
AB In this work we report Na[Li-0.05(Ni0.25Fe(0.25)Mn(0.5))(0.95)]O2 layered cathode materials that were synthesized via a coprecipitation method. The Na[Li-0.05(Ni(0.25)Fe0.25Mn(0.5))(0.95)]O-2 electrode exhibited an exceptionally high capacity (180.1 mA h g1 at 0.1 C-rate) as well as excellent capacity retentions (0.2 C-rate: 89.6%, 0.5 C-rate: 92.1%) and rate capabilities at various C-rates (0.1 C-rate: 180.1 mA h g1, 1 C-rate: 130.9 mA h g1, 5 C-rate: 96.2 mA h g1), which were achieved due to the Li supporting structural stabilization by introduction into the transition metal layer. By contrast, the electrode performance of the lithium-free Na[Ni0.25Fe0.25Mn0.5]O-2 cathode was inferior because of structural disintegration presumably resulting from Fe3+ migration from the transition metal layer to the Na layer during cycling. The long-term cycling using a full cell consisting of a Na[Li-0.05(Ni0(.25)Fe(0.25)Mn(0.5))(0.95)]O-2 cathode was coupled with a hard carbon anode which exhibited promising cycling data including a 76% capacity retention over 200 cycles.
C1 [Oh, Seung-Min; Hwang, Jang-Yeon; Sun, Yang-Kook] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea.
[Myung, Seung-Taek] Sejong Univ, Dept Nano Engn, Seoul 143747, South Korea.
[Scrosati, Bruno] Italian Inst Technol, I-16163 Genoa, Italy.
[Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
RP Sun, YK (reprint author), Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea.
EM yksun@hanyang.ac.kr
FU Global Frontier R&D Program on Center for Hybrid Interface Materials
(HIM) - Ministry of Science, ICT & Future Planning [2013M3A6B1078875];
Human Resources Development program of the Korea Institute of Energy
Technology Evaluation and Planning (KETEP) - Korea government Ministry
of Trade, Industry and Energy [20124010203310]
FX This work was supported by the Global Frontier R&D Program
(2013M3A6B1078875) on Center for Hybrid Interface Materials (HIM) funded
by the Ministry of Science, ICT & Future Planning and supported by the
Human Resources Development program (No. 20124010203310) of the Korea
Institute of Energy Technology Evaluation and Planning (KETEP) grant
funded by the Korea government Ministry of Trade, Industry and Energy.
NR 28
TC 29
Z9 30
U1 18
U2 144
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD NOV 11
PY 2014
VL 26
IS 21
BP 6165
EP 6171
DI 10.1021/cm502481b
PG 7
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA AT4JL
UT WOS:000344905600012
ER
PT J
AU Chung, YG
Camp, J
Haranczyk, M
Sikora, BJ
Bury, W
Krungleviciute, V
Yildirim, T
Farha, OK
Sholl, DS
Snurr, RQ
AF Chung, Yongchul G.
Camp, Jeffrey
Haranczyk, Maciej
Sikora, Benjamin J.
Bury, Wojciech
Krungleviciute, Vaiva
Yildirim, Taner
Farha, Omar K.
Sholl, David S.
Snurr, Randall Q.
TI Computation-Ready, Experimental Metal-Organic Frameworks: A Tool To
Enable High-Throughput Screening of Nanoporous Crystals
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID HYDROGEN STORAGE; POROUS MATERIALS; SURFACE-AREAS; ADSORPTION;
SEPARATION; ZEOLITES; GEOMETRY; SERIES; LIMITS; MOFS
AB Experimentally refined crystal structures for metalorganic frameworks (MOFs) often include solvent molecules and partially occupied or disordered atoms. This creates a major impediment to applying high-throughput computational screening to MOFs. To address this problem, we have constructed a database of MOF structures that are derived from experimental data but are immediately suitable for molecular simulations. The computation-ready, experimental (CoRE) MOF database contains over 4700 porous structures with publically available atomic coordinates. Important physical and chemical properties including the surface area and pore dimensions are reported for these structures. To demonstrate the utility of the database, we performed grand canonical Monte Carlo simulations of methane adsorption on all structures in the CoRE MOF database. We investigated the structural properties of the CoRE MOFs that govern methane storage capacity and found that these relationships agree well with those derived recently from a large database of hypothetical MOFs.
C1 [Chung, Yongchul G.; Sikora, Benjamin J.; Snurr, Randall Q.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA.
[Bury, Wojciech; Farha, Omar K.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Camp, Jeffrey; Sholl, David S.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA.
[Haranczyk, Maciej] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Comp Res Div, Berkeley, CA 94720 USA.
[Bury, Wojciech] Warsaw Univ Technol, Dept Chem, PL-00664 Warsaw, Poland.
[Krungleviciute, Vaiva; Yildirim, Taner] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Krungleviciute, Vaiva; Yildirim, Taner] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.
[Farha, Omar K.] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah 21589, Saudi Arabia.
RP Sholl, DS (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, 311 Ferst Dr, Atlanta, GA 30332 USA.
RI Snurr, Randall/B-6699-2009; Chung, Yongchul/G-7017-2015; Haranczyk,
Maciej/A-6380-2014; Faculty of, Sciences, KAU/E-7305-2017
OI Chung, Yongchul/0000-0002-7756-0589; Haranczyk,
Maciej/0000-0001-7146-9568;
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Chemical Sciences, Geosciences and Biosciences [DE-FG02-12ER16362];
office of the Provost; Office for Research; Northwestern University
Information Technology
FX This research was supported by the U.S. Department of Energy, Office of
Basic Energy Sciences, Division of Chemical Sciences, Geosciences and
Biosciences, under Award DE-FG02-12ER16362. This research was supported
in part through the computational resources and staff contributions
provided for the Quest high-performance computing facility at
Northwestern University, which is jointly supported by the office of the
Provost, the Office for Research, and Northwestern University
Information Technology. We thank Dr. Diego A. Gomez-Gualdron and Dr.
Christopher E. Wilmer for providing methane GCMC data for the
hypothetical MOFs.
NR 36
TC 53
Z9 54
U1 18
U2 100
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD NOV 11
PY 2014
VL 26
IS 21
BP 6185
EP 6192
DI 10.1021/cm502594j
PG 8
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA AT4JL
UT WOS:000344905600015
ER
PT J
AU Strobridge, FC
Clement, RJ
Leskes, M
Middlemiss, DS
Borkiewicz, OJ
Wiaderek, KM
Chapman, KW
Chupas, PJ
Grey, CP
AF Strobridge, Fiona C.
Clement, Raphaele J.
Leskes, Michal
Middlemiss, Derek S.
Borkiewicz, Olaf J.
Wiaderek, Kamila M.
Chapman, Karena W.
Chupas, Peter J.
Grey, Clare P.
TI Identifying the Structure of the Intermediate, Li2/3CoPO4, Formed during
Electrochemical Cycling of LiCoPO4
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID X-RAY-DIFFRACTION; DENSITY-FUNCTIONAL THEORY; TRANSITION-METAL
PHOSPHATES; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS;
SOLID-SOLUTION PHASES; AUGMENTED-WAVE METHOD; LI-ION BATTERY; LITHIUM
BATTERIES; LIFEPO4 NANOPARTICLES
AB In situ synchrotron diffraction measurements and subsequent Rietveld refinements are used to show that the high energy density cathode material LiCoPO4 (space group Pnma) undergoes two distinct two-phase reactions upon charge and discharge, both occurring via an intermediate Li-2/3(Co2+)(2/3)(Co3+)(1/3)PO4 phase. Two resonances are observed for Li2/3CoPO4 with intensity ratios of 2:1 and 1:1 in the P-31 and 7Li NMR spectra, respectively. An ordering of Co2+/Co3+ oxidation states is proposed within a (a X 3b X c) supercell, and Li+/vacancy ordering is investigated using experimental NMR data in combination with first-principles solid-state DFT calculations. In the lowest energy configuration, both the Co3+ ions and Li vacancies are found to order along the b-axis. Two other low energy Li+/vacancy ordering schemes are found only 5 meV per formula unit higher in energy. All three configurations lie below the LiCoPO4CoPO4 convex hull and they may be readily interconverted by Li+ hops along the b-direction.
C1 [Strobridge, Fiona C.; Clement, Raphaele J.; Leskes, Michal; Middlemiss, Derek S.; Grey, Clare P.] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, Cambs, England.
[Borkiewicz, Olaf J.; Wiaderek, Kamila M.; Chapman, Karena W.; Chupas, Peter J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.
[Grey, Clare P.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
RP Grey, CP (reprint author), Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, Cambs, England.
EM cpg27@cam.ac.uk
RI Leskes, Michal/J-4674-2015
OI Leskes, Michal/0000-0002-7172-9689
FU EPSRC for a Doctoral Training Partnership Award; Department of Energy
(DOE); U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences [DE-SC0001294]; EU; Marie Curie intra-European
fellowship; U.S. Department of Energy [DE-AC02-06CH11357]; U.S. DOE,
Office of Basic Energy Sciences [DE-AC02-98CH10886]
FX We thank the EPSRC for a Doctoral Training Partnership Award (support to
FCS) and the Department of Energy (DOE) for support via the Northeastern
Center for Chemical Energy Storage, an Energy Frontier Research Center
funded by the U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences under Award Number DE-SC0001294 (FCS, CPG, OJB,
KMW, KWC, PJC). We thank the EU for financial support via an EU-ERC
Advanced Fellowship (RJC) and a Marie Curie intra-European fellowship
(ML). Work done at Argonne and use of the Advanced Photon Source (APS),
an Office of Science User Facility operated for the U.S. Department of
Energy Office of Science by Argonne National Laboratory, were supported
by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.
An allocation of time upon the NANO computer cluster at the Center for
Functional Nanomaterials, Brookhaven National Laboratory, U.S.A., which
is supported by the U.S. DOE, Office of Basic Energy Sciences, under
Contract DE-AC02-98CH10886, is acknowledged. This work used the ARCHER
UK National Supercomputing Service (http://www.archer.ac.uk). We thank
Hao Liu, Xiao Hua, Ieuan Seymour, Dr. Phoebe Allan and Dr. Sylvia Britto
for their help and discussions, Dr. Matthew Suchomel for instrument
support, and Dr. Jan Ilavsky for help with the Irena software.
NR 79
TC 11
Z9 12
U1 10
U2 121
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD NOV 11
PY 2014
VL 26
IS 21
BP 6193
EP 6205
DI 10.1021/cm502680w
PG 13
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA AT4JL
UT WOS:000344905600016
ER
PT J
AU Omenya, F
Miller, JK
Fang, J
Wen, BH
Zhang, RB
Wang, Q
Chernova, NA
Whittingham, MS
AF Omenya, Fredrick
Miller, Joel K.
Fang, Jin
Wen, Bohua
Zhang, Ruibo
Wang, Qi
Chernova, Natasha A.
Whittingham, M. Stanley
TI Single-Phase Lithiation and Delithiation of Simferite Compounds
Li(Mg,Mn,Fe)PO4
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID ROOM-TEMPERATURE; SOLID-SOLUTION; LIFEPO4; LIXFEPO4; CATHODE;
LI-X(MNYFE1-Y)PO4; DEINTERCALATION; SUBSTITUTION; DIFFRACTION; BATTERIES
AB Understanding the phase transformation behavior of electrode materials for lithium ion batteries is critical in determining the electrode kinetics and battery performance. Here, we demonstrate the lithiation/delithiation mechanism and electrochemical behavior of the simferite compound, LiMg0.5Fe0.3Mn0.2PO4. In contrast to the equilibrium two-phase nature of LiFePO4, LiMg(0.5)Fe(0.3)Mn(0.)2PO(4) undergoes a one-phase reaction mechanism as confirmed by ex situ X-ray diffraction at different states of delithiation and electrochemical measurements. The equilibrium voltage measurement by galvanostatic intermittent titration technique shows a continuous change in voltage at Mn3+/Mn2+ redox couple with addition of Mg2+ in LiMn0.4Fe0.6PO4 olivine structure. There is, however, no significant change in the Fe3+/Fe2+ redox potential.
C1 [Omenya, Fredrick; Miller, Joel K.; Fang, Jin; Wen, Bohua; Zhang, Ruibo; Wang, Qi; Chernova, Natasha A.; Whittingham, M. Stanley] SUNY Binghamton, Binghamton, NY 13902 USA.
[Wang, Qi] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Whittingham, M. Stanley] SUNY Stony Brook, Dept Chem, Northeastern Ctr Chem Energy Storage, Stony Brook, NY 11794 USA.
RP Whittingham, MS (reprint author), SUNY Binghamton, Binghamton, NY 13902 USA.
EM stanwhit@gmail.com
RI Zhang, Ruibo/B-4659-2015
FU Northeastern Center for Chemical Energy Storage, an Energy Frontier
Research Center - U.S. Department of Energy, Office of Science, Basic
Energy Sciences [DE-SC0001294]; U.S. Department of Energy, Office of
Science, Basic Energy Sciences [DE-AC02-06CH11357, DE-AC02-98CH10886]
FX This research is supported as part of the Northeastern Center for
Chemical Energy Storage, an Energy Frontier Research Center funded by
the U.S. Department of Energy, Office of Science, Basic Energy Sciences,
under Award Number DE-SC0001294. Use of the Advanced Photon Source at
Argonne National Laboratory and the National Synchrotron Light Source at
Brookhaven National Laboratory is supported by the U.S. Department of
Energy, Office of Science, Basic Energy Sciences, under Contract Nos.
DE-AC02-06CH11357 and DE-AC02-98CH10886, respectively. We also
acknowledge the support of the National Institute of Standards and
Technology U.S. Department of Commerce, in providing the neutron
research facilities used in this work. We thank Dr. Hui Wu of NIST for
her help with neutron data collection and analysis.
NR 27
TC 3
Z9 3
U1 2
U2 49
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD NOV 11
PY 2014
VL 26
IS 21
BP 6206
EP 6212
DI 10.1021/cm502832b
PG 7
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA AT4JL
UT WOS:000344905600017
ER
PT J
AU Mohanty, D
Li, JL
Abraham, DP
Huq, A
Payzant, EA
Wood, DL
Daniel, C
AF Mohanty, Debasish
Li, Jianlin
Abraham, Daniel P.
Huq, Ashfia
Payzant, E. Andrew
Wood, David L., III
Daniel, Claus
TI Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion
Batteries: Origin of the Tetrahedral Cations for Spinel Conversion
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID LAYERED COMPOSITE CATHODE; DIFFRACTION; ELECTRODES; OXIDES;
TRANSFORMATION; HYSTERESIS; NEUTRON
AB High-voltage layered lithium- and manganese-rich (LMR) oxides have the potential to dramatically enhance the energy density of current Li-ion energy storage systems. However, these materials are currently not used commonly; one reason is their inability to maintain a consistent voltage profile (voltage fade) during electrochemical cycling. This report rationalizes the cause of this voltage fade by providing evidence of layered to spinel (LS) structural evolution pathways in the host Li1.2Mn0.55Ni0.15Co0.1O2 oxide. By employing neutron powder diffraction, we show that LS structural rearrangement in the LMR oxide occurs through a tetrahedral cation intermediate via the following: (i) diffusion of lithium atoms from octahedral to tetrahedral sites of the lithium layer [(LiLioct -> LiLitet] which is followed by the dispersal of the lithium ions from the adjacent octahedral site of the metal layer to the tetrahedral sites of lithium layer [LiTMoct -> LiLitet]; (ii) migration of Mn from the octahedral sites of the transition-metal layer to the permanent octahedral site of lithium layer via tetrahedral site of lithium layer [MnTMoct -> MnLitet -> MnLioct)]. These findings open the door to potential routes to mitigate this atomic restructuring in the high-voltage LMR composite oxide by manipulating their composition/structure for practical use in high-energy-density lithium-ion batteries.
C1 [Mohanty, Debasish; Li, Jianlin; Wood, David L., III; Daniel, Claus] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA.
[Huq, Ashfia; Payzant, E. Andrew] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA.
[Abraham, Daniel P.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Wood, David L., III; Daniel, Claus] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA.
RP Mohanty, D (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA.
EM mohantyd@ornl.gov; wooddl@ornl.gov; danielc@ornl.gov
RI Payzant, Edward/B-5449-2009; Huq, Ashfia/J-8772-2013; Daniel,
Claus/A-2060-2008; Mohanty, Debasish/B-6207-2012; Li,
Jianlin/D-3476-2011;
OI Payzant, Edward/0000-0002-3447-2060; Huq, Ashfia/0000-0002-8445-9649;
Daniel, Claus/0000-0002-0571-6054; Mohanty,
Debasish/0000-0003-1141-0657; Li, Jianlin/0000-0002-8710-9847; Wood,
David/0000-0002-2471-4214
FU U.S. Department of Energy (DOE) [DE-AC05-000R22725]; Office of Energy
Efficiency and Renewable Energy for the Vehicle Technologies Office's
Applied Battery Research Program (Program Managers: Peter Faguy and
David Howell); Scientific User Facilities Division, Office of Basic
Energy Sciences; VTO's ABR Program
FX This research at Oak Ridge National Laboratory, managed by UT Battelle,
LLC, for the U.S. Department of Energy (DOE), under contract
DE-AC05-000R22725, was sponsored by the Office of Energy Efficiency and
Renewable Energy for the Vehicle Technologies Office's Applied Battery
Research Program (Program Managers: Peter Faguy and David Howell). Part
of this research was supported by the ORNL's User Facility at the Spa
Ration Neutron Source, which is sponsored by the Scientific User
Facilities Division, Office of Basic Energy Sciences. The HES050
material was obtained from Argonne National Laboratory, in collaboration
with Andrew Jansen and Bryant Polzin. The electrodes and cell
fabrication, and pouch cell testing, were carried out at the DOE's
Battery Manufacturing R&D Facility at Oak Ridge National Laboratory,
which is supported by VTO's ABR Program. We thank Roberta A. Meisner at
ORNL for her help in XRD data collection.
NR 31
TC 45
Z9 45
U1 11
U2 93
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD NOV 11
PY 2014
VL 26
IS 21
BP 6272
EP 6280
DI 10.1021/cm5031415
PG 9
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA AT4JL
UT WOS:000344905600026
ER
PT J
AU Zhou, Y
Dyck, J
Graham, TW
Luo, HM
Leonard, DN
Qu, J
AF Zhou, Yan
Dyck, Jeffrey
Graham, Todd W.
Luo, Huimin
Leonard, Donovan N.
Qu, Jun
TI Ionic Liquids Composed of Phosphonium Cations and Organophosphate,
Carboxylate, and Sulfonate Anions as Lubricant Antiwear Additives
SO LANGMUIR
LA English
DT Article
ID SOLUBILITY PARAMETERS; TRIBOLOGICAL PERFORMANCE; NEAT LUBRICANTS;
FATTY-ACIDS; OFHC COPPER; PART 2; OIL; DECOMPOSITION; HYDROCARBON;
MECHANISMS
AB Oil-soluble phosphonium-based ionic liquids (ILs) have recently been reported as potential ashless lubricant additives. This study is to expand the IL chemistry envelope and to achieve fundamental correlations between the ion structures and ILs physiochemical and tribological properties. Here we present eight ILs containing two different phosphonium cations and seven different anions from three groups: organophosphate, carboxylate, and sulfonate. The oil solubility of ILs seems largely governed by the IL molecule size and structure complexity. When used as oil additives, the ranking of effectiveness in wear protection for the anions are organophosphate > carboxylate > sulfonate. All selected ILs outperformed a commercial ashless antiwear additive. Surface characterization from the top and the cross-section revealed the nanostructures and compositions of the tribo-films formed by the ILs. Some fundamental insights were achieved: branched and long alkyls improve the ILs oil solubility, anions of a phosphonium-phosphate IL contribute most phosphorus in the tribo-film, and carboxylate anions, though free of P, S, N, or halogen, can promote the formation of an antiwear tribo-film.
C1 [Zhou, Yan; Leonard, Donovan N.; Qu, Jun] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA.
[Zhou, Yan] Texas A&M Univ, College Stn, TX 77843 USA.
[Dyck, Jeffrey; Graham, Todd W.] Cytec Canada, Applicat Technol Grp, Niagara Falls, ON L2H 6S5, Canada.
[Luo, Huimin] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA.
RP Qu, J (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA.
EM qujn@ornl.gov
OI Qu, Jun/0000-0001-9466-3179
FU Vehicle Technologies Program, Office of Energy Efficiency and Renewable
Energy, U.S. Department of Energy (DOE); U.S. Department of Energy
[DE-AC05-00OR22725]
FX The authors thank Dr. H. M. Meyer of Oak Ridge National Laboratory
(ORNL) for his advice on XPS analysis and W. C. Barnhill of ORNL for
exposure corrosion testing. Research sponsored by the Vehicle
Technologies Program, Office of Energy Efficiency and Renewable Energy,
U.S. Department of Energy (DOE). Y.Z. was appointed to ORNL through the
Oak Ridge Associated Universities/Oak Ridge Institute for Science and
Engineering's Advanced Short-Term Research Opportunity program. The
authors also thank the Laboratory for Molecular Simulation at Texas A&M
University for providing the access to Materials Studio. This manuscript
has been authored by UT-Battelle, LLC, under Contract No.
DE-AC05-00OR22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for
publication, acknowledges that the U.S. Government retains a
nonexclusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this manuscript, or allow others to do
so, for U.S. Government purposes.
NR 53
TC 20
Z9 20
U1 5
U2 43
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
J9 LANGMUIR
JI Langmuir
PD NOV 11
PY 2014
VL 30
IS 44
BP 13301
EP 13311
DI 10.1021/la5032366
PG 11
WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
SC Chemistry; Materials Science
GA AT4JG
UT WOS:000344905100021
PM 25330413
ER
PT J
AU Oliver, RC
Lipfert, J
Fox, DA
Lo, RH
Kim, JJ
Doniach, S
Columbus, L
AF Oliver, Ryan C.
Lipfert, Jan
Fox, Daniel A.
Lo, Ryan H.
Kim, Justin J.
Doniach, Sebastian
Columbus, Linda
TI Tuning Micelle Dimensions and Properties with Binary Surfactant Mixtures
SO LANGMUIR
LA English
DT Article
ID SMALL-ANGLE SCATTERING; ADVANCED PHOTON SOURCE; X-RAY-SCATTERING;
MEMBRANE-PROTEINS; DETERGENTS; MODEL; MICELLIZATION; REMEDIATION;
SYSTEMS; DRUGS
AB Detergent micelles are used in many areas of research and technology, in particular, as mimics of the cellular membranes in the purification and biochemical and structural characterization of membrane proteins. Applications of detergent micelles are often hindered by the limited set of properties of commercially available detergents. Mixtures of micelle-forming detergents provide a means to systematically obtain additional micellar properties and expand the repertoire of micelle features available; however, our understanding of the properties of detergent mixtures is still limited. In this study, the shape and size of binary mixtures of seven different detergents commonly used in molecular host-guest systems and membrane protein research were investigated. The data suggests that the detergents form ideally mixed micelles with sizes and shapes different from those of pure individual micelles. For most measurements of size, the mixtures varied linearly with detergent mole fraction and therefore can be calculated from the values of the pure detergents. We propose that properties such as the geometry, size, and surface charge can be systematically and predictably tuned for specific applications.
C1 [Oliver, Ryan C.; Fox, Daniel A.; Lo, Ryan H.; Kim, Justin J.; Columbus, Linda] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA.
[Lipfert, Jan] Univ Munich, Dept Phys, Munich, Germany.
[Lipfert, Jan] Univ Munich, Ctr Nanosci CeNS, Munich, Germany.
[Doniach, Sebastian] Stanford Univ, Dept Phys, Biophys Program, Stanford, CA 94305 USA.
[Doniach, Sebastian] Stanford Univ, Dept Appl Phys, Biophys Program, Stanford, CA 94305 USA.
[Doniach, Sebastian] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA.
RP Columbus, L (reprint author), Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA.
EM columbus@virginia.edu
OI Columbus, Linda/0000-0002-2574-0561
FU National Science Foundation [MCB 0845668]; Netherlands Organisation for
Scientific Research (NWO)
FX This research was funded by a National Science Foundation CAREER award
(MCB 0845668) and is supported by The Netherlands Organisation for
Scientific Research (NWO).
NR 31
TC 5
Z9 5
U1 2
U2 21
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
J9 LANGMUIR
JI Langmuir
PD NOV 11
PY 2014
VL 30
IS 44
BP 13353
EP 13361
DI 10.1021/la503458n
PG 9
WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
SC Chemistry; Materials Science
GA AT4JG
UT WOS:000344905100027
PM 25312254
ER
PT J
AU Wang, WW
Wang, WY
Lu, XY
Bobade, S
Chen, JH
Kang, NG
Zhang, QY
Mays, J
AF Wang, Wenwen
Wang, Weiyu
Lu, Xinyi
Bobade, Sachin
Chen, Jihua
Kang, Nam-Goo
Zhang, Qiuyu
Mays, Jimmy
TI Synthesis and Characterization of Comb and Centipede Multigraft
Copolymers PnBA-g-PS with High Molecular Weight Using Miniemulsion
Polymerization
SO MACROMOLECULES
LA English
DT Article
ID FREE-RADICAL POLYMERIZATION; THERMOPLASTIC ELASTOMERS;
ANIONIC-POLYMERIZATION; GRAFT-COPOLYMERS; EMULSION POLYMERIZATION;
BLOCK-COPOLYMERS; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; CLICK
CHEMISTRY; LATEX-PARTICLES
AB Comb and centipede multigraft copolymers, poly(n-butyl acrylate)-g-polystyrene (PnBA-g-PS) with PnBA backbones and PS side chains, were synthesized via high-vacuum anionic polymerization and miniemulsion polymerization. Single-tailed and double-tailed PS macromonomers were synthesized by anionic polymerization and Steglich esterification. Subsequently, the copolymerization of each macromonomer and nBA was carried out in miniemulsion, and multigraft copolymers were obtained. The latex particles of multigraft copolymers were characterized using dynamic light scattering. The molecular weights of macromonomers and multigraft copolymers were analyzed by size exclusion chromatography. Moreover, the molecular weights and structures of macromonomers were investigated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and H-1 nuclear magnetic resonance spectroscopy. The weight contents of PS in comb and centipede multigraft copolymers were calculated by H-1 nuclear magnetic resonance spectroscopy. The thermal properties of multigraft copolymers were characterized by thermogravimetric analysis and differential scanning calorimetry. The microphase separation of multigraft copolymers was observed by atomic force microscopy and transmission electronic microscopy. Rheological measurements showed that comb and centipede multigraft copolymers have elastic properties when the weight content of PS side chains is 2632 wt %. Centipede multigraft copolymers possess better elastic properties than comb multigraft copolymers with the similar weight content of PS. These findings are similar to previous results on poly(isoprene-g-polystyrene) comb and centipede copolymers made by anionic polymerization.
C1 [Wang, Wenwen; Zhang, Qiuyu] Northwestern Polytech Univ, Sch Sci, Minist Educ, Key Lab Appl Phys & Chem Space, Xian 710072, Peoples R China.
[Wang, Weiyu; Lu, Xinyi; Bobade, Sachin; Kang, Nam-Goo; Mays, Jimmy] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
[Chen, Jihua] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Zhang, QY (reprint author), Northwestern Polytech Univ, Sch Sci, Minist Educ, Key Lab Appl Phys & Chem Space, Xian 710072, Peoples R China.
EM qyzhang1803@gmail.com; jimmy@utk.edu
RI Chen, Jihua/F-1417-2011; Wang, Weiyu/A-6317-2016
OI Chen, Jihua/0000-0001-6879-5936; Wang, Weiyu/0000-0002-2914-1638
NR 45
TC 9
Z9 9
U1 4
U2 48
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
EI 1520-5835
J9 MACROMOLECULES
JI Macromolecules
PD NOV 11
PY 2014
VL 47
IS 21
BP 7284
EP 7295
DI 10.1021/ma501866t
PG 12
WC Polymer Science
SC Polymer Science
GA AT4JN
UT WOS:000344905800003
ER
PT J
AU Cotanda, P
Sudre, G
Modestino, MA
Chen, XC
Balsara, NP
AF Cotanda, Pepa
Sudre, Guillaume
Modestino, Miguel A.
Chen, X. Chelsea
Balsara, Nitash P.
TI High Anion Conductivity and Low Water Uptake of Phosphonium Containing
Diblock Copolymer Membranes
SO MACROMOLECULES
LA English
DT Article
ID POLYMER-ELECTROLYTE MEMBRANES; LIQUID BLOCK-COPOLYMERS; ALKALINE
FUEL-CELLS; IONIC-LIQUID; EXCHANGE MEMBRANES; RADICAL POLYMERIZATION;
MOLECULAR-WEIGHT; RAFT PROCESS; MORPHOLOGY; TRANSPORT
AB Poly[(styrene)-block-((2-acryloxy)ethyltributylphosphonium bromide)] diblock copolymers (STBP) were synthesized in two steps. First, reversible additionfragmentation chain transfer polymerization was used to synthesize the diblock copolymer precursors poly[(styrene)-block-(bromoethyl acrylate)] (SBEA), followed by functionalization with tributylphosphine. Copolymers with overall molecular weights ranging from 31 to 87 kg/mol were synthesized. The volume fraction of the ion-containing monomers in the copolymers was fixed at about 0.57. Self-assembly of these copolymers into ordered morphologies with tunable domain sizes was demonstrated by small-angle X-ray scattering. The effect of morphology on water uptake and bromide ion conductivity was explored in samples equilibrated in liquid water. The use of the pendant tributylphosphonium cations, which have some hydrophobic character, results in low water uptake and high anionic conductivity. The conductivity increases with increasing domain size while water uptake is unaffected by domain size.
C1 [Cotanda, Pepa; Sudre, Guillaume; Modestino, Miguel A.; Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA.
[Cotanda, Pepa; Sudre, Guillaume; Modestino, Miguel A.; Chen, X. Chelsea; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Chen, X. Chelsea; Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
RP Balsara, NP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA.
EM nbalsara@berkeley.edu
RI Sudre, Guillaume/A-3061-2013
OI Sudre, Guillaume/0000-0003-3545-7046
FU Office of Science of the U.S. Department of Energy [DE-SC0004993];
Office of Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy [DE-AC02-05CH11231]
FX This material is based upon work performed by the Joint Center for
Artificial Photosynthesis, a DOE Energy Innovation Hub, supported
through the Office of Science of the U.S. Department of Energy under
Award DE-SC0004993. SAXS experiments were performed at Lawrence Berkeley
National Laboratory's Advance Light Source, Beamline 7.3.3. Beamline
7.3.3 of the Advanced Light Source is supported by the Director of the
Office of Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy under Contract DE-AC02-05CH11231.
NR 58
TC 22
Z9 23
U1 16
U2 106
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
EI 1520-5835
J9 MACROMOLECULES
JI Macromolecules
PD NOV 11
PY 2014
VL 47
IS 21
BP 7540
EP 7547
DI 10.1021/ma501744w
PG 8
WC Polymer Science
SC Polymer Science
GA AT4JN
UT WOS:000344905800031
ER
PT J
AU Iyer-Biswas, S
Wright, CS
Henry, JT
Lo, K
Burov, S
Lin, YH
Crooks, GE
Crosson, S
Dinner, AR
Scherer, NF
AF Iyer-Biswas, Srividya
Wright, Charles S.
Henry, Jonathan T.
Lo, Klevin
Burov, Stanislav
Lin, Yihan
Crooks, Gavin E.
Crosson, Sean
Dinner, Aaron R.
Scherer, Norbert F.
TI Scaling laws governing stochastic growth and division of single
bacterial cells
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE single-cell dynamics; cell-to-cell variability; exponential growth;
Hinshelwood cycle; Arrhenius law
ID ESCHERICHIA-COLI; GENE-EXPRESSION; CYCLE; TEMPERATURE; SIZE;
SYNCHRONIZATION; VARIABILITY; KINETICS; CULTURES; NOISE
AB Uncovering the quantitative laws that govern the growth and division of single cells remains a major challenge. Using a unique combination of technologies that yields unprecedented statistical precision, we find that the sizes of individual Caulobacter crescentus cells increase exponentially in time. We also establish that they divide upon reaching a critical multiple (approximate to 1.8) of their initial sizes, rather than an absolute size. We show that when the temperature is varied, the growth and division timescales scale proportionally with each other over the physiological temperature range. Strikingly, the cell-size and division-time distributions can both be rescaled by their mean values such that the condition-specific distributions collapse to universal curves. We account for these observations with a minimal stochastic model that is based on an autocatalytic cycle. It predicts the scalings, as well as specific functional forms for the universal curves. Our experimental and theoretical analysis reveals a simple physical principle governing these complex biological processes: a single temperature-dependent scale of cellular time governs the stochastic dynamics of growth and division in balanced growth conditions.
C1 [Iyer-Biswas, Srividya; Wright, Charles S.; Lo, Klevin; Burov, Stanislav; Dinner, Aaron R.; Scherer, Norbert F.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA.
[Iyer-Biswas, Srividya; Wright, Charles S.; Lo, Klevin; Burov, Stanislav; Dinner, Aaron R.; Scherer, Norbert F.] Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA.
[Henry, Jonathan T.; Crosson, Sean] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA.
[Dinner, Aaron R.; Scherer, Norbert F.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA.
[Lin, Yihan] CALTECH, Dept Biol, Pasadena, CA 91125 USA.
[Crooks, Gavin E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Dinner, AR (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.
EM dinner@uchicago.edu; nfschere@uchicago.edu
OI Wright, Charles/0000-0003-4268-3965
FU National Science Foundation (NSF) [NSF PHY-1305542, NSF DMR-MRSEC
0820054]; W. M. Keck Foundation; University of Chicago Materials
Research Science and Engineering Center
FX We thank Aretha Fiebig, Ariel Amir, Rutger Hermsen, Gurol Suel, Kingshuk
Ghosh, Matt Scott, Terry Hwa, William Loomis, and Leo Kadanoff for
insightful discussions. We thank the National Science Foundation (NSF)
(NSF PHY-1305542) and the W. M. Keck Foundation for financial support.
We also acknowledge partial financial and central facilities assistance
of the University of Chicago Materials Research Science and Engineering
Center, supported by the NSF (NSF DMR-MRSEC 0820054).
NR 53
TC 32
Z9 32
U1 3
U2 33
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD NOV 11
PY 2014
VL 111
IS 45
BP 15912
EP 15917
DI 10.1073/pnas.1403232111
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AS8WW
UT WOS:000344526800029
PM 25349411
ER
PT J
AU Bogorad, IW
Chen, CT
Theisen, MK
Wu, TY
Schlenz, AR
Lam, AT
Liao, JC
AF Bogorad, Igor W.
Chen, Chang-Ting
Theisen, Matthew K.
Wu, Tung-Yun
Schlenz, Alicia R.
Lam, Albert T.
Liao, James C.
TI Building carbon-carbon bonds using a biocatalytic methanol condensation
cycle
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE methanol metabolism; metabolic engineering; cell-free synthesis;
bio-ethanol; bio-butanol
ID PYRUVATE FORMATE-LYASE; ESCHERICHIA-COLI; BACILLUS-METHANOLICUS; LIQUID
FUELS; DEHYDROGENASE; FRUCTOSE-6-PHOSPHATE; CHROMATOGRAPHY;
HYDROCARBONS; PERFORMANCE; METABOLISM
AB Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through C-13-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives.
C1 [Bogorad, Igor W.; Chen, Chang-Ting; Theisen, Matthew K.; Wu, Tung-Yun; Schlenz, Alicia R.; Lam, Albert T.; Liao, James C.] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA.
[Bogorad, Igor W.; Theisen, Matthew K.; Liao, James C.] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA.
[Liao, James C.] Univ Calif Los Angeles, DOE Inst Genom & Prote, Los Angeles, CA 90095 USA.
RP Liao, JC (reprint author), Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA.
EM liaoj@ucla.edu
FU Reducing Emissions using Methanotrophic Organisms for Transportation
Energy (REMOTE) program of the Advanced Research Projects Agency-Energy
[DE-AR0000430]; National Science Foundation [0963183]
FX This work is supported by the Reducing Emissions using Methanotrophic
Organisms for Transportation Energy (REMOTE) program of the Advanced
Research Projects Agency-Energy (Award DE-AR0000430). This material is
based on research performed in a renovated collaboratory by National
Science Foundation Grant 0963183, which is an award funded under the
American Recovery and Reinvestment Act of 2009.
NR 35
TC 18
Z9 18
U1 3
U2 42
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD NOV 11
PY 2014
VL 111
IS 45
BP 15928
EP 15933
DI 10.1073/pnas.1413470111
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AS8WW
UT WOS:000344526800032
PM 25355907
ER
PT J
AU Heber, EM
Hawthorne, MF
Kueffer, PJ
Garabalino, MA
Thorp, SI
Pozzi, ECC
Hughes, AM
Maitz, CA
Jalisatgi, SS
Nigg, DW
Curotto, P
Trivillin, VA
Schwint, AE
AF Heber, Elisa M.
Hawthorne, M. Frederick
Kueffer, Peter J.
Garabalino, Marcela A.
Thorp, Silvia I.
Pozzi, Emiliano C. C.
Hughes, Andrea Monti
Maitz, Charles A.
Jalisatgi, Satish S.
Nigg, David W.
Curotto, Paula
Trivillin, Veronica A.
Schwint, Amanda E.
TI Therapeutic efficacy of boron neutron capture therapy mediated by
boron-rich liposomes for oral cancer in the hamster cheek pouch model
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE oncology; cancer; boronated liposomes; BNCT; neutron radiation
ID MURINE TUMORS; UNILAMELLAR LIPOSOMES; SELECTIVE DELIVERY; RECURRENT
HEAD; NECK-CANCER; BNCT; FACILITY; BORONOPHENYLALANINE; CARCINOGENESIS;
NORMALIZATION
AB The application of boron neutron capture therapy (BNCT) mediated by liposomes containing B-10-enriched polyhedral borane and carborane derivatives for the treatment of head and neck cancer in the hamster cheek pouch oral cancer model is presented. These liposomes are composed of an equimolar ratio of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)(15)-7,8-C2B9H11] (MAC) in the bilayer membrane while encapsulating the hydrophilic species Na-3[ae-B20H17NH3] (TAC) in the aqueous core. Unilamellar liposomes with a mean diameter of 83 nm were administered i.v. in hamsters. After 48 h, the boron concentration in tumors was 67 +/- 16 ppm whereas the precancerous tissue contained 11 +/- 6 ppm, and the tumor/normal pouch tissue boron concentration ratio was 10:1. Neutron irradiation giving a 5-Gy dose to precancerous tissue (corresponding to 21 Gy in tumor) resulted in an overall tumor response (OR) of 70% after a 4-wk posttreatment period. In contrast, the beam-only protocol gave an OR rate of only 28%. Once-repeated BNCT treatment with readministration of liposomes at an interval of 4, 6, or 8 wk resulted in OR rates of 70-88%, of which the complete response ranged from 37% to 52%. Because of the good therapeutic outcome, it was possible to extend the follow-up of BNCT treatment groups to 16 wk after the first treatment. No radiotoxicity to normal tissue was observed. A salient advantage of these liposomes was that only mild mucositis was observed in dose-limiting precancerous tissue with a sustained tumor response of 70-88%.
C1 [Heber, Elisa M.; Garabalino, Marcela A.; Thorp, Silvia I.; Pozzi, Emiliano C. C.; Hughes, Andrea Monti; Curotto, Paula; Trivillin, Veronica A.; Schwint, Amanda E.] Comis Nacl Energia Atom, San Martin B1650KNA, Buenos Aires, DF, Argentina.
[Hawthorne, M. Frederick; Kueffer, Peter J.; Maitz, Charles A.; Jalisatgi, Satish S.] Univ Missouri, Int Inst Nano & Mol Med, Columbia, MO 65211 USA.
[Nigg, David W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Trivillin, Veronica A.; Schwint, Amanda E.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina.
RP Hawthorne, MF (reprint author), Univ Missouri, Int Inst Nano & Mol Med, Columbia, MO 65211 USA.
EM hawthornem@missouri.edu; schwint@cnea.gov.ar
FU University of Missouri through the International Institute for Nano and
Molecular Medicine; US Department of Energy through Idaho National
Laboratory; Agencia Nacional de Promocion Cientifica y Tecnologica;
Consejo Nacional de Investigaciones Cientificas y Tecnicas of Argentina
FX The authors acknowledge the expert staff of Reactor Argentino 3 nuclear
reactor. This study was supported in part by the University of Missouri
through the International Institute for Nano and Molecular Medicine, by
the US Department of Energy through Idaho National Laboratory, and by
grants from Agencia Nacional de Promocion Cientifica y Tecnologica and
Consejo Nacional de Investigaciones Cientificas y Tecnicas of Argentina.
NR 51
TC 9
Z9 9
U1 3
U2 27
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD NOV 11
PY 2014
VL 111
IS 45
BP 16077
EP 16081
DI 10.1073/pnas.1410865111
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AS8WW
UT WOS:000344526800057
PM 25349432
ER
PT J
AU Lorbeer, C
Mudring, AV
AF Lorbeer, C.
Mudring, A. -V.
TI Quantum cutting in nanoparticles producing two green photons
SO CHEMICAL COMMUNICATIONS
LA English
DT Article
ID DOWNCONVERSION; LIGDF4-EU3+
AB A synthetic route to nanoscale NaGdF4:Ln is presented which allows for quantum cutting based on the Gd-Er-Tb system. This shows, that cross-relaxation and other energy transfer processes necessary for multiphoton emission can be achieved in nanoparticles even if the large surface and the potentially huge amount of killer traps would suggest a lack of subsequent emission.
C1 [Lorbeer, C.; Mudring, A. -V.] Ruhr Univ Bochum, D-44801 Bochum, Germany.
[Mudring, A. -V.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50010 USA.
[Mudring, A. -V.] Ames Lab DOE, Crit Mat Inst, Ames, IA 50010 USA.
RP Mudring, AV (reprint author), Ruhr Univ Bochum, Univ Str 150, D-44801 Bochum, Germany.
EM mudring@iastate.edu
FU Critical Materials Institute, an Energy Innovation Hub - U.S. Department
of Energy, Office of Energy Efficiency and Renewable Energy, Advanced
Manufacturing Office; European Research Council with an ERC starting
grant ("EMIL") [200475]; Fonds der Chemischen Industrie for a
Dozentenstipendium; Fonds der Chemischen Industrie
FX This work was supported in part by the Critical Materials Institute, an
Energy Innovation Hub funded by the U.S. Department of Energy, Office of
Energy Efficiency and Renewable Energy, Advanced Manufacturing Office
and the European Research Council with an ERC starting grant ("EMIL",
contract no. 200475). A.-V. M. thanks the Fonds der Chemischen Industrie
for a Dozentenstipendium, C. L. thanks the Fonds der Chemischen
Industrie for a doctoral scholarship. DESY (proposal no. II-20090181) is
acknowledged for access to synchrotron facilities.
NR 13
TC 5
Z9 5
U1 0
U2 29
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1359-7345
EI 1364-548X
J9 CHEM COMMUN
JI Chem. Commun.
PD NOV 11
PY 2014
VL 50
IS 87
BP 13282
EP 13284
DI 10.1039/c4cc04400b
PG 3
WC Chemistry, Multidisciplinary
SC Chemistry
GA AS0KI
UT WOS:000343965700021
PM 25229069
ER
PT J
AU Maguire, K
Sullivan, M
Pan, YC
Gal-Yam, A
Hook, IM
Howell, DA
Nugent, PE
Mazzali, P
Chotard, N
Clubb, KI
Filippenko, AV
Kasliwal, MM
Kandrashoff, MT
Poznanski, D
Saunders, CM
Silverman, JM
Walker, E
Xu, D
AF Maguire, K.
Sullivan, M.
Pan, Y. -C.
Gal-Yam, A.
Hook, I. M.
Howell, D. A.
Nugent, P. E.
Mazzali, P.
Chotard, N.
Clubb, K. I.
Filippenko, A. V.
Kasliwal, M. M.
Kandrashoff, M. T.
Poznanski, D.
Saunders, C. M.
Silverman, J. M.
Walker, E.
Xu, D.
TI Exploring the spectral diversity of low-redshift Type Ia supernovae
using the Palomar Transient Factory
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE supernovae: general; galaxies: general; distance scale
ID HUBBLE-SPACE-TELESCOPE; HIGH-VELOCITY FEATURES; DELAYED-DETONATION
MODELS; TIME OPTICAL-SPECTRA; DIGITAL SKY SURVEY; WHITE-DWARF STAR;
LEGACY SURVEY; DARK-ENERGY; SN 2011FE; CIRCUMSTELLAR MATERIAL
AB We present an investigation of the optical spectra of 264 low-redshift (z < 0.2) Type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory, an untargeted transient survey. We focus on velocity and pseudo-equivalent width measurements of the Si II 4130, 5972, and 6355 angstrom lines, as well those of the Ca II near-infrared (NIR) triplet, up to +5 days relative to the SN B-band maximum light. We find that a high-velocity component of the Ca II NIR triplet is needed to explain the spectrum in similar to 95 per cent of SNe Ia observed before-5 days, decreasing to similar to 80 per cent at maximum. The average velocity of the Ca II high-velocity component is similar to 8500 km s(-1) higher than the photospheric component. We confirm previous results that SNe Ia around maximum light with a larger contribution from the high-velocity component relative to the photospheric component in their Ca II NIR feature have, on average, broader light curves and lower Ca II NIR photospheric velocities. We find that these relations are driven by both a stronger high-velocity component and a weaker contribution from the photospheric Ca II NIR component in broader light curve SNe Ia. We identify the presence of C II in very-early-time SN Ia spectra (before - 10 days), finding that >40 per cent of SNe Ia observed at these phases show signs of unburnt material in their spectra, and that C II features are more likely to be found in SNe Ia having narrower light curves.
C1 [Maguire, K.] European Southern Observ Astron Res Southern Hemi, D-85748 Garching, Germany.
[Sullivan, M.] Univ Southampton, Southampton SO17 1BJ, Hants, England.
[Pan, Y. -C.; Hook, I. M.] Univ Oxford, DWB, Dept Phys Astrophys, Oxford OX1 3RH, England.
[Gal-Yam, A.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel.
[Hook, I. M.] INAF Osservatorio Astron Roma, I-00040 Rome, Italy.
[Howell, D. A.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA.
[Howell, D. A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Nugent, P. E.; Clubb, K. I.; Filippenko, A. V.; Kandrashoff, M. T.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Nugent, P. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA.
[Mazzali, P.] Liverpool John Moores Univ, Astrophys Res Inst, IC2, Liverpool L3 5RF, Merseyside, England.
[Mazzali, P.] INAF Osservatorio Astron, I-35122 Padua, Italy.
[Mazzali, P.] Max Planck Inst Astrophys, D-85748 Garching, Germany.
[Chotard, N.] Univ Lyon 1, CNRS, Inst Phys Nucl Lyon, IN2P3, F-69622 Villeurbanne, France.
[Kasliwal, M. M.] Carnegie Inst Sci, Pasadena, CA 91101 USA.
[Poznanski, D.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Saunders, C. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
[Saunders, C. M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Silverman, J. M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA.
[Walker, E.] Yale Univ, Dept Phys, New Haven, CT 06520 USA.
[Xu, D.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark.
RP Maguire, K (reprint author), European Southern Observ Astron Res Southern Hemi, Karl Schwarzschild Str 2, D-85748 Garching, Germany.
EM kate.maguire@eso.org
OI Sullivan, Mark/0000-0001-9053-4820; Hook, Isobel/0000-0002-2960-978X
FU European Community; Royal Society; EU/FP7-ERC [307260]; Quantum Universe
I-Core program by the Israeli Committee for planning and funding; ISF;
GIF; Minerva; Kimmel award; ARCHES award; Lyon Institute of Origins
[ANR-10-LABX-66]; Hubble Fellowship; Carnegie-Princeton Fellowship; NSF
[AST-1302771, AST-1211916]; Christopher R. Redlich Fund; Richard and
Rhoda Goldman Fund; TABASGO Foundation; UK Science and Technology
Facilities Council; W.M. Keck Foundation; European Organization for
Astronomical Research in the Southern hemisphere, Chile [084.A-0149(A),
085.A-0777(A)]; NASA
FX KM is supported by a Marie Curie Intra-European Fellowship, within the
7th European Community Framework Programme (FP7). MS acknowledges
support from the Royal Society. AGY is supported by the EU/FP7-ERC grant
no [307260], the Quantum Universe I-Core program by the Israeli
Committee for planning and funding, the ISF, GIF, Minerva, and ISF
grants, and Kimmel and ARCHES awards. NC acknowledges support from the
Lyon Institute of Origins under grant ANR-10-LABX-66. MMK acknowledges
generous support from the Hubble Fellowship and Carnegie-Princeton
Fellowship. JMS is supported by an NSF Astronomy and Astrophysics
Postdoctoral Fellowship under award AST-1302771. AVF's supernova group
at UC Berkeley has received generous financial assistance from Gary and
Cynthia Bengier, the Christopher R. Redlich Fund, the Richard and Rhoda
Goldman Fund, the TABASGO Foundation, and NSF grant AST-1211916.; The LT
is operated on the island of La Palma by Liverpool John Moores
University in the Spanish Observatorio del Roque de los Muchachos of the
Instituto de Astrofisica de Canarias with financial support from the UK
Science and Technology Facilities Council. This work also makes use of
observations from the LCOGT network. Some of the data presented herein
were obtained at the W.M. Keck Observatory, which is operated as a
scientific partnership among the California Institute of Technology, the
University of California, and the National Aeronautics and Space
Administration (NASA). The Observatory was made possible by the generous
financial support of the W.M. Keck Foundation. We thank the dedicated
staffs at all the observatories we used for their excellent assistance
with the observations. Based on data taken at the European Organization
for Astronomical Research in the Southern hemisphere, Chile, under
program IDs 084.A-0149(A) and 085.A-0777(A). Observations obtained with
the SuperNova Integral Field Spectrograph on the University of Hawaii
2.2-m telescope as part of the Nearby Supernova Factory II project, a
scientific collaboration between the Centre de Recherche Astronomique de
Lyon, Institut de Physique Nucleaire de Lyon, Laboratoire de Physique
Nucleaire et des Hautes Energies, Lawrence Berkeley National Laboratory,
Yale University, University of Bonn, Max Planck Institute for
Astrophysics, Tsinghua Center for Astrophysics, and Centre de Physique
des Particules de Marseille. This research has made use of the NASA/IPAC
Extragalactic Database (NED) which is operated by the Jet Propulsion
Laboratory, California Institute of Technology, under contract with
NASA.
NR 106
TC 24
Z9 24
U1 1
U2 5
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD NOV 11
PY 2014
VL 444
IS 4
BP 3258
EP 3274
DI 10.1093/mnras/stu1607
PG 17
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AR2FW
UT WOS:000343400100019
ER
PT J
AU Beutler, F
Saito, S
Brownstein, JR
Chuang, CH
Cuesta, AJ
Percival, WJ
Ross, AJ
Ross, NP
Schneider, DP
Samushia, L
Sanchez, AG
Seo, HJ
Tinker, JL
Wagner, C
Weaver, BA
AF Beutler, Florian
Saito, Shun
Brownstein, Joel R.
Chuang, Chia-Hsun
Cuesta, Antonio J.
Percival, Will J.
Ross, Ashley J.
Ross, Nicholas P.
Schneider, Donald P.
Samushia, Lado
Sanchez, Ariel G.
Seo, Hee-Jong
Tinker, Jeremy L.
Wagner, Christian
Weaver, Benjamin A.
TI The clustering of galaxies in the SDSS-III Baryon Oscillation
Spectroscopic Survey: signs of neutrino mass in current cosmological
data sets
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE surveys; cosmological parameters; cosmology: observations; large-scale
structure of Universe
ID DIGITAL SKY SURVEY; TELESCOPE LENSING SURVEY; BACKGROUND POWER SPECTRUM;
TRITIUM BETA-SPECTRUM; SOUTH-POLE TELESCOPE; DATA RELEASE; GROWTH-RATE;
HUBBLE CONSTANT; ACOUSTIC-OSCILLATIONS; CFHTLENS
AB We investigate the cosmological implications of the latest growth of structure measurement from the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS Data Release 11 with particular focus on the sum of the neutrino masses, Sigma m(nu). We examine the robustness of the cosmological constraints from the baryon acoustic oscillation (BAO) scale, the Alcock-Paczynski effect and redshift-space distortions (DV/r(s), F-AP, f sigma(8)) of Beutler et al., when introducing a neutrino mass in the power spectrum template. We then discuss how the neutrino mass relaxes discrepancies between the cosmic microwave background (CMB) and other low-redshift measurements within Lambda cold dark matter. Combining our cosmological constraints with 9-year Wilkinson Microwave Anisotropy Probe (WMAP9) yields Sigma m(nu) = 0.36 +/- 0.14 eV (68 per cent c. l.), which represents a 2.6 sigma preference for non-zero neutrino mass. The significance can be increased to 3.3 sigma when including weak lensing results and other BAO constraints, yielding Sigma m(nu) = 0.35 +/- 0.10 eV (68 per cent c. l.). However, combining CMASS with Planck data reduces the preference for neutrino mass to similar to 2 sigma. When removing the CMB lensing effect in the Planck temperature power spectrum (by marginalizing over A(L)), we see shifts of similar to 1 sigma in sigma(8) and Omega(m), which have a significant effect on the neutrino mass constraints. In the case of CMASS plus Planck without the A(L) lensing signal, we find a preference for a neutrino mass of Sigma m(nu) = 0.34 +/- 0.14 eV (68 per cent c.l.), in excellent agreement with the WMAP9+CMASS value. The constraint can be tightened to 3.4 sigma yielding Sigma m(nu) = 0.36 +/- 0.10 eV (68 per cent c.l.) when weak lensing data and other BAO constraints are included.
C1 [Beutler, Florian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Saito, Shun] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Univers WPI, Chiba 2778582, Japan.
[Brownstein, Joel R.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA.
[Chuang, Chia-Hsun] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, E-28049 Madrid, Spain.
[Cuesta, Antonio J.] Univ Barcelona, Inst Ciencies Cosmos, IEEC UB, E-08028 Barcelona, Spain.
[Percival, Will J.; Ross, Ashley J.; Samushia, Lado] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England.
[Ross, Nicholas P.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA.
[Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA.
[Sanchez, Ariel G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Seo, Hee-Jong] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Tinker, Jeremy L.; Weaver, Benjamin A.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA.
[Wagner, Christian] Max Planck Inst Astrophys, D-85748 Garching, Germany.
RP Beutler, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM fbeutler@lbl.gov
OI Beutler, Florian/0000-0003-0467-5438; Cuesta Vazquez, Antonio
Jose/0000-0002-4153-9470
FU Japan Society for the Promotion of Science (JSPS) [25887012]; Alfred P.
Sloan Foundation; National Science Foundation; US Department of Energy
Office of Science; University of Arizona; Brazilian Participation Group;
Brookhaven National Laboratory; Carnegie Mellon University; University
of Florida; French Participation Group; German Participation Group;
Harvard University; Instituto de Astrofisica de Canarias; Michigan
State/Notre Dame/JINA Participation Group; Johns Hopkins University;
Lawrence Berkeley National Laboratory; Max Planck Institute for
Astrophysics; Max Planck Institute for Extraterrestrial Physics; New
Mexico State University; New York University; Ohio State University;
Pennsylvania State University; University of Portsmouth; Princeton
University; Spanish Participation Group; University of Tokyo; University
of Utah; Vanderbilt University; University of Virginia; University of
Washington; Yale University; Office of Science of the US Department of
Energy [DE-AC02-05CH11231]
FX We would like to thank Renee Hlozek for providing the MCMC chains for
the Planck re-analysis. FB would like to thank Martin Kilbinger and
Catherine Heymans for help with the CFHTLenS data set and COSMOPMC. FB
would also like to thank Martin White, Uros Seljak, Eric Linder, Daniel
Dwyer, Morag Scrimgeour, Michael Mortonson, Marcel Schmittful and Blake
Sherwin for helpful discussion. SS would like to thank Kiyotomo Ichiki
and Masahiro Takada for providing their MCMC code for weak lensing
analysis and for useful discussions. SS is supported by a Grant-in-Aid
for Young Scientists (Start-up) from the Japan Society for the Promotion
of Science (JSPS) (No. 25887012).; Funding for SDSS-III has been
provided by the Alfred P. Sloan Foundation, the Participating
Institutions, the National Science Foundation and the US Department of
Energy Office of Science. The SDSS-III web site is
http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical
Research Consortium for the Participating Institutions of the SDSS-III
Collaboration including the University of Arizona, the Brazilian
Participation Group, Brookhaven National Laboratory, Carnegie Mellon
University, University of Florida, the French Participation Group, the
German Participation Group, Harvard University, the Instituto de
Astrofisica de Canarias, the Michigan State/Notre Dame/JINA
Participation Group, Johns Hopkins University, Lawrence Berkeley
National Laboratory, Max Planck Institute for Astrophysics, Max Planck
Institute for Extraterrestrial Physics, New Mexico State University, New
York University, Ohio State University, Pennsylvania State University,
University of Portsmouth, Princeton University, the Spanish
Participation Group, University of Tokyo, University of Utah, Vanderbilt
University, University of Virginia, University of Washington and Yale
University.; This research used resources of the National Energy
Research Scientific Computing Center, which is supported by the Office
of Science of the US Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 109
TC 48
Z9 48
U1 1
U2 19
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD NOV 11
PY 2014
VL 444
IS 4
BP 3501
EP +
DI 10.1093/mnras/stu1702
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AR2FW
UT WOS:000343400100035
ER
PT J
AU Arnold, CW
Tovesson, F
Meierbachtol, K
Bredeweg, T
Jandel, M
Jorgenson, HJ
Laptev, A
Rusev, G
Shields, DW
White, M
Blakeley, RE
Mader, DM
Hecht, AA
AF Arnold, C. W.
Tovesson, F.
Meierbachtol, K.
Bredeweg, T.
Jandel, M.
Jorgenson, H. J.
Laptev, A.
Rusev, G.
Shields, D. W.
White, M.
Blakeley, R. E.
Mader, D. M.
Hecht, A. A.
TI Development of position-sensitive time-of-flight spectrometer for
fission fragment research
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Spectrometers; Fission; Fission product yields; TOF; 2E-2v
ID MASS-SPECTROMETER; PRODUCTS; ENERGY
AB A position sensitive, high resolution time detector for fission fragments has been developed. The SPectrometer for Ion DEtermination in fission Research (SPIDER) is a 2E-2v spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick off detector pairs to be used in SPIDER have been tested with alpha-particles from Th-229 and its decay chain and alpha-particles and spontaneous fission fragments from Cf-252. Each detector module is comprised of thin electron conversion foil, electrostatic mirror, microchannel plates, and delay line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flight Limes were measured with 250 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to a precision of 0.5%. An ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for modestly efficient measurements of light fission fragments with unit mass resolution. (C) 2014 Elsevier B.V. All rights reserved,
C1 [Arnold, C. W.; Tovesson, F.; Meierbachtol, K.; Bredeweg, T.; Jandel, M.; Jorgenson, H. J.; Laptev, A.; Rusev, G.; Shields, D. W.; White, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Shields, D. W.] Colorado Sch Mines, Golden, CO 80401 USA.
[Blakeley, R. E.; Mader, D. M.; Hecht, A. A.] Univ New Mexico, Albuquerque, NM 87131 USA.
RP Arnold, CW (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM arnold@lanl.gov
RI Laptev, Alexander/D-4686-2009;
OI Laptev, Alexander/0000-0002-9759-9907; Rusev,
Gencho/0000-0001-7563-1518; White, Morgan/0000-0003-3876-421X; Tovesson,
Fredrik/0000-0002-3509-978X
FU U.S. Department of Energy at Los Alamos National Laboratory; Los Alamos
National Security, LLC [DE-AC52-06NA25396]
FX This work was performed under the auspices of the U.S. Department of
Energy at Los Alamos National Laboratory operated by the Los Alamos
National Security, LLC under Contract No, DE-AC52-06NA25396.
NR 13
TC 1
Z9 1
U1 3
U2 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD NOV 11
PY 2014
VL 764
BP 53
EP 58
DI 10.1016/j.nima.2014.07.001
PG 6
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA AP3OT
UT WOS:000341987000009
ER
PT J
AU Mashnik, SG
Kerby, LM
AF Mashnik, Stepan G.
Kerby, Leslie M.
TI MCNP6 fragmentation of light nuclei at intermediate energies
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Monte Carlo; Transport codes; MCNP6; Cascade-exciton model (CEM); Los
Alamos version of the quark-gluon string model (LAQGSM)
ID REACTION CROSS-SECTIONS; PROTON-INDUCED REACTIONS; CASCADE-EXCITON
MODEL; QUARK-GLUON STRINGS; SHIELD-HIT; COLLISIONS; CARBON; PARTICLE;
TARGETS; HYDROGEN
AB Fragmentation reactions induced on light target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the latest Los Alamos Monte Carlo transport code MCNP6 and with its cascade-exciton model (CEM) and Los Alamos version of the quark-gluon string model (LAQGSM) event generators, version 03.03, used as stand-alone codes. Such reactions are involved in different applications, like cosmic-ray-induced single event upsets (SEU's), radiation protection, and cancer therapy with proton and ion beams, among others; therefore, it is important that MCNP6 simulates them as well as possible. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), Followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. Both CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to He-4 from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Mashnik, Stepan G.; Kerby, Leslie M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Kerby, Leslie M.] Univ Idaho, Moscow, ID 83844 USA.
RP Mashnik, SG (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM mashnik@lanl.gov
OI Kerby, Leslie/0000-0002-4496-6427
FU National Nuclear Security Administration of the U.S. Department of
Energy at Los Alamos National Laboratory [DE-AC52-06NA253996]; M.
Hildred Blewett Fellowship of the American Physical Society
FX this study was carried out under the auspices of the National Nuclear
Security Administration of the U.S. Department of Energy at Los Alamos
National Laboratory under Contract No. DE-AC52-06NA253996.; This work is
supported in part (for L.M.K.) by the M. Hildred Blewett Fellowship of
the American Physical Society, www.aps.org
NR 70
TC 7
Z9 7
U1 0
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD NOV 11
PY 2014
VL 764
BP 59
EP 81
DI 10.1016/j.nima.2014.07.016
PG 23
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA AP3OT
UT WOS:000341987000010
ER
PT J
AU Haines, JR
McManamy, TJ
Gabriel, TA
Battle, RE
Chipley, KK
Crabtree, JA
Jacobs, LL
Lousteau, DC
Rennich, MJ
Riemer, BW
AF Haines, J. R.
McManamy, T. J.
Gabriel, T. A.
Battle, R. E.
Chipley, K. K.
Crabtree, J. A.
Jacobs, L. L.
Lousteau, D. C.
Rennich, M. J.
Riemer, B. W.
TI Spallation neutron source target station design, development, and
commissioning
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Targets; High power; Spallation; Mercury; Particle accelerator
ID MERCURY TARGET; VESSELS
AB The spallation neutron source target station is designed to safely, reliably, and efficiently convert a 1 GeV beam of protons to a high flux of about 1 meV neutrons that are available at 24 neutron scattering instrument beam lines. Research and development findings, design requirements, design description, initial checkout testing, and results from early operation with beam are discussed for each of the primary target subsystems, including the mercury target, neutron moderators and reflector, surrounding vessels and shielding, utilities, remote handling equipment, and instrumentation and controls. Future plans for the mercury target development program are also briefly discussed. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Haines, J. R.; McManamy, T. J.; Gabriel, T. A.; Battle, R. E.; Chipley, K. K.; Crabtree, J. A.; Jacobs, L. L.; Lousteau, D. C.; Rennich, M. J.; Riemer, B. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Haines, JR (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA.
EM hainesjr@ornl.gov
OI Rennich, Mark/0000-0001-6945-0075; Riemer, Bernard/0000-0002-6922-3056
NR 27
TC 2
Z9 2
U1 1
U2 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD NOV 11
PY 2014
VL 764
BP 94
EP 115
DI 10.1016/j.nima.2014.03.068
PG 22
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA AP3OT
UT WOS:000341987000012
ER
PT J
AU Hoppe, EW
Aalseth, CE
Farmer, OT
Hossbach, TW
Liezers, M
Miley, HS
Overman, NR
Reeves, JH
AF Hoppe, E. W.
Aalseth, C. E.
Farmer, O. T.
Hossbach, T. W.
Liezers, M.
Miley, H. S.
Overman, N. R.
Reeves, J. H.
TI Reduction of radioactive backgrounds in electroformed copper for
ultra-sensitive radiation detectors
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Low background; Copper; Electroforming; Thorium; Uranium; ICP-MS
ID DOUBLE-BETA DECAY; INTERNATIONAL GERMANIUM EXPERIMENT; UNDERGROUND
MEASUREMENTS; SPECTROMETERS; SAMPLES
AB Ultra-pure construction materials are required for the next generation of neutrino physics, dark matter and environmental science applications. These materials are also important for use in high-purity germanium spectrometers used in screening materials for radiopurity. The next-generation science applications require materials with radiopurity levels at or below 1 mu Bq/kg Th-232 and U-238. Yet radiometric analysis lacks sensitivity below similar to 10 mu Bq/kg for the U and Th decay chains. This limits both the selection of clean materials and the validation of purification processes. Copper is an important high-purity material for low-background experiments due to the ease with which it can be purified by electrochemical methods. Electroplating for purification into near-final shapes, known as electroforming, is one such method. Continued refinement of the copper electroforming process is underway, for the First time guided by an ICP-MS based assay method that can measure Th-232 and U-238 near the desired purity levels. An assay of electroformed copper at a mu Bq/kg level has been achieved and is described. The implications of electroformed copper at or better than this purity on next-generation low-background experiments are discussed. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Reeves, J. H.] Reeves & Son LW, Richland, WA 99352 USA.
[Hoppe, E. W.; Aalseth, C. E.; Farmer, O. T.; Hossbach, T. W.; Liezers, M.; Miley, H. S.; Overman, N. R.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Hoppe, EW (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM cric.hoppe@pnnl.gov
FU United States Department of Energy, NNSA Office of Research and
Engineering [NA-22]; Office of Nuclear Physics in the DOE Office of
Science; Battelle Memorial Institute [DE-AC05-76RLO1830]
FX The authors would like to acknowledge the United States Department of
Energy, NNSA Office of Research and Engineering (NA-22), and the Office
of Nuclear Physics in the DOE Office of Science for their support of
this work, Pacific Northwest National Laboratory is managed by Battelle
Memorial Institute under Contract DE-AC05-76RLO1830. Further, the
authors wish to gratefully acknowledge the scientific leadership of our
deceased colleague, Ronald L. Brodzinski, who with humor and resolution
inspired us to confidently approach the unknown again and again.
NR 27
TC 10
Z9 10
U1 1
U2 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD NOV 11
PY 2014
VL 764
BP 116
EP 121
DI 10.1016/j.nima.2014.06.082
PG 6
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA AP3OT
UT WOS:000341987000013
ER
PT J
AU Ball, R
Beene, JR
Ben-Moshe, M
Benhammou, Y
Bensimon, B
Chapman, JW
Etzion, E
Ferretti, C
Friedman, PS
Levin, DS
Silver, Y
Varner, RL
Weaverdyck, C
Wetzel, R
Zhou, B
Anderson, T
McKinny, K
Bentefour, EH
AF Ball, R.
Beene, J. R.
Ben-Moshe, M.
Benhammou, Y.
Bensimon, B.
Chapman, J. W.
Etzion, E.
Ferretti, C.
Friedman, P. S.
Levin, D. S.
Silver, Y.
Varner, R. L.
Weaverdyck, C.
Wetzel, R.
Zhou, B.
Anderson, T.
McKinny, K.
Bentefour, E. H.
TI Development of a plasma panel radiation detector
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Radiation detector; Gaseous ionization detector; Micropattern gaseous
detectors; Neutron detectors; Plasma panels; Pixel radiation detector
AB This article reports on the development and experimental results of commercial plasma display panels adapted for their potential use as micropattern gas radiation detectors. The plasma panel sensor (PPS) design and materials include glass substrates, metal electrodes and inert gas mixtures which provide a physically robust, hermetically sealed device. Plasma display panels used as detectors were tested with cosmic ray muons, beta rays and gamma rays, protons, and thermal neutrons. The results demonstrated rise times and time resolution of a few nanoseconds, as well as sub-millimeter spatial resolution compatible with the pixel pitch. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Ball, R.; Chapman, J. W.; Ferretti, C.; Levin, D. S.; Weaverdyck, C.; Wetzel, R.; Zhou, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Beene, J. R.; Varner, R. L.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Ben-Moshe, M.; Benhammou, Y.; Bensimon, B.; Etzion, E.; Silver, Y.] Tel Aviv Univ, Beverly & Raymond Suckler Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Friedman, P. S.] Integrated Sensors LLC, Ottawa Hills, OH 43606 USA.
[Anderson, T.; McKinny, K.] GE Measurement & Control, Twinsburg, OH 44087 USA.
[Bentefour, E. H.] Ion Beam Applicat SA, B-1348 Louvain La Neuve, Belgium.
RP Levin, DS (reprint author), Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
FU U.S. Department of Energy (DOE) - Office of Nuclear Physics Small
Business Innovation Research grant [DE-SC0006204, DE-FG02-07ER84749];
U.S. DOE, Office of Nuclear Physics, Applications of Nuclear Science and
Technology grant [DE-FG02-12ER41788]; I-CORE Program of the Planning and
Budgeting Committee; Israel Science Foundation [1937/12];
Israel-American Binational Science Foundation [1008123]; agency of the
United States Government
FX Development of the PPS project was funded by the U.S. Department of
Energy (DOE) - Office of Nuclear Physics Small Business Innovation
Research grant award numbers DE-SC0006204 and DE-FG02-07ER84749 to
Integrated Sensors, U.S. DOE, Office of Nuclear Physics, Applications of
Nuclear Science and Technology grant to Oak Ridge National Laboratory,
operated by UT-Battelle, LLC for the U.S. DOE, and DOE - Office of High
Energy Physics grant number DE-FG02-12ER41788 to the University of
Michigan. The research at Tel Aviv University was supported by the
I-CORE Program of the Planning and Budgeting Committee and the Israel
Science Foundation (Grant number 1937/12). Funding for scientific
exchange and collaboration between Tel Aviv University and the
University of Michigan was provided by the Israel-American Binational
Science Foundation, Grant number 1008123.; Disclaimer: This report was
prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government
or any agency thereof The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.
NR 33
TC 2
Z9 2
U1 1
U2 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD NOV 11
PY 2014
VL 764
BP 122
EP 132
DI 10.1016/j.nima.2014.07.028
PG 11
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA AP3OT
UT WOS:000341987000014
ER
PT J
AU Arnold, O
Bilheux, JC
Borreguero, JM
Buts, A
Campbell, SI
Chapon, L
Doucet, M
Draper, N
Leal, RF
Gigg, MA
Lynch, VE
Markvardsen, A
Mikkelson, DJ
Mikkelson, RL
Miller, R
Palmen, K
Parker, P
Passos, G
Perring, TG
Peterson, PF
Ren, S
Reuter, MA
Savici, AT
Taylor, JW
Taylor, RJ
Tolchenoy, R
Zhou, W
Zikoysky, J
AF Arnold, O.
Bilheux, J. C.
Borreguero, J. M.
Buts, A.
Campbell, S. I.
Chapon, L.
Doucet, M.
Draper, N.
Leal, R. Ferraz
Gigg, M. A.
Lynch, V. E.
Markvardsen, A.
Mikkelson, D. J.
Mikkelson, R. L.
Miller, R.
Palmen, K.
Parker, P.
Passos, G.
Perring, T. G.
Peterson, P. F.
Ren, S.
Reuter, M. A.
Savici, A. T.
Taylor, J. W.
Taylor, R. J.
Tolchenoy, R.
Zhou, W.
Zikoysky, J.
TI Mantid-Data analysis and visualization package for neutron scattering
and mu SR experiments
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Data analysis; Data visualization; Computer interfaces
AB The Mantid framework is a software solution developed for the analysis and visualization of neutron scattering and muon spin measurements. The framework is jointly developed by software engineers and scientists at the ISIS Neutron and Muon Facility and the Oak Ridge National Laboratory. The objectives, functionality and novel design aspects of Mantid are described. Published by Elsevier B.V.
C1 [Arnold, O.; Buts, A.; Chapon, L.; Draper, N.; Gigg, M. A.; Markvardsen, A.; Palmen, K.; Parker, P.; Passos, G.; Perring, T. G.; Savici, A. T.; Taylor, J. W.; Taylor, R. J.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England.
[Arnold, O.; Draper, N.; Gigg, M. A.; Tolchenoy, R.] Tessella Ltd, Abingdon, Oxon, England.
[Bilheux, J. C.; Borreguero, J. M.; Campbell, S. I.; Doucet, M.; Lynch, V. E.; Mikkelson, D. J.; Mikkelson, R. L.; Peterson, P. F.; Ren, S.; Reuter, M. A.; Savici, A. T.; Zikoysky, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Chapon, L.; Leal, R. Ferraz] Inst Laue Langevin, Grenoble, France.
[Mikkelson, D. J.; Mikkelson, R. L.] Univ Wisconsin Stout, Menomonie, WI USA.
[Miller, R.] Oak Ridge Natl Lab, Comp & Computat Sci Directorate, Oak Ridge, TN USA.
[Taylor, J. W.] Tessellu Inc, Newton, MA USA.
RP Savici, AT (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
EM saviciat@ornl.gov
RI Lynch, Vickie/J-4647-2012; Borreguero, Jose/B-2446-2009; Doucet,
Mathieu/A-5333-2010; Savici, Andrei/F-2790-2013; Campbell,
Stuart/A-8485-2010; Bilheux, Jean/A-2823-2016
OI Lynch, Vickie/0000-0002-5836-7636; Borreguero, Jose/0000-0002-0866-8158;
Doucet, Mathieu/0000-0002-5560-6478; Savici, Andrei/0000-0001-5127-8967;
Campbell, Stuart/0000-0001-7079-0878; Bilheux, Jean/0000-0003-2172-6487
FU Scientific User Facilities Division, Office of Basic Energy Sciences, US
Department of Energy; Science and Technology Facilities Council (STFC)
UK; NMI3 [WP6]
FX The development team would like to thank all instrument scientists and
students at ISIS and SNS for their feedback and contributions, R
Radaelli, and R. McGreevy for championing the project at ISIS in the
initial stages, and R. McGreevy, I. Anderson, and M. Hagen for forging
the collaboration between ORNL and STFC. We acknowledge A. Hillier for
contributions to this paper. Work at ORNL was sponsored by the
Scientific User Facilities Division, Office of Basic Energy Sciences, US
Department of Energy. Work at the ISIS facility was funded by the
Science and Technology Facilities Council (STFC) UK. Development for ILL
instruments was funded by NMI3 (WP6).
NR 13
TC 100
Z9 100
U1 6
U2 52
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD NOV 11
PY 2014
VL 764
BP 156
EP 166
DI 10.1016/j.nima.2014.07.029
PG 11
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA AP3OT
UT WOS:000341987000018
ER
PT J
AU Pelliccia, D
Sen, T
AF Pelliccia, Daniele
Sen, Tanaji
TI A two-step method for retrieving the longitudinal profile of an electron
bunch from its coherent radiation
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Phase retrieval; Electron bunch longitudinal profile; Kramers-Kronig;
Iterative method; Coherent transition radiation; Photoinjector
ID CHARGED-PARTICLE-BUNCH; PHASE RETRIEVAL; X-RAY; TRANSITION RADIATION;
SHAPE; SPECTRUM; RECONSTRUCTION; DIFFRACTION; SYNCHROTRON; OBJECT
AB The coherent radiation emitted by an electron bunch provides a diagnostic signal that can be used to estimate its longitudinal distribution. Commonly only the amplitude of the intensity spectrum can be measured and the associated phase must be calculated to obtain the bunch profile. Very recently an iterative method was proposed to retrieve this phase. However ambiguities associated with non-uniqueness of the solution are always present in the phase retrieval procedure. Here we present a method to overcome the ambiguity problem by first performing multiple independent runs of the phase retrieval procedure and then second, sorting the good solutions by means of cross-correlation analysis. Results obtained with simulated bunches of various shapes and experimental measured spectra are presented, discussed and compared with the established Kramers-Kronig method It is shown that even when the effect of the ambiguities is strong, as is the case for a double peak in the profile, the cross-correlation post-processing is able to filter out unwanted solutions. We show that, unlike the Kramers-Kronig method, the combined approach presented is able to faithfully reconstruct complicated bunch profiles. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Pelliccia, Daniele] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia.
[Sen, Tanaji] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA.
RP Sen, T (reprint author), Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA.
RI Pelliccia, Daniele/A-3140-2012
OI Pelliccia, Daniele/0000-0001-8751-2620
FU Australian Research Council [DE120101504]; Fermi Research Alliance, LLC
[DE-AC02-07CH11359]; United States Department of Energy
FX D.P. acknowledges the support of the Australian Research Council (Grant
no. DE120101504). T.S. thanks Charles Thangaraj and Randy Thurman-Keup
for generously sharing their data and useful discussions. Fermilab is
operated by Fermi Research Alliance, LLC under Contract no.
DE-AC02-07CH11359 with the United States Department of Energy.
NR 33
TC 2
Z9 2
U1 1
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD NOV 11
PY 2014
VL 764
BP 206
EP 214
DI 10.1016/j.nima.2014.07.024
PG 9
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA AP3OT
UT WOS:000341987000024
ER
PT J
AU Wang, ZH
Morris, CL
Bacon, JD
Brockwell, MI
Ramsey, JC
AF Wang, Zhehui
Morris, C. L.
Bacon, J. D.
Brockwell, M. I.
Ramsey, J. C.
TI A double-helix neutron detector using micron-size B-10 powder
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Double-helix electrode configuration; B-10 powder; Neutron detection
efficiency; Detector lifetime
ID PROPORTIONAL COUNTER
AB A double-helix electrode configuration is combined with a B-10 powder coating technique to build large-area (9 in. x 36 in., or about 23 cm by 91 cm) neutron detectors. The neutron detection efficiency for each of the four prototypes is comparable to 3.7 x 10(3) cm(3) of He-3 inside a cylindrical tube 91 cm long. One unit has been operational continuously for 18 months and the change of efficiency is less than 1%. An analytic model for pulse height spectra is described and the predicted mean film thicknesses agree with the experiment to within 30%. Further detector optimization is possible through film texture, powder size, moderator box and gas. The estimated production cost per unit is less than 3k US$ and the technology is thus suitable for deployment in large numbers. (C) 2014 Elsevier B.V. All rights reserved,
C1 [Wang, Zhehui; Morris, C. L.; Bacon, J. D.; Brockwell, M. I.; Ramsey, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Wang, ZH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM zwang@lanl.gov
FU CRADA agreement with TSA systems, Longmont, CO, USA
FX We thank Mr, Michael Everhart-Erickson, Ms. Laura Barber and Ms, Erica
Sullivan for their efforts in commercialization of the
10B-based neutron detector technology. This work was
supported in part by a CRADA agreement with TSA systems, Longmont, CO,
USA.
NR 13
TC 1
Z9 1
U1 1
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD NOV 11
PY 2014
VL 764
BP 261
EP 267
DI 10.1016/j.nima.2014.07.056
PG 7
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA AP3OT
UT WOS:000341987000033
ER
PT J
AU Abe, Y
dos Anjos, JC
Barriere, JC
Baussan, E
Bekman, I
Bergevin, M
Bezerra, TJC
Bezrukov, L
Blucher, E
Buck, C
Busenitz, J
Cabrera, A
Caden, E
Camilleri, L
Carr, R
Cerrada, M
Chang, PJ
Chauveau, E
Chimenti, P
Collin, AP
Conover, E
Conrad, JM
Crespo-Anadon, JI
Crum, K
Cucoanes, A
Damon, E
Dawson, JV
Dhooghe, J
Dietrich, D
Djurcic, Z
Dracos, M
Elnimr, M
Etenko, A
Fallot, M
von Feilitzsch, F
Felde, J
Fernandes, SM
Fischer, V
Franco, D
Franke, M
Furuta, H
Gil-Botella, I
Giot, L
Goger-Neff, M
Gonzalez, LFG
Goodenough, L
Goodman, MC
Grant, C
Haag, N
Hara, T
Haser, J
Hofmann, M
Horton-Smith, GA
Hourlier, A
Ishitsuka, M
Jochum, J
Jollet, C
Kaether, F
Kalousis, LN
Kamyshkov, Y
Kaplan, DM
Kawasaki, T
Kemp, E
de Kerret, H
Kryn, D
Kuze, M
Lachenmaier, T
Lane, CE
Lasserre, T
Letourneau, A
Lhuillier, D
Lima, HP
Lindner, M
Lopez-Castano, JM
LoSecco, JM
Lubsandorzhiev, B
Lucht, S
Maeda, J
Mariani, C
Maricic, J
Martino, J
Matsubara, T
Mention, G
Meregaglia, A
Miletic, T
Milincic, R
Minotti, A
Nagasaka, Y
Nikitenko, Y
Novella, P
Oberauer, L
Obolensky, M
Onillon, A
Osborn, A
Palomares, C
Pepe, IM
Perasso, S
Pfahler, P
Porta, A
Pronost, G
Reichenbacher, J
Reinhold, B
Rohling, M
Roncin, R
Roth, S
Rybolt, B
Sakamoto, Y
Santorelli, R
Schilithz, AC
Schonert, S
Schoppmann, S
Shaevitz, MH
Sharankova, R
Shimojima, S
Shrestha, D
Sibille, V
Sinev, V
Skorokhvatov, M
Smith, E
Spitz, J
Stahl, A
Stancu, I
Stokes, LFF
Strait, M
Stuken, A
Suekane, F
Sukhotin, S
Sumiyoshi, T
Sun, Y
Svoboda, R
Terao, K
Tonazzo, A
Thi, HHT
Valdiviesso, G
Vassilopoulos, N
Veyssiere, C
Vivier, M
Wagner, S
Walsh, N
Watanabe, H
Wiebusch, C
Winslow, L
Wurm, M
Yang, G
Yermia, F
Zimmer, V
AF Abe, Y.
dos Anjos, J. C.
Barriere, J. C.
Baussan, E.
Bekman, I.
Bergevin, M.
Bezerra, T. J. C.
Bezrukov, L.
Blucher, E.
Buck, C.
Busenitz, J.
Cabrera, A.
Caden, E.
Camilleri, L.
Carr, R.
Cerrada, M.
Chang, P. -J.
Chauveau, E.
Chimenti, P.
Collin, A. P.
Conover, E.
Conrad, J. M.
Crespo-Anadon, J. I.
Crum, K.
Cucoanes, A.
Damon, E.
Dawson, J. V.
Dhooghe, J.
Dietrich, D.
Djurcic, Z.
Dracos, M.
Elnimr, M.
Etenko, A.
Fallot, M.
von Feilitzsch, F.
Felde, J.
Fernandes, S. M.
Fischer, V.
Franco, D.
Franke, M.
Furuta, H.
Gil-Botella, I.
Giot, L.
Goeger-Neff, M.
Gonzalez, L. F. G.
Goodenough, L.
Goodman, M. C.
Grant, C.
Haag, N.
Hara, T.
Haser, J.
Hofmann, M.
Horton-Smith, G. A.
Hourlier, A.
Ishitsuka, M.
Jochum, J.
Jollet, C.
Kaether, F.
Kalousis, L. N.
Kamyshkov, Y.
Kaplan, D. M.
Kawasaki, T.
Kemp, E.
de Kerret, H.
Kryn, D.
Kuze, M.
Lachenmaier, T.
Lane, C. E.
Lasserre, T.
Letourneau, A.
Lhuillier, D.
Lima, H. P., Jr.
Lindner, M.
Lopez-Castano, J. M.
LoSecco, J. M.
Lubsandorzhiev, B.
Lucht, S.
Maeda, J.
Mariani, C.
Maricic, J.
Martino, J.
Matsubara, T.
Mention, G.
Meregaglia, A.
Miletic, T.
Milincic, R.
Minotti, A.
Nagasaka, Y.
Nikitenko, Y.
Novella, P.
Oberauer, L.
Obolensky, M.
Onillon, A.
Osborn, A.
Palomares, C.
Pepe, I. M.
Perasso, S.
Pfahler, P.
Porta, A.
Pronost, G.
Reichenbacher, J.
Reinhold, B.
Roehling, M.
Roncin, R.
Roth, S.
Rybolt, B.
Sakamoto, Y.
Santorelli, R.
Schilithz, A. C.
Schoenert, S.
Schoppmann, S.
Shaevitz, M. H.
Sharankova, R.
Shimojima, S.
Shrestha, D.
Sibille, V.
Sinev, V.
Skorokhvatov, M.
Smith, E.
Spitz, J.
Stahl, A.
Stancu, I.
Stokes, L. F. F.
Strait, M.
Stueken, A.
Suekane, F.
Sukhotin, S.
Sumiyoshi, T.
Sun, Y.
Svoboda, R.
Terao, K.
Tonazzo, A.
Thi, H. H. Trinh
Valdiviesso, G.
Vassilopoulos, N.
Veyssiere, C.
Vivier, M.
Wagner, S.
Walsh, N.
Watanabe, H.
Wiebusch, C.
Winslow, L.
Wurm, M.
Yang, G.
Yermia, F.
Zimmer, V.
TI Precision muon reconstruction in Double Chooz
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Double Chooz; Munn reconstruction; Neutrino detector
AB We describe a muon track reconstruction algorithm for the reactor anti-neutrino experiment Double Chooz, The Double Chooz detector consists of two optically isolated volumes of the liquid scintillator viewed by PMTs, and an Outer Veto above these made of crossed scintillator strips. Muons are reconstructed by their Outer Veto hit positions along with timing information from the other two detector volumes. All muons are fit under the hypothesis that they are through-going and ultrarelativistic, If the energy depositions suggest that the muon may have stopped, the reconstruction fits also for this hypothesis and chooses between the two via the relative goodness-of-fit. In the ideal case of a through-going muon intersecting the center of the detector, the resolution is similar to 40 mm in each transverse dimension. High quality muon reconstruction is an important tool for reducing the impact of the cosmogenic isotope background in Double Chooz. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Bekman, I.; Lucht, S.; Roth, S.; Schoppmann, S.; Stahl, A.; Stueken, A.; Wiebusch, C.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany.
[Busenitz, J.; Elnimr, M.; Fernandes, S. M.; Reichenbacher, J.; Stancu, I.; Sun, Y.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
[Djurcic, Z.; Goodenough, L.; Goodman, M. C.; Yang, G.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Cabrera, A.; Dawson, J. V.; Franco, D.; Hourlier, A.; de Kerret, H.; Kryn, D.; Lasserre, T.; Novella, P.; Obolensky, M.; Perasso, S.; Roncin, R.; Tonazzo, A.] Univ Paris Diderot, Sorbonne Paris Cite, Observ Paris, CEA IRFU,CNRS IN2P3,AstroParticule & Cosmol, F-75205 Paris 13, France.
[dos Anjos, J. C.; Lima, H. P., Jr.; Pepe, I. M.; Schilithz, A. C.; Valdiviesso, G.] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
[Blucher, E.; Conover, E.; Crum, K.; Strait, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Cerrada, M.; Crespo-Anadon, J. I.; Gil-Botella, I.; Lopez-Castano, J. M.; Palomares, C.; Santorelli, R.] CIEMAT, E-28040 Madrid, Spain.
[Camilleri, L.; Carr, R.; Shaevitz, M. H.] Columbia Univ, New York, NY 10027 USA.
[Bergevin, M.; Dhooghe, J.; Felde, J.; Grant, C.; Svoboda, R.; Walsh, N.] Univ Calif Davis, Davis, CA 95616 USA.
[Caden, E.; Damon, E.; Lane, C. E.; Maricic, J.; Miletic, T.; Milincic, R.; Smith, E.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA.
[Nagasaka, Y.] Hiroshima Inst Technol, Hiroshima 7315193, Japan.
[Kaplan, D. M.; Yang, G.] IIT, Dept Phys, Chicago, IL 60616 USA.
[Bezrukov, L.; Lubsandorzhiev, B.; Nikitenko, Y.; Sinev, V.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia.
[Barriere, J. C.; Fischer, V.; Lasserre, T.; Lhuillier, D.; Mention, G.; Sibille, V.; Veyssiere, C.; Vivier, M.] IRFU, Ctr Saclay, Commissariat Energies Atom & Energies Alternat, F-91191 Gif Sur Yvette, France.
[Chang, P. -J.; Horton-Smith, G. A.; Shrestha, D.] Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA.
[Hara, T.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan.
[Cabrera, A.; Etenko, A.; Skorokhvatov, M.; Sukhotin, S.] NRC Kurchatov Inst, Moscow 123182, Russia.
[Conrad, J. M.; Spitz, J.; Terao, K.; Winslow, L.] MIT, Cambridge, MA 02139 USA.
[Buck, C.; Collin, A. P.; Haser, J.; Kaether, F.; Lindner, M.; Reinhold, B.; Wagner, S.; Watanabe, H.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany.
[Kawasaki, T.] Niigata Univ, Dept Phys, Niigata 9502181, Japan.
[LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Baussan, E.; Dracos, M.; Jollet, C.; Meregaglia, A.; Minotti, A.; Vassilopoulos, N.] Univ Strasbourg, CNRS IN2P3, IPHC, F-67037 Strasbourg, France.
[Cucoanes, A.; Fallot, M.; Giot, L.; Martino, J.; Onillon, A.; Porta, A.; Pronost, G.; Yermia, F.] Univ Nantes, Ecole Mines Nantes, CNRS IN2P3, SUBATECH, F-44307 Nantes, France.
[Kamyshkov, Y.; Osborn, A.; Rybolt, B.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Bezerra, T. J. C.; Chauveau, E.; Furuta, H.; Suekane, F.] Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan.
[Sakamoto, Y.] Tohoku Gakuin Univ, Sendai, Miyagi 9813193, Japan.
[Abe, Y.; Ishitsuka, M.; Kuze, M.; Sharankova, R.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan.
[Maeda, J.; Matsubara, T.; Shimojima, S.; Sumiyoshi, T.] Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan.
[von Feilitzsch, F.; Franke, M.; Goeger-Neff, M.; Haag, N.; Hofmann, M.; Oberauer, L.; Pfahler, P.; Schoenert, S.; Thi, H. H. Trinh; Zimmer, V.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany.
[Dietrich, D.; Jochum, J.; Lachenmaier, T.; Roehling, M.; Stokes, L. F. F.; Wurm, M.] Univ Tubingen, Kepler Ctr Astro & Particle Phys, D-72076 Tubingen, Germany.
[Chimenti, P.] Univ Fed Abc, BR-09210580 Santo Andre, SP, Brazil.
[Gonzalez, L. F. G.; Kemp, E.] Univ Estadual Campinas, BR-13083970 Campinas, SP, Brazil.
[Kalousis, L. N.; Mariani, C.] Virginia Tech, Ctr Neutrino Phys, Blacksburg, VA 24061 USA.
RP Strait, M (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.
EM strait@hep.uchiago.edu
RI Skorokhvatov, Mikhail/R-9735-2016; Wiebusch, Christopher/G-6490-2012;
Inst. of Physics, Gleb Wataghin/A-9780-2017; Santorelli,
Roberto/L-6017-2015; Horton-Smith, Glenn/A-4409-2011; Chimenti,
Pietro/F-9898-2012; Mariani, Camillo/J-6070-2015; Cerrada,
Marcos/J-6934-2014; Valdiviesso, Gustavo/G-3404-2011; Junqueira de
Castro Bezerra, Thiago/F-1610-2013; Stahl, Achim/E-8846-2011; Gil
Botella, Ines/H-8991-2015; Bezrukov, Leonid/M-5654-2013; Schoppmann,
Stefan/M-3057-2015; Palomares, Carmen/H-7783-2015; Roth,
Stefan/J-2757-2016; Kamyshkov, Yuri/J-7999-2016
OI Wiebusch, Christopher/0000-0002-6418-3008; Santorelli,
Roberto/0000-0002-0012-2644; Horton-Smith, Glenn/0000-0001-9677-9167;
Spitz, Joshua/0000-0002-6288-7028; Franco, Davide/0000-0001-5604-2531;
Lindner, Manfred/0000-0002-3704-6016; Chimenti,
Pietro/0000-0002-9755-5066; Mariani, Camillo/0000-0003-3284-4681;
Cerrada, Marcos/0000-0003-0112-1691; Valdiviesso,
Gustavo/0000-0002-0381-3619; Junqueira de Castro Bezerra,
Thiago/0000-0002-0424-7903; Stahl, Achim/0000-0002-8369-7506;
Schoppmann, Stefan/0000-0002-7208-0578; Palomares,
Carmen/0000-0003-4374-9065; Roth, Stefan/0000-0003-3616-2223; Kamyshkov,
Yuri/0000-0002-3789-7152
FU CEA; CNRS/IN2P3; LabEx UnivEarthS in France [ANR-11-1DEX-0005-02];
Ministry of Education, Culture, Sports, Science and Technology of Japan
(MEXT); Japan Society for the Promotion of Science (JSPS); Department of
Energy; National Science Foundation of the United States; Ministerio de
Ciencia e Innovacion (MICINN) of Spain; Max Planck Gesellschaft;
Deutsche Forschungsgemeinschaft DEG [SBH WI 2152]; Transregional
Collaborative Research Center TR27; excellence cluster "Origin and
Structure of the Universe"; Maier-Leibnitz-Laboratorium Garching in
Germany; Russian Academy of Science; Kurchatov Institute and RFBR (the
Russian Foundation for Basic Research); Brazilian Ministry of Science,
Technology and Innovation (MCTI); Financiadora de Estudos c Projetos
(FINEP); Conselho Nacional de Desenvolvimento Cientifico e Tecnoleigico
(CNPq); Sao Paulo Research Foundation (FAPESP); Brazilian Network for
High Energy Physics (RENAFAE) in Brazil; the computer center CCIN2P3
FX We thank the French electricity company EDF; the European fund FEDER;
the Region de Champagne Ardenne; the Departement des Ardennes; and the
Communaute des Communes Ardennes Rives acknowledge the support from the
CEA, CNRS/IN2P3, the computer center CCIN2P3, and LabEx UnivEarthS in
France (ANR-11-1DEX-0005-02); the Ministry of Education, Culture,
Sports, Science and Technology of Japan (MEXT) and the Japan Society for
the Promotion of Science (JSPS); the Department of Energy and the
National Science Foundation of the United States; the Ministerio de
Ciencia e Innovacion (MICINN) of Spain; the Max Planck Gesellschaft, and
the Deutsche Forschungsgemeinschaft DEG (SBH WI 2152), the Transregional
Collaborative Research Center TR27, the excellence cluster "Origin and
Structure of the Universe", and the Maier-Leibnitz-Laboratorium Garching
in Germany; the Russian Academy of Science, the Kurchatov Institute and
RFBR (the Russian Foundation for Basic Research); the Brazilian Ministry
of Science, Technology and Innovation (MCTI), the Financiadora de
Estudos c Projetos (FINEP), the Conselho Nacional de Desenvolvimento
Cientifico e Tecnoleigico (CNPq), the Sao Paulo Research Foundation
(FAPESP), and the Brazilian Network for High Energy Physics (RENAFAE) in
Brazil.
NR 15
TC 4
Z9 4
U1 1
U2 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD NOV 11
PY 2014
VL 764
BP 330
EP 339
DI 10.1016/j.nima.2014.07.058
PG 10
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA AP3OT
UT WOS:000341987000044
ER
PT J
AU Kaplan, AC
Henzl, V
Menloye, HO
Swinhoe, MT
Behan, AP
Flaska, M
Pozzi, SA
AF Kaplan, Alexis C.
Henzl, Vladimir
Menlove, Howard O.
Swinhoe, Martyn T.
Belian, Anthony P.
Flaska, Marek
Pozzi, Sara A.
TI Determination of total plutonium content in spent nuclear fuel
assemblies with the differential die-away self-interrogation instrument
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Nondestructive assay; Plutonium measurement; DDSI; Spent fuel
AB As a part of the Next Generation Safeguards Initiative Spent Fuel project, we simulate the response of the Differential Die-away Self-Interrogation (DDSI) instrument to determine total elemental plutonium content in an assayed spent nuclear fuel assembly (SFA). We apply recently developed concepts that relate total plutonium mass with SFA multiplication and passive neutron count rate. In this work, the multiplication of the SFA is determined from the die-away time in the early time domain of the Rossi-Alpha distributions measured directly by the DDSI instrument. We utilize MCNP to test the method against 44 pressurized water reactor SFAs from a simulated spent fuel library with a wide dynamic range of characteristic parameters such as initial enrichment, burnup, and cooling time. Under ideal conditions, discounting possible errors of a real world measurement, a root mean square agreement between true and determined total Pu mass of 2.1% is achieved. Published by Elsevier B.V.
C1 [Kaplan, Alexis C.; Henzl, Vladimir; Menlove, Howard O.; Swinhoe, Martyn T.; Belian, Anthony P.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
[Kaplan, Alexis C.; Flaska, Marek; Pozzi, Sara A.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA.
RP Kaplan, AC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA.
FU U.S. Department of Homeland Security [2012-DN-130-NF0001-02]; Next
Generation Safeguards Initiative (NGSI); Office of Nonproliferation and
International Security (NIS); National Nuclear Security Administration
(NNSA); U.S. Department of Homeland Security or the National Nuclear
Security Administration [LA-UR-13-29465]
FX This material is partially based upon work supported by the U.S.
Department of Homeland Security under Grant award no,
2012-DN-130-NF0001-02. The authors also would like to acknowledge the
support of the Next Generation Safeguards Initiative (NGSI), Office of
Nonproliferation and International Security (NIS), the National Nuclear
Security Administration (NNSA). The views and conclusions contained in
this document are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed or
implied, of the U.S. Department of Homeland Security or the National
Nuclear Security Administration, LA-UR-13-29465.
NR 10
TC 0
Z9 0
U1 0
U2 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD NOV 11
PY 2014
VL 764
BP 347
EP 351
DI 10.1016/j.nima.2014.08.003
PG 5
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA AP3OT
UT WOS:000341987000046
ER
PT J
AU Barletta, W
Battaglia, M
Klute, M
Mangano, M
Prestemon, S
Rossi, L
Skands, P
AF Barletta, William
Battaglia, Marco
Klute, Markus
Mangano, Michelangelo
Prestemon, Soren
Rossi, Lucio
Skands, Peter
TI Future hadron colliders: From physics perspectives to technology R&D
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Future hadron colliders; Superconducting magnet technology; High energy
proton beams
ID CROSS-SECTIONS; LHC; NB3SN; COLLISIONS; PARTICLE; MAGNETS; BOSON
AB High energy hadron colliders have been instrumental to discoveries in particle physics at the energy frontier and their role as discovery machines will remain unchallenged for the foreseeable future. The full exploitation of the WC is now the highest priority of the energy frontier collider program. This includes the high luminosity LHC project which is made possible by a successful technology readiness program for Nb3Sn superconductor and magnet engineering based on long-term high field magnet R&D programs. These programs open the path towards collisions with luminosity of 5 x 10(34) cm(-2) S-1 and represents the foundation to consider future proton colliders of higher energies. This paper discusses physics requirements, experimental conditions, technological aspects and design challenges for the development towards proton colliders of increasing energy and luminosity. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Barletta, William] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Barletta, William; Klute, Markus] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Battaglia, Marco] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Battaglia, Marco; Prestemon, Soren] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Battaglia, Marco; Mangano, Michelangelo; Rossi, Lucio; Skands, Peter] CERN, CH-1211 Geneva, Switzerland.
RP Battaglia, M (reprint author), Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
EM MBattaglia@lbl.gov
NR 52
TC 12
Z9 12
U1 1
U2 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD NOV 11
PY 2014
VL 764
BP 352
EP 368
DI 10.1016/j.nima.2014.07.010
PG 17
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA AP3OT
UT WOS:000341987000047
ER
PT J
AU Vojta, D
Matanovic, I
Kovacevic, G
Baranovic, G
AF Vojta, Danijela
Matanovic, Ivana
Kovacevic, Goran
Baranovic, Goran
TI The study of secondary effects in vibrational and hydrogen bonding
properties of 2-and 3-ethynylpyridine and ethynylbenzene by IR
spectroscopy
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE Ethynylpyridine; Ethynylbenzene; Hydrogen bonding; IR wavenumber shifts;
Anharmonic wavenumbers
ID CENTER-DOT-N; AB-INITIO; PHENOL; PHENYLACETYLENE; COMPLEXES; PYRIDINE;
METHANOL; SCALE; WATER; TETRACHLOROMETHANE
AB Weak hydrogen bonds formed by 2- and 3-ethynylpyridine and ethynylbenzene with trimethylphosphate and phenol were characterized by IR spectroscopy and DFT calculations (B3LYP/6-311++G(d, p)). The structure and stability of ethynylpyridines and ethynylbenzene in the gas phase and in the complexes with trimethylphosphate and phenol are discussed in terms of geometry and electronic charge redistribution. Anharmonic effects are taken into account when calculating vibrational wavenumbers of these systems what lead to partial improvement of agreement with experiment. The changes in the electronic charge distribution are behind the frequency shifts of the C C stretching in opposite direction depending on the role the ethyne molecule has in a hydrogen bonded complex (Delta(nu) over tilde = +9 cm(-1) in trimethylphosphate complexes, Delta(nu) over tilde = -3 cm(-1) in phenol complexes). The association constants were determined by keeping the concentrations of proton donors approximately constant and low enough to avoid self-association and the proton acceptors were present in excess. The values obtained for the association constants and enthalpy changes in C2Cl4 (for trimethylphosphate complexes K approximate to 0.5-1.0 mol(-1) dm(3) and -Delta H-r(circle minus) approximate to 6-8 kJ mol(-1), for phenol complexes K approximate to 20-40 mol(-1) dm(3) -Delta H-r(circle minus) approximate to 17-22 kJ mol(-1)) are in good agreement with literature data. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Vojta, Danijela; Baranovic, Goran] Rudjer Boskovic Inst, Div Organ Chem & Biochem, Zagreb 10001, Croatia.
[Matanovic, Ivana] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Kovacevic, Goran] Rudjer Boskovic Inst, Div Mat Phys, Zagreb 10001, Croatia.
RP Baranovic, G (reprint author), Rudjer Boskovic Inst, Div Organ Chem & Biochem, Bijenicka C 54, Zagreb 10001, Croatia.
EM goran.baranovic@irb.hr
FU Ministry of Science, Education and Sport of the Croatian Government
[0982904-2927]; LANL LDRD program, U.S. Department of Energy, Energy
Efficiency and Renewable Energy; U.S. Department of Energy
[DE-AC52-06NA25396]
FX This work was supported by a Grant No. 0982904-2927 from the Ministry of
Science, Education and Sport of the Croatian Government. D. Vojta and G.
Baranovic thank to J. Aleric and T. Parlic-Risovic from Croatian
Metrology Institute for the measurements of densities of liquids. I.
Matanovic thanks the LANL LDRD program for a postdoctoral fellowship,
U.S. Department of Energy, Energy Efficiency and Renewable Energy for
financial support. Los Alamos National Laboratory is operated by Los
Alamos National Security, LLC for the National Nuclear Security
Administration of the U.S. Department of Energy under contract
DE-AC52-06NA25396. This paper has been designated LA-UR-12-26989.
NR 36
TC 3
Z9 3
U1 0
U2 11
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA A
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD NOV 11
PY 2014
VL 132
BP 215
EP 224
DI 10.1016/j.saa.2014.04.166
PG 10
WC Spectroscopy
SC Spectroscopy
GA AN1GN
UT WOS:000340330800026
PM 24866088
ER
PT J
AU Fu, W
Li, H
Lubow, S
Li, ST
Liang, E
AF Fu, Wen
Li, Hui
Lubow, Stephen
Li, Shengtai
Liang, Edison
TI EFFECTS OF DUST FEEDBACK ON VORTICES IN PROTOPLANETARY DISKS
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE accretion, accretion disks; hydrodynamics; instabilities; protoplanetary
disks
ID ROSSBY-WAVE INSTABILITY; TRANSITIONAL DISKS; ACCRETION DISKS; GAP EDGES;
PLANET; DISCS; DISTRIBUTIONS; SIMULATIONS; FILTRATION; PARTICLES
AB We carried out two-dimensional, high-resolution simulations to study the effect of dust feedback on the evolution of vortices induced by massive planets in protoplanetary disks. Various initial dust to gas disk surface density ratios (0.001-0.01) and dust particle sizes (Stokes number 4 x 10(-4)-0.16) are considered. We found that while dust particles migrate inward, vortices are very effective at collecting them. When dust density becomes comparable to gas density within the vortex, a dynamical instability is excited and it alters the coherent vorticity pattern and destroys the vortex. This dust feedback effect is stronger with a higher initial dust/gas density ratio and larger dust grain. Consequently, we found that the disk vortex lifetime can be reduced up to a factor of 10. We discuss the implications of our findings on the survivability of vortices in protoplanetary disks and planet formation.
C1 [Fu, Wen; Liang, Edison] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.
[Fu, Wen; Li, Hui; Li, Shengtai] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Lubow, Stephen] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
RP Fu, W (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.
EM wf5@rice.edu
OI Li, Shengtai/0000-0002-4142-3080
FU LDRD program; UC laboratory fees research program; DOE/Office of Fusion
Energy Science through CMSO at LANL; NASA [NNX11AK61G]; IGPP program
FX Simulations in this work were performed using the Institutional
Computing Facilities at LANL. We thank Geoffroy Lesur and Andrea Isella
for helpful discussions. W.F., H.L., and S.L. gratefully acknowledge
support by the LDRD and IGPP programs, the UC laboratory fees research
program, and the DOE/Office of Fusion Energy Science through CMSO at
LANL. W.F. and S.L. also acknowledge support from NASA grant NNX11AK61G.
NR 31
TC 12
Z9 12
U1 1
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD NOV 10
PY 2014
VL 795
IS 2
AR L39
DI 10.1088/2041-8205/795/2/L39
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AU3FY
UT WOS:000345499000015
ER
PT J
AU Lee, J
Prasankumar, RP
AF Lee, Jinho
Prasankumar, Rohit P.
TI Correlation between quantum charge fluctuations and magnetic ordering in
multiferroic LuFe2O4
SO EUROPEAN PHYSICAL JOURNAL B
LA English
DT Article
AB We examine the interplay between quantum charge fluctuations and magnetic ordering in multiferroic LuFe2O4 and show that this can couple spin and charge degrees of freedom in a LuFe2O4 bilayer below the Neel temperature T-N. Our analysis supports the idea that the double exchange mechanism normally used in metallic systems can be applied to charge-ordered insulators. This causes ferrimagnetic spin order to reduce the transfer integrals between Fe2+ and Fe3+ in LuFe2O4, decreasing charge fluctuations and increasing the polarization in this system below T-N. This work thus provides a more detailed understanding of the mechanism for spin-charge coupling in LuFe2O4.
C1 [Lee, Jinho; Prasankumar, Rohit P.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
RP Lee, J (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA.
EM rpprasan@lanl.gov
FU LANL Laboratory Directed Research and Development Program; National
Nuclear Security administration of the U.S. Department of Energy
[DE-AC52-06NA25396]
FX The authors would like to acknowledge Dr. S. A. Trugman, Dr. C. D.
Batista, Dr. D. A. Yarotski, and Dr. A.J. Taylor of Los Alamos National
Laboratory, Prof. D. Talbayev at Tulane University, Dr. C. L. Zhang and
Prof. S.-W. Cheong at Rutgers University, and Prof. X. S. Xu at the
University of Nebraska for their contributions to this work. This work
was performed at the Center for Integrated Nanotechnologies, a US
Department of Energy, Office of Basic Energy Sciences (BES) user
facility and was also supported by the LANL Laboratory Directed Research
and Development Program. Los Alamos National Laboratory, an affirmative
action equal opportunity employer, is operated by Los Alamos National
Security, LLC, for the National Nuclear Security administration of the
U.S. Department of Energy under Contract No. DE-AC52-06NA25396.
NR 17
TC 2
Z9 2
U1 2
U2 31
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1434-6028
EI 1434-6036
J9 EUR PHYS J B
JI Eur. Phys. J. B
PD NOV 10
PY 2014
VL 87
IS 11
AR 267
DI 10.1140/epjb/e2014-50177-2
PG 5
WC Physics, Condensed Matter
SC Physics
GA AT5WK
UT WOS:000345010400004
ER
PT J
AU Adamczyk, L
Guryn, W
Turnau, J
AF Adamczyk, Leszek
Guryn, Wlodek
Turnau, Jacek
TI Central exclusive production at RHIC
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A
LA English
DT Article
DE Diffraction; QCD; exotics
ID REACTION POMERON-POMERON; 450 GEV/C; GLUEBALLS
AB The present status and future plans of the physics program of Central Exclusive Production (CEP) at RHIC are described. The measurements are based on the detection of the forward protons from the Double Pomeron Exchange (DPE) process in the Roman Pot system and of the recoil system of charged particles from the DPE process measured in the STAR experiment's Time Projection Chamber (TPC). The data described here were taken using polarized proton-proton collisions at root s = 200 GeV. The preliminary spectra of two-pion mass reconstructed by STAR TPC in central region of pseudorapidity vertical bar eta vertical bar < 1, are presented. Near future plans to take data with the current system at center-of-mass energy root s = 200 GeV and plans to upgrade the forward proton tagging system are presented. Also a possible addition of the RPs to the sPHENIX detector is discussed.
C1 [Adamczyk, Leszek] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland.
[Guryn, Wlodek] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Turnau, Jacek] Inst Nucl Phys, PL-31342 Krakow, Poland.
RP Adamczyk, L (reprint author), AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland.
EM Leszek.Adamczyk@agh.edu.pl; guryn@bnl.gov; Jacek.Turnau@ifj.edu.pl
FU Office of NP within the U.S. DOE Office of Science; Polish National
Science Centre [UMO-2011/01/M/ST2/04126]
FX This work was supported in part by the Office of NP within the U.S. DOE
Office of Science and by the Polish National Science Centre under
contract UMO-2011/01/M/ST2/04126. We also thank our colleagues from the
Ultraperipheral Collisions Physics Working Group at STAR for many
helpful discussions.
NR 26
TC 10
Z9 10
U1 0
U2 2
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0217-751X
EI 1793-656X
J9 INT J MOD PHYS A
JI Int. J. Mod. Phys. A
PD NOV 10
PY 2014
VL 29
IS 28
SI SI
AR 1446010
DI 10.1142/S0217751X14460105
PG 8
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA AU3LU
UT WOS:000345515500011
ER
PT J
AU Albrow, M
AF Albrow, Michael
CA CDF Collaboration
TI Central exclusive production at the Tevatron
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A
LA English
DT Article
DE QCD; diffraction; charmonia
ID MESON PAIR PRODUCTION; HADRON COLLIDERS
AB The Collider Detector at Fermilab, CDF, observed for the first time in hadron-hadron collisions photon-photon (gamma + gamma -> e(+)e(-), mu(+)mu(-)) and photon-pomeron (gamma + P -> J/psi, psi(2S)) interactions, as well as p + (p) over bar -> p + chi(c) + (p) over bar by double pomeron exchange, P + P or DPE. Exclusive pi(+)pi(-) production was also measured at root s = 900 GeV and 1960 GeV; resonance structures are discussed.
C1 [Albrow, Michael; CDF Collaboration] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
RP Albrow, M (reprint author), Fermilab Natl Accelerator Lab, POB 500,Wilson Rd, Batavia, IL 60510 USA.
EM albrow@fnal.gov
NR 36
TC 4
Z9 4
U1 0
U2 1
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0217-751X
EI 1793-656X
J9 INT J MOD PHYS A
JI Int. J. Mod. Phys. A
PD NOV 10
PY 2014
VL 29
IS 28
SI SI
AR 1446009
DI 10.1142/S0217751X14460099
PG 14
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA AU3LU
UT WOS:000345515500010
ER
PT J
AU Albrow, M
AF Albrow, Michael
TI Central exclusive production issue: Introduction
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A
LA English
DT Article
DE QCD; diffraction; pomeron; glueball
AB I give a brief introduction to central exclusive production in hadron-hadron collisions, the subject of this special issue of the International Journal of Modern Physics A.
C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
RP Albrow, M (reprint author), Fermilab Natl Accelerator Lab, POB 500,Wilson Rd, Batavia, IL 60510 USA.
EM albrow@fnal.gov
FU US Department of Energy through Fermilab
FX I acknowledge with thanks Valery Khoze and Christophe Royon, co-editors
of this special edition, and all the authors of the contributed papers.
I also acknowledge support from the US Department of Energy through
Fermilab.
NR 20
TC 3
Z9 3
U1 0
U2 1
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0217-751X
EI 1793-656X
J9 INT J MOD PHYS A
JI Int. J. Mod. Phys. A
PD NOV 10
PY 2014
VL 29
IS 28
SI SI
AR 1402006
DI 10.1142/S0217751X14020060
PG 4
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA AU3LU
UT WOS:000345515500001
ER
PT J
AU Albrow, M
AF Albrow, Michael
TI Double pomeron exchange at the CERN Intersecting Storage Rings and
Sp(p)over-barS Collider
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A
LA English
DT Article
DE QCD; diffraction; pomeron; glueball
ID PP COLLISIONS; GEV-C; ISR; SCATTERING; ENERGIES; SEARCH; MODEL
AB The CERN Intersecting Storage Rings, with root s(pp) from 22 GeV to 63 GeV and root s(alpha alpha) = 126 GeV, allowed the first observations of p + p -> p + X + p with two leading protons (x(F) > 0.95) or two rapidity gaps Delta y > 3. Studies of the central hadronic system (X) were made to search for glueballs, finding f(0) and f(2) resonances, and to advance our understanding of hadronic diffraction. I review the experiments, not including those at the Split Field Magnet (SFM) facility covered elsewhere in this volume. Some double pomeron exchange studies at the CERN Sp (p) over barS Collider are also covered.
C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
RP Albrow, M (reprint author), Fermilab Natl Accelerator Lab, POB 500,Wilson Rd, Batavia, IL 60510 USA.
EM albrow@fnal.gov
NR 34
TC 3
Z9 3
U1 0
U2 0
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0217-751X
EI 1793-656X
J9 INT J MOD PHYS A
JI Int. J. Mod. Phys. A
PD NOV 10
PY 2014
VL 29
IS 28
SI SI
AR 1446014
DI 10.1142/S0217751X14460142
PG 11
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA AU3LU
UT WOS:000345515500015
ER
PT J
AU Albrow, M
Collins, P
Penzo, A
AF Albrow, Michael
Collins, Paula
Penzo, Aldo
CA FSC Team
CMS Collaboration
HERSCHEL Team
LHCb Collaboration
TI Forward shower counters for diffractive physics at the LHC
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A
LA English
DT Article
DE QCD; diffraction; pomeron
AB The LHC detectors have incomplete angular coverage in the forward direction, for example in the region 6 less than or similar to vertical bar eta vertical bar less than or similar to 8, which can be improved with the addition of simple scintillation counters around the beam pipes about 50 m to 120 m from the intersection point. These counters detect showers created by particles hitting the beam pipes and nearby material. The absence of signals in these counters in low pileup conditions is an indication of a forward rapidity gap as a signature of diffraction. In addition, they can be used to detect hadrons from low mass diffractive excitations of the proton, not accompanied by a leading proton but adjacent to a rapidity gap over (e. g.) 3 less than or similar to vertical bar eta vertical bar less than or similar to 6. Such a set of forward shower counters, originally used at CDF, was used in CMS (FSC) for high-beta* running with TOTEM during LHC Run-1. During LS1 the CMS FSC system is being upgraded for future low pileup runs. A similar system, called HERSCHEL is being installed in LHCb. ALICE is implementing scintillation counters, ADA and ADC, with 4.5 less than or similar to vertical bar eta vertical bar less than or similar to 6.4.
C1 [Albrow, Michael] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Collins, Paula] CERN, PH Div, CH-1211 Geneva 23, Switzerland.
[Penzo, Aldo] Ist Nazl Fis Nucl, Area Ric, I-34149 Trieste, Italy.
[Penzo, Aldo] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
RP Albrow, M (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
EM albrow@fnal.gov; Paula.Collins@cern.ch; Aldo.Penzo@ts.infn.it
NR 17
TC 5
Z9 5
U1 1
U2 2
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0217-751X
EI 1793-656X
J9 INT J MOD PHYS A
JI Int. J. Mod. Phys. A
PD NOV 10
PY 2014
VL 29
IS 28
SI SI
AR 1446018
DI 10.1142/S0217751X1446018X
PG 11
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA AU3LU
UT WOS:000345515500019
ER
PT J
AU Bjorken, JD
AF Bjorken, J. D.
TI Double diffraction at zero impact parameter
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A
LA English
DT Article
DE QCD; diffraction
AB Protons may sometimes have the configuration of a compact diquark, separated transversely from the quark by a string. If both protons in a collision have this form, the strings may be parallel, giving final states with high multiplicity, ellipticity and a ridge structure, or transverse, with leading protons and (sometimes) rapidity gaps. Simple considerations lead one to expect, at root s(pp) approximate to 100 GeV, central masses in the few GeV/c(2) range, appropriate for glueball states.
C1 Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA.
RP Bjorken, JD (reprint author), Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA.
EM bjorken@slac.stanford.edu
NR 2
TC 2
Z9 2
U1 3
U2 3
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0217-751X
EI 1793-656X
J9 INT J MOD PHYS A
JI Int. J. Mod. Phys. A
PD NOV 10
PY 2014
VL 29
IS 28
SI SI
AR 1446006
DI 10.1142/S0217751X14460063
PG 4
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA AU3LU
UT WOS:000345515500007
ER
PT J
AU Gutierrez, G
Reyes, MA
AF Gutierrez, Gaston
Reyes, Marco A.
TI Fixed target experiments at the Fermilab Tevatron
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A
LA English
DT Article
DE Glueballs; exotics; double pomeron exchange
ID SPIN-PARITY ANALYSIS; PHI-MESON PRODUCTION; K-P INTERACTIONS; 300 GEV/C;
SYSTEM; STATISTICS; STATES; MODEL
AB This paper presents a review of the study of Exclusive Central Production at a center-of- mass energy of root s = 40 GeV at the Fermilab Fixed Target program. In all reactions reviewed in this paper, protons with an energy of 800 GeV were extracted from the Tevatron accelerator at Fermilab and directed to a Liquid Hydrogen target. The states reviewed include pi(+) pi(-), K-s(0) K-s(0), K-s(0) K-+/- pi(inverted perpendicular), phi phi and D*(+/-). Partial Wave Analysis results will be presented on the light states but only the cross-section will be reviewed in the diffractive production of D*(+/-).
C1 [Gutierrez, Gaston] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Reyes, Marco A.] Univ Guanajuato, Dept Phys, Guanajuato 37150, Mexico.
RP Gutierrez, G (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
EM gaston@fnal.gov; marco@fisica.ugto.mx
FU US Department of Energy; CONACYT Mexico
FX We would like to thank many people who provided information about the
Fermilab FT program. This work was funded by the US Department of Energy
and CONACYT Mexico. M. A. Reyes would like to thank CONACYT for
supporting a sabbatical stay at Fermilab while this paper was being
written.
NR 44
TC 4
Z9 4
U1 1
U2 2
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0217-751X
EI 1793-656X
J9 INT J MOD PHYS A
JI Int. J. Mod. Phys. A
PD NOV 10
PY 2014
VL 29
IS 28
SI SI
AR 1446008
DI 10.1142/S0217751X14460087
PG 12
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA AU3LU
UT WOS:000345515500009
ER
PT J
AU Aad, G
Abbott, B
Abdallah, J
Khalek, SA
Abdinov, O
Aben, R
Abi, B
Abolins, M
AbouZeid, OS
Abramowicz, H
Abreu, H
Abreu, R
Abulaiti, Y
Acharya, BS
Adamczyk, L
Adams, DL
Adelman, J
Adomeit, S
Adye, T
Agatonovic-Jovin, T
Aguilar-Saavedra, JA
Agustoni, M
Ahlen, SP
Ahmadov, F
Aielli, G
Akerstedt, H
Akesson, TPA
Akimoto, G
Akimov, AV
Alberghi, GL
Albert, J
Albrand, S
AlconadaVerzini, MJ
Aleksa, M
Aleksandrov, IN
Alexa, C
Alexander, G
Alexandre, G
Alexopoulos, T
Alhroob, M
Alimonti, G
Alio, L
Alison, J
Allbrooke, BMM
Allison, LJ
Allport, PP
Almond, J
Aloisio, A
Alonso, A
Alonso, F
Alpigiani, C
Altheimer, A
Gonzalez, BA
Alviggi, MG
Amako, K
Coutinho, YA
Amelung, C
Amidei, D
Dos Santos, SPA
Amorim, A
Amoroso, S
Amram, N
Amundsen, G
Anastopoulos, C
Ancu, LS
Andari, N
Andeen, T
Anders, CF
Anders, G
Anderson, KJ
Andreazza, A
Andrei, V
Anduaga, XS
Angelidakis, S
Angelozzi, I
Anger, P
Angerami, A
Anghinolfi, F
Anisenkov, AV
Anjos, N
Annovi, A
Antonaki, A
Antonelli, M
Antonov, A
Antos, J
Anulli, F
Aoki, M
Bella, LA
Apolle, R
Arabidze, G
Aracena, I
Arai, Y
Araque, JP
Arce, ATH
Arguin, JF
Argyropoulos, S
Arik, M
Armbruster, AJ
Arnaez, O
Arnal, V
Arnold, H
Arratia, M
Arslan, O
Artamonov, A
Artoni, G
Asai, S
Asbah, N
Ashkenazi, A
Asman, B
Asquith, L
Assamagan, K
Astalos, R
Atkinson, M
Atlay, NB
Auerbach, B
Augsten, K
Aurousseau, M
Avolio, G
Azuelos, G
Azuma, Y
Baak, MA
Bacci, C
Bachacou, H
Bachas, K
Backes, M
Backhaus, M
Mayes, JB
Badescu, E
Bagiacchi, P
Bagnaia, P
Bai, Y
Bain, T
Baines, JT
Baker, OK
Baker, S
Balek, P
Balli, F
Banas, E
Banerjee, S
Bannoura, AAE
Bansal, V
Bansil, HS
Barak, L
Baranov, SP
Barberio, EL
Barberis, D
Barbero, M
Barillari, T
Barisonzi, M
Barklow, T
Barlow, N
Barnett, BM
Barnett, RM
Barnovska, Z
Baroncelli, A
Barone, G
Barr, AJ
Barreiro, F
da Costa, JBG
Bartoldus, R
Barton, AE
Bartos, P
Bartsch, V
Bassalat, A
Basye, A
Bates, RL
Batkova, L
Batley, JR
Battaglia, M
Battistin, M
Bauer, F
Bawa, HS
Beau, T
Beauchemin, PH
Beccherle, R
Bechtle, P
Beck, HP
Becker, K
Becker, S
Beckingham, M
Becot, C
Beddall, AJ
Beddall, A
Bedikian, S
Bednyakov, VA
Bee, CP
Beemster, LJ
Beermann, TA
Begel, M
Behr, K
Belanger-Champagne, C
Bell, PJ
Bell, WH
Bella, G
Bellagamba, L
Bellerive, A
Bellomo, M
Belotskiy, K
Beltramello, O
Benary, O
Benchekroun, D
Bendtz, K
Benekos, N
Benhammou, Y
Noccioli, EB
Garcia, JAB
Benjamin, DP
Bensinger, JR
Benslama, K
Bentvelsen, S
Berge, D
Kuutmann, EB
Berger, N
Berghaus, F
Berglund, E
Beringer, J
Bernard, C
Bernat, P
Bernius, C
Bernlochner, FU
Berry, T
Berta, P
Bertella, C
Bertolia, G
Bertolucci, F
Bertsche, D
Besana, MI
Besjes, GJ
Bessidskaia, O
Bessner, MF
Besson, N
Betancourt, C
Bethke, S
Bhimji, W
Bianchi, RM
Bianchini, L
Bianco, M
Biebel, O
Bieniek, SP
Bierwagen, K
Biesiada, J
Biglietti, M
De Mendizabal, JB
Bilokon, H
Bindi, M
Binet, S
Bingul, A
Bini, C
Black, CW
Black, JE
Black, KM
Blackburn, D
Blair, RE
Blanchard, JB
Blazek, T
Bloch, I
Blocker, C
Blum, W
Blumenschein, U
Bobbink, GJ
Bobrovnikov, VS
Bocchetta, SS
Bocci, A
Bock, C
Boddy, CR
Boehler, M
Boek, J
Boek, TT
Bogaerts, JA
Bogdanchikov, AG
Bogouch, A
Bohm, C
Bohm, J
Boisvert, V
Bold, T
Boldea, V
Boldyrev, AS
Bomben, M
Bona, M
Boonekamp, M
Borisov, A
Borissov, G
Borri, M
Borroni, S
Bortfeldt, J
Bortolotto, V
Bos, K
Boscherini, D
Bosman, M
Boterenbrood, H
Boudreau, J
Bouffard, J
Bouhova-Thacker, EV
Boumediene, D
Bourdarios, C
Bousson, N
Boutouil, S
Boveia, A
Boyd, J
Boyko, IR
Bozovic-Jelisavcic, I
Bracinik, J
Brandt, A
Brandt, G
Brandt, O
Bratzler, U
Brau, B
Brau, JE
Braun, HM
Brazzale, SF
Brelier, B
Brendlinger, K
Brennan, AJ
Brenner, R
Bressler, S
Bristow, K
Bristow, TM
Britton, D
Brochu, FM
Brock, I
Brock, R
Bromberg, C
Bronner, J
Brooijmans, G
Brooks, T
Brooks, WK
Brosamer, J
Brost, E
Brown, G
Brown, J
de Renstrom, PAB
Bruncko, D
Bruneliere, R
Brunet, S
Bruni, A
Bruni, G
Bruschi, M
Bryngemark, L
Buanes, T
Buat, Q
Bucci, F
Buchholz, P
Buckingham, RM
Buckley, AG
Buda, SI
Budagov, IA
Buehrer, F
Bugge, L
Bugge, MK
Bulekov, O
Bundock, AC
Burckhart, H
Burdin, S
Burghgrave, B
Burke, S
Burmeister, I
Busato, E
Buscher, D
Buscher, V
Bussey, P
Buszello, CP
Butler, B
Butler, JM
Butt, AI
Buttar, CM
Butterworth, JM
Butti, P
Buttinger, W
Buzatu, A
Byszewski, M
Urban, SC
Caforio, D
Cakir, O
Calafiura, P
Calandri, A
Calderini, G
Calfayan, P
Calkins, R
Caloba, LP
Calvet, D
Calvet, S
Toro, RC
Camarda, S
Cameron, D
Caminada, LM
Armadans, RC
Campana, S
Campanelli, M
Campoverde, A
Canale, V
Canepa, A
Bret, MC
Cantero, J
Cantrill, R
Cao, T
Garrido, MDMC
Caprini, I
Caprini, M
Capua, M
Caputo, R
Cardarelli, R
Carli, T
Carlino, G
Carminati, L
Caron, S
Carquin, E
Carrillo-Montoya, GD
Carter, JR
Carvalho, J
Casadei, D
Casado, MP
Casolino, M
Castaneda-Miranda, E
Castelli, A
Gimenez, VC
Castro, NF
Catastini, P
Catinaccio, A
Catmore, JR
Cattai, A
Cattani, G
Caughron, S
Cavaliere, V
Cavalli, D
Cavalli-Sforza, M
Cavasinni, V
Ceradini, F
Cerio, B
Cerny, K
Cerqueira, AS
Cerri, A
Cerrito, L
Cerutti, F
Cerv, M
Cervelli, A
Cetin, SA
Chafaq, A
Chakraborty, D
Chalupkova, I
Chan, K
Chang, P
Chapleau, B
Chapman, JD
Charfeddine, D
Charlton, DG
Chau, CC
Barajas, CAC
Cheatham, S
Chegwidden, A
Chekanov, S
Chekulaev, SV
Chelkov, GA
Chelstowska, MA
Chen, C
Chen, H
Chen, K
Chen, L
Chen, S
Chen, X
Chen, Y
Cheng, HC
Cheng, Y
Cheplakov, A
El Moursli, RC
Chernyatin, V
Cheu, E
Chevalier, L
Chiarella, V
Chiefari, G
Childers, JT
Chilingarov, A
Chiodini, G
Chisholm, AS
Chislett, RT
Chitan, A
Chizhov, MV
Chouridou, S
Chow, BKB
Chromek-Burckhart, D
Chu, ML
Chudoba, J
Chwastowski, JJ
Chytka, L
Ciapetti, G
Ciftci, AK
Ciftci, R
Cinca, D
Cindro, V
Ciocio, A
Cirkovic, P
Citron, ZH
Citterio, M
Ciubancan, M
Clark, A
Clark, PJ
Clark, RN
Cleland, W
Clemens, JC
Clement, C
Coadou, Y
Cobal, M
Coccaro, A
Cochran, J
Coffey, L
Cogan, JG
Coggeshall, J
Cole, B
Cole, S
Colijn, AP
Collot, J
Colombo, T
Colon, G
Compostella, G
Muino, PC
Coniavitis, E
Conidi, MC
Connell, SH
Connelly, IA
Consonni, SM
Consorti, V
Constantinescu, S
Conta, C
Conti, G
Conventi, F
Cooke, M
Cooper, BD
Cooper-Sarkar, AM
Cooper-Smith, NJ
Copic, K
Cornelissen, T
Corradi, M
Corriveau, F
Corso-Radu, A
Cortes-Gonzalez, A
Cortiana, G
Costa, G
Costa, MJ
Costanzo, D
Cote, D
Cottin, G
Cowan, G
Cox, BE
Cranmer, K
Cree, G
Crepe-Renaudin, S
Crescioli, F
Cribbs, WA
Ortuzar, MC
Cristinziani, M
Croft, V
Crosetti, G
Cuciuc, CM
Donszelmann, TC
Cummings, J
Curatolo, M
Cuthbert, C
Czirr, H
Czodrowski, P
Czyczula, Z
D'Auria, S
D'Onofrio, M
De Sousa, MJDS
Da Via, C
Dabrowski, W
Dafinca, A
Dai, T
Dale, O
Dallaire, F
Dallapiccola, C
Dam, M
Daniells, AC
Hoffmann, MD
Dao, V
Darbo, G
Darmora, S
Dassoulas, JA
Dattagupta, A
Davey, W
David, C
Davidek, T
Davies, E
Davies, M
Davignon, O
Davison, AR
Davison, P
Davygora, Y
Dawe, E
Dawson, I
Daya-Ishmukhametova, RK
De, K
de Asmundis, R
De Castro, S
De Cecco, S
De Groot, N
de Jong, P
De la Torre, H
De Lorenzi, F
De Nooij, L
De Pedis, D
De Salvo, A
De Sanctis, U
De Santo, A
De Regie, JBD
Dearnaley, WJ
Debbe, R
Debenedetti, C
Dechenaux, B
Dedovich, DV
Deigaard, I
Del Peso, J
Del Prete, T
Deliot, F
Delitzsch, CM
Deliyergiyev, M
Dell'Acqua, A
Dell'Asta, L
Dell'Orso, M
Della Pietra, M
della Volpe, D
Delmastro, M
Delsart, PA
Deluca, C
Demers, S
Demichev, M
Demilly, A
Denisov, SP
Derendarz, D
Derkaoui, JE
Derue, F
Dervan, P
Desch, K
Deterre, C
Deviveiros, PO
Dewhurst, A
Dhaliwal, S
Di Ciaccio, A
Di Ciaccio, L
Di Domenico, A
Di Donato, C
Di Girolamo, A
Di Girolamo, B
Di Mattia, A
Di Micco, B
Di Nardo, R
Di Simone, A
Di Sipio, R
Di Valentino, D
Diaz, MA
Diehl, EB
Dietrich, J
Dietzsch, TA
Diglio, S
Dimitrievska, A
Dingfelder, J
Dionisi, C
Dita, P
Dita, S
Dittus, F
Djama, F
Djobava, T
do Vale, MAB
Wemans, AD
Doan, TKO
Dobos, D
Doglioni, C
Doherty, T
Dohmae, T
Dolejsi, J
Dolezal, Z
Dolgoshein, BA
Donadelli, M
Donati, S
Dondero, P
Donini, J
Dopke, J
Doria, A
Dova, MT
Doyle, AT
Dris, M
Dubbert, J
Dube, S
Dubreuil, E
Duchovni, E
Duckeck, G
Ducu, OA
Duda, D
Dudarev, A
Dudziak, F
Duflot, L
Duguid, L
Duhrssen, M
Dunford, M
Yildiz, HD
Duren, M
Durglishvili, A
Dwuznik, M
Dyndal, M
Ebke, J
Edson, W
Edwards, NC
Ehrenfeld, W
Eifert, T
Eigen, G
Einsweiler, K
Ekelof, T
El Kacimi, M
Ellert, M
Elles, S
Ellinghaus, F
Ellis, N
Elmsheuser, J
Elsing, M
Emeliyanov, D
Enari, Y
Endner, OC
Endo, M
Engelmann, R
Erdmann, J
Ereditato, A
Eriksson, D
Ernis, G
Ernst, J
Ernst, M
Ernwein, J
Errede, D
Errede, S
Ertel, E
Escalier, M
Esch, H
Escobar, C
Esposito, B
Etienvre, AI
Etzion, E
Evans, H
Ezhilov, A
Fabbri, L
Facini, G
Fakhrutdinov, RM
Falciano, S
Falla, RJ
Faltova, J
Fang, Y
Fanti, M
Farbin, A
Farilla, A
Farooque, T
Farrell, S
Farrington, SM
Farthouat, P
Fassi, F
Fassnacht, P
Fassouliotis, D
Favareto, A
Fayard, L
Federic, P
Fedin, OL
Fedorko, W
Fehling-Kaschek, M
Feigl, S
Feligioni, L
Feng, C
Feng, EJ
Feng, H
Fenyuk, AB
Perez, SF
Ferrag, S
Ferrando, J
Ferrari, A
Ferrari, P
Ferrari, R
de Lima, DEF
Ferrer, A
Ferrere, D
Ferretti, C
Parodi, AF
Fiascaris, M
Fiedler, F
Filipcic, A
Filipuzzi, M
Filthaut, F
Fincke-Keeler, M
Finelli, KD
Fiolhais, MCN
Fiorini, L
Firan, A
Fischer, J
Fisher, WC
Fitzgerald, EA
Flechl, M
Fleck, I
Fleischmann, P
Fleischmann, S
Fletcher, GT
Fletcher, G
Flick, T
Floderus, A
Castillo, LRF
Bustos, ACF
Flowerdew, MJ
Formica, A
Forti, A
Fortin, D
Fournier, D
Fox, H
Fracchia, S
Francavilla, P
Franchini, M
Franchino, S
Francis, D
Franklin, M
Franz, S
Fraternali, M
French, ST
Friedrich, C
Friedrich, F
Froidevaux, D
Frost, JA
Fukunaga, C
Torregrosa, EF
Fulsom, BG
Fuster, J
Gabaldon, C
Gabizon, O
Gabrielli, A
Gabrielli, A
Gadatsch, S
Gadomski, S
Gagliardi, G
Gagnon, P
Galea, C
Galhardo, B
Gallas, EJ
Gallo, V
Gallop, BJ
Gallus, P
Galster, G
Gan, KK
Gandrajula, RP
Gao, J
Gao, YS
Walls, FMG
Garberson, F
Garcia, C
Navarro, JEG
Garcia-Sciveres, M
Gardner, RW
Garelli, N
Garonne, V
Gatti, C
Gaudioa, G
Gaur, B
Gauthier, L
Gauzzi, P
Gavrilenko, IL
Gay, C
Gaycken, G
Gazis, EN
Ge, P
Gecse, Z
Gee, CNP
Geerts, DAA
Geich-Gimbel, C
Gellerstedt, K
Gemme, C
Gemmell, A
Genest, MH
Gentile, S
George, M
George, S
Gerbaudo, D
Gershon, A
Ghazlane, H
Ghodbane, N
Giacobbe, B
Giagu, S
Giangiobbe, V
Giannetti, P
Gianotti, F
Gibbard, B
Gibson, SM
Gilchriese, M
Gillam, TPS
Gillberg, D
Gilles, G
Gingrich, DM
Giokaris, N
Giordani, MP
Giordano, R
Giorgi, FM
Giorgi, FM
Giraud, PF
Giugni, D
Giuliani, C
Giulini, M
Gjelsten, BK
Gkaitatzis, S
Gkialas, I
Gladilin, LK
Glasman, C
Glatzer, J
Glaysher, PCF
Glazov, A
Glonti, GL
Goblirsch-Kolb, M
Goddard, JR
Godfrey, J
Godlewski, J
Goeringer, C
Goldfarb, S
Golling, T
Golubkov, D
Gomes, A
Fajardo, LSG
Goncalo, R
Da Costa, JGPF
Gonella, L
de la Hoz, SG
Parra, GG
Silva, MLG
Gonzalez-Sevilla, S
Goossens, L
Gorbounov, PA
Gordon, HA
Gorelov, I
Gorini, B
Gorini, E
Gorisek, A
Gornicki, E
Goshaw, AT
Gossling, C
Gostkin, MI
Gouighri, M
Goujdami, D
Goulette, MP
Goussiou, AG
Goy, C
Gozpinar, S
Grabas, HMX
Graber, L
Grabowska-Bold, I
Grafstroma, P
Grahn, KJ
Gramling, J
Gramstad, E
Grancagnolo, S
Grassi, V
Gratchev, V
Gray, HM
Graziani, E
Grebenyuk, OG
Greenwood, ZD
Gregersen, K
Gregor, IM
Grenier, P
Griffiths, J
Grillo, AA
Grimm, K
Grinstein, S
Gris, P
Grishkevich, YV
Grivaz, JF
Grohs, JP
Grohsjean, A
Gross, E
Grosse-Knetter, J
Grossi, GC
Groth-Jensen, J
Grout, ZJ
Guan, L
Guescini, F
Guest, D
Gueta, O
Guicheney, C
Guido, E
Guillemin, T
Guindon, S
Gul, U
Gumpert, C
Gunther, J
Guo, J
Gupta, S
Gutierrez, P
Ortiz, NGG
Gutschow, C
Guttman, N
Guyot, C
Gwenlan, C
Gwilliam, CB
Haas, A
Haber, C
Hadavand, HK
Haddad, N
Haefner, P
Hageboeck, S
Hajduk, Z
Hakobyan, H
Haleem, M
Hall, D
Halladjian, G
Hamacher, K
Hamal, P
Hamano, K
Hamer, M
Hamilton, A
Hamilton, S
Hamnett, PG
Han, L
Hanagaki, K
Hanawa, K
Hance, M
Hanke, P
Hanna, R
Hansen, JB
Hansen, JD
Hansen, PH
Hara, K
Hard, AS
Harenberg, T
Harkusha, S
Harper, D
Harrington, RD
Harris, OM
Harrison, PF
Hartjes, F
Hasegawa, S
Hasegawa, Y
Hasib, A
Hassani, S
Haug, S
Hauschild, M
Hauser, R
Havranek, M
Hawkes, CM
Hawkings, RJ
Hawkins, AD
Hayashi, T
Hayden, D
Hays, CP
Hayward, HS
Haywood, SJ
Head, SJ
Heck, T
Hedberg, V
Heelan, L
Heim, S
Heim, T
Heinemann, B
Heinrich, L
Heisterkamp, S
Hejbal, J
Helary, L
Heller, C
Heller, M
Hellman, S
Hellmich, D
Helsens, C
Henderson, J
Henderson, RCW
Hengler, C
Henrichs, A
Correia, AMH
Henrot-Versille, S
Hensel, C
Herbert, GH
Jimenez, YH
Herrberg-Schubert, R
Herten, G
Hertenberger, R
Hervas, L
Hesketh, GG
Hessey, NP
Hickling, R
Higon-Rodriguez, E
Hill, E
Hill, JC
Hiller, KH
Hillert, S
Hillier, SJ
Hinchliffe, I
Hines, E
Hirose, M
Hirschbuehl, D
Hobbs, J
Hod, N
Hodgkinson, MC
Hodgson, P
Hoecker, A
Hoeferkamp, MR
Hoffman, J
Hoffmann, D
Hofmann, JI
Hohlfeld, M
Holmes, TR
Hong, TM
van Huysduynen, LH
Hostachy, JY
Hou, S
Hoummada, A
Howard, J
Howarth, J
Hrabovsky, M
Hristova, I
Hrivnac, J
Hryn'ova, T
Hsu, PJ
Hsu, SC
Hu, D
Hu, X
Huang, Y
Hubacek, Z
Hubaut, F
Huegging, F
Huffman, TB
Hughes, EW
Hughes, G
Huhtinen, M
Hulsing, TA
Hurwitz, M
Huseynov, N
Huston, J
Huth, J
Iacobucci, G
Iakovidis, G
Ibragimov, I
Iconomidou-Fayard, L
Ideal, E
Iengo, P
Igonkina, O
Iizawa, T
Ikegami, Y
Ikematsu, K
Ikeno, M
Ilchenko, Y
Iliadis, D
Ilic, N
Inamaru, Y
Ince, T
Ioannou, P
Iodice, M
Iordanidou, K
Ippolito, V
Quiles, AI
Isaksson, C
Ishino, M
Ishitsuka, M
Ishmukhametov, R
Issever, C
Istin, S
Ponce, JMI
Iuppa, R
Ivarsson, J
Iwanski, W
Iwasaki, H
Izen, JM
Izzo, V
Jackson, B
Jackson, M
Jackson, P
Jaekel, MR
Jain, V
Jakobs, K
Jakobsen, S
Jakoubek, T
Jakubek, J
Jamin, DO
Jana, DK
Jansen, E
Jansen, H
Janssen, J
Janus, M
Jarlskog, G
Javadov, N
Javurek, T
Jeanty, L
Jejelava, J
Jeng, GY
Jennens, D
Jenni, P
Jentzsch, J
Jeske, C
Jezequel, S
Ji, H
Ji, W
Jia, J
Jiang, Y
Belenguer, MJ
Jin, S
Jinaru, A
Jinnouchi, O
Joergensen, MD
Johanssona, KE
Johansson, P
Johns, KA
Jon-And, K
Jones, G
Jones, RWL
Jones, TJ
Jongmanns, J
Jorge, PM
Joshi, KD
Jovicevic, J
Ju, X
Jung, CA
Jungst, RM
Jussel, P
Rozas, AJ
Kaci, M
Kaczmarska, A
Kado, M
Kagan, H
Kagan, M
Kajomovitz, E
Kalderon, CW
Kama, S
Kanaya, N
Kaneda, M
Kaneti, S
Kanno, T
Kantserov, VA
Kanzaki, J
Kaplan, B
Kapliy, A
Kar, D
Karakostas, K
Karastathis, N
Karnevskiy, M
Karpov, SN
Karthik, K
Kartvelishvili, V
Karyukhin, AN
Kashif, L
Kasieczka, G
Kass, RD
Kastanas, A
Kataoka, Y
Katre, A
Katzy, J
Kaushik, V
Kawagoe, K
Kawamoto, T
Kawamura, G
Kazama, S
Kazanin, VF
Kazarinov, MY
Keeler, R
Kehoe, R
Keil, M
Keller, JS
Kempster, JJ
Keoshkerian, H
Kepka, O
Kersevan, BP
Kersten, S
Kessoku, K
Keung, J
Khalil-zada, F
Khandanyan, H
Khanov, A
Khodinov, A
Khomich, A
Khoo, TJ
Khoriauli, G
Khoroshilov, A
Khovanskiy, V
Khramov, E
Khubua, J
Kim, HY
Kim, H
Kim, SH
Kimura, N
Kind, O
King, BT
King, M
King, RSB
King, SB
Kirk, J
Kiryunin, AE
Kishimoto, T
Kisielewska, D
Kiss, F
Kitamura, T
Kittelmann, T
Kiuchi, K
Kladiva, E
Klein, M
Klein, U
Kleinknecht, K
Klimek, P
Klimentov, A
Klingenberg, R
Klinger, A
Klioutchnikova, T
Klok, PF
Kluge, EE
Kluit, P
Kluth, S
Kneringer, E
Knoops, EBFG
Knue, A
Kobayashi, T
Kobel, M
Kocian, M
Kodys, P
Koevesarki, P
Koffas, T
Koffeman, E
Kogan, LA
Kohlmann, S
Kohout, Z
Kohriki, T
Koi, T
Kolanoski, H
Koletsou, I
Koll, J
Komar, AA
Komori, Y
Kondo, T
Kondrashova, N
Koneke, K
Konig, AC
Konig, S
Kono, T
Konoplich, R
Konstantinidis, N
Kopeliansky, R
Koperny, S
Kopke, L
Kopp, AK
Korcyl, K
Kordas, K
Korn, A
Korol, AA
Korolkov, I
Korolkova, EV
Korotkov, VA
Kortner, O
Kortner, S
Kostyukhin, VV
Kotov, VM
Kotwal, A
Kourkoumelis, C
Kouskoura, V
Koutsman, A
Kowalewski, R
Kowalski, TZ
Kozanecki, W
Kozhin, AS
Kral, V
Kramarenko, VA
Kramberger, G
Krasnopevtsev, D
Krasny, MW
Krasznahorkay, A
Kraus, JK
Kravchenko, A
Kreiss, S
Kretz, M
Kretzschmar, J
Kreutzfeldt, K
Krieger, P
Kroeninger, K
Kroha, H
Kroll, J
Kroseberg, J
Krstic, J
Kruchonak, U
Kruger, H
Kruker, T
Krumnack, N
Krumshteyn, ZV
Kruse, A
Kruse, MC
Kruskal, M
Kubota, T
Kuday, S
Kuehn, S
Kugel, A
Kuhl, A
Kuhl, T
Kukhtin, V
Kulchitsky, Y
Kuleshov, S
Kuna, M
Kunkle, J
Kupco, A
Kurashige, H
Kurochkin, YA
Kurumida, R
Kus, V
Kuwertz, ES
Kuze, M
Kvita, J
La Rosa, A
La Rotonda, L
Lacasta, C
Lacava, F
Lacey, J
Lacker, H
Lacour, D
Lacuesta, VR
Ladygin, E
Lafaye, R
Laforge, B
Lagouri, T
Lai, S
Laier, H
Lambourne, L
Lammers, S
Lampen, CL
Lampl, W
Lancon, E
Landgraf, U
Landon, MPJ
Lang, VS
Lange, C
Lankford, AJ
Lanni, F
Lantzsch, K
Laplace, S
Lapoire, C
Laporte, JF
Lari, T
Lassnig, M
Laurelli, P
Lavrijsen, W
Law, AT
Laycock, P
Le, BT
Le Dortz, O
Le Guirriec, E
Le Menedeu, E
LeCompte, T
Ledroit-Guillon, F
Lee, CA
Lee, H
Lee, JSH
Lee, SC
Lee, L
Lefebvre, G
Lefebvre, M
Legger, F
Leggett, C
Lehan, A
Lehmacher, M
Miotto, GL
Lei, X
Leight, WA
Leisos, A
Leister, AG
Leite, MAL
Leitner, R
Lellouch, D
Lemmer, B
Leney, KJC
Lenz, T
Lenzen, G
Lenzi, B
Leone, R
Leonhardt, K
Leontsinis, S
Leroy, C
Lester, CG
Lester, CM
Levchenko, M
Leveque, J
Levin, D
Levinson, LJ
Levy, M
Lewis, A
Lewis, GH
Leyko, AM
Leyton, M
Li, B
Li, B
Li, H
Li, HL
Li, L
Li, L
Li, S
Li, Y
Liang, Z
Liao, H
Liberti, B
Lichard, P
Lie, K
Liebal, J
Liebig, W
Limbach, C
Limosani, A
Lin, SC
Linde, F
Lindquist, BE
Linnemann, JT
Lipeles, E
Lipniacka, A
Lisovyi, M
Liss, TM
Lissauer, D
Lister, A
Litke, AM
Liu, B
Liu, D
Liu, JB
Liu, K
Liu, L
Liu, M
Liu, M
Liu, Y
Livan, M
Livermore, SSA
Lleres, A
Merino, JL
Lloyd, SL
Lo Sterzo, F
Lobodzinska, E
Loch, P
Lockman, WS
Loddenkoetter, T
Loebinger, FK
Loevschall-Jensen, AE
Loginov, A
Loh, CW
Lohse, T
Lohwasser, K
Lokajicek, M
Lombardo, VP
Long, BA
Long, JD
Long, RE
Lopes, L
Mateos, DL
Paredes, BL
Paz, IL
Lorenz, J
Martinez, NL
Losada, M
Loscutoff, P
Lou, X
Lounis, A
Love, J
Love, PA
Lowe, AJ
Lu, F
Lubatti, HJ
Luci, C
Lucotte, A
Luehring, F
Lukas, W
Luminari, L
Lundberg, O
Lund-Jensen, B
Lungwitz, M
Lynn, D
Lysak, R
Lytken, E
Ma, H
Ma, LL
Maccarrone, G
Macchiolo, A
Miguens, JM
Macina, D
Madaffari, D
Madar, R
Maddocks, HJ
Mader, WF
Madsen, A
Maeno, M
Maeno, T
Magradze, E
Mahboubi, K
Mahlstedt, J
Mahmoud, S
Maiani, C
Maidantchik, C
Maio, A
Majewski, S
Makida, Y
Makovec, N
Mal, P
Malaescu, B
Malecki, P
Maleev, VP
Malek, F
Mallik, U
Malon, D
Malone, C
Maltezos, S
Malyshev, VM
Malyukov, S
Mamuzic, J
Mandelli, B
Mandelli, L
Mandic, I
Mandrysch, R
Maneira, J
Manfredini, A
de Andrade, LM
Ramos, JAM
Mann, A
Manning, PM
Manousakis-Katsikakis, A
Mansoulie, B
Mantifel, R
Mapelli, L
March, L
Marchand, JF
Marchiori, G
Marcisovsky, M
Marino, CP
Marjanovic, M
Marques, CN
Marroquim, F
Marsden, SP
Marshall, Z
Marti, LF
Marti-Garcia, S
Martin, B
Martin, B
Martin, TA
Martin, VJ
Latour, BMD
Martinez, H
Martinez, M
Martin-Haugh, S
Martyniuk, AC
Marx, M
Marzano, F
Marzin, A
Masetti, L
Mashimo, T
Mashinistov, R
Masik, J
Maslennikov, AL
Massa, I
Massol, N
Mastrandrea, P
Mastroberardino, A
Masubuchi, T
Matsushita, T
Mattig, P
Mattmann, J
Maurer, J
Maxfield, SJ
Maximov, DA
Mazini, R
Mazzaferro, L
Mc Goldrick, G
Mc Kee, SP
McCarn, A
McCarthy, RL
McCarthy, TG
McCubbin, NA
McFarlane, KW
Mcfayden, JA
Mchedlidze, G
McMahon, SJ
McPherson, RA
Meade, A
Mechnich, J
Medinnis, M
Meehan, S
Mehlhase, S
Mehta, A
Meier, K
Meineck, C
Meirose, B
Melachrinos, C
Garcia, BRM
Meloni, F
Mengarelli, A
Menke, S
Meoni, E
Mercurio, KM
Mergelmeyer, S
Meric, N
Mermod, P
Merola, L
Meroni, C
Merritt, FS
Merritt, H
Messina, A
Metcalfe, J
Mete, AS
Meyer, C
Meyer, C
Meyer, JP
Meyer, J
Middleton, RP
Migas, S
Mijovic, L
Mikenberg, G
Mikestikova, M
Mikuz, M
Miller, DW
Mills, C
Milov, A
Milstead, DA
Milstein, D
Minaenko, AA
Minashvili, IA
Mincer, AI
Mindur, B
Mineev, M
Ming, Y
Mir, LM
Mirabelli, G
Mitani, T
Mitrevski, J
Mitsou, VA
Mitsui, S
Miucci, A
Miyagawa, PS
Mjornmark, JU
Moa, T
Mochizuki, K
Moeller, V
Mohapatra, S
Mohr, W
Molander, S
Moles-Valls, R
Monig, K
Monini, C
Monk, J
Monnier, E
Berlingen, JM
Monticelli, F
Monzani, S
Moore, RW
Moraes, A
Morange, N
Moreno, D
Llacer, MM
Morettini, P
Morgenstern, M
Morii, M
Moritz, S
Morley, AK
Mornacchi, G
Morris, JD
Morvaj, L
Moser, HG
Mosidze, M
Moss, J
Mount, R
Mountricha, E
Mouraviev, SV
Moyse, EJW
Muanza, S
Mudd, RD
Mueller, F
Mueller, J
Mueller, K
Mueller, T
Mueller, T
Muenstermann, D
Munwes, Y
Quijada, JAM
Murray, WJ
Musheghyan, H
Musto, E
Myagkov, AG
Myska, M
Nackenhorst, O
Nadal, J
Nagai, K
Nagai, R
Nagai, Y
Nagano, K
Nagarkar, A
Nagasaka, Y
Nagel, M
Nairz, AM
Nakahama, Y
Nakamura, K
Nakamura, T
Nakano, I
Namasivayam, H
Nanava, G
Narayan, R
Nattermann, T
Naumann, T
Navarro, G
Nayyar, R
Neal, HA
Nechaeva, PY
Neep, TJ
Negri, A
Negri, G
Negrini, M
Nektarijevic, S
Nelson, A
Nelson, TK
Nemecek, S
Nemethy, P
Nepomuceno, AA
Nessi, M
Neubauer, MS
Neumann, M
Neves, RM
Nevski, P
Newman, PR
Nguyen, DH
Nickerson, RB
Nicolaidou, R
Nicquevert, B
Nielsen, J
Nikiforou, N
Nikiforov, A
Nikolaenko, V
Nikolic-Audit, I
Nikolics, K
Nikolopoulos, K
Nilsson, P
Ninomiya, Y
Nisati, A
Nisius, R
Nobe, T
Nodulman, L
Nomachi, M
Nomidis, I
Norberg, S
Nordberg, M
Nowak, S
Nozaki, M
Nozka, L
Ntekas, K
Hanninger, GN
Nunnemann, T
Nurse, E
Nuti, F
O'Brien, BJ
O'grady, F
O'Neil, DC
O'Shea, V
Oakham, FG
Oberlack, H
Obermann, T
Ocariz, J
Ochi, A
Ochoa, MI
Oda, S
Odaka, S
Ogren, H
Oh, A
Oh, SH
Ohm, CC
Ohman, H
Ohshima, T
Okamura, W
Okawa, H
Okumura, Y
Okuyama, T
Olariu, A
Olchevski, AG
Pino, SAO
Damazio, DO
Garcia, EO
Olszewski, A
Olszowska, J
Onofre, A
Onyisi, PUE
Oram, CJ
Oreglia, MJ
Oren, Y
Orestano, D
Orlando, N
Barrera, CO
Orr, RS
Osculati, B
Ospanov, R
Garzon, GOY
Otono, H
Ouchrif, M
Ouellette, EA
Ould-Saada, F
Ouraou, A
Oussoren, KP
Ouyang, Q
Ovcharova, A
Owen, M
Ozcan, VE
Ozturk, N
Pachal, K
Pages, AP
Aranda, CP
Pagacova, M
Griso, SP
Paganis, E
Pahl, C
Paige, F
Pais, P
Pajchel, K
Palacino, G
Palestini, S
Palka, M
Pallin, D
Palma, A
Palmer, JD
Pan, YB
Panagiotopoulou, E
Vazquez, JGP
Pani, P
Panikashvili, N
Panitkin, S
Pantea, D
Paolozzi, L
Papadopoulou, TD
Papageorgiou, K
Paramonov, A
Hernandez, DP
Parker, MA
Parodi, F
Parsons, JA
Parzefall, U
Pasqualucci, E
Passaggio, S
Passeri, A
Pastore, F
Pastore, F
Pasztor, G
Pataraia, S
Patel, ND
Pater, JR
Patricelli, S
Pauly, T
Pearce, J
Pedersen, M
Lopez, SP
Pedro, R
Peleganchuk, SV
Pelikan, D
Peng, H
Penning, B
Penwell, J
Perepelitsa, DV
Codina, EP
Garcia-Estan, MTP
Reale, VP
Perini, L
Pernegger, H
Perrino, R
Peschke, R
Peshekhonov, VD
Peters, K
Peters, RFY
Petersen, BA
Petersen, TC
Petit, E
Petridis, A
Petridou, C
Petrolo, E
Petrucci, F
Petteni, M
Pettersson, NE
Pezoa, R
Phillips, PW
Piacquadio, G
Pianori, E
Picazio, A
Piccaro, E
Piccinini, M
Piegaia, R
Pignotti, DT
Pilcher, JE
Pilkington, AD
Pina, J
Pinamonti, M
Pinder, A
Pinfold, JL
Pingel, A
Pinto, B
Pires, S
Pitt, M
Pizio, C
Plazak, L
Pleier, MA
Pleskot, V
Plotnikova, E
Plucinski, P
Poddar, S
Podlyski, F
Poettgen, R
Poggioli, L
Pohl, D
Pohl, M
Polesello, G
Policicchio, A
Polifka, R
Polini, A
Pollard, CS
Polychronakos, V
Pommes, K
Pontecorvo, L
Pope, BG
Popeneciu, GA
Popovic, DS
Poppleton, A
Bueso, XP
Pospelov, GE
Pospisil, S
Potamianos, K
Potrap, IN
Potter, CJ
Potter, CT
Poulard, G
Poveda, J
Pozdnyakov, V
Pralavorio, P
Pranko, A
Prasad, S
Pravahan, R
Prell, S
Price, D
Price, J
Price, LE
Prieur, D
Primavera, M
Proissl, M
Prokofiev, K
Prokoshin, F
Protopapadaki, E
Protopopescu, S
Proudfoot, J
Przybycien, M
Przysiezniak, H
Ptacek, E
Pueschel, E
Puldon, D
Purohit, M
Puzo, P
Qian, J
Qin, G
Qin, Y
Quadt, A
Quarrie, DR
Quayle, WB
Queitsch-Maitland, M
Quilty, D
Qureshi, A
Radeka, V
Radescu, V
Radhakrishnan, SK
Radloff, P
Rados, P
Ragusa, F
Rahal, G
Rajagopalan, S
Rammensee, M
Randle-Conde, AS
Rangel-Smith, C
Rao, K
Rauscher, F
Rave, TC
Ravenscroft, T
Raymond, M
Read, AL
Readioff, NP
Rebuzzi, DM
Redelbach, A
Redlinger, G
Reece, R
Reeves, K
Rehnisch, L
Reisin, H
Relich, M
Rembser, C
Ren, H
Ren, ZL
Renaud, A
Rescigno, M
Resconi, S
Rezanova, OL
Reznicek, P
Rezvani, R
Richter, R
Ridel, M
Rieck, P
Rieger, J
Rijssenbeek, M
Rimoldi, A
Rinaldi, L
Ritsch, E
Riu, I
Rizatdinova, F
Rizvi, E
Robertson, SH
Robichaud-Veronneau, A
Robinson, D
Robinson, JEM
Robson, A
Roda, C
Rodrigues, L
Roe, S
Rohne, O
Rolli, S
Romaniouk, A
Romano, M
Romeo, G
Adam, ER
Rompotis, N
Roos, L
Ros, E
Rosati, S
Rosbach, K
Rose, M
Rosendahl, PL
Rosenthal, O
Rossetti, V
Rossi, E
Rossi, LP
Rosten, R
Rotaru, M
Roth, I
Rothberg, J
Rousseau, D
Royon, CR
Rozanov, A
Rozen, Y
Ruan, X
Rubbo, F
Rubinskiy, I
Rud, VI
Rudolph, C
Rudolph, MS
Ruhr, F
Ruiz-Martinez, A
Rurikova, Z
Rusakovich, NA
Ruschke, A
Rutherfoord, JP
Ruthmann, N
Ryabov, YF
Rybar, M
Rybkin, G
Ryder, NC
Saavedra, AF
Sacerdoti, S
Saddique, A
Sadeh, I
Sadrozinski, HFW
Sadykov, R
Tehrani, FS
Sakamoto, H
Sakurai, Y
Salamanna, G
Salamon, A
Saleem, M
Salek, D
De Bruin, PHS
Salihagic, D
Salnikov, A
Salt, J
Ferrando, BMS
Salvatore, D
Salvatore, F
Salvucci, A
Salzburger, A
Sampsonidis, D
Sanchez, A
Sanchez, J
Martinez, VS
Sandaker, H
Sandbach, RL
Sander, HG
Sanders, MP
Sandhoff, M
Sandoval, T
Sandoval, C
Sandstroem, R
Sankey, DPC
Sansoni, A
Santoni, C
Santonico, R
Santos, H
Castillo, IS
Sapp, K
Sapronov, A
Saraiva, JG
Sarrazin, B
Sartisohn, G
Sasaki, O
Sasaki, Y
Sauvage, G
Sauvan, E
Savard, P
Savu, DO
Sawyer, C
Sawyer, L
Saxon, DH
Saxon, J
Sbarra, C
Sbrizzi, A
Scanlon, T
Scannicchio, DA
Scarcella, M
Schaarschmidt, J
Schacht, P
Schaefer, D
Schaefer, R
Schaepe, S
Schaetzel, S
Schafer, U
Schaffer, AC
Schaile, D
Schamberger, RD
Scharf, V
Schegelsky, VA
Scheirich, D
Schernau, M
Scherzer, MI
Schiavi, C
Schieck, J
Schillo, C
Schioppa, M
Schlenker, S
Schmidt, E
Schmieden, K
Schmitt, C
Schmitt, C
Schmitt, S
Schneider, B
Schnellbach, YJ
Schnoor, U
Schoeffel, L
Schoening, A
Schoenrock, BD
Schorlemmer, ALS
Schott, M
Schouten, D
Schovancova, J
Schramm, S
Schreyer, M
Schroeder, C
Schuh, N
Schultens, MJ
Schultz-Coulon, HC
Schulz, H
Schumacher, M
Schumm, BA
Schune, P
Schwanenberger, C
Schwartzman, A
Schwegler, P
Schwemling, P
Schwienhorst, R
Schwindling, J
Schwindt, T
Schwoerer, M
Sciacca, FG
Scifo, E
Sciolla, G
Scott, WG
Scuri, F
Scutti, F
Searcy, J
Sedov, G
Sedykh, E
Seidel, SC
Seiden, A
Seifert, F
Seixas, JM
Sekhniaidzea, G
Sekula, SJ
Selbach, KE
Seliverstov, DM
Sellers, G
Semprini-Cesari, N
Serfon, C
Serin, L
Serkin, L
Serre, T
Seuster, R
Severini, H
Sforza, F
Sfyrla, A
Shabalina, E
Shamim, M
Shan, LY
Shang, R
Shank, JT
Shao, QT
Shapiro, M
Shatalov, PB
Shaw, K
Shehu, CY
Sherwood, P
Shi, L
Shimizu, S
Shimmin, CO
Shimojima, M
Shiyakova, M
Shmeleva, A
Shochet, MJ
Short, D
Shrestha, S
Shulga, E
Shupe, MA
Shushkevich, S
Sicho, P
Sidiropoulou, O
Sidorov, D
Sidoti, A
Siegert, F
Sijacki, D
Silva, J
Silver, Y
Silverstein, D
Silverstein, SB
Simak, V
Simard, O
Simic, L
Simion, S
Simioni, E
Simmons, B
Simoniello, R
Simonyan, M
Sinervo, P
Sinev, NB
Sipica, V
Siragusa, G
Sircar, A
Sisakyan, AN
Sivoklokov, SY
Sjolin, J
Sjursen, TB
Skottowe, HP
Skovpen, KY
Skubic, P
Slater, M
Slavicek, T
Sliwa, K
Smakhtin, V
Smart, BH
Smestad, L
Smirnov, SY
Smirnov, Y
Smirnova, LN
Smirnova, O
Smith, KM
Smizanska, M
Smolek, K
Snesarev, AA
Snidero, G
Snyder, S
Sobie, R
Socher, F
Soffer, A
Soh, DA
Solans, CA
Solar, M
Solc, J
Soldatov, EY
Soldevila, U
Camillocci, ES
Solodkov, AA
Soloshenko, A
Solovyanov, OV
Solovyev, V
Sommer, P
Song, HY
Soni, N
Sood, A
Sopczak, A
Sopko, V
Sopko, B
Sorin, V
Sosebee, M
Soualah, R
Soueid, P
Soukharev, AM
South, D
Spagnolo, S
Spano, F
Spearman, WR
Spighi, R
Spigo, G
Spousta, M
Spreitzer, T
Spurlock, B
Denis, RDS
Staerz, S
Stahlman, J
Stamen, R
Stanecka, E
Stanek, RW
Stanescu, C
Stanescu-Bellu, M
Stanitzki, MM
Stapnes, S
Starchenko, EA
Stark, J
Staroba, P
Starovoitov, P
Staszewski, R
Stavina, P
Steinberg, P
Stelzer, B
Stelzer, HJ
Stelzer-Chilton, O
Stenzel, H
Stern, S
Stewart, GA
Stillings, JA
Stockton, MC
Stoebe, M
Stoicea, G
Stolte, P
Stonjek, S
Stradling, AR
Straessner, A
Stramaglia, ME
Strandberg, J
Strandberg, S
Strandlie, A
Strauss, E
Strauss, M
Strizenec, P
Strohmer, R
Strom, DM
Stroynowski, R
Stucci, SA
Stugu, B
Styles, NA
Su, D
Su, J
Subramania, HS
Subramaniam, R
Succurro, A
Sugaya, Y
Suhr, C
Suk, M
Sulin, VV
Sultansoy, S
Sumida, T
Sun, X
Sundermann, JE
Suruliz, K
Susinno, G
Sutton, MR
Suzuki, Y
Svatos, M
Swedish, S
Swiatlowski, M
Sykora, I
Sykora, T
Ta, D
Tackmann, K
Taenzer, J
Taffard, A
Tafirout, R
Taiblum, N
Takahashi, Y
Takai, H
Takashima, R
Takeda, H
Takeshita, T
Takubo, Y
Talby, M
Talyshev, AA
Tam, JYC
Tan, KG
Tanaka, J
Tanaka, R
Tanaka, S
Tanaka, S
Tanasijczuk, AJ
Tani, K
Tannoury, N
Tapprogge, S
Tarem, S
Tarrade, F
Tartarelli, GF
Tas, P
Tasevsky, M
Tashiro, T
Tassi, E
Delgado, AT
Tayalati, Y
Taylor, FE
Taylor, GN
Taylor, W
Teischinger, FA
Castanheira, MTD
Teixeira-Dias, P
Temming, KK
Ten Kate, H
Teng, PK
Teoh, JJ
Terada, S
Terashi, K
Terron, J
Terzo, S
Testa, M
Teuscher, RJ
Therhaag, J
Theveneaux-Pelzer, T
Thomas, JP
Thomas-Wilsker, J
Thompson, EN
Thompson, PD
Thompson, PD
Thompson, AS
Thomsen, LA
Thomson, E
Thomson, M
Thong, WM
Thun, RP
Tian, F
Tibbetts, MJ
Tikhomirov, VO
Tikhonov, YA
Timoshenko, S
Tiouchichine, E
Tipton, P
Tisserant, S
Todorov, T
Todorova-Nova, S
Toggerson, B
Tojo, J
Tokar, S
Tokushuku, K
Tollefson, K
Tomlinson, L
Tomoto, M
Tompkins, L
Toms, K
Topilin, ND
Torrence, E
Torres, H
Pastor, ET
Toth, J
Touchard, F
Tovey, DR
Tran, HL
Trefzger, T
Tremblet, L
Tricoli, A
Trigger, IM
Trincaz-Duvoid, S
Tripiana, MF
Triplett, N
Trischuk, W
Trocme, B
Troncon, C
Trottier-McDonald, M
Trovatelli, M
True, P
Trzebinski, M
Trzupek, A
Tsarouchas, C
Tseng, JCL
Tsiareshka, PV
Tsionou, D
Tsipolitis, G
Tsirintanis, N
Tsiskaridze, S
Tsiskaridze, V
Tskhadadze, EG
Tsukerman, II
Tsulaia, V
Tsuno, S
Tsybychev, D
Tudorache, A
Tudorache, V
Tuna, AN
Tupputi, SA
Turchikhin, S
Turecek, D
Cakir, IT
Turra, R
Tuts, PM
Tykhonov, A
Tylmad, M
Tyndel, M
Uchida, K
Ueda, I
Ueno, R
Ughetto, M
Ugland, M
Uhlenbrock, M
Ukegawa, F
Unal, G
Undrus, A
Unel, G
Ungaro, FC
Unno, Y
Urbaniec, D
Urquijo, P
Usai, G
Usanova, A
Vacavant, L
Vacek, V
Vachon, B
Valencic, N
Valentinetti, S
Valero, A
Valery, L
Valkar, S
Gallego, EV
Vallecorsa, S
Ferrer, JAV
Van Der Deijl, PC
van der Geer, R
van der Graaf, H
Van Der Leeuw, R
van der Ster, D
van Eldik, N
van Gemmeren, P
van Nieuwkoop, J
van Vulpen, I
van Woerden, MC
Vanadia, M
Vandelli, W
Vanguri, R
Vaniachine, A
Vankov, P
Vannucci, F
Vardanyan, G
Vari, R
Varnes, EW
Varol, T
Varouchas, D
Vartapetian, A
Varvell, KE
Vazeille, F
Schroeder, TV
Veatch, J
Veloso, F
Veneziano, S
Ventura, A
Ventura, D
Venturi, M
Venturi, N
Venturini, A
Vercesi, V
Verducci, M
Verkerke, W
Vermeulen, JC
Vest, A
Vetterli, MC
Viazlo, O
Vichou, I
Vickey, T
Boeriu, OEV
Viehhauser, GHA
Viel, S
Vigne, R
Villa, M
Perez, MV
Vilucchi, E
Vincter, MG
Vinogradov, VB
Virzi, J
Vivarelli, I
Vaque, FV
Vlachos, S
Vladoiu, D
Vlasak, M
Vogel, A
Vogel, M
Vokac, P
Volpi, G
Volpi, M
von der Schmitt, H
von Radziewski, H
von Toerne, E
Vorobel, V
Vorobev, K
Vos, M
Voss, R
Vossebeld, H
Vranjes, N
Milosavljevic, MV
Vrba, V
Vreeswijk, M
Anh, TV
Vuillermet, R
Vukotic, I
Vykydal, Z
Wagner, W
Wagner, P
Wahlberg, H
Wahrmund, S
Wakabayashi, J
Walder, J
Walker, R
Walkowiak, W
Wall, R
Waller, P
Walsh, B
Wang, C
Wang, C
Wang, F
Wang, H
Wang, H
Wang, J
Wanga, J
Wang, K
Wang, R
Wang, SM
Wang, T
Wang, X
Wanotayaroj, C
Warburton, A
Ward, CP
Wardrope, DR
Warsinsky, M
Washbrook, A
Wasicki, C
Watanabe, I
Watkins, PM
Watson, AT
Watson, IJ
Watson, MF
Watts, G
Watts, S
Waugh, BM
Webb, S
Weber, MS
Weber, SW
Webster, JS
Weidberg, AR
Weigell, P
Weinert, B
Weingarten, J
Weiser, C
Weits, H
Wells, PS
Wenaus, T
Wendland, D
Weng, Z
Wengler, T
Wenig, S
Wermes, N
Werner, M
Werner, P
Wessels, M
Wetter, J
Whalen, K
White, A
White, MJ
White, R
White, S
Whiteson, D
Wicke, D
Wickens, FJ
Wiedenmann, W
Wielers, M
Wienemann, P
Wiglesworth, C
Wiik-Fuchs, LAM
Wijeratne, PA
Wildauer, A
Wildt, MA
Wilkens, HG
Will, JZ
Williams, HH
Williams, S
Willis, C
Willocq, S
Wilson, JA
Wilson, A
Wingerter-Seez, I
Winklmeier, F
Winter, BT
Wittgen, M
Wittig, T
Wittkowski, J
Wollstadt, SJ
Wolter, MW
Wolters, H
Wosiek, BK
Wotschack, J
Woudstra, MJ
Wozniak, KW
Wright, M
Wu, M
Wu, SL
Wu, X
Wu, Y
Wulf, E
Wyatt, TR
Wynne, BM
Xella, S
Xiao, M
Xu, D
Xu, L
Yabsley, B
Yacoob, S
Yamada, M
Yamaguchi, H
Yamaguchi, Y
Yamamoto, A
Yamamoto, K
Yamamoto, S
Yamamura, T
Yamanaka, T
Yamauchi, K
Yamazaki, Y
Yan, Z
Yang, H
Yang, H
Yang, UK
Yang, Y
Yanush, S
Yao, L
Yao, WM
Yasu, Y
Yatsenko, E
Wong, KHY
Ye, J
Ye, S
Yen, AL
Yildirim, E
Yilmaz, M
Yoosoofmiya, R
Yorita, K
Yoshida, R
Yoshihara, K
Young, C
Young, CJS
Youssef, S
Yu, DR
Yu, J
Yu, JM
Yu, J
Yuan, L
Yurkewicz, A
Zabinski, B
Zaidan, R
Zaitsev, AM
Zaman, A
Zambito, S
Zanello, L
Zanzi, D
Zeitnitz, C
Zeman, M
Zemla, A
Zengel, K
Zenin, O
Zenis, T
Zerwas, D
della Porta, GZ
Zhang, D
Zhang, F
Zhang, H
Zhang, J
Zhang, L
Zhang, X
Zhang, Z
Zhao, Z
Zhemchugov, A
Zhong, J
Zhou, B
Zhou, L
Zhou, N
Zhu, CG
Zhu, H
Zhu, J
Zhu, Y
Zhuang, X
Zhukov, K
Zibell, A
Zieminska, D
Zimine, NI
Zimmermann, C
Zimmermann, R
Zimmermann, S
Zimmermann, S
Zinonos, Z
Ziolkowski, M
Zobernig, G
Zoccolia, A
zur Nedden, M
Zurzolo, G
Zutshi, V
Zwalinski, L
AF Aad, G.
Abbott, B.
Abdallah, J.
Khalek, S. Abdel
Abdinov, O.
Aben, R.
Abi, B.
Abolins, M.
AbouZeid, O. S.
Abramowicz, H.
Abreu, H.
Abreu, R.
Abulaiti, Y.
Acharya, B. S.
Adamczyk, L.
Adams, D. L.
Adelman, J.
Adomeit, S.
Adye, T.
Agatonovic-Jovin, T.
Aguilar-Saavedra, J. A.
Agustoni, M.
Ahlen, S. P.
Ahmadov, F.
Aielli, G.
Akerstedt, H.
Akesson, T. P. A.
Akimoto, G.
Akimov, A. V.
Alberghi, G. L.
Albert, J.
Albrand, S.
AlconadaVerzini, M. J.
Aleksa, M.
Aleksandrov, I. N.
Alexa, C.
Alexander, G.
Alexandre, G.
Alexopoulos, T.
Alhroob, M.
Alimonti, G.
Alio, L.
Alison, J.
Allbrooke, B. M. M.
Allison, L. J.
Allport, P. P.
Almond, J.
Aloisio, A.
Alonso, A.
Alonso, F.
Alpigiani, C.
Altheimer, A.
Gonzalez, B. Alvarez
Alviggi, M. G.
Amako, K.
Coutinho, Y. Amaral
Amelung, C.
Amidei, D.
Amor Dos Santos, S. P.
Amorim, A.
Amoroso, S.
Amram, N.
Amundsen, G.
Anastopoulos, C.
Ancu, L. S.
Andari, N.
Andeen, T.
Anders, C. F.
Anders, G.
Anderson, K. J.
Andreazza, A.
Andrei, V.
Anduaga, X. S.
Angelidakis, S.
Angelozzi, I.
Anger, P.
Angerami, A.
Anghinolfi, F.
Anisenkov, A. V.
Anjos, N.
Annovi, A.
Antonaki, A.
Antonelli, M.
Antonov, A.
Antos, J.
Anulli, F.
Aoki, M.
Bella, L. Aperio
Apolle, R.
Arabidze, G.
Aracena, I.
Arai, Y.
Araque, J. P.
Arce, A. T. H.
Arguin, J. -F.
Argyropoulos, S.
Arik, M.
Armbruster, A. J.
Arnaez, O.
Arnal, V.
Arnold, H.
Arratia, M.
Arslan, O.
Artamonov, A.
Artoni, G.
Asai, S.
Asbah, N.
Ashkenazi, A.
Asman, B.
Asquith, L.
Assamagan, K.
Astalos, R.
Atkinson, M.
Atlay, N. B.
Auerbach, B.
Augsten, K.
Aurousseau, M.
Avolio, G.
Azuelos, G.
Azuma, Y.
Baak, M. A.
Bacci, C.
Bachacou, H.
Bachas, K.
Backes, M.
Backhaus, M.
Mayes, J. Backus
Badescu, E.
Bagiacchi, P.
Bagnaia, P.
Bai, Y.
Bain, T.
Baines, J. T.
Baker, O. K.
Baker, S.
Balek, P.
Balli, F.
Banas, E.
Banerjee, Sw.
Bannoura, A. A. E.
Bansal, V.
Bansil, H. S.
Barak, L.
Baranov, S. P.
Barberio, E. L.
Barberis, D.
Barbero, M.
Barillari, T.
Barisonzi, M.
Barklow, T.
Barlow, N.
Barnett, B. M.
Barnett, R. M.
Barnovska, Z.
Baroncelli, A.
Barone, G.
Barr, A. J.
Barreiro, F.
da Costa, J. Barreiro Guimaraes
Bartoldus, R.
Barton, A. E.
Bartos, P.
Bartsch, V.
Bassalat, A.
Basye, A.
Bates, R. L.
Batkova, L.
Batley, J. R.
Battaglia, M.
Battistin, M.
Bauer, F.
Bawa, H. S.
Beau, T.
Beauchemin, P. H.
Beccherle, R.
Bechtle, P.
Beck, H. P.
Becker, K.
Becker, S.
Beckingham, M.
Becot, C.
Beddall, A. J.
Beddall, A.
Bedikian, S.
Bednyakov, V. A.
Bee, C. P.
Beemster, L. J.
Beermann, T. A.
Begel, M.
Behr, K.
Belanger-Champagne, C.
Bell, P. J.
Bell, W. H.
Bella, G.
Bellagamba, L.
Bellerive, A.
Bellomo, M.
Belotskiy, K.
Beltramello, O.
Benary, O.
Benchekroun, D.
Bendtz, K.
Benekos, N.
Benhammou, Y.
Noccioli, E. Benhar
Garcia, J. A. Benitez
Benjamin, D. P.
Bensinger, J. R.
Benslama, K.
Bentvelsen, S.
Berge, D.
Kuutmann, E. Bergeaas
Berger, N.
Berghaus, F.
Berglund, E.
Beringer, J.
Bernard, C.
Bernat, P.
Bernius, C.
Bernlochner, F. U.
Berry, T.
Berta, P.
Bertella, C.
Bertolia, G.
Bertolucci, F.
Bertsche, D.
Besana, M. I.
Besjes, G. J.
Bessidskaia, O.
Bessner, M. F.
Besson, N.
Betancourt, C.
Bethke, S.
Bhimji, W.
Bianchi, R. M.
Bianchini, L.
Bianco, M.
Biebel, O.
Bieniek, S. P.
Bierwagen, K.
Biesiada, J.
Biglietti, M.
De Mendizabal, J. Bilbao
Bilokon, H.
Bindi, M.
Binet, S.
Bingul, A.
Bini, C.
Black, C. W.
Black, J. E.
Black, K. M.
Blackburn, D.
Blair, R. E.
Blanchard, J. -B.
Blazek, T.
Bloch, I.
Blocker, C.
Blum, W.
Blumenschein, U.
Bobbink, G. J.
Bobrovnikov, V. S.
Bocchetta, S. S.
Bocci, A.
Bock, C.
Boddy, C. R.
Boehler, M.
Boek, J.
Boek, T. T.
Bogaerts, J. A.
Bogdanchikov, A. G.
Bogouch, A.
Bohm, C.
Bohm, J.
Boisvert, V.
Bold, T.
Boldea, V.
Boldyrev, A. S.
Bomben, M.
Bona, M.
Boonekamp, M.
Borisov, A.
Borissov, G.
Borri, M.
Borroni, S.
Bortfeldt, J.
Bortolotto, V.
Bos, K.
Boscherini, D.
Bosman, M.
Boterenbrood, H.
Boudreau, J.
Bouffard, J.
Bouhova-Thacker, E. V.
Boumediene, D.
Bourdarios, C.
Bousson, N.
Boutouil, S.
Boveia, A.
Boyd, J.
Boyko, I. R.
Bozovic-Jelisavcic, I.
Bracinik, J.
Brandt, A.
Brandt, G.
Brandt, O.
Bratzler, U.
Brau, B.
Brau, J. E.
Braun, H. M.
Brazzale, S. F.
Brelier, B.
Brendlinger, K.
Brennan, A. J.
Brenner, R.
Bressler, S.
Bristow, K.
Bristow, T. M.
Britton, D.
Brochu, F. M.
Brock, I.
Brock, R.
Bromberg, C.
Bronner, J.
Brooijmans, G.
Brooks, T.
Brooks, W. K.
Brosamer, J.
Brost, E.
Brown, G.
Brown, J.
de Renstrom, P. A. Bruckman
Bruncko, D.
Bruneliere, R.
Brunet, S.
Bruni, A.
Bruni, G.
Bruschi, M.
Bryngemark, L.
Buanes, T.
Buat, Q.
Bucci, F.
Buchholz, P.
Buckingham, R. M.
Buckley, A. G.
Buda, S. I.
Budagov, I. A.
Buehrer, F.
Bugge, L.
Bugge, M. K.
Bulekov, O.
Bundock, A. C.
Burckhart, H.
Burdin, S.
Burghgrave, B.
Burke, S.
Burmeister, I.
Busato, E.
Buescher, D.
Buescher, V.
Bussey, P.
Buszello, C. P.
Butler, B.
Butler, J. M.
Butt, A. I.
Buttar, C. M.
Butterworth, J. M.
Butti, P.
Buttinger, W.
Buzatu, A.
Byszewski, M.
Cabrera Urban, S.
Caforio, D.
Cakir, O.
Calafiura, P.
Calandri, A.
Calderini, G.
Calfayan, P.
Calkins, R.
Caloba, L. P.
Calvet, D.
Calvet, S.
Toro, R. Camacho
Camarda, S.
Cameron, D.
Caminada, L. M.
Caminal Armadans, R.
Campana, S.
Campanelli, M.
Campoverde, A.
Canale, V.
Canepa, A.
Bret, M. Cano
Cantero, J.
Cantrill, R.
Cao, T.
Garrido, M. D. M. Capeans
Caprini, I.
Caprini, M.
Capua, M.
Caputo, R.
Cardarelli, R.
Carli, T.
Carlino, G.
Carminati, L.
Caron, S.
Carquin, E.
Carrillo-Montoya, G. D.
Carter, J. R.
Carvalho, J.
Casadei, D.
Casado, M. P.
Casolino, M.
Castaneda-Miranda, E.
Castelli, A.
Castillo Gimenez, V.
Castro, N. F.
Catastini, P.
Catinaccio, A.
Catmore, J. R.
Cattai, A.
Cattani, G.
Caughron, S.
Cavaliere, V.
Cavalli, D.
Cavalli-Sforza, M.
Cavasinni, V.
Ceradini, F.
Cerio, B.
Cerny, K.
Cerqueira, A. S.
Cerri, A.
Cerrito, L.
Cerutti, F.
Cerv, M.
Cervelli, A.
Cetin, S. A.
Chafaq, A.
Chakraborty, D.
Chalupkova, I.
Chan, K.
Chang, P.
Chapleau, B.
Chapman, J. D.
Charfeddine, D.
Charlton, D. G.
Chau, C. C.
Barajas, C. A. Chavez
Cheatham, S.
Chegwidden, A.
Chekanov, S.
Chekulaev, S. V.
Chelkov, G. A.
Chelstowska, M. A.
Chen, C.
Chen, H.
Chen, K.
Chen, L.
Chen, S.
Chen, X.
Chen, Y.
Cheng, H. C.
Cheng, Y.
Cheplakov, A.
El Moursli, R. Cherkaoui
Chernyatin, V.
Cheu, E.
Chevalier, L.
Chiarella, V.
Chiefari, G.
Childers, J. T.
Chilingarov, A.
Chiodini, G.
Chisholm, A. S.
Chislett, R. T.
Chitan, A.
Chizhov, M. V.
Chouridou, S.
Chow, B. K. B.
Chromek-Burckhart, D.
Chu, M. L.
Chudoba, J.
Chwastowski, J. J.
Chytka, L.
Ciapetti, G.
Ciftci, A. K.
Ciftci, R.
Cinca, D.
Cindro, V.
Ciocio, A.
Cirkovic, P.
Citron, Z. H.
Citterio, M.
Ciubancan, M.
Clark, A.
Clark, P. J.
Clark, R. N.
Cleland, W.
Clemens, J. C.
Clement, C.
Coadou, Y.
Cobal, M.
Coccaro, A.
Cochran, J.
Coffey, L.
Cogan, J. G.
Coggeshall, J.
Cole, B.
Cole, S.
Colijn, A. P.
Collot, J.
Colombo, T.
Colon, G.
Compostella, G.
Muino, P. Conde
Coniavitis, E.
Conidi, M. C.
Connell, S. H.
Connelly, I. A.
Consonni, S. M.
Consorti, V.
Constantinescu, S.
Conta, C.
Conti, G.
Conventi, F.
Cooke, M.
Cooper, B. D.
Cooper-Sarkar, A. M.
Cooper-Smith, N. J.
Copic, K.
Cornelissen, T.
Corradi, M.
Corriveau, F.
Corso-Radu, A.
Cortes-Gonzalez, A.
Cortiana, G.
Costa, G.
Costa, M. J.
Costanzo, D.
Cote, D.
Cottin, G.
Cowan, G.
Cox, B. E.
Cranmer, K.
Cree, G.
Crepe-Renaudin, S.
Crescioli, F.
Cribbs, W. A.
Ortuzar, M. Crispin
Cristinziani, M.
Croft, V.
Crosetti, G.
Cuciuc, C. -M.
Donszelmann, T. Cuhadar
Cummings, J.
Curatolo, M.
Cuthbert, C.
Czirr, H.
Czodrowski, P.
Czyczula, Z.
D'Auria, S.
D'Onofrio, M.
Da Cunha Sargedas De Sousa, M. J.
Da Via, C.
Dabrowski, W.
Dafinca, A.
Dai, T.
Dale, O.
Dallaire, F.
Dallapiccola, C.
Dam, M.
Daniells, A. C.
Hoffmann, M. Dano
Dao, V.
Darbo, G.
Darmora, S.
Dassoulas, J. A.
Dattagupta, A.
Davey, W.
David, C.
Davidek, T.
Davies, E.
Davies, M.
Davignon, O.
Davison, A. R.
Davison, P.
Davygora, Y.
Dawe, E.
Dawson, I.
Daya-Ishmukhametova, R. K.
De, K.
de Asmundis, R.
De Castro, S.
De Cecco, S.
De Groot, N.
de Jong, P.
De la Torre, H.
De Lorenzi, F.
De Nooij, L.
De Pedis, D.
De Salvo, A.
De Sanctis, U.
De Santo, A.
De Regie, J. B. De Vivie
Dearnaley, W. J.
Debbe, R.
Debenedetti, C.
Dechenaux, B.
Dedovich, D. V.
Deigaard, I.
Del Peso, J.
Del Prete, T.
Deliot, F.
Delitzsch, C. M.
Deliyergiyev, M.
Dell'Acqua, A.
Dell'Asta, L.
Dell'Orso, M.
Della Pietra, M.
della Volpe, D.
Delmastro, M.
Delsart, P. A.
Deluca, C.
Demers, S.
Demichev, M.
Demilly, A.
Denisov, S. P.
Derendarz, D.
Derkaoui, J. E.
Derue, F.
Dervan, P.
Desch, K.
Deterre, C.
Deviveiros, P. O.
Dewhurst, A.
Dhaliwal, S.
Di Ciaccio, A.
Di Ciaccio, L.
Di Domenico, A.
Di Donato, C.
Di Girolamo, A.
Di Girolamo, B.
Di Mattia, A.
Di Micco, B.
Di Nardo, R.
Di Simone, A.
Di Sipio, R.
Di Valentino, D.
Diaz, M. A.
Diehl, E. B.
Dietrich, J.
Dietzsch, T. A.
Diglio, S.
Dimitrievska, A.
Dingfelder, J.
Dionisi, C.
Dita, P.
Dita, S.
Dittus, F.
Djama, F.
Djobava, T.
do Vale, M. A. B.
Wemans, A. Do Valle
Doan, T. K. O.
Dobos, D.
Doglioni, C.
Doherty, T.
Dohmae, T.
Dolejsi, J.
Dolezal, Z.
Dolgoshein, B. A.
Donadelli, M.
Donati, S.
Dondero, P.
Donini, J.
Dopke, J.
Doria, A.
Dova, M. T.
Doyle, A. T.
Dris, M.
Dubbert, J.
Dube, S.
Dubreuil, E.
Duchovni, E.
Duckeck, G.
Ducu, O. A.
Duda, D.
Dudarev, A.
Dudziak, F.
Duflot, L.
Duguid, L.
Duehrssen, M.
Dunford, M.
Yildiz, H. Duran
Dueren, M.
Durglishvili, A.
Dwuznik, M.
Dyndal, M.
Ebke, J.
Edson, W.
Edwards, N. C.
Ehrenfeld, W.
Eifert, T.
Eigen, G.
Einsweiler, K.
Ekelof, T.
El Kacimi, M.
Ellert, M.
Elles, S.
Ellinghaus, F.
Ellis, N.
Elmsheuser, J.
Elsing, M.
Emeliyanov, D.
Enari, Y.
Endner, O. C.
Endo, M.
Engelmann, R.
Erdmann, J.
Ereditato, A.
Eriksson, D.
Ernis, G.
Ernst, J.
Ernst, M.
Ernwein, J.
Errede, D.
Errede, S.
Ertel, E.
Escalier, M.
Esch, H.
Escobar, C.
Esposito, B.
Etienvre, A. I.
Etzion, E.
Evans, H.
Ezhilov, A.
Fabbri, L.
Facini, G.
Fakhrutdinov, R. M.
Falciano, S.
Falla, R. J.
Faltova, J.
Fang, Y.
Fanti, M.
Farbin, A.
Farilla, A.
Farooque, T.
Farrell, S.
Farrington, S. M.
Farthouat, P.
Fassi, F.
Fassnacht, P.
Fassouliotis, D.
Favareto, A.
Fayard, L.
Federic, P.
Fedin, O. L.
Fedorko, W.
Fehling-Kaschek, M.
Feigl, S.
Feligioni, L.
Feng, C.
Feng, E. J.
Feng, H.
Fenyuk, A. B.
Perez, S. Fernandez
Ferrag, S.
Ferrando, J.
Ferrari, A.
Ferrari, P.
Ferrari, R.
de Lima, D. E. Ferreira
Ferrer, A.
Ferrere, D.
Ferretti, C.
Parodi, A. Ferretto
Fiascaris, M.
Fiedler, F.
Filipcic, A.
Filipuzzi, M.
Filthaut, F.
Fincke-Keeler, M.
Finelli, K. D.
Fiolhais, M. C. N.
Fiorini, L.
Firan, A.
Fischer, J.
Fisher, W. C.
Fitzgerald, E. A.
Flechl, M.
Fleck, I.
Fleischmann, P.
Fleischmann, S.
Fletcher, G. T.
Fletcher, G.
Flick, T.
Floderus, A.
Castillo, L. R. Flores
Bustos, A. C. Florez
Flowerdew, M. J.
Formica, A.
Forti, A.
Fortin, D.
Fournier, D.
Fox, H.
Fracchia, S.
Francavilla, P.
Franchini, M.
Franchino, S.
Francis, D.
Franklin, M.
Franz, S.
Fraternali, M.
French, S. T.
Friedrich, C.
Friedrich, F.
Froidevaux, D.
Frost, J. A.
Fukunaga, C.
Torregrosa, E. Fullana
Fulsom, B. G.
Fuster, J.
Gabaldon, C.
Gabizon, O.
Gabrielli, A.
Gabrielli, A.
Gadatsch, S.
Gadomski, S.
Gagliardi, G.
Gagnon, P.
Galea, C.
Galhardo, B.
Gallas, E. J.
Gallo, V.
Gallop, B. J.
Gallus, P.
Galster, G.
Gan, K. K.
Gandrajula, R. P.
Gao, J.
Gao, Y. S.
Walls, F. M. Garay
Garberson, F.
Garcia, C.
Garcia Navarro, J. E.
Garcia-Sciveres, M.
Gardner, R. W.
Garelli, N.
Garonne, V.
Gatti, C.
Gaudioa, G.
Gaur, B.
Gauthier, L.
Gauzzi, P.
Gavrilenko, I. L.
Gay, C.
Gaycken, G.
Gazis, E. N.
Ge, P.
Gecse, Z.
Gee, C. N. P.
Geerts, D. A. A.
Geich-Gimbel, Ch.
Gellerstedt, K.
Gemme, C.
Gemmell, A.
Genest, M. H.
Gentile, S.
George, M.
George, S.
Gerbaudo, D.
Gershon, A.
Ghazlane, H.
Ghodbane, N.
Giacobbe, B.
Giagu, S.
Giangiobbe, V.
Giannetti, P.
Gianotti, F.
Gibbard, B.
Gibson, S. M.
Gilchriese, M.
Gillam, T. P. S.
Gillberg, D.
Gilles, G.
Gingrich, D. M.
Giokaris, N.
Giordani, M. P.
Giordano, R.
Giorgi, F. M.
Giorgi, F. M.
Giraud, P. F.
Giugni, D.
Giuliani, C.
Giulini, M.
Gjelsten, B. K.
Gkaitatzis, S.
Gkialas, I.
Gladilin, L. K.
Glasman, C.
Glatzer, J.
Glaysher, P. C. F.
Glazov, A.
Glonti, G. L.
Goblirsch-Kolb, M.
Goddard, J. R.
Godfrey, J.
Godlewski, J.
Goeringer, C.
Goldfarb, S.
Golling, T.
Golubkov, D.
Gomes, A.
Fajardo, L. S. Gomez
Goncalo, R.
Da Costa, J. Goncalves Pinto Firmino
Gonella, L.
Gonzalez de la Hoz, S.
Gonzalez Parra, G.
Gonzalez Silva, M. L.
Gonzalez-Sevilla, S.
Goossens, L.
Gorbounov, P. A.
Gordon, H. A.
Gorelov, I.
Gorini, B.
Gorini, E.
Gorisek, A.
Gornicki, E.
Goshaw, A. T.
Goessling, C.
Gostkin, M. I.
Gouighri, M.
Goujdami, D.
Goulette, M. P.
Goussiou, A. G.
Goy, C.
Gozpinar, S.
Grabas, H. M. X.
Graber, L.
Grabowska-Bold, I.
Grafstroema, P.
Grahn, K. -J.
Gramling, J.
Gramstad, E.
Grancagnolo, S.
Grassi, V.
Gratchev, V.
Gray, H. M.
Graziani, E.
Grebenyuk, O. G.
Greenwood, Z. D.
Gregersen, K.
Gregor, I. M.
Grenier, P.
Griffiths, J.
Grillo, A. A.
Grimm, K.
Grinstein, S.
Gris, Ph.
Grishkevich, Y. V.
Grivaz, J. -F.
Grohs, J. P.
Grohsjean, A.
Gross, E.
Grosse-Knetter, J.
Grossi, G. C.
Groth-Jensen, J.
Grout, Z. J.
Guan, L.
Guescini, F.
Guest, D.
Gueta, O.
Guicheney, C.
Guido, E.
Guillemin, T.
Guindon, S.
Gul, U.
Gumpert, C.
Gunther, J.
Guo, J.
Gupta, S.
Gutierrez, P.
Ortiz, N. G. Gutierrez
Gutschow, C.
Guttman, N.
Guyot, C.
Gwenlan, C.
Gwilliam, C. B.
Haas, A.
Haber, C.
Hadavand, H. K.
Haddad, N.
Haefner, P.
Hageboeck, S.
Hajduk, Z.
Hakobyan, H.
Haleem, M.
Hall, D.
Halladjian, G.
Hamacher, K.
Hamal, P.
Hamano, K.
Hamer, M.
Hamilton, A.
Hamilton, S.
Hamnett, P. G.
Han, L.
Hanagaki, K.
Hanawa, K.
Hance, M.
Hanke, P.
Hanna, R.
Hansen, J. B.
Hansen, J. D.
Hansen, P. H.
Hara, K.
Hard, A. S.
Harenberg, T.
Harkusha, S.
Harper, D.
Harrington, R. D.
Harris, O. M.
Harrison, P. F.
Hartjes, F.
Hasegawa, S.
Hasegawa, Y.
Hasib, A.
Hassani, S.
Haug, S.
Hauschild, M.
Hauser, R.
Havranek, M.
Hawkes, C. M.
Hawkings, R. J.
Hawkins, A. D.
Hayashi, T.
Hayden, D.
Hays, C. P.
Hayward, H. S.
Haywood, S. J.
Head, S. J.
Heck, T.
Hedberg, V.
Heelan, L.
Heim, S.
Heim, T.
Heinemann, B.
Heinrich, L.
Heisterkamp, S.
Hejbal, J.
Helary, L.
Heller, C.
Heller, M.
Hellman, S.
Hellmich, D.
Helsens, C.
Henderson, J.
Henderson, R. C. W.
Hengler, C.
Henrichs, A.
Correia, A. M. Henriques
Henrot-Versille, S.
Hensel, C.
Herbert, G. H.
Hernndez Jimenez, Y.
Herrberg-Schubert, R.
Herten, G.
Hertenberger, R.
Hervas, L.
Hesketh, G. G.
Hessey, N. P.
Hickling, R.
Higon-Rodriguez, E.
Hill, E.
Hill, J. C.
Hiller, K. H.
Hillert, S.
Hillier, S. J.
Hinchliffe, I.
Hines, E.
Hirose, M.
Hirschbuehl, D.
Hobbs, J.
Hod, N.
Hodgkinson, M. C.
Hodgson, P.
Hoecker, A.
Hoeferkamp, M. R.
Hoffman, J.
Hoffmann, D.
Hofmann, J. I.
Hohlfeld, M.
Holmes, T. R.
Hong, T. M.
van Huysduynen, L. Hooft
Hostachy, J. -Y.
Hou, S.
Hoummada, A.
Howard, J.
Howarth, J.
Hrabovsky, M.
Hristova, I.
Hrivnac, J.
Hryn'ova, T.
Hsu, P. J.
Hsu, S. -C.
Hu, D.
Hu, X.
Huang, Y.
Hubacek, Z.
Hubaut, F.
Huegging, F.
Huffman, T. B.
Hughes, E. W.
Hughes, G.
Huhtinen, M.
Huelsing, T. A.
Hurwitz, M.
Huseynov, N.
Huston, J.
Huth, J.
Iacobucci, G.
Iakovidis, G.
Ibragimov, I.
Iconomidou-Fayard, L.
Ideal, E.
Iengo, P.
Igonkina, O.
Iizawa, T.
Ikegami, Y.
Ikematsu, K.
Ikeno, M.
Ilchenko, Y.
Iliadis, D.
Ilic, N.
Inamaru, Y.
Ince, T.
Ioannou, P.
Iodice, M.
Iordanidou, K.
Ippolito, V.
Irles Quiles, A.
Isaksson, C.
Ishino, M.
Ishitsuka, M.
Ishmukhametov, R.
Issever, C.
Istin, S.
Ponce, J. M. Iturbe
Iuppa, R.
Ivarsson, J.
Iwanski, W.
Iwasaki, H.
Izen, J. M.
Izzo, V.
Jackson, B.
Jackson, M.
Jackson, P.
Jaekel, M. R.
Jain, V.
Jakobs, K.
Jakobsen, S.
Jakoubek, T.
Jakubek, J.
Jamin, D. O.
Jana, D. K.
Jansen, E.
Jansen, H.
Janssen, J.
Janus, M.
Jarlskog, G.
Javadov, N.
Javurek, T.
Jeanty, L.
Jejelava, J.
Jeng, G. -Y.
Jennens, D.
Jenni, P.
Jentzsch, J.
Jeske, C.
Jezequel, S.
Ji, H.
Ji, W.
Jia, J.
Jiang, Y.
Belenguer, M. Jimenez
Jin, S.
Jinaru, A.
Jinnouchi, O.
Joergensen, M. D.
Johanssona, K. E.
Johansson, P.
Johns, K. A.
Jon-And, K.
Jones, G.
Jones, R. W. L.
Jones, T. J.
Jongmanns, J.
Jorge, P. M.
Joshi, K. D.
Jovicevic, J.
Ju, X.
Jung, C. A.
Jungst, R. M.
Jussel, P.
Juste Rozas, A.
Kaci, M.
Kaczmarska, A.
Kado, M.
Kagan, H.
Kagan, M.
Kajomovitz, E.
Kalderon, C. W.
Kama, S.
Kanaya, N.
Kaneda, M.
Kaneti, S.
Kanno, T.
Kantserov, V. A.
Kanzaki, J.
Kaplan, B.
Kapliy, A.
Kar, D.
Karakostas, K.
Karastathis, N.
Karnevskiy, M.
Karpov, S. N.
Karthik, K.
Kartvelishvili, V.
Karyukhin, A. N.
Kashif, L.
Kasieczka, G.
Kass, R. D.
Kastanas, A.
Kataoka, Y.
Katre, A.
Katzy, J.
Kaushik, V.
Kawagoe, K.
Kawamoto, T.
Kawamura, G.
Kazama, S.
Kazanin, V. F.
Kazarinov, M. Y.
Keeler, R.
Kehoe, R.
Keil, M.
Keller, J. S.
Kempster, J. J.
Keoshkerian, H.
Kepka, O.
Kersevan, B. P.
Kersten, S.
Kessoku, K.
Keung, J.
Khalil-zada, F.
Khandanyan, H.
Khanov, A.
Khodinov, A.
Khomich, A.
Khoo, T. J.
Khoriauli, G.
Khoroshilov, A.
Khovanskiy, V.
Khramov, E.
Khubua, J.
Kim, H. Y.
Kim, H.
Kim, S. H.
Kimura, N.
Kind, O.
King, B. T.
King, M.
King, R. S. B.
King, S. B.
Kirk, J.
Kiryunin, A. E.
Kishimoto, T.
Kisielewska, D.
Kiss, F.
Kitamura, T.
Kittelmann, T.
Kiuchi, K.
Kladiva, E.
Klein, M.
Klein, U.
Kleinknecht, K.
Klimek, P.
Klimentov, A.
Klingenberg, R.
Klinger, A.
Klioutchnikova, T.
Klok, P. F.
Kluge, E. -E.
Kluit, P.
Kluth, S.
Kneringer, E.
Knoops, E. B. F. G.
Knue, A.
Kobayashi, T.
Kobel, M.
Kocian, M.
Kodys, P.
Koevesarki, P.
Koffas, T.
Koffeman, E.
Kogan, L. A.
Kohlmann, S.
Kohout, Z.
Kohriki, T.
Koi, T.
Kolanoski, H.
Koletsou, I.
Koll, J.
Komar, A. A.
Komori, Y.
Kondo, T.
Kondrashova, N.
Koeneke, K.
Konig, A. C.
Koenig, S.
Kono, T.
Konoplich, R.
Konstantinidis, N.
Kopeliansky, R.
Koperny, S.
Koepke, L.
Kopp, A. K.
Korcyl, K.
Kordas, K.
Korn, A.
Korol, A. A.
Korolkov, I.
Korolkova, E. V.
Korotkov, V. A.
Kortner, O.
Kortner, S.
Kostyukhin, V. V.
Kotov, V. M.
Kotwal, A.
Kourkoumelis, C.
Kouskoura, V.
Koutsman, A.
Kowalewski, R.
Kowalski, T. Z.
Kozanecki, W.
Kozhin, A. S.
Kral, V.
Kramarenko, V. A.
Kramberger, G.
Krasnopevtsev, D.
Krasny, M. W.
Krasznahorkay, A.
Kraus, J. K.
Kravchenko, A.
Kreiss, S.
Kretz, M.
Kretzschmar, J.
Kreutzfeldt, K.
Krieger, P.
Kroeninger, K.
Kroha, H.
Kroll, J.
Kroseberg, J.
Krstic, J.
Kruchonak, U.
Krueger, H.
Kruker, T.
Krumnack, N.
Krumshteyn, Z. V.
Kruse, A.
Kruse, M. C.
Kruskal, M.
Kubota, T.
Kuday, S.
Kuehn, S.
Kugel, A.
Kuhl, A.
Kuhl, T.
Kukhtin, V.
Kulchitsky, Y.
Kuleshov, S.
Kuna, M.
Kunkle, J.
Kupco, A.
Kurashige, H.
Kurochkin, Y. A.
Kurumida, R.
Kus, V.
Kuwertz, E. S.
Kuze, M.
Kvita, J.
La Rosa, A.
La Rotonda, L.
Lacasta, C.
Lacava, F.
Lacey, J.
Lacker, H.
Lacour, D.
Lacuesta, V. R.
Ladygin, E.
Lafaye, R.
Laforge, B.
Lagouri, T.
Lai, S.
Laier, H.
Lambourne, L.
Lammers, S.
Lampen, C. L.
Lampl, W.
Lancon, E.
Landgraf, U.
Landon, M. P. J.
Lang, V. S.
Lange, C.
Lankford, A. J.
Lanni, F.
Lantzsch, K.
Laplace, S.
Lapoire, C.
Laporte, J. F.
Lari, T.
Lassnig, M.
Laurelli, P.
Lavrijsen, W.
Law, A. T.
Laycock, P.
Le, B. T.
Le Dortz, O.
Le Guirriec, E.
Le Menedeu, E.
LeCompte, T.
Ledroit-Guillon, F.
Lee, C. A.
Lee, H.
Lee, J. S. H.
Lee, S. C.
Lee, L.
Lefebvre, G.
Lefebvre, M.
Legger, F.
Leggett, C.
Lehan, A.
Lehmacher, M.
Miotto, G. Lehmann
Lei, X.
Leight, W. A.
Leisos, A.
Leister, A. G.
Leite, M. A. L.
Leitner, R.
Lellouch, D.
Lemmer, B.
Leney, K. J. C.
Lenz, T.
Lenzen, G.
Lenzi, B.
Leone, R.
Leonhardt, K.
Leontsinis, S.
Leroy, C.
Lester, C. G.
Lester, C. M.
Levchenko, M.
Leveque, J.
Levin, D.
Levinson, L. J.
Levy, M.
Lewis, A.
Lewis, G. H.
Leyko, A. M.
Leyton, M.
Li, B.
Li, B.
Li, H.
Li, H. L.
Li, L.
Li, L.
Li, S.
Li, Y.
Liang, Z.
Liao, H.
Liberti, B.
Lichard, P.
Lie, K.
Liebal, J.
Liebig, W.
Limbach, C.
Limosani, A.
Lin, S. C.
Linde, F.
Lindquist, B. E.
Linnemann, J. T.
Lipeles, E.
Lipniacka, A.
Lisovyi, M.
Liss, T. M.
Lissauer, D.
Lister, A.
Litke, A. M.
Liu, B.
Liu, D.
Liu, J. B.
Liu, K.
Liu, L.
Liu, M.
Liu, M.
Liu, Y.
Livan, M.
Livermore, S. S. A.
Lleres, A.
Llorente Merino, J.
Lloyd, S. L.
Lo Sterzo, F.
Lobodzinska, E.
Loch, P.
Lockman, W. S.
Loddenkoetter, T.
Loebinger, F. K.
Loevschall-Jensen, A. E.
Loginov, A.
Loh, C. W.
Lohse, T.
Lohwasser, K.
Lokajicek, M.
Lombardo, V. P.
Long, B. A.
Long, J. D.
Long, R. E.
Lopes, L.
Mateos, D. Lopez
Paredes, B. Lopez
Lopez Paz, I.
Lorenz, J.
Martinez, N. Lorenzo
Losada, M.
Loscutoff, P.
Lou, X.
Lounis, A.
Love, J.
Love, P. A.
Lowe, A. J.
Lu, F.
Lubatti, H. J.
Luci, C.
Lucotte, A.
Luehring, F.
Lukas, W.
Luminari, L.
Lundberg, O.
Lund-Jensen, B.
Lungwitz, M.
Lynn, D.
Lysak, R.
Lytken, E.
Ma, H.
Ma, L. L.
Maccarrone, G.
Macchiolo, A.
Miguens, J. Machado
Macina, D.
Madaffari, D.
Madar, R.
Maddocks, H. J.
Mader, W. F.
Madsen, A.
Maeno, M.
Maeno, T.
Magradze, E.
Mahboubi, K.
Mahlstedt, J.
Mahmoud, S.
Maiani, C.
Maidantchik, C.
Maio, A.
Majewski, S.
Makida, Y.
Makovec, N.
Mal, P.
Malaescu, B.
Malecki, Pa.
Maleev, V. P.
Malek, F.
Mallik, U.
Malon, D.
Malone, C.
Maltezos, S.
Malyshev, V. M.
Malyukov, S.
Mamuzic, J.
Mandelli, B.
Mandelli, L.
Mandic, I.
Mandrysch, R.
Maneira, J.
Manfredini, A.
de Andrade Filho, L. Manhaes
Ramos, J. A. Manjarres
Mann, A.
Manning, P. M.
Manousakis-Katsikakis, A.
Mansoulie, B.
Mantifel, R.
Mapelli, L.
March, L.
Marchand, J. F.
Marchiori, G.
Marcisovsky, M.
Marino, C. P.
Marjanovic, M.
Marques, C. N.
Marroquim, F.
Marsden, S. P.
Marshall, Z.
Marti, L. F.
Marti-Garcia, S.
Martin, B.
Martin, B.
Martin, T. A.
Martin, V. J.
Latour, B. Martin Dit
Martinez, H.
Martinez, M.
Martin-Haugh, S.
Martyniuk, A. C.
Marx, M.
Marzano, F.
Marzin, A.
Masetti, L.
Mashimo, T.
Mashinistov, R.
Masik, J.
Maslennikov, A. L.
Massa, I.
Massol, N.
Mastrandrea, P.
Mastroberardino, A.
Masubuchi, T.
Matsushita, T.
Maettig, P.
Mattmann, J.
Maurer, J.
Maxfield, S. J.
Maximov, D. A.
Mazini, R.
Mazzaferro, L.
Mc Goldrick, G.
Mc kee, S. P.
McCarn, A.
McCarthy, R. L.
McCarthy, T. G.
McCubbin, N. A.
McFarlane, K. W.
Mcfayden, J. A.
Mchedlidze, G.
McMahon, S. J.
McPherson, R. A.
Meade, A.
Mechnich, J.
Medinnis, M.
Meehan, S.
Mehlhase, S.
Mehta, A.
Meier, K.
Meineck, C.
Meirose, B.
Melachrinos, C.
Garcia, B. R. Mellado
Meloni, F.
Mengarelli, A.
Menke, S.
Meoni, E.
Mercurio, K. M.
Mergelmeyer, S.
Meric, N.
Mermod, P.
Merola, L.
Meroni, C.
Merritt, F. S.
Merritt, H.
Messina, A.
Metcalfe, J.
Mete, A. S.
Meyer, C.
Meyer, C.
Meyer, J. -P.
Meyer, J.
Middleton, R. P.
Migas, S.
Mijovic, L.
Mikenberg, G.
Mikestikova, M.
Mikuz, M.
Miller, D. W.
Mills, C.
Milov, A.
Milstead, D. A.
Milstein, D.
Minaenko, A. A.
Minashvili, I. A.
Mincer, A. I.
Mindur, B.
Mineev, M.
Ming, Y.
Mir, L. M.
Mirabelli, G.
Mitani, T.
Mitrevski, J.
Mitsou, V. A.
Mitsui, S.
Miucci, A.
Miyagawa, P. S.
Mjornmark, J. U.
Moa, T.
Mochizuki, K.
Moeller, V.
Mohapatra, S.
Mohr, W.
Molander, S.
Moles-Valls, R.
Moenig, K.
Monini, C.
Monk, J.
Monnier, E.
Montejo Berlingen, J.
Monticelli, F.
Monzani, S.
Moore, R. W.
Moraes, A.
Morange, N.
Moreno, D.
Llacer, M. Moreno
Morettini, P.
Morgenstern, M.
Morii, M.
Moritz, S.
Morley, A. K.
Mornacchi, G.
Morris, J. D.
Morvaj, L.
Moser, H. G.
Mosidze, M.
Moss, J.
Mount, R.
Mountricha, E.
Mouraviev, S. V.
Moyse, E. J. W.
Muanza, S.
Mudd, R. D.
Mueller, F.
Mueller, J.
Mueller, K.
Mueller, T.
Mueller, T.
Muenstermann, D.
Munwes, Y.
Quijada, J. A. Murillo
Murray, W. J.
Musheghyan, H.
Musto, E.
Myagkov, A. G.
Myska, M.
Nackenhorst, O.
Nadal, J.
Nagai, K.
Nagai, R.
Nagai, Y.
Nagano, K.
Nagarkar, A.
Nagasaka, Y.
Nagel, M.
Nairz, A. M.
Nakahama, Y.
Nakamura, K.
Nakamura, T.
Nakano, I.
Namasivayam, H.
Nanava, G.
Narayan, R.
Nattermann, T.
Naumann, T.
Navarro, G.
Nayyar, R.
Neal, H. A.
Nechaeva, P. Yu.
Neep, T. J.
Negri, A.
Negri, G.
Negrini, M.
Nektarijevic, S.
Nelson, A.
Nelson, T. K.
Nemecek, S.
Nemethy, P.
Nepomuceno, A. A.
Nessi, M.
Neubauer, M. S.
Neumann, M.
Neves, R. M.
Nevski, P.
Newman, P. R.
Nguyen, D. H.
Nickerson, R. B.
Nicolaidou, R.
Nicquevert, B.
Nielsen, J.
Nikiforou, N.
Nikiforov, A.
Nikolaenko, V.
Nikolic-Audit, I.
Nikolics, K.
Nikolopoulos, K.
Nilsson, P.
Ninomiya, Y.
Nisati, A.
Nisius, R.
Nobe, T.
Nodulman, L.
Nomachi, M.
Nomidis, I.
Norberg, S.
Nordberg, M.
Nowak, S.
Nozaki, M.
Nozka, L.
Ntekas, K.
Hanninger, G. Nunes
Nunnemann, T.
Nurse, E.
Nuti, F.
O'Brien, B. J.
O'grady, F.
O'Neil, D. C.
O'Shea, V.
Oakham, F. G.
Oberlack, H.
Obermann, T.
Ocariz, J.
Ochi, A.
Ochoa, M. I.
Oda, S.
Odaka, S.
Ogren, H.
Oh, A.
Oh, S. H.
Ohm, C. C.
Ohman, H.
Ohshima, T.
Okamura, W.
Okawa, H.
Okumura, Y.
Okuyama, T.
Olariu, A.
Olchevski, A. G.
Pino, S. A. Olivares
Damazio, D. Oliveira
Oliver Garcia, E.
Olszewski, A.
Olszowska, J.
Onofre, A.
Onyisi, P. U. E.
Oram, C. J.
Oreglia, M. J.
Oren, Y.
Orestano, D.
Orlando, N.
Barrera, C. Oropeza
Orr, R. S.
Osculati, B.
Ospanov, R.
Otero y Garzon, G.
Otono, H.
Ouchrif, M.
Ouellette, E. A.
Ould-Saada, F.
Ouraou, A.
Oussoren, K. P.
Ouyang, Q.
Ovcharova, A.
Owen, M.
Ozcan, V. E.
Ozturk, N.
Pachal, K.
Pacheco Pages, A.
Padilla Aranda, C.
Pagacova, M.
Griso, S. Pagan
Paganis, E.
Pahl, C.
Paige, F.
Pais, P.
Pajchel, K.
Palacino, G.
Palestini, S.
Palka, M.
Pallin, D.
Palma, A.
Palmer, J. D.
Pan, Y. B.
Panagiotopoulou, E.
Vazquez, J. G. Panduro
Pani, P.
Panikashvili, N.
Panitkin, S.
Pantea, D.
Paolozzi, L.
Papadopoulou, Th. D.
Papageorgiou, K.
Paramonov, A.
Hernandez, D. Paredes
Parker, M. A.
Parodi, F.
Parsons, J. A.
Parzefall, U.
Pasqualucci, E.
Passaggio, S.
Passeri, A.
Pastore, F.
Pastore, Fr.
Pasztor, G.
Pataraia, S.
Patel, N. D.
Pater, J. R.
Patricelli, S.
Pauly, T.
Pearce, J.
Pedersen, M.
Pedraza Lopez, S.
Pedro, R.
Peleganchuk, S. V.
Pelikan, D.
Peng, H.
Penning, B.
Penwell, J.
Perepelitsa, D. V.
Codina, E. Perez
Perez Garcia-Estan, M. T.
Reale, V. Perez
Perini, L.
Pernegger, H.
Perrino, R.
Peschke, R.
Peshekhonov, V. D.
Peters, K.
Peters, R. F. Y.
Petersen, B. A.
Petersen, T. C.
Petit, E.
Petridis, A.
Petridou, C.
Petrolo, E.
Petrucci, F.
Petteni, M.
Pettersson, N. E.
Pezoa, R.
Phillips, P. W.
Piacquadio, G.
Pianori, E.
Picazio, A.
Piccaro, E.
Piccinini, M.
Piegaia, R.
Pignotti, D. T.
Pilcher, J. E.
Pilkington, A. D.
Pina, J.
Pinamonti, M.
Pinder, A.
Pinfold, J. L.
Pingel, A.
Pinto, B.
Pires, S.
Pitt, M.
Pizio, C.
Plazak, L.
Pleier, M. -A.
Pleskot, V.
Plotnikova, E.
Plucinski, P.
Poddar, S.
Podlyski, F.
Poettgen, R.
Poggioli, L.
Pohl, D.
Pohl, M.
Polesello, G.
Policicchio, A.
Polifka, R.
Polini, A.
Pollard, C. S.
Polychronakos, V.
Pommes, K.
Pontecorvo, L.
Pope, B. G.
Popeneciu, G. A.
Popovic, D. S.
Poppleton, A.
Portell Bueso, X.
Pospelov, G. E.
Pospisil, S.
Potamianos, K.
Potrap, I. N.
Potter, C. J.
Potter, C. T.
Poulard, G.
Poveda, J.
Pozdnyakov, V.
Pralavorio, P.
Pranko, A.
Prasad, S.
Pravahan, R.
Prell, S.
Price, D.
Price, J.
Price, L. E.
Prieur, D.
Primavera, M.
Proissl, M.
Prokofiev, K.
Prokoshin, F.
Protopapadaki, E.
Protopopescu, S.
Proudfoot, J.
Przybycien, M.
Przysiezniak, H.
Ptacek, E.
Pueschel, E.
Puldon, D.
Purohit, M.
Puzo, P.
Qian, J.
Qin, G.
Qin, Y.
Quadt, A.
Quarrie, D. R.
Quayle, W. B.
Queitsch-Maitland, M.
Quilty, D.
Qureshi, A.
Radeka, V.
Radescu, V.
Radhakrishnan, S. K.
Radloff, P.
Rados, P.
Ragusa, F.
Rahal, G.
Rajagopalan, S.
Rammensee, M.
Randle-Conde, A. S.
Rangel-Smith, C.
Rao, K.
Rauscher, F.
Rave, T. C.
Ravenscroft, T.
Raymond, M.
Read, A. L.
Readioff, N. P.
Rebuzzi, D. M.
Redelbach, A.
Redlinger, G.
Reece, R.
Reeves, K.
Rehnisch, L.
Reisin, H.
Relich, M.
Rembser, C.
Ren, H.
Ren, Z. L.
Renaud, A.
Rescigno, M.
Resconi, S.
Rezanova, O. L.
Reznicek, P.
Rezvani, R.
Richter, R.
Ridel, M.
Rieck, P.
Rieger, J.
Rijssenbeek, M.
Rimoldi, A.
Rinaldi, L.
Ritsch, E.
Riu, I.
Rizatdinova, F.
Rizvi, E.
Robertson, S. H.
Robichaud-Veronneau, A.
Robinson, D.
Robinson, J. E. M.
Robson, A.
Roda, C.
Rodrigues, L.
Roe, S.
Rohne, O.
Rolli, S.
Romaniouk, A.
Romano, M.
Romeo, G.
Romero Adam, E.
Rompotis, N.
Roos, L.
Ros, E.
Rosati, S.
Rosbach, K.
Rose, M.
Rosendahl, P. L.
Rosenthal, O.
Rossetti, V.
Rossi, E.
Rossi, L. P.
Rosten, R.
Rotaru, M.
Roth, I.
Rothberg, J.
Rousseau, D.
Royon, C. R.
Rozanov, A.
Rozen, Y.
Ruan, X.
Rubbo, F.
Rubinskiy, I.
Rud, V. I.
Rudolph, C.
Rudolph, M. S.
Ruehr, F.
Ruiz-Martinez, A.
Rurikova, Z.
Rusakovich, N. A.
Ruschke, A.
Rutherfoord, J. P.
Ruthmann, N.
Ryabov, Y. F.
Rybar, M.
Rybkin, G.
Ryder, N. C.
Saavedra, A. F.
Sacerdoti, S.
Saddique, A.
Sadeh, I.
Sadrozinski, H. F-W.
Sadykov, R.
Tehrani, F. Safai
Sakamoto, H.
Sakurai, Y.
Salamanna, G.
Salamon, A.
Saleem, M.
Salek, D.
De Bruin, P. H. Sales
Salihagic, D.
Salnikov, A.
Salt, J.
Ferrando, B. M. Salvachua
Salvatore, D.
Salvatore, F.
Salvucci, A.
Salzburger, A.
Sampsonidis, D.
Sanchez, A.
Sanchez, J.
Sanchez Martinez, V.
Sandaker, H.
Sandbach, R. L.
Sander, H. G.
Sanders, M. P.
Sandhoff, M.
Sandoval, T.
Sandoval, C.
Sandstroem, R.
Sankey, D. P. C.
Sansoni, A.
Santoni, C.
Santonico, R.
Santos, H.
Castillo, I. Santoyo
Sapp, K.
Sapronov, A.
Saraiva, J. G.
Sarrazin, B.
Sartisohn, G.
Sasaki, O.
Sasaki, Y.
Sauvage, G.
Sauvan, E.
Savard, P.
Savu, D. O.
Sawyer, C.
Sawyer, L.
Saxon, D. H.
Saxon, J.
Sbarra, C.
Sbrizzi, A.
Scanlon, T.
Scannicchio, D. A.
Scarcella, M.
Schaarschmidt, J.
Schacht, P.
Schaefer, D.
Schaefer, R.
Schaepe, S.
Schaetzel, S.
Schaefer, U.
Schaffer, A. C.
Schaile, D.
Schamberger, R. D.
Scharf, V.
Schegelsky, V. A.
Scheirich, D.
Schernau, M.
Scherzer, M. I.
Schiavi, C.
Schieck, J.
Schillo, C.
Schioppa, M.
Schlenker, S.
Schmidt, E.
Schmieden, K.
Schmitt, C.
Schmitt, C.
Schmitt, S.
Schneider, B.
Schnellbach, Y. J.
Schnoor, U.
Schoeffel, L.
Schoening, A.
Schoenrock, B. D.
Schorlemmer, A. L. S.
Schott, M.
Schouten, D.
Schovancova, J.
Schramm, S.
Schreyer, M.
Schroeder, C.
Schuh, N.
Schultens, M. J.
Schultz-Coulon, H. -C.
Schulz, H.
Schumacher, M.
Schumm, B. A.
Schune, Ph.
Schwanenberger, C.
Schwartzman, A.
Schwegler, Ph.
Schwemling, Ph.
Schwienhorst, R.
Schwindling, J.
Schwindt, T.
Schwoerer, M.
Sciacca, F. G.
Scifo, E.
Sciolla, G.
Scott, W. G.
Scuri, F.
Scutti, F.
Searcy, J.
Sedov, G.
Sedykh, E.
Seidel, S. C.
Seiden, A.
Seifert, F.
Seixas, J. M.
Sekhniaidzea, G.
Sekula, S. J.
Selbach, K. E.
Seliverstov, D. M.
Sellers, G.
Semprini-Cesari, N.
Serfon, C.
Serin, L.
Serkin, L.
Serre, T.
Seuster, R.
Severini, H.
Sforza, F.
Sfyrla, A.
Shabalina, E.
Shamim, M.
Shan, L. Y.
Shang, R.
Shank, J. T.
Shao, Q. T.
Shapiro, M.
Shatalov, P. B.
Shaw, K.
Shehu, C. Y.
Sherwood, P.
Shi, L.
Shimizu, S.
Shimmin, C. O.
Shimojima, M.
Shiyakova, M.
Shmeleva, A.
Shochet, M. J.
Short, D.
Shrestha, S.
Shulga, E.
Shupe, M. A.
Shushkevich, S.
Sicho, P.
Sidiropoulou, O.
Sidorov, D.
Sidoti, A.
Siegert, F.
Sijacki, Dj.
Silva, J.
Silver, Y.
Silverstein, D.
Silverstein, S. B.
Simak, V.
Simard, O.
Simic, Lj.
Simion, S.
Simioni, E.
Simmons, B.
Simoniello, R.
Simonyan, M.
Sinervo, P.
Sinev, N. B.
Sipica, V.
Siragusa, G.
Sircar, A.
Sisakyan, A. N.
Sivoklokov, S. Yu.
Sjolin, J.
Sjursen, T. B.
Skottowe, H. P.
Skovpen, K. Yu.
Skubic, P.
Slater, M.
Slavicek, T.
Sliwa, K.
Smakhtin, V.
Smart, B. H.
Smestad, L.
Smirnov, S. Yu.
Smirnov, Y.
Smirnova, L. N.
Smirnova, O.
Smith, K. M.
Smizanska, M.
Smolek, K.
Snesarev, A. A.
Snidero, G.
Snyder, S.
Sobie, R.
Socher, F.
Soffer, A.
Soh, D. A.
Solans, C. A.
Solar, M.
Solc, J.
Soldatov, E. Yu.
Soldevila, U.
Camillocci, E. Solfaroli
Solodkov, A. A.
Soloshenko, A.
Solovyanov, O. V.
Solovyev, V.
Sommer, P.
Song, H. Y.
Soni, N.
Sood, A.
Sopczak, A.
Sopko, V.
Sopko, B.
Sorin, V.
Sosebee, M.
Soualah, R.
Soueid, P.
Soukharev, A. M.
South, D.
Spagnolo, S.
Spano, F.
Spearman, W. R.
Spighi, R.
Spigo, G.
Spousta, M.
Spreitzer, T.
Spurlock, B.
Denis, R. D. St.
Staerz, S.
Stahlman, J.
Stamen, R.
Stanecka, E.
Stanek, R. W.
Stanescu, C.
Stanescu-Bellu, M.
Stanitzki, M. M.
Stapnes, S.
Starchenko, E. A.
Stark, J.
Staroba, P.
Starovoitov, P.
Staszewski, R.
Stavina, P.
Steinberg, P.
Stelzer, B.
Stelzer, H. J.
Stelzer-Chilton, O.
Stenzel, H.
Stern, S.
Stewart, G. A.
Stillings, J. A.
Stockton, M. C.
Stoebe, M.
Stoicea, G.
Stolte, P.
Stonjek, S.
Stradling, A. R.
Straessner, A.
Stramaglia, M. E.
Strandberg, J.
Strandberg, S.
Strandlie, A.
Strauss, E.
Strauss, M.
Strizenec, P.
Stroehmer, R.
Strom, D. M.
Stroynowski, R.
Stucci, S. A.
Stugu, B.
Styles, N. A.
Su, D.
Su, J.
Subramania, H. S.
Subramaniam, R.
Succurro, A.
Sugaya, Y.
Suhr, C.
Suk, M.
Sulin, V. V.
Sultansoy, S.
Sumida, T.
Sun, X.
Sundermann, J. E.
Suruliz, K.
Susinno, G.
Sutton, M. R.
Suzuki, Y.
Svatos, M.
Swedish, S.
Swiatlowski, M.
Sykora, I.
Sykora, T.
Ta, D.
Tackmann, K.
Taenzer, J.
Taffard, A.
Tafirout, R.
Taiblum, N.
Takahashi, Y.
Takai, H.
Takashima, R.
Takeda, H.
Takeshita, T.
Takubo, Y.
Talby, M.
Talyshev, A. A.
Tam, J. Y. C.
Tan, K. G.
Tanaka, J.
Tanaka, R.
Tanaka, S.
Tanaka, S.
Tanasijczuk, A. J.
Tani, K.
Tannoury, N.
Tapprogge, S.
Tarem, S.
Tarrade, F.
Tartarelli, G. F.
Tas, P.
Tasevsky, M.
Tashiro, T.
Tassi, E.
Delgado, A. Tavares
Tayalati, Y.
Taylor, F. E.
Taylor, G. N.
Taylor, W.
Teischinger, F. A.
Castanheira, M. Teixeira Dias
Teixeira-Dias, P.
Temming, K. K.
Ten Kate, H.
Teng, P. K.
Teoh, J. J.
Terada, S.
Terashi, K.
Terron, J.
Terzo, S.
Testa, M.
Teuscher, R. J.
Therhaag, J.
Theveneaux-Pelzer, T.
Thomas, J. P.
Thomas-Wilsker, J.
Thompson, E. N.
Thompson, P. D.
Thompson, P. D.
Thompson, A. S.
Thomsen, L. A.
Thomson, E.
Thomson, M.
Thong, W. M.
Thun, R. P.
Tian, F.
Tibbetts, M. J.
Tikhomirov, V. O.
Tikhonov, Yu. A.
Timoshenko, S.
Tiouchichine, E.
Tipton, P.
Tisserant, S.
Todorov, T.
Todorova-Nova, S.
Toggerson, B.
Tojo, J.
Tokar, S.
Tokushuku, K.
Tollefson, K.
Tomlinson, L.
Tomoto, M.
Tompkins, L.
Toms, K.
Topilin, N. D.
Torrence, E.
Torres, H.
Torro Pastor, E.
Toth, J.
Touchard, F.
Tovey, D. R.
Tran, H. L.
Trefzger, T.
Tremblet, L.
Tricoli, A.
Trigger, I. M.
Trincaz-Duvoid, S.
Tripiana, M. F.
Triplett, N.
Trischuk, W.
Trocme, B.
Troncon, C.
Trottier-McDonald, M.
Trovatelli, M.
True, P.
Trzebinski, M.
Trzupek, A.
Tsarouchas, C.
Tseng, J. C-L.
Tsiareshka, P. V.
Tsionou, D.
Tsipolitis, G.
Tsirintanis, N.
Tsiskaridze, S.
Tsiskaridze, V.
Tskhadadze, E. G.
Tsukerman, I. I.
Tsulaia, V.
Tsuno, S.
Tsybychev, D.
Tudorache, A.
Tudorache, V.
Tuna, A. N.
Tupputi, S. A.
Turchikhin, S.
Turecek, D.
Cakir, I. Turk
Turra, R.
Tuts, P. M.
Tykhonov, A.
Tylmad, M.
Tyndel, M.
Uchida, K.
Ueda, I.
Ueno, R.
Ughetto, M.
Ugland, M.
Uhlenbrock, M.
Ukegawa, F.
Unal, G.
Undrus, A.
Unel, G.
Ungaro, F. C.
Unno, Y.
Urbaniec, D.
Urquijo, P.
Usai, G.
Usanova, A.
Vacavant, L.
Vacek, V.
Vachon, B.
Valencic, N.
Valentinetti, S.
Valero, A.
Valery, L.
Valkar, S.
Valladolid Gallego, E.
Vallecorsa, S.
Ferrer, J. A. Valls
Van Der Deijl, P. C.
van der Geer, R.
van der Graaf, H.
Van Der Leeuw, R.
van der Ster, D.
van Eldik, N.
van Gemmeren, P.
van Nieuwkoop, J.
van Vulpen, I.
van Woerden, M. C.
Vanadia, M.
Vandelli, W.
Vanguri, R.
Vaniachine, A.
Vankov, P.
Vannucci, F.
Vardanyan, G.
Vari, R.
Varnes, E. W.
Varol, T.
Varouchas, D.
Vartapetian, A.
Varvell, K. E.
Vazeille, F.
Schroeder, T. Vazquez
Veatch, J.
Veloso, F.
Veneziano, S.
Ventura, A.
Ventura, D.
Venturi, M.
Venturi, N.
Venturini, A.
Vercesi, V.
Verducci, M.
Verkerke, W.
Vermeulen, J. C.
Vest, A.
Vetterli, M. C.
Viazlo, O.
Vichou, I.
Vickey, T.
Boeriu, O. E. Vickey
Viehhauser, G. H. A.
Viel, S.
Vigne, R.
Villa, M.
Perez, M. Villaplana
Vilucchi, E.
Vincter, M. G.
Vinogradov, V. B.
Virzi, J.
Vivarelli, I.
Vaque, F. Vives
Vlachos, S.
Vladoiu, D.
Vlasak, M.
Vogel, A.
Vogel, M.
Vokac, P.
Volpi, G.
Volpi, M.
von der schmitt, H.
von Radziewski, H.
von Toerne, E.
Vorobel, V.
Vorobev, K.
Vos, M.
Voss, R.
Vossebeld, H.
Vranjes, N.
Milosavljevic, M. Vranjes
Vrba, V.
Vreeswijk, M.
Anh, T. Vu
Vuillermet, R.
Vukotic, I.
Vykydal, Z.
Wagner, W.
Wagner, P.
Wahlberg, H.
Wahrmund, S.
Wakabayashi, J.
Walder, J.
Walker, R.
Walkowiak, W.
Wall, R.
Waller, P.
Walsh, B.
Wang, C.
Wang, C.
Wang, F.
Wang, H.
Wang, H.
Wang, J.
Wanga, J.
Wang, K.
Wang, R.
Wang, S. M.
Wang, T.
Wang, X.
Wanotayaroj, C.
Warburton, A.
Ward, C. P.
Wardrope, D. R.
Warsinsky, M.
Washbrook, A.
Wasicki, C.
Watanabe, I.
Watkins, P. M.
Watson, A. T.
Watson, I. J.
Watson, M. F.
Watts, G.
Watts, S.
Waugh, B. M.
Webb, S.
Weber, M. S.
Weber, S. W.
Webster, J. S.
Weidberg, A. R.
Weigell, P.
Weinert, B.
Weingarten, J.
Weiser, C.
Weits, H.
Wells, P. S.
Wenaus, T.
Wendland, D.
Weng, Z.
Wengler, T.
Wenig, S.
Wermes, N.
Werner, M.
Werner, P.
Wessels, M.
Wetter, J.
Whalen, K.
White, A.
White, M. J.
White, R.
White, S.
Whiteson, D.
Wicke, D.
Wickens, F. J.
Wiedenmann, W.
Wielers, M.
Wienemann, P.
Wiglesworth, C.
Wiik-Fuchs, L. A. M.
Wijeratne, P. A.
Wildauer, A.
Wildt, M. A.
Wilkens, H. G.
Will, J. Z.
Williams, H. H.
Williams, S.
Willis, C.
Willocq, S.
Wilson, J. A.
Wilson, A.
Wingerter-Seez, I.
Winklmeier, F.
Winter, B. T.
Wittgen, M.
Wittig, T.
Wittkowski, J.
Wollstadt, S. J.
Wolter, M. W.
Wolters, H.
Wosiek, B. K.
Wotschack, J.
Woudstra, M. J.
Wozniak, K. W.
Wright, M.
Wu, M.
Wu, S. L.
Wu, X.
Wu, Y.
Wulf, E.
Wyatt, T. R.
Wynne, B. M.
Xella, S.
Xiao, M.
Xu, D.
Xu, L.
Yabsley, B.
Yacoob, S.
Yamada, M.
Yamaguchi, H.
Yamaguchi, Y.
Yamamoto, A.
Yamamoto, K.
Yamamoto, S.
Yamamura, T.
Yamanaka, T.
Yamauchi, K.
Yamazaki, Y.
Yan, Z.
Yang, H.
Yang, H.
Yang, U. K.
Yang, Y.
Yanush, S.
Yao, L.
Yao, W. -M.
Yasu, Y.
Yatsenko, E.
Wong, K. H. Yau
Ye, J.
Ye, S.
Yen, A. L.
Yildirim, E.
Yilmaz, M.
Yoosoofmiya, R.
Yorita, K.
Yoshida, R.
Yoshihara, K.
Young, C.
Young, C. J. S.
Youssef, S.
Yu, D. R.
Yu, J.
Yu, J. M.
Yu, J.
Yuan, L.
Yurkewicz, A.
Zabinski, B.
Zaidan, R.
Zaitsev, A. M.
Zaman, A.
Zambito, S.
Zanello, L.
Zanzi, D.
Zeitnitz, C.
Zeman, M.
Zemla, A.
Zengel, K.
Zenin, O.
Zenis, T.
Zerwas, D.
della Porta, G. Zevi
Zhang, D.
Zhang, F.
Zhang, H.
Zhang, J.
Zhang, L.
Zhang, X.
Zhang, Z.
Zhao, Z.
Zhemchugov, A.
Zhong, J.
Zhou, B.
Zhou, L.
Zhou, N.
Zhu, C. G.
Zhu, H.
Zhu, J.
Zhu, Y.
Zhuang, X.
Zhukov, K.
Zibell, A.
Zieminska, D.
Zimine, N. I.
Zimmermann, C.
Zimmermann, R.
Zimmermann, S.
Zimmermann, S.
Zinonos, Z.
Ziolkowski, M.
Zobernig, G.
Zoccolia, A.
zur Nedden, M.
Zurzolo, G.
Zutshi, V.
Zwalinski, L.
CA Atlas Collaboration
TI Measurement of the cross section of high transverse momentum Z ->
b(b)over-bar production in proton-proton collisions at root s=8 TeV with
the ATLAS detector
SO PHYSICS LETTERS B
LA English
DT Article
DE LHC; Boosted b(b)over-bar topologies
ID TEVATRON; PAIR
AB This Letter reports the observation of a high transverse momentum Z -> b (b) over bar signal in proton-proton collisions at root s = 8TeVand the measurement of its production cross section. The data analysed were collected in 2012 with the ATLAS detector at the LHC and correspond to an integrated luminosity of 19.5 fb(-1). The Z -> b (b) over bar decay is reconstructed from a pair of b-tagged jets, clustered with the anti- k(t) jet algorithm with R = 0.4, that have low angular separation and form a dijet with p(T) > 200 GeV. The signal yield is extracted from a fit to the dijet invariant mass distribution, with the dominant, multi-jet background mass shape estimated by employing a fully data-driven technique that reduces the dependence of the analysis on simulation. The fiducial cross section is determined to be sigma(fid)(Z -> b (b) over bar) = 2.02 +/- 0.20 (stat.) +/- 0.25 (syst.) +/- 0.06 (lumi.) pb = 2.02 +/- 0.33 pb, in good agreement with next-to-leading-order theoretical predictions. Published by Elsevier B.V.
C1 [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia.
[Bouffard, J.; Edson, W.; Ernst, J.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA.
[Butt, A. I.; Chan, K.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada.
[Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey.
[Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey.
[Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey.
[Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey.
[Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France.
[Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France.
[Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
[Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA.
[Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece.
[Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece.
[Abdinov, O.; Huseynov, N.; Javadov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan.
[Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain.
[Agatonovic-Jovin, T.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia.
[Bozovic-Jelisavcic, I.; Cirkovic, P.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia.
[Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin Dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway.
[Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clark, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W. -M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
[Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clark, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W. -M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany.
[Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland.
[Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland.
[Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England.
[Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey.
[Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey.
[Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey.
[Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Goussiou, A. G.; Grafstroema, P.; Massa, I.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccolia, A.] Univ Bologna, Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy.
[Alberghi, G. L.; Bruni, A.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Goussiou, A. G.; Grafstroema, P.; Massa, I.; Mengarelli, A.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccolia, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy.
[Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany.
[Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA.
[Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA.
[Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, Rio De Janeiro, Brazil.
[Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Univ Fed Juiz de Fora, Juiz de Fora, Brazil.
[do Vale, M. A. B.] Univ Fed Sao Joao del Rei, Sao Joao del Rei, Brazil.
[Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil.
[Adams, D. L.; Chen, H.; Gibbard, B.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Mountricha, E.; Damazio, D. Oliveira; Paige, F.; Perepelitsa, D. V.; Redlinger, G.; Undrus, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania.
[Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania.
Univ Politehn Bucuresti, Bucharest, Romania.
West Univ Timisoara, Timisoara, Romania.
[Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Romeo, G.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina.
[Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England.
[Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada.
[Abreu, R.; Aleksa, M.; Aloisio, A.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Jenni, P.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland.
[Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile.
[Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile.
[Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wanga, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China.
[Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China.
[Chen, S.; Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China.
Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China.
[Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France.
[Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA.
[Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Mehlhase, S.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Ist Nazl Fis Nucl, Lab Nazl Frascati, Grp Collegato Cosenza, I-87036 Arcavacata Di Rende, Italy.
[Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy.
[Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Goulette, M. P.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Palka, M.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland.
[Palka, M.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland.
[Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland.
[Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA.
[Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA.
[Argyropoulos, S.; Asbah, N.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K. -J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany.
[Argyropoulos, S.; Asbah, N.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K. -J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany.
[Burmeister, I.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany.
[Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany.
[Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA.
[Bhimji, W.; Bristow, T. M.; Clark, P. J.; Debenedetti, C.; Edwards, N. C.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland.
[Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Consorti, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Mathemat & Phys, D-79106 Freiburg, Germany.
[Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Picazio, A.; Pohl, M.; Rosbach, K.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland.
[Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Univ Genoa, Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy.
[Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy.
[Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia.
[Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia.
[Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany.
[Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland.
[Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Goujdami, D.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J. -Y.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France.
[McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA.
[da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA.
[Andrei, V.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Hofmann, J. I.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany.
[Anders, C. F.; Giulini, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany.
[Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany.
[Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan.
[Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA.
[Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria.
[Cinca, D.; Gandrajula, R. P.; Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA.
[Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA.
[Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimine, N. I.] Joint Inst Nucl Res Dubna, Dubna, Russia.
[Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan.
[Inamaru, Y.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Kurumida, R.; Matsushita, T.; Ochi, A.; Shimizu, S.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan.
[Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan.
[Takashima, R.] Kyoto Univ, Kyoto 612, Japan.
[Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan.
[AlconadaVerzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina.
[AlconadaVerzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina.
[Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England.
[Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy.
[Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy.
[Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England.
[Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia.
[Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia.
[Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Salamanna, G.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ, Sch Phys & Astron, London, England.
[Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England.
[Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England.
[Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France.
[Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden.
[Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain.
[Blum, W.; Buescher, V.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Ji, W.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
[Almond, J.; Borri, M.; Brown, G.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, A.; Loebinger, F. K.; Masik, J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Tomlinson, L.; Woudstra, M. J.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England.
[Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France.
[Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA.
[Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada.
[Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Petersen, B. A.; Rados, P.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia.
[Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Levin, D.; Liu, L.; Long, J. D.; Mc kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Xu, L.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Univ Milan, Ist Nazl Fis Nucl, Sez Milano, Milan, Italy.
[Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy.
[Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus.
[Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus.
[Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Arguin, J. -F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada.
[Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia.
[Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Moscow Phys Engn Inst MEPhI, Moscow, Russia.
[Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia.
[Adomeit, S.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany.
[Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany.
[Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan.
[Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan.
[Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidzea, G.; Zurzolo, G.] Univ Naples Federico II, Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy.
[Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
[Besjes, G. J.; Caron, S.; Croft, V.; Dao, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Konig, A. C.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands.
[Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands.
[Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands.
[Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA.
[Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] RAS, Budker Inst Nucl Phys, SB, Novosibirsk, Russia.
[Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA.
[Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan.
[Abbott, B.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA.
[Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA.
[Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic.
[Brau, J. E.; Brost, E.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA.
[Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France.
[Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France.
[Endo, M.; Hanagaki, K.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.] Osaka Univ, Grad Sch Sci, Osaka, Japan.
[Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway.
[Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England.
[Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudioa, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Univ Pavia, Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy.
[Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy.
[Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Ospanov, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA.
[Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia.
[Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Ist Nazl Fis Nucl, Sez Pisa, I-56100 Pisa, Italy.
[Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy.
[Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Araque, J. P.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal.
[Amorim, A.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal.
[Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal.
[Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal.
[Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal.
[Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain.
[Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain.
[Wemans, A. Do Valle] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Fis, Caparica, Portugal.
[Wemans, A. Do Valle] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal.
[Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic.
[Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, V.; Sopko, B.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic.
[Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia.
[Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England.
[Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada.
[Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan.
[Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vanadia, M.; Vari, R.; Veneziano, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy.
[Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Camillocci, E. Solfaroli; Vanadia, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Aielli, G.; Cardarelli, R.; Cattani, G.; Grossi, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy.
[Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy.
[Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.; Trovatelli, M.] Univ Roma Tre, Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy.
[Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy.
[Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco.
[Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco.
[El Kacimi, M.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco.
[Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco.
[Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco.
[El Moursli, R. Cherkaoui; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco.
[Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Grabas, H. M. X.; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J. -P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, DSM IRFU, Inst Rech Lois Fondamentales Univers, Commissariat Energie Atom & Energies Alternat, F-91191 Gif Sur Yvette, France.
[Battaglia, M.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Beckingham, M.; Blackburn, D.; Coccaro, A.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England.
[Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan.
[Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany.
[Buat, Q.; Dawe, E.; Godfrey, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Trottier-McDonald, M.; van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada.
[Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Campoverde, A.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA.
[Astalos, R.; Bartos, P.; Batkova, L.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia.
[Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia.
[Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa.
[Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa.
[Bristow, K.; Carrillo-Montoya, G. D.; Chen, X.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa.
[Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertolia, G.; Bessidskaia, O.; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johanssona, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden.
[Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertolia, G.; Bessidskaia, O.; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden.
[Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden.
[Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England.
[Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
[Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan.
[Abreu, H.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel.
[Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Nomidis, I.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece.
[Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan.
[Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan.
[Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan.
[Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan.
[AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada.
[Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Garcia, J. A. Benitez; Bustos, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada.
[Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan.
[Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA.
[Losada, M.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia.
[Corso-Radu, A.; Farrell, S.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA.
[Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy.
[Acharya, B. S.; De Sanctis, U.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy.
[Alhroob, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy.
[Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.
[Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernndez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular, IFIC, Valencia, Spain.
[Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernndez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain.
[Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernndez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain.
[Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernndez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, IMB CNM, Valencia, Spain.
[Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Loh, C. W.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada.
[Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada.
[Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan.
[Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel.
[Banerjee, Sw.; Castillo, L. R. Flores; Hard, A. S.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Redelbach, A.; Schreyer, M.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany.
[Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany.
[Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA.
[Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France.
[Acharya, B. S.] Kings Coll London, Dept Phys, London, England.
[Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA.
[Chen, L.; Gao, J.] CNRS, IN2P3, Marseille, France.
[Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy.
[Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Vancouver, BC, Canada.
[Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia.
[Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece.
[Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Barcelona, Spain.
[Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA.
[Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia.
[Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan.
[Konoplich, R.] Manhattan Coll, New York, NY USA.
[Korol, A. A.; Maximov, D. A.; Rezanova, O. L.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia.
[Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan.
[Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India.
[Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia.
[Pinamonti, M.] Scuola Int Super Studi Avanzati, SISSA, Trieste, Italy.
[Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA.
[Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China.
[Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia.
[Toth, J.] Inst Particle & Nucl Phys, Wigner Res Ctr Phys, Budapest, Hungary.
[Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany.
[Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa.
RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France.
RI Brooks, William/C-8636-2013; Connell, Simon/F-2962-2015; Bosman,
Martine/J-9917-2014; Joergensen, Morten/E-6847-2015; Mitsou,
Vasiliki/D-1967-2009; Riu, Imma/L-7385-2014; Cabrera Urban,
Susana/H-1376-2015; Mir, Lluisa-Maria/G-7212-2015; Garcia, Jose
/H-6339-2015; Marti-Garcia, Salvador/F-3085-2011; Della Pietra,
Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Castro,
Nuno/D-5260-2011; Boyko, Igor/J-3659-2013; Nemecek,
Stanislav/G-5931-2014; Gutierrez, Phillip/C-1161-2011; Di Domenico,
Antonio/G-6301-2011; Ventura, Andrea/A-9544-2015; Livan,
Michele/D-7531-2012; De, Kaushik/N-1953-2013; Moraes,
Arthur/F-6478-2010; Smirnova, Oxana/A-4401-2013; Villa,
Mauro/C-9883-2009; Wemans, Andre/A-6738-2012; White, Ryan/E-2979-2015;
Li, Liang/O-1107-2015; Pacheco Pages, Andres/C-5353-2011; Vranjes
Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; SULIN,
VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal,
Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Snesarev,
Andrey/H-5090-2013; Kantserov, Vadim/M-9761-2015; Solfaroli Camillocci,
Elena/J-1596-2012; BESSON, NATHALIE/L-6250-2015; Vanadia,
Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira,
Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV,
ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Goncalo,
Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Mindur,
Bartosz/A-2253-2017; Fabbri, Laura/H-3442-2012; Solodkov,
Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk,
Sergey/J-6722-2014; Monzani, Simone/D-6328-2017; Warburton,
Andreas/N-8028-2013; Gorelov, Igor/J-9010-2015; Gladilin,
Leonid/B-5226-2011; Carvalho, Joao/M-4060-2013; Mashinistov,
Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz,
Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan
Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones,
Roger/H-5578-2011; Petrucci, Fabrizio/G-8348-2012; Negrini,
Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Grancagnolo,
Sergio/J-3957-2015; Doyle, Anthony/C-5889-2009; spagnolo,
stefania/A-6359-2012; Ciubancan, Liviu Mihai/L-2412-2015; Zhukov,
Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Gavrilenko,
Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Yang,
Haijun/O-1055-2015; Chekulaev, Sergey/O-1145-2015
OI Brooks, William/0000-0001-6161-3570; Connell, Simon/0000-0001-6000-7245;
Bosman, Martine/0000-0002-7290-643X; Joergensen,
Morten/0000-0002-6790-9361; Mitsou, Vasiliki/0000-0002-1533-8886; Riu,
Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Della
Pietra, Massimo/0000-0003-4446-3368; Castro, Nuno/0000-0001-8491-4376;
Boyko, Igor/0000-0002-3355-4662; Di Domenico,
Antonio/0000-0001-8078-2759; Ventura, Andrea/0000-0002-3368-3413; Livan,
Michele/0000-0002-5877-0062; De, Kaushik/0000-0002-5647-4489; Moraes,
Arthur/0000-0002-5157-5686; Smirnova, Oxana/0000-0003-2517-531X; Villa,
Mauro/0000-0002-9181-8048; Wemans, Andre/0000-0002-9669-9500; White,
Ryan/0000-0003-3589-5900; Li, Liang/0000-0001-6411-6107; Pacheco Pages,
Andres/0000-0001-8210-1734; Vranjes Milosavljevic,
Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; SULIN,
VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672;
Olshevskiy, Alexander/0000-0002-8902-1793; Kantserov,
Vadim/0000-0001-8255-416X; Solfaroli Camillocci,
Elena/0000-0002-5347-7764; Vanadia, Marco/0000-0003-2684-276X; Ippolito,
Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738;
Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV,
ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442;
Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611;
Fabbri, Laura/0000-0002-4002-8353; Solodkov,
Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368;
Peleganchuk, Sergey/0000-0003-0907-7592; Monzani,
Simone/0000-0002-0479-2207; Warburton, Andreas/0000-0002-2298-7315;
Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636;
Carvalho, Joao/0000-0002-3015-7821; Mashinistov,
Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz,
Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar
Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton,
Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Petrucci,
Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963;
Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo,
Sergio/0000-0001-8490-8304; Doyle, Anthony/0000-0001-6322-6195;
spagnolo, stefania/0000-0001-7482-6348; Ciubancan, Liviu
Mihai/0000-0003-1837-2841; Tikhomirov, Vladimir/0000-0002-9634-0581;
FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF,
Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil;
NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS,
China; MOST, China; NSFC, China; COL-CIENCIAS, Colombia; MSMT CR, Czech
Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark;
DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF;
European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia;
BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation,
Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF,
Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT,
Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands;
BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal;
FCT, Portugal; MNE/IFA, Romania; MES of Russia; ROSATOM, Russian
Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS,
Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg
Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern
and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United
Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United
Kingdom; DOE, United States; NSF, United States
FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC,
Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq
and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile;
CAS, MOST and NSFC, China; COL-CIENCIAS, Colombia; MSMT CR, MPO CR and
VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark;
EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France;
GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and
NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel;
INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO,
Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT,
Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian
Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia;
DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation,
Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC,
Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust,
United Kingdom; DOE and NSF, United States.
NR 40
TC 5
Z9 5
U1 8
U2 87
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0370-2693
EI 1873-2445
J9 PHYS LETT B
JI Phys. Lett. B
PD NOV 10
PY 2014
VL 738
BP 25
EP 43
DI 10.1016/j.physletb.2014.09.020
PG 19
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA AT0KK
UT WOS:000344624900005
ER
PT J
AU Aad, G
Abbott, B
Abdallah, J
Khalek, SA
Abdinov, O
Aben, R
Abi, B
Abolins, M
AbouZeid, OS
Abramowicz, H
Abreu, H
Abreu, R
Abulaiti, Y
Acharya, BS
Adamczyk, L
Adams, DL
Adelman, J
Adomeit, S
Adye, T
Adye, T
Aguilar-Saavedra, JA
Agustoni, M
Ahlen, SP
Ahmadov, F
Aielli, G
Akerstedt, H
Akesson, TP
Akimoto, G
Akimov, AV
Alberghi, GL
Albert, J
Albrand, S
Verzini, MJA
Aleksa, M
Aleksandrov, IN
Alexa, C
Alexander, G
Alexandre, G
Alexopoulos, T
Alhroob, M
Alimonti, G
Alio, L
Alison, J
Allbrooke, BMM
Allison, LJ
Allport, PP
Almond, J
Aloisio, A
Alonso, A
Alonso, F
Alpigiani, C
Altheimer, A
Gonzalez, BA
Alviggi, MG
Amako, K
Coutinho, YA
Amelung, C
Amidei, D
Dos Santos, SPA
Amorim, A
Amoroso, S
Amram, N
Amundsen, G
Anastopoulos, C
Ancu, LS
Andari, N
Andeen, T
Anders, CF
Anders, G
Anderson, KJ
Andreazza, A
Andrei, V
Anduaga, XS
Angelidakis, S
Angelozzi, I
Anger, P
Angerami, A
Anghinolfi, F
Anisenkov, AV
Anjos, N
Annovi, A
Antonaki, A
Antonelli, M
Antonov, A
Antos, J
Anulli, F
Aoki, M
Bella, LA
Apolle, R
Arabidze, G
Aracena, I
Arai, Y
Araque, JP
Arce, ATH
Arguin, JF
Argyropoulos, S
Arik, M
Armbruster, AJ
Arnaez, O
Arnal, V
Arnold, H
Arratia, M
Arslan, O
Artamonov, A
Artoni, G
Asai, S
Asbah, N
Ashkenazi, A
Asman, B
Asquith, L
Assamagan, K
Astalos, R
Atkinson, M
Atlay, NB
Auerbach, B
Augsten, K
Aurousseau, M
Avolio, G
Azuelos, G
Azuma, Y
Baak, MA
Baas, A
Bacci, C
Bachacou, H
Bachas, K
Backes, M
Backhaus, M
Mayes, JB
Badescu, E
Bagiacchi, P
Bagnaia, P
Bai, Y
Bain, T
Baines, JT
Baker, OK
Balek, P
Balli, F
Banas, E
Banerjee, S
Bannoura, AAE
Bansal, V
Bansil, HS
Barak, L
Baranov, SP
Barberio, EL
Barberis, D
Barbero, M
Barillari, T
Barisonzi, M
Barklow, T
Barlow, N
Barnett, BM
Barnett, RM
Barnovska, Z
Baroncelli, A
Barone, G
Barr, AJ
Barreiro, F
da Costa, JBG
Bartoldus, R
Barton, AE
Bartos, P
Bartsch, V
Bassalat, A
Basye, A
Bates, RL
Batley, JR
Battaglia, M
Battistin, M
Bauer, F
Bawa, HS
Beattie, MD
Beau, T
Beauchemin, PH
Beccherle, R
Bechtle, P
Beck, HP
Becker, K
Becker, S
Beckingham, M
Becot, C
Beddall, AJ
Beddall, A
Bedikian, S
Bednyakov, VA
Bee, CP
Beemster, LJ
Beermann, TA
Begel, M
Behr, K
Belanger-Champagne, C
Bell, PJ
Bell, WH
Bella, G
Bellagamba, L
Bellerive, A
Bellomo, M
Belotskiy, K
Beltramello, O
Benary, O
Benchekroun, D
Bendtz, K
Benekos, N
Benhammou, Y
Noccioli, EB
Garcia, JAB
Benjamin, DP
Bensinger, JR
Benslama, K
Bentvelsen, S
Berge, D
Kuutmann, EB
Berger, N
Berghaus, F
Beringer, J
Bernard, C
Bernat, P
Bernius, C
Bernlochner, FU
Berry, T
Berta, P
Bertella, C
Bertoli, G
Bertolucci, F
Bertsche, C
Bertsche, D
Besana, MI
Besjes, GJ
Bessidskaia, O
Bessner, MF
Besson, N
Betancourt, C
Bethke, S
Bhimji, W
Bianchi, RM
Bianchini, L
Bianco, M
Biebel, O
Bieniek, SP
Bierwagen, K
Biesiada, J
Biglietti, M
De Mendizabal, JB
Bilokon, H
Bindi, M
Binet, S
Bingul, A
Bini, C
Black, CW
Black, JE
Black, KM
Blackburn, D
Blair, RE
Blanchard, JB
Blazek, T
Bloch, I
Blocker, C
Blum, W
Blumenschein, U
Bobbink, GJ
Bobrovnikov, VS
Bocchetta, SS
Bocci, A
Bock, C
Boddy, CR
Boehler, M
Boek, TT
Bogaerts, JA
Bogdanchikov, AG
Bogouch, A
Bohm, C
Bohm, J
Boisvert, V
Bold, T
Boldea, V
Boldyrev, AS
Bomben, M
Bona, M
Boonekamp, M
Borisov, A
Borissov, G
Borri, M
Borroni, S
Bortfeldt, J
Bortolotto, V
Bos, K
Boscherini, D
Bosman, M
Boterenbrood, H
Boudreau, J
Bouffard, J
Bouhova-Thacker, EV
Boumediene, D
Bourdarios, C
Bousson, N
Boutouil, S
Boveia, A
Boyd, J
Boyko, IR
Bracinik, J
Brandt, A
Brandt, G
Brandt, O
Bratzler, U
Brau, B
Brau, JE
Braun, HM
Brazzale, SF
Brelier, B
Brendlinger, K
Brennan, AJ
Brenner, R
Bressler, S
Bristow, K
Bristow, TM
Britton, D
Brochu, FM
Brock, I
Brock, R
Bromberg, C
Bronner, J
Brooijmans, G
Brooks, T
Brooks, WK
Brosamer, J
Brost, E
Brown, J
de Renstrom, PAB
Bruncko, D
Bruneliere, R
Brunet, S
Bruni, A
Bruni, G
Bruschi, M
Bryngemark, L
Buanes, T
Buat, Q
Bucci, F
Buchholz, P
Buckingham, RM
Buckley, AG
Buda, SI
Budagov, IA
Buehrer, F
Bugge, L
Bugge, MK
Bulekov, O
Bundock, AC
Burckhart, H
Burdin, S
Burghgrave, B
Burke, S
Burmeister, I
Busato, E
Buscher, D
Buscher, V
Bussey, P
Buszello, CP
Butler, B
Butler, JM
Butt, AI
Buttar, CM
Butterworth, JM
Butti, P
Buttinger, W
Buzatu, A
Byszewski, M
Urban, SC
Caforio, D
Cakir, O
Calafiura, P
Calandri, A
Calderini, G
Calfayan, P
Calkins, R
Caloba, LP
Calvet, D
Calvet, S
Camacho Toro, R
Camarda, S
Cameron, D
Caminada, LM
Armadans, RC
Campana, S
Campanelli, M
Campoverde, A
Canale, V
Canepa, A
Bret, MC
Cantero, J
Cantrill, R
Cao, T
Garrido, MDMC
Caprini, I
Caprini, M
Capua, M
Caputo, R
Cardarellia, R
Carli, T
Carlino, G
Carminati, L
Caron, S
Carquin, E
Carrillo-Montoya, D
Carter, JR
Carvalho, J
Casadei, D
Casado, MP
Casolino, M
Castaneda-Miranda, E
Castelli, A
CastilloGimenez, V
Castro, NF
Catastini, P
Catinaccio, A
Catmore, JR
Cattai, A
Cattani, G
Caughron, S
Cavaliere, V
Cavalli, D
Cavalli-Sforza, M
Cavasinni, V
Ceradini, F
Cerio, B
Cerny, K
Cerqueira, AS
Cerri, A
Cerrito, L
Cerutti, F
Cerv, M
Cervelli, A
Cetin, SA
Chafaq, A
Chakraborty, D
Chalupkova, I
Chang, P
Chapleau, B
Chapman, JD
Charfeddine, D
Charlton, DG
Chau, CC
Barajas, CAC
Cheatham, S
Chegwidden, A
Chekanov, S
Chekulaev, SV
Chelkov, GA
Chelstowska, MA
Chen, C
Chen, H
Chen, K
Chen, L
Chen, S
Chen, X
Chen, Y
Chen, Y
Cheng, HC
Cheng, Y
Cheplakov, A
El Moursli, RC
Chernyatin, V
Cheu, E
Chevalier, L
Chiarella, V
Chiefari, G
Childers, JT
Chilingarov, A
Chiodini, G
Chisholm, AS
Chislett, RT
Chitan, A
Chizhov, MV
Chouridou, S
Chow, BKB
Chromek-Burckhart, D
Chu, ML
Chudoba, J
Chwastowski, JJ
Chytka, L
Ciapetti, G
Ciftci, AK
Ciftci, R
Cinca, D
Cindro, V
Ciocio, A
Cirkovic, P
Citron, ZH
Citterio, M
Ciubancan, M
Clark, A
Clark, PJ
Clarke, RN
Cleland, W
Clemens, JC
Clement, C
Coadou, Y
Cobal, M
Coccaro, A
Cochran, J
Coffey, L
Cogan, JG
Coggeshall, J
Cole, B
Cole, S
Colijn, AP
Collot, J
Colombo, T
Colon, G
Compostella, G
Muino, PC
Coniavitis, E
Conidi, MC
Connell, SH
Connelly, IA
Consonni, SM
Consorti, V
Constantinescu, S
Conta, C
Conti, G
Conventi, F
Cooke, M
Cooper, BD
Cooper-Sarkar, AM
Cooper-Smith, NJ
Copic, K
Cornelissen, T
Corradi, M
Corriveau, F
Corso-Radu, A
Cortes-Gonzalez, A
Cortiana, G
Costa, G
Costa, MJ
Costanzo, D
Cote, D
Cottin, G
Cowan, G
Cox, BE
Cranmer, K
Cree, G
Crepe-Renaudin, S
Crescioli, F
Cribbs, WA
Ortuzar, MC
Cristinziani, M
Croft, V
Crosetti, G
Cuciuc, CM
Donszelmann, TC
Cummings, J
Curatolo, M
Cuthbert, C
Czirr, H
Czodrowski, P
Czyczula, Z
D'Auria, S
D'Onofrio, M
De Sousa, MJDS
Da Via, C
Dabrowski, W
Dafinca, A
Dai, T
Dai, T
Dallaire, F
Dallapiccola, C
Dam, M
Daniells, AC
DanoHoffmann, M
Dao, V
Darbo, G
Darmora, S
Dassoulas, JA
Dattagupta, A
Davey, W
David, C
Davidek, T
Davies, E
Davies, M
Davignon, O
Davison, AR
Davison, P
Davygora, Y
Dawe, E
Dawson, I
Daya-Ishmukhametova, RK
De, K
de Asmundis, R
De Castro, S
De Cecco, S
De Groot, N
de Jong, P
De la Torre, H
De Lorenzi, F
De Nooij, L
De Pedis, D
De Salvo, A
De Sanctis, U
De Santo, A
De Regie, JBD
Dearnaley, WJ
Debbe, R
Debenedetti, C
Dechenaux, B
Dedovich, DV
Deigaard, I
Del Peso, J
Del Prete, T
Deliot, F
Delitzsch, CM
Deliyergiyev, M
Dell'Acqua, A
Dell'Asta, L
Dell'Orso, M
Pietra, M
della Volpe, D
Delmastro, M
Delsart, PA
Deluca, C
Demers, S
Demichev, M
Demilly, A
Denisov, SP
Derendarz, D
Derkaoui, JE
Derue, F
Dervan, P
Desch, K
Deterre, C
Deviveiros, PO
Dewhurst, A
Dhaliwal, S
Di Ciaccio, A
Di Ciaccio, L
Di Domenico, A
Di Donato, C
DiGirolamo, A
Di Girolamo, B
Di Mattia, A
Di Micco, B
Di Nardo, R
Di Simone, A
Di Sipio, R
Di Valentino, D
Dias, FA
Diaz, MA
Diehl, EB
Dietrich, J
Dietzsch, TA
Diglio, S
Dimitrievska, A
Dingfelder, J
Dionisi, C
Dita, P
Dita, S
Dittus, F
Djama, F
Djobava, T
do Vale, MAB
Wemans, AD
Doan, TKO
Dobos, D
Doglioni, C
Doherty, T
Dohmae, T
Dolejsi, J
Dolezal, Z
Dolgoshein, BA
Donadelli, M
Donati, S
Dondero, P
Donini, J
Dopke, J
Doria, A
Dova, MT
Doyle, AT
Dris, M
Dubbert, J
Dube, S
Dubreuil, E
Duchovni, E
Duckeck, G
Ducu, OA
Duda, D
Dudarev, A
Dudziak, F
Duflot, L
Duguid, L
Duhrssen, M
Dunford, M
Yildiz, HD
Duren, M
Durglishvili, A
Dwuznik, M
Dyndal, M
Ebke, J
Edson, W
Edwards, NC
Ehrenfeld, W
Eifert, T
Eigen, G
Einsweiler, K
Ekelof, T
El Kacimi, M
Ellert, M
Elles, S
Ellinghaus, F
Ellis, N
Elmsheuser, J
Elsing, M
Emeliyanov, D
Enari, Y
Endner, OC
Endo, M
Engelmann, R
Erdmann, J
Ereditato, A
Eriksson, D
Ernis, G
Ernst, J
Ernst, M
Ernwein, J
Errede, D
Errede, S
Ertel, E
Escalier, M
Esch, H
Escobar, C
Esposito, B
Etienvre, AI
Etzion, E
Evans, H
Ezhilov, A
Fabbri, L
Facini, G
Fakhrutdinov, RM
Falciano, S
Falla, RJ
Faltova, J
Fang, Y
Fanti, M
Farbin, A
Farilla, A
Farooque, T
Farrell, S
Farrington, SM
Farthouat, P
Fassi, F
Fassnacht, P
Fassouliotis, D
Favareto, A
Fayard, L
Federic, P
Fedin, OL
Fedorko, W
Fehling-Kaschek, M
Feigl, S
Feligioni, L
Feng, C
Feng, EJ
Feng, H
Fenyuk, AB
Perez, SF
Ferrag, S
Ferrando, J
Ferrari, A
Ferrari, P
Ferrari, R
de Lima, DEF
Ferrer, A
Ferrere, D
Ferretti, C
Parodi, AF
Fiascaris, M
Fiedler, F
Filipcic, A
Filipuzzi, M
Filthaut, F
Fincke-Keeler, M
Finelli, KD
Fiolhais, MCN
Fiorini, L
Firan, A
Fischer, A
Fischer, J
Fisher, WC
Fitzgerald, EA
Flechl, M
Fleck, I
Fleischmann, P
Fleischmann, S
Fletcher, GT
Fletcher, G
Flick, T
Floderus, A
Castillo, LRF
Bustos, ACF
Flowerdew, MJ
Formica, A
Forti, A
Fortin, D
Fournier, D
Fox, H
Fracchia, S
Francavilla, P
Franchini, M
Franchino, S
Francis, D
Franconi, L
Franklin, M
Franz, S
Fraternali, M
French, ST
Friedrich, C
Friedrich, F
Froidevaux, D
Frost, JA
Fukunaga, C
Torregrosa, EF
Fulsom, BG
Fuster, J
Gabaldon, C
Gabizon, O
Gabrielli, A
Gabrielli, A
Gadatsch, S
Gadomski, S
Gagliardi, G
Gagnon, P
Galea, C
Galhardo, B
Gallas, EJ
Gallo, V
Gallop, BJ
Gallus, P
Galster, G
Gan, KK
Gao, J
Gao, YS
Walls, FMG
Garberson, F
Garcia, C
Navarro, JEG
Garcia-Sciveres, M
Gardner, RW
Garelli, N
Garonne, V
Gatti, C
Gaudio, G
Gaur, B
Gauthier, L
Gauzzi, P
Gavrilenko, IL
Gay, C
Gaycken, G
Gazis, EN
Ge, P
Gecse, Z
Gee, CNP
Geerts, DAA
Geich-Gimbel, C
Gellerstedt, K
Gemme, C
Gemmell, A
Genest, MH
Gentile, S
George, M
George, S
Gerbaudo, D
Gershon, A
Ghazlane, H
Ghodbane, N
Giacobbe, B
Giagu, S
Giangiobbe, V
Giannetti, P
Gianotti, F
Gibbard, B
Gibson, SM
Gilchriese, M
Gillam, TPS
Gillberg, D
Gilles, G
Gingrich, DM
Giokaris, N
Giordani, MP
Giordano, R
Giorgi, FM
Giorgi, FM
Giraud, PF
Giugni, D
Giuliani, C
Giulini, M
Gjelsten, BK
Gkaitatzis, S
Gkialas, I
Gladilin, LK
Glasman, C
Glatzer, J
Glaysher, PCF
Glazov, A
Glonti, GL
Goblirsch-Kolb, M
Goddard, JR
Godfrey, J
Godlewski, J
Goeringer, C
Goldfarb, S
Golling, T
Golubkov, D
Gomes, A
Gomez Fajardo, LS
Goncalo, R
Da Costa, JGPF
Gonella, L
de la Hoz, SG
Parra, GG
Gonzalez-Sevilla, S
Goossens, L
Gorbounov, PA
Gordon, HA
Gorelov, I
Gorini, B
Gorini, E
Gorisek, A
Gornicki, E
Goshaw, AT
Gossling, C
Gostkin, MI
Gouighri, M
Goujdami, D
Goulette, MP
Goussiou, AG
Goy, C
Gozpinar, S
Grabas, HMX
Graber, L
Grabowska-Bold, I
Grafstrom, P
Grahn, KJ
Gramling, J
Gramstad, E
Grancagnolo, S
Grassi, V
Gratchev, V
Gray, HM
Graziani, E
Grebenyuk, OG
Greenwood, ZD
Gregersen, K
Gregor, IM
Grenier, P
Griffiths, J
Grillo, AA
Grimm, K
Grinstein, S
Gris, P
Grishkevich, YV
Grivaz, JF
Grohs, JP
Grohsjean, A
Gross, E
Grosse-Knetter, J
Grossi, GC
Groth-Jensen, J
Grout, ZJ
Guan, L
Guescini, F
Guest, D
Gueta, O
Guicheney, C
Guido, E
Guillemin, T
Guindon, S
Gul, U
Gumpert, C
Gunther, J
Guo, J
Gupta, S
Gutierrez, P
Ortiz, NGG
Gutschow, C
Guttman, N
Guyot, C
Gwenlan, C
Gwilliam, CB
Haas, A
Haber, C
Hadavand, HK
Haddad, N
Haefner, P
Hagebock, S
Hajduk, Z
Hakobyan, H
Haleem, M
Hall, D
Halladjian, G
Hamacher, K
Hamal, P
Hamano, K
Hamer, M
Hamilton, A
Hamilton, S
Hamity, GN
Hamnett, PG
Han, L
Hanagaki, K
Hanawa, K
Hance, M
Hanke, P
Hanna, R
Hansen, JB
Hansen, JD
Hansen, PH
Hara, K
Hard, AS
Harenberg, T
Hariri, F
Harkusha, S
Harper, D
Harrington, RD
Harris, OM
Harrison, PF
Hartjes, F
Hasegawa, M
Hasegawa, S
Hasegawa, Y
Hasib, A
Hassani, S
Haug, S
Hauschild, M
Hauser, R
Havranek, M
Hawkes, CM
Hawkings, RJ
Hawkins, AD
Hayashi, T
Hayden, D
Hays, CP
Hayward, HS
Haywood, SJ
Head, SJ
Heck, T
Hedberg, V
Heelan, L
Heim, S
Heim, T
Heinemann, B
Heinrich, L
Hejbal, J
Helary, L
Heller, C
Heller, M
Hellman, S
Hellmich, D
Helsens, C
Henderson, J
Henderson, RCW
Heng, Y
Hengler, C
Henrichs, A
Correia, AMH
Henrot-Versille, S
Hensel, C
Herbert, GH
Jimenez, YH
Herrberg-Schubert, R
Herten, G
Hertenberger, R
Hervas, L
Hesketh, GG
Hessey, NP
Hickling, R
Higon-Rodriguez, E
Hill, E
Hill, JC
Hiller, KH
Hillert, S
Hillier, SJ
Hinchliffe, I
Hines, E
Hirose, M
Hirschbuehl, D
Hobbs, J
Hod, N
Hodgkinson, MC
Hodgson, P
Hoecker, A
Hoeferkamp, MR
Hoenig, F
Hoffman, J
Hoffmann, D
Hofmann, JI
Hohlfeld, M
Holmes, TR
Hong, TM
van Huysduynen, LH
Horii, Y
Hostachy, JY
Hou, S
Hoummada, A
Howard, J
Howarth, J
Hrabovsky, M
Hristova, I
Hrivnac, J
Hryn'ova, T
Hsu, C
Hsu, PJ
Hsu, SC
Hu, D
Hu, X
Huang, Y
Hubacek, Z
Hubaut, F
Huegging, F
Huffman, TB
Hughes, EW
Hughes, G
Huhtinen, M
Hulsing, TA
Hurwitz, M
Huseynov, N
Huston, J
Huth, J
Iacobucci, G
Iakovidis, G
Ibragimov, I
Iconomidou-Fayard, L
Ideal, E
Iengo, P
Igonkina, O
Iizawa, T
Ikegami, Y
Ikematsu, K
Ikeno, M
Ilchenko, Y
Iliadis, D
Ilic, N
Inamaru, Y
Ince, T
Ioannou, P
Iodice, M
Iordanidou, K
Ippolito, V
Quiles, AI
Isaksson, C
Ishino, M
Ishitsuka, M
Ishmukhametov, R
Issever, C
Istin, S
Ponce, JMI
Iuppa, R
Ivarsson, J
Iwanski, W
Iwasaki, H
Izen, JM
Izzo, V
Jackson, B
Jackson, M
Jackson, P
Jaekel, MR
Jain, V
Jakobs, K
Jakobsen, S
Jakoubek, T
Jakubek, J
Jamin, DO
Jana, DK
Jansen, E
Jansen, H
Janssen, J
Janus, M
Jarlskog, G
Javadov, N
Javurek, T
Jeanty, L
Jejelava, J
Jeng, GY
Jennens, D
Jenni, P
Jentzsch, J
Jeske, C
Jezequel, S
Ji, H
Jia, J
Jiang, Y
Belenguer, MJ
Jin, S
Jinaru, A
Jinnouchi, O
Joergensen, MD
Johansson, KE
Johansson, P
Johns, KA
Jon-And, K
Jones, G
Jones, G
Jones, TJ
Jongmanns, J
Jorge, PM
Joshi, KD
Jovicevic, J
Ju, X
Jung, CA
Jungst, RM
Jussel, P
Rozas, AJ
Kaci, M
Kaczmarska, A
Kado, M
Kagan, H
Kagan, M
Kajomovitz, E
Kalderon, CW
Kama, S
Kamenshchikov, A
Kanaya, N
Kaneda, M
Kaneti, S
Kantserov, VA
Kanzaki, J
Kaplan, B
Kapliy, A
Kar, D
Karakostas, K
Karastathis, N
Karnevskiy, M
Karpov, SN
Karpova, ZM
Karthik, K
Kartvelishvili, V
Karyukhin, AN
Kashif, L
Kasieczka, G
Kass, RD
Kastanas, A
Kataoka, Y
Katre, A
Katzy, J
Kaushik, V
Kawagoe, K
Kawamoto, T
Kawamura, G
Kazama, S
Kazanin, VF
Kazarinov, MY
Keeler, R
Kehoe, R
Keil, M
Keller, JS
Kempster, JJ
Keoshkerian, H
Kepka, O
Kersevan, BP
Kersten, S
Kessoku, K
Keung, J
Khalil-Zada, F
Khandanyan, H
Khanov, A
Khodinov, A
Khomich, A
Khoo, TJ
Khoriauli, G
Khoroshilov, A
Khovanskiy, V
Khramov, E
Khubuab, J
Kim, HY
Kim, H
Kim, SH
Kimura, N
Kind, O
King, BT
King, M
King, RSB
King, SB
Kirk, J
Kiryunin, AE
Kishimoto, T
Kisielewska, D
Kiss, F
Kittelmann, T
Kiuchi, K
Kladiva, E
Klein, M
Klein, U
Kleinknecht, K
Klimek, P
Klimentov, A
Klingenberg, R
Klinger, JA
Klioutchnikova, T
Klok, PF
Kluge, EE
Kluit, P
Kluth, S
Kneringer, E
Knoops, EBFG
Knue, A
Kobayashi, D
Kobayashi, T
Kobel, M
Kocian, M
Kodys, P
Koevesarki, P
Koffas, T
Koffeman, E
Kogan, LA
Kohlmann, S
Kohout, Z
Kohriki, T
Koi, T
Kolanoski, H
Koletsou, I
Koll, J
Komar, AA
Komori, Y
Kondo, T
Kondrashova, N
Koneke, K
Konig, AC
Konig, S
Kono, T
Konoplich, R
Konstantinidis, N
Kopeliansky, R
Koperny, S
Kopke, L
Kopp, AK
Korcyl, K
Kordas, K
Korn, A
Korol, AA
Korolkov, I
Korolkova, EV
Korotkov, VA
Kortner, O
Kortner, S
Kostyukhin, VV
Kotov, VM
Kotwal, A
Kourkoumelis, C
Kouskoura, V
Koutsman, A
Kowalewski, R
Kowalski, TZ
Kozanecki, W
Kozhin, AS
Kral, V
Kramarenko, VA
Kramberger, G
Krasnopevtsev, D
Krasny, MW
Krasznahorkay, A
Kraus, JK
Kravchenko, A
Kreiss, S
Kretz, M
Kretzschmar, J
Kreutzfeldt, K
Krieger, P
Kroeninger, K
Kroha, H
Kroll, J
Kroseberg, J
Krstic, J
Kruchonak, U
Kruger, H
Kruker, T
Krumnack, N
Krumshteyn, ZV
Kruse, A
Kruse, MC
Kruskal, M
Kubota, T
Kudaya, S
Kuehn, S
Kugel, A
Kuhl, A
Kuhl, T
Kukhtin, V
Kulchitsky, Y
Kuleshov, S
Kuna, M
Kunkle, J
Kupco, A
Kurashige, H
Kurochkin, YA
Kurumida, R
Kus, V
Kuwertz, ES
Kuze, M
Kvita, J
La Rosa, A
La Rotonda, L
Lacasta, C
Lacava, F
Lacey, J
Lacker, H
Lacour, D
Lacuesta, VR
Ladygin, E
Lafaye, R
Laforge, B
Lagouri, T
Lai, S
Laier, H
Lambourne, L
Lammers, S
Lampen, CL
Lampl, W
Lancon, E
Landgraf, U
Landon, MPJ
Lang, VS
Lankford, AJ
Lanni, F
Lantzsch, K
Laplace, S
Lapoire, C
Laporte, JF
Lari, T
Lassnig, M
Laurelli, P
Lavrijsen, W
Law, AT
Laycock, P
Le Dortz, O
Le Guirriec, E
Le Menedeu, E
LeCompte, T
Ledroit-Guillon, F
Lee, CA
Lee, H
Lee, JSH
Lee, SC
Lee, L
Lefebvre, G
Lefebvre, M
Legger, F
Leggett, C
Lehan, A
Lehmacher, M
Miotto, GL
Lei, X
Leight, WA
Leisos, A
Leister, AG
Leite, MAL
Leitner, R
Lellouch, D
Lemmer, B
Leney, KJC
Lenz, T
Lenzen, G
Lenzi, B
Leone, R
Leone, S
Leonhardt, K
Leonidopoulos, C
Leontsinis, S
Leroy, C
Lester, CG
Lester, CM
Levchenko, M
Leveque, J
Levin, D
Levinson, LJ
Levy, M
Lewis, A
Lewis, GH
Leyko, AM
Leyton, M
Li, B
Li, B
Li, H
Li, HL
Li, L
Li, L
Li, S
Li, Y
Liang, Z
Liao, H
Liberti, B
Lichard, P
Lie, K
Liebal, J
Liebig, W
Limbach, C
Limosani, A
Lin, SC
Lin, TH
Linde, F
Lindquist, BE
Linnemann, JT
Lipeles, E
Lipniacka, A
Lisovyi, M
Liss, TM
Lissauer, D
Lister, A
Litke, AM
Liu, B
Liu, D
Liu, JB
Liu, K
Liu, L
Liu, M
Liu, M
Liu, Y
Livan, M
Livermore, SSA
Lleres, A
Merino, JL
Lloyd, SL
Lo Sterzo, F
Lobodzinska, E
Loch, P
Lockman, WS
Loddenkoetter, T
Loebinger, FK
Loevschall-Jensen, AE
Loginov, A
Lohse, T
Lohwasser, K
Lokajicek, M
Lombardo, VP
Long, BA
Long, JD
Long, RE
Lopes, L
Mateos, DL
Paredes, BL
Paz, IL
Lorenz, J
Martinez, NL
Losada, M
Loscutoff, P
Lou, X
Lounis, A
Love, J
Love, PA
Lowe, AJ
Lu, F
Lu, N
Lubatti, HJ
Luci, C
Lucotte, A
Luehring, F
Lukas, W
Luminari, L
Lundberg, O
Lund-Jensen, B
Lungwitz, M
Lynn, D
Lysak, R
Lytken, E
Ma, H
Ma, LL
Maccarrone, G
Macchiolo, A
Miguens, JM
Macina, D
Madaffari, D
Madar, R
Maddocks, HJ
Mader, WF
Madsen, A
Maeno, M
Maeno, T
Magradze, E
Mahboubi, K
Mahlstedt, J
Mahmoud, S
Maiani, C
Maidantchik, C
Maier, AA
Maio, A
Majewski, S
Makida, Y
Makovec, N
Mal, P
Malaescu, B
Malecki, P
Maleev, VP
Malek, F
Mallik, U
Malon, D
Malone, C
Maltezos, S
Malyshev, VM
Malyukov, S
Mamuzic, J
Mandelli, B
Mandelli, L
Mandic, I
Mandrysch, R
Maneira, J
Manfredini, A
de Andrade, LM
Ramos, JA
Mann, A
Manning, PM
Manousakis-Katsikakis, A
Mansoulie, B
Mantifel, R
Mapelli, L
March, L
Marchand, JF
Marchiori, G
Marcisovsky, M
Marino, CP
Marjanovic, M
Marques, CN
Marroquim, F
Marsden, SP
Marshall, Z
Marti, LF
Marti-Garcia, S
Martin, B
Martin, B
Martin, TA
Martin, VJ
Latour, BMD
Martinez, H
Martinez, M
Martin-Haugh, S
Martyniuk, AC
Marx, M
Marzano, F
Marzin, A
Masetti, L
Mashimo, T
Mashinistov, R
Masik, J
Maslennikov, AL
Massa, I
Massa, L
Massol, N
Mastrandrea, P
Mastroberardino, A
Masubuchi, T
Mattig, P
Mattmann, J
Maurera, J
Maxfield, SJ
Maximov, DA
Mazini, R
Mazzaferro, L
Mc Goldrick, G
Mc Kee, SP
McCarn, A
McCarthy, RL
McCarthy, TG
McCubbin, NA
McFarlane, KW
Mcfayden, JA
Mchedlidze, G
McMahon, SJ
McPherson, RA
Meade, A
Mechnich, J
Medinnis, M
Meehan, S
Mehlhase, S
Mehta, A
Meier, K
Meineck, C
Meirose, B
Melachrinos, C
Garcia, BRM
Meloni, F
Mengarelli, A
Menke, S
Meoni, E
Mercurio, KM
Mergelmeyer, S
Meric, N
Mermod, P
Merola, L
Meroni, C
Merritt, FS
Merritt, H
Messina, A
Metcalfe, J
Mete, AS
Meyer, C
Meyer, C
Meyer, JP
Meyer, J
Middleton, RP
Migas, S
Mijovic, L
Mikenberg, G
Mikestikova, M
Mikuz, M
Milic, A
Miller, DW
Mills, C
Milov, A
Milstead, DA
Milstein, D
Minaenko, AA
Minashvili, IA
Mincer, AI
Mindura, B
Mineev, M
Ming, Y
Mir, LM
Mirabelli, G
Mitani, T
Mitrevski, J
Mitsou, VA
Mitsui, S
Miucci, A
Miyagawa, PS
Mjornmark, JU
Moa, T
Mochizuki, K
Mohapatra, S
Mohr, W
Molander, S
Moles-Valls, R
Monig, K
Monini, C
Monk, J
Monnier, E
Berlingen, JM
Monticelli, F
Monzani, S
Moore, RW
Morange, N
Moreno, D
Llacer, MM
Morettini, P
Morgenstern, M
Morii, M
Moritz, S
Morley, AK
Mornacchi, G
Morris, JD
Morvaj, L
Moser, HG
Mosidze, M
Moss, J
Motohashi, K
Mount, R
Mountricha, E
Mouraviev, SV
Moyse, EJW
Muanza, S
Mudd, RD
Mueller, F
Mueller, J
Mueller, K
Mueller, T
Mueller, T
Muenstermann, D
Munwes, Y
Quijada, JAM
Murray, WJ
Musheghyan, H
Musto, E
Myagkov, AG
Myska, M
Nackenhorst, O
Nadal, J
Nagai, K
Nagai, R
Nagai, Y
Nagano, K
Nagarkar, A
Nagasaka, Y
Nagel, M
Nairz, AM
Nakahama, Y
Nakamura, K
Nakamura, T
Nakano, I
Namasivayam, H
Nanava, G
Narayan, R
Nattermann, T
Naumann, T
Navarro, G
Nayyar, R
Neal, HA
Nechaeva, PY
Neep, TJ
Nef, PD
Negri, A
Negri, G
Negrini, M
Nektarijevic, S
Nelson, A
Nelson, TK
Nemecek, S
Nemethy, P
Nepomuceno, AA
Nessi, M
Neubauer, MS
Neumann, M
Neves, RM
Nevski, P
Newman, PR
Nguyen, DH
Nickerson, RB
Nicolaidou, R
Nicquevert, B
Nielsen, J
Nikiforou, N
Nikiforov, A
Nikolaenko, V
Nikolic-Audit, I
Nikolics, K
Nikolopoulos, K
Nilsson, P
Ninomiya, Y
Nisati, A
Nisius, R
Nobe, T
Nodulman, L
Nomachi, M
Nomidis, I
Norberg, S
Nordberg, M
Novgorodova, O
Nowak, S
Nozaki, M
Nozka, L
Ntekas, K
NunesHanninger, G
Nunnemann, T
Nurse, E
Nuti, F
O'Brien, BJ
O'grady, F
O'Neil, DC
O'Shea, V
Oakham, FG
Oberlack, H
Obermann, T
Ocariz, J
Ochi, A
Ochoa, MI
Oda, S
Odaka, S
Ogren, H
Oh, A
Oh, SH
Ohm, CC
Ohman, H
Okamura, W
Okawa, H
Okumura, Y
Okuyama, T
Olariu, A
Olchevski, AG
Pino, SAO
Damazio, DO
Garcia, EO
Olszewski, A
Olszowska, J
Onofre, A
Onyisi, PUE
Oram, CJ
Oreglia, MJ
Oren, Y
Orestano, D
Orlando, N
Barrera, CO
Orr, RS
Osculatia, B
Ospanov, R
Garzo, GOY
Otono, H
Ouchrif, M
Ouellette, EA
Ould-Saada, F
Ouraou, A
Oussoren, KP
Ouyang, Q
Ovcharova, A
Owen, M
Ozcan, VE
Ozturk, N
Pachal, K
Pages, AP
Aranda, CP
Pagacova, M
Griso, SP
Paganis, E
Pahl, C
Paige, F
Pais, P
Pajchel, K
Palacino, G
Palestini, S
Palka, M
Pallin, D
Palma, A
Palmer, JD
Pan, YB
Panagiotopoulou, E
Vazquez, JGP
Pani, P
Panikashvili, N
Panitkin, S
Pantea, D
Paolozzi, L
Papadopoulou, TD
Papageorgiou, K
Paramonov, A
Hernandez, DP
Parker, MA
Parodi, F
Parsons, JA
Parzefall, U
Pasqualucci, E
Passaggio, S
Passeri, A
Pastore, F
Pastore, F
Pasztor, G
Pataraia, S
Patel, ND
Pater, JR
Patricelli, S
Pauly, T
Pearce, J
Pedersen, LE
Pedersen, M
Lopez, SP
Pedro, R
Peleganchuk, SV
Pelikan, D
Peng, H
Penning, B
Penwell, J
Perepelitsa, DV
Codina, EP
Garcia-Estan, MTP
Reale, VP
Perini, L
Pernegger, H
Perrino, R
Peschke, R
Peshekhonov, VD
Peters, K
Peters, RFY
Petersen, BA
Petersen, TC
Petit, E
Petridis, A
Petridou, C
Petrolo, E
Petrucci, F
Pettersson, NE
Pezoa, R
Phillips, PW
Piacquadio, G
Pianori, E
Picazio, A
Piccaro, E
Piccinini, M
Piegaia, R
Pignotti, DT
Pilcher, JE
Pilkington, AD
Pina, J
Pinamonti, M
Pinder, A
Pinfold, JL
Pingel, A
Pinto, B
Pires, S
Pitt, M
Pizio, C
Plazak, L
Pleier, MA
Pleskot, V
Plotnikova, E
Plucinski, P
Poddar, S
Podlyski, F
Poettgen, R
Poggioli, L
Pohl, D
Pohl, M
Polesello, G
Policicchio, A
Polifka, R
Polini, A
Pollard, CS
Polychronakos, V
Pommes, K
Pontecorvo, L
Pope, BG
Popeneciu, GA
Popovica, DS
Poppleton, A
Bueso, XP
Pospisil, S
Potamianos, K
Potrap, IN
Potter, CJ
Potter, CT
Poulard, G
Poveda, J
Pozdnyakov, V
Pralavorio, P
Pranko, A
Prasad, S
Pravahan, R
Prell, S
Price, D
Price, J
Price, LE
Prieur, D
Primavera, M
Proissl, M
Prokofiev, K
Prokoshin, F
Protopapadaki, E