FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Iskandar, W
Matsumoto, J
Leredde, A
Flechard, X
Gervais, B
Guillous, S
Hennecart, D
Mery, A
Rangama, J
Zhou, CL
Shiromaru, H
Cassimi, A
AF Iskandar, W.
Matsumoto, J.
Leredde, A.
Flechard, X.
Gervais, B.
Guillous, S.
Hennecart, D.
Mery, A.
Rangama, J.
Zhou, C. L.
Shiromaru, H.
Cassimi, A.
TI Atomic Site-Sensitive Processes in Low Energy Ion-Dimer Collisions
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID ELECTRON-CAPTURE; CROSS-SECTIONS; IONIZATION; MOLECULES; IMPACT; MODEL
AB Electron capture processes for low energy Ar9+ ions colliding with Ar-2 dimer targets are investigated, focusing attention on charge sharing between the two Ar atoms as a function of the molecular orientation and the impact parameter. A preference for charge-asymmetric dissociation channels is observed, with a strong correlation between the projectile scattering angle and the molecular ion orientation. The measurements here provide clear evidence that projectiles distinguish each atom in the target and that electron capture from near-site atoms is favored. Monte Carlo calculations based on the classical over-the-barrier model, with dimer targets represented as two independent atoms, are compared to the data. They give new insight into the dynamics of the collision by providing, for the different electron capture channels, the two-dimensional probability maps p((b) over right arrow) where (b) over right arrow is the impact parameter vector in the molecular frame.
C1 [Iskandar, W.; Gervais, B.; Guillous, S.; Hennecart, D.; Mery, A.; Rangama, J.; Zhou, C. L.; Cassimi, A.] CEA, CNRS, CIMAP, ENSICAEN, F-14070 Caen 5, France.
[Matsumoto, J.; Shiromaru, H.] Tokyo Metropolitan Univ, Dept Chem, Hachioji, Tokyo 1920397, Japan.
[Leredde, A.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Flechard, X.] Univ Caen, CNRS, IN2P3, LPC Caen,ENSICAEN, F-14050 Caen 04, France.
RP Iskandar, W (reprint author), CEA, CNRS, CIMAP, ENSICAEN, BP 5133, F-14070 Caen 5, France.
EM flechard@lpccaen.in2p3.fr
RI RANGAMA, Jimmy/O-9880-2015;
OI RANGAMA, Jimmy/0000-0002-8083-6881; Iskandar, Wael/0000-0003-4604-4431
FU TMU Research Program
FX We thank the CIMAP and GANIL staff for their contribution in the
preparation of the experiment. This work is partly supported by TMU
Research Program in the financial years 2013-2014.
NR 17
TC 5
Z9 5
U1 1
U2 22
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 2
PY 2014
VL 113
IS 14
AR 143201
DI 10.1103/PhysRevLett.113.143201
PG 5
WC Physics, Multidisciplinary
SC Physics
GA AQ2TI
UT WOS:000342641700002
PM 25325640
ER
PT J
AU Krycka, KL
Borchers, JA
Booth, RA
Ijiri, Y
Hasz, K
Rhyne, JJ
Majetich, SA
AF Krycka, K. L.
Borchers, J. A.
Booth, R. A.
Ijiri, Y.
Hasz, K.
Rhyne, J. J.
Majetich, S. A.
TI Origin of Surface Canting within Fe3O4 Nanoparticles
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID ANGLE NEUTRON-SCATTERING; POLARIZED NEUTRONS; MAGNETITE; SEPARATION;
ANISOTROPY; SANS
AB The nature of near-surface spin canting within Fe3O4 nanoparticles is highly debated. Here we develop a neutron scattering asymmetry analysis which quantifies the canting angle to between 23 degrees and 42 degrees at 1.2 T. Simultaneously, an energy-balance model is presented which reproduces the experimentally observed evolution of shell thickness and canting angle between 10 and 300 K. The model is based on the concept of T-d site reorientation and indicates that surface canting involves competition between magnetocrystalline, dipolar, exchange, and Zeeman energies.
C1 [Krycka, K. L.; Borchers, J. A.] NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Booth, R. A.; Majetich, S. A.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Ijiri, Y.; Hasz, K.] Oberlin Coll, Oberlin, OH 44074 USA.
[Rhyne, J. J.] US DOE, Washington, DC 20585 USA.
RP Krycka, KL (reprint author), NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.
EM kathryn.krycka@nist.gov
RI Majetich, Sara/B-1022-2015
OI Majetich, Sara/0000-0003-0848-9317
FU National Science Foundation [DMR-0944772, DMR-1104489]; Department of
Energy [DE-FG02-08ER46481]
FX This work utilized facilities supported in part by National Science
Foundation Grants No. DMR-0944772 (neutron instrumentation used by all
authors) and No. DMR-1104489 (Y. I.) and Department of Energy Grant No.
DE-FG02-08ER46481 (S. M.). We thank W. C. Chen and S. M. Watson for
their assistance with the polarized 3He spin filters and P.
Kienzle for his discussions regarding locating energy minima.
NR 32
TC 14
Z9 14
U1 3
U2 45
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 2
PY 2014
VL 113
IS 14
AR 147203
DI 10.1103/PhysRevLett.113.147203
PG 5
WC Physics, Multidisciplinary
SC Physics
GA AQ2TI
UT WOS:000342641700005
PM 25325655
ER
PT J
AU Ma, YQ
Qiu, JW
Sterman, G
Zhang, H
AF Ma, Yan-Qing
Qiu, Jian-Wei
Sterman, George
Zhang, Hong
TI Factorized Power Expansion for High-p(T) Heavy Quarkonium Production
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID FRAGMENTATION
AB We show that when the factorized cross section for heavy quarkonium production includes next-to-leading power contributions associated with the production of the heavy quark pair at short distances, it naturally reproduces all high p(T) results calculated in nonrelativistic QCD (NRQCD) factorization. This extended formalism requires fragmentation functions for heavy quark pairs, as well as for light partons. When these fragmentation functions are themselves calculated using NRQCD, we find that two of the four leading NRQCD production channels, S-3(1)[1] and S-1(0)[8], are dominated by the next-to-leading power contributions for a very wide p(T) range. The large next-to-leading order corrections of NRQCD are absorbed into the leading order of the first power correction. The impact of this finding on heavy quarkonium production and its polarization is discussed.
C1 [Ma, Yan-Qing; Qiu, Jian-Wei] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Qiu, Jian-Wei; Sterman, George] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA.
[Qiu, Jian-Wei; Sterman, George; Zhang, Hong] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
RP Ma, YQ (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
EM yqma@bnl.gov; jqiu@bnl.gov; sterman@insti.physics.sunysb.edu;
hong.zhang@stonybrook.edu
FU U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-98CH10886];
National Science Foundation [PHY-0969739, PHY-1316617]
FX We thank G. T. Bodwin and Z.-B. Kang for many helpful discussions. This
work was supported in part by the U.S. Department of Energy under
Contracts No. DE-AC02-05CH11231 and No. DE-AC02-98CH10886, and the
National Science Foundation under Grants No. PHY-0969739 and No.
PHY-1316617.
NR 27
TC 13
Z9 13
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 2
PY 2014
VL 113
IS 14
AR 142002
DI 10.1103/PhysRevLett.113.142002
PG 5
WC Physics, Multidisciplinary
SC Physics
GA AQ2TI
UT WOS:000342641700001
PM 25325634
ER
PT J
AU Balhorn, MC
Mirick, G
Cheng, D
Ma, ZP
Lau, EY
Hok, S
DeNardo, GL
Balhorn, R
AF Balhorn, Monique C.
Mirick, Gary
Cheng, Dong
Ma, Zhengping
Lau, Edmond Y.
Hok, Saphon
DeNardo, Gerald L.
Balhorn, Rod
TI Intracellular uptake and metabolism of SH7139: Is it a targeted prodrug
for B-cell lymphomas
SO CANCER RESEARCH
LA English
DT Meeting Abstract
CT 105th Annual Meeting of the American-Association-for-Cancer-Research
(AACR)
CY APR 05-09, 2014
CL San Diego, CA
SP Amer Assoc Canc Res
C1 [Balhorn, Monique C.; Balhorn, Rod] SHAL Technol Inc, Livermore, CA USA.
[Mirick, Gary; DeNardo, Gerald L.] Univ Calif Davis, Davis Med Ctr, Davis, CA 95616 USA.
[Cheng, Dong; Ma, Zhengping] Bristol Myers Squibb Co, Princeton, NJ USA.
[Lau, Edmond Y.; Hok, Saphon] Lawrence Livermore Natl Lab, Livermore, CA USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER ASSOC CANCER RESEARCH
PI PHILADELPHIA
PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA
SN 0008-5472
EI 1538-7445
J9 CANCER RES
JI Cancer Res.
PD OCT 1
PY 2014
VL 74
IS 19
SU S
MA 5460
DI 10.1158/1538-7445.AM2014-5460
PG 1
WC Oncology
SC Oncology
GA CB8VR
UT WOS:000349910204378
ER
PT J
AU Balhorn, R
Mirick, G
DeNardo, GL
Beckett, L
Li, J
Hok, S
Balhorn, M
AF Balhorn, Rodney
Mirick, Gary
DeNardo, Gerald L.
Beckett, Laurel
Li, Judy
Hok, Saphon
Balhorn, Monique
TI Effect of route and dosing regimen on efficacy of SH7139 in mouse
Burkitt's lymphoma xenografts
SO CANCER RESEARCH
LA English
DT Meeting Abstract
CT 105th Annual Meeting of the American-Association-for-Cancer-Research
(AACR)
CY APR 05-09, 2014
CL San Diego, CA
SP Amer Assoc Canc Res
C1 [Balhorn, Rodney; Balhorn, Monique] SHAL Technol Inc, Livermore, CA USA.
[Mirick, Gary; DeNardo, Gerald L.; Beckett, Laurel; Li, Judy] Univ Calif Davis, Davis Med Ctr, Davis, CA 95616 USA.
[Hok, Saphon] Lawrence Livermore Natl Lab, Livermore, CA USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER ASSOC CANCER RESEARCH
PI PHILADELPHIA
PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA
SN 0008-5472
EI 1538-7445
J9 CANCER RES
JI Cancer Res.
PD OCT 1
PY 2014
VL 74
IS 19
SU S
MA 2703
DI 10.1158/1538-7445.AM2014-2703
PG 1
WC Oncology
SC Oncology
GA CB8UN
UT WOS:000349906903455
ER
PT J
AU Horiuchi, D
Zhou, AY
Corella, AN
Yau, C
Lawson, DA
Bazarov, AV
Yaswen, P
McManus, MT
Werb, Z
Welm, AL
Goga, A
AF Horiuchi, Dai
Zhou, Alicia Y.
Corella, Alexandra N.
Yau, Christina
Lawson, Devon A.
Bazarov, Alexey V.
Yaswen, Paul
McManus, Michael T.
Werb, Zena
Welm, Alana L.
Goga, Andrei
TI PIM1 kinase inhibition halts the growth of MYC-overexpressing
triple-negative breast tumors
SO CANCER RESEARCH
LA English
DT Meeting Abstract
CT 105th Annual Meeting of the American-Association-for-Cancer-Research
(AACR)
CY APR 05-09, 2014
CL San Diego, CA
SP Amer Assoc Canc Res
C1 [Horiuchi, Dai; Zhou, Alicia Y.; Corella, Alexandra N.; Yau, Christina; Lawson, Devon A.; Bazarov, Alexey V.; McManus, Michael T.; Werb, Zena; Goga, Andrei] UCSF, San Francisco, CA USA.
[Yaswen, Paul] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[Welm, Alana L.] Univ Utah, Salt Lake City, UT USA.
NR 0
TC 0
Z9 0
U1 1
U2 1
PU AMER ASSOC CANCER RESEARCH
PI PHILADELPHIA
PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA
SN 0008-5472
EI 1538-7445
J9 CANCER RES
JI Cancer Res.
PD OCT 1
PY 2014
VL 74
IS 19
SU S
MA LB-122
DI 10.1158/1538-7445.AM2014-LB-122
PG 1
WC Oncology
SC Oncology
GA CB8VR
UT WOS:000349910205155
ER
PT J
AU Melchionna, R
Iapicca, P
Modugno, FD
Trono, P
Gualtieri, N
Diodoro, MG
Spada, S
Falasca, G
Grazi, GL
Bissell, MJ
Nistico, P
AF Melchionna, Roberta
Iapicca, Pierluigi
Modugno, Francesca D.
Trono, Paola
Gualtieri, Novella
Diodoro, Maria Grazia
Spada, Sheila
Falasca, Giuliana
Grazi, Gian Luca
Bissell, Mina J.
Nistico, Paola
TI hMENA splicing program and TGF-beta 1-mediated EMT in pancreatic cancer
SO CANCER RESEARCH
LA English
DT Meeting Abstract
CT 105th Annual Meeting of the American-Association-for-Cancer-Research
(AACR)
CY APR 05-09, 2014
CL San Diego, CA
SP Amer Assoc Canc Res
C1 [Melchionna, Roberta; Iapicca, Pierluigi; Modugno, Francesca D.; Trono, Paola; Gualtieri, Novella; Diodoro, Maria Grazia; Spada, Sheila; Falasca, Giuliana; Grazi, Gian Luca; Nistico, Paola] Regina Elena Inst Canc Res, Rome, Italy.
[Bissell, Mina J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER ASSOC CANCER RESEARCH
PI PHILADELPHIA
PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA
SN 0008-5472
EI 1538-7445
J9 CANCER RES
JI Cancer Res.
PD OCT 1
PY 2014
VL 74
IS 19
SU S
MA 1035
DI 10.1158/1538-7445.AM2014-1035
PG 2
WC Oncology
SC Oncology
GA CB8UN
UT WOS:000349906900264
ER
PT J
AU Miller, MS
Schmidt-Kittler, O
Bolduc, DM
Brower, ET
Chaves-Moreira, D
Allaire, M
Kinzler, KW
Jennings, IG
Thompson, PE
Cole, PA
Amzel, LM
Vogelstein, B
Gabelli, SB
AF Miller, Michelle S.
Schmidt-Kittler, Oleg
Bolduc, David M.
Brower, Evan T.
Chaves-Moreira, Daniele
Allaire, Marc
Kinzler, Kenneth W.
Jennings, Ian G.
Thompson, Philip E.
Cole, Philip A.
Amzel, L. Mario
Vogelstein, Bert
Gabelli, Sandra B.
TI Structural basis of lipid-binding and regulation in PI3K alpha
SO CANCER RESEARCH
LA English
DT Meeting Abstract
CT 105th Annual Meeting of the American-Association-for-Cancer-Research
(AACR)
CY APR 05-09, 2014
CL San Diego, CA
SP Amer Assoc Canc Res
C1 [Miller, Michelle S.; Schmidt-Kittler, Oleg; Bolduc, David M.; Brower, Evan T.; Chaves-Moreira, Daniele; Cole, Philip A.; Amzel, L. Mario; Gabelli, Sandra B.] Johns Hopkins Univ, Sch Med, Baltimore, MD USA.
[Allaire, Marc] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Kinzler, Kenneth W.; Vogelstein, Bert] Ludwig Ctr Canc Genet & Therapeut, Baltimore, MD USA.
[Jennings, Ian G.; Thompson, Philip E.] Monash Inst Pharmaceut Sci, Melbourne, Vic, Australia.
RI Chaves-Moreira, daniele/L-5133-2015; Gabelli, Sandra/A-3705-2008
OI Gabelli, Sandra/0000-0003-1205-5204
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER ASSOC CANCER RESEARCH
PI PHILADELPHIA
PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA
SN 0008-5472
EI 1538-7445
J9 CANCER RES
JI Cancer Res.
PD OCT 1
PY 2014
VL 74
IS 19
SU S
MA LB-326
DI 10.1158/1538-7445.AM2014-LB-326
PG 1
WC Oncology
SC Oncology
GA CB8VR
UT WOS:000349910205362
ER
PT J
AU Moshfegh, A
Hogfeldt, T
Jaing, C
Lundahl, J
Osterborg, A
Loughlin, KM
Gardner, SN
Gharizadeh, B
Porwit, A
Bahnassy, AA
Zekri, ARN
Khaled, HM
Mellstedt, H
AF Moshfegh, Ali
Hogfeldt, Therese
Jaing, Crystal
Lundahl, Joachim
Osterborg, Anders
Loughlin, Kevin M.
Gardner, Shea N.
Gharizadeh, Baback
Porwit, Anna
Bahnassy, Abeer A.
Zekri, Abdel-Rahman N.
Khaled, Hussein M.
Mellstedt, Hakan
TI Differential expression of viral agents in lymphoma tissues of patients
with ABC diffuse large B-cell lymphoma from high and low endemic
infectious disease region
SO CANCER RESEARCH
LA English
DT Meeting Abstract
CT 105th Annual Meeting of the American-Association-for-Cancer-Research
(AACR)
CY APR 05-09, 2014
CL San Diego, CA
SP Amer Assoc Canc Res
C1 [Moshfegh, Ali; Hogfeldt, Therese; Lundahl, Joachim; Osterborg, Anders; Mellstedt, Hakan] Karoliniska Inst, Stockholm, Sweden.
[Jaing, Crystal; Loughlin, Kevin M.; Gardner, Shea N.] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Gharizadeh, Baback] Stanford Univ, Palo Alto, CA 94304 USA.
[Porwit, Anna] Univ Toronto, Toronto, ON, Canada.
[Bahnassy, Abeer A.; Zekri, Abdel-Rahman N.; Khaled, Hussein M.] Cairo Univ, Cairo, Egypt.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER ASSOC CANCER RESEARCH
PI PHILADELPHIA
PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA
SN 0008-5472
EI 1538-7445
J9 CANCER RES
JI Cancer Res.
PD OCT 1
PY 2014
VL 74
IS 19
SU S
MA 3184
DI 10.1158/1538-7445.AM2014-3184
PG 2
WC Oncology
SC Oncology
GA CB8VR
UT WOS:000349910200188
ER
PT J
AU Pan, AW
Wang, SS
Zhang, HY
Vinall, R
Lin, TY
Malfatti, M
Zimmermann, M
Scharadin, T
Turteltaub, K
White, RD
Pan, CX
Henderson, P
AF Pan, Amy W.
Wang, Sisi
Zhang, Hongyong
Vinall, Ruth
Lin, Tzu-yin
Malfatti, Michael
Zimmermann, Maike
Scharadin, Tiffany
Turteltaub, Kenneth
White, Ralph de Vere
Pan, Chong-xian
Henderson, Paul
TI Molecular dissection of platinum resistance through functional analysis
SO CANCER RESEARCH
LA English
DT Meeting Abstract
CT 105th Annual Meeting of the American-Association-for-Cancer-Research
(AACR)
CY APR 05-09, 2014
CL San Diego, CA
SP Amer Assoc Canc Res
C1 [Pan, Amy W.] Univ Calif San Diego, San Diego, CA 92103 USA.
[Wang, Sisi] Jilin Univ, Hosp 1, Changchun, Jilin, Peoples R China.
[Zhang, Hongyong; Lin, Tzu-yin; Zimmermann, Maike; Scharadin, Tiffany; White, Ralph de Vere; Pan, Chong-xian; Henderson, Paul] Univ Calif Davis, Sacramento, CA 95817 USA.
[Vinall, Ruth] Calif Northstate Univ, Coll Pharm, Rancho Cordova, CA USA.
[Malfatti, Michael; Turteltaub, Kenneth] Lawrence Livermore Natl Lab, Livermore, CA USA.
NR 0
TC 0
Z9 0
U1 0
U2 1
PU AMER ASSOC CANCER RESEARCH
PI PHILADELPHIA
PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA
SN 0008-5472
EI 1538-7445
J9 CANCER RES
JI Cancer Res.
PD OCT 1
PY 2014
VL 74
IS 19
SU S
MA 905
DI 10.1158/1538-7445.AM2014-905
PG 1
WC Oncology
SC Oncology
GA CB8UN
UT WOS:000349906905365
ER
PT J
AU Refaat, T
West, D
Harris, KR
Parini, V
Liu, W
Wanzer, B
Finney, L
Larson, AC
Bautista, J
Sathiaseelan, V
Mittal, B
Paunesku, T
Woloschak, G
AF Refaat, Tamer
West, Derek
Harris, Kathleen R.
Parini, Vamsi
Liu, William
Wanzer, Beau
Finney, Lydia
Larson, Andrew C.
Bautista, Jonathan
Sathiaseelan, Vythialinga
Mittal, Bharat
Paunesku, Tatjana
Woloschak, Gayle
TI Development of Fe3O4@TiO2 core-shell nanocomposites as radiosensitizers
SO CANCER RESEARCH
LA English
DT Meeting Abstract
CT 105th Annual Meeting of the American-Association-for-Cancer-Research
(AACR)
CY APR 05-09, 2014
CL San Diego, CA
SP Amer Assoc Canc Res
C1 [Refaat, Tamer; West, Derek; Harris, Kathleen R.; Parini, Vamsi; Liu, William; Wanzer, Beau; Larson, Andrew C.; Bautista, Jonathan; Sathiaseelan, Vythialinga; Mittal, Bharat; Paunesku, Tatjana; Woloschak, Gayle] Northwestern Univ, Chicago, IL 60611 USA.
[Finney, Lydia] Argonne Natl Lab, Lemont, IL USA.
RI Paunesku, Tatjana/A-3488-2017; Woloschak, Gayle/A-3799-2017
OI Paunesku, Tatjana/0000-0001-8698-2938; Woloschak,
Gayle/0000-0001-9209-8954
NR 0
TC 0
Z9 0
U1 1
U2 12
PU AMER ASSOC CANCER RESEARCH
PI PHILADELPHIA
PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA
SN 0008-5472
EI 1538-7445
J9 CANCER RES
JI Cancer Res.
PD OCT 1
PY 2014
VL 74
IS 19
SU S
MA 4913
DI 10.1158/1538-7445.AM2014-4913
PG 2
WC Oncology
SC Oncology
GA CB8VR
UT WOS:000349910203376
ER
PT J
AU Shi, TJ
He, JT
Wu, CC
Fillmore, TL
Schepmoes, AA
Rubin, M
Siddiqui, J
Wei, J
Chinnaiyan, A
Liu, A
Smith, RD
Kagan, J
Srivastava, S
Rodland, KD
Qian, WJ
Liu, T
Camp, DG
AF Shi, Tujin
He, Jintang
Wu, Chaochao
Fillmore, Thomas L.
Schepmoes, Athena A.
Rubin, Mark
Siddiqui, Javed
Wei, John
Chinnaiyan, Arul
Liu, Alvin
Smith, Richard D.
Kagan, Jacob
Srivastava, Sudhir
Rodland, Karin D.
Qian, Wei-Jun
Liu, Tao
Camp, David G.
TI An antibody-independent, complementary SRM strategy for ultrasensitive
and multiplexed quantification of cancer biomarker candidates
SO CANCER RESEARCH
LA English
DT Meeting Abstract
CT 105th Annual Meeting of the American-Association-for-Cancer-Research
(AACR)
CY APR 05-09, 2014
CL San Diego, CA
SP Amer Assoc Canc Res
C1 [Shi, Tujin; He, Jintang; Wu, Chaochao; Fillmore, Thomas L.; Schepmoes, Athena A.; Smith, Richard D.; Rodland, Karin D.; Qian, Wei-Jun; Liu, Tao; Camp, David G.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Rubin, Mark] Weill Cornell Med Coll, New York, NY USA.
[Siddiqui, Javed; Wei, John; Chinnaiyan, Arul] Univ Michigan Med Sch, Ann Arbor, MI USA.
[Liu, Alvin] Univ Washington, Seattle, WA 98195 USA.
[Kagan, Jacob; Srivastava, Sudhir] NCI, Rockville, MD USA.
RI Smith, Richard/J-3664-2012
OI Smith, Richard/0000-0002-2381-2349
NR 0
TC 0
Z9 0
U1 0
U2 1
PU AMER ASSOC CANCER RESEARCH
PI PHILADELPHIA
PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA
SN 0008-5472
EI 1538-7445
J9 CANCER RES
JI Cancer Res.
PD OCT 1
PY 2014
VL 74
IS 19
SU S
MA 2483
DI 10.1158/1538-7445.AM2014-2483
PG 2
WC Oncology
SC Oncology
GA CB8UN
UT WOS:000349906903216
ER
PT J
AU Pennington, MR
AF Pennington, M. R.
TI Why is GeV physics relevant in the age of the LHC?
SO HYPERFINE INTERACTIONS
LA English
DT Proceedings Paper
CT 11th International Conference on Low Energy Antiproton Physics (LEAP)
CY JUN 10-15, 2013
CL Uppsala Univ, Dept Phys & Astron, Uppsala, SWEDEN
SP Uppsala Univ, Dept Chem, Uppsala Univ, Angstrom Lab
HO Uppsala Univ, Dept Phys & Astron
DE QCD; Baryons; Mesons; Spectrum; Decays; Structure
ID PARTIAL-WAVE ANALYSIS; NUCLEON; RESONANCES; REGION; MESON; PION
AB The contribution that Jefferson Lab has made, with its 6 GeV electron beam, and will make, with its 12 GeV upgrade, to our understanding of the way the fundamental interactions work, particularly strong coupling QCD, is outlined. This physics at the GeV scale is essential even in TeV collisions.
C1 Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA.
RP Pennington, MR (reprint author), Thomas Jefferson Natl Accelerator Facil, Ctr Theory, 12000 Jefferson Ave, Newport News, VA 23606 USA.
EM michaelp@jlab.org
NR 35
TC 1
Z9 1
U1 0
U2 0
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0304-3843
J9 HYPERFINE INTERACT
JI Hyperfine Interact.
PD OCT
PY 2014
VL 229
IS 1-3
BP 59
EP 68
DI 10.1007/s10751-014-1033-8
PG 10
WC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter;
Physics, Nuclear
SC Physics
GA AR9UU
UT WOS:000343925100008
ER
PT J
AU von der Heyden, BP
Hauser, EJ
Mishra, B
Martinez, GA
Bowie, AR
Tyliszczak, T
Mtshali, TN
Roychoudhury, AN
Myneni, SCB
AF von der Heyden, Bjorn P.
Hauser, Emily J.
Mishra, Bhoopesh
Martinez, Gustavo A.
Bowie, Andrew R.
Tyliszczak, Tolek
Mtshali, Thato N.
Roychoudhury, Alakendra N.
Myneni, Satish C. B.
TI Ubiquitous Presence of Fe(II) in Aquatic Colloids and Its Association
with Organic Carbon
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS
LA English
DT Article
ID X-RAY MICROSCOPY; IRON; OCEAN; SPECTROSCOPY; SPECIATION; REDUCTION;
OXIDATION; SEDIMENTS; MINERALS; KINETICS
AB Despite being thermodynamically less stable, small ferrous colloids (60 nm to 3 mu m in diameter) remain an important component of the biogeochemical cycle at the Earth's surface, yet their composition and structure and the reasons for their persistence are still poorly understood. Here we use X-ray-based Fe L-edge and carbon K-edge spectromicroscopy to address the speciation and organic-mineral associations of ferrous, ferric, and Fe-poor particles collected from sampling sites in both marine and freshwater environments. We show that Fe(II)-rich phases are prevalent throughout different aquatic regimes yet exhibit a high degree of chemical heterogeneity. Furthermore, we show that Fe-rich particles show strong associations with organic carbon. The observed association of Fe(II) particles with carboxamide functional groups suggests a possible microbial role in the preservation of Fe(II). These finding have significant implications for the behavior of Fe(II) colloids in oxygenated waters, and their role in different aquatic biogeochemical processes.
C1 [von der Heyden, Bjorn P.; Roychoudhury, Alakendra N.] Univ Stellenbosch, Dept Earth Sci, ZA-7602 Matieland, South Africa.
[Hauser, Emily J.; Myneni, Satish C. B.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA.
[Mishra, Bhoopesh] IIT, Dept Phys, Chicago, IL 60616 USA.
[Martinez, Gustavo A.] Univ Puerto Rico, Coll Agr Sci, Crops & Agroenvironm Dept, Mayaguez, PR USA.
[Bowie, Andrew R.] Antarctic Climate & Ecosyst CRC, Hobart, Tas 7001, Australia.
[Bowie, Andrew R.] Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas 7001, Australia.
[Tyliszczak, Tolek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Mtshali, Thato N.] CSIR, ZA-7600 Stellenbosch, South Africa.
RP von der Heyden, BP (reprint author), Univ Stellenbosch, Dept Earth Sci, Private Bag X1, ZA-7602 Matieland, South Africa.
EM bjorn.vonderheyden@exxaro.com
OI von der Heyden, Bjorn/0000-0002-4006-9278
FU NRF, South Africa (Blue Skies Program); Stellenbosch University VR(R)
fund; National Science Foundation (chemical sciences); U.S. Department
of Energy (BES and SBR); Princeton in Africa program; Australia Marine
National Facility; GEOTRACES; CSIR (SOCCO); IRGS Grant from the
University of Tasmania [L0018934]
FX This research is supported by grants from NRF, South Africa (Blue Skies
Program), the Stellenbosch University VR(R) fund, the National Science
Foundation (chemical sciences), the U.S. Department of Energy (BES and
SBR), and the Princeton in Africa program. Field work was partly funded
by the Australia Marine National Facility, GEOTRACES, CSIR (SOCCO), and
IRGS Grant L0018934 from the University of Tasmania. We thank the
support staff at the Advanced Light Source for helping with data
collection and sample preparation. We further acknowledge J. Compton and
M. Lohan and three anonymous reviewers for their useful comments during
review. This is AEON publication 120.
NR 30
TC 3
Z9 3
U1 6
U2 34
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2328-8930
J9 ENVIRON SCI TECH LET
JI Environ. Sci. Technol. Lett.
PD OCT
PY 2014
VL 1
IS 10
BP 387
EP 392
DI 10.1021/ez500164v
PG 6
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA CD1JQ
UT WOS:000350831600002
ER
PT J
AU Vandehey, NT
Northen, TR
Brodie, EL
O'Neil, JP
AF Vandehey, Nicholas T.
Northen, Trent R.
Brodie, Eoin L.
O'Neil, James P.
TI Noninvasive Mapping of Photosynthetic Heterogeneity in Biological Soil
Crusts by Positron Emission Tomography: Carbon Fixation
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS
LA English
DT Article
ID HYDRATION; INDEX
AB Biological soil crusts (BSCs) are critical contributors to the biogeochetnistry of ecosystems in arid and semi-arid regions worldwide. Photosynthetic microorganisms such as cyanobacteria are often the predominant primary producers, fixing both carbon and nitrogen and producing polysaccharides that aid in soil stabilization. Here, we exposed BSCs to (CO2)-C-11 and quantified the spatial distribution of carbon fixation in BSCs on a millimeter scale using positron emission tomography (PET). These experiments showed that live BSCs fixed up to 20 times more carbon than abiotic controls. The results present values for correlations between biological carbon fixation and a proxy for chlorophyll concentration derived from photographs. For the first time, we apply PET imaging, a tool that holds great potential for noninvasively characterizing and mapping biological function either on the surface or deep within opaque environmental matrices, to gain a better understanding of system function and organization with application to photosynthetic microbes in biological soil crusts.
C1 [Vandehey, Nicholas T.; Northen, Trent R.; O'Neil, James P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Brodie, Eoin L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Brodie, Eoin L.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA.
RP Vandehey, NT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA.
EM nick@nickvandehey.com
RI Brodie, Eoin/A-7853-2008;
OI Brodie, Eoin/0000-0002-8453-8435; Vandehey,
Nicholas/0000-0003-0286-7532; Northen, Trent/0000-0001-8404-3259
FU Laboratory Directed Research and Development program at Lawrence
Berkeley National Laboratory; Radiochemistry and Instrumentation
Scientific focus Area - U.S. Department of Energy, Office of Science,
Office of Biological and Environmental Research; Department of Energy,
Early Career Research Program; U.S. Department of Energy
[DE-AC02-05CH11231]
FX We thank Dr. Mustafa Janabi for his help preparing radioisotopes and
Alissa Bruno for preparing the image for the abstract graphic and the
table of contents graphic. This material is based in part on work
supported by the Laboratory Directed Research and Development program at
Lawrence Berkeley National Laboratory and the Radiochemistry and
Instrumentation Scientific focus Area as funded by the U.S. Department
of Energy, Office of Science, Office of Biological and Environmental
Research. T.R.N. is supported by the Department of Energy, Early Career
Research Program. This manuscript was written by an author at Lawrence
Berkeley National Laboratory under Contract DE-AC02-05CH11231 with the
U.S. Department of Energy.
NR 20
TC 1
Z9 1
U1 4
U2 21
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2328-8930
J9 ENVIRON SCI TECH LET
JI Environ. Sci. Technol. Lett.
PD OCT
PY 2014
VL 1
IS 10
BP 393
EP 398
DI 10.1021/ez500209c
PG 6
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA CD1JQ
UT WOS:000350831600003
ER
PT J
AU Qian, Y
Yin, XP
Lin, H
Rao, B
Brooks, SC
Liang, LY
Gu, BH
AF Qian, Yun
Yin, Xiangping
Lin, Hui
Rao, Balaji
Brooks, Scott C.
Liang, Liyuan
Gu, Baohua
TI Why Dissolved Organic Matter Enhances Photodegradation of Methylmercury
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS
LA English
DT Article
ID ARCTIC ALASKAN LAKE; MERCURY METHYLATION; HUMIC SUBSTANCES; ANOXIC
ENVIRONMENTS; FLORIDA EVERGLADES; SINGLET OXYGEN; WATER; DEGRADATION;
COMPLEXATION; ECOSYSTEMS
AB Methylmercury (MeHg) is known to degrade photochemi-cally, but it remains unclear what roles naturally dissolved organic matter (DOM) and complexing organic ligands play in MeHg photodegradation. Here we investigate the rates and mechanisms of MeHg photodegradation using DOM with varying oxidation states and origins as well as organic ligands with known molecular structures. All DOM and organic ligands increased the rate of MeHg photodegradation under solar irradiation, but the first-order rate constants,varied depending on the oxidation state of DOM and the type and concentration of the ligands. Reduced DOM photochemi-cally degraded MeHg 3 times faster than oxidized DOM. Compounds containing both thiol and aromatic moieties within the same molecule (e.g., 'thiosalicylate and reduced DOM) increased MeHg photodegradation rates far more than those containing only aromatics or thiols (e.g., salicylate or glutathione, or their combinations). The mechanism is attributed in part to strong binding between MeHg and thiolates that resulted in direct energy transfer from excited triplet state of the aromatics to break the Hg-C bond in MeHg. Our results suggest that, among other factors, the synergistic effects of thiol and aromatics in DOM greatly enhance MeHg photodegradation.
C1 [Qian, Yun; Yin, Xiangping; Lin, Hui; Rao, Balaji; Brooks, Scott C.; Liang, Liyuan; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA.
RP Gu, BH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA.
EM gub1@ornl.gov
RI Brooks, Scott/B-9439-2012; Gu, Baohua/B-9511-2012
OI Brooks, Scott/0000-0002-8437-9788; Gu, Baohua/0000-0002-7299-2956
FU Office of Biological and Environmental Research; Office of Science, U.S.
Department of Energy (DOE), Mercury Science Focus Area Program at Oak
Ridge National Laboratory; DOE [DE-AC05-00OR22725]
FX We thank three anonymous reviewers for their helpful comments. This
research was sponsored by the Office of Biological and Environmental
Research, Office of Science, U.S. Department of Energy (DOE), as part of
the Mercury Science Focus Area Program at Oak Ridge National Laboratory,
which is managed by UT-Battelle LLC for DOE under Contract
DE-AC05-00OR22725.
NR 42
TC 12
Z9 12
U1 12
U2 56
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2328-8930
J9 ENVIRON SCI TECH LET
JI Environ. Sci. Technol. Lett.
PD OCT
PY 2014
VL 1
IS 10
BP 426
EP 431
DI 10.1021/ez500254z
PG 6
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA CD1JQ
UT WOS:000350831600009
ER
PT J
AU Nadiga, BT
AF Nadiga, Balasubramanya T.
TI Nonlinear evolution of a baroclinic wave and imbalanced dissipation
SO JOURNAL OF FLUID MECHANICS
LA English
DT Article
DE baroclinic flows; geostrophic turbulence; quasi-geostrophic flows
ID ROTATING STRATIFIED TURBULENCE; POTENTIAL VORTICITY; GEOPHYSICAL FLOWS;
ENERGY; INSTABILITY; GENERATION; BALANCE; OCEAN; SPECTRUM; EQUATION
AB We consider the nonlinear evolution of an unstable baroclinic wave in a regime of rotating stratified flow that is of relevance to interior circulation in the oceans and in the atmosphere: a regime characterized by small large-scale Rossby and Froude numbers, a small vertical to horizontal aspect ratio and no bounding horizontal surfaces. Using high-resolution simulations of the non-hydrostatic Boussinesq equations and companion integrations of the balanced quasi-geostrophic (QG) equations, we present evidence for a local route to dissipation of balanced energy directly through interior turbulent cascades. That is, analysis of simulations presented in this study suggest that a developing baroclinic instability can lead to secondary instabilities that can cascade a small fraction of the energy forward to unbalanced scales whereas the bulk of the energy is confined to large balanced scales. Mesoscale shear and strain resulting from the hydrostatic geostrophic baroclinic instability drive frontogenesis. The fronts in turn support ageostrophic secondary circulation and instabilities. These two processes acting together lead to a quick rise in dissipation rate which then reaches a peak and begins to fall slowly when frontogenesis slows down; eventually balanced and imbalanced modes decouple. A measurement of the dissipation of balanced energy by imbalanced processes reveals that it scales exponentially with Rossby number of the base flow. We expect that this scaling will hold more generally than for the specific set-up we consider given the fundamental nature of the dynamics involved. In other results, (a) a break is seen in the total energy (TE) spectrum at small scales: while a steep k(-3) geostrophic scaling (where k is the three-dimensional wavenumber) is seen at intermediate scales, the smaller scales display a shallower k(-5/3) scaling, reminiscent of the atmospheric spectra of Nastrom & Gage and (b) at the higher of the Rossby numbers considered a minimum is seen in the vertical shear spectrum, reminiscent of similar spectra obtained using in situ measurements.
C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Nadiga, BT (reprint author), Los Alamos Natl Lab, MS-B214, Los Alamos, NM 87545 USA.
EM balu@lanl.gov
FU Laboratory Directed Research and Development (LDRD) program at Los
Alamos National Laboratory [20110150ER]
FX This research was supported by the Laboratory Directed Research and
Development (LDRD) program at Los Alamos National Laboratory (project
number 20110150ER). Computational resources were provided by
Institutional Computing at the Los Alamos National Laboratory. Thanks go
to M. Taylor for sharing his spectral code. Brief discussions with P.
Bartello, R. Ferrari, P. Klein, J. McWilliams, J. Riley, S. Smith, D.
Straub, J. Vanneste and V. Zeitlin are gratefully acknowledged. Comments
and suggestions by three reviewers helped improve both the content and
presentation.
NR 42
TC 3
Z9 3
U1 1
U2 6
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0022-1120
EI 1469-7645
J9 J FLUID MECH
JI J. Fluid Mech.
PD OCT
PY 2014
VL 756
BP 965
EP 1006
DI 10.1017/jfm.2014.464
PG 42
WC Mechanics; Physics, Fluids & Plasmas
SC Mechanics; Physics
GA CD2AM
UT WOS:000350875900007
ER
PT J
AU Casper, KM
Beresh, SJ
Schneider, SP
AF Casper, Katya M.
Beresh, Steven J.
Schneider, Steven P.
TI Pressure fluctuations beneath instability wavepackets and turbulent
spots in a hypersonic boundary layer
SO JOURNAL OF FLUID MECHANICS
LA English
DT Article
DE high-speed flow; instability; transition to turbulence
ID SHOCK-TUNNEL; LAMINAR; TRANSITION; FLOW; GRADIENT; GROWTH; GENERATION
AB To investigate the pressure-fluctuation field beneath turbulent spots in a hypersonic boundary layer, a study was conducted on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel. Controlled disturbances were created by pulsed-glow perturbations based on the electrical breakdown of air. Under quiet-flow conditions, the nozzle-wall boundary layer remains laminar and grows very thick over the long nozzle length. This allows the development of large disturbances that can be well-resolved with high-frequency pressure transducers. A disturbance first grows into a second-mode instability wavepacket that is concentrated near its own centreline. Weaker disturbances are seen spreading from the centre. The waves grow and become nonlinear before breaking down to turbulence. The breakdown begins in the core of the packets where the wave amplitudes are largest. Second-mode waves are still evident in front of and behind the breakdown point and can be seen propagating in the spanwise direction. The turbulent core grows downstream, resulting in a spot with a classical arrowhead shape. Behind the spot, a low-pressure calmed region develops. However, the spot is not merely a localized patch of turbulence; instability waves remain an integral part. Limited measurements of naturally occurring disturbances show many similar characteristics. From the controlled disturbance measurements, the convection velocity, spanwise spreading angle, and typical pressure-fluctuation field were obtained.
C1 [Casper, Katya M.; Beresh, Steven J.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Casper, Katya M.; Schneider, Steven P.] Purdue Univ, Dept Aeronaut & Astronaut, W Lafayette, IN 47907 USA.
RP Casper, KM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM kmcaspe@sandia.gov
FU National Science Foundation Graduate Research Fellowship Program; Sandia
National Laboratories; AFOSR; US Department of Energy's National Nuclear
Security Administration [DE-AC04-94AL85000]
FX This work could not have been completed without funding provided in part
by the National Science Foundation Graduate Research Fellowship Program,
Sandia National Laboratories, and AFOSR. Sandia National Laboratories is
a multi-program laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the US
Department of Energy's National Nuclear Security Administration under
contract DE-AC04-94AL85000. The Purdue School of Aeronautics and
Astronautics machine shop built the experimental hardware used for this
work. J. Phillips, the Purdue AAE department electronics technician,
designed and built the perturber used for these measurements.
NR 74
TC 7
Z9 7
U1 1
U2 11
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0022-1120
EI 1469-7645
J9 J FLUID MECH
JI J. Fluid Mech.
PD OCT
PY 2014
VL 756
BP 1058
EP 1091
DI 10.1017/jfm.2014.475
PG 34
WC Mechanics; Physics, Fluids & Plasmas
SC Mechanics; Physics
GA CD2AM
UT WOS:000350875900010
ER
PT J
AU Golic, DL
Cirkovic, J
Scepanovic, M
Sreckovic, T
Longo, E
Varela, JA
Daneu, N
Stamenkovic, V
Brankovic, G
Brankovic, Z
AF Golic, D. Lukovic
Cirkovic, J.
Scepanovic, M.
Sreckovic, T.
Longo, E.
Varela, J. A.
Daneu, N.
Stamenkovic, V.
Brankovic, G.
Brankovic, Z.
TI The modification of structural and optical properties of nano- and
submicron ZnO powders by variation of solvothermal syntheses conditions
SO JOURNAL OF NANOPARTICLE RESEARCH
LA English
DT Article
DE ZnO; Nano- and submicron particles; Solvothermal synthesis; Growth
mechanism; Structure ordering; Photoluminescence
ID FILMS; PHOTOLUMINESCENCE; NANOSTRUCTURES; DEPENDENCE; PRESSURE
AB Nano- (30-60 nm) and submicron (100-350 nm) ZnO particles were synthesized using solvothermal method at 200 degrees C from an ethanolic solution of zinc acetate dihydrate, applying different reaction conditions, i.e., pH value of precursor and time of the reaction. The X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance (DR), Raman spectroscopy, and photoluminescence (PL) spectroscopy have been employed for characterization of synthesized ZnO powders. It was shown that the structural, morphological, and optical properties are largely determined by reaction conditions during solvothermal synthesis. The particle crystallinity improves with the decrease of pH value and/or the increase of time of the reaction. The Raman and PL spectra analyses indicate that the oxygen interstitials are dominant intrinsic defects in solvothermally synthesized ZnO powders. It was observed that concentration of defects in wurtzite ZnO crystal lattices slightly changes with the variation of pH value of the precursor and time of the solvothermal reaction. The correlation between structural ordering and defect structure of particles and corresponding growth processes was discussed.
C1 [Golic, D. Lukovic; Cirkovic, J.; Sreckovic, T.; Brankovic, G.; Brankovic, Z.] Univ Belgrade, Inst Multidisciplinary Res, Belgrade 11030, Serbia.
[Scepanovic, M.] Univ Belgrade, Inst Phys, Ctr Solid State Phys & New Mat, Belgrade 11080, Serbia.
[Longo, E.; Varela, J. A.] Univ Estadual Paulista, Dept Fis Quim IQ, BR-14801907 Araraquara, SP, Brazil.
[Daneu, N.] Jozef Stefan Inst, Ljubljana 1000, Slovenia.
[Stamenkovic, V.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Golic, DL (reprint author), Univ Belgrade, Inst Multidisciplinary Res, Kneza Viseslava 1a, Belgrade 11030, Serbia.
EM danijeluk@gmail.com
RI Longo, Elson/B-9395-2012; FAPESP, CDMF/J-3591-2015
OI Longo, Elson/0000-0001-8062-7791;
FU Ministry of Education and Science of Republic of Serbia [III45007]
FX The authors acknowledge the financial support of the Ministry of
Education and Science of Republic of Serbia (project number III45007).
NR 29
TC 0
Z9 0
U1 1
U2 17
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1388-0764
EI 1572-896X
J9 J NANOPART RES
JI J. Nanopart. Res.
PD OCT 1
PY 2014
VL 16
IS 10
AR 2670
DI 10.1007/s11051-014-2670-1
PG 11
WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA CB9LE
UT WOS:000349952300001
ER
PT J
AU Chan, H
Konijnenberg, M
Anderson, T
Nysus, M
Makvandi, M
de Blois, E
Atcher, R
Breeman, WA
de Jong, M
Norenberg, JP
AF Chan, H.
Konijnenberg, M.
Anderson, T.
Nysus, M.
Makvandi, M.
de Blois, E.
Atcher, R.
Breeman, W. A.
de Jong, M.
Norenberg, J. P.
TI Dose finding and efficacy of 213Bi-[DOTA0, Tyr3] octreotate as targeted
alpha-therapy in tumour-bearing mice.
SO EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
LA English
DT Meeting Abstract
CT Annual Congress of the European-Association-of-Nuclear-Medicine (EANM)
CY OCT 18-22, 2014
CL Gothenburg, SWEDEN
SP European Assoc Nucl Med
C1 [Chan, H.; Konijnenberg, M.; de Blois, E.; Breeman, W. A.; de Jong, M.] Erasmus MC, Rotterdam, Netherlands.
[Anderson, T.; Nysus, M.; Makvandi, M.; Norenberg, J. P.] Univ New Mexico, Hlth Sci Ctr, Coll Pharm, Radiopharmaceut Sci Program, Albuquerque, NM 87131 USA.
[Atcher, R.] Los Alamos Natl Lab, Los Alamos, NM USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1619-7070
EI 1619-7089
J9 EUR J NUCL MED MOL I
JI Eur. J. Nucl. Med. Mol. Imaging
PD OCT
PY 2014
VL 41
SU 2
MA OP145
BP S192
EP S192
PG 1
WC Radiology, Nuclear Medicine & Medical Imaging
SC Radiology, Nuclear Medicine & Medical Imaging
GA CA3YT
UT WOS:000348841900092
ER
PT J
AU Miller, BW
Frost, SH
Frayo, SL
Kenoyer, AL
Orozco, JJ
Hernandez, AH
Green, DJ
Hylarides, MD
Wilbur, DS
Fisher, DR
Press, OW
Pagel, JM
Sandmaier, BM
AF Miller, B. W.
Frost, S. H.
Frayo, S. L.
Kenoyer, A. L.
Orozco, J. J.
Hernandez, A. H.
Green, D. J.
Hylarides, M. D.
Wilbur, D. S.
Fisher, D. R.
Press, O. W.
Pagel, J. M.
Sandmaier, B. M.
TI Single-Particle Digital Autoradiography of alpha and beta Emitters with
the iQID Camera
SO EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
LA English
DT Meeting Abstract
CT Annual Congress of the European-Association-of-Nuclear-Medicine (EANM)
CY OCT 18-22, 2014
CL Gothenburg, SWEDEN
SP European Assoc Nucl Med
C1 [Miller, B. W.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Miller, B. W.] Univ Arizona, Coll Opt Sci, Tucson, AZ USA.
[Frost, S. H.; Frayo, S. L.; Kenoyer, A. L.; Orozco, J. J.; Hernandez, A. H.; Green, D. J.; Hylarides, M. D.; Press, O. W.; Pagel, J. M.; Sandmaier, B. M.] Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USA.
[Orozco, J. J.; Green, D. J.; Press, O. W.; Pagel, J. M.; Sandmaier, B. M.] Univ Washington, Dept Med, Seattle, WA USA.
[Wilbur, D. S.] Univ Washington, Dept Radiat Oncol, Seattle, WA 98195 USA.
[Fisher, D. R.] Dade Moeller Hlth Grp, Richland, WA USA.
NR 0
TC 0
Z9 0
U1 0
U2 1
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1619-7070
EI 1619-7089
J9 EUR J NUCL MED MOL I
JI Eur. J. Nucl. Med. Mol. Imaging
PD OCT
PY 2014
VL 41
SU 2
MA OP672
BP S308
EP S308
PG 1
WC Radiology, Nuclear Medicine & Medical Imaging
SC Radiology, Nuclear Medicine & Medical Imaging
GA CA3YT
UT WOS:000348841900488
ER
PT J
AU Seo, D
Farlow, J
Southard, K
Jun, YW
Gartner, ZJ
AF Seo, Daeha
Farlow, Justin
Southard, Kade
Jun, Young-wook
Gartner, Zev J.
TI Production and Targeting of Monovalent Quantum Dots
SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS
LA English
DT Article
ID LIVING CELLS
AB The multivalent nature of commercial quantum dots (QDs) and the difficulties associated with producing monovalent dots have limited their applications in biology, where clustering and the spatial organization of biomolecules is often the object of study. We describe here a protocol to produce monovalent quantum dots (mQDs) that can be accomplished in most biological research laboratories via a simple mixing of CdSe/ZnS core/shell QDs with phosphorothioate DNA (ptDNA) of defined length. After a single ptDNA strand has wrapped the QD, additional strands are excluded from the surface. Production of mQDs in this manner can be accomplished at small and large scale, with commercial reagents, and in minimal steps. These mQDs can be specifically directed to biological targets by hybridization to a complementary single stranded targeting DNA. We demonstrate the use of these mQDs as imaging probes by labeling SNAP-tagged Notch receptors on live mammalian cells, targeted by mQDs bearing a benzylguanine moiety.
C1 [Seo, Daeha; Southard, Kade; Jun, Young-wook] Univ Calif San Francisco, Dept Otolaryngol, San Francisco, CA 94143 USA.
[Seo, Daeha] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Seo, Daeha] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA USA.
[Farlow, Justin; Southard, Kade; Gartner, Zev J.] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA.
[Farlow, Justin; Gartner, Zev J.] Univ Calif San Francisco, Tetrad Grad Program, San Francisco, CA 94143 USA.
[Farlow, Justin; Gartner, Zev J.] Univ Calif San Francisco, Ctr Syst & Synthet Biol, San Francisco, CA 94143 USA.
[Southard, Kade; Jun, Young-wook; Gartner, Zev J.] Univ Calif San Francisco, Chem & Chem Biol Grad Program, San Francisco, CA 94143 USA.
RP Jun, YW (reprint author), Univ Calif San Francisco, Dept Otolaryngol, San Francisco, CA 94143 USA.
EM YJun@ohns.ucsf.edu; zevgartner@gmail.com
FU DOD [W81XWH-10-1-1023]; UCSF Center for Systems and Synthetic Biology
[P50 GM081879]; NIH [5R21EB015088-02, 1R21EB018044]; Human Frontier
Science Program Cross-disciplinary postdoc research fellowship
FX Funding provided by DOD W81XWH-10-1-1023 (Z.J.G.), grant P50 GM081879
from the UCSF Center for Systems and Synthetic Biology (Z.J.G.), NIH
5R21EB015088-02 (Y.J.) and NIH 1R21EB018044 (Z.J.G. & Y.J.). D.S. was
supported by Human Frontier Science Program Cross-disciplinary postdoc
research fellowship.
NR 13
TC 1
Z9 1
U1 2
U2 14
PU JOURNAL OF VISUALIZED EXPERIMENTS
PI CAMBRIDGE
PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA
SN 1940-087X
J9 JOVE-J VIS EXP
JI J. Vis. Exp.
PD OCT
PY 2014
IS 92
AR e52198
DI 10.3791/52198
PG 8
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CB0GF
UT WOS:000349303100081
PM 25407345
ER
PT J
AU Altun, AO
Bond, T
Park, HG
AF Altun, Ali Ozhan
Bond, Tiziana
Park, Hyung Gyu
TI Manufacturing Over Many Scales: High Fidelity Macroscale Coverage of
Nanoporous Metal Arrays via Lift-Off-Free Nanofabrication
SO ADVANCED MATERIALS INTERFACES
LA English
DT Article
ID BLOCK-COPOLYMER LITHOGRAPHY; ENHANCED RAMAN-SCATTERING; THIN-FILMS;
SURFACE; GOLD; ROUGHNESS; TEMPLATES; MONOLAYER; KINETICS; NANOHOLE
C1 [Altun, Ali Ozhan; Park, Hyung Gyu] ETH, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland.
[Bond, Tiziana] Lawrence Livermore Natl Lab, Ctr Micro & Nano Technol, Mat Engn Directorate, Livermore, CA 94550 USA.
RP Altun, AO (reprint author), ETH, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland.
EM bond7@llnl.gov; parkh@ethz.ch
RI Park, Hyung Gyu/F-3056-2013
OI Park, Hyung Gyu/0000-0001-8121-2344
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
(LLNL) [DE-AC52-07NA27344]; LLNL Laboratory Directorate Research and
Development [LLNL-JRNL-656009]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory (LLNL) under contract
DE-AC52-07NA27344. T.B. and a part of the experiments were supported by
LLNL Laboratory Directorate Research and Development (LLNL-JRNL-656009).
NR 47
TC 0
Z9 0
U1 2
U2 9
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2196-7350
J9 ADV MATER INTERFACES
JI Adv. Mater. Interfaces
PD OCT
PY 2014
VL 1
IS 7
AR 1400084
DI 10.1002/admi.201400084
PG 8
WC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA AZ5UH
UT WOS:000348285700006
ER
PT J
AU Dupont, SR
Voroshazi, E
Nordlund, D
Vandewal, K
Dauskardt, RH
AF Dupont, Stephanie R.
Voroshazi, Eszter
Nordlund, Dennis
Vandewal, Koen
Dauskardt, Reinhold H.
TI Controlling Interdiffusion, Interfacial Composition, and Adhesion in
Polymer Solar Cells
SO ADVANCED MATERIALS INTERFACES
LA English
DT Article
ID PHOTOELECTRON-SPECTROSCOPY; PHOTOVOLTAIC DEVICES; X-RAY; MORPHOLOGY;
BLEND; PERFORMANCE; COHESION; FILMS
C1 [Dupont, Stephanie R.; Vandewal, Koen; Dauskardt, Reinhold H.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA.
[Voroshazi, Eszter] IMEC VZW, B-3000 Louvain, Belgium.
[Nordlund, Dennis] SLAC, Synchrotron Radiat Lightsource, Menlo Pk, CA USA.
RP Dupont, SR (reprint author), Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA.
EM dauskardt@stanford.edu
RI Nordlund, Dennis/A-8902-2008;
OI Nordlund, Dennis/0000-0001-9524-6908; Vandewal, Koen/0000-0001-5471-383X
FU Center for Advanced Molecular Photovoltaics (CAMP) - King Abdullah
University of Science and Technology (KAUST) [KUS-C1-015-21]
FX This research was supported by the Center for Advanced Molecular
Photovoltaics (CAMP) supported by King Abdullah University of Science
and Technology (KAUST) under award no. KUS-C1-015-21. Portions of this
research were carried out at the Stanford Synchrotron Radiation
Lightsource, a Directorate of SLAC National Accelerator Laboratory and
an Office of Science User Facility operated for the U.S. Department of
Energy Office of Science by Stanford University.
NR 32
TC 9
Z9 9
U1 2
U2 11
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2196-7350
J9 ADV MATER INTERFACES
JI Adv. Mater. Interfaces
PD OCT
PY 2014
VL 1
IS 7
AR 1400135
DI 10.1002/admi.201400135
PG 8
WC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA AZ5UH
UT WOS:000348285700009
ER
PT J
AU Vitol, EA
Rozhkova, EA
Rose, V
Stripe, BD
Young, NR
Cohen, EEW
Leoni, L
Novosad, V
AF Vitol, Elina A.
Rozhkova, Elena A.
Rose, Volker
Stripe, Benjamin D.
Young, Natalie R.
Cohen, Ezra E. W.
Leoni, Lara
Novosad, Valentyn
TI Efficient Cisplatin Pro-Drug Delivery Visualized with Sub-100 nm
Resolution: Interfacing Engineered Thermosensitive Magnetomicelles with
a Living System
SO ADVANCED MATERIALS INTERFACES
LA English
DT Article
ID RECEPTOR-MEDIATED ENDOCYTOSIS; RAY-FLUORESCENCE MICROSCOPY; OXIDE
NANOPARTICLES; CELLULAR UPTAKE; CANCER-CELLS; THERAPY; MICELLES;
COMPLEX; BLOCK; DNA
AB Temperature-responsive magnetic nanomicelles can serve as thermal energy and cargo carriers with controlled drug release functionality. In view of their potential biomedical applications, understanding the modes of interaction between nanomaterials and living systems and evaluation of efficiency of cargo delivery is of the utmost importance. In this work, we investigate the interaction between the hybrid magnetic nanomicelles engineered for controlled platinum complex drug delivery and a biological system at three fundamental levels: subcellular compartments, a single cell and whole living animal. Nanomicelles with polymeric P(NIPAAm-co-AAm)-b-PCL core-shell were loaded with a hydrophobic Pt(IV) complex and Fe3O4 nanoparticles though self-assembly. The distribution of a platinum complex on subcellular level is visualized using hard X-ray fluorescence microscopy with unprecedented level of detail at sub-100 nm spatial resolution. We then study the cytotoxic effects of platinum complex-loaded micelles in vitro on a head and neck cancer cell culture model SQ20B. Finally, by employing the magnetic functionality of the micelles and additionally loading them with a near infrared fluorescent dye, we magnetically target them to a tumor site in a live animal xenografted model which allows to visualize their biodistribution in vivo.
C1 [Vitol, Elina A.; Rozhkova, Elena A.; Rose, Volker] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Vitol, Elina A.; Novosad, Valentyn] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Rose, Volker; Stripe, Benjamin D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Young, Natalie R.; Cohen, Ezra E. W.] Univ Chicago, Dept Med, Chicago, IL 60637 USA.
[Leoni, Lara] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA.
RP Vitol, EA (reprint author), Nalco Co, 1601 W Diehl Rd, Naperville, IL 60563 USA.
EM rozhkova@anl.gov
RI Rose, Volker/B-1103-2008; Novosad, V /J-4843-2015
OI Rose, Volker/0000-0002-9027-1052;
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC0206CH11357]
FX Use of the Center for Nanoscale Materials and the Advanced Photon Source
were supported by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, under contract no. DE-AC0206CH11357.
The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S.
Department of Energy Office of Science laboratory. The U.S. Government
retains for itself and others acting on its behalf a paid-up
nonexclusive, irrevocable worldwide license of said article to
reproduce, prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf of the
Government. Animal imaging was performed at the Integrated Small Animal
Imaging Research Resource at the University of Chicago. Mice were
maintained in a specific pathogen-free animal facility in accordance
with the University of Chicago Animal Care and Use Committee under ACUP
# 71718.
NR 51
TC 0
Z9 0
U1 1
U2 18
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2196-7350
J9 ADV MATER INTERFACES
JI Adv. Mater. Interfaces
PD OCT
PY 2014
VL 1
IS 7
AR 1400182
DI 10.1002/admi.201400182
PG 9
WC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA AZ5UH
UT WOS:000348285700012
ER
PT J
AU Lucker, BF
Hall, CC
Zegarac, R
Kramer, DM
AF Lucker, Ben F.
Hall, Christopher C.
Zegarac, Robert
Kramer, David M.
TI The environmental photobioreactor (ePBR): An algal culturing platform
for simulating dynamic natural environments
SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS
LA English
DT Article
DE Algae biomass; Photobioreactor; Algae pond depth; Environmental
simulation
ID CHLORELLA-SOROKINIANA; CHLAMYDOMONAS-REINHARDTII; MICROALGAE PRODUCTION;
TEMPERATURE; LIGHT; PHYTOPLANKTON; GROWTH; PONDS; PHOTOSYNTHESIS;
PRODUCTIVITY
AB Algae in natural or production setting experience fluctuating environmental conditions including changes in light, temperature, CO2 and nutrient availability, oxygen and mixing. In response, algae respond to environmental changes dynamically, adjusting light energy capture strategies, physiological processes and cell cycle control. It is thus the combination of environmental conditions and biological responses that determines the performance of the algae. In contrast, much algal research is performed under artificially static laboratory environments, where different constraints determine performance. Consequently, algal strains selected for mass production in the laboratory may fail to perform well or outcompete local algal strains under outdoor production conditions. To address these issues, we have developed a novel environmental photobioreactor (ePBR), designed to mimic lighting from natural pond environments while controlling key environmental parameters including temperature, pH and CO2 levels, mixing, and culture density. Natural lighting is simulated by illuminating from the top of a columnar culture vessel with a single high power white LED. This combination of lighting and geometry provides light intensities up to full sunlight at the culture surface, with light attenuation through the culture column similar to that observed in race ways or high rate algal ponds. Environmental parameters can be imposed in complex sequences with high time resolution via a user-programmable scripting language. Multiple ePBR units can be networked to perform parallel experiments, enabling semi-high throughput operations. In this report, we demonstrate the utility of this system by showing that fluctuating environmental conditions in ePBR significantly impact algal growth. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Kramer, David M.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA.
[Lucker, Ben F.; Hall, Christopher C.; Zegarac, Robert; Kramer, David M.] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA.
RP Kramer, DM (reprint author), Michigan State Univ, Dept Biochem & Mol Biol, S222 Plant Biol Bldg, E Lansing, MI 48824 USA.
EM Kramerd8@msu.edu
FU U.S. Department of Energy Office of Biomass Program [DE-EE0003046]
FX The authors thank Drs. Quentin Bechet and Benoit Guieysse of Massey
University for their assistance in modeling water temperature, and the
participating members of the National Alliance for the Advancement of
Biofuels and Bioproducts (NAABB) for their valuable input on the design
of the ePBR. We would also like to thank Jeffery Cruz for the valuable
discussions and Joel Carpenter for contributions to design efforts
during initial prototyping. This work was a subcontract of the NAABB
consortium and funded by U.S. Department of Energy Office of Biomass
Program grant DE-EE0003046.
NR 45
TC 14
Z9 14
U1 5
U2 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2211-9264
J9 ALGAL RES
JI Algal Res.
PD OCT
PY 2014
VL 6
BP 242
EP 249
DI 10.1016/j.algal.2013.12.007
PN B
PG 8
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA AY8CP
UT WOS:000347782400019
ER
PT J
AU Coons, JE
Kalb, DM
Dale, T
Marrone, BL
AF Coons, James E.
Kalb, Daniel M.
Dale, Taraka
Marrone, Babetta L.
TI Getting to low-cost algal biofuels: A monograph on conventional and
cutting-edge harvesting and extraction technologies
SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS
LA English
DT Article
DE Harvesting; Extraction; Membrane filtration; Electrocoagulation;
Centrifugation; Ultrasound
ID ULTRASOUND-ASSISTED EXTRACTION; HIGH-PRESSURE HOMOGENIZATION; TANGENTIAL
FLOW FILTRATION; SYNECHOCYSTIS PCC 6803; CELL-DISRUPTION; MICROALGAL
BIOMASS; LIPID EXTRACTION; BIODIESEL PRODUCTION; ENERGY-REQUIREMENTS;
SUSPENDED PARTICLES
AB Among the most formidable challenges to algal biofuels is the ability to harvest algae and extract intracellular lipids at low cost and with a positive energy balance. In this monograph, we construct two paradigms that contrast energy requirements and costs of conventional and cutting-edge Harvesting and Extraction (H&E) technologies. By application of the parity criterion and the moderate condition reference state, an energy-cost paradigm is created that allows 1st stage harvesting technologies to be compared with easy reference to the National Alliance for Advanced Biofuels and Bioproducts (NAABB) target of $0.013/gallon of gasoline equivalent (GGE) and to the U.S. DOE's Bioenergy Technologies Office 2022 cost metrics. Drawing from the moderate condition reference state, a concentration-dependency paradigmis developed for extraction technologies, making easier comparison to the National Algal Biofuels Technology Roadmap (NABTR) target of less than 10% total energy. This monograph identifies cost-bearing factors for a variety of H&E technologies, describes a design basis for ultrasonic harvesters, and provides a framework to measure future technological advancements toward reducing H&E costs. Lastly, we show that ultrasonic harvesters and extractors are uniquely capable of meeting both NAABB and NABTR targets. Ultrasonic technologies require further development and scale-up before they can achieve low-cost performance at industrially relevant scales. However, the advancement of this technology would greatly reduce H&E costs and accelerate the commercial viability of algae-based biofuels. (C) 2014 The Authors. Published by Elsevier B.V.
C1 [Coons, James E.; Kalb, Daniel M.; Dale, Taraka; Marrone, Babetta L.] Los Alamos Natl Lab, Chem & Biosci Div, Los Alamos, NM 87545 USA.
RP Coons, JE (reprint author), Los Alamos Natl Lab, Div Chem, MS J964, Los Alamos, NM 87545 USA.
EM jimc@lanl.gov
OI Coons, Jim/0000-0003-1392-298X
FU U.S. Department of Energy (DOE) [DE-EE0003046]; DOE Bioenergy
Technologies Office
FX The authors would like to acknowledge funding of this work by the U.S.
Department of Energy (DOE) under Contract DE-EE0003046 awarded to the
National Alliance for Advanced Biofuels and Bioproducts (NAABB), and
funding provided by the DOE Bioenergy Technologies Office. The authors
would also like to thank Dr. Ryan Davis of the National Renewable Energy
Laboratory for the discussions related to nomenclature and conversions
between fuel types.
NR 129
TC 24
Z9 24
U1 7
U2 50
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2211-9264
J9 ALGAL RES
JI Algal Res.
PD OCT
PY 2014
VL 6
BP 250
EP 270
DI 10.1016/j.algal.2014.08.005
PN B
PG 21
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA AY8CP
UT WOS:000347782400020
ER
PT J
AU Kijak, GH
Sanders-Buell, E
Chenine, AL
Eller, M
Goonetilleke, N
Thomas, R
Leviyang, S
Harbolick, E
Bose, M
Pham, P
Oropeza, C
Poltavee, K
O'Sullivan, AM
Merbah, M
Costanzo, M
Li, H
Fischer, W
Gao, F
Eller, LA
O'Connell, RJ
Sinei, S
Maganga, L
Kibuuka, H
Nitayaphan, S
Rolland, M
Korber, B
McCutchan, F
Shaw, G
Michael, N
Robb, M
Tovanabutra, S
Kim, J
AF Kijak, Gustavo Hernan
Sanders-Buell, Eric
Chenine, Agnes-Laurance
Eller, Michael
Goonetilleke, Nilu
Thomas, Rasmi
Leviyang, Sivan
Harbolick, Elizabeth
Bose, Meera
Phuc Pham
Oropeza, Celina
Poltavee, Kultida
O'Sullivan, Anne Marie
Merbah, Melanie
Costanzo, Margaret
Li, Hui
Fischer, Will
Gao, Feng
Eller, Leigh Anne
O'Connell, Robert J.
Sinei, Samuel
Maganga, Lucas
Kibuuka, Hannah
Nitayaphan, Sorachai
Rolland, Morgane
Korber, Bette
McCutchan, Francine
Shaw, George
Michael, Nelson
Robb, Merlin
Tovanabutra, Sodsai
Kim, Jerome
TI Cryptic Multiple HIV-1 Infection Revealed by Early, Frequent, and Deep
Sampling during Acute Infection
SO AIDS RESEARCH AND HUMAN RETROVIRUSES
LA English
DT Meeting Abstract
CT Symposium on HIV Research for Prevention (HIV R4P)
CY OCT 28-31, 2014
CL Cape Town, SOUTH AFRICA
C1 [Kijak, Gustavo Hernan; Sanders-Buell, Eric; Chenine, Agnes-Laurance; Eller, Michael; Thomas, Rasmi; Harbolick, Elizabeth; Bose, Meera; Phuc Pham; Oropeza, Celina; Poltavee, Kultida; O'Sullivan, Anne Marie; Merbah, Melanie; Costanzo, Margaret; Eller, Leigh Anne; Rolland, Morgane; Michael, Nelson; Robb, Merlin; Tovanabutra, Sodsai; Kim, Jerome] Walter Reed Army Inst Res, US Mil HIV Res Program MHRP, Silver Spring, MD USA.
[Kijak, Gustavo Hernan; Sanders-Buell, Eric; Chenine, Agnes-Laurance; Eller, Michael; Thomas, Rasmi; Harbolick, Elizabeth; Bose, Meera; Phuc Pham; Oropeza, Celina; Poltavee, Kultida; O'Sullivan, Anne Marie; Merbah, Melanie; Costanzo, Margaret; Eller, Leigh Anne; Rolland, Morgane; Robb, Merlin; Tovanabutra, Sodsai] Henry M Jackson Fdn, US Mil HIV Res Program MHRP, Silver Spring, MD USA.
[Goonetilleke, Nilu] Univ N Carolina, Sch Med, Chapel Hill, NC USA.
[Leviyang, Sivan] Georgetown Univ, Dept Math & Stat, Washington, DC USA.
[Li, Hui; Shaw, George] Univ Penn, Perelman Sch Med, Philadelphia, PA 19104 USA.
[Fischer, Will; Korber, Bette] Los Alamos Natl Lab, Los Alamos, NM USA.
[Gao, Feng] Duke Univ, Med Ctr, Duke Human Vaccine Inst, Durham, NC USA.
[O'Connell, Robert J.; Nitayaphan, Sorachai] Armed Forces Res Inst Med Sci, Bangkok 10400, Thailand.
[Sinei, Samuel] Walter Reed Project, Kericho, Kenya.
[Maganga, Lucas] Mbeya Med Res Programme, Mbeya, Tanzania.
[Kibuuka, Hannah] Makerere Univ, Walter Reed Project, Kampala, Uganda.
NR 0
TC 2
Z9 2
U1 0
U2 0
PU MARY ANN LIEBERT, INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 0889-2229
EI 1931-8405
J9 AIDS RES HUM RETROV
JI Aids Res. Hum. Retrovir.
PD OCT 1
PY 2014
VL 30
SU 1
MA OA21.06 LB
BP A58
EP A58
PG 1
WC Immunology; Infectious Diseases; Virology
SC Immunology; Infectious Diseases; Virology
GA AT2OO
UT WOS:000344774400127
ER
PT J
AU Bhat, R
Chakraborty, M
Mian, IS
Newman, SA
AF Bhat, Ramray
Chakraborty, Mahul
Mian, I. S.
Newman, Stuart A.
TI Structural Divergence in Vertebrate Phylogeny of a Duplicated Prototype
Galectin
SO GENOME BIOLOGY AND EVOLUTION
LA English
DT Article
DE prototype galectin; galectin-1; sauropsids; protein fold; homology
ID GENE DUPLICATION; SEQUENCE ALIGNMENT; CHICKEN TISSUES; BINDING LECTINS;
MUSCLE; LIKELIHOOD; FAMILY; PURIFICATION; EXPRESSION; EVOLUTION
AB Prototype galectins, endogenously expressed animal lectins with a single carbohydrate recognition domain, are well-known regulators of tissue properties such as growth and adhesion. The earliest discovered and best studied of the prototype galectins is Galectin-1 (Gal-1). In the Gallus gallus (chicken) genome, Gal-1 is represented by two homologs: Gal-1A and Gal-1B, with distinct biochemical properties, tissue expression, and developmental functions. We investigated the origin of the Gal-1A/Gal-1B divergence to gain insight into when their developmental functions originated and how they could have contributed to vertebrate phenotypic evolution. Sequence alignment and phylogenetic tree construction showed that the Gal-1A/Gal-1B divergence can be traced back to the origin of the sauropsid lineage (consisting of extinct and extant reptiles and birds) although lineage-specific duplications also occurred in the amphibian and actinopterygian genomes. Gene synteny analysis showed that sauropsid gal-1b (the gene for Gal-1B) and its frog and actinopterygian gal-1 homologs share a similar chromosomal location, whereas sauropsid gal-1a has translocated to a new position. Surprisingly, we found that chicken Gal-1A, encoded by the translocated gal-1a, was more similar in its tertiary folding pattern than Gal-1B, encoded by the untranslocated gal-1b, to experimentally determined and predicted folds of nonsauropsid Gal-1s. This inference is consistent with our finding of a lower proportion of conserved residues in sauropsid Gal-1Bs, and evidence for positive selection of sauropsid gal-1b, but not gal-1a genes. We propose that the duplication and structural divergence of Gal-1B away from Gal-1A led to specialization in both expression and function in the sauropsid lineage.
C1 [Bhat, Ramray] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Chakraborty, Mahul] Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92717 USA.
[Mian, I. S.] UCL, Dept Comp Sci, London WC1E 6BT, England.
[Newman, Stuart A.] New York Med Coll, Dept Cell Biol & Anat, Valhalla, NY 10595 USA.
RP Bhat, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA.
EM rbhat@lbl.gov
NR 45
TC 2
Z9 2
U1 1
U2 4
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1759-6653
J9 GENOME BIOL EVOL
JI Genome Biol. Evol.
PD OCT
PY 2014
VL 6
IS 10
BP 2721
EP 2730
DI 10.1093/gbe/evu215
PG 10
WC Evolutionary Biology; Genetics & Heredity
SC Evolutionary Biology; Genetics & Heredity
GA AX2LQ
UT WOS:000346775800012
PM 25260584
ER
PT J
AU Corry, E
O'Donnell, J
Curry, E
Coakley, D
Pauwels, P
Keane, M
AF Corry, Edward
O'Donnell, James
Curry, Edward
Coakley, Daniel
Pauwels, Pieter
Keane, Marcus
TI Using semantic web technologies to access soft AEC data
SO ADVANCED ENGINEERING INFORMATICS
LA English
DT Article
DE Social media; Twitter; Linked data; Performance metrics; Building
performance; RDF
ID BUILDING PERFORMANCE ASSESSMENT; DRIVEN HVAC OPERATIONS; OCCUPANCY;
SYSTEM; ROLES
AB Building related data tends to be generated, used and retained in a domain-specific manner. The lack of interoperability between data domains in the architecture, engineering and construction (AEC) industry inhibits the cross-domain use of data at an enterprise level. Semantic web technologies provide a possible solution to some of the noted interoperability issues. Traditional methods of information capture fail to take into account the wealth of soft information available throughout a building. Several sources of information are not included in performance assessment frameworks, including social media, occupant communication, mobile communication devices, occupancy patterns, human resource allocations and financial information.
The paper suggests that improved data interoperability can aid the integration of untapped silos of information into existing structured performance measurement frameworks, leading to greater awareness of stakeholder concerns and building performance. An initial study of how building-related data can be published following semantic web principles and integrated with other 'soft-data' sources in a cross-domain manner is presented. The paper goes on to illustrate how data sources from outside the building operation domain can be used to supplement existing sources. Future work will include the creation of a semantic web based performance framework platform for building performance optimisation. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Corry, Edward; Coakley, Daniel; Keane, Marcus] Natl Univ Ireland Galway, Informat Res Unit Sustainable Engn, Galway, Ireland.
[O'Donnell, James] Natl Univ Ireland Univ Coll Dublin, Sch Mech & Mat Engn, Elect Res Ctr, Dublin 4, Ireland.
[O'Donnell, James] Natl Univ Ireland Univ Coll Dublin, Sch Mech & Mat Engn, UCD Energy Inst, Dublin 4, Ireland.
[O'Donnell, James] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Bldg Technol & Urban Syst Dept, Berkeley, CA 94720 USA.
[Curry, Edward] Natl Univ Ireland Galway, Digital Enterprise Res Inst, Galway, Ireland.
[Pauwels, Pieter] Univ Ghent, Dept Architecture & Urban Planning, B-9000 Ghent, Belgium.
RP Corry, E (reprint author), Natl Univ Ireland Galway, Informat Res Unit Sustainable Engn, Galway, Ireland.
EM edwardcorry@nuigalway.ie; james.odonnell@ucd.ie; ed.curry@deri.org;
Daniel.coakley@nuigalway.ie; p.pauwels@uva.nl; marcus.keane@nuigalway.ie
RI Pauwels, Pieter/I-8256-2015;
OI Pauwels, Pieter/0000-0001-8020-4609; Curry, Edward/0000-0001-8236-6433
FU Irish Research Council; Science Foundation Ireland [SFI/08/CE/I1380
(Lion-2)]
FX This work has been funded by the Irish Research Council. This work has
been funded by Science Foundation Ireland under Grant No.
SFI/08/CE/I1380 (Lion-2).
NR 43
TC 3
Z9 3
U1 1
U2 8
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1474-0346
EI 1873-5320
J9 ADV ENG INFORM
JI Adv. Eng. Inform.
PD OCT
PY 2014
VL 28
IS 4
BP 370
EP 380
DI 10.1016/j.aei.2014.05.002
PG 11
WC Computer Science, Artificial Intelligence; Engineering,
Multidisciplinary
SC Computer Science; Engineering
GA AW4AR
UT WOS:000346224500010
ER
PT J
AU Aad, G
Abbott, B
Abdallah, J
Khalek, SA
Abdinov, O
Aben, R
Abi, B
Abolins, M
AbouZeid, OS
Abramowicz, H
Abreu, H
Abreu, R
Abulaiti, Y
Acharya, BS
Adamczyk, L
Adams, DL
Adelman, J
Adomeit, S
Adye, T
Agatonovic-Jovin, T
Aguilar-Saavedra, JA
Agustoni, M
Ahlen, SP
Ahmadov, F
Aielli, G
Akerstedt, H
Akesson, TPA
Akimoto, G
Akimov, AV
Alberghi, GL
Albert, J
Albrand, S
Verzini, MJA
Aleksa, M
Aleksandrov, IN
Alexa, C
Alexander, G
Alexandre, G
Alexopoulos, T
Alhroob, M
Alimonti, G
Alio, L
Alison, J
Allbrooke, BMM
Allison, LJ
Allport, PP
Almond, J
Aloisio, A
Alonso, A
Alonso, F
Alpigiani, C
Altheimer, A
Gonzalez, BA
Alviggi, MG
Amako, K
Coutinho, YA
Amelung, C
Amidei, D
Dos Santos, SPA
Amorim, A
Amoroso, S
Amram, N
Amundsen, G
Anastopoulos, C
Ancu, LS
Andari, N
Andeen, T
Anders, CF
Anders, G
Anderson, KJ
Andreazza, A
Andrei, V
Anduaga, XS
Angelidakis, S
Angelozzi, I
Anger, P
Angerami, A
Anghinolfi, F
Anisenkov, AV
Anjos, N
Annovi, A
Antonaki, A
Antonelli, M
Antonov, A
Antos, J
Anulli, F
Aoki, M
Bella, LA
Apolle, R
Arabidze, G
Aracena, I
Arai, Y
Araque, JP
Arce, ATH
Arguin, JF
Argyropoulos, S
Arik, M
Armbruster, AJ
Arnaez, O
Arnal, V
Arnold, H
Arratia, M
Arslan, O
Artamonov, A
Artoni, G
Asai, S
Asbah, N
Ashkenazi, A
Asman, B
Asquith, L
Assamagan, K
Astalos, R
Atkinson, M
Atlay, NB
Auerbach, B
Augsten, K
Aurousseau, M
Avolio, G
Azuelos, G
Azuma, Y
Baak, MA
Baas, A
Bacci, C
Bachacou, H
Bachas, K
Backes, M
Backhaus, M
Mayes, JB
Badescu, E
Bagiacchi, P
Bagnaia, P
Bai, Y
Bain, T
Baines, JT
Baker, OK
Balek, P
Balli, F
Banas, E
Banerjee, S
Bannoura, AAE
Bansal, V
Bansil, HS
Barak, L
Baranov, SP
Barberio, EL
Barberis, D
Barbero, M
Barillari, T
Barisonzi, M
Barklow, T
Barlow, N
Barnett, BM
Barnett, RM
Barnovska, Z
Baroncelli, A
Barone, G
Barr, AJ
Barreiro, F
da Costa, JBG
Bartoldus, R
Barton, AE
Bartos, P
Bartsch, V
Bassalat, A
Basye, A
Bates, RL
Batley, JR
Battaglia, M
Battistin, M
Bauer, F
Bawa, HS
Beattie, MD
Beau, T
Beauchemin, PH
Beccherle, R
Bechtle, P
Beck, HP
Becker, K
Becker, S
Beckingham, M
Becot, C
Beddall, AJ
Beddall, A
Bedikian, S
Bednyakov, VA
Bee, CP
Beemster, LJ
Beermann, TA
Begel, M
Behr, K
Belanger-Champagne, C
Bell, PJ
Bell, WH
Bella, G
Bellagamba, L
Bellerive, A
Bellomo, M
Belotskiy, K
Beltramello, O
Benary, O
Benchekroun, D
Bendtz, K
Benekos, N
Benhammou, Y
Noccioli, EB
Garcia, JAB
Benjamin, DP
Bensinger, JR
Benslama, K
Bentvelsen, S
Berge, D
Kuutmann, EB
Berger, N
Berghaus, F
Beringer, J
Bernard, C
Bernat, P
Bernius, C
Bernlochner, FU
Berry, T
Berta, P
Bertella, C
Bertoli, G
Bertolucci, F
Bertsche, C
Bertsche, D
Bessner, M
Besana, MI
Besjes, GJ
Bessidskaia, O
Besson, N
Betancourt, C
Bethke, S
Bhimji, W
Bianchi, RM
Bianchini, L
Bianco, M
Biebel, O
Bieniek, SP
Bierwagen, K
Biesiada, J
Biglietti, M
De Mendizabal, JB
Bilokon, H
Bindi, M
Binet, S
Bingul, A
Bini, C
Black, CW
Black, JE
Black, KM
Blackburn, D
Blair, RE
Blanchard, JB
Blazek, T
Bloch, I
Blocker, C
Blum, W
Blumenschein, U
Bobbink, GJ
Bobrovnikov, VS
Bocchetta, SS
Bocci, A
Bock, C
Boddy, CR
Boehler, M
Boek, J
Boek, J
Boek, TT
Bogaerts, JA
Bogdanchikov, AG
Bogouch, A
Bohm, C
Bohm, J
Boisvert, V
Bold, T
Boldea, V
Boldyrev, AS
Bomben, M
Bona, M
Boonekamp, M
Borisov, A
Borissov, G
Borri, M
Borroni, S
Bortfeldt, J
Bortolotto, V
Bos, K
Boscherini, D
Bosman, M
Boterenbrood, H
Boudreau, J
Bouffard, J
Bouhova-Thacker, EV
Boumediene, D
Bourdarios, C
Bousson, N
Boutouil, S
Boveia, A
Boyd, J
Boyko, IR
Bracinik, J
Brandt, A
Brandt, G
Brandta, O
Bratzler, U
Brau, B
Brau, JE
Braun, HM
Brazzale, SF
Brelier, B
Brendlinger, K
Brennan, AJ
Brenner, R
Bressler, S
Bristow, K
Bristow, TM
Britton, D
Brochu, FM
Brock, I
Brock, R
Bromberg, C
Bronner, J
Brooijmans, G
Brooks, T
Brooks, WK
Brosamer, J
Brost, E
Brown, J
de Renstrom, PAB
Bruncko, D
Bruneliere, R
Brunet, S
Bruni, A
Bruni, G
Bruschi, M
Bryngemark, L
Buanes, T
Buat, Q
Bucci, F
Buchholz, P
Buckingham, RM
Buckley, AG
Buda, SI
Budagov, IA
Buehrer, F
Bugge, L
Bugge, MK
Bulekov, O
Bundock, AC
Burckhart, H
Burdin, S
Burghgrave, B
Burke, S
Burmeister, I
Busato, E
Buscher, D
Buscher, V
Bussey, P
Buszello, CP
Butler, B
Butler, JM
Butt, AI
Buttar, CM
Butterworth, JM
Butti, P
Buttinger, W
Buzatu, A
Byszewski, M
Urban, SC
Caforio, D
Cakir, O
Calafiura, P
Calandri, A
Calderini, G
Calfayan, P
Calkins, R
Caloba, LP
Calvet, D
Calvet, S
Toro, RC
Camarda, S
Cameron, D
Caminada, LM
Armadans, RC
Campana, S
Campanelli, M
Campoverde, A
Canale, V
Canepa, A
Bret, MC
Cantero, J
Cantrill, R
Cao, T
Garrido, MDMC
Caprini, I
Caprini, M
Capua, M
Caputo, R
Cardarelli, R
Carli, T
Carlino, G
Carminati, L
Caron, S
Carquin, E
Carrillo-Montoya, GD
Carter, JR
Carvalho, J
Casadei, D
Casado, MP
Casolino, M
Castaneda-Miranda, E
Castelli, A
Gimenez, VC
Castro, NF
Catastini, P
Catinaccio, A
Catmore, JR
Cattai, A
Cattani, G
Caughron, S
Cavaliere, V
Cavalli, D
Cavalli-Sforza, M
Cavasinni, V
Ceradini, F
Cerio, B
Cerny, K
Cerqueira, AS
Cerri, A
Cerrito, L
Cerutti, F
Cerv, M
Cervelli, A
Cetin, SA
Chafaq, A
Chakraborty, D
Chalupkova, I
Chang, P
Chapleau, B
Chapman, JD
Charfeddine, D
Charlton, DG
Chau, CC
Barajas, CAC
Cheatham, S
Chegwidden, A
Chekanov, S
Chekulaev, SV
Chelkov, GA
Chelstowska, MA
Chen, C
Chen, H
Chen, K
Chen, L
Chen, S
Chen, X
Chen, Y
Chen, Y
Cheng, HC
Cheng, Y
Cheplakov, A
El Moursli, RC
Chernyatin, V
Cheu, E
Chevalier, L
Chiarella, V
Chiefari, G
Childers, JT
Chilingarov, A
Chiodini, G
Chisholm, AS
Chislett, RT
Chitan, A
Chizhov, MV
Chouridou, S
Chow, BKB
Chromek-Burckhart, D
Chu, ML
Chudoba, J
Chwastowski, JJ
Chytka, L
Ciapetti, G
Ciftci, AK
Ciftci, R
Cinca, D
Cindro, V
Ciocio, A
Cirkovic, P
Citron, ZH
Citterio, M
Ciubancan, M
Clark, A
Clark, PJ
Clarke, RN
Cleland, W
Clemens, JC
Clement, C
Coadou, Y
Cobal, M
Coccaro, A
Cochran, J
Coffey, L
Cogan, JG
Coggeshall, J
Cole, B
Cole, S
Colijn, AP
Collot, J
Colombo, T
Colon, G
Compostella, G
Muino, PC
Coniavitis, E
Conidi, MC
Connell, SH
Connelly, IA
Consonni, SM
Consorti, V
Constantinescu, S
Conta, C
Conti, G
Conventi, F
Cooke, M
Cooper, BD
Cooper-Sarkar, AM
Cooper-Smith, NJ
Copic, K
Cornelissen, T
Corradi, M
Corriveau, F
Corso-Radu, A
Cortes-Gonzalez, A
Cortiana, G
Costa, G
Costa, MJ
Costanzo, D
Cote, D
Cottin, G
Cowan, G
Cox, BE
Cranmer, K
Cree, G
Crepe-Renaudin, S
Crescioli, F
Cribbs, WA
Ortuzar, MC
Cristinziani, M
Croft, V
Crosetti, G
Cuciuc, CM
Donszelmann, TC
Cummings, J
Curatolo, M
Cuthbert, C
Czirr, H
Czodrowski, P
Czyczula, Z
D'Auria, S
D'Onofrio, M
De Sousa, MJDCS
Da Via, C
Dabrowski, W
Dafinca, A
Dai, T
Dale, O
Dallaire, F
Dallapiccola, C
Dam, M
Daniells, AC
Hoffmann, MD
Dao, V
Darbo, G
Darmora, S
Dassoulas, JA
Dattagupta, A
Davey, W
David, C
Davidek, T
Davies, E
Davies, M
Davignon, O
Davison, AR
Davison, P
Davygora, Y
Dawe, E
Dawson, I
Daya-Ishmukhametova, RK
De, K
De Asmundis, R
De Castro, S
De Cecco, S
De Groot, N
de Jong, P
De la Torre, H
De Lorenzi, F
De Nooij, L
De Pedis, D
De Salvo, A
De Sanctis, U
De Santo, A
De Regie, JBD
Dearnaley, WJ
Debbe, R
Debenedetti, C
Dechenaux, B
Dedovich, DV
Deigaard, I
Del Peso, J
Del Prete, T
Deliot, F
Delitzsch, CM
Deliyergiyev, M
Dell' Acqua, A
Dell' Asta, L
Dell'Orso, M
Della Pietra, M
della Volpe, D
Delmastro, M
Delsart, PA
Deluca, C
Demers, S
Demichev, M
Demilly, A
Denisov, SP
Derendarz, D
Derkaoui, JE
Derue, F
Dervan, P
Desch, K
Deterre, C
Deviveiros, PO
Dewhurst, A
Dhaliwal, S
Di Ciaccio, A
Di Ciaccio, L
Di Domenico, A
Di Donato, C
Di Girolamo, A
Di Girolamo, B
Di Mattia, A
Di Micco, B
Di Nardo, R
Di Simone, A
Di Sipio, R
Di Valentino, D
Dias, FA
Diaz, MA
Diehl, EB
Dietrich, J
Dietzsch, TA
Diglio, S
Dimitrievska, A
Dingfelder, J
Dionisi, C
Dita, P
Dita, S
Dittus, F
Djama, F
Djobava, T
do Valec, MAB
Wemans, ADV
Doan, TKO
Dobos, D
Doglioni, C
Doherty, T
Dohmae, T
Dolejsi, J
Dolezal, Z
Dolgoshein, BA
Donadelli, M
Donati, S
Dondero, P
Donini, J
Dopke, J
Doria, A
Dova, MT
Doyle, AT
Dris, M
Dubbert, J
Dube, S
Dubreuil, E
Duchovni, E
Duckeck, G
Ducu, OA
Duda, D
Dudarev, A
Dudziak, F
Duflot, L
Duguid, L
Dunford, M
Yildiz, HD
Dueren, M
Durglishvili, A
Dwuznik, M
Dyndal, M
Ebke, J
Edson, W
Edwards, NC
Ehrenfeld, W
Eifert, T
Eigen, G
Einsweiler, K
Ekelof, T
El Kacimic, M
Ellert, M
Elles, S
Ellinghaus, F
Ellis, N
Elmsheuser, J
Elsing, M
Emeliyanov, D
Enari, Y
Endner, OC
Endo, M
Engelmann, R
Erdmann, J
Ereditato, A
Erikssona, D
Ernis, G
Ernst, J
Ernst, M
Ernwein, J
Errede, D
Errede, S
Ertel, E
Escalier, M
Esch, H
Escobar, C
Esposito, B
Etienvre, AI
Etzion, E
Evans, H
Ezhilov, A
Fabbri, L
Facini, G
Fakhrutdinov, RM
Falciano, S
Falla, RJ
Faltova, J
Fang, Y
Fanti, M
Farbin, A
Farilla, A
Farooque, T
Farrell, S
Farrington, SM
Farthouat, P
Fassi, F
Fassnacht, P
Fassouliotis, D
Favareto, A
Fayard, L
Federic, P
Fedin, OL
Fedorko, W
Fehling-Kaschek, M
Feigl, S
Feligioni, L
Feng, C
Feng, EJ
Feng, H
Fenyuk, AB
Perez, SF
Ferrag, S
Ferrando, J
Ferrari, A
Ferrari, P
Ferrari, R
de Lima, DEF
Ferrer, A
Ferrere, D
Ferretti, C
Parodi, AF
Fiascaris, M
Fiedler, F
Filipcic, A
Filipuzzi, M
Filthaut, F
Fincke-Keeler, M
Finelli, KD
Fiolhais, MCN
Fiorini, L
Firan, A
Fischer, A
Fischer, J
Fisher, WC
Fitzgerald, EA
Flechl, M
Fleck, I
Fleischmann, P
Fleischmann, S
Fletcher, GT
Fletcher, G
Flick, T
Floderus, A
Castillok, LRF
Bustos, ACF
Flowerdew, MJ
Formica, A
Forti, A
Fortin, D
Fournier, D
Fox, H
Fracchia, S
Francavilla, P
Franchini, M
Franchino, S
Francis, D
Franconi, L
Franklin, M
Franz, S
Fraternali, M
French, ST
Friedrich, C
Friedrich, F
Froidevaux, D
Frost, JA
Fukunaga, C
Torregrosa, EF
Fulsom, BG
Fuster, J
Gabaldon, C
Gabizon, O
Gabrielli, A
Gabrielli, A
Gadatsch, S
Gadomski, S
Gagliardi, G
Gagnon, P
Galea, C
Galhardo, B
Gallas, EJ
Gallo, V
Gallop, BJ
Gallus, P
Galster, G
Gan, KK
Gao, J
Gao, YS
GarayWalls, FM
Garberson, F
Garcia, C
Navarro, JEG
Garcia-Sciveres, M
Gardner, RW
Garelli, N
Garonne, V
Gatti, C
Gaudioa, G
Gaur, B
Gauthier, L
Gauzzi, P
Gavrilenko, IL
Gay, C
Gaycken, G
Gazis, EN
Ge, P
Gecse, Z
Gee, CNP
Geerts, DAA
Geich-Gimbel, C
Gellerstedt, K
Gemme, C
Gemmell, A
Genest, MH
Gentile, S
George, M
George, S
Gerbaudo, D
Gershon, A
Ghazlane, H
Ghodbane, N
Giacobbe, B
Giagu, S
Giangiobbe, V
Giannetti, P
Gianotti, F
Gibbard, B
Gibson, SM
Gilchriese, M
Gillam, TPS
Gillberg, D
Gilles, G
Gingrich, DM
Giokaris, N
Giordani, MP
Giordano, R
Giorgi, FM
Giorgi, FM
Giraud, PF
Giugni, D
Giuliani, C
Giulini, M
Gjelsten, BK
Gkaitatzis, S
Gkialas, I
Gladilin, LK
Glasman, C
Glatzer, J
Glaysher, PCF
Glazov, A
Glonti, GL
Goblirsch-Kolb, M
Goddard, JR
Godfrey, J
Godlewski, J
Goeringer, C
Goldfarb, S
Golling, T
Golubkov, D
Gomes, A
Fajardo, LSG
Goncalo, R
Da Costa, JGPF
Gonella, L
de la Hoz, SG
Parra, GG
Gonzalez-Sevilla, S
Goossens, L
Gorbounov, PA
Gordon, HA
Gorelov, I
Gorini, B
Gorini, E
Gorisek, A
Gornicki, E
Goshaw, AT
Gossling, C
Gostkin, MI
Gouighri, M
Goujdami, D
Goulette, MP
Goussiou, AG
Goy, C
Gozpinar, S
Grabas, HMX
Graber, L
Grabowska-Bold, I
Grafstroem, P
Grahn, KJ
Gramling, J
Gramstad, E
Grancagnolo, S
Grassi, V
Gratchev, V
Gray, HM
Graziani, E
Grebenyuk, OG
Greenwood, ZD
Gregersen, K
Gregor, IM
Grenier, P
Griffiths, J
Grillo, AA
Grimm, K
Grinstein, S
Gris, P
Grishkevich, YV
Grivaz, JF
Grohs, JP
Grohsjean, A
Gross, E
Grosse-Knetter, J
Grossi, GC
Groth-Jensen, J
Grout, ZJ
Guan, L
Guescini, F
Guest, D
Gueta, O
Guicheney, C
Guido, E
Guillemin, T
Guindon, S
Gul, U
Gumpert, C
Gunther, J
Guo, J
Gupta, S
Gutierrez, P
Ortiz, NGG
Gutschow, C
Guttman, N
Guyot, C
Gwenlan, C
Gwilliam, CB
Haas, A
Haber, C
Hadavand, HK
Haddade, N
Haefner, P
Hageboeck, S
Hajduk, Z
Hakobyan, H
Haleem, M
Hall, D
Halladjian, G
Hamacher, K
Hamal, P
Hamano, K
Hamer, M
Hamilton, A
Hamilton, S
Hamity, GN
Hamnett, PG
Han, L
Hanagaki, K
Hanawa, K
Hance, M
Hanke, P
Hann, R
Hansen, JB
Hansen, JD
Hansen, PH
Hara, K
Hard, AS
Harenberg, T
Hariri, F
Harkusha, S
Harper, D
Harrington, RD
Harris, OM
Harrison, PF
Hartjes, F
Hasegawa, M
Hasegawa, S
Hasegawa, Y
Hasib, A
Hassani, S
Haug, S
Hauschild, M
Hauser, R
Havranek, M
Hawkes, CM
Hawkings, RJ
Hawkins, AD
Hayashi, T
Hayden, D
Hays, CP
Hayward, HS
Haywood, SJ
Head, SJ
Heck, T
Hedberg, V
Heelan, L
Heim, S
Heim, T
Heinemann, B
Heinrich, L
Hejbal, J
Helary, L
Heller, C
Heller, M
Hellman, S
Hellmich, D
Helsens, C
Henderson, J
Heng, Y
Henderson, RCW
Hengler, C
Henrichs, A
Correia, AMH
Henrot-Versille, S
Hensel, C
Herbert, GH
Jimenez, YH
Herrberg-Schubert, R
Herten, G
Hertenberger, R
Hervas, L
Hesketh, GG
Hessey, NP
Hickling, R
Higoon-Rodriguez, E
Hill, E
Hill, JC
Hiller, KH
Hillert, S
Hillier, SJ
Hinchliffe, I
Hines, E
Hirose, M
Hirschbuehl, D
Hobbs, J
Hod, N
Hodgkinson, MC
Hodgson, P
Hoecker, A
Hoeferkamp, MR
Hoenig, F
Hoffman, J
Hoffmann, D
Hofmanna, JI
Hohlfeld, M
Holmes, TR
Hong, TM
van Huysduynen, LH
Horii, Y
Hostachy, JY
Hou, S
Hoummada, A
Howard, J
Howarth, J
Hrabovsky, M
Hristova, I
Hrivnac, J
Hryn'ova, T
Hsuc, C
Hsu, PJ
Hsu, SC
Hu, D
Hu, X
Huang, Y
Hubacek, Z
Hubaut, F
Huegging, F
Huffman, TB
Hughes, EW
Hughes, G
Huhtinen, M
Huelsing, TA
Hurwitz, M
Huseynov, N
Huston, J
Huth, J
Iacobucci, G
Iakovidis, G
Ibragimov, I
Iconomidou-Fayard, L
Ideal, E
Iengo, P
Igonkina, O
Iizawa, T
Ikegami, Y
Ikematsu, K
Ikeno, M
Ilchenko, Y
Iliadis, D
Ilic, N
Inamaru, Y
Ince, T
Ioannou, P
Iodice, M
Iordanidou, K
Ippolito, V
Quiles, AI
Isaksson, C
Ishino, M
Ishitsuka, M
Ishmukhametov, R
Issever, C
Istin, S
Ponce, JMI
Iuppa, R
Ivarsson, J
Iwanski, W
Iwasaki, H
Izen, JM
Izzo, V
Jackson, B
Jackson, M
Jackson, P
Jaekel, MR
Jain, V
Jakobs, K
Jakobsen, S
Jakoubek, T
Jakubek, J
Jamin, DO
Jana, DK
Jansen, E
Jansen, H
Janssen, J
Janus, M
Jarlskog, G
Javadov, N
Javurek, T
Jeanty, L
Jejelava, J
Jeng, GY
Jennens, D
Jenni, P
Jentzsch, J
Jeske, C
Jezequel, S
Ji, H
Jia, J
Jiang, Y
Belenguer, MJ
Jin, S
Jinaru, A
Jinnouchi, O
Joergensen, MD
Johansson, KE
Johansson, P
Johns, KA
Jon-And, K
Jones, G
Jones, RWL
Jones, TJ
Jongmanns, J
Jorge, PM
Joshi, KD
Jovicevic, J
Ju, X
Jung, CA
Jungst, RM
Jussel, P
Rozas, AJ
Kaci, M
Kaczmarska, A
Kado, M
Kagan, H
Kagan, M
Kajomovitz, E
Kalderon, CW
Kama, S
Kamenshchikov, A
Kanaya, N
Kaneda, M
Kaneti, S
Kantserov, VA
Kanzaki, J
Kaplan, B
Kapliy, A
Kar, D
Karakostas, K
Karastathis, N
Karnevskiy, M
Karpov, SN
Karpova, ZM
Karthik, K
Kartvelishvili, V
Karyukhin, AN
Kashif, L
Kasieczkab, G
Kass, RD
Kastanas, A
Kataoka, Y
Katre, A
Katzy, J
Kaushik, V
Kawagoe, K
Kawamoto, T
Kawamura, G
Kazama, S
Kazanin, VF
Kazarinov, MY
Keeler, R
Kehoe, R
Keil, M
Keller, JS
Kempster, JJ
Keoshkerian, H
Kepka, O
Kersevan, BP
Kersten, S
Kessoku, K
Keung, J
Khalil-zada, F
Khandanyan, H
Khanov, A
Khodinov, A
Khomich, A
Khoo, TJ
Khoriauli, G
Khoroshilov, A
Khovanskiy, V
Khramov, E
Khubua, J
Kim, HY
Kim, H
Kim, SH
Kimura, N
Kind, O
King, BT
King, M
King, RSB
King, SB
Kirk, J
Kiryunin, AE
Kishimoto, T
Kisielewska, D
Kiss, F
Kittelmann, T
Kiuchi, K
Kladiva, E
Klein, M
Klein, U
Kleinknecht, K
Klimek, P
Klimentov, A
Klingenberg, R
Klinger, JA
Klioutchnikova, T
Klok, PF
Kluge, EE
Kluit, P
Kluth, S
Kneringer, E
Knoops, EBFG
Knue, A
Kobayashi, D
Kobayashi, T
Kobel, M
Kocian, M
Kodys, P
Koevesarki, P
Koffas, T
Koffeman, E
Kogan, LA
Kohlmann, S
Kohout, Z
Kohriki, T
Koi, T
Kolanoski, H
Koletsou, I
Koll, J
Komar, AA
Komori, Y
Kondo, T
Kondrashova, N
Koneke, K
Konig, AC
Konig, S
Kono, T
Konoplich, R
Konstantinidis, N
Kopeliansky, R
Koperny, S
Kopke, L
Kopp, AK
Korcyl, K
Kordas, K
Korn, A
Korol, AA
Korolkov, I
Korolkova, EV
Korotkov, VA
Kortner, O
Kortner, S
Kostyukhin, VV
Kotov, VM
Kotwal, A
Kourkoumelis, C
Kouskoura, V
Koutsman, A
Kowalewski, R
Kowalski, TZ
Kozanecki, W
Kozhin, AS
Kral, V
Kramarenko, VA
Kramberger, G
Krasnopevtsev, D
Krasny, MW
Krasznahorkay, A
Kraus, JK
Kravchenko, A
Kreiss, S
Kretz, M
Kretzschmar, J
Kreutzfeldt, K
Krieger, P
Kroeninger, K
Kroha, H
Kroll, J
Kroseberg, J
Krstic, J
Kruchonak, U
Kruger, H
Kruker, T
Krumnack, N
Krumshteyn, ZV
Kruse, A
Kruse, MC
Kruskal, M
Kubota, T
Kudaya, S
Kuehn, S
Kugel, A
Kuhl, A
Kuhl, T
Kukhtin, V
Kulchitsky, Y
Kuleshov, S
Kuna, M
Kunkle, J
Kupco, A
Kurashige, H
Kurochkin, YA
Kurumida, R
Kus, V
Kuwertz, ES
Kuze, M
Kvita, J
La Rosa, A
La Rotonda, L
Lacasta, C
Lacava, F
Lacey, J
Lacker, H
Lacour, D
Lacuesta, VR
Ladygin, E
Lafaye, R
Laforge, B
Lagouri, T
Lai, S
Laier, H
Lambourne, L
Lammers, S
Lampen, CL
Lampl, W
Lancon, E
Landgraf, U
Landon, MPJ
Lang, VS
Lankford, AJ
Lanni, F
Lantzsch, K
Laplace, S
Lapoire, C
Laporte, JF
Lari, T
Lassnig, M
Laurelli, P
Lavrijsen, W
Law, AT
Laycock, P
Le Dortz, O
Le Guirriec, E
Le Menedeu, E
LeCompte, T
Ledroit-Guillon, F
Lee, CA
Lee, H
Lee, JSH
Lee, SC
Lee, L
Lefebvre, G
Lefebvre, M
Legger, F
Leggett, C
Lehan, A
Lehmacher, M
Miotto, GL
Lei, X
Leight, WA
Leisos, A
Leister, AG
Leite, MAL
Leitner, R
Lellouch, D
Lemmer, B
Leney, KJC
Lenz, T
Lenzen, G
Lenzi, B
Leone, R
Leone, S
Leonhardt, K
Leonidopoulos, C
Leontsinis, S
Leroy, C
Lester, CG
Lester, CM
Levchenko, M
Leveque, J
Levin, D
Levinson, LJ
Levy, M
Lewis, A
Lewis, GH
Leyko, AM
Leyton, M
Li, B
Li, B
Li, H
Li, HL
Li, L
Li, L
Li, S
Li, Y
Liang, Z
Liao, H
Liberti, B
Lichard, P
Lie, K
Liebal, J
Liebig, W
Limbach, C
Limosani, A
Lin, SC
Lin, TH
Linde, F
Lindquist, BE
Linnemann, JT
Lipeles, E
Lipniacka, A
Lisovyi, M
Liss, TM
Lissauer, D
Lister, A
Litke, AM
Liu, B
Liu, D
Liu, JB
Liu, K
Liu, L
Liu, M
Liu, M
Liu, Y
Livan, M
Livermore, SSA
Lleres, A
Merino, JL
Lloyd, SL
Lo Sterzo, F
Lobodzinska, E
Loch, P
Lockman, WS
Loddenkoetter, T
Loebinger, FK
Loevschall-Jensen, AE
Loginov, A
Lohse, T
Lohwasser, K
Lokajicek, M
Lombardo, VP
Long, BA
Long, JD
Long, RE
Lopes, L
Mateos, DL
Paredes, BL
Paz, IL
Lorenz, J
Martinez, NL
Losada, M
Loscutoff, P
Lou, X
Lounis, A
Love, J
Love, PA
Lowe, AJ
Lu, F
Lu, N
Lubatti, HJ
Luci, C
Lucotte, A
Luehring, F
Lukas, W
Luminari, L
Lundberg, O
Lund-Jensen, B
Lungwitz, M
Lynn, D
Lysak, R
Lytken, E
Ma, H
Ma, LL
Maccarrone, G
Macchiolo, A
Miguens, JM
Macina, D
Madaffari, D
Madar, R
Maddocks, HJ
Mader, WF
Madsen, A
Maeno, M
Maeno, T
Magradze, E
Mahboubi, K
Mahlstedt, J
Mahmoud, S
Maiani, C
Maidantchik, C
Maier, AA
Maio, A
Majewski, S
Makida, Y
Makovec, N
Mal, P
Malaescu, B
Malecki, P
Maleev, VP
Malek, F
Mallik, U
Malon, D
Malone, C
Maltezos, S
Malyshev, VM
Malyukov, S
Mamuzic, J
Mandelli, B
Mandelli, L
Mandic, I
Mandrysch, R
Maneira, J
Manfredini, A
de Andrade, LM
Ramos, JAM
Mann, A
Manning, PM
Manousakis-Katsikakis, A
Mansoulie, B
Mantifel, R
Mapelli, L
March, L
Marchand, JF
Marchiori, G
Marcisovsky, M
Marino, CP
Marjanovic, M
Marques, CN
Marroquim, F
Marsden, SP
Marshall, Z
Marti, LF
Marti-Garcia, S
Martin, B
Martin, B
Martin, TA
Martin, VJ
Latour, BMD
Martinez, H
Martinez, M
Martin-Haugh, S
Martyniuk, AC
Marx, M
Marzano, F
Marzin, A
Masetti, L
Mashimo, T
Mashinistov, R
Masik, J
Maslennikov, AL
Massa, I
Massa, L
Massol, N
Mastrandrea, P
Mastroberardino, A
Masubuchi, T
Maettig, P
Mattmann, J
Maurer, J
Maxfield, SJ
Maximov, DA
Mazini, R
Mazzaferro, L
Mc Goldrick, G
Mc Kee, SP
McCarn, A
McCarthy, RL
McCarthy, TG
McCubbin, NA
McFarlane, KW
Mcfayden, JA
Mchedlidze, G
McMahon, SJ
McPherson, RA
Meade, A
Mechnich, J
Medinnis, M
Meehan, S
Mehlhase, S
Mehta, A
Meier, K
Meineck, C
Meirose, B
Melachrinos, C
MelladoGarciac, BR
Meloni, F
Mengarelli, A
Menke, S
Meoni, E
Mercurio, KM
Mergelmeyer, S
Meric, N
Mermod, P
Merola, L
Meroni, C
Merritt, FS
Merritt, H
Messina, A
Metcalfe, J
Mete, AS
Meyer, C
Meyer, C
Meyer, JP
Meyer, J
Middleton, RP
Migas, S
Mijovic, L
Mikenberg, G
Mikestikova, M
Mikuz, M
Milic, A
Miller, DW
Mills, C
Milov, A
Milstead, DA
Milstein, D
Minaenko, AA
Minashvili, IA
Mincer, AI
Mindura, B
Mineev, M
Ming, Y
Mir, LM
Mirabelli, G
Mitani, T
Mitrevski, J
Mitsou, VA
Mitsui, S
Miucci, A
Miyagawa, PS
Mjornmark, JU
Moa, T
Mochizuki, K
Mohapatra, S
Mohr, W
Molander, S
Moles-Valls, R
Monig, K
Monini, C
Monk, J
Monnier, E
Berlingen, JM
Monticelli, F
Monzani, S
Moore, RW
Morange, N
Moreno, D
Llacer, MM
Morettini, P
Morgenstern, M
Morii, M
Moritz, S
Morley, AK
Mornacchi, G
Morris, JD
Morvaj, L
Moser, HG
Mosidze, M
Moss, J
Motohashi, K
Mount, R
Mountricha, E
Mouraviev, SV
Moyse, EJW
Muanza, S
Mudd, RD
Mueller, F
Mueller, J
Mueller, K
Mueller, T
Mueller, T
Muenstermann, D
Munwes, Y
Quijada, JAM
Murray, WJ
Musheghyan, H
Musto, E
Myagkov, AG
Myska, M
Nackenhorst, O
Nadal, J
Nagai, K
Nagai, R
Nagai, Y
Nagano, K
Nagarkar, A
Nagasaka, Y
Nagel, M
Nairz, AM
Nakahama, Y
Nakamura, K
Nakamura, T
Nakano, I
Namasivayam, H
Nanava, G
Narayan, R
Nattermann, T
Naumann, T
Navarro, G
Nayyar, R
Neal, HA
Nechaeva, PY
Neep, TJ
Nef, PD
Negri, A
Negri, G
Negrini, M
Nektarijevic, S
Nelson, A
Nelson, TK
Nemecek, S
Nemethy, P
Nepomuceno, AA
Nessi, M
Neubauer, MS
Neumann, M
Neves, RM
Nevski, P
Newman, PR
Nguyen, DH
Nickerson, RB
Nicolaidou, R
Nicquevert, B
Nielsen, J
Nikiforou, N
Nikiforov, A
Nikolaenko, V
Nikolic-Audit, I
Nikolics, K
Nikolopoulos, K
Nilsson, P
Ninomiya, Y
Nisati, A
Nisius, R
Nobe, T
Nodulman, L
Nomachi, M
Nomidis, I
Norberg, S
Nordberg, M
Novgorodova, O
Nowak, S
Nozaki, M
Nozka, L
Ntekas, K
Hanninger, GN
Nunnemann, T
Nurse, E
Nuti, F
O'Brien, BJ
O'grady, F
O'Neil, DC
O'Shea, V
Oakham, FG
Oberlack, H
Obermann, T
Ocariz, J
Ochi, A
Ochoa, MI
Oda, S
Odaka, S
Ogren, H
Oh, A
Oh, SH
Ohm, CC
Ohman, H
Okamura, W
Okawa, H
Okumura, Y
Okuyama, T
Olariu, A
Olchevski, AG
Pino, SAO
Damazio, DO
Garcia, EO
Olszewski, A
Olszowska, J
Onofre, A
Onyisi, PUE
Orama, CJ
Oreglia, MJ
Oren, Y
Orestano, D
Orlando, N
Barrera, CO
Orr, RS
Osculati, B
Ospanov, R
Garzon, GOY
Otono, H
Ouchrif, M
Ouellette, EA
Ould-Saada, F
Ouraou, A
Oussoren, KP
Ouyang, Q
Ovcharova, A
Owen, M
Ozcan, VE
Ozturk, N
Pachal, K
Pages, AP
Aranda, CP
Pagacova, M
Griso, SP
Paganis, E
Pahl, C
Paige, F
Pais, P
Pajchel, K
Palacino, G
Palestini, S
Palka, M
Pallin, D
Palma, A
Palmer, JD
Pan, YB
Panagiotopoulou, E
Vazquez, JGP
Pani, P
Panikashvili, N
Panitkin, S
Pantea, D
Paolozzi, L
Papadopoulou, TD
Papageorgiou, K
Paramonov, A
Hernandez, DP
Parker, MA
Parodi, F
Parsons, JA
Parzefall, U
Pasqualucci, E
Passaggio, S
Passeri, A
Pastore, F
Pastore, F
Pasztor, G
Pataraia, S
Patel, ND
Pater, JR
Patricelli, S
Pauly, T
Pearce, J
Pedersen, LE
Pedersen, M
Lopez, SP
Pedro, R
Peleganchuk, SV
Pelikan, D
Peng, H
Penning, B
Penwell, J
Perepelitsa, V
Codina, EP
Garcia-Estan, MTP
Reale, VP
Perini, L
Pernegger, H
Perrino, R
Peschke, R
Peshekhonov, VD
Peters, K
Peters, RFY
Petersen, BA
Petersen, TC
Petit, E
Petridis, A
Petridou, C
Petrolo, E
Petrucci, F
Pettersson, NE
Pezoa, R
Phillips, PW
Piacquadio, G
Pianori, E
Picazio, A
Piccaro, E
Piccinini, M
Piegaia, R
Pignotti, DT
Pilcher, JE
Pilkington, D
Pina, J
Pinamonti, M
Pinder, A
Pinfold, JL
Pingel, A
Pinto, B
Pires, S
Pitt, M
Pizio, C
Plazak, L
Pleier, MA
Pleskot, V
Plotnikova, E
Plucinski, P
Poddar, S
Podlyski, F
Poettgen, R
Poggioli, L
Pohl, D
Pohl, M
Polesello, G
Policicchio, A
Polifka, R
Polini, A
Pollard, CS
Polychronakos, V
Pommes, K
Pontecorvo, L
Pope, BG
Popeneciu, GA
Popovic, DS
Poppleton, A
Bueso, XP
Pospisil, S
Potamianos, K
Potrap, IN
Potter, CJ
Potter, CT
Poulard, G
Poveda, J
Pozdnyakov, V
Pralavorio, P
Pranko, A
Prasad, S
Pravahan, R
Prell, S
Price, D
Price, J
Price, LE
Prieur, D
Primavera, M
Proissl, M
Prokofiev, K
Prokoshin, F
Protopapadaki, E
Protopopescu, S
Proudfoot, J
Przybycien, M
Przysiezniak, H
Ptacek, E
Puddu, D
Pueschel, E
Puldon, D
Purohit, M
Puzo, P
Qian, J
Qin, G
Qin, Y
Quadt, A
Quarrie, DR
Quayle, WB
Queitsch-Maitland, M
Quilty, D
Qureshi, A
Radeka, V
Radescu, V
Radhakrishnan, SK
Radloff, P
Rados, P
Ragusa, F
Rahal, G
Rajagopalan, S
Rammensee, M
Randle-Conde, AS
Rangel-Smith, C
Rao, K
Rauscher, F
Rave, TC
Ravenscroft, T
Raymond, M
Read, AL
Readioff, NP
Rebuzzi, DM
Redelbach, A
Redlinger, G
Reece, R
Reeves, K
Rehnisch, L
Reisin, H
Relich, M
Rembser, C
Ren, H
Ren, ZL
Renaud, A
Rescigno, M
Resconi, S
Rezanova, OL
Reznicek, P
Rezvani, R
Richter, R
Ridel, M
Rieck, P
Rieger, J
Rijssenbeek, M
Rimoldi, A
Rinaldi, L
Ritsch, E
Riu, I
Rizatdinova, F
Rizvi, E
Robertson, SH
Robichaud-Veronneau, A
Robinson, D
Robinson, JEM
Robson, A
Roda, C
Rodrigues, L
Roe, S
Rohne, O
Rolli, S
Romaniouk, A
Romano, M
Adam, ER
Rompotis, N
Ronzani, M
Roos, L
Ros, E
Rosati, S
Rosbach, K
Rose, M
Rose, P
Rosendahl, PL
Rosenthal, O
Rossetti, V
Rossi, E
Rossi, LP
Rosten, R
Rotaru, M
Roth, I
Rothberg, J
Rousseau, D
Royon, CR
Rozanov, A
Rozen, Y
Ruan, X
Rubbo, F
Rubinskiy, I
Rud, VI
Rudolph, C
Rudolph, MS
Ruhr, F
Ruiz-Martinez, A
Rurikova, Z
Rusakovich, NA
Ruschke, A
Rutherfoord, JP
Ruthmann, N
Ryabov, YF
Rybar, M
Rybkin, G
Ryder, NC
Saavedra, AF
Sacerdoti, S
Saddique, A
Sadeh, I
Sadrozinski, HFW
Sadykov, R
Tehrani, FS
Sakamoto, H
Sakurai, Y
Salamanna, G
Salamon, A
Saleem, M
Salek, D
De Bruin, PHS
Salihagic, D
Salnikov, A
Salt, J
Salvatore, D
Salvatore, F
Salvucci, A
Salzburger, A
Sampsonidis, D
Sanchez, A
Sanchez, J
Martinez, VS
Sandaker, H
Sandbach, RL
Sander, HG
Sanders, MP
Sandhoff, M
Sandoval, T
Sandoval, C
Sandstroem, R
Sankey, DPC
Sansoni, A
Santoni, C
Santonico, R
Santos, H
Castillo, IS
Sapp, K
Sapronov, A
Saraiva, JG
Sarrazin, B
Sartisohn, G
Sasaki, O
Sasaki, Y
Sauvage, G
Sauvan, E
Savard, P
Savu, DO
Sawyer, C
Sawyer, L
Saxon, DH
Saxon, J
Sbarra, C
Sbrizzi, A
Scanlon, T
Scannicchio, DA
Scarcella, M
Scarfone, V
Schaarschmidt, J
Schacht, P
Schaefer, D
Schaefer, R
Schaepe, S
Schaetzel, S
Schafer, U
Schaffer, AC
Schaile, D
Schamberger, RD
Scharf, V
Schegelsky, VA
Scheirich, D
Schernau, M
Scherzer, MI
Schiavi, C
Schieck, J
Schillo, C
Schioppa, M
Schlenker, S
Schmidt, E
Schmieden, K
Schmitt, C
Schmitt, S
Schneider, B
Schnellbach, YJ
Schnoor, U
Schoeffel, L
Schoening, A
Schoenrock, BD
Schorlemmer, ALS
Schott, M
Schouten, D
Schovancova, J
Schramm, S
Schreyer, M
Schroeder, C
Schuh, N
Schultens, MJ
Schultz-Coulon, HC
Schulz, H
Schumacher, M
Schumm, BA
Schune, P
Schwanenberger, C
Schwartzman, A
Schwegler, P
Schwemling, P
Schwienhorst, R
Schwindling, J
Schwindt, T
Schwoerer, M
Sciacca, FG
Scifo, E
Sciolla, G
Scott, WG
Scuri, F
Scutti, F
Searcy, J
Sedov, G
Sedykh, E
Seidel, SC
Seiden, A
Seifert, F
Seixas, JM
Sekhniaidze, G
Sekula, SJ
Selbach, KE
Seliverstov, DM
Sellers, G
Semprini-Cesari, N
Serfon, C
Serin, L
Serkin, L
Serre, T
Seuster, R
Severini, H
Sfiligoj, T
Sforza, F
Sfyrla, A
Shabalina, E
Shamim, M
Shan, LY
Shang, R
Shank, JT
Shapiro, M
Shatalov, PB
Shaw, K
Shehu, CY
Sherwood, P
Shi, L
Shimizu, S
Shimmin, CO
Shimojima, M
Shiyakova, M
Shmeleva, A
Shochet, MJ
Short, D
Shrestha, S
Shulga, E
Shupe, MA
Shushkevich, S
Sicho, P
Sidiropoulou, O
Sidorov, D
Sidotia, A
Siegert, F
Sijacki, D
Silva, J
Silver, Y
Silverstein, D
Silverstein, SB
Simak, V
Simard, O
Simic, L
Simion, S
Simioni, E
Simmons, B
Simoniello, R
Simonyan, M
Sinervo, P
Sinev, NB
Sipica, V
Siragusa, G
Sircar, A
Sisakyan, AN
Sivoklokov, SY
Sjolin, J
Sjursen, TB
Skottowe, HP
Skovpen, KY
Skubic, P
Slater, M
Slavicek, T
Sliwa, K
Smakhtin, V
Smart, BH
Smestad, L
Smirnov, SY
Smirnov, Y
Smirnova, LN
Smirnova, O
Smith, KM
Smizanska, M
Smolek, K
Snesarev, AA
Snidero, G
Snyder, S
Sobie, R
Socher, F
Soffer, A
Soh, DA
Solans, CA
Solar, M
Solc, J
Soldatov, EY
Soldevila, U
Solodkov, AA
Soloshenko, A
Solovyanov, OV
Solovyev, V
Sommer, P
Song, HY
Soni, N
Sood, A
Sopczak, A
Sopko, B
Sopko, V
Sorin, V
Sosebee, M
Soualah, R
Soueid, P
Soukharev, AM
South, D
Spagnolo, S
Spano, F
Spearman, WR
Spettel, F
Spighi, R
Spigo, G
Spiller, LA
Spousta, M
Spreitzer, T
Spurlock, B
St Denis, RD
Staerz, S
Stahlman, J
Stamen, R
Stamm, S
Stanecka, E
Stanek, RW
Stanescu, C
Stanescu-Bellu, M
Stanitzki, MM
Stapnes, S
Starchenko, EA
Stark, J
Staroba, P
Starovoitov, P
Staszewski, R
Stavina, P
Steinberg, P
Stelzer, B
Stelzer, HJ
Stelzer-Chilton, O
Stenzel, H
Stern, S
Stewart, GA
Stillings, JA
Stockton, MC
Stoebe, M
Stoicea, G
Stolte, P
Stonjek, S
Stradling, AR
Straessner, A
Stramaglia, ME
Strandberg, J
Strandberg, S
Strandlie, A
Strauss, E
Strauss, M
Strizenec, P
Strohmer, R
Strom, DM
Stroynowski, R
Struebig, A
Stucci, SA
Stugu, B
Styles, NA
Su, D
Su, J
Subramaniam, R
Succurro, A
Sugaya, Y
Suhr, C
Suk, M
Sulin, VV
Sultansoy, S
Sumida, T
Sun, S
Sun, X
Sundermann, JE
Suruliz, K
Susinno, G
Sutton, MR
Suzuki, Y
Svatos, M
Swedish, S
Swiatlowski, M
Sykora, I
Sykora, T
Ta, D
Taccini, C
Tackmann, K
Taenzer, J
Taffard, A
Tafirout, R
Taiblum, N
Takai, H
Takashima, R
Takeda, H
Takeshita, T
Takubo, Y
Talby, M
Talyshev, AA
Tam, JYC
Tan, KG
Tanaka, J
Tanaka, R
Tanaka, S
Tanaka, S
Tanasijczuk, AJ
Tannenwald, BB
Tannoury, N
Tapprogge, S
Tarem, S
Tarrade, F
Tartarelli, GF
Tas, P
Tasevsky, M
Tashiro, T
Tassi, E
Delgado, AT
Tayalati, Y
Taylor, FE
Taylor, GN
Taylor, W
Teischinger, FA
Castanheira, MTD
Teixeira-Dias, P
Temming, KK
Ten Kate, H
Teng, PK
Teoh, JJ
Terada, S
Terashi, K
Terron, J
Terzo, S
Testa, M
Teuscher, RJ
Therhaag, J
Theveneaux-Pelzer, T
Thomas, JP
Thomas-Wilsker, J
Thompson, EN
Thompson, PD
Thompson, PD
Thompson, RJ
Thompson, AS
Thomsen, LA
Thomson, E
Thomson, M
Thong, WM
Thun, RP
Tian, F
Tibbetts, MJ
Tikhomirov, VO
Tikhonov, YA
Timoshenko, S
Tiouchichine, E
Tipton, P
Tisserant, S
Todorov, T
Todorova-Nova, S
Toggerson, B
Tojo, J
Tokar, S
Tokushuku, K
Tollefson, K
Tomlinson, L
Tomoto, M
Tompkins, L
Toms, K
Topilin, ND
Torrence, E
Torres, H
Pastor, ET
Toth, J
Touchard, F
Tovey, DR
Tran, HL
Trefzger, T
Tremblet, L
Tricoli, A
Trigger, IM
Trincaz-Duvoid, S
Tripiana, MF
Trischuk, W
Trocme, B
Troncon, C
Trottier-McDonald, M
Trovatelli, M
True, P
Trzebinski, M
Trzupek, A
Tsarouchas, C
Tseng, JCL
Tsiareshka, PV
Tsionou, D
Tsipolitis, G
Tsirintanis, N
Tsiskaridze, S
Tsiskaridze, V
Tskhadadze, EG
Tsukerman, II
Tsulaia, V
Tsuno, S
Tsybychev, D
Tudorachea, A
Tudorache, V
Tuna, AN
Tupputi, SA
Turchikhin, S
Turecek, D
Cakird, IT
Turra, R
Tuts, PM
Tykhonov, A
Tylmad, M
Tyndel, M
Uchida, K
Ueda, I
Ueno, R
Ughetto, M
Ugland, M
Uhlenbrock, M
Ukegawa, F
Unal, G
Undrus, A
Unel, G
Ungaro, FC
Unno, Y
Unverdorben, C
Urbaniec, D
Urquijo, P
Usai, G
Usanova, A
Vacavant, L
Vacek, V
Vachon, B
Valencic, N
Valentinetti, S
Valero, A
Valery, L
Valkar, S
Gallego, EV
Vallecorsa, S
Ferrer, JAV
Van den Wollenberg, W
Van der Deijl, PC
Van der Geer, R
Van der Graaf, H
Van der Leeuw, R
Van der Ster, D
van Eldik, N
van Gemmeren, P
Van Nieuwkoop, J
Van Vulpen, I
van Woerden, MC
Vanadia, M
Vandelli, W
Vanguri, R
Vaniachine, A
Vankov, P
Vannucci, F
Vardanyan, G
Vari, R
Varnes, EW
Varol, T
Varouchas, D
Vartapetian, A
Varvell, KE
Vazeille, F
Schroeder, TV
Veatch, J
Veloso, F
Veneziano, S
Ventura, A
Ventura, D
Venturi, M
Venturi, N
Venturini, A
Vercesi, V
Verducci, M
Verkerke, W
Vermeulen, JC
Vest, A
Vetterli, MC
Viazlo, O
Vichou, I
Vickey, T
Boeriu, OEV
Viehhauser, GHA
Viel, S
Vigne, R
Villa, M
Perez, MV
Vilucchi, E
Vincter, MG
Vinogradov, VB
Virzi, J
Vivarelli, I
Vaque, FV
Vlachos, S
Vladoiu, D
Vlasak, M
Vogel, A
Vogela, M
Vokac, P
Volpi, G
Volpi, M
von der Schmitt, H
von Radziewski, H
von Toerne, E
Vorobel, V
Vorobev, K
Vos, M
Voss, R
Vossebeld, JH
Vranjes, N
Milosavljevic, MV
Vrba, V
Vreeswijk, M
Anh, TV
Vuillermet, R
Vukotic, I
Vykydal, Z
Wagner, P
Wagner, W
Wahlberg, H
Wahrmund, S
Wakabayashi, J
Walder, J
Walker, R
Walkowiak, W
Wall, R
Waller, P
Walsh, B
Wang, C
Wang, C
Wang, F
Wang, H
Wang, H
Wang, J
Wang, J
Wang, K
Wang, R
Wang, SM
Wang, T
Wang, X
Wanotayaroj, C
Warburton, A
Ward, CP
Wardrope, DR
Warsinsky, M
Washbrook, A
Wasicki, C
Watkins, PM
Watson, AT
Watson, IJ
Watson, MF
Watts, G
Watts, S
Waugh, BM
Webb, S
Weber, MS
Weber, SW
Webster, JS
Weidberg, AR
Weigell, P
Weinert, B
Weingarten, J
Weiser, C
Weits, H
Wells, PS
Wenaus, T
Wendland, D
Weng, Z
Wengler, T
Wenig, S
Wermes, N
Werner, M
Werner, P
Wessels, M
Wetter, J
Whalen, K
White, A
White, MJ
White, R
White, S
Whiteson, D
Wicke, D
Wickens, FJ
Wiedenmann, W
Wielers, M
Wienemann, P
Wiglesworth, C
Wiik-Fuchs, LAM
Wijeratne, PA
Wildauer, A
Wildt, MA
Wilkens, HG
Will, JZ
Williams, HH
Williams, S
Willis, C
Willocq, S
Wilson, A
Wilson, JA
Wingerter-Seez, I
Winklmeier, F
Winter, BT
Wittgen, M
Wittig, T
Wittkowski, J
Wollstadt, SJ
Wolter, W
Wolters, H
Wosiek, BK
Wotschack, J
Woudstra, MJ
Wozniak, KW
Wright, M
Wu, M
Wu, SL
Wu, X
Wu, Y
Wulf, E
Wyatt, TR
Wynne, BM
Xella, S
Xiao, M
Xu, D
Xu, L
Yabsley, B
Yacoob, S
Yakabe, R
Yamada, M
Yamaguchi, H
Yamaguchi, Y
Yamamoto, A
Yamamoto, K
Yamamoto, S
Yamamura, T
Yamanaka, T
Yamauchi, K
Yamazaki, Y
Yan, Z
Yang, H
Yang, H
Yang, UK
Yang, Y
Yanush, S
Yao, L
Yao, WM
Yasu, Y
Yatsenko, E
Wong, KHY
Ye, J
Ye, S
Yeletskikh, I
Yen, AL
Yildirim, E
Yilmaz, M
Yoosoofmiya, R
Yorita, K
Yoshida, R
Yoshihara, K
Young, C
Young, CJS
Youssef, S
Yu, DR
Yu, J
Yu, JM
Yu, J
Yuan, L
Yurkewicz, A
Yusuff, I
Zabinski, B
Zaidan, R
Zaitsev, AM
Zaman, A
Zambito, S
Zanello, L
Zanzi, D
Zeitnitz, C
Zeman, M
Zemla, A
Zengel, K
Zenin, O
Zenis, T
Zerwas, D
della Porta, GZ
Zhang, D
Zhang, F
Zhang, H
Zhang, J
Zhang, L
Zhang, X
Zhang, Z
Zhao, Z
Zhemchugov, A
Zhong, J
Zhou, B
Zhou, L
Zhou, N
Zhu, CG
Zhu, H
Zhu, J
Zhu, Y
Zhuang, X
Zhukov, K
Zibell, A
Zieminska, D
Zimine, NI
Zimmermann, C
Zimmermann, R
Zimmermann, S
Zimmermann, S
Zinonos, Z
Ziolkowski, M
Zobernig, G
Zoccoli, A
Nedden, MZ
Zurzolo, G
Zutshi, V
Zwalinski, L
AF Aad, G.
Abbott, B.
Abdallah, J.
Khalek, S. Abdel
Abdinov, O.
Aben, R.
Abi, B.
Abolins, M.
AbouZeid, O. S.
Abramowicz, H.
Abreu, H.
Abreu, R.
Abulaiti, Y.
Acharya, B. S.
Adamczyk, L.
Adams, D. L.
Adelman, J.
Adomeit, S.
Adye, T.
Agatonovic-Jovin, T.
Aguilar-Saavedra, J. A.
Agustoni, M.
Ahlen, S. P.
Ahmadov, F.
Aielli, G.
Akerstedt, H.
Akesson, T. P. A.
Akimoto, G.
Akimov, A. V.
Alberghi, G. L.
Albert, J.
Albrand, S.
Verzini, M. J. Alconada
Aleksa, M.
Aleksandrov, I. N.
Alexa, C.
Alexander, G.
Alexandre, G.
Alexopoulos, T.
Alhroob, M.
Alimonti, G.
Alio, L.
Alison, J.
Allbrooke, B. M. M.
Allison, L. J.
Allport, P. P.
Almond, J.
Aloisio, A.
Alonso, A.
Alonso, F.
Alpigiani, C.
Altheimer, A.
Gonzalez, B. Alvarez
Alviggi, M. G.
Amako, K.
Coutinho, Y. Amaral
Amelung, C.
Amidei, D.
Dos Santos, S. P. Amor
Amorim, A.
Amoroso, S.
Amram, N.
Amundsen, G.
Anastopoulos, C.
Ancu, L. S.
Andari, N.
Andeen, T.
Anders, C. F.
Anders, G.
Anderson, K. J.
Andreazza, A.
Andrei, V.
Anduaga, X. S.
Angelidakis, S.
Angelozzi, I.
Anger, P.
Angerami, A.
Anghinolfi, F.
Anisenkov, A. V.
Anjos, N.
Annovi, A.
Antonaki, A.
Antonelli, M.
Antonov, A.
Antos, J.
Anulli, F.
Aoki, M.
Bella, L. Aperio
Apolle, R.
Arabidze, G.
Aracena, I.
Arai, Y.
Araque, J. P.
Arce, A. T. H.
Arguin, J-F.
Argyropoulos, S.
Arik, M.
Armbruster, A. J.
Arnaez, O.
Arnal, V.
Arnold, H.
Arratia, M.
Arslan, O.
Artamonov, A.
Artoni, G.
Asai, S.
Asbah, N.
Ashkenazi, A.
Asman, B.
Asquith, L.
Assamagan, K.
Astalos, R.
Atkinson, M.
Atlay, N. B.
Auerbach, B.
Augsten, K.
Aurousseau, M.
Avolio, G.
Azuelos, G.
Azuma, Y.
Baak, M. A.
Baas, A.
Bacci, C.
Bachacou, H.
Bachas, K.
Backes, M.
Backhaus, M.
Mayes, J. Backus
Badescu, E.
Bagiacchi, P.
Bagnaia, P.
Bai, Y.
Bain, T.
Baines, J. T.
Baker, O. K.
Balek, P.
Balli, F.
Banas, E.
Banerjee, Sw.
Bannoura, A. A. E.
Bansal, V.
Bansil, H. S.
Barak, L.
Baranov, S. P.
Barberio, E. L.
Barberis, D.
Barbero, M.
Barillari, T.
Barisonzi, M.
Barklow, T.
Barlow, N.
Barnett, B. M.
Barnett, R. M.
Barnovska, Z.
Baroncelli, A.
Barone, G.
Barr, A. J.
Barreiro, F.
da Costa, J. Barreiro Guimaraes
Bartoldus, R.
Barton, A. E.
Bartos, P.
Bartsch, V.
Bassalat, A.
Basye, A.
Bates, R. L.
Batley, J. R.
Battaglia, M.
Battistin, M.
Bauer, F.
Bawa, H. S.
Beattie, M. D.
Beau, T.
Beauchemin, P. H.
Beccherle, R.
Bechtle, P.
Beck, H. P.
Becker, K.
Becker, S.
Beckingham, M.
Becot, C.
Beddall, A. J.
Beddall, A.
Bedikian, S.
Bednyakov, V. A.
Bee, C. P.
Beemster, L. J.
Beermann, T. A.
Begel, M.
Behr, K.
Belanger-Champagne, C.
Bell, P. J.
Bell, W. H.
Bella, G.
Bellagamba, L.
Bellerive, A.
Bellomo, M.
Belotskiy, K.
Beltramello, O.
Benary, O.
Benchekroun, D.
Bendtz, K.
Benekos, N.
Benhammou, Y.
Noccioli, E. Benhar
Garcia, J. A. Benitez
Benjamin, D. P.
Bensinger, J. R.
Benslama, K.
Bentvelsen, S.
Berge, D.
Kuutmann, E. Bergeaas
Berger, N.
Berghaus, F.
Beringer, J.
Bernard, C.
Bernat, P.
Bernius, C.
Bernlochner, F. U.
Berry, T.
Berta, P.
Bertella, C.
Bertoli, G.
Bertolucci, F.
Bertsche, C.
Bertsche, D.
Bessner, M.
Besana, M. I.
Besjes, G. J.
Bessidskaia, O.
Besson, N.
Betancourt, C.
Bethke, S.
Bhimji, W.
Bianchi, R. M.
Bianchini, L.
Bianco, M.
Biebel, O.
Bieniek, S. P.
Bierwagen, K.
Biesiada, J.
Biglietti, M.
De Mendizabal, J. Bilbao
Bilokon, H.
Bindi, M.
Binet, S.
Bingul, A.
Bini, C.
Black, C. W.
Black, J. E.
Black, K. M.
Blackburn, D.
Blair, R. E.
Blanchard, J. -B.
Blazek, T.
Bloch, I.
Blocker, C.
Blum, W.
Blumenschein, U.
Bobbink, G. J.
Bobrovnikov, V. S.
Bocchetta, S. S.
Bocci, A.
Bock, C.
Boddy, C. R.
Boehler, M.
Boek, J.
Boek, J.
Boek, T. T.
Bogaerts, J. A.
Bogdanchikov, A. G.
Bogouch, A.
Bohm, C.
Bohm, J.
Boisvert, V.
Bold, T.
Boldea, V.
Boldyrev, A. S.
Bomben, M.
Bona, M.
Boonekamp, M.
Borisov, A.
Borissov, G.
Borri, M.
Borroni, S.
Bortfeldt, J.
Bortolotto, V.
Bos, K.
Boscherini, D.
Bosman, M.
Boterenbrood, H.
Boudreau, J.
Bouffard, J.
Bouhova-Thacker, E. V.
Boumediene, D.
Bourdarios, C.
Bousson, N.
Boutouil, S.
Boveia, A.
Boyd, J.
Boyko, I. R.
Bracinik, J.
Brandt, A.
Brandt, G.
Brandta, O.
Bratzler, U.
Brau, B.
Brau, J. E.
Braun, H. M.
Brazzale, S. F.
Brelier, B.
Brendlinger, K.
Brennan, A. J.
Brenner, R.
Bressler, S.
Bristow, K.
Bristow, T. M.
Britton, D.
Brochu, F. M.
Brock, I.
Brock, R.
Bromberg, C.
Bronner, J.
Brooijmans, G.
Brooks, T.
Brooks, W. K.
Brosamer, J.
Brost, E.
Brown, J.
de Renstrom, P. A. Bruckman
Bruncko, D.
Bruneliere, R.
Brunet, S.
Bruni, A.
Bruni, G.
Bruschi, M.
Bryngemark, L.
Buanes, T.
Buat, Q.
Bucci, F.
Buchholz, P.
Buckingham, R. M.
Buckley, A. G.
Buda, S. I.
Budagov, I. A.
Buehrer, F.
Bugge, L.
Bugge, M. K.
Bulekov, O.
Bundock, A. C.
Burckhart, H.
Burdin, S.
Burghgrave, B.
Burke, S.
Burmeister, I.
Busato, E.
Buescher, D.
Buescher, V.
Bussey, P.
Buszello, C. P.
Butler, B.
Butler, J. M.
Butt, A. I.
Buttar, C. M.
Butterworth, J. M.
Butti, P.
Buttinger, W.
Buzatu, A.
Byszewski, M.
Urban, S. Cabrera
Caforio, D.
Cakir, O.
Calafiura, P.
Calandri, A.
Calderini, G.
Calfayan, P.
Calkins, R.
Caloba, L. P.
Calvet, D.
Calvet, S.
Toro, R. Camacho
Camarda, S.
Cameron, D.
Caminada, L. M.
Armadans, R. Caminal
Campana, S.
Campanelli, M.
Campoverde, A.
Canale, V.
Canepa, A.
Bret, M. Cano
Cantero, J.
Cantrill, R.
Cao, T.
Garrido, M. D. M. Capeans
Caprini, I.
Caprini, M.
Capua, M.
Caputo, R.
Cardarelli, R.
Carli, T.
Carlino, G.
Carminati, L.
Caron, S.
Carquin, E.
Carrillo-Montoya, G. D.
Carter, J. R.
Carvalho, J.
Casadei, D.
Casado, M. P.
Casolino, M.
Castaneda-Miranda, E.
Castelli, A.
Gimenez, V. Castillo
Castro, N. F.
Catastini, P.
Catinaccio, A.
Catmore, J. R.
Cattai, A.
Cattani, G.
Caughron, S.
Cavaliere, V.
Cavalli, D.
Cavalli-Sforza, M.
Cavasinni, V.
Ceradini, F.
Cerio, B.
Cerny, K.
Cerqueira, A. S.
Cerri, A.
Cerrito, L.
Cerutti, F.
Cerv, M.
Cervelli, A.
Cetin, S. A.
Chafaq, A.
Chakraborty, D.
Chalupkova, I.
Chang, P.
Chapleau, B.
Chapman, J. D.
Charfeddine, D.
Charlton, D. G.
Chau, C. C.
Barajas, C. A. Chavez
Cheatham, S.
Chegwidden, A.
Chekanov, S.
Chekulaev, S. V.
Chelkov, G. A.
Chelstowska, M. A.
Chen, C.
Chen, H.
Chen, K.
Chen, L.
Chen, S.
Chen, X.
Chen, Y.
Chen, Y.
Cheng, H. C.
Cheng, Y.
Cheplakov, A.
El Moursli, R. Cherkaoui
Chernyatin, V.
Cheu, E.
Chevalier, L.
Chiarella, V.
Chiefari, G.
Childers, J. T.
Chilingarov, A.
Chiodini, G.
Chisholm, A. S.
Chislett, R. T.
Chitan, A.
Chizhov, M. V.
Chouridou, S.
Chow, B. K. B.
Chromek-Burckhart, D.
Chu, M. L.
Chudoba, J.
Chwastowski, J. J.
Chytka, L.
Ciapetti, G.
Ciftci, A. K.
Ciftci, R.
Cinca, D.
Cindro, V.
Ciocio, A.
Cirkovic, P.
Citron, Z. H.
Citterio, M.
Ciubancan, M.
Clark, A.
Clark, P. J.
Clarke, R. N.
Cleland, W.
Clemens, J. C.
Clement, C.
Coadou, Y.
Cobal, M.
Coccaro, A.
Cochran, J.
Coffey, L.
Cogan, J. G.
Coggeshall, J.
Cole, B.
Cole, S.
Colijn, A. P.
Collot, J.
Colombo, T.
Colon, G.
Compostella, G.
Muino, P. Conde
Coniavitis, E.
Conidi, M. C.
Connell, S. H.
Connelly, I. A.
Consonni, S. M.
Consorti, V.
Constantinescu, S.
Conta, C.
Conti, G.
Conventi, F.
Cooke, M.
Cooper, B. D.
Cooper-Sarkar, A. M.
Cooper-Smith, N. J.
Copic, K.
Cornelissen, T.
Corradi, M.
Corriveau, F.
Corso-Radu, A.
Cortes-Gonzalez, A.
Cortiana, G.
Costa, G.
Costa, M. J.
Costanzo, D.
Cote, D.
Cottin, G.
Cowan, G.
Cox, B. E.
Cranmer, K.
Cree, G.
Crepe-Renaudin, S.
Crescioli, F.
Cribbs, W. A.
Ortuzar, M. Crispin
Cristinziani, M.
Croft, V.
Crosetti, G.
Cuciuc, C. -M.
Donszelmann, T. Cuhadar
Cummings, J.
Curatolo, M.
Cuthbert, C.
Czirr, H.
Czodrowski, P.
Czyczula, Z.
D'Auria, S.
D'Onofrio, M.
De Sousa, M. J. Da Cunha Sargedas
Da Via, C.
Dabrowski, W.
Dafinca, A.
Dai, T.
Dale, O.
Dallaire, F.
Dallapiccola, C.
Dam, M.
Daniells, A. C.
Hoffmann, M. Dano
Dao, V.
Darbo, G.
Darmora, S.
Dassoulas, J. A.
Dattagupta, A.
Davey, W.
David, C.
Davidek, T.
Davies, E.
Davies, M.
Davignon, O.
Davison, A. R.
Davison, P.
Davygora, Y.
Dawe, E.
Dawson, I.
Daya-Ishmukhametova, R. K.
De, K.
De Asmundis, R.
De Castro, S.
De Cecco, S.
De Groot, N.
de Jong, P.
De la Torre, H.
De Lorenzi, F.
De Nooij, L.
De Pedis, D.
De Salvo, A.
De Sanctis, U.
De Santo, A.
De Regie, J. B. De Vivie
Dearnaley, W. J.
Debbe, R.
Debenedetti, C.
Dechenaux, B.
Dedovich, D. V.
Deigaard, I.
Del Peso, J.
Del Prete, T.
Deliot, F.
Delitzsch, C. M.
Deliyergiyev, M.
Dell' Acqua, A.
Dell' Asta, L.
Dell'Orso, M.
Della Pietra, M.
della Volpe, D.
Delmastro, M.
Delsart, P. A.
Deluca, C.
Demers, S.
Demichev, M.
Demilly, A.
Denisov, S. P.
Derendarz, D.
Derkaoui, J. E.
Derue, F.
Dervan, P.
Desch, K.
Deterre, C.
Deviveiros, P. O.
Dewhurst, A.
Dhaliwal, S.
Di Ciaccio, A.
Di Ciaccio, L.
Di Domenico, A.
Di Donato, C.
Di Girolamo, A.
Di Girolamo, B.
Di Mattia, A.
Di Micco, B.
Di Nardo, R.
Di Simone, A.
Di Sipio, R.
Di Valentino, D.
Dias, F. A.
Diaz, M. A.
Diehl, E. B.
Dietrich, J.
Dietzsch, T. A.
Diglio, S.
Dimitrievska, A.
Dingfelder, J.
Dionisi, C.
Dita, P.
Dita, S.
Dittus, F.
Djama, F.
Djobava, T.
do Valec, M. A. B.
Wemans, A. Do Valle
Doan, T. K. O.
Dobos, D.
Doglioni, C.
Doherty, T.
Dohmae, T.
Dolejsi, J.
Dolezal, Z.
Dolgoshein, B. A.
Donadelli, M.
Donati, S.
Dondero, P.
Donini, J.
Dopke, J.
Doria, A.
Dova, M. T.
Doyle, A. T.
Dris, M.
Dubbert, J.
Dube, S.
Dubreuil, E.
Duchovni, E.
Duckeck, G.
Ducu, O. A.
Duda, D.
Dudarev, A.
Dudziak, F.
Duflot, L.
Duguid, L.
Dunford, M.
Yildiz, H. Duran
Dueren, M.
Durglishvili, A.
Dwuznik, M.
Dyndal, M.
Ebke, J.
Edson, W.
Edwards, N. C.
Ehrenfeld, W.
Eifert, T.
Eigen, G.
Einsweiler, K.
Ekelof, T.
El Kacimic, M.
Ellert, M.
Elles, S.
Ellinghaus, F.
Ellis, N.
Elmsheuser, J.
Elsing, M.
Emeliyanov, D.
Enari, Y.
Endner, O. C.
Endo, M.
Engelmann, R.
Erdmann, J.
Ereditato, A.
Erikssona, D.
Ernis, G.
Ernst, J.
Ernst, M.
Ernwein, J.
Errede, D.
Errede, S.
Ertel, E.
Escalier, M.
Esch, H.
Escobar, C.
Esposito, B.
Etienvre, A. I.
Etzion, E.
Evans, H.
Ezhilov, A.
Fabbri, L.
Facini, G.
Fakhrutdinov, R. M.
Falciano, S.
Falla, R. J.
Faltova, J.
Fang, Y.
Fanti, M.
Farbin, A.
Farilla, A.
Farooque, T.
Farrell, S.
Farrington, S. M.
Farthouat, P.
Fassi, F.
Fassnacht, P.
Fassouliotis, D.
Favareto, A.
Fayard, L.
Federic, P.
Fedin, O. L.
Fedorko, W.
Fehling-Kaschek, M.
Feigl, S.
Feligioni, L.
Feng, C.
Feng, E. J.
Feng, H.
Fenyuk, A. B.
Perez, S. Fernandez
Ferrag, S.
Ferrando, J.
Ferrari, A.
Ferrari, P.
Ferrari, R.
de Lima, D. E. Ferreira
Ferrer, A.
Ferrere, D.
Ferretti, C.
Parodi, A. Ferretto
Fiascaris, M.
Fiedler, F.
Filipcic, A.
Filipuzzi, M.
Filthaut, F.
Fincke-Keeler, M.
Finelli, K. D.
Fiolhais, M. C. N.
Fiorini, L.
Firan, A.
Fischer, A.
Fischer, J.
Fisher, W. C.
Fitzgerald, E. A.
Flechl, M.
Fleck, I.
Fleischmann, P.
Fleischmann, S.
Fletcher, G. T.
Fletcher, G.
Flick, T.
Floderus, A.
Castillok, L. R. Flores
Bustos, A. C. Florez
Flowerdew, M. J.
Formica, A.
Forti, A.
Fortin, D.
Fournier, D.
Fox, H.
Fracchia, S.
Francavilla, P.
Franchini, M.
Franchino, S.
Francis, D.
Franconi, L.
Franklin, M.
Franz, S.
Fraternali, M.
French, S. T.
Friedrich, C.
Friedrich, F.
Froidevaux, D.
Frost, J. A.
Fukunaga, C.
Torregrosa, E. Fullana
Fulsom, B. G.
Fuster, J.
Gabaldon, C.
Gabizon, O.
Gabrielli, A.
Gabrielli, A.
Gadatsch, S.
Gadomski, S.
Gagliardi, G.
Gagnon, P.
Galea, C.
Galhardo, B.
Gallas, E. J.
Gallo, V.
Gallop, B. J.
Gallus, P.
Galster, G.
Gan, K. K.
Gao, J.
Gao, Y. S.
GarayWalls, F. M.
Garberson, F.
Garcia, C.
Navarro, J. E. Garcia
Garcia-Sciveres, M.
Gardner, R. W.
Garelli, N.
Garonne, V.
Gatti, C.
Gaudioa, G.
Gaur, B.
Gauthier, L.
Gauzzi, P.
Gavrilenko, I. L.
Gay, C.
Gaycken, G.
Gazis, E. N.
Ge, P.
Gecse, Z.
Gee, C. N. P.
Geerts, D. A. A.
Geich-Gimbel, Ch.
Gellerstedt, K.
Gemme, C.
Gemmell, A.
Genest, M. H.
Gentile, S.
George, M.
George, S.
Gerbaudo, D.
Gershon, A.
Ghazlane, H.
Ghodbane, N.
Giacobbe, B.
Giagu, S.
Giangiobbe, V.
Giannetti, P.
Gianotti, F.
Gibbard, B.
Gibson, S. M.
Gilchriese, M.
Gillam, T. P. S.
Gillberg, D.
Gilles, G.
Gingrich, D. M.
Giokaris, N.
Giordani, M. P.
Giordano, R.
Giorgi, F. M.
Giorgi, F. M.
Giraud, P. F.
Giugni, D.
Giuliani, C.
Giulini, M.
Gjelsten, B. K.
Gkaitatzis, S.
Gkialas, I.
Gladilin, L. K.
Glasman, C.
Glatzer, J.
Glaysher, P. C. F.
Glazov, A.
Glonti, G. L.
Goblirsch-Kolb, M.
Goddard, J. R.
Godfrey, J.
Godlewski, J.
Goeringer, C.
Goldfarb, S.
Golling, T.
Golubkov, D.
Gomes, A.
Fajardo, L. S. Gomez
Goncalo, R.
Da Costa, J. Goncalves Pinto Firmino
Gonella, L.
de la Hoz, S. Gonzalez
Parra, G. Gonzalez
Gonzalez-Sevilla, S.
Goossens, L.
Gorbounov, P. A.
Gordon, H. A.
Gorelov, I.
Gorini, B.
Gorini, E.
Gorisek, A.
Gornicki, E.
Goshaw, A. T.
Goessling, C.
Gostkin, M. I.
Gouighri, M.
Goujdami, D.
Goulette, M. P.
Goussiou, A. G.
Goy, C.
Gozpinar, S.
Grabas, H. M. X.
Graber, L.
Grabowska-Bold, I.
Grafstroem, P.
Grahn, K. -J.
Gramling, J.
Gramstad, E.
Grancagnolo, S.
Grassi, V.
Gratchev, V.
Gray, H. M.
Graziani, E.
Grebenyuk, O. G.
Greenwood, Z. D.
Gregersen, K.
Gregor, I. M.
Grenier, P.
Griffiths, J.
Grillo, A. A.
Grimm, K.
Grinstein, S.
Gris, Ph.
Grishkevich, Y. V.
Grivaz, J. -F.
Grohs, J. P.
Grohsjean, A.
Gross, E.
Grosse-Knetter, J.
Grossi, G. C.
Groth-Jensen, J.
Grout, Z. J.
Guan, L.
Guescini, F.
Guest, D.
Gueta, O.
Guicheney, C.
Guido, E.
Guillemin, T.
Guindon, S.
Gul, U.
Gumpert, C.
Gunther, J.
Guo, J.
Gupta, S.
Gutierrez, P.
Ortiz, N. G. Gutierrez
Gutschow, C.
Guttman, N.
Guyot, C.
Gwenlan, C.
Gwilliam, C. B.
Haas, A.
Haber, C.
Hadavand, H. K.
Haddade, N.
Haefner, P.
Hageboeeck, S.
Hajduk, Z.
Hakobyan, H.
Haleem, M.
Hall, D.
Halladjian, G.
Hamacher, K.
Hamal, P.
Hamano, K.
Hamer, M.
Hamilton, A.
Hamilton, S.
Hamity, G. N.
Hamnett, P. G.
Han, L.
Hanagaki, K.
Hanawa, K.
Hance, M.
Hanke, P.
Hann, R.
Hansen, J. B.
Hansen, J. D.
Hansen, P. H.
Hara, K.
Hard, A. S.
Harenberg, T.
Hariri, F.
Harkusha, S.
Harper, D.
Harrington, R. D.
Harris, O. M.
Harrison, P. F.
Hartjes, F.
Hasegawa, M.
Hasegawa, S.
Hasegawa, Y.
Hasib, A.
Hassani, S.
Haug, S.
Hauschild, M.
Hauser, R.
Havranek, M.
Hawkes, C. M.
Hawkings, R. J.
Hawkins, A. D.
Hayashi, T.
Hayden, D.
Hays, C. P.
Hayward, H. S.
Haywood, S. J.
Head, S. J.
Heck, T.
Hedberg, V.
Heelan, L.
Heim, S.
Heim, T.
Heinemann, B.
Heinrich, L.
Hejbal, J.
Helary, L.
Heller, C.
Heller, M.
Hellman, S.
Hellmich, D.
Helsens, C.
Henderson, J.
Heng, Y.
Henderson, R. C. W.
Hengler, C.
Henrichs, A.
Correia, A. M. Henriques
Henrot-Versille, S.
Hensel, C.
Herbert, G. H.
Jimenez, Y. Hernandez
Herrberg-Schubert, R.
Herten, G.
Hertenberger, R.
Hervas, L.
Hesketh, G. G.
Hessey, N. P.
Hickling, R.
Higon-Rodriguez, E.
Hill, E.
Hill, J. C.
Hiller, K. H.
Hillert, S.
Hillier, S. J.
Hinchliffe, I.
Hines, E.
Hirose, M.
Hirschbuehl, D.
Hobbs, J.
Hod, N.
Hodgkinson, M. C.
Hodgson, P.
Hoecker, A.
Hoeferkamp, M. R.
Hoenig, F.
Hoffman, J.
Hoffmann, D.
Hofmanna, J. I.
Hohlfeld, M.
Holmes, T. R.
Hong, T. M.
van Huysduynen, L. Hooft
Horii, Y.
Hostachy, J. -Y.
Hou, S.
Hoummada, A.
Howard, J.
Howarth, J.
Hrabovsky, M.
Hristova, I.
Hrivnac, J.
Hryn'ova, T.
Hsuc, C.
Hsu, P. J.
Hsu, S. C.
Hu, D.
Hu, X.
Huang, Y.
Hubacek, Z.
Hubaut, F.
Huegging, F.
Huffman, T. B.
Hughes, E. W.
Hughes, G.
Huhtinen, M.
Huelsing, T. A.
Hurwitz, M.
Huseynov, N.
Huston, J.
Huth, J.
Iacobucci, G.
Iakovidis, G.
Ibragimov, I.
Iconomidou-Fayard, L.
Ideal, E.
Iengo, P.
Igonkina, O.
Iizawa, T.
Ikegami, Y.
Ikematsu, K.
Ikeno, M.
Ilchenko, Y.
Iliadis, D.
Ilic, N.
Inamaru, Y.
Ince, T.
Ioannou, P.
Iodice, M.
Iordanidou, K.
Ippolito, V.
Quiles, A. Irles
Isaksson, C.
Ishino, M.
Ishitsuka, M.
Ishmukhametov, R.
Issever, C.
Istin, S.
Ponce, J. M. Iturbe
Iuppa, R.
Ivarsson, J.
Iwanski, W.
Iwasaki, H.
Izen, J. M.
Izzo, V.
Jackson, B.
Jackson, M.
Jackson, P.
Jaekel, M. R.
Jain, V.
Jakobs, K.
Jakobsen, S.
Jakoubek, T.
Jakubek, J.
Jamin, D. O.
Jana, D. K.
Jansen, E.
Jansen, H.
Janssen, J.
Janus, M.
Jarlskog, G.
Javadov, N.
Javurek, T.
Jeanty, L.
Jejelava, J.
Jeng, G. Y.
Jennens, D.
Jenni, P.
Jentzsch, J.
Jeske, C.
Jezequel, S.
Ji, H.
Jia, J.
Jiang, Y.
Belenguer, M. Jimenez
Jin, S.
Jinaru, A.
Jinnouchi, O.
Joergensen, M. D.
Johansson, K. E.
Johansson, P.
Johns, K. A.
Jon-And, K.
Jones, G.
Jones, R. W. L.
Jones, T. J.
Jongmanns, J.
Jorge, P. M.
Joshi, K. D.
Jovicevic, J.
Ju, X.
Jung, C. A.
Jungst, R. M.
Jussel, P.
Rozas, A. Juste
Kaci, M.
Kaczmarska, A.
Kado, M.
Kagan, H.
Kagan, M.
Kajomovitz, E.
Kalderon, C. W.
Kama, S.
Kamenshchikov, A.
Kanaya, N.
Kaneda, M.
Kaneti, S.
Kantserov, V. A.
Kanzaki, J.
Kaplan, B.
Kapliy, A.
Kar, D.
Karakostas, K.
Karastathis, N.
Karnevskiy, M.
Karpov, S. N.
Karpova, Z. M.
Karthik, K.
Kartvelishvili, V.
Karyukhin, A. N.
Kashif, L.
Kasieczkab, G.
Kass, R. D.
Kastanas, A.
Kataoka, Y.
Katre, A.
Katzy, J.
Kaushik, V.
Kawagoe, K.
Kawamoto, T.
Kawamura, G.
Kazama, S.
Kazanin, V. F.
Kazarinov, M. Y.
Keeler, R.
Kehoe, R.
Keil, M.
Keller, J. S.
Kempster, J. J.
Keoshkerian, H.
Kepka, O.
Kersevan, B. P.
Kersten, S.
Kessoku, K.
Keung, J.
Khalil-zada, F.
Khandanyan, H.
Khanov, A.
Khodinov, A.
Khomich, A.
Khoo, T. J.
Khoriauli, G.
Khoroshilov, A.
Khovanskiy, V.
Khramov, E.
Khubua, J.
Kim, H. Y.
Kim, H.
Kim, S. H.
Kimura, N.
Kind, O.
King, B. T.
King, M.
King, R. S. B.
King, S. B.
Kirk, J.
Kiryunin, A. E.
Kishimoto, T.
Kisielewska, D.
Kiss, F.
Kittelmann, T.
Kiuchi, K.
Kladiva, E.
Klein, M.
Klein, U.
Kleinknecht, K.
Klimek, P.
Klimentov, A.
Klingenberg, R.
Klinger, J. A.
Klioutchnikova, T.
Klok, P. F.
Kluge, E. -E.
Kluit, P.
Kluth, S.
Kneringer, E.
Knoops, E. B. F. G.
Knue, A.
Kobayashi, D.
Kobayashi, T.
Kobel, M.
Kocian, M.
Kodys, P.
Koevesarki, P.
Koffas, T.
Koffeman, E.
Kogan, L. A.
Kohlmann, S.
Kohout, Z.
Kohriki, T.
Koi, T.
Kolanoski, H.
Koletsou, I.
Koll, J.
Komar, A. A.
Komori, Y.
Kondo, T.
Kondrashova, N.
Koeneke, K.
Koenig, A. C.
Koenig, S.
Kono, T.
Konoplich, R.
Konstantinidis, N.
Kopeliansky, R.
Koperny, S.
Koepke, L.
Kopp, A. K.
Korcyl, K.
Kordas, K.
Korn, A.
Korol, A. A.
Korolkov, I.
Korolkova, E. V.
Korotkov, V. A.
Kortner, O.
Kortner, S.
Kostyukhin, V. V.
Kotov, V. M.
Kotwal, A.
Kourkoumelis, C.
Kouskoura, V.
Koutsman, A.
Kowalewski, R.
Kowalski, T. Z.
Kozanecki, W.
Kozhin, A. S.
Kral, V.
Kramarenko, V. A.
Kramberger, G.
Krasnopevtsev, D.
Krasny, M. W.
Krasznahorkay, A.
Kraus, J. K.
Kravchenko, A.
Kreiss, S.
Kretz, M.
Kretzschmar, J.
Kreutzfeldt, K.
Krieger, P.
Kroeninger, K.
Kroha, H.
Kroll, J.
Kroseberg, J.
Krstic, J.
Kruchonak, U.
Krueger, H.
Kruker, T.
Krumnack, N.
Krumshteyn, Z. V.
Kruse, A.
Kruse, M. C.
Kruskal, M.
Kubota, T.
Kudaya, S.
Kuehn, S.
Kugel, A.
Kuhl, A.
Kuhl, T.
Kukhtin, V.
Kulchitsky, Y.
Kuleshov, S.
Kuna, M.
Kunkle, J.
Kupco, A.
Kurashige, H.
Kurochkin, Y. A.
Kurumida, R.
Kus, V.
Kuwertz, E. S.
Kuze, M.
Kvita, J.
La Rosa, A.
La Rotonda, L.
Lacasta, C.
Lacava, F.
Lacey, J.
Lacker, H.
Lacour, D.
Lacuesta, V. R.
Ladygin, E.
Lafaye, R.
Laforge, B.
Lagouri, T.
Lai, S.
Laier, H.
Lambourne, L.
Lammers, S.
Lampen, C. L.
Lampl, W.
Lancon, E.
Landgraf, U.
Landon, M. P. J.
Lang, V. S.
Lankford, A. J.
Lanni, F.
Lantzsch, K.
Laplace, S.
Lapoire, C.
Laporte, J. F.
Lari, T.
Lassnig, M.
Laurelli, P.
Lavrijsen, W.
Law, A. T.
Laycock, P.
Le Dortz, O.
Le Guirriec, E.
Le Menedeu, E.
LeCompte, T.
Ledroit-Guillon, F.
Lee, C. A.
Lee, H.
Lee, J. S. H.
Lee, S. C.
Lee, L.
Lefebvre, G.
Lefebvre, M.
Legger, F.
Leggett, C.
Lehan, A.
Lehmacher, M.
Miotto, G. Lehmann
Lei, X.
Leight, W. A.
Leisos, A.
Leister, A. G.
Leite, M. A. L.
Leitner, R.
Lellouch, D.
Lemmer, B.
Leney, K. J. C.
Lenz, T.
Lenzen, G.
Lenzi, B.
Leone, R.
Leone, S.
Leonhardt, K.
Leonidopoulos, C.
Leontsinis, S.
Leroy, C.
Lester, C. G.
Lester, C. M.
Levchenko, M.
Leveque, J.
Levin, D.
Levinson, L. J.
Levy, M.
Lewis, A.
Lewis, G. H.
Leyko, A. M.
Leyton, M.
Li, B.
Li, B.
Li, H.
Li, H. L.
Li, L.
Li, L.
Li, S.
Li, Y.
Liang, Z.
Liao, H.
Liberti, B.
Lichard, P.
Lie, K.
Liebal, J.
Liebig, W.
Limbach, C.
Limosani, A.
Lin, S. C.
Lin, T. H.
Linde, F.
Lindquist, B. E.
Linnemann, J. T.
Lipeles, E.
Lipniacka, A.
Lisovyi, M.
Liss, T. M.
Lissauer, D.
Lister, A.
Litke, A. M.
Liu, B.
Liu, D.
Liu, J. B.
Liu, K.
Liu, L.
Liu, M.
Liu, M.
Liu, Y.
Livan, M.
Livermore, S. S. A.
Lleres, A.
Merino, J. Llorente
Lloyd, S. L.
Lo Sterzo, F.
Lobodzinska, E.
Loch, P.
Lockman, W. S.
Loddenkoetter, T.
Loebinger, F. K.
Loevschall-Jensen, A. E.
Loginov, A.
Lohse, T.
Lohwasser, K.
Lokajicek, M.
Lombardo, V. P.
Long, B. A.
Long, J. D.
Long, R. E.
Lopes, L.
Mateos, D. Lopez
Paredes, B. Lopez
Paz, I. Lopez
Lorenz, J.
Martinez, N. Lorenzo
Losada, M.
Loscutoff, P.
Lou, X.
Lounis, A.
Love, J.
Love, P. A.
Lowe, A. J.
Lu, F.
Lu, N.
Lubatti, H. J.
Luci, C.
Lucotte, A.
Luehring, F.
Lukas, W.
Luminari, L.
Lundberg, O.
Lund-Jensen, B.
Lungwitz, M.
Lynn, D.
Lysak, R.
Lytken, E.
Ma, H.
Ma, L. L.
Maccarrone, G.
Macchiolo, A.
Miguens, J. Machado
Macina, D.
Madaffari, D.
Madar, R.
Maddocks, H. J.
Mader, W. F.
Madsen, A.
Maeno, M.
Maeno, T.
Magradze, E.
Mahboubi, K.
Mahlstedt, J.
Mahmoud, S.
Maiani, C.
Maidantchik, C.
Maier, A. A.
Maio, A.
Majewski, S.
Makida, Y.
Makovec, N.
Mal, P.
Malaescu, B.
Malecki, Pa.
Maleev, V. P.
Malek, F.
Mallik, U.
Malon, D.
Malone, C.
Maltezos, S.
Malyshev, V. M.
Malyukov, S.
Mamuzic, J.
Mandelli, B.
Mandelli, L.
Mandic, I.
Mandrysch, R.
Maneira, J.
Manfredini, A.
de Andrade Filho, L. Manhaes
Ramos, J. A. Manjarres
Mann, A.
Manning, P. M.
Manousakis-Katsikakis, A.
Mansoulie, B.
Mantifel, R.
Mapelli, L.
March, L.
Marchand, J. F.
Marchiori, G.
Marcisovsky, M.
Marino, C. P.
Marjanovic, M.
Marques, C. N.
Marroquim, F.
Marsden, S. P.
Marshall, Z.
Marti, L. F.
Marti-Garcia, S.
Martin, B.
Martin, B.
Martin, T. A.
Martin, V. J.
Latour, B. Martin Dit
Martinez, H.
Martinez, M.
Martin-Haugh, S.
Martyniuk, A. C.
Marx, M.
Marzano, F.
Marzin, A.
Masetti, L.
Mashimo, T.
Mashinistov, R.
Masik, J.
Maslennikov, A. L.
Massa, I.
Massa, L.
Massol, N.
Mastrandrea, P.
Mastroberardino, A.
Masubuchi, T.
Maettig, P.
Mattmann, J.
Maurer, J.
Maxfield, S. J.
Maximov, D. A.
Mazini, R.
Mazzaferro, L.
Mc Goldrick, G.
Mc Kee, S. P.
McCarn, A.
McCarthy, R. L.
McCarthy, T. G.
McCubbin, N. A.
McFarlane, K. W.
Mcfayden, J. A.
Mchedlidze, G.
McMahon, S. J.
McPherson, R. A.
Meade, A.
Mechnich, J.
Medinnis, M.
Meehan, S.
Mehlhase, S.
Mehta, A.
Meier, K.
Meineck, C.
Meirose, B.
Melachrinos, C.
MelladoGarciac, B. R.
Meloni, F.
Mengarelli, A.
Menke, S.
Meoni, E.
Mercurio, K. M.
Mergelmeyer, S.
Meric, N.
Mermod, P.
Merola, L.
Meroni, C.
Merritt, F. S.
Merritt, H.
Messina, A.
Metcalfe, J.
Mete, A. S.
Meyer, C.
Meyer, C.
Meyer, J. -P.
Meyer, J.
Middleton, R. P.
Migas, S.
Mijovic, L.
Mikenberg, G.
Mikestikova, M.
Mikuz, M.
Milic, A.
Miller, D. W.
Mills, C.
Milov, A.
Milstead, D. A.
Milstein, D.
Minaenko, A. A.
Minashvili, I. A.
Mincer, A. I.
Mindura, B.
Mineev, M.
Ming, Y.
Mir, L. M.
Mirabelli, G.
Mitani, T.
Mitrevski, J.
Mitsou, V. A.
Mitsui, S.
Miucci, A.
Miyagawa, P. S.
Mjoernmark, J. U.
Moa, T.
Mochizuki, K.
Mohapatra, S.
Mohr, W.
Molander, S.
Moles-Valls, R.
Moenig, K.
Monini, C.
Monk, J.
Monnier, E.
Berlingen, J. Montejo
Monticelli, F.
Monzani, S.
Moore, R. W.
Morange, N.
Moreno, D.
Llacer, M. Moreno
Morettini, P.
Morgenstern, M.
Morii, M.
Moritz, S.
Morley, A. K.
Mornacchi, G.
Morris, J. D.
Morvaj, L.
Moser, H. G.
Mosidze, M.
Moss, J.
Motohashi, K.
Mount, R.
Mountricha, E.
Mouraviev, S. V.
Moyse, E. J. W.
Muanza, S.
Mudd, R. D.
Mueller, F.
Mueller, J.
Mueller, K.
Mueller, T.
Mueller, T.
Muenstermann, D.
Munwes, Y.
Quijada, J. A. Murillo
Murray, W. J.
Musheghyan, H.
Musto, E.
Myagkov, A. G.
Myska, M.
Nackenhorst, O.
Nadal, J.
Nagai, K.
Nagai, R.
Nagai, Y.
Nagano, K.
Nagarkar, A.
Nagasaka, Y.
Nagel, M.
Nairz, A. M.
Nakahama, Y.
Nakamura, K.
Nakamura, T.
Nakano, I.
Namasivayam, H.
Nanava, G.
Narayan, R.
Nattermann, T.
Naumann, T.
Navarro, G.
Nayyar, R.
Neal, H. A.
Nechaeva, P. Yu.
Neep, T. J.
Nef, P. D.
Negri, A.
Negri, G.
Negrini, M.
Nektarijevic, S.
Nelson, A.
Nelson, T. K.
Nemecek, S.
Nemethy, P.
Nepomuceno, A. A.
Nessi, M.
Neubauer, M. S.
Neumann, M.
Neves, R. M.
Nevski, P.
Newman, P. R.
Nguyen, D. H.
Nickerson, R. B.
Nicolaidou, R.
Nicquevert, B.
Nielsen, J.
Nikiforou, N.
Nikiforov, A.
Nikolaenko, V.
Nikolic-Audit, I.
Nikolics, K.
Nikolopoulos, K.
Nilsson, P.
Ninomiya, Y.
Nisati, A.
Nisius, R.
Nobe, T.
Nodulman, L.
Nomachi, M.
Nomidis, I.
Norberg, S.
Nordberg, M.
Novgorodova, O.
Nowak, S.
Nozaki, M.
Nozka, L.
Ntekas, K.
Hanninger, G. Nunes
Nunnemann, T.
Nurse, E.
Nuti, F.
O'Brien, B. J.
O'grady, F.
O'Neil, D. C.
O'Shea, V.
Oakham, F. G.
Oberlack, H.
Obermann, T.
Ocariz, J.
Ochi, A.
Ochoa, M. I.
Oda, S.
Odaka, S.
Ogren, H.
Oh, A.
Oh, S. H.
Ohm, C. C.
Ohman, H.
Okamura, W.
Okawa, H.
Okumura, Y.
Okuyama, T.
Olariu, A.
Olchevski, A. G.
Pino, S. A. Olivares
Damazio, D. Oliveira
Garcia, E. Oliver
Olszewski, A.
Olszowska, J.
Onofre, A.
Onyisi, P. U. E.
Orama, C. J.
Oreglia, M. J.
Oren, Y.
Orestano, D.
Orlando, N.
Barrera, C. Oropeza
Orr, R. S.
Osculati, B.
Ospanov, R.
Garzon, G. Otero y
Otono, H.
Ouchrif, M.
Ouellette, E. A.
Ould-Saada, F.
Ouraou, A.
Oussoren, K. P.
Ouyang, Q.
Ovcharova, A.
Owen, M.
Ozcan, V. E.
Ozturk, N.
Pachal, K.
Pages, A. Pacheco
Aranda, C. Padilla
Pagacova, M.
Griso, S. Pagan
Paganis, E.
Pahl, C.
Paige, F.
Pais, P.
Pajchel, K.
Palacino, G.
Palestini, S.
Palka, M.
Pallin, D.
Palma, A.
Palmer, J. D.
Pan, Y. B.
Panagiotopoulou, E.
Vazquez, J. G. Panduro
Pani, P.
Panikashvili, N.
Panitkin, S.
Pantea, D.
Paolozzi, L.
Papadopoulou, Th. D.
Papageorgiou, K.
Paramonov, A.
Hernandez, D. Paredes
Parker, M. A.
Parodi, F.
Parsons, J. A.
Parzefall, U.
Pasqualucci, E.
Passaggio, S.
Passeri, A.
Pastore, F.
Pastore, Fr.
Pasztor, G.
Pataraia, S.
Patel, N. D.
Pater, J. R.
Patricelli, S.
Pauly, T.
Pearce, J.
Pedersen, L. E.
Pedersen, M.
Lopez, S. Pedraza
Pedro, R.
Peleganchuk, S. V.
Pelikan, D.
Peng, H.
Penning, B.
Penwell, J.
Perepelitsa, V.
Codina, E. Perez
Garcia-Estan, M. T. Perez
Reale, V. Perez
Perini, L.
Pernegger, H.
Perrino, R.
Peschke, R.
Peshekhonov, V. D.
Peters, K.
Peters, R. F. Y.
Petersen, B. A.
Petersen, T. C.
Petit, E.
Petridis, A.
Petridou, C.
Petrolo, E.
Petrucci, F.
Pettersson, N. E.
Pezoa, R.
Phillips, P. W.
Piacquadio, G.
Pianori, E.
Picazio, A.
Piccaro, E.
Piccinini, M.
Piegaia, R.
Pignotti, D. T.
Pilcher, J. E.
Pilkington, D.
Pina, J.
Pinamonti, M.
Pinder, A.
Pinfold, J. L.
Pingel, A.
Pinto, B.
Pires, S.
Pitt, M.
Pizio, C.
Plazak, L.
Pleier, M. -A.
Pleskot, V.
Plotnikova, E.
Plucinski, P.
Poddar, S.
Podlyski, F.
Poettgen, R.
Poggioli, L.
Pohl, D.
Pohl, M.
Polesello, G.
Policicchio, A.
Polifka, R.
Polini, A.
Pollard, C. S.
Polychronakos, V.
Pommes, K.
Pontecorvo, L.
Pope, B. G.
Popeneciu, G. A.
Popovic, D. S.
Poppleton, A.
Bueso, X. Portell
Pospisil, S.
Potamianos, K.
Potrap, I. N.
Potter, C. J.
Potter, C. T.
Poulard, G.
Poveda, J.
Pozdnyakov, V.
Pralavorio, P.
Pranko, A.
Prasad, S.
Pravahan, R.
Prell, S.
Price, D.
Price, J.
Price, L. E.
Prieur, D.
Primavera, M.
Proissl, M.
Prokofiev, K.
Prokoshin, F.
Protopapadaki, E.
Protopopescu, S.
Proudfoot, J.
Przybycien, M.
Przysiezniak, H.
Ptacek, E.
Puddu, D.
Pueschel, E.
Puldon, D.
Purohit, M.
Puzo, P.
Qian, J.
Qin, G.
Qin, Y.
Quadt, A.
Quarrie, D. R.
Quayle, W. B.
Queitsch-Maitland, M.
Quilty, D.
Qureshi, A.
Radeka, V.
Radescu, V.
Radhakrishnan, S. K.
Radloff, P.
Rados, P.
Ragusa, F.
Rahal, G.
Rajagopalan, S.
Rammensee, M.
Randle-Conde, A. S.
Rangel-Smith, C.
Rao, K.
Rauscher, F.
Rave, T. C.
Ravenscroft, T.
Raymond, M.
Read, A. L.
Readioff, N. P.
Rebuzzi, D. M.
Redelbach, A.
Redlinger, G.
Reece, R.
Reeves, K.
Rehnisch, L.
Reisin, H.
Relich, M.
Rembser, C.
Ren, H.
Ren, Z. L.
Renaud, A.
Rescigno, M.
Resconi, S.
Rezanova, O. L.
Reznicek, P.
Rezvani, R.
Richter, R.
Ridel, M.
Rieck, P.
Rieger, J.
Rijssenbeek, M.
Rimoldi, A.
Rinaldi, L.
Ritsch, E.
Riu, I.
Rizatdinova, F.
Rizvi, E.
Robertson, S. H.
Robichaud-Veronneau, A.
Robinson, D.
Robinson, J. E. M.
Robson, A.
Roda, C.
Rodrigues, L.
Roe, S.
Rohne, O.
Rolli, S.
Romaniouk, A.
Romano, M.
Adam, E. Romero
Rompotis, N.
Ronzani, M.
Roos, L.
Ros, E.
Rosati, S.
Rosbach, K.
Rose, M.
Rose, P.
Rosendahl, P. L.
Rosenthal, O.
Rossetti, V.
Rossi, E.
Rossi, L. P.
Rosten, R.
Rotaru, M.
Roth, I.
Rothberg, J.
Rousseau, D.
Royon, C. R.
Rozanov, A.
Rozen, Y.
Ruan, X.
Rubbo, F.
Rubinskiy, I.
Rud, V. I.
Rudolph, C.
Rudolph, M. S.
Ruehr, F.
Ruiz-Martinez, A.
Rurikova, Z.
Rusakovich, N. A.
Ruschke, A.
Rutherfoord, J. P.
Ruthmann, N.
Ryabov, Y. F.
Rybar, M.
Rybkin, G.
Ryder, N. C.
Saavedra, A. F.
Sacerdoti, S.
Saddique, A.
Sadeh, I.
Sadrozinski, H. F. -W.
Sadykov, R.
Tehrani, F. Safai
Sakamoto, H.
Sakurai, Y.
Salamanna, G.
Salamon, A.
Saleem, M.
Salek, D.
De Bruin, P. H. Sales
Salihagic, D.
Salnikov, A.
Salt, J.
Salvatore, D.
Salvatore, F.
Salvucci, A.
Salzburger, A.
Sampsonidis, D.
Sanchez, A.
Sanchez, J.
Martinez, V. Sanchez
Sandaker, H.
Sandbach, R. L.
Sander, H. G.
Sanders, M. P.
Sandhoff, M.
Sandoval, T.
Sandoval, C.
Sandstroem, R.
Sankey, D. P. C.
Sansoni, A.
Santoni, C.
Santonico, R.
Santos, H.
Castillo, I. Santoyo
Sapp, K.
Sapronov, A.
Saraiva, J. G.
Sarrazin, B.
Sartisohn, G.
Sasaki, O.
Sasaki, Y.
Sauvage, G.
Sauvan, E.
Savard, P.
Savu, D. O.
Sawyer, C.
Sawyer, L.
Saxon, D. H.
Saxon, J.
Sbarra, C.
Sbrizzi, A.
Scanlon, T.
Scannicchio, D. A.
Scarcella, M.
Scarfone, V.
Schaarschmidt, J.
Schacht, P.
Schaefer, D.
Schaefer, R.
Schaepe, S.
Schaetzel, S.
Schaefer, U.
Schaffer, A. C.
Schaile, D.
Schamberger, R. D.
Scharf, V.
Schegelsky, V. A.
Scheirich, D.
Schernau, M.
Scherzer, M. I.
Schiavi, C.
Schieck, J.
Schillo, C.
Schioppa, M.
Schlenker, S.
Schmidt, E.
Schmieden, K.
Schmitt, C.
Schmitt, S.
Schneider, B.
Schnellbach, Y. J.
Schnoor, U.
Schoeffel, L.
Schoening, A.
Schoenrock, B. D.
Schorlemmer, A. L. S.
Schott, M.
Schouten, D.
Schovancova, J.
Schramm, S.
Schreyer, M.
Schroeder, C.
Schuh, N.
Schultens, M. J.
Schultz-Coulon, H. -C.
Schulz, H.
Schumacher, M.
Schumm, B. A.
Schune, Ph.
Schwanenberger, C.
Schwartzman, A.
Schwegler, Ph.
Schwemling, Ph.
Schwienhorst, R.
Schwindling, J.
Schwindt, T.
Schwoerer, M.
Sciacca, F. G.
Scifo, E.
Sciolla, G.
Scott, W. G.
Scuri, F.
Scutti, F.
Searcy, J.
Sedov, G.
Sedykh, E.
Seidel, S. C.
Seiden, A.
Seifert, F.
Seixas, J. M.
Sekhniaidze, G.
Sekula, S. J.
Selbach, K. E.
Seliverstov, D. M.
Sellers, G.
Semprini-Cesari, N.
Serfon, C.
Serin, L.
Serkin, L.
Serre, T.
Seuster, R.
Severini, H.
Sfiligoj, T.
Sforza, F.
Sfyrla, A.
Shabalina, E.
Shamim, M.
Shan, L. Y.
Shang, R.
Shank, J. T.
Shapiro, M.
Shatalov, P. B.
Shaw, K.
Shehu, C. Y.
Sherwood, P.
Shi, L.
Shimizu, S.
Shimmin, C. O.
Shimojima, M.
Shiyakova, M.
Shmeleva, A.
Shochet, M. J.
Short, D.
Shrestha, S.
Shulga, E.
Shupe, M. A.
Shushkevich, S.
Sicho, P.
Sidiropoulou, O.
Sidorov, D.
Sidotia, A.
Siegert, F.
Sijacki, Dj.
Silva, J.
Silver, Y.
Silverstein, D.
Silverstein, S. B.
Simak, V.
Simard, O.
Simic, Lj.
Simion, S.
Simioni, E.
Simmons, B.
Simoniello, R.
Simonyan, M.
Sinervo, P.
Sinev, N. B.
Sipica, V.
Siragusa, G.
Sircar, A.
Sisakyan, A. N.
Sivoklokov, S. Yu.
Sjoelin, J.
Sjursen, T. B.
Skottowe, H. P.
Skovpen, K. Yu.
Skubic, P.
Slater, M.
Slavicek, T.
Sliwa, K.
Smakhtin, V.
Smart, B. H.
Smestad, L.
Smirnov, S. Yu.
Smirnov, Y.
Smirnova, L. N.
Smirnova, O.
Smith, K. M.
Smizanska, M.
Smolek, K.
Snesarev, A. A.
Snidero, G.
Snyder, S.
Sobie, R.
Socher, F.
Soffer, A.
Soh, D. A.
Solans, C. A.
Solar, M.
Solc, J.
Soldatov, E. Yu.
Soldevila, U.
Solodkov, A. A.
Soloshenko, A.
Solovyanov, O. V.
Solovyev, V.
Sommer, P.
Song, H. Y.
Soni, N.
Sood, A.
Sopczak, A.
Sopko, B.
Sopko, V.
Sorin, V.
Sosebee, M.
Soualah, R.
Soueid, P.
Soukharev, A. M.
South, D.
Spagnolo, S.
Spano, F.
Spearman, W. R.
Spettel, F.
Spighi, R.
Spigo, G.
Spiller, L. A.
Spousta, M.
Spreitzer, T.
Spurlock, B.
St Denis, R. D.
Staerz, S.
Stahlman, J.
Stamen, R.
Stamm, S.
Stanecka, E.
Stanek, R. W.
Stanescu, C.
Stanescu-Bellu, M.
Stanitzki, M. M.
Stapnes, S.
Starchenko, E. A.
Stark, J.
Staroba, P.
Starovoitov, P.
Staszewski, R.
Stavina, P.
Steinberg, P.
Stelzer, B.
Stelzer, H. J.
Stelzer-Chilton, O.
Stenzel, H.
Stern, S.
Stewart, G. A.
Stillings, J. A.
Stockton, M. C.
Stoebe, M.
Stoicea, G.
Stolte, P.
Stonjek, S.
Stradling, A. R.
Straessner, A.
Stramaglia, M. E.
Strandberg, J.
Strandberg, S.
Strandlie, A.
Strauss, E.
Strauss, M.
Strizenec, P.
Stroehmer, R.
Strom, D. M.
Stroynowski, R.
Struebig, A.
Stucci, S. A.
Stugu, B.
Styles, N. A.
Su, D.
Su, J.
Subramaniam, R.
Succurro, A.
Sugaya, Y.
Suhr, C.
Suk, M.
Sulin, V. V.
Sultansoy, S.
Sumida, T.
Sun, S.
Sun, X.
Sundermann, J. E.
Suruliz, K.
Susinno, G.
Sutton, M. R.
Suzuki, Y.
Svatos, M.
Swedish, S.
Swiatlowski, M.
Sykora, I.
Sykora, T.
Ta, D.
Taccini, C.
Tackmann, K.
Taenzer, J.
Taffard, A.
Tafirout, R.
Taiblum, N.
Takai, H.
Takashima, R.
Takeda, H.
Takeshita, T.
Takubo, Y.
Talby, M.
Talyshev, A. A.
Tam, J. Y. C.
Tan, K. G.
Tanaka, J.
Tanaka, R.
Tanaka, S.
Tanaka, S.
Tanasijczuk, A. J.
Tannenwald, B. B.
Tannoury, N.
Tapprogge, S.
Tarem, S.
Tarrade, F.
Tartarelli, G. F.
Tas, P.
Tasevsky, M.
Tashiro, T.
Tassi, E.
Delgado, A. Tavares
Tayalati, Y.
Taylor, F. E.
Taylor, G. N.
Taylor, W.
Teischinger, F. A.
Castanheira, M. Teixeira Dias
Teixeira-Dias, P.
Temming, K. K.
Ten Kate, H.
Teng, P. K.
Teoh, J. J.
Terada, S.
Terashi, K.
Terron, J.
Terzo, S.
Testa, M.
Teuscher, R. J.
Therhaag, J.
Theveneaux-Pelzer, T.
Thomas, J. P.
Thomas-Wilsker, J.
Thompson, E. N.
Thompson, P. D.
Thompson, P. D.
Thompson, R. J.
Thompson, A. S.
Thomsen, L. A.
Thomson, E.
Thomson, M.
Thong, W. M.
Thun, R. P.
Tian, F.
Tibbetts, M. J.
Tikhomirov, V. O.
Tikhonov, Yu. A.
Timoshenko, S.
Tiouchichine, E.
Tipton, P.
Tisserant, S.
Todorov, T.
Todorova-Nova, S.
Toggerson, B.
Tojo, J.
Tokar, S.
Tokushuku, K.
Tollefson, K.
Tomlinson, L.
Tomoto, M.
Tompkins, L.
Toms, K.
Topilin, N. D.
Torrence, E.
Torres, H.
Pastor, E. Torro
Toth, J.
Touchard, F.
Tovey, D. R.
Tran, H. L.
Trefzger, T.
Tremblet, L.
Tricoli, A.
Trigger, I. M.
Trincaz-Duvoid, S.
Tripiana, M. F.
Trischuk, W.
Trocme, B.
Troncon, C.
Trottier-McDonald, M.
Trovatelli, M.
True, P.
Trzebinski, M.
Trzupek, A.
Tsarouchas, C.
Tseng, J. C. -L.
Tsiareshka, P. V.
Tsionou, D.
Tsipolitis, G.
Tsirintanis, N.
Tsiskaridze, S.
Tsiskaridze, V.
Tskhadadze, E. G.
Tsukerman, I. I.
Tsulaia, V.
Tsuno, S.
Tsybychev, D.
Tudorachea, A.
Tudorache, V.
Tuna, A. N.
Tupputi, S. A.
Turchikhin, S.
Turecek, D.
Cakird, I. Turk
Turra, R.
Tuts, P. M.
Tykhonov, A.
Tylmad, M.
Tyndel, M.
Uchida, K.
Ueda, I.
Ueno, R.
Ughetto, M.
Ugland, M.
Uhlenbrock, M.
Ukegawa, F.
Unal, G.
Undrus, A.
Unel, G.
Ungaro, F. C.
Unno, Y.
Unverdorben, C.
Urbaniec, D.
Urquijo, P.
Usai, G.
Usanova, A.
Vacavant, L.
Vacek, V.
Vachon, B.
Valencic, N.
Valentinetti, S.
Valero, A.
Valery, L.
Valkar, S.
Gallego, E. Valladolid
Vallecorsa, S.
Ferrer, J. A. Valls
Van den Wollenberg, W.
Van der Deijl, P. C.
Van der Geer, R.
Van der Graaf, H.
Van der Leeuw, R.
Van der Ster, D.
van Eldik, N.
van Gemmeren, P.
Van Nieuwkoop, J.
Van Vulpen, I.
van Woerden, M. C.
Vanadia, M.
Vandelli, W.
Vanguri, R.
Vaniachine, A.
Vankov, P.
Vannucci, F.
Vardanyan, G.
Vari, R.
Varnes, E. W.
Varol, T.
Varouchas, D.
Vartapetian, A.
Varvell, K. E.
Vazeille, F.
Schroeder, T. Vazquez
Veatch, J.
Veloso, F.
Veneziano, S.
Ventura, A.
Ventura, D.
Venturi, M.
Venturi, N.
Venturini, A.
Vercesi, V.
Verducci, M.
Verkerke, W.
Vermeulen, J. C.
Vest, A.
Vetterli, M. C.
Viazlo, O.
Vichou, I.
Vickey, T.
Boeriu, O. E. Vickey
Viehhauser, G. H. A.
Viel, S.
Vigne, R.
Villa, M.
Perez, M. Villaplana
Vilucchi, E.
Vincter, M. G.
Vinogradov, V. B.
Virzi, J.
Vivarelli, I.
Vaque, F. Vives
Vlachos, S.
Vladoiu, D.
Vlasak, M.
Vogel, A.
Vogela, M.
Vokac, P.
Volpi, G.
Volpi, M.
von der Schmitt, H.
von Radziewski, H.
von Toerne, E.
Vorobel, V.
Vorobev, K.
Vos, M.
Voss, R.
Vossebeld, J. H.
Vranjes, N.
Milosavljevic, M. Vranjes
Vrba, V.
Vreeswijk, M.
Anh, T. Vu
Vuillermet, R.
Vukotic, I.
Vykydal, Z.
Wagner, P.
Wagner, W.
Wahlberg, H.
Wahrmund, S.
Wakabayashi, J.
Walder, J.
Walker, R.
Walkowiak, W.
Wall, R.
Waller, P.
Walsh, B.
Wang, C.
Wang, C.
Wang, F.
Wang, H.
Wang, H.
Wang, J.
Wang, J.
Wang, K.
Wang, R.
Wang, S. M.
Wang, T.
Wang, X.
Wanotayaroj, C.
Warburton, A.
Ward, C. P.
Wardrope, D. R.
Warsinsky, M.
Washbrook, A.
Wasicki, C.
Watkins, P. M.
Watson, A. T.
Watson, I. J.
Watson, M. F.
Watts, G.
Watts, S.
Waugh, B. M.
Webb, S.
Weber, M. S.
Weber, S. W.
Webster, J. S.
Weidberg, A. R.
Weigell, P.
Weinert, B.
Weingarten, J.
Weiser, C.
Weits, H.
Wells, P. S.
Wenaus, T.
Wendland, D.
Weng, Z.
Wengler, T.
Wenig, S.
Wermes, N.
Werner, M.
Werner, P.
Wessels, M.
Wetter, J.
Whalen, K.
White, A.
White, M. J.
White, R.
White, S.
Whiteson, D.
Wicke, D.
Wickens, F. J.
Wiedenmann, W.
Wielers, M.
Wienemann, P.
Wiglesworth, C.
Wiik-Fuchs, L. A. M.
Wijeratne, P. A.
Wildauer, A.
Wildt, M. A.
Wilkens, H. G.
Will, J. Z.
Williams, H. H.
Williams, S.
Willis, C.
Willocq, S.
Wilson, A.
Wilson, J. A.
Wingerter-Seez, I.
Winklmeier, F.
Winter, B. T.
Wittgen, M.
Wittig, T.
Wittkowski, J.
Wollstadt, S. J.
Wolter, W.
Wolters, H.
Wosiek, B. K.
Wotschack, J.
Woudstra, M. J.
Wozniak, K. W.
Wright, M.
Wu, M.
Wu, S. L.
Wu, X.
Wu, Y.
Wulf, E.
Wyatt, T. R.
Wynne, B. M.
Xella, S.
Xiao, M.
Xu, D.
Xu, L.
Yabsley, B.
Yacoob, S.
Yakabe, R.
Yamada, M.
Yamaguchi, H.
Yamaguchi, Y.
Yamamoto, A.
Yamamoto, K.
Yamamoto, S.
Yamamura, T.
Yamanaka, T.
Yamauchi, K.
Yamazaki, Y.
Yan, Z.
Yang, H.
Yang, H.
Yang, U. K.
Yang, Y.
Yanush, S.
Yao, L.
Yao, W. -M.
Yasu, Y.
Yatsenko, E.
Wong, K. H. Yau
Ye, J.
Ye, S.
Yeletskikh, I.
Yen, A. L.
Yildirim, E.
Yilmaz, M.
Yoosoofmiya, R.
Yorita, K.
Yoshida, R.
Yoshihara, K.
Young, C.
Young, C. J. S.
Youssef, S.
Yu, D. R.
Yu, J.
Yu, J. M.
Yu, J.
Yuan, L.
Yurkewicz, A.
Yusuff, I.
Zabinski, B.
Zaidan, R.
Zaitsev, A. M.
Zaman, A.
Zambito, S.
Zanello, L.
Zanzi, D.
Zeitnitz, C.
Zeman, M.
Zemla, A.
Zengel, K.
Zenin, O.
Zenis, T.
Zerwas, D.
della Porta, G. Zevi
Zhang, D.
Zhang, F.
Zhang, H.
Zhang, J.
Zhang, L.
Zhang, X.
Zhang, Z.
Zhao, Z.
Zhemchugov, A.
Zhong, J.
Zhou, B.
Zhou, L.
Zhou, N.
Zhu, C. G.
Zhu, H.
Zhu, J.
Zhu, Y.
Zhuang, X.
Zhukov, K.
Zibell, A.
Zieminska, D.
Zimine, N. I.
Zimmermann, C.
Zimmermann, R.
Zimmermann, S.
Zimmermann, S.
Zinonos, Z.
Ziolkowski, M.
Zobernig, G.
Zoccoli, A.
Nedden, M. Zur
Zurzolo, G.
Zutshi, V.
Zwalinski, L.
CA ATLAS Collaboration
TI Electron and photon energy calibration with the ATLAS detector using LHC
Run 1 data
SO EUROPEAN PHYSICAL JOURNAL C
LA English
DT Article
ID CALORIMETER; PARTICLE; BOSON
AB This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb(-1) of LHC proton-proton collision data taken at centre-of-mass energies of root s = 7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05% in most of the detector acceptance, rising to 0.2% in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2-1% for electrons with a transverse energy of 10 GeV, and is on average 0.3% for photons. The detector resolution is determined with a relative inaccuracy of less than 10% for electrons and photons up to 60 GeV transverse energy, rising to 40% for transverse energies above 500 GeV.
C1 [Jackson, P.; Lee, L.; Papageorgiou, K.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia.
[Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA.
[Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada.
[Cakir, O.; Ciftci, A. K.; Ciftci, R.; Dueren, M.; Kudaya, S.] Ankara Univ, Dept Phys, Ankara, Turkey.
[Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey.
[Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey.
[Cakird, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey.
[Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS IN2P3, LAPP, Annecy Le Vieux, France.
[Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France.
[Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
[Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA.
[Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece.
[Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece.
[Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan.
[Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Havranek, M.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain.
[Agatonovic-Jovin, T.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade, Serbia.
[Cirkovic, P.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia.
[Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin Dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway.
[Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W. -M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
[Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W. -M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Stamm, S.; Wendland, D.; Nedden, M. Zur] Humboldt Univ, Dept Phys, Berlin, Germany.
[Agustoni, M.; Beck, H. P.; Cervelli, A.; Citron, Z. H.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland.
[Agustoni, M.; Beck, H. P.; Cervelli, A.; Citron, Z. H.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland.
[Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England.
[Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey.
[Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey.
[Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey.
[Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] INFN Sez Bologna, Bologna, Italy.
[Alberghi, G. L.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy.
[Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeeck, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany.
[Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell' Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA.
[Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA.
[Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil.
[Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil.
[do Valec, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil.
[Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil.
[Adams, D. L.; Aloisio, A.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorachea, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania.
[Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania.
Univ Politeh Bucharest, Bucharest, Romania.
West Univ Timisoara, Timisoara, Romania.
[Garzon, G. Otero y; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina.
[Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England.
[Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada.
[Armbruster, A. J.; Catinaccio, A.; Cattai, A.; Chromek-Burckhart, D.; Dell' Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dobos, D.; Dudarev, A.; Francis, D.; Froidevaux, D.; Gillberg, D.; Gorini, B.; Helsens, C.; Correia, A. M. Henriques; Hoecker, A.; Krasznahorkay, A.; Lenzi, B.; Macina, D.; Mandelli, B.; Martin, B.; Marzin, A.; Messina, A.; Milic, A.; Nairz, A. M.; Nicquevert, B.; Petersen, B. A.; Poppleton, A.; Rembser, C.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schaefer, D.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Tricoli, A.; Tsarouchas, C.; Van der Ster, D.; Young, C. J. S.] CERN, Geneva, Switzerland.
[Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Carquin, E.; Diaz, M. A.; Vogela, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile.
[Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile.
[Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China.
[Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China.
[Chen, S.; Li, Y.] Nanjing Univ, Dept Phys, Nanjing 210008, Jiangsu, Peoples R China.
[Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China.
[Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Phys Corpusculaire Lab, Clermont Ferrand, France.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS IN2P3, Clermont Ferrand, France.
[Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA.
[Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Coll Cosenza, Lab Nazl Frascati, Frascati, Italy.
[Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartmento Fis, I-87036 Arcavacata Di Rende, Italy.
[Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindura, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland.
[Palka, M.; Salvatore, D.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland.
[Annovi, A.; Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland.
[Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA.
[Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Dallas, TX 75230 USA.
[Aloisio, A.; Annovi, A.; Antonov, A.; Argyropoulos, S.; Artamonov, A.; Asbah, N.; Bellerive, A.; Bessner, M.; Bloch, I.; Borisov, A.; Borroni, S.; Boveia, A.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K. -J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany.
[Annovi, A.; Antonov, A.; Argyropoulos, S.; Artamonov, A.; Asbah, N.; Bellerive, A.; Bessner, M.; Bloch, I.; Borisov, A.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K. -J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany.
[Burmeister, I.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany.
[Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany.
[Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA.
[Aloisio, A.; Alonso, A.; Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; GarayWalls, F. M.; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland.
[Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] INFN Lab Nazl Frascati, Frascati, Italy.
[Aloisio, A.; Amoroso, S.; Annovi, A.; Antonov, A.; Arnold, H.; Artamonov, A.; Bellerive, A.; Betancourt, C.; Boehler, M.; Borisov, A.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Coniavitis, E.; Consorti, V.; Dao, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ronzani, M.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany.
[Alexandre, G.; Ancu, L. S.; Annovi, A.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nikolics, K.; Picazio, A.; Pohl, M.; Rosbach, K.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland.
[Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] INFN Sez Genova, Genoa, Italy.
[Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy.
[Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia.
[Barberis, D.; Djobava, T.; Durglishvili, A.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Khubua, J.; Mosidze, M.; Osculati, B.; Parodi, F.; Schiavi, C.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia.
[Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany.
[Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland.
[Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J. -Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France.
[McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA.
[da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA.
[Andrei, V.; Annovi, A.; Baas, A.; Brandta, O.; Davygora, Y.; Dietzsch, T. A.; Yildiz, H. Duran; Hanke, P.; Hofmanna, J. I.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany.
[Anders, C. F.; Giulini, M.; Kasieczkab, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany.
[Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany.
[Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan.
[Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA.
[Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria.
[Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA.
[Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA.
[Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia.
[Amako, K.; Annovi, A.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan.
[Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan.
[Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan.
[Takashima, R.] Kyoto Univ, Kyoto 612, Japan.
[Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan.
[Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina.
[Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina.
[Allison, L. J.; Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England.
[Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, Lecce, Italy.
[Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy.
[Allport, P. P.; Bundock, A. C.; Burdin, S.; Cervelli, A.; Chilingarov, A.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England.
[Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia.
[Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia.
[Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England.
[Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England.
[Casadei, D.; Cooper, B. D.; Davison, A. R.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Korn, A.; Martyniuk, A. C.; Nurse, E.; Pilkington, D.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England.
[Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA.
[Annovi, A.; Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS IN2P3, Paris, France.
[Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden.
[Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain.
[Blum, W.; Buescher, V.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
[Almond, J.; Borri, M.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England.
[Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France.
[Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS IN2P3, Marseille, France.
[Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA.
[Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada.
[Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.] Univ Melbourne, Sch Phys, Parkville, Vic 3052, Australia.
[Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Levin, D.; Liu, L.; Long, J. D.; Lu, N.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] INFN Sez Milano, Milan, Italy.
[Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy.
[Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus.
[Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus.
[Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada.
[Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Inst Phys, Moscow, Russia.
[Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia.
[Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] MEPhI, Moscow, Russia.
[Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia.
[Adomeit, S.; Annovi, A.; Antonov, A.; Artamonov, A.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany.
[Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany.
[Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan.
[Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan.
[Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; De Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] INFN Sez Napoli, Naples, Italy.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy.
[Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
[Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Koenig, A. C.; Salvucci, A.; Struebig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands.
[Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; Van der Geer, R.; Van der Graaf, H.; Van der Leeuw, R.; Van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands.
[Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
[Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia.
[Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA.
[Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Tannenwald, B. B.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan.
[Abbott, B.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA.
[Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA.
[Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic.
[Brau, J. E.; Brost, E.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA.
[Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France.
[Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS IN2P3, Orsay, France.
[Endo, M.; Hanagaki, K.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan.
[Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway.
[Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C. -L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England.
[Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudioa, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] INFN Sez Pavia, Pavia, Italy.
[Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy.
[Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Meyer, C.; Ospanov, R.; Saxon, J.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA.
[Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia.
[Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] INFN Sez Pisa, Pisa, Italy.
[Beccherle, R.; Bertolucci, F.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy.
[Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Anjos, N.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal.
[Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal.
[Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal.
[Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal.
[Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal.
[Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain.
[Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain.
[Wemans, A. Do Valle] Univ Nova Lisboa, Dep Fis, Caparica, Portugal.
[Wemans, A. Do Valle] Univ Nova Lisboa, CEFITEC, Caparica, Portugal.
[Wemans, A. Do Valle] Univ Nova Lisboa, Fac Ciencias & Tecnol, Caparica, Portugal.
[Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic.
[Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic.
[Annovi, A.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr Inst High Energy Phys, Protvino, Russia.
[Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England.
[Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada.
[Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan.
[Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidotia, A.; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] INFN Sez Roma, Rome, Italy.
[Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, Rome, Italy.
[Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy.
[Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescu, C.; Taccini, C.; Trovatelli, M.] INFN Sez Roma Tre, Rome, Italy.
[Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy.
[Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco.
[Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco.
[El Kacimic, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco.
[Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco.
[Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco.
[El Moursli, R. Cherkaoui; Fassi, F.; Haddade, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco.
[Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Grabas, H. M. X.; Guyot, C.; Hann, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J. -P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, Commissariat Energie Atom & Energies Alternat, Inst Rech Lois Fondamentales Univers, DSM IRFU, F-91191 Gif Sur Yvette, France.
[Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F. -W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England.
[Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan.
[Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany.
[Buat, Q.; Dawe, E.; Godfrey, J.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada.
[Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nef, P. D.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA.
[Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia.
[Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia.
[Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa.
[Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa.
[Bristow, K.; Carrillo-Montoya, G. D.; Chen, X.; Hamity, G. N.; Hsuc, C.; MelladoGarciac, B. R.; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa.
[Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bessidskaia, O.; Bohm, C.; Clement, C.; Cribbs, W. A.; Erikssona, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden.
[Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bessidskaia, O.; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjoelin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden.
[Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden.
[Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA.
[Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Astron & Chem, Stony Brook, NY 11794 USA.
[Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England.
[Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
[Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan.
[Abreu, H.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel.
[Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece.
[Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Savard, P.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan.
[Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Savard, P.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan.
[Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan.
[Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan.
[AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada.
[Canepa, A.; Chekulaev, S. V.; Fortin, D.; Koutsman, A.; Orama, C. J.; Codina, E. Perez; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Garcia, J. A. Benitez; Bustos, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada.
[Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan.
[Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA.
[Losada, M.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia.
[Aloisio, A.; Corso-Radu, A.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA.
[Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] INFN Grp Coll Udine, Sez Trieste, Udine, Italy.
[Acharya, B. S.; Alhroob, M.; De Sanctis, U.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy.
[Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy.
[Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.
[Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain.
[Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain.
[Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain.
[Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain.
[Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada.
[Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada.
[Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan.
[Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel.
[Banerjee, Sw.; Castillok, L. R. Flores; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Redelbach, A.; Schreyer, M.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany.
[Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany.
[Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA.
[Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France.
Kings Coll London, Dept Phys, London, England.
[Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan.
[Apolle, R.; Davies, E.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England.
[Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA.
Tomsk State Univ, Tomsk 634050, Russia.
[Chen, L.; Gao, J.] Aix Marseille Univ, CPPM, Marseille, France.
[Chen, L.; Gao, J.] CNRS IN2P3, Marseille, France.
[Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy.
[Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys IPP, Toronto, ON, Canada.
[Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia.
Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China.
[Gkialas, I.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece.
[Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA.
[Grinstein, S.; Martinez, M.] ICREA, Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain.
[Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA.
Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia.
CERN, Geneva, Switzerland.
[Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan.
[Konoplich, R.] Manhattan Coll, New York, NY USA.
[Korol, A. A.; Maximov, D. A.; Rezanova, O. L.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia.
[Rozas, A. Juste; Li, B.] Acad Sinica, Inst Phys, Taipei, Taiwan.
[Li, Y.] Univ Paris 11, LAL, Orsay, France.
[Li, Y.] CNRS IN2P3, Orsay, France.
[Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan.
[Liu, K.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.
[Liu, K.] Univ Paris Diderot, Paris, France.
[Liu, K.] CNRS IN2P3, Paris, France.
[Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India.
[Messina, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia.
[Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland.
[Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy.
[Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA.
[Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China.
[Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia.
[Tikhomirov, V. O.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia.
[Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary.
[Vickey, T.] Univ Oxford, Dept Phys, Oxford, England.
[Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China.
[Wildt, M. A.] Univ Hamburg, Inst Phys Expt, Hamburg, Germany.
[Xu, L.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa.
[Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia.
RP Hrabovsky, M (reprint author), Aix Marseille Univ, CPPM, Marseille, France.
RI Doyle, Anthony/C-5889-2009; Fassi, Farida/F-3571-2016; Grinstein,
Sebastian/N-3988-2014; la rotonda, laura/B-4028-2016; Juste,
Aurelio/I-2531-2015; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe
Francesco/A-5629-2016; Peleganchuk, Sergey/J-6722-2014; Yang,
Haijun/O-1055-2015; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017;
Fullana Torregrosa, Esteban/A-7305-2016; Korol, Aleksandr/A-6244-2014;
Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira,
Jose/D-8486-2011; messina, andrea/C-2753-2013; Prokoshin,
Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Staroba,
Pavel/G-8850-2014; Goncalo, Ricardo/M-3153-2016; Gauzzi,
Paolo/D-2615-2009; Fabbri, Laura/H-3442-2012; Solodkov,
Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Martinez, Mario
/I-3549-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo,
Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Wemans,
Andre/A-6738-2012; Leyton, Michael/G-2214-2016; Jones,
Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino,
Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva,
Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy,
Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Zhukov,
Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Gavrilenko,
Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev,
Sergey/O-1145-2015; Warburton, Andreas/N-8028-2013; Gorelov,
Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Carvalho,
Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Buttar,
Craig/D-3706-2011; Joergensen, Morten/E-6847-2015; Mitsou,
Vasiliki/D-1967-2009; Riu, Imma/L-7385-2014; Mir,
Lluisa-Maria/G-7212-2015; Marti-Garcia, Salvador/F-3085-2011; Della
Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015;
Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer,
Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo,
stefania/A-6359-2012; Ciubancan, Liviu Mihai/L-2412-2015; Connell,
Simon/F-2962-2015; Bosman, Martine/J-9917-2014; Nemecek,
Stanislav/G-5931-2014; Gutierrez, Phillip/C-1161-2011; Di Domenico,
Antonio/G-6301-2011; Ventura, Andrea/A-9544-2015; Livan,
Michele/D-7531-2012; De, Kaushik/N-1953-2013; Smirnova,
Oxana/A-4401-2013; Villa, Mauro/C-9883-2009; White, Ryan/E-2979-2015;
Brooks, William/C-8636-2013;
OI Farrington, Sinead/0000-0001-5350-9271; Robson,
Aidan/0000-0002-1659-8284; Weber, Michele/0000-0002-2770-9031; Wang,
Kuhan/0000-0002-6151-0034; Grohsjean, Alexander/0000-0003-0748-8494; La
Rosa, Alessandro/0000-0001-6291-2142; Beck, Hans
Peter/0000-0001-7212-1096; Prokofiev, Kirill/0000-0002-2177-6401;
Veneziano, Stefano/0000-0002-2598-2659; Lacasta,
Carlos/0000-0002-2623-6252; Doyle, Anthony/0000-0001-6322-6195; Haas,
Andrew/0000-0002-4832-0455; Galhardo, Bruno/0000-0003-0641-301X;
Arratia, Miguel/0000-0001-6877-3315; Della Volpe,
Domenico/0000-0001-8530-7447; Castro, Nuno/0000-0001-8491-4376; Pina,
Joao /0000-0001-8959-5044; Hays, Chris/0000-0003-2371-9723; Fassi,
Farida/0000-0002-6423-7213; Grinstein, Sebastian/0000-0002-6460-8694; la
rotonda, laura/0000-0002-6780-5829; Leonidopoulos,
Christos/0000-0002-7241-2114; Osculati, Bianca
Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Giorgi,
Filippo Maria/0000-0003-1589-2163; Coccaro, Andrea/0000-0003-2368-4559;
Cristinziani, Markus/0000-0003-3893-9171; Chromek-Burckhart,
Doris/0000-0003-4243-3288; Qian, Jianming/0000-0003-4813-8167; Giordani,
Mario/0000-0002-0792-6039; Juste, Aurelio/0000-0002-1558-3291; Begel,
Michael/0000-0002-1634-4399; Capua, Marcella/0000-0002-2443-6525; Vari,
Riccardo/0000-0002-2814-1337; Di Micco, Biagio/0000-0002-4067-1592;
Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Nisati,
Aleandro/0000-0002-5080-2293; Gray, Heather/0000-0002-5293-4716; Mincer,
Allen/0000-0002-6307-1418; Peleganchuk, Sergey/0000-0003-0907-7592; Li,
Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Troncon,
Clara/0000-0002-7997-8524; Fullana Torregrosa,
Esteban/0000-0003-3082-621X; Dell'Asta, Lidia/0000-0002-9601-4225; Chen,
Hucheng/0000-0002-9936-0115; Sawyer, Lee/0000-0001-8295-0605; Korol,
Aleksandr/0000-0001-8448-218X; Vanadia, Marco/0000-0003-2684-276X;
Ippolito, Valerio/0000-0001-5126-1620; Maneira,
Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399;
KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo,
Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Fabbri,
Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674;
Zaitsev, Alexandre/0000-0002-4961-8368; Gonzalez de la Hoz,
Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar
Saavedra, Juan Antonio/0000-0002-5475-8920; Wemans,
Andre/0000-0002-9669-9500; Leyton, Michael/0000-0002-0727-8107; Jones,
Roger/0000-0002-6427-3513; Vranjes Milosavljevic,
Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; SULIN,
VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672;
Olshevskiy, Alexander/0000-0002-8902-1793; Tikhomirov,
Vladimir/0000-0002-9634-0581; Warburton, Andreas/0000-0002-2298-7315;
Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636;
Carvalho, Joao/0000-0002-3015-7821; Mashinistov,
Ruslan/0000-0001-7925-4676; Joergensen, Morten/0000-0002-6790-9361;
Mitsou, Vasiliki/0000-0002-1533-8886; Riu, Imma/0000-0002-3742-4582;
Mir, Lluisa-Maria/0000-0002-4276-715X; Della Pietra,
Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206;
Negrini, Matteo/0000-0003-0101-6963; Ferrer,
Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304;
spagnolo, stefania/0000-0001-7482-6348; Ciubancan, Liviu
Mihai/0000-0003-1837-2841; Connell, Simon/0000-0001-6000-7245; Bosman,
Martine/0000-0002-7290-643X; Di Domenico, Antonio/0000-0001-8078-2759;
Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062;
De, Kaushik/0000-0002-5647-4489; Smirnova, Oxana/0000-0003-2517-531X;
Villa, Mauro/0000-0002-9181-8048; White, Ryan/0000-0003-3589-5900;
Brooks, William/0000-0001-6161-3570; Vazquez Schroeder,
Tamara/0000-0002-9780-099X; Chen, Chunhui /0000-0003-1589-9955; Price,
Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Terzo,
Stefano/0000-0003-3388-3906; Smirnov, Sergei/0000-0002-6778-073X;
Belanger-Champagne, Camille/0000-0003-2368-2617
FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF,
Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil;
NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS,
China; MOST, China; NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, Czech
Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark;
DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF;
European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia;
BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation,
Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF,
Israel; ICORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT,
Japan; JSPS, Japan; CNRST, Morocco; FOM, The Netherlands; NWO, The
Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland;
GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia;
ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS,
Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC,
Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF,
Switzerland; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK,
Turkey; STFC, UK; Royal Society, UK; Leverhulme Trust, UK; DOE, USA;
NSF, USA
FX We thank CERN for the very successful operation of the LHC, as well as
the support staff from our institutions without whom ATLAS could not be
operated efficiently. We acknowledge the support of ANPCyT, Argentina;
YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS,
Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI,
Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS,
Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and
Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union;
IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and
AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, ICORE
and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST,
Morocco; FOM and NWO, The Netherlands; BRF and RCN, Norway; MNiSW and
NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia
and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia;
ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and
Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva,
Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and
Leverhulme Trust, UK; DOE and NSF, USA. The crucial computing support
from all WLCG partners is acknowledged gratefully, in particular from
CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark,
Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF
(Italy), NL-T1 (The Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK)
and BNL (USA) and in the Tier-2 facilities worldwide.
NR 37
TC 4
Z9 4
U1 8
U2 75
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1434-6044
EI 1434-6052
J9 EUR PHYS J C
JI Eur. Phys. J. C
PD OCT 1
PY 2014
VL 74
IS 10
AR 3071
DI 10.1140/epjc/s10052-014-3071-4
PG 48
WC Physics, Particles & Fields
SC Physics
GA AW6ZR
UT WOS:000346414700002
ER
PT J
AU Albrow, M
Bell, AJ
Enterria, DD
Hall-Wilton, R
Los, S
Mokhov, N
Murray, M
Penzo, A
Popescu, S
Ronzhin, A
Samoylenko, VD
Sobol, A
Veres, G
AF Albrow, M.
Bell, A. J.
Enterria, D. D.
Hall-Wilton, R.
Los, S.
Mokhov, N.
Murray, M.
Penzo, A.
Popescu, S.
Ronzhin, A.
Samoylenko, V. D.
Sobol, A.
Veres, G.
TI Small angle detectors for study diffractive processes with CMS
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article; Proceedings Paper
CT International Conference on Instrumentation for Colliding Beam Physics
CY FEB 24-MAR 01, 2014
CL Budker Inst Nucl Phys, Novosibirsk, RUSSIA
HO Budker Inst Nucl Phys
DE Timing detectors; Instrumentation and methods for time-of-flight (TOF)
spectroscopy; Cherenkov and transition radiation
AB The approach and detectors for diffractive physics based on two current projects - Forward Shower Counter (FSC) and Proton Precision Spectrometer (PPS) are presented.
FSC system consists of six (3 + 3) Stations of scintillator counters, which surround closely the beam pipes along 59 m < vertical bar z vertical bar < 140 m from IP5 on both plus (+) and minus (-) sides. These will detect showers from very forward particles with rapidity 7.5 < vertical bar eta vertical bar < 10 interacting in the beam pipe and surrounding material. FSC allow measurements of single diffraction: p + p -> p + G + X (where G is rapidity gap) for lower masses and double diffraction p + p -> X + G + X with a large central rapidity gap. The counters can also be used for beam real-time monitoring and will make an invaluable contribution to the understanding of the background environment and its topology.
PPS is designed for study the central exclusive production pp -> p + X + p, where the + signs denote the absence of hadronic activity (that is, the presence of a rapidity gap) between the outgoing protons and the decay products of the central system X. The precise measurement of the kinematical parameters of the outgoing protons enables to study the properties of the central state X. In PPS part we consider the detector for high precision timing of these protons - QUARTIC. It consists of L-shape bars with quartz or sapphire radiator. The time resolution of the QUARTIC prototypes achieved approximate to 10 ps.
C1 [Albrow, M.; Los, S.; Mokhov, N.; Ronzhin, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Bell, A. J.; Enterria, D. D.; Hall-Wilton, R.; Veres, G.] CERN, CH-1211 Geneva 23, Switzerland.
[Murray, M.] Kansas State Univ, Manhattan, KS 66506 USA.
[Penzo, A.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Popescu, S.] IFIN HH, Bucharest 407, Romania.
[Samoylenko, V. D.; Sobol, A.] IHEP, Protvino 142281, Russia.
RP Samoylenko, VD (reprint author), IHEP, 1 Nauki Sq, Protvino 142281, Russia.
EM Vladimir.Samoylenko@ihep.ru
NR 12
TC 1
Z9 1
U1 3
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD OCT
PY 2014
VL 9
AR C10032
DI 10.1088/1748-0221/9/10/C10032
PG 8
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA AU8PK
UT WOS:000345858500032
ER
PT J
AU Chambliss, K
Sundaram, SK
Simos, N
Diwan, MV
AF Chambliss, K.
Sundaram, S. K.
Simos, N.
Diwan, M. V.
TI Photomultiplier tube failure under hydrostatic pressure in future
neutrino detectors
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article
DE Cherenkov detectors; Materials for solid-state detectors; Photon
detectors for UV, visible and IR photons (vacuum) (photomultipliers,
HPDs, others); Neutrino detectors
AB Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment (LBNE) project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high-speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack and an average velocity was determined for all measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.
C1 [Chambliss, K.; Sundaram, S. K.] Alfred Univ, Kazuo Inamori Sch Engn, Multifunct Mat Lab M&M Lab, Alfred, NY 14802 USA.
[Simos, N.; Diwan, M. V.] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Sundaram, SK (reprint author), Alfred Univ, Kazuo Inamori Sch Engn, Multifunct Mat Lab M&M Lab, Alfred, NY 14802 USA.
EM sundaram@alfred.edu
FU Kyocera Corporation
FX The authors acknowledge support from BNL. SKS acknowledges the support
from the Kyocera Corporation in the form of Inamori Professorship.
NR 13
TC 0
Z9 0
U1 1
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD OCT
PY 2014
VL 9
AR T10002
DI 10.1088/1748-0221/9/10/T10002
PG 11
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA AU8PK
UT WOS:000345858500062
ER
PT J
AU Chatrchyan, S
Khachatryan, V
Sirunyan, AM
Tumasyan, A
Adam, W
Bergauer, T
Dragicevic, M
Ero, J
Fabjan, C
Friedl, M
Fruhwirth, R
Ghete, VM
Hartl, C
Hormann, N
Hrubec, J
Jeitler, M
Kiesenhofer, W
Knunz, V
Krammer, M
Kratschmer, I
Liko, D
Mikulec, I
Rabady, D
Rahbaran, B
Rohringer, H
Schofbeck, R
Strauss, J
Taurok, A
Treberer-Treberspurg, W
Waltenberger, W
Wulz, CE
Mossolov, V
Shumeiko, N
Gonzalez, JS
Alderweireldt, S
Bansal, M
Bansal, S
Beaumont, W
Cornelis, T
De Wolf, EA
Janssen, X
Knutsson, A
Luyckx, S
Mucibello, L
Ochesanu, S
Roland, B
Rougny, R
Van Haevermaet, H
Van Mechelen, P
Van Remortel, N
Van Spilbeeck, A
Blekman, F
Blyweert, S
D'Hondt, J
Devroede, O
Heracleous, N
Kalogeropoulos, A
Keaveney, J
Kim, TJ
Lowette, S
Maes, M
Olbrechts, A
Python, Q
Strom, D
Tavernier, S
Van Doninck, W
Van Lancker, L
Van Mulders, P
Van Onsem, GP
Villella, I
Caillol, C
Clerbaux, B
De Lentdecker, G
Favart, L
Gay, APR
Leonard, A
Marage, PE
Mohammadi, A
Pernie, L
Reis, T
Seva, T
Thomas, L
Velde, CV
Vanlaer, P
Wang, J
Adler, V
Beernaert, K
Benucci, L
Cimmino, A
Costantini, S
Crucy, S
Dildick, S
Garcia, G
Klein, B
Lellouch, J
Mccartin, J
Rios, AAO
Ryckbosch, D
Diblen, SS
Sigamani, M
Strobbe, N
Thyssen, F
Tytgat, M
Walsh, S
Yazgan, E
Zaganidis, N
Basegmez, S
Beluffi, C
Bruno, G
Castello, R
Caudron, A
Ceard, L
Da Silveira, GG
De Callatay, B
Delaere, C
du Pree, T
Favart, D
Forthomme, L
Giammanco, A
Hollar, J
Jez, P
Komm, M
Lemaitre, V
Liao, J
Michotte, D
Militaru, O
Nuttens, C
Pagano, D
Pin, A
Piotrzkowski, K
Popov, A
Quertenmont, L
Selvaggi, M
Marono, MV
Garcia, JMV
Beliy, N
Caebergs, T
Daubie, E
Hammad, GH
Alves, GA
Martins, MC
Martins, TDR
Pol, ME
Souza, MHG
Alda, WL
Carvalho, W
Chinellato, J
Custodio, A
Da Costa, EM
Damiao, DDJ
Martins, CDO
De Souza, SF
Malbouisson, H
Malek, M
Figueiredo, DM
Mundim, L
Nogima, H
Da Silva, WLP
Santaolalla, J
Santoro, A
Sznajder, A
Manganote, EJT
Pereira, AV
Bernardes, CA
Dias, FA
Tomei, TRFP
Gregores, EM
Mercadante, PG
Novaes, SF
Padula, SS
Genchev, V
Iaydjiev, P
Marinov, A
Piperov, S
Rodozov, M
Sultanov, G
Vutova, M
Dimitrov, A
Glushkov, I
Hadjiiska, R
Kozhuharov, V
Litov, L
Pavlov, B
Petkov, P
Bian, JG
Chen, GM
Chen, HS
Chen, M
Du, R
Jiang, CH
Liang, D
Liang, S
Meng, X
Plestina, R
Tao, J
Wang, X
Wang, Z
Asawatangtrakuldee, C
Ban, Y
Guo, Y
Li, Q
Li, W
Liu, S
Mao, Y
Qian, SJ
Wang, D
Zhang, L
Zou, W
Avila, C
Montoya, CAC
Sierra, LFC
Florez, C
Gomez, JP
Moreno, BG
Sanabria, JC
Godinovic, N
Lelas, D
Polic, D
Puljak, I
Antunovic, Z
Kovac, M
Brigljevic, V
Kadija, K
Luetic, J
Mekterovic, D
Morovic, S
Sudic, L
Attikis, A
Mavromanolakis, G
Mousa, J
Nicolaou, C
Ptochos, F
Razis, PA
Finger, M
Finger, M
Abdelalim, AA
Assran, Y
Elgammal, S
Kamel, AE
Mahmoud, MA
Radi, A
Kadastik, M
Muntel, M
Murumaa, M
Raidal, M
Rebane, L
Tiko, A
Eerola, P
Fedi, G
Voutilainen, M
Harkonen, J
Karimaki, V
Kinnunen, R
Kortelainen, MJ
Lampen, T
Lassila-Perini, K
Lehti, S
Linden, T
Luukka, P
Maenpaa, T
Peltola, T
Tuominen, E
Tuominiemi, J
Tuovinen, E
Wendland, L
Tuuva, T
Besancon, M
Couderc, F
Dejardin, M
Denegri, D
Fabbro, B
Faure, JL
Ferri, F
Ganjour, S
Givernaud, A
Gras, P
de Monchenault, GH
Jarry, P
Locci, E
Malcles, J
Nayak, A
Rander, J
Rosowsky, A
Titov, M
Baffioni, S
Beaudette, F
Busson, P
Charlot, C
Daci, N
Dahms, T
Dalchenko, M
Dobrzynski, L
Florent, A
de Cassagnac, RG
Mine, P
Mironov, C
Naranjo, IN
Nguyen, M
Ochando, C
Paganini, P
Sabes, D
Salerno, R
Sauvan, JB
Sirois, Y
Veelken, C
Yilmaz, Y
Zabi, A
Agram, JL
Andrea, J
Bloch, D
Bonnin, C
Brom, JM
Chabert, EC
Charles, L
Collard, C
Conte, E
Drouhin, F
Fontaine, JC
Gele, D
Goerlach, U
Goetzmann, C
Gross, L
Juillot, P
Le Bihan, AC
Van Hove, P
Gadrat, S
Baulieu, G
Beauceron, S
Beaupere, N
Boudoul, G
Brochet, S
Chasserat, J
Chierici, R
Contardo, D
Depasse, P
El Mamouni, H
Fan, J
Fay, J
Gascon, S
Gouzevitch, M
Ille, B
Kurca, T
Lethuillier, M
Lumb, N
Mathez, H
Mirabito, L
Perries, S
Alvarez, JDR
Sgandurra, L
Sordini, V
Donckt, MV
Verdier, P
Viret, S
Xiao, H
Zoccarato, Y
Tsamalaidze, Z
Autermann, C
Beranek, S
Bontenackels, M
Calpas, B
Edelhoff, M
Esser, H
Feld, L
Hindrichs, O
Karpinski, W
Klein, K
Kukulies, C
Lipinski, M
Ostapchuk, A
Perieanu, A
Pierschel, G
Preuten, M
Raupach, F
Sammet, J
Schael, S
Schulte, JF
Schwering, G
Sprenger, D
Verlage, T
Weber, H
Wittmer, B
Wlochal, M
Zhukov, V
Ata, M
Caudron, J
Dietz-Laursonn, E
Duchardt, D
Erdmann, M
Fischer, R
Guth, A
Hebbeker, T
Heidemann, C
Hoepfner, K
Klingebiel, D
Knutzen, S
Kreuzer, P
Merschmeyer, M
Meyer, A
Olschewski, M
Padeken, K
Papacz, P
Reithler, H
Schmitz, SA
Sonnenschein, L
Teyssier, D
Thuer, S
Weber, M
Cherepanov, V
Erdogan, Y
Flugge, G
Geenen, H
Geisler, M
Ahmad, WH
Hoehle, F
Kargoll, B
Kress, T
Kuessel, Y
Lingemann, J
Nowack, A
Nugent, IM
Perchalla, L
Pistone, C
Pooth, O
Stahl, A
Asin, I
Bartosik, N
Behr, J
Behrenhoff, W
Behrens, U
Bell, AJ
Bergholz, M
Bethani, A
Borras, K
Burgmeier, A
Cakir, A
Calligaris, L
Campbell, A
Choudhury, S
Costanza, F
Pardos, CD
Dolinska, G
Dooling, S
Dorland, T
Eckerlin, G
Eckstein, D
Eichhorn, T
Flucke, G
Geiser, A
Grebenyuk, A
Gunnellini, P
Habib, S
Hampe, J
Hansen, K
Hauk, J
Hellwig, G
Hempel, M
Horton, D
Jung, H
Kasemann, M
Katsas, P
Kieseler, J
Kleinwort, C
Korol, I
Kramer, M
Krucker, D
Lange, W
Leonard, J
Lipka, K
Lohmann, W
Lutz, B
Mankel, R
Marfin, I
Maser, H
Melzer-Pellmann, IA
Meyer, AB
Mnich, J
Muhl, C
Mussgiller, A
Naumann-Emme, S
Novgorodova, O
Nowak, F
Ntomari, E
Perrey, H
Petrukhin, A
Pitzl, D
Placakyte, R
Raspereza, A
Cipriano, PMR
Riedl, C
Ron, E
Sahin, MO
Salfeld-Nebgen, J
Saxena, P
Schmidt, R
Schorner-Sadenius, T
Oder, MS
Spannagel, S
Stein, M
Trevino, ADRV
Walsh, R
Wissing, C
Zuber, A
Martin, MA
Berger, LO
Biskop, H
Blobel, V
Buhmann, P
Vignali, MC
Enderle, H
Erfle, J
Frensche, B
Garutti, E
Gobel, K
Orner, MG
Gosselink, M
Haller, J
Hoffmann, M
Oing, RSH
Junkes, A
Kirschenmann, H
Klanner, R
Kogler, R
Lange, J
Lapsien, T
Lenz, T
Maettig, S
Marchesini, I
Matysek, M
Ott, J
Peiffer, T
Pietsch, N
Pohlsen, T
Rathjens, D
Sander, C
Schettler, H
Schleper, P
Schlieckau, E
Schmidt, A
Seidel, M
Sibille, J
Sola, V
Stadie, H
Steinbruck, G
Troendle, D
Usai, E
Vanelderen, L
Barth, C
Barvich, T
Baus, C
Berger, J
Boegelspacher, F
Boser, C
Butz, E
Chwalek, T
Colombo, F
Boer, W
Descroix, A
Dierlamm, A
Eber, R
Feindt, M
Guthoff, M
Hartmann, F
Hauth, T
Heindl, SM
Held, H
Hoffmann, KH
Husemann, U
Katkov, I
Kornmayer, A
Kuznetsova, E
Pardo, PL
Martschei, D
Mozer, MU
Mueller, T
Niegel, M
Nurnberg, A
Oberst, O
Printz, M
Quast, G
Rabbertz, K
Ratnikov, F
Rocker, S
Schilling, FP
Schott, G
Simonis, HJ
Steck, P
Stober, FM
Ulrich, R
Wagner-Kuhr, J
Wayand, S
Weiler, T
Wolf, R
Zeise, M
Anagnostou, G
Daskalakis, G
Geralis, T
Kesisoglou, S
Kyriakis, A
Loukas, D
Markou, A
Markou, C
Psallidas, A
Topsis-Giotis, I
Gouskos, L
Panagiotou, A
Saoulidou, N
Stiliaris, E
Aslanoglou, X
Evangelou, I
Flouris, G
Foudas, C
Jones, J
Kokkas, P
Manthos, N
Papadopoulos, I
Paradas, E
Bencze, G
Hajdu, C
Hidas, P
Horvath, D
Sikler, F
Veszpremi, V
Vesztergombi, G
Zsigmond, AJ
Beni, N
Czellar, S
Molnar, J
Palinkas, J
Szillasi, Z
Karancsi, J
Raics, P
Trocsanyi, ZL
Ujvari, B
Swain, SK
Beri, SB
Bhatnagar, V
Dhingra, N
Gupta, R
Kaur, M
Mehta, MZ
Mittal, M
Nishu, N
Sharma, A
Singh, JB
Kumar, A
Kumar, A
Ahuja, S
Bhardwaj, A
Choudhary, BC
Kumar, A
Malhotra, S
Naimuddin, M
Ranjan, K
Sharma, V
Shivpuri, RK
Banerjee, S
Bhattacharya, S
Chatterjee, K
Dutta, S
Gomber, B
Jain, S
Jain, S
Khurana, R
Modak, A
Mukherjee, S
Roy, D
Sarkar, S
Sharan, M
Singh, AP
Abdulsalam, A
Dutta, D
Kailas, S
Kumar, V
Mohanty, AK
Pant, LM
Shukla, P
Topkar, A
Aziz, T
Banerjee, S
Chatterjee, RM
Dugad, S
Ganguly, S
Ghosh, S
Guchait, M
Gurtu, A
Kole, G
Kumar, S
Maity, M
Majumder, G
Mazumdar, K
Mohanty, GB
Parida, B
Sudhakar, K
Wickramage, N
Arfaei, H
Bakhshiansohi, H
Behnamian, H
Etesami, SM
Fahim, A
Jafari, A
Khakzad, M
Najafabadi, MM
Naseri, M
Mehdiabadi, SP
Safarzadeh, B
Zeinali, M
Grunewald, M
Abbrescia, M
Barbone, L
Calabria, C
Cariola, P
Chhibra, SS
Colaleo, A
Creanza, D
De Filippis, N
De Palma, M
De Robertis, G
Fiore, L
Franco, M
Iaselli, G
Loddo, F
Maggi, G
Maggi, M
Marangelli, B
My, S
Nuzzo, S
Pacifico, N
Pompili, A
Pugliese, G
Radogna, R
Sala, G
Selvaggi, G
Silvestris, L
Singh, G
Venditti, R
Verwilligen, P
Zito, G
Abbiendi, G
Benvenuti, AC
Bonacorsi, D
Braibant-Giacomelli, S
Brigliadori, L
Campanini, R
Capiluppi, P
Castro, A
Cavallo, FR
Codispoti, G
Cuffiani, M
Dallavalle, GM
Fabbri, F
Fanfani, A
Fasanella, D
Giacomelli, P
Grandi, C
Guiducci, L
Marcellini, S
Masetti, G
Meneghelli, M
Montanari, A
Navarria, FL
Odorici, F
Perrotta, A
Primavera, F
Rossi, AM
Rovelli, T
Siroli, GP
Tosi, N
Travaglini, R
Albergo, S
Cappello, G
Chiorboli, M
Costa, S
Giordano, F
Potenza, R
Saizu, MA
Scinta, M
Tricomi, A
Tuve, C
Barbagli, G
Brianzi, M
Ciaranfi, R
Ciulli, V
Civinini, C
D'Alessandro, R
Focardi, E
Gallo, E
Gonzi, S
Gori, V
Lenzi, P
Meschini, M
Paoletti, S
Scarlini, E
Sguazzoni, G
Tropiano, A
Benussi, L
Bianco, S
Fabbri, F
Piccolo, D
Fabbricatore, P
Ferretti, R
Ferro, F
Lo Vetere, M
Musenich, R
Robutti, E
Tosi, S
D'Angelo, P
Dinardo, ME
Fiorendi, S
Gennai, S
Gerosa, R
Ghezzi, A
Govoni, P
Lucchini, MT
Malvezzi, S
Manzoni, RA
Martelli, A
Marzocchi, B
Menasce, D
Moroni, L
Paganoni, M
Pedrini, D
Ragazzi, S
Redaelli, N
de Fatis, TT
Buontempo, S
Cavallo, N
Guida, S
Fabozzi, F
Iorio, AOM
Lista, L
Meola, S
Merola, M
Paolucci, P
Azzi, P
Bacchetta, N
Bellato, M
Bisello, D
Branca, A
Carlin, R
Checchia, P
Dall'Osso, M
Dorigo, T
Galanti, M
Gasparini, F
Gasparini, U
Giubilato, P
Gozzelino, A
Kanishchev, K
Lacaprara, S
Lazzizzera, I
Margoni, M
Meneguzzo, AT
Passaseo, M
Pazzini, J
Pegoraro, M
Pozzobon, N
Ronchese, P
Simonetto, F
Torassa, E
Tosi, M
Zotto, P
Zucchetta, A
Zumerle, G
Gabusi, M
Gaioni, L
Manazza, A
Manghisoni, M
Ratti, L
Ratti, SP
Re, V
Riccardi, C
Salvini, P
Traversi, G
Vitulo, P
Zucca, S
Biasini, M
Bilei, GM
Bissi, L
Checcucci, B
Ciangottini, D
Conti, E
Fano, L
Lariccia, P
Magalotti, D
Mantovani, G
Menichelli, M
Passeri, D
Placidi, P
Romeo, F
Saha, A
Salvatore, M
Santocchia, A
Servoli, L
Spiezia, A
Androsov, K
Arezzini, S
Azzurri, P
Bagliesi, G
Basti, A
Bernardini, J
Boccali, T
Bosi, F
Broccolo, G
Calzolari, F
Castaldi, R
Ciampa, A
Ciocci, MA
Dell'Orso, R
Donato, S
Fiori, F
Foa, L
Giassi, A
Grippo, MT
Kraan, A
Ligabue, F
Lomtadze, T
Magazzu, G
Martini, L
Mazzoni, E
Messineo, A
Moggi, A
Moon, CS
Palla, F
Raffaelli, F
Rizzi, A
Savoy-Navarro, A
Serban, AT
Spagnolo, P
Squillacioti, P
Tenchini, R
Tonelli, G
Venturi, A
Verdini, PG
Vernieri, C
Barone, L
Cavallari, F
Del Re, D
Diemoz, M
Grassi, M
Jorda, C
Longo, E
Margaroli, F
Meridiani, P
Micheli, F
Nourbakhsh, S
Organtini, G
Paramatti, R
Rahatlou, S
Rovelli, C
Soffi, L
Traczyk, P
Amapane, N
Arcidiacono, R
Argiro, S
Arneodo, M
Bellan, R
Biino, C
Cartiglia, N
Casasso, S
Costa, M
Degano, A
Demaria, N
Mariotti, C
Maselli, S
Migliore, E
Monaco, V
Monteil, E
Musich, M
Obertino, MM
Ortona, G
Pacher, L
Pastrone, N
Pelliccioni, M
Potenza, A
Rivetti, A
Romero, A
Ruspa, M
Sacchi, R
Solano, A
Staiano, A
Tamponi, U
Trapani, PP
Belforte, S
Candelise, V
Casarsa, M
Cossutti, F
Ricca, G
Gobbo, B
Licata, C
Marone, M
Montanino, D
Penzo, A
Schizzi, A
Umer, T
Zanetti, A
Chang, S
Kim, TY
Nam, SK
Kim, DH
Kim, GN
Kim, JE
Kim, MS
Kong, DJ
Lee, S
Oh, YD
Park, H
Son, DC
Kim, JY
Kim, ZJ
Song, S
Choi, S
Gyun, D
Hong, B
Jo, M
Kim, H
Kim, Y
Lee, KS
Park, SK
Roh, Y
Choi, M
Kim, JH
Park, C
Park, IC
Park, S
Ryu, G
Choi, Y
Choi, YK
Goh, J
Kwon, E
Lee, B
Lee, J
Seo, H
Yu, I
Juodagalvis, A
Komaragiri, JR
Castilla-Valdez, H
De la Cruz-Burelo, E
Heredia-de La Cruz, I
Lopez-Fernandez, R
Martinez-Ortega, J
Sanchez-Hernandez, A
Villasenor-Cendejas, LM
Moreno, SC
Valencia, FV
Ibarguen, HAS
Linares, EC
Pineda, AM
Krofcheck, D
Butler, PH
Doesburg, R
Reucroft, S
Ahmad, A
Ahmad, M
Asghar, MI
Butt, J
Hassan, Q
Hoorani, HR
Khan, WA
Khurshid, T
Qazi, S
Shah, MA
Shoaib, M
Bialkowska, H
Bluj, M
Boimska, B
Frueboes, T
Gorski, M
Kazana, M
Nawrocki, K
Romanowska-Rybinska, K
Szleper, M
Wrochna, G
Zalewski, P
Brona, G
Bunkowski, K
Cwiok, M
Dominik, W
Doroba, K
Kalinowski, A
Konecki, M
Krolikowski, J
Misiura, M
Wolszczak, W
Bargassa, P
Silva, CBDE
Faccioli, P
Parracho, PGF
Gallinaro, M
Nguyen, F
Antunes, JR
Seixas, J
Varela, J
Vischia, P
Bunin, P
Gavrilenko, M
Golutvin, I
Gorbunov, I
Kamenev, A
Karjavin, V
Konoplyanikov, V
Kozlov, G
Lanev, A
Malakhov, A
Matveev, V
Moisenz, P
Palichik, V
Perelygin, V
Shmatov, S
Skatchkov, N
Smirnov, V
Zarubin, A
Golovtsov, V
Ivanov, Y
Kim, V
Levchenko, P
Murzin, V
Oreshkin, V
Smirnov, I
Sulimov, V
Uvarov, L
Vavilov, S
Vorobyev, A
Vorobyev, A
Andreev, Y
Dermenev, A
Gninenko, S
Golubev, N
Kirsanov, M
Krasnikov, N
Pashenkov, A
Tlisov, D
Toropin, A
Epshteyn, V
Gavrilov, V
Lychkovskaya, N
Popov, V
Safronov, G
Semenov, S
Spiridonov, A
Stolin, V
Vlasov, E
Zhokin, A
Andreev, V
Azarkin, M
Dremin, I
Kirakosyan, M
Leonidov, A
Mesyats, G
Rusakov, SV
Vinogradov, A
Belyaev, A
Boos, E
Dubinin, M
Dudko, L
Ershov, A
Gribushin, A
Kaminskiy, A
Klyukhin, V
Kodolova, O
Lokhtin, I
Obraztsov, S
Petrushanko, S
Savrin, V
Azhgirey, I
Bayshev, I
Bitioukov, S
Kachanov, V
Kalinin, A
Konstantinov, D
Krychkine, V
Petrov, V
Ryutin, R
Sobol, A
Tourtchanovitch, L
Troshin, S
Tyurin, N
Uzunian, A
Volkov, A
Adzic, P
Dordevic, M
Ekmedzic, M
Milosevic, J
Aguilar-Benitez, M
Maestre, JA
Battilana, C
Calvo, E
Cerrada, M
Llatas, MC
Colino, N
De la Cruz, B
Peris, AD
Vazquez, DD
Bedoya, CF
Ramos, JPF
Ferrando, A
Flix, J
Fouz, MC
Garcia-Abia, P
Lopez, OG
Lopez, SG
Hernandez, JM
Josa, MI
Merino, G
De Martino, EN
Yzquierdo, APC
Pelayo, JP
Olmeda, AQ
Redondo, I
Romero, L
Soares, MS
Willmott, C
Albajar, C
De Troconiz, JF
Missiroli, M
Brun, H
Cuevas, J
Menendez, JF
Folgueras, S
Caballero, IG
Iglesias, LL
Cifuentes, JAB
Cabrillo, IJ
Calderon, A
Campderros, JD
Fernandez, M
Gomez, G
Sanchez, JG
Graziano, A
Echeverria, RWJ
Virto, AL
Marco, J
Marco, R
Rivero, CM
Matorras, F
Moya, D
Sanchez, FJM
Gomez, JP
Rodrigo, T
Rodriguez-Marrero, AY
Ruiz-Jimeno, A
Scodellaro, L
Vila, I
Cortabitarte, RV
Abbaneo, D
Ahmed, I
Albert, E
Auffray, E
Auzinger, G
Bachtis, M
Baillon, P
Ball, AH
Barney, D
Benaglia, A
Bendavid, J
Benhabib, L
Benitez, JF
Bernet, C
Berruti, GM
Bianchi, G
Blanchot, G
Bloch, P
Bocci, A
Bondu, ABO
Botta, C
Breuker, H
Camporesi, T
Ceresa, D
Cerminara, G
Christiansen, J
Christiansen, T
Niemela, AOC
Perez, JAC
Colafranceschi, S
D'Alfonso, M
D'Auria, A
d'Enterria, D
Dabrowski, A
Daguin, J
David, A
De Guio, F
De Roeck, A
De Visscher, S
Detraz, S
Deyrail, D
Dobson, M
Dupont-Sagorin, N
Elliott-Peisert, A
Eugster, J
Faccio, F
Felici, D
Frank, N
Franzoni, G
Funk, W
Giffels, M
Gigi, D
Gill, K
Giordano, D
Girone, M
Giunta, M
Glege, F
Garrido, RGR
Gowdy, S
Guida, R
Hammer, J
Hansen, M
Harris, P
Honma, A
Innocente, V
Janot, P
Kaplon, J
Karavakis, E
Katopodis, T
Kottelat, LJ
Kousouris, K
Kovacs, MI
Krajczar, K
Krzempek, L
Lecoq, P
Lourenco, C
Magini, N
Malgeri, L
Mannelli, M
Marchioro, A
Marconi, S
Noite, JMP
Masetti, L
Meijers, F
Mersi, S
Meschi, E
Michelis, S
Moll, M
Moortgat, F
Mulders, M
Musella, P
Onnela, A
Orsini, L
Pakulski, T
Cortezon, EP
Pavis, S
Perez, E
Pernot, JF
Perrozzi, L
Petagna, P
Petrilli, A
Petrucciani, G
Pfeiffer, A
Pierini, M
Pimia, M
Piparo, D
Plagge, M
Postema, H
Racz, A
Reece, W
Rolandi, G
Rovere, M
Rzonca, M
Sakulin, H
Santanastasio, F
Schafer, C
Schwick, C
Sekmen, S
Sharma, A
Siegrist, P
Silva, P
Simon, M
Sphicas, P
Spiga, D
Steggemann, J
Stieger, B
Stoye, M
Szwarc, T
Tropea, P
Troska, J
Tsirou, A
Vasey, F
Veres, GI
Verlaat, B
Vichoudis, P
Vlimant, JR
Wohri, HK
Zeuner, WD
Zwalinski, L
Bertl, W
Deiters, K
Erdmann, W
Horisberger, R
Ingram, Q
Kaestli, HC
Konig, S
Kotlinski, D
Langenegger, U
Meier, B
Renker, D
Rohe, T
Streuli, S
Bachmair, F
Bani, L
Becker, R
Bianchini, L
Bortignon, P
Buchmann, MA
Casal, B
Chanon, N
Di Calafiori, DRDS
Deisher, A
Dissertori, G
Dittmar, M
Djambazov, L
Donega, M
Dunser, M
Eller, P
Grab, C
Hits, D
Horisberger, U
Hoss, J
Lustermann, W
Mangano
Marini, AC
Del Arbol, PMR
Masciovecchio, M
Meister, D
Mohr, N
Nageli, C
Nef, P
Nessi-Tedaldi, F
Pandolfi, F
Pape, L
Pauss, F
Peruzzi, M
Quittnat, M
Ronga, FJ
Roser, UR
Rossini, M
Starodumov, A
Takahashi, M
Tauscher, L
Theofilatos, K
Treille, D
von Gunten, HP
Wallny, R
Weber, HA
Amsler, C
Bosiger, K
Canelli, MF
Chiochia, V
De Cosa, A
Favaro, C
Hinzmann, A
Hreus, T
Rikova, MI
Kilminster, B
Lange, C
Maier, R
Mejias, BM
Ngadiuba, J
Robmann, P
Snoek, H
Taroni, S
Verzetti, M
Yang, Y
Cardaci, M
Chen, KH
Ferro, C
Kuo, CM
Li, SW
Lin, W
Lu, YJ
Volpe, R
Yu, SS
Bartalini, P
Chang, P
Chang, YH
Chang, YW
Chao, Y
Chen, KF
Chen, PH
Dietz, C
Grundler, U
Hou, WS
Hsiung, Y
Kao, KY
Lei, YJ
Liu, YF
Lu, RS
Majumder, D
Petrakou, E
Shi, X
Shiu, JG
Tzeng, YM
Wang, M
Wilken, R
Asavapibhop, B
Suwonjandee, N
Adiguzel, A
Bakirci, MN
Cerci, S
Dozen, C
Dumanoglu, I
Eskut, E
Girgis, S
Gokbulut, G
Gurpinar, E
Hos, I
Kangal, EE
Topaksu, AK
Onengut, G
Ozdemir, K
Ozturk, S
Polatoz, A
Sogut, K
Cerci, DS
Tali, B
Topakli, H
Vergili, M
Akin, IV
Aliev, T
Bilin, B
Bilmis, S
Deniz, M
Gamsizkan, H
Guler, AM
Karapinar, G
Ocalan, K
Ozpineci, A
Serin, M
Sever, R
Surat, UE
Yalvac, M
Zeyrek, M
Gulmez, E
Isildak, B
Kaya, M
Kaya, O
Ozkorucuklu, S
Bahtiyar, H
Barlas, E
Cankocak, K
Gunaydin, YO
Vardarli, FI
Yucel, M
Levchuk, L
Sorokin, P
Brooke, JJ
Clement, E
Cussans, D
Flacher, H
Frazier, R
Goldstein, J
Grimes, M
Heath, GP
Heath, HF
Jacob, J
Kreczko, L
Lucas, C
Meng, Z
Newbold, DM
Paramesvaran, S
Poll, A
Senkin, S
Smith, VJ
Williams, T
Bell, KW
Belyaev, A
Brew, C
Brown, RM
Cockerill, DJA
Coughlan, JA
Harder, K
Harper, S
Ilic, J
Olaiya, E
Petyt, D
Shepherd-Themistocleous, CH
Thea, A
Tomalin, IR
Womersley, WJ
Worm, SD
Baber, M
Bainbridge, R
Buchmuller, O
Burton, D
Colling, D
Cripps, N
Cutajar, M
Dauncey, P
Davies, G
Della Negra, M
Ferguson, W
Fulcher, J
Futyan, D
Gilbert, A
Bryer, AG
Hall, G
Hatherell, Z
Hays, J
Iles, G
Jarvis, M
Karapostoli, G
Kenzie, M
Lane, R
Lucas, R
Lyons, L
Magnan, AM
Marrouche, J
Mathias, B
Nandi, R
Nash, J
Nikitenko, A
Pela, J
Pesaresi, M
Petridis, K
Pioppi, M
Raymond, DM
Rogerson, S
Rose, A
Seez, C
Sharp, P
Sparrow, A
Tapper, A
Acosta, MV
Virdee, T
Wakefield, S
Wardle, N
Cole, JE
Hobson, PR
Khan, A
Kyberd, P
Leggat, D
Leslie, D
Martin, W
Reid, ID
Symonds, P
Teodorescu, L
Turner, M
Dittmann, J
Hatakeyama, K
Kasmi, A
Liu, H
Scarborough, T
Charaf, O
Cooper, SI
Henderson, C
Rumerio, P
Avetisyan, A
Bose, T
Fantasia, C
Heister, A
Lawson, P
Lazic, D
Richardson, C
Rohlf, J
Sperka, D
John, JS
Sulak, L
Alimena, J
Bhattacharya, S
Christopher, G
Cutts, D
Demiragli, Z
Ferapontov, A
Garabedian, A
Heintz, U
Jabeen, S
Kukartsev, G
Laird, E
Landsberg, G
Luk, M
Narain, M
Segala, M
Sinthuprasith, T
Speer, T
Swanson, J
Breedon, R
Breto, G
Sanchez, MCD
Chauhan, S
Chertok, M
Conway, J
Conway, R
Cox, PT
Erbacher, R
Flores, C
Gardner, M
Ko, W
Kopecky, A
Lander, R
Miceli, T
Mulhearn, M
Pellett, D
Pilot, J
Ricci-Tam, F
Rutherford, B
Searle, M
Shalhout, S
Smith, J
Squires, M
Thomson, J
Tripathi, M
Wilbur, S
Yohay, R
Andreev, V
Cline, D
Cousins, R
Erhan, S
Everaerts, P
Farrell, C
Felcini, M
Hauser, J
Ignatenko, M
Jarvis, C
Rakness, G
Schlein, P
Takasugi, E
Valuev, V
Weber, M
Babb, J
Burt, K
Clare, R
Ellison, J
Gary, JW
Hanson, G
Heilman, J
Jandir, P
Lacroix, F
Liu, H
Long, OR
Luthra, A
Malberti, M
Nguyen, H
Negrete, MO
Shrinivas, A
Sturdy, J
Sumowidagdo, S
Wimpenny, S
Andrews, W
Branson, JG
Cerati, GB
Cittolin, S
D'Agnolo, RT
Evans, D
Holzner, A
Kelley, R
Kovalskyi, D
Lebourgeois, M
Letts, J
Macneill, I
Padhi, S
Palmer, C
Pieri, M
Sani, M
Sharma, V
Simon, S
Sudano, E
Tadel, M
Tu, Y
Vartak, A
Wasserbaech, S
Wurthwein, F
Yagil, A
Yoo, J
Barge, D
Bradmiller-Feld, J
Campagnari, C
Danielson, T
Dishaw, A
Flowers, K
Sevilla, MF
Geffert, P
George, C
Golf, F
Incandela, J
Justus, C
Kyre, S
Villalba, RM
Mccoll, N
Mullin, SD
Pavlunin, V
Richman, J
Rossin, R
Stuart, D
To, W
West, C
White, D
Apresyan, A
Bornheim, A
Bunn, J
Chen, Y
Di Marco, E
Duarte, J
Kcira, D
Mott, A
Newman, HB
Pena, C
Rogan, C
Spiropulu, M
Timciuc, V
Wilkinson, R
Xie, S
Zhu, RY
Azzolini, V
Calamba, A
Carroll, R
Ferguson, T
Iiyama, Y
Jang, DW
Paulini, M
Russ, J
Vogel, H
Vorobiev, I
Cumalat, JP
Drell, BR
Ford, WT
Gaz, A
Lopez, EL
Nauenberg, U
Smith, JG
Stenson, K
Ulmer, KA
Wagner, SR
Alexander, J
Chatterjee, A
Eggert, N
Gibbons, LK
Hopkins, W
Khukhunaishvili, A
Kreis, B
Mirman, N
Kaufman, GN
Patterson, JR
Ryd, A
Salvati, E
Sun, W
Teo, WD
Thom, J
Thompson, J
Tucker, J
Weng, Y
Winstrom, L
Wittich, P
Winn, D
Abdullin, S
Albrow, M
Anderson, J
Apollinari, G
Bauerdick, LAT
Beretvas, A
Berryhill, J
Bhat, PC
Burkett, K
Butler, JN
Chetluru, V
Cheung, HWK
Chlebana, F
Chramowicz, J
Cihangir, S
Cooper, W
Deptuch, G
Derylo, G
Elvira, VD
Fisk, I
Freeman, J
Gao, Y
Gingu, VC
Gottschalk, E
Gray, L
Green, D
Grunendahl, S
Gutsche, O
Hare, D
Harris, RM
Hirschauer, J
Hoff, JR
Hooberman, B
Howell, J
Hrycyk, M
Jindariani, S
Johnson, M
Joshi, U
Kaadze, K
Klima, B
Kwan, S
Lei, CM
Linacre, J
Lincoln, D
Lipton, R
Liu, T
Los, S
Lykken, J
Maeshima, K
Marraffino, JM
Outschoorn, VIM
Maruyama, S
Mason, D
Matulik, MS
McBride, P
Mishra, K
Mrenna, S
Musienko, Y
Nahn, S
Newman-Holmes, C
O'Dell, V
Prokofyev, O
Prosser, A
Ratnikova, N
Rivera, R
Sexton-Kennedy, E
Sharma, S
Spalding, WJ
Spiegel, L
Taylor, L
Tkaczyk, S
Tran, NV
Trimpl, M
Uplegger, L
Vaandering, EW
Vidal, R
Voirin, E
Whitbeck, A
Whitmore, J
Wu, W
Yang, F
Yun, JC
Acosta, D
Avery, P
Bourilkov, D
Cheng, T
Das, S
De Gruttola, M
Di Giovanni, GP
Dobur, D
Field, RD
Fisher, M
Fu, Y
Furic, IK
Hugon, J
Kim, B
Konigsberg, J
Korytov, A
Kropivnitskaya, A
Kypreos, T
Low, JF
Matchev, K
Milenovic, P
Mitselmakher, G
Muniz, L
Rinkevicius, A
Shchutska, L
Skhirtladze, N
Snowball, M
Yelton, J
Zakaria, M
Gaultney, V
Hewamanage, S
Linn, S
Markowitz, P
Martinez, G
Rodriguez, JL
Adams, T
Askew, A
Bochenek, J
Chen, J
Diamond, B
Haas, J
Hagopian, S
Hagopian, V
Johnson, KF
Prosper, H
Veeraraghavan, V
Weinberg, M
Baarmand, MM
Dorney, B
Hohlmann, M
Kalakhety, H
Yumiceva, F
Adams, MR
Apanasevich, L
Bazterra, VE
Betts, RR
Bucinskaite, I
Cavanaugh, R
Ev-Dokimov, O
Gauthier, L
Gerber, CE
Hofman, DJ
Kapustka, B
Khalatyan, S
Kurt, P
Moon, DH
O'Brien, C
Gonzalez, IDS
Silkworth, C
Turner, P
Varelas, N
Akgun, U
Albayrak, EA
Bilki, B
Clarida, W
Dilsiz, K
Duru, F
Haytmyradov, M
Merlo, JP
Mermerkaya, H
Mestvirishvili, A
Moeller, A
Nachtman, J
Ogul, H
Onel, Y
Ozok, F
Rahmat, R
Sen, S
Tan, P
Tiras, E
Wetzel, J
Yetkin, T
Yi, K
Anderson, I
Barnett, BA
Blumenfeld, B
Bolognesi, S
Fehling, D
Gritsan, AV
Maksimovic, P
Martin, C
Nash, K
Osherson, M
Swartz, M
Xiao, M
Baringer, P
Bean, A
Benelli, G
Gray, J
Kenny, RP
Murray, M
Noonan, D
Sanders, S
Sekaric, J
Stringer, R
Tinti, G
Wang, Q
Wood, JS
Barfuss, AF
Chakaberia, I
Ivanov, A
Khalil, S
Makouski, M
Maravin, Y
Saini, LK
Shrestha, S
Svintradze, I
Taylor, R
Toda, S
Gronberg, J
Lange, D
Rebassoo, F
Wright, D
Baden, A
Calvert, B
Eno, SC
Gomez, JA
Hadley, NJ
Kellogg, RG
Kolberg, T
Lu, Y
Marionneau, M
Mignerey, AC
Pedro, K
Skuja, A
Temple, J
Tonjes, MB
Tonwar, SC
Apyan, A
Barbieri, R
Bauer, G
Busza, W
Cali, IA
Chan, M
Di Matteo, L
Dutta, V
Ceballos, GG
Goncharov, M
Gulhan, D
Klute, M
Lai, YS
Lee, YJ
Levin, A
Luckey, PD
Ma, T
Paus, C
Ralph, D
Roland, C
Roland, G
Stephans, GSF
Stockli, F
Sumorok, K
Velicanu, D
Veverka, J
Wyslouch, B
Yang, M
Yoon, AS
Zanetti, M
Zhukova, V
Dahmes, B
De Benedetti, A
Gude, A
Kao, SC
Klapoetke, K
Kubota, Y
Mans, J
Pastika, N
Rusack, R
Singovsky, A
Tambe, N
Turkewitz, J
Acosta, JG
Cremaldi, LM
Kroeger, R
Oliveros, S
Perera, L
Sanders, DA
Summers, D
Avdeeva, E
Bloom, K
Bose, S
Claes, DR
Dominguez, A
Fangmeier, C
Suarez, RG
Keller, J
Knowlton, D
Kravchenko, I
Lazo-Flores, J
Malik, S
Meier, F
Monroy, J
Snow, GR
Dolen, J
George, J
Godshalk, A
Iashvili, I
Jain, S
Kaisen, J
Kharchilava, A
Kumar, A
Rappoccio, S
Alverson, G
Barberis, E
Baumgartel, D
Chasco, M
Haley, J
Massironi, A
Nash, D
Orimoto, T
Trocino, D
Wood, D
Zhang, J
Anastassov, A
Hahn, KA
Kubik, A
Lusito, L
Mucia, N
Odell, N
Pollack, B
Pozdnyakov, A
Schmitt, M
Sevova, S
Stoynev, S
Sung, K
Trovato, M
Velasco, M
Won, S
Berry, D
Brinkerhoff, A
Chan, KM
Drozdetskiy, A
Hildreth, M
Jessop, C
Karmgard, DJ
Kellams, N
Kolb, J
Lannon, K
Luo, W
Lynch, S
Marinelli, N
Morse, DM
Pearson, T
Planer, M
Ruchti, R
Slaunwhite, J
Valls, N
Wayne, M
Wolf, M
Woodard, A
Antonelli, L
Bylsma, B
Durkin, LS
Flowers, S
Hill, C
Hughes, R
Kotov, K
Ling, TY
Puigh, D
Rodenburg, M
Smith, G
Vuosalo, C
Winer, BL
Wolfe, H
Wulsin, HW
Berry, E
Elmer, P
Halyo, V
Hebda, P
Hegeman, J
Hunt, A
Jindal, P
Koay, SA
Lujan, P
Marlow, D
Medvedeva, T
Mooney, M
Olsen, J
Piroue, P
Quan, X
Raval, A
Saka, H
Stickland, D
Tully, C
Werner, JS
Zenz, SC
Zuranski, A
Brownson, E
Lopez, A
Mendez, H
Vargas, JER
Alagoz, E
Arndt, K
Benedetti, D
Bolla, G
Bortoletto, D
Bubna, M
Cervantes, M
De Mattia, M
Everett, A
Hu, Z
Jha, MK
Jones, M
Jung, K
Kress, M
Leonardo, N
Pegna, DL
Maroussov, V
Merkel, P
Miller, DH
Neumeister, N
Radburn-Smith, BC
Shipsey, I
Silvers, D
Svyatkovskiy, A
Wang, F
Xie, W
Xu, L
Yoo, HD
Zablocki, J
Zheng, Y
Parashar, N
Stupak, J
Adair, A
Akgun, B
Ecklund, KM
Geurts, FJM
Li, W
Michlin, B
Padley, BP
Redjimi, R
Roberts, J
Zabel, J
Betchart, B
Bodek, A
Covarelli, R
De Barbaro, P
Demina, R
Eshaq, Y
Ferbel, T
Garcia-Bellido, A
Goldenzweig, P
Han, J
Harel, A
Miner, DC
Petrillo, G
Vishnevskiy, D
Zielinski, M
Bhatti, A
Ciesielski, R
Demortier, L
Goulianos, K
Lungu, G
Malik, S
Mesropian, C
Arora, S
Barker, A
Bartz, E
Chou, JP
Contreras-Campana, C
Contreras-Campana, E
Duggan, D
Ferencek, D
Gershtein, Y
Gray, R
Halkiadakis, E
Hidas, D
Lath, A
Panwalkar, S
Park, M
Patel, R
Rekovic, V
Robles, J
Salur, S
Schnetzer, S
Seitz, C
Somalwar, S
Stone, R
Thomas, S
Thomassen, P
Walker, M
Rose, K
Spanier, S
Yang, ZC
York, A
Bouhali, O
Eusebi, R
Flanagan, W
Gilmore, J
Kamon, T
Khotilovich, V
Krutelyov, V
Montalvo, R
Osipenkov, I
Pakhotin, Y
Perloff, A
Roe, J
Safonov, A
Sakuma, T
Suarez, I
Tatarinov, A
Toback, D
Akchurin, N
Cowden, C
Damgov, J
Dragoiu, C
Dudero, PR
Faulkner, J
Kovitanggoon, K
Kunori, S
Lee, SW
Libeiro, T
Volobouev, I
Appelt, E
Delannoy, AG
Greene, S
Gurrola, A
Johns, W
Maguire, C
Mao, Y
Melo, A
Sharma, M
Sheldon, P
Snook, B
Tuo, S
Velkovska, J
Arenton, MW
Boutle, S
Cox, B
Francis, B
Goodell, J
Hirosky, R
Ledovskoy, A
Lin, C
Neu, C
Wood, J
Gollapinni, S
Harr, R
Karchin, PE
Don, CKK
Lamichhane, P
Belknap, DA
Borrello, L
Carlsmith, D
Cepeda, M
Dasu, S
Duric, S
Friis, E
Grothe, M
Hall-Wilton, R
Herndon, M
Herve, A
Klabbers, P
Klukas, J
Lanaro, A
Levine, A
Loveless, R
Mohapatra, A
Ojalvo, I
Palmonari, F
Perry, T
Pierro, GA
Polese, G
Ross, I
Sakharov, A
Sarangi, T
Savin, A
Smith, WH
Woods, N
AF Chatrchyan, S.
Khachatryan, V.
Sirunyan, A. M.
Tumasyan, A.
Adam, W.
Bergauer, T.
Dragicevic, M.
Eroe, J.
Fabjan, C.
Friedl, M.
Fruehwirth, R.
Ghete, V. M.
Hartl, C.
Hoermann, N.
Hrubec, J.
Jeitler, M.
Kiesenhofer, W.
Knuenz, V.
Krammer, M.
Kraetschmer, I.
Liko, D.
Mikulec, I.
Rabady, D.
Rahbaran, B.
Rohringer, H.
Schoefbeck, R.
Strauss, J.
Taurok, A.
Treberer-Treberspurg, W.
Waltenberger, W.
Wulz, C. -E.
Mossolov, V.
Shumeiko, N.
Gonzalez, J. Suarez
Alderweireldt, S.
Bansal, M.
Bansal, S.
Beaumont, W.
Cornelis, T.
De Wolf, E. A.
Janssen, X.
Knutsson, A.
Luyckx, S.
Mucibello, L.
Ochesanu, S.
Roland, B.
Rougny, R.
Van Haevermaet, H.
Van Mechelen, P.
Van Remortel, N.
Van Spilbeeck, A.
Blekman, F.
Blyweert, S.
D'Hondt, J.
Devroede, O.
Heracleous, N.
Kalogeropoulos, A.
Keaveney, J.
Kim, T. J.
Lowette, S.
Maes, M.
Olbrechts, A.
Python, Q.
Strom, D.
Tavernier, S.
Van Doninck, W.
Van Lancker, L.
Van Mulders, P.
Van Onsem, G. P.
Villella, I.
Caillol, C.
Clerbaux, B.
De Lentdecker, G.
Favart, L.
Gay, A. P. R.
Leonard, A.
Marage, P. E.
Mohammadi, A.
Pernie, L.
Reis, T.
Seva, T.
Thomas, L.
Velde, C. Vander
Vanlaer, P.
Wang, J.
Adler, V.
Beernaert, K.
Benucci, L.
Cimmino, A.
Costantini, S.
Crucy, S.
Dildick, S.
Garcia, G.
Klein, B.
Lellouch, J.
Mccartin, J.
Rios, A. A. Ocampo
Ryckbosch, D.
Diblen, S. Salva
Sigamani, M.
Strobbe, N.
Thyssen, F.
Tytgat, M.
Walsh, S.
Yazgan, E.
Zaganidis, N.
Basegmez, S.
Beluffi, C.
Bruno, G.
Castello, R.
Caudron, A.
Ceard, L.
Da Silveira, G. G.
De Callatay, B.
Delaere, C.
du Pree, T.
Favart, D.
Forthomme, L.
Giammanco, A.
Hollar, J.
Jez, P.
Komm, M.
Lemaitre, V.
Liao, J.
Michotte, D.
Militaru, O.
Nuttens, C.
Pagano, D.
Pin, A.
Piotrzkowski, K.
Popov, A.
Quertenmont, L.
Selvaggi, M.
Marono, M. Vidal
Garcia, J. M. Vizan
Beliy, N.
Caebergs, T.
Daubie, E.
Hammad, G. H.
Alves, G. A.
Martins, M. Correa, Jr.
Martins, T. Dos Reis
Pol, M. E.
Souza, M. H. G.
Alda, W. L., Jr.
Carvalho, W.
Chinellato, J.
Custodio, A.
Da Costa, E. M.
Damiao, D. De Jesus
Martins, C. De Oliveira
De Souza, S. Fonseca
Malbouisson, H.
Malek, M.
Figueiredo, D. Matos
Mundim, L.
Nogima, H.
Da Silva, W. L. Prado
Santaolalla, J.
Santoro, A.
Sznajder, A.
Manganote, E. J. Tonelli
Pereira, A. Vilela
Bernardes, C. A.
Dias, F. A.
Fernandez Perez Tomei, T. R.
Gregores, E. M.
Mercadante, P. G.
Novaes, S. F.
Padula, Sandra S.
Genchev, V.
Iaydjiev, P.
Marinov, A.
Piperov, S.
Rodozov, M.
Sultanov, G.
Vutova, M.
Dimitrov, A.
Glushkov, I.
Hadjiiska, R.
Kozhuharov, V.
Litov, L.
Pavlov, B.
Petkov, P.
Bian, J. G.
Chen, G. M.
Chen, H. S.
Chen, M.
Du, R.
Jiang, C. H.
Liang, D.
Liang, S.
Meng, X.
Plestina, R.
Tao, J.
Wang, X.
Wang, Z.
Asawatangtrakuldee, C.
Ban, Y.
Guo, Y.
Li, Q.
Li, W.
Liu, S.
Mao, Y.
Qian, S. J.
Wang, D.
Zhang, L.
Zou, W.
Avila, C.
Carrillo Montoya, C. A.
Chaparro Sierra, L. F.
Florez, C.
Gomez, J. P.
Gomez Moreno, B.
Sanabria, J. C.
Godinovic, N.
Lelas, D.
Polic, D.
Puljak, I.
Antunovic, Z.
Kovac, M.
Brigljevic, V.
Kadija, K.
Luetic, J.
Mekterovic, D.
Morovic, S.
Sudic, L.
Attikis, A.
Mavromanolakis, G.
Mousa, J.
Nicolaou, C.
Ptochos, F.
Razis, P. A.
Finger, M.
Finger, M., Jr.
Abdelalim, A. A.
Assran, Y.
Elgammal, S.
Kamel, A. Ellithi
Mahmoud, M. A.
Radi, A.
Kadastik, M.
Muentel, M.
Murumaa, M.
Raidal, M.
Rebane, L.
Tiko, A.
Eerola, P.
Fedi, G.
Voutilainen, M.
Harkonen, J.
Karimaki, V.
Kinnunen, R.
Kortelainen, M. J.
Lampen, T.
Lassila-Perini, K.
Lehti, S.
Linden, T.
Luukka, P.
Maenpaa, T.
Peltola, T.
Tuominen, E.
Tuominiemi, J.
Tuovinen, E.
Wendland, L.
Tuuva, T.
Besancon, M.
Couderc, F.
Dejardin, M.
Denegri, D.
Fabbro, B.
Faure, J. L.
Ferri, F.
Ganjour, S.
Givernaud, A.
Gras, P.
de Monchenault, G. Hamel
Jarry, P.
Locci, E.
Malcles, J.
Nayak, A.
Rander, J.
Rosowsky, A.
Titov, M.
Baffioni, S.
Beaudette, F.
Busson, P.
Charlot, C.
Daci, N.
Dahms, T.
Dalchenko, M.
Dobrzynski, L.
Florent, A.
de Cassagnac, R. Granier
Mine, P.
Mironov, C.
Naranjo, I. N.
Nguyen, M.
Ochando, C.
Paganini, P.
Sabes, D.
Salerno, R.
Sauvan, J. B.
Sirois, Y.
Veelken, C.
Yilmaz, Y.
Zabi, A.
Agram, J. -L.
Andrea, J.
Bloch, D.
Bonnin, C.
Brom, J. -M.
Chabert, E. C.
Charles, L.
Collard, C.
Conte, E.
Drouhin, F.
Fontaine, J. -C.
Gele, D.
Goerlach, U.
Goetzmann, C.
Gross, L.
Juillot, P.
Le Bihan, A. -C.
Van Hove, P.
Gadrat, S.
Baulieu, G.
Beauceron, S.
Beaupere, N.
Boudoul, G.
Brochet, S.
Chasserat, J.
Chierici, R.
Contardo, D.
Depasse, P.
El Mamouni, H.
Fan, J.
Fay, J.
Gascon, S.
Gouzevitch, M.
Ille, B.
Kurca, T.
Lethuillier, M.
Lumb, N.
Mathez, H.
Mirabito, L.
Perries, S.
Alvarez, J. D. Ruiz
Sgandurra, L.
Sordini, V.
Donckt, M. Vander
Verdier, P.
Viret, S.
Xiao, H.
Zoccarato, Y.
Tsamalaidze, Z.
Autermann, C.
Beranek, S.
Bontenackels, M.
Calpas, B.
Edelhoff, M.
Esser, H.
Feld, L.
Hindrichs, O.
Karpinski, W.
Klein, K.
Kukulies, C.
Lipinski, M.
Ostapchuk, A.
Perieanu, A.
Pierschel, G.
Preuten, M.
Raupach, F.
Sammet, J.
Schael, S.
Schulte, J. F.
Schwering, G.
Sprenger, D.
Verlage, T.
Weber, H.
Wittmer, B.
Wlochal, M.
Zhukov, V.
Ata, M.
Caudron, J.
Dietz-Laursonn, E.
Duchardt, D.
Erdmann, M.
Fischer, R.
Gueth, A.
Hebbeker, T.
Heidemann, C.
Hoepfner, K.
Klingebiel, D.
Knutzen, S.
Kreuzer, P.
Merschmeyer, M.
Meyer, A.
Olschewski, M.
Padeken, K.
Papacz, P.
Reithler, H.
Schmitz, S. A.
Sonnenschein, L.
Teyssier, D.
Thueer, S.
Weber, M.
Cherepanov, V.
Erdogan, Y.
Fluegge, G.
Geenen, H.
Geisler, M.
Ahmad, W. Haj
Hoehle, F.
Kargoll, B.
Kress, T.
Kuessel, Y.
Lingemann, J.
Nowack, A.
Nugent, I. M.
Perchalla, L.
Pistone, C.
Pooth, O.
Stahl, A.
Asin, I.
Bartosik, N.
Behr, J.
Behrenhoff, W.
Behrens, U.
Bell, A. J.
Bergholz, M.
Bethani, A.
Borras, K.
Burgmeier, A.
Cakir, A.
Calligaris, L.
Campbell, A.
Choudhury, S.
Costanza, F.
Pardos, C. Diez
Dolinska, G.
Dooling, S.
Dorland, T.
Eckerlin, G.
Eckstein, D.
Eichhorn, T.
Flucke, G.
Geiser, A.
Grebenyuk, A.
Gunnellini, P.
Habib, S.
Hampe, J.
Hansen, K.
Hauk, J.
Hellwig, G.
Hempel, M.
Horton, D.
Jung, H.
Kasemann, M.
Katsas, P.
Kieseler, J.
Kleinwort, C.
Korol, I.
Kraemer, M.
Kruecker, D.
Lange, W.
Leonard, J.
Lipka, K.
Lohmann, W.
Lutz, B.
Mankel, R.
Marfin, I.
Maser, H.
Melzer-Pellmann, I. -A.
Meyer, A. B.
Mnich, J.
Muhl, C.
Mussgiller, A.
Naumann-Emme, S.
Novgorodova, O.
Nowak, F.
Ntomari, E.
Perrey, H.
Petrukhin, A.
Pitzl, D.
Placakyte, R.
Raspereza, A.
Cipriano, P. M. Ribeiro
Riedl, C.
Ron, E.
Sahin, M. Oe.
Salfeld-Nebgen, J.
Saxena, P.
Schmidt, R.
Schoerner-Sadenius, T.
Schroeer, M.
Spannagel, S.
Stein, M.
Trevino, A. D. R. Vargas
Walsh, R.
Wissing, C.
Zuber, A.
Martin, M. Aldaya
Berger, L. O.
Biskop, H.
Blobel, V.
Buhmann, P.
Vignali, M. Centis
Enderle, H.
Erfle, J.
Frensche, B.
Garutti, E.
Goebel, K.
Orner, M. G.
Gosselink, M.
Haller, J.
Hoffmann, M.
Oing, R. S. H.
Junkes, A.
Kirschenmann, H.
Klanner, R.
Kogler, R.
Lange, J.
Lapsien, T.
Lenz, T.
Maettig, S.
Marchesini, I.
Matysek, M.
Ott, J.
Peiffer, T.
Pietsch, N.
Poehlsen, T.
Rathjens, D.
Sander, C.
Schettler, H.
Schleper, P.
Schlieckau, E.
Schmidt, A.
Seidel, M.
Sibille, J.
Sola, V.
Stadie, H.
Steinbrueck, G.
Troendle, D.
Usai, E.
Vanelderen, L.
Barth, C.
Barvich, T.
Baus, C.
Berger, J.
Boegelspacher, F.
Boeser, C.
Butz, E.
Chwalek, T.
Colombo, F.
De Boer, W.
Descroix, A.
Dierlamm, A.
Eber, R.
Feindt, M.
Guthoff, M.
Hartmann, F.
Hauth, T.
Heindl, S. M.
Held, H.
Hoffmann, K. H.
Husemann, U.
Katkov, I.
Kornmayer, A.
Kuznetsova, E.
Pardo, P. Lobelle
Martschei, D.
Mozer, M. U.
Mueller, Th.
Niegel, M.
Nuernberg, A.
Oberst, O.
Printz, M.
Quast, G.
Rabbertz, K.
Ratnikov, F.
Roecker, S.
Schilling, F. -P.
Schott, G.
Simonis, H. J.
Steck, P.
Stober, F. M.
Ulrich, R.
Wagner-Kuhr, J.
Wayand, S.
Weiler, T.
Wolf, R.
Zeise, M.
Anagnostou, G.
Daskalakis, G.
Geralis, T.
Kesisoglou, S.
Kyriakis, A.
Loukas, D.
Markou, A.
Markou, C.
Psallidas, A.
Topsis-Giotis, I.
Gouskos, L.
Panagiotou, A.
Saoulidou, N.
Stiliaris, E.
Aslanoglou, X.
Evangelou, I.
Flouris, G.
Foudas, C.
Jones, J.
Kokkas, P.
Manthos, N.
Papadopoulos, I.
Paradas, E.
Bencze, G.
Hajdu, C.
Hidas, P.
Horvath, D.
Sikler, F.
Veszpremi, V.
Vesztergombi, G.
Zsigmond, A. J.
Beni, N.
Czellar, S.
Molnar, J.
Palinkas, J.
Szillasi, Z.
Karancsi, J.
Raics, P.
Trocsanyi, Z. L.
Ujvari, B.
Swain, S. K.
Beri, S. B.
Bhatnagar, V.
Dhingra, N.
Gupta, R.
Kaur, M.
Mehta, M. Z.
Mittal, M.
Nishu, N.
Sharma, A.
Singh, J. B.
Kumar, Ashok
Kumar, Arun
Ahuja, S.
Bhardwaj, A.
Choudhary, B. C.
Kumar, A.
Malhotra, S.
Naimuddin, M.
Ranjan, K.
Sharma, V.
Shivpuri, R. K.
Banerjee, S.
Bhattacharya, S.
Chatterjee, K.
Dutta, S.
Gomber, B.
Jain, Sa.
Jain, Sh.
Khurana, R.
Modak, A.
Mukherjee, S.
Roy, D.
Sarkar, S.
Sharan, M.
Singh, A. P.
Abdulsalam, A.
Dutta, D.
Kailas, S.
Kumar, V.
Mohanty, A. K.
Pant, L. M.
Shukla, P.
Topkar, A.
Aziz, T.
Banerjee, S.
Chatterjee, R. M.
Dugad, S.
Ganguly, S.
Ghosh, S.
Guchait, M.
Gurtu, A.
Kole, G.
Kumar, S.
Maity, M.
Majumder, G.
Mazumdar, K.
Mohanty, G. B.
Parida, B.
Sudhakar, K.
Wickramage, N.
Arfaei, H.
Bakhshiansohi, H.
Behnamian, H.
Etesami, S. M.
Fahim, A.
Jafari, A.
Khakzad, M.
Najafabadi, M. Mohammadi
Naseri, M.
Mehdiabadi, S. Paktinat
Safarzadeh, B.
Zeinali, M.
Grunewald, M.
Abbrescia, M.
Barbone, L.
Calabria, C.
Cariola, P.
Chhibra, S. S.
Colaleo, A.
Creanza, D.
De Filippis, N.
De Palma, M.
De Robertis, G.
Fiore, L.
Franco, M.
Iaselli, G.
Loddo, F.
Maggi, G.
Maggi, M.
Marangelli, B.
My, S.
Nuzzo, S.
Pacifico, N.
Pompili, A.
Pugliese, G.
Radogna, R.
Sala, G.
Selvaggi, G.
Silvestris, L.
Singh, G.
Venditti, R.
Verwilligen, P.
Zito, G.
Abbiendi, G.
Benvenuti, A. C.
Bonacorsi, D.
Braibant-Giacomelli, S.
Brigliadori, L.
Campanini, R.
Capiluppi, P.
Castro, A.
Cavallo, F. R.
Codispoti, G.
Cuffiani, M.
Dallavalle, G. M.
Fabbri, F.
Fanfani, A.
Fasanella, D.
Giacomelli, P.
Grandi, C.
Guiducci, L.
Marcellini, S.
Masetti, G.
Meneghelli, M.
Montanari, A.
Navarria, F. L.
Odorici, F.
Perrotta, A.
Primavera, F.
Rossi, A. M.
Rovelli, T.
Siroli, G. P.
Tosi, N.
Travaglini, R.
Albergo, S.
Cappello, G.
Chiorboli, M.
Costa, S.
Giordano, F.
Potenza, R.
Saizu, M. A.
Scinta, M.
Tricomi, A.
Tuve, C.
Barbagli, G.
Brianzi, M.
Ciaranfi, R.
Ciulli, V.
Civinini, C.
D'Alessandro, R.
Focardi, E.
Gallo, E.
Gonzi, S.
Gori, V.
Lenzi, P.
Meschini, M.
Paoletti, S.
Scarlini, E.
Sguazzoni, G.
Tropiano, A.
Benussi, L.
Bianco, S.
Fabbri, F.
Piccolo, D.
Fabbricatore, P.
Ferretti, R.
Ferro, F.
Lo Vetere, M.
Musenich, R.
Robutti, E.
Tosi, S.
D'Angelo, P.
Dinardo, M. E.
Fiorendi, S.
Gennai, S.
Gerosa, R.
Ghezzi, A.
Govoni, P.
Lucchini, M. T.
Malvezzi, S.
Manzoni, R. A.
Martelli, A.
Marzocchi, B.
Menasce, D.
Moroni, L.
Paganoni, M.
Pedrini, D.
Ragazzi, S.
Redaelli, N.
de Fatis, T. Tabarelli
Buontempo, S.
Cavallo, N.
Di Guida, S.
Fabozzi, F.
Iorio, A. O. M.
Lista, L.
Meola, S.
Merola, M.
Paolucci, P.
Azzi, P.
Bacchetta, N.
Bellato, M.
Bisello, D.
Branca, A.
Carlin, R.
Checchia, P.
Dall'Osso, M.
Dorigo, T.
Galanti, M.
Gasparini, F.
Gasparini, U.
Giubilato, P.
Gozzelino, A.
Kanishchev, K.
Lacaprara, S.
Lazzizzera, I.
Margoni, M.
Meneguzzo, A. T.
Passaseo, M.
Pazzini, J.
Pegoraro, M.
Pozzobon, N.
Ronchese, P.
Simonetto, F.
Torassa, E.
Tosi, M.
Zotto, P.
Zucchetta, A.
Zumerle, G.
Gabusi, M.
Gaioni, L.
Manazza, A.
Manghisoni, M.
Ratti, L.
Ratti, S. P.
Re, V.
Riccardi, C.
Salvini, P.
Traversi, G.
Vitulo, P.
Zucca, S.
Biasini, M.
Bilei, G. M.
Bissi, L.
Checcucci, B.
Ciangottini, D.
Conti, E.
Fano, L.
Lariccia, P.
Magalotti, D.
Mantovani, G.
Menichelli, M.
Passeri, D.
Placidi, P.
Romeo, F.
Saha, A.
Salvatore, M.
Santocchia, A.
Servoli, L.
Spiezia, A.
Androsov, K.
Arezzini, S.
Azzurri, P.
Bagliesi, G.
Basti, A.
Bernardini, J.
Boccali, T.
Bosi, F.
Broccolo, G.
Calzolari, F.
Castaldi, R.
Ciampa, A.
Ciocci, M. A.
Dell'Orso, R.
Donato, S.
Fiori, F.
Foa, L.
Giassi, A.
Grippo, M. T.
Kraan, A.
Ligabue, F.
Lomtadze, T.
Magazzu, G.
Martini, L.
Mazzoni, E.
Messineo, A.
Moggi, A.
Moon, C. S.
Palla, F.
Raffaelli, F.
Rizzi, A.
Savoy-Navarro, A.
Serban, A. T.
Spagnolo, P.
Squillacioti, P.
Tenchini, R.
Tonelli, G.
Venturi, A.
Verdini, P. G.
Vernieri, C.
Barone, L.
Cavallari, F.
Del Re, D.
Diemoz, M.
Grassi, M.
Jorda, C.
Longo, E.
Margaroli, F.
Meridiani, P.
Micheli, F.
Nourbakhsh, S.
Organtini, G.
Paramatti, R.
Rahatlou, S.
Rovelli, C.
Soffi, L.
Traczyk, P.
Amapane, N.
Arcidiacono, R.
Argiro, S.
Arneodo, M.
Bellan, R.
Biino, C.
Cartiglia, N.
Casasso, S.
Costa, M.
Degano, A.
Demaria, N.
Mariotti, C.
Maselli, S.
Migliore, E.
Monaco, V.
Monteil, E.
Musich, M.
Obertino, M. M.
Ortona, G.
Pacher, L.
Pastrone, N.
Pelliccioni, M.
Potenza, A.
Rivetti, A.
Romero, A.
Ruspa, M.
Sacchi, R.
Solano, A.
Staiano, A.
Tamponi, U.
Trapani, P. P.
Belforte, S.
Candelise, V.
Casarsa, M.
Cossutti, F.
Della Ricca, G.
Gobbo, B.
La Licata, C.
Marone, M.
Montanino, D.
Penzo, A.
Schizzi, A.
Umer, T.
Zanetti, A.
Chang, S.
Kim, T. Y.
Nam, S. K.
Kim, D. H.
Kim, G. N.
Kim, J. E.
Kim, M. S.
Kong, D. J.
Lee, S.
Oh, Y. D.
Park, H.
Son, D. C.
Kim, J. Y.
Kim, Zero J.
Song, S.
Choi, S.
Gyun, D.
Hong, B.
Jo, M.
Kim, H.
Kim, Y.
Lee, K. S.
Park, S. K.
Roh, Y.
Choi, M.
Kim, J. H.
Park, C.
Park, I. C.
Park, S.
Ryu, G.
Choi, Y.
Choi, Y. K.
Goh, J.
Kwon, E.
Lee, B.
Lee, J.
Seo, H.
Yu, I.
Juodagalvis, A.
Komaragiri, J. R.
Castilla-Valdez, H.
De la Cruz-Burelo, E.
Heredia-de La Cruz, I.
Lopez-Fernandez, R.
Martinez-Ortega, J.
Sanchez-Hernandez, A.
Villasenor-Cendejas, L. M.
Moreno, S. Carrillo
Valencia, F. Vazquez
Ibarguen, H. A. Salazar
Linares, E. Casimiro
Pineda, A. Morelos
Krofcheck, D.
Butler, P. H.
Doesburg, R.
Reucroft, S.
Ahmad, A.
Ahmad, M.
Asghar, M. I.
Butt, J.
Hassan, Q.
Hoorani, H. R.
Khan, W. A.
Khurshid, T.
Qazi, S.
Shah, M. A.
Shoaib, M.
Bialkowska, H.
Bluj, M.
Boimska, B.
Frueboes, T.
Gorski, M.
Kazana, M.
Nawrocki, K.
Romanowska-Rybinska, K.
Szleper, M.
Wrochna, G.
Zalewski, P.
Brona, G.
Bunkowski, K.
Cwiok, M.
Dominik, W.
Doroba, K.
Kalinowski, A.
Konecki, M.
Krolikowski, J.
Misiura, M.
Wolszczak, W.
Bargassa, P.
Beirao Da Cruz E Silva, C.
Faccioli, P.
Ferreira Parracho, P. G.
Gallinaro, M.
Nguyen, F.
Rodrigues Antunes, J.
Seixas, J.
Varela, J.
Vischia, P.
Bunin, P.
Gavrilenko, M.
Golutvin, I.
Gorbunov, I.
Kamenev, A.
Karjavin, V.
Konoplyanikov, V.
Kozlov, G.
Lanev, A.
Malakhov, A.
Matveev, V.
Moisenz, P.
Palichik, V.
Perelygin, V.
Shmatov, S.
Skatchkov, N.
Smirnov, V.
Zarubin, A.
Golovtsov, V.
Ivanov, Y.
Kim, V.
Levchenko, P.
Murzin, V.
Oreshkin, V.
Smirnov, I.
Sulimov, V.
Uvarov, L.
Vavilov, S.
Vorobyev, A.
Vorobyev, An.
Andreev, Yu.
Dermenev, A.
Gninenko, S.
Golubev, N.
Kirsanov, M.
Krasnikov, N.
Pashenkov, A.
Tlisov, D.
Toropin, A.
Epshteyn, V.
Gavrilov, V.
Lychkovskaya, N.
Popov, V.
Safronov, G.
Semenov, S.
Spiridonov, A.
Stolin, V.
Vlasov, E.
Zhokin, A.
Andreev, V.
Azarkin, M.
Dremin, I.
Kirakosyan, M.
Leonidov, A.
Mesyats, G.
Rusakov, S. V.
Vinogradov, A.
Belyaev, A.
Boos, E.
Dubinin, M.
Dudko, L.
Ershov, A.
Gribushin, A.
Kaminskiy, A.
Klyukhin, V.
Kodolova, O.
Lokhtin, I.
Obraztsov, S.
Petrushanko, S.
Savrin, V.
Azhgirey, I.
Bayshev, I.
Bitioukov, S.
Kachanov, V.
Kalinin, A.
Konstantinov, D.
Krychkine, V.
Petrov, V.
Ryutin, R.
Sobol, A.
Tourtchanovitch, L.
Troshin, S.
Tyurin, N.
Uzunian, A.
Volkov, A.
Adzic, P.
Dordevic, M.
Ekmedzic, M.
Milosevic, J.
Aguilar-Benitez, M.
Alcaraz Maestre, J.
Battilana, C.
Calvo, E.
Cerrada, M.
Chamizo Llatas, M.
Colino, N.
De la Cruz, B.
Delgado Peris, A.
Dominguez Vazquez, D.
Fernandez Bedoya, C.
Fernandez Ramos, J. P.
Ferrando, A.
Flix, J.
Fouz, M. C.
Garcia-Abia, P.
Gonzalez Lopez, O.
Goy Lopez, S.
Hernandez, J. M.
Josa, M. I.
Merino, G.
Navarro De Martino, E.
Perez-Calero Yzquierdo, A.
Puerta Pelayo, J.
Quintario Olmeda, A.
Redondo, I.
Romero, L.
Soares, M. S.
Willmott, C.
Albajar, C.
De Troconiz, J. F.
Missiroli, M.
Brun, H.
Cuevas, J.
Fernandez Menendez, J.
Folgueras, S.
Gonzalez Caballero, I.
Lloret Iglesias, L.
Brochero Cifuentes, J. A.
Cabrillo, I. J.
Calderon, A.
Duarte Campderros, J.
Fernandez, M.
Gomez, G.
Gonzalez Sanchez, J.
Graziano, A.
Jaramillo Echeverria, R. W.
Lopez Virto, A.
Marco, J.
Marco, R.
Martinez Rivero, C.
Matorras, F.
Moya, D.
Munoz Sanchez, F. J.
Piedra Gomez, J.
Rodrigo, T.
Rodriguez-Marrero, A. Y.
Ruiz-Jimeno, A.
Scodellaro, L.
Vila, I.
Vilar Cortabitarte, R.
Abbaneo, D.
Ahmed, I.
Albert, E.
Auffray, E.
Auzinger, G.
Bachtis, M.
Baillon, P.
Ball, A. H.
Barney, D.
Benaglia, A.
Bendavid, J.
Benhabib, L.
Benitez, J. F.
Bernet, C.
Berruti, G. M.
Bianchi, G.
Blanchot, G.
Bloch, P.
Bocci, A.
Bondu, A. Bonato O.
Botta, C.
Breuker, H.
Camporesi, T.
Ceresa, D.
Cerminara, G.
Christiansen, J.
Christiansen, T.
Niemelae, A. O. Chavez
Perez, J. A. Coarasa
Colafranceschi, S.
D'Alfonso, M.
D'Auria, A.
d'Enterria, D.
Dabrowski, A.
Daguin, J.
David, A.
De Guio, F.
De Roeck, A.
De Visscher, S.
Detraz, S.
Deyrail, D.
Dobson, M.
Dupont-Sagorin, N.
Elliott-Peisert, A.
Eugster, J.
Faccio, F.
Felici, D.
Frank, N.
Franzoni, G.
Funk, W.
Giffels, M.
Gigi, D.
Gill, K.
Giordano, D.
Girone, M.
Giunta, M.
Glege, F.
Garrido, R. Gomez-Reino
Gowdy, S.
Guida, R.
Hammer, J.
Hansen, M.
Harris, P.
Honma, A.
Innocente, V.
Janot, P.
Kaplon, J.
Karavakis, E.
Katopodis, T.
Kottelat, L. J.
Kousouris, K.
Kovacs, M. I.
Krajczar, K.
Krzempek, L.
Lecoq, P.
Lourenco, C.
Magini, N.
Malgeri, L.
Mannelli, M.
Marchioro, A.
Marconi, S.
Noite, J. Marques Pinho
Masetti, L.
Meijers, F.
Mersi, S.
Meschi, E.
Michelis, S.
Moll, M.
Moortgat, F.
Mulders, M.
Musella, P.
Onnela, A.
Orsini, L.
Pakulski, T.
Cortezon, E. Palencia
Pavis, S.
Perez, E.
Pernot, J. F.
Perrozzi, L.
Petagna, P.
Petrilli, A.
Petrucciani, G.
Pfeiffer, A.
Pierini, M.
Pimiae, M.
Piparo, D.
Plagge, M.
Postema, H.
Racz, A.
Reece, W.
Rolandi, G.
Rovere, M.
Rzonca, M.
Sakulin, H.
Santanastasio, F.
Schaefer, C.
Schwick, C.
Sekmen, S.
Sharma, A.
Siegrist, P.
Silva, P.
Simon, M.
Sphicas, P.
Spiga, D.
Steggemann, J.
Stieger, B.
Stoye, M.
Szwarc, T.
Tropea, P.
Troska, J.
Tsirou, A.
Vasey, F.
Veres, G. I.
Verlaat, B.
Vichoudis, P.
Vlimant, J. R.
Woehri, H. K.
Zeuner, W. D.
Zwalinski, L.
Bertl, W.
Deiters, K.
Erdmann, W.
Horisberger, R.
Ingram, Q.
Kaestli, H. C.
Koenig, S.
Kotlinski, D.
Langenegger, U.
Meier, B.
Renker, D.
Rohe, T.
Streuli, S.
Bachmair, F.
Baeni, L.
Becker, R.
Bianchini, L.
Bortignon, P.
Buchmann, M. A.
Casal, B.
Chanon, N.
Di Calafiori, D. R. Da Silva
Deisher, A.
Dissertori, G.
Dittmar, M.
Djambazov, L.
Donega, M.
Duenser, M.
Eller, P.
Grab, C.
Hits, D.
Horisberger, U.
Hoss, J.
Lustermann, W.
Mangano
Marini, A. C.
Del Arbol, P. Martinez Ruiz
Masciovecchio, M.
Meister, D.
Mohr, N.
Naegeli, C.
Nef, P.
Nessi-Tedaldi, F.
Pandolfi, F.
Pape, L.
Pauss, F.
Peruzzi, M.
Quittnat, M.
Ronga, F. J.
Roeser, U.
Rossini, M.
Starodumov, A.
Takahashi, M.
Tauscher, L.
Theofilatos, K.
Treille, D.
von Gunten, H. P.
Wallny, R.
Weber, H. A.
Amsler, C.
Boesiger, K.
Canelli, M. F.
Chiochia, V.
De Cosa, A.
Favaro, C.
Hinzmann, A.
Hreus, T.
Rikova, M. Ivova
Kilminster, B.
Lange, C.
Maier, R.
Mejias, B. Millan
Ngadiuba, J.
Robmann, P.
Snoek, H.
Taroni, S.
Verzetti, M.
Yang, Y.
Cardaci, M.
Chen, K. H.
Ferro, C.
Kuo, C. M.
Li, S. W.
Lin, W.
Lu, Y. J.
Volpe, R.
Yu, S. S.
Bartalini, P.
Chang, P.
Chang, Y. H.
Chang, Y. W.
Chao, Y.
Chen, K. F.
Chen, P. H.
Dietz, C.
Grundler, U.
Hou, W. -S.
Hsiung, Y.
Kao, K. Y.
Lei, Y. J.
Liu, Y. F.
Lu, R. -S.
Majumder, D.
Petrakou, E.
Shi, X.
Shiu, J. G.
Tzeng, Y. M.
Wang, M.
Wilken, R.
Asavapibhop, B.
Suwonjandee, N.
Adiguzel, A.
Bakirci, M. N.
Cerci, S.
Dozen, C.
Dumanoglu, I.
Eskut, E.
Girgis, S.
Gokbulut, G.
Gurpinar, E.
Hos, I.
Kangal, E. E.
Topaksu, A. Kayis
Onengut, G.
Ozdemir, K.
Ozturk, S.
Polatoz, A.
Sogut, K.
Cerci, D. Sunar
Tali, B.
Topakli, H.
Vergili, M.
Akin, I. V.
Aliev, T.
Bilin, B.
Bilmis, S.
Deniz, M.
Gamsizkan, H.
Guler, A. M.
Karapinar, G.
Ocalan, K.
Ozpineci, A.
Serin, M.
Sever, R.
Surat, U. E.
Yalvac, M.
Zeyrek, M.
Gulmez, E.
Isildak, B.
Kaya, M.
Kaya, O.
Ozkorucuklu, S.
Bahtiyar, H.
Barlas, E.
Cankocak, K.
Gunaydin, Y. O.
Vardarli, F. I.
Yucel, M.
Levchuk, L.
Sorokin, P.
Brooke, J. J.
Clement, E.
Cussans, D.
Flacher, H.
Frazier, R.
Goldstein, J.
Grimes, M.
Heath, G. P.
Heath, H. F.
Jacob, J.
Kreczko, L.
Lucas, C.
Meng, Z.
Newbold, D. M.
Paramesvaran, S.
Poll, A.
Senkin, S.
Smith, V. J.
Williams, T.
Bell, K. W.
Belyaev, A.
Brew, C.
Brown, R. M.
Cockerill, D. J. A.
Coughlan, J. A.
Harder, K.
Harper, S.
Ilic, J.
Olaiya, E.
Petyt, D.
Shepherd-Themistocleous, C. H.
Thea, A.
Tomalin, I. R.
Womersley, W. J.
Worm, S. D.
Baber, M.
Bainbridge, R.
Buchmuller, O.
Burton, D.
Colling, D.
Cripps, N.
Cutajar, M.
Dauncey, P.
Davies, G.
Della Negra, M.
Ferguson, W.
Fulcher, J.
Futyan, D.
Gilbert, A.
Bryer, A. Guneratne
Hall, G.
Hatherell, Z.
Hays, J.
Iles, G.
Jarvis, M.
Karapostoli, G.
Kenzie, M.
Lane, R.
Lucas, R.
Lyons, L.
Magnan, A. -M.
Marrouche, J.
Mathias, B.
Nandi, R.
Nash, J.
Nikitenko, A.
Pela, J.
Pesaresi, M.
Petridis, K.
Pioppi, M.
Raymond, D. M.
Rogerson, S.
Rose, A.
Seez, C.
Sharp, P.
Sparrow, A.
Tapper, A.
Acosta, M. Vazquez
Virdee, T.
Wakefield, S.
Wardle, N.
Cole, J. E.
Hobson, P. R.
Khan, A.
Kyberd, P.
Leggat, D.
Leslie, D.
Martin, W.
Reid, I. D.
Symonds, P.
Teodorescu, L.
Turner, M.
Dittmann, J.
Hatakeyama, K.
Kasmi, A.
Liu, H.
Scarborough, T.
Charaf, O.
Cooper, S. I.
Henderson, C.
Rumerio, P.
Avetisyan, A.
Bose, T.
Fantasia, C.
Heister, A.
Lawson, P.
Lazic, D.
Richardson, C.
Rohlf, J.
Sperka, D.
John, J. St.
Sulak, L.
Alimena, J.
Bhattacharya, S.
Christopher, G.
Cutts, D.
Demiragli, Z.
Ferapontov, A.
Garabedian, A.
Heintz, U.
Jabeen, S.
Kukartsev, G.
Laird, E.
Landsberg, G.
Luk, M.
Narain, M.
Segala, M.
Sinthuprasith, T.
Speer, T.
Swanson, J.
Breedon, R.
Breto, G.
Sanchez, M. Calderon De La Barca
Chauhan, S.
Chertok, M.
Conway, J.
Conway, R.
Cox, P. T.
Erbacher, R.
Flores, C.
Gardner, M.
Ko, W.
Kopecky, A.
Lander, R.
Miceli, T.
Mulhearn, M.
Pellett, D.
Pilot, J.
Ricci-Tam, F.
Rutherford, B.
Searle, M.
Shalhout, S.
Smith, J.
Squires, M.
Thomson, J.
Tripathi, M.
Wilbur, S.
Yohay, R.
Andreev, V.
Cline, D.
Cousins, R.
Erhan, S.
Everaerts, P.
Farrell, C.
Felcini, M.
Hauser, J.
Ignatenko, M.
Jarvis, C.
Rakness, G.
Schlein, P.
Takasugi, E.
Valuev, V.
Weber, M.
Babb, J.
Burt, K.
Clare, R.
Ellison, J.
Gary, J. W.
Hanson, G.
Heilman, J.
Jandir, P.
Lacroix, F.
Liu, H.
Long, O. R.
Luthra, A.
Malberti, M.
Nguyen, H.
Negrete, M. Olmedo
Shrinivas, A.
Sturdy, J.
Sumowidagdo, S.
Wimpenny, S.
Andrews, W.
Branson, J. G.
Cerati, G. B.
Cittolin, S.
D'Agnolo, R. T.
Evans, D.
Holzner, A.
Kelley, R.
Kovalskyi, D.
Lebourgeois, M.
Letts, J.
Macneill, I.
Padhi, S.
Palmer, C.
Pieri, M.
Sani, M.
Sharma, V.
Simon, S.
Sudano, E.
Tadel, M.
Tu, Y.
Vartak, A.
Wasserbaech, S.
Wurthwein, F.
Yagil, A.
Yoo, J.
Barge, D.
Bradmiller-Feld, J.
Campagnari, C.
Danielson, T.
Dishaw, A.
Flowers, K.
Sevilla, M. Franco
Geffert, P.
George, C.
Golf, F.
Incandela, J.
Justus, C.
Kyre, S.
Villalba, R. Magana
Mccoll, N.
Mullin, S. D.
Pavlunin, V.
Richman, J.
Rossin, R.
Stuart, D.
To, W.
West, C.
White, D.
Apresyan, A.
Bornheim, A.
Bunn, J.
Chen, Y.
Di Marco, E.
Duarte, J.
Kcira, D.
Mott, A.
Newman, H. B.
Pena, C.
Rogan, C.
Spiropulu, M.
Timciuc, V.
Wilkinson, R.
Xie, S.
Zhu, R. Y.
Azzolini, V.
Calamba, A.
Carroll, R.
Ferguson, T.
Iiyama, Y.
Jang, D. W.
Paulini, M.
Russ, J.
Vogel, H.
Vorobiev, I.
Cumalat, J. P.
Drell, B. R.
Ford, W. T.
Gaz, A.
Lopez, E. Luiggi
Nauenberg, U.
Smith, J. G.
Stenson, K.
Ulmer, K. A.
Wagner, S. R.
Alexander, J.
Chatterjee, A.
Eggert, N.
Gibbons, L. K.
Hopkins, W.
Khukhunaishvili, A.
Kreis, B.
Mirman, N.
Kaufman, G. Nicolas
Patterson, J. R.
Ryd, A.
Salvati, E.
Sun, W.
Teo, W. D.
Thom, J.
Thompson, J.
Tucker, J.
Weng, Y.
Winstrom, L.
Wittich, P.
Winn, D.
Abdullin, S.
Albrow, M.
Anderson, J.
Apollinari, G.
Bauerdick, L. A. T.
Beretvas, A.
Berryhill, J.
Bhat, P. C.
Burkett, K.
Butler, J. N.
Chetluru, V.
Cheung, H. W. K.
Chlebana, F.
Chramowicz, J.
Cihangir, S.
Cooper, W.
Deptuch, G.
Derylo, G.
Elvira, V. D.
Fisk, I.
Freeman, J.
Gao, Y.
Gingu, V. C.
Gottschalk, E.
Gray, L.
Green, D.
Grunendahl, S.
Gutsche, O.
Hare, D.
Harris, R. M.
Hirschauer, J.
Hoff, J. R.
Hooberman, B.
Howell, J.
Hrycyk, M.
Jindariani, S.
Johnson, M.
Joshi, U.
Kaadze, K.
Klima, B.
Kwan, S.
Lei, C. M.
Linacre, J.
Lincoln, D.
Lipton, R.
Liu, T.
Los, S.
Lykken, J.
Maeshima, K.
Marraffino, J. M.
Outschoorn, V. I. Martinez
Maruyama, S.
Mason, D.
Matulik, M. S.
McBride, P.
Mishra, K.
Mrenna, S.
Musienko, Y.
Nahn, S.
Newman-Holmes, C.
O'Dell, V.
Prokofyev, O.
Prosser, A.
Ratnikova, N.
Rivera, R.
Sexton-Kennedy, E.
Sharma, S.
Spalding, W. J.
Spiegel, L.
Taylor, L.
Tkaczyk, S.
Tran, N. V.
Trimpl, M.
Uplegger, L.
Vaandering, E. W.
Vidal, R.
Voirin, E.
Whitbeck, A.
Whitmore, J.
Wu, W.
Yang, F.
Yun, J. C.
Acosta, D.
Avery, P.
Bourilkov, D.
Cheng, T.
Das, S.
De Gruttola, M.
Di Giovanni, G. P.
Dobur, D.
Field, R. D.
Fisher, M.
Fu, Y.
Furic, I. K.
Hugon, J.
Kim, B.
Konigsberg, J.
Korytov, A.
Kropivnitskaya, A.
Kypreos, T.
Low, J. F.
Matchev, K.
Milenovic, P.
Mitselmakher, G.
Muniz, L.
Rinkevicius, A.
Shchutska, L.
Skhirtladze, N.
Snowball, M.
Yelton, J.
Zakaria, M.
Gaultney, V.
Hewamanage, S.
Linn, S.
Markowitz, P.
Martinez, G.
Rodriguez, J. L.
Adams, T.
Askew, A.
Bochenek, J.
Chen, J.
Diamond, B.
Haas, J.
Hagopian, S.
Hagopian, V.
Johnson, K. F.
Prosper, H.
Veeraraghavan, V.
Weinberg, M.
Baarmand, M. M.
Dorney, B.
Hohlmann, M.
Kalakhety, H.
Yumiceva, F.
Adams, M. R.
Apanasevich, L.
Bazterra, V. E.
Betts, R. R.
Bucinskaite, I.
Cavanaugh, R.
Ev-Dokimov, O.
Gauthier, L.
Gerber, C. E.
Hofman, D. J.
Kapustka, B.
Khalatyan, S.
Kurt, P.
Moon, D. H.
O'Brien, C.
Gonzalez, I. D. Sandoval
Silkworth, C.
Turner, P.
Varelas, N.
Akgun, U.
Albayrak, E. A.
Bilki, B.
Clarida, W.
Dilsiz, K.
Duru, F.
Haytmyradov, M.
Merlo, J. -P.
Mermerkaya, H.
Mestvirishvili, A.
Moeller, A.
Nachtman, J.
Ogul, H.
Onel, Y.
Ozok, F.
Rahmat, R.
Sen, S.
Tan, P.
Tiras, E.
Wetzel, J.
Yetkin, T.
Yi, K.
Anderson, I.
Barnett, B. A.
Blumenfeld, B.
Bolognesi, S.
Fehling, D.
Gritsan, A. V.
Maksimovic, P.
Martin, C.
Nash, K.
Osherson, M.
Swartz, M.
Xiao, M.
Baringer, P.
Bean, A.
Benelli, G.
Gray, J.
Kenny, R. P., III
Murray, M.
Noonan, D.
Sanders, S.
Sekaric, J.
Stringer, R.
Tinti, G.
Wang, Q.
Wood, J. S.
Barfuss, A. F.
Chakaberia, I.
Ivanov, A.
Khalil, S.
Makouski, M.
Maravin, Y.
Saini, L. K.
Shrestha, S.
Svintradze, I.
Taylor, R.
Toda, S.
Gronberg, J.
Lange, D.
Rebassoo, F.
Wright, D.
Baden, A.
Calvert, B.
Eno, S. C.
Gomez, J. A.
Hadley, N. J.
Kellogg, R. G.
Kolberg, T.
Lu, Y.
Marionneau, M.
Mignerey, A. C.
Pedro, K.
Skuja, A.
Temple, J.
Tonjes, M. B.
Tonwar, S. C.
Apyan, A.
Barbieri, R.
Bauer, G.
Busza, W.
Cali, I. A.
Chan, M.
Di Matteo, L.
Dutta, V.
Ceballos, G. Gomez
Goncharov, M.
Gulhan, D.
Klute, M.
Lai, Y. S.
Lee, Y. -J.
Levin, A.
Luckey, P. D.
Ma, T.
Paus, C.
Ralph, D.
Roland, C.
Roland, G.
Stephans, G. S. F.
Stockli, F.
Sumorok, K.
Velicanu, D.
Veverka, J.
Wyslouch, B.
Yang, M.
Yoon, A. S.
Zanetti, M.
Zhukova, V.
Dahmes, B.
De Benedetti, A.
Gude, A.
Kao, S. C.
Klapoetke, K.
Kubota, Y.
Mans, J.
Pastika, N.
Rusack, R.
Singovsky, A.
Tambe, N.
Turkewitz, J.
Acosta, J. G.
Cremaldi, L. M.
Kroeger, R.
Oliveros, S.
Perera, L.
Sanders, D. A.
Summers, D.
Avdeeva, E.
Bloom, K.
Bose, S.
Claes, D. R.
Dominguez, A.
Fangmeier, C.
Suarez, R. Gonzalez
Keller, J.
Knowlton, D.
Kravchenko, I.
Lazo-Flores, J.
Malik, S.
Meier, F.
Monroy, J.
Snow, G. R.
Dolen, J.
George, J.
Godshalk, A.
Iashvili, I.
Jain, S.
Kaisen, J.
Kharchilava, A.
Kumar, A.
Rappoccio, S.
Alverson, G.
Barberis, E.
Baumgartel, D.
Chasco, M.
Haley, J.
Massironi, A.
Nash, D.
Orimoto, T.
Trocino, D.
Wood, D.
Zhang, J.
Anastassov, A.
Hahn, K. A.
Kubik, A.
Lusito, L.
Mucia, N.
Odell, N.
Pollack, B.
Pozdnyakov, A.
Schmitt, M.
Sevova, S.
Stoynev, S.
Sung, K.
Trovato, M.
Velasco, M.
Won, S.
Berry, D.
Brinkerhoff, A.
Chan, K. M.
Drozdetskiy, A.
Hildreth, M.
Jessop, C.
Karmgard, D. J.
Kellams, N.
Kolb, J.
Lannon, K.
Luo, W.
Lynch, S.
Marinelli, N.
Morse, D. M.
Pearson, T.
Planer, M.
Ruchti, R.
Slaunwhite, J.
Valls, N.
Wayne, M.
Wolf, M.
Woodard, A.
Antonelli, L.
Bylsma, B.
Durkin, L. S.
Flowers, S.
Hill, C.
Hughes, R.
Kotov, K.
Ling, T. Y.
Puigh, D.
Rodenburg, M.
Smith, G.
Vuosalo, C.
Winer, B. L.
Wolfe, H.
Wulsin, H. W.
Berry, E.
Elmer, P.
Halyo, V.
Hebda, P.
Hegeman, J.
Hunt, A.
Jindal, P.
Koay, S. A.
Lujan, P.
Marlow, D.
Medvedeva, T.
Mooney, M.
Olsen, J.
Piroue, P.
Quan, X.
Raval, A.
Saka, H.
Stickland, D.
Tully, C.
Werner, J. S.
Zenz, S. C.
Zuranski, A.
Brownson, E.
Lopez, A.
Mendez, H.
Vargas, J. E. Ramirez
Alagoz, E.
Arndt, K.
Benedetti, D.
Bolla, G.
Bortoletto, D.
Bubna, M.
Cervantes, M.
De Mattia, M.
Everett, A.
Hu, Z.
Jha, M. K.
Jones, M.
Jung, K.
Kress, M.
Leonardo, N.
Pegna, D. Lopes
Maroussov, V.
Merkel, P.
Miller, D. H.
Neumeister, N.
Radburn-Smith, B. C.
Shipsey, I.
Silvers, D.
Svyatkovskiy, A.
Wang, F.
Xie, W.
Xu, L.
Yoo, H. D.
Zablocki, J.
Zheng, Y.
Parashar, N.
Stupak, J.
Adair, A.
Akgun, B.
Ecklund, K. M.
Geurts, F. J. M.
Li, W.
Michlin, B.
Padley, B. P.
Redjimi, R.
Roberts, J.
Zabel, J.
Betchart, B.
Bodek, A.
Covarelli, R.
De Barbaro, P.
Demina, R.
Eshaq, Y.
Ferbel, T.
Garcia-Bellido, A.
Goldenzweig, P.
Han, J.
Harel, A.
Miner, D. C.
Petrillo, G.
Vishnevskiy, D.
Zielinski, M.
Bhatti, A.
Ciesielski, R.
Demortier, L.
Goulianos, K.
Lungu, G.
Malik, S.
Mesropian, C.
Arora, S.
Barker, A.
Bartz, E.
Chou, J. P.
Contreras-Campana, C.
Contreras-Campana, E.
Duggan, D.
Ferencek, D.
Gershtein, Y.
Gray, R.
Halkiadakis, E.
Hidas, D.
Lath, A.
Panwalkar, S.
Park, M.
Patel, R.
Rekovic, V.
Robles, J.
Salur, S.
Schnetzer, S.
Seitz, C.
Somalwar, S.
Stone, R.
Thomas, S.
Thomassen, P.
Walker, M.
Rose, K.
Spanier, S.
Yang, Z. C.
York, A.
Bouhali, O.
Eusebi, R.
Flanagan, W.
Gilmore, J.
Kamon, T.
Khotilovich, V.
Krutelyov, V.
Montalvo, R.
Osipenkov, I.
Pakhotin, Y.
Perloff, A.
Roe, J.
Safonov, A.
Sakuma, T.
Suarez, I.
Tatarinov, A.
Toback, D.
Akchurin, N.
Cowden, C.
Damgov, J.
Dragoiu, C.
Dudero, P. R.
Faulkner, J.
Kovitanggoon, K.
Kunori, S.
Lee, S. W.
Libeiro, T.
Volobouev, I.
Appelt, E.
Delannoy, A. G.
Greene, S.
Gurrola, A.
Johns, W.
Maguire, C.
Mao, Y.
Melo, A.
Sharma, M.
Sheldon, P.
Snook, B.
Tuo, S.
Velkovska, J.
Arenton, M. W.
Boutle, S.
Cox, B.
Francis, B.
Goodell, J.
Hirosky, R.
Ledovskoy, A.
Lin, C.
Neu, C.
Wood, J.
Gollapinni, S.
Harr, R.
Karchin, P. E.
Don, C. Kottachchi Kankanamge
Lamichhane, P.
Belknap, D. A.
Borrello, L.
Carlsmith, D.
Cepeda, M.
Dasu, S.
Duric, S.
Friis, E.
Grothe, M.
Hall-Wilton, R.
Herndon, M.
Herve, A.
Klabbers, P.
Klukas, J.
Lanaro, A.
Levine, A.
Loveless, R.
Mohapatra, A.
Ojalvo, I.
Palmonari, F.
Perry, T.
Pierro, G. A.
Polese, G.
Ross, I.
Sakharov, A.
Sarangi, T.
Savin, A.
Smith, W. H.
Woods, N.
CA CMS Collaboration
TI Description and performance of track and primary-vertex reconstruction
with the CMS tracker
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article
DE Pattern recognition, cluster finding, calibration and fitting methods;
Large detector-systems performance; Performance of High Energy Physics
Detectors
ID SILICON PIXEL SENSORS; PATTERN-RECOGNITION; SIMULATION; DETECTOR;
DESIGN; EVENT; CHIP
AB A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For t (t) over bar events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of p(T) > 0.9GeV is 94% for pseudorapidities of vertical bar eta vertical bar < 0.9 and 85% for 0.9 < vertical bar eta vertical bar < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p(T) = 100GeV emitted at vertical bar eta vertical bar < 1.4, the resolutions are approximately 2.8% in p(T), and respectively, 10 m m and 30 mu m in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10-12 mu m in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung.
C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria.
[Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus.
[Alderweireldt, S.; Bansal, M.; Bansal, S.; Beaumont, W.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium.
[Blekman, F.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Heracleous, N.; Kalogeropoulos, A.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Lancker, L.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium.
[Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium.
[Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium.
[Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; De Callatay, B.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Michotte, D.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan] Catholic Univ Louvain, Louvain, Belgium.
[Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium.
[Alves, G. A.; Martins, M. Correa, Jr.; Martins, T. Dos Reis; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil.
[Alda, W. L., Jr.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; Damiao, D. De Jesus; Martins, C. De Oliveira; De Souza, S. Fonseca; Malbouisson, H.; Malek, M.; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Da Silva, W. L. Prado; Santaolalla, J.; Santoro, A.; Sznajder, A.; Manganote, E. J. Tonelli; Pereira, A. Vilela] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil.
[Dias, F. A.; Fernandez Perez Tomei, T. R.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil.
[Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil.
[Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria.
[Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria.
[Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China.
[Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China.
[Avila, C.; Carrillo Montoya, C. A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia.
[Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia.
[Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia.
[Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Sudic, L.] Inst Rudjer Boskov, Zagreb, Croatia.
[Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus.
[Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic.
[Abdelalim, A. A.; Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt.
[Kadastik, M.; Muentel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia.
[Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland.
[Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland.
[Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland.
[Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France.
[Plestina, R.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; de Cassagnac, R. Granier; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Bernet, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Beluffi, C.; Agram, J. -L.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J. -M.; Chabert, E. C.; Charles, L.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Gross, L.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Strasbourg, Univ Haute Alsace Mulhouse, CNRS, IN2P3,Inst Pluridisciplinaire Hubert Curien, Strasbourg, France.
[Gadrat, S.] CNRS, IN2P3, Ctr Calcul, Inst Natl Phys Nucl & Phys Particules, Villeurbanne, France.
[Baulieu, G.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Lumb, N.; Mathez, H.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Xiao, H.; Zoccarato, Y.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France.
[Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia.
[Autermann, C.; Beranek, S.; Bontenackels, M.; Calpas, B.; Edelhoff, M.; Esser, H.; Feld, L.; Hindrichs, O.; Karpinski, W.; Klein, K.; Kukulies, C.; Lipinski, M.; Ostapchuk, A.; Perieanu, A.; Pierschel, G.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Schwering, G.; Sprenger, D.; Verlage, T.; Weber, H.; Wittmer, B.; Wlochal, M.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany.
[Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany.
[Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pistone, C.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany.
[Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Geiser, A.; Grebenyuk, A.; Gunnellini, P.; Habib, S.; Hampe, J.; Hansen, K.; Hauk, J.; Hellwig, G.; Hempel, M.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Kraemer, M.; Kruecker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Maser, H.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Muhl, C.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Ntomari, E.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Sahin, M. Oe.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schroeer, M.; Spannagel, S.; Stein, M.; Trevino, A. D. R. Vargas; Walsh, R.; Wissing, C.; Zuber, A.] Deutsch Elekt Synchrotron, Hamburg, Germany.
[Martin, M. Aldaya; Berger, L. O.; Biskop, H.; Blobel, V.; Buhmann, P.; Vignali, M. Centis; Enderle, H.; Erfle, J.; Frensche, B.; Garutti, E.; Goebel, K.; Orner, M. G.; Gosselink, M.; Haller, J.; Hoffmann, M.; Oing, R. S. H.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Maettig, S.; Marchesini, I.; Matysek, M.; Ott, J.; Peiffer, T.; Pietsch, N.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Troendle, D.; Usai, E.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany.
[Barth, C.; Barvich, T.; Baus, C.; Berger, J.; Boegelspacher, F.; Boeser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Eber, R.; Feindt, M.; Guthoff, M.; Hartmann, F.; Hauth, T.; Heindl, S. M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Pardo, P. Lobelle; Martschei, D.; Mozer, M. U.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Printz, M.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Roecker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Steck, P.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany.
[Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys, Aghia Paraskevi, Greece.
[Gouskos, L.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.] Univ Athens, Athens, Greece.
[Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Jones, J.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece.
[Attikis, A.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary.
[Horvath, D.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary.
[Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary.
[Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India.
[Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India.
[Attikis, A.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India.
[Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Singh, A. P.] Saha Inst Nucl Phys, Kolkata, India.
[Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India.
[Aziz, T.; Banerjee, S.; Chatterjee, R. M.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India.
[Arfaei, H.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran.
[Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland.
[Abbrescia, M.; Barbone, L.; Calabria, C.; Cariola, P.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; De Robertis, G.; Fiore, L.; Franco, M.; Iaselli, G.; Loddo, F.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Radogna, R.; Sala, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy.
[Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy.
[Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy.
[Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy.
[Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Saizu, M. A.; Scinta, M.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy.
[Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Saizu, M. A.; Scinta, M.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy.
[Giordano, F.] CSFNSM, Catania, Italy.
[Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Scarlini, E.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy.
[Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Scarlini, E.; Tropiano, A.] Univ Florence, Florence, Italy.
[Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Fabbricatore, P.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Musenich, R.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Ferretti, R.; Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy.
[D'Angelo, P.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy.
[D'Angelo, P.; Dinardo, M. E.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy.
[Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy.
[Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy.
[Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy.
[Di Guida, S.; Meola, S.] Univ G Marconi, Rome, Italy.
[Azzi, P.; Bacchetta, N.; Bellato, M.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Kaminskiy, A.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy.
[Bisello, D.; Branca, A.; Carlin, R.; Dall'Osso, M.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Kaminskiy, A.] Univ Padua, Padua, Italy.
[Kanishchev, K.; Lazzizzera, I.; Kaminskiy, A.] Univ Trento, Trento, Italy.
[Gabusi, M.; Gaioni, L.; Manazza, A.; Manghisoni, M.; Ratti, L.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Traversi, G.; Vitulo, P.; Zucca, S.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy.
[Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy.
[Biasini, M.; Bilei, G. M.; Bissi, L.; Checcucci, B.; Ciangottini, D.; Conti, E.; Fano, L.; Lariccia, P.; Magalotti, D.; Mantovani, G.; Menichelli, M.; Passeri, D.; Placidi, P.; Romeo, F.; Saha, A.; Salvatore, M.; Santocchia, A.; Servoli, L.; Spiezia, A.; Pioppi, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy.
[Biasini, M.; Ciangottini, D.; Conti, E.; Fano, L.; Lariccia, P.; Mantovani, G.; Passeri, D.; Placidi, P.; Romeo, F.; Salvatore, M.; Santocchia, A.; Spiezia, A.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy.
[Androsov, K.; Arezzini, S.; Azzurri, P.; Bagliesi, G.; Basti, A.; Bernardini, J.; Boccali, T.; Bosi, F.; Broccolo, G.; Calzolari, F.; Castaldi, R.; Ciampa, A.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Magazzu, G.; Martini, L.; Mazzoni, E.; Messineo, A.; Moggi, A.; Moon, C. S.; Palla, F.; Raffaelli, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, I-56010 Pisa, Italy.
[Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy.
[Broccolo, G.; Calzolari, F.; Donato, S.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy.
[Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Soffi, L.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, I-00161 Rome, Italy.
[Del Re, D.; Grassi, M.; Longo, E.; Margaroli, F.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.; Traczyk, P.] Univ Rome, Rome, Italy.
[Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Rivetti, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Trapani, P. P.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.
[Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Degano, A.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Ortona, G.; Pacher, L.; Romero, A.; Sacchi, R.; Solano, A.; Trapani, P. P.] Univ Turin, Turin, Italy.
[Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy.
[Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Umer, T.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy.
[Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.; Zanetti, A.] Univ Trieste, Trieste, Italy.
[Kim, D. H.; Kim, G. N.; Kim, J. E.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea.
[Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea.
[Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea.
[Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea.
[Choi, Y.; Choi, Y. K.; Goh, J.; Kwon, E.; Lee, B.; Lee, J.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea.
[Juodagalvis, A.] Vilnius Univ, Vilnius, Lithuania.
[Komaragiri, J. R.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia.
[Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico.
[Moreno, S. Carrillo; Valencia, F. Vazquez] Univ Iberoamer, Mexico City, DF, Mexico.
[Ibarguen, H. A. Salazar] Benemerita Univ Autonoma Puebla, Puebla, Mexico.
[Linares, E. Casimiro; Pineda, A. Morelos] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico.
[Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand.
[Butler, P. H.; Doesburg, R.; Reucroft, S.] Univ Canterbury, Christchurch 1, New Zealand.
[Ahmad, A.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan.
[Bialkowska, H.; Bluj, M.; Boimska, B.; Gorski, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Wrochna, G.] Natl Ctr Nucl Res, Otwock, Poland.
[Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland.
[Bargassa, P.; Beirao Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao Fis Expt Particulas, Lisbon, Portugal.
[Tsamalaidze, Z.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia.
[Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, Gatchina, Russia.
[Matveev, V.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia.
[Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow, Russia.
[Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
[Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia.
[Adzic, P.; Dordevic, M.; Ekmedzic, M.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade, Serbia.
[Adzic, P.; Dordevic, M.; Ekmedzic, M.; Milosevic, J.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia.
[Aguilar-Benitez, M.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Willmott, C.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain.
[Albajar, C.; De Troconiz, J. F.; Missiroli, M.] Univ Autonoma Madrid, Madrid, Spain.
[Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.] Univ Oviedo, Oviedo, Spain.
[Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jaramillo Echeverria, R. W.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Moya, D.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain.
[Rabady, D.; Genchev, V.; Iaydjiev, P.; Guthoff, M.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Evangelou, I.; Foudas, C.; Bencze, G.; Mohanty, A. K.; Giordano, F.; Chamizo Llatas, M.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Berruti, G. M.; Bianchi, G.; Blanchot, G.; Bloch, P.; Bocci, A.; Bondu, A. Bonato O.; Botta, C.; Breuker, H.; Camporesi, T.; Ceresa, D.; Cerminara, G.; Christiansen, J.; Christiansen, T.; Niemelae, A. O. Chavez; Perez, J. A. Coarasa; Colafranceschi, S.; D'Alfonso, M.; D'Auria, A.; d'Enterria, D.; Dabrowski, A.; Daguin, J.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Detraz, S.; Deyrail, D.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Faccio, F.; Felici, D.; Frank, N.; Franzoni, G.; Funk, W.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Honma, A.; Innocente, V.; Janot, P.; Kaplon, J.; Karavakis, E.; Katopodis, T.; Kottelat, L. J.; Kousouris, K.; Kovacs, M. I.; Krajczar, K.; Krzempek, L.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marchioro, A.; Marconi, S.; Noite, J. Marques Pinho; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Michelis, S.; Moll, M.; Moortgat, F.; Mulders, M.; Musella, P.; Onnela, A.; Orsini, L.; Pakulski, T.; Cortezon, E. Palencia; Pavis, S.; Perez, E.; Pernot, J. F.; Perrozzi, L.; Petagna, P.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Plagge, M.; Postema, H.; Racz, A.; Reece, W.; Rolandi, G.; Rovere, M.; Rzonca, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Szwarc, T.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Veres, G. I.; Verlaat, B.; Vichoudis, P.; Vlimant, J. R.; Woehri, H. K.; Zeuner, W. D.; Zwalinski, L.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland.
[Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, B.; Renker, D.; Rohe, T.; Streuli, S.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland.
[Bachmair, F.; Baeni, L.; Becker, R.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Di Calafiori, D. R. Da Silva; Deisher, A.; Dissertori, G.; Dittmar, M.; Djambazov, L.; Donega, M.; Duenser, M.; Eller, P.; Grab, C.; Hits, D.; Horisberger, U.; Hoss, J.; Lustermann, W.; Mangano; Marini, A. C.; Del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meister, D.; Mohr, N.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Ronga, F. J.; Roeser, U.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tauscher, L.; Theofilatos, K.; Treille, D.; von Gunten, H. P.; Wallny, R.; Weber, H. A.] ETH, Inst Particle Phys, Zurich, Switzerland.
[Amsler, C.; Boesiger, K.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Favaro, C.; Hinzmann, A.; Hreus, T.; Rikova, M. Ivova; Kilminster, B.; Lange, C.; Maier, R.; Mejias, B. Millan; Ngadiuba, J.; Robmann, P.; Snoek, H.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland.
[Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan.
[Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Wilken, R.] Natl Taiwan Univ, Taipei 10764, Taiwan.
[Asavapibhop, B.; Suwonjandee, N.] Chulalongkorn Univ, Bangkok, Thailand.
[Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey.
[Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey.
[Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.] Bogazici Univ, Istanbul, Turkey.
[Bahtiyar, H.; Barlas, E.; Cankocak, K.; Gunaydin, Y. O.; Vardarli, F. I.; Yucel, M.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey.
[Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine.
[Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England.
[Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Ilic, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.] Univ London Imperial Coll Sci Technol & Med, London, England.
[Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England.
[Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA.
[Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA.
[Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Richardson, C.; Rohlf, J.; Sperka, D.; John, J. St.; Sulak, L.] Boston Univ, Boston, MA 02215 USA.
[Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.] Brown Univ, Providence, RI 02912 USA.
[Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Gardner, M.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Thomson, J.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA.
[Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA.
[Babb, J.; Burt, K.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Lacroix, F.; Liu, H.; Luthra, A.; Nguyen, H.; Shrinivas, A.; Sturdy, J.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Kovalskyi, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wurthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, San Diego, CA 92103 USA.
[Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kyre, S.; Villalba, R. Magana; Mccoll, N.; Mullin, S. D.; Pavlunin, V.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; White, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Dias, F. A.; Dubinin, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA.
[Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA.
[Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA.
[Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA.
[Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Chramowicz, J.; Cihangir, S.; Cooper, W.; Deptuch, G.; Derylo, G.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gingu, V. C.; Gottschalk, E.; Gray, L.; Green, D.; Grunendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hoff, J. R.; Hooberman, B.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kwan, S.; Lei, C. M.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Los, S.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; Matulik, M. S.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Prosser, A.; Ratnikova, N.; Rivera, R.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Trimpl, M.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Voirin, E.; Whitbeck, A.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Acosta, D.; Avery, P.; Bourilkov, D.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA.
[Gaultney, V.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA.
[Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA.
[Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA.
[Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Ev-Dokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kapustka, B.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Gonzalez, I. D. Sandoval; Silkworth, C.; Turner, P.; Varelas, N.] UIC, Chicago, IL USA.
[Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA.
[Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.] Johns Hopkins Univ, Baltimore, MD USA.
[Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Gray, J.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Tinti, G.; Wang, Q.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA.
[Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.; Taylor, R.; Toda, S.] Kansas State Univ, Manhattan, KS 66506 USA.
[Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA.
[Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stockli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Yoon, A. S.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA.
[Dahmes, B.; De Benedetti, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA.
[Acosta, J. G.; Cremaldi, L. M.; Kroeger, R.; Oliveros, S.; Perera, L.; Sanders, D. A.; Summers, D.] Univ Mississippi, University, MS 38677 USA.
[Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Monroy, J.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA.
[Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA.
[Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Sevova, S.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA.
[Berry, D.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA.
[Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA.
[Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA.
[Shi, X.; Alagoz, E.; Arndt, K.; Benedetti, D.; Bolla, G.; Bortoletto, D.; Bubna, M.; Cervantes, M.; De Mattia, M.; Everett, A.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA.
[Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA.
[Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA.
[Betchart, B.; Bodek, A.; Covarelli, R.; De Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA.
[Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA.
[Arora, S.; Barker, A.; Bartz, E.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA.
[Rose, K.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA.
[Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA.
[Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA.
[Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA.
[Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA.
[Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.] Wayne State Univ, Detroit, MI USA.
[Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sakharov, A.; Sarangi, T.; Savin, A.; Smith, W. H.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA.
[Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria.
[Giammanco, A.] NICPB, Tallinn, Estonia.
[Popov, A.; Zhukov, V.; Katkov, I.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
[Chinellato, J.; Manganote, E. J. Tonelli] Univ Estadual Campinas, Campinas, Brazil.
[Abdelalim, A. A.] Zewail City Sci & Technol, Zewail, Egypt.
[Assran, Y.] Suez Univ, Suez, Egypt.
[Elgammal, S.] British Univ Egypt, Cairo, Egypt.
[Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt.
[Radi, A.] Ain Shams Univ, Cairo, Egypt.
[Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France.
[Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, D-03044 Cottbus, Germany.
[Vesztergombi, G.] Eotvos Lorand Univ, Budapest, Hungary.
[Gurtu, A.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia.
[Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India.
[Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka.
[Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran.
[Fahim, A.] Sharif Univ Technol, Tehran, Iran.
[Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran.
[Saizu, M. A.] Horia Hulubei Natl Inst Phys & Nucl Engn, IFIN HH, Bucharest, Romania.
[Grippo, M. T.; Squillacioti, P.] Univ Siena, I-53100 Siena, Italy.
[Moon, C. S.] CNRS, IN2P3, Paris, France.
[Heredia-de La Cruz, I.] Univ Michoacana, Morelia, Michoacan, Mexico.
[Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia.
[Adzic, P.] Univ Belgrade, Fac Sci, Belgrade, Serbia.
[Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy.
[Rolandi, G.] Scuola Normale, Pisa, Italy.
[Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy.
[Sphicas, P.] Univ Athens, Athens, Greece.
[Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland.
[Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey.
[Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey.
[Onengut, G.] Cag Univ, Mersin, Turkey.
[Sogut, K.] Mersin Univ, Mersin, Turkey.
[Karapinar, G.] Izmir Inst Technol, Izmir, Turkey.
[Isildak, B.] Ozyegin Univ, Istanbul, Turkey.
[Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey.
[Ozkorucuklu, S.] Istanbul Univ, Fac Sci, Istanbul, Turkey.
[Bahtiyar, H.; Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey.
[Gunaydin, Y. O.] Kahramanmaras Sutcu Imam Univ, Kahramanmaras, Turkey.
[Newbold, D. M.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England.
[Wasserbaech, S.] Utah Valley Univ, Orem, UT USA.
[Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey.
[Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey.
[Bouhali, O.] Texas A&M Univ Qatar, Doha, Qatar.
RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia.
RI Vogel, Helmut/N-8882-2014; Dudko, Lev/D-7127-2012; Servoli,
Leonello/E-6766-2012; KIM, Tae Jeong/P-7848-2015; Paganoni,
Marco/A-4235-2016; Azarkin, Maxim/N-2578-2015; de Jesus Damiao,
Dilson/G-6218-2012; Calvo Alamillo, Enrique/L-1203-2014; Flix,
Josep/G-5414-2012; Cerrada, Marcos/J-6934-2014; Perez-Calero Yzquierdo,
Antonio/F-2235-2013; Novaes, Sergio/D-3532-2012; Della Ricca,
Giuseppe/B-6826-2013; Bedoya, Cristina/K-8066-2014; My,
Salvatore/I-5160-2015; Lo Vetere, Maurizio/J-5049-2012; Ragazzi,
Stefano/D-2463-2009; Rovelli, Tiziano/K-4432-2015; Dremin,
Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov,
Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Cakir,
Altan/P-1024-2015; Matorras, Francisco/I-4983-2015; TUVE',
Cristina/P-3933-2015; Calderon, Alicia/K-3658-2014; VARDARLI, Fuat
Ilkehan/B-6360-2013; Ahmed, Ijaz/E-9144-2015; Lazzizzera,
Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro,
Raffaello/F-5897-2015; Wulz, Claudia-Elisabeth/H-5657-2011; Belyaev,
Alexander/F-6637-2015; Trocsanyi, Zoltan/A-5598-2009; Montanari,
Alessandro/J-2420-2012; Hernandez Calama, Jose Maria/H-9127-2015;
ciocci, maria agnese /I-2153-2015; Manganote, Edmilson/K-8251-2013;
Dahms, Torsten/A-8453-2015; Lokhtin, Igor/D-7004-2012; Ferguson,
Thomas/O-3444-2014; da Cruz e Silva, Cristovao/K-7229-2013; Bernardes,
Cesar Augusto/D-2408-2015; Raidal, Martti/F-4436-2012; Grandi,
Claudio/B-5654-2015; Chinellato, Jose Augusto/I-7972-2012; Leonidov,
Andrey/P-3197-2014; Benussi, Luigi/O-9684-2014; Petrushanko,
Sergey/D-6880-2012; Ligabue, Franco/F-3432-2014; Goh,
Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni,
Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014;
Paulini, Manfred/N-7794-2014; Inst. of Physics, Gleb
Wataghin/A-9780-2017; Popov, Andrey/E-1052-2012; Tomei,
Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Stahl,
Achim/E-8846-2011; Kirakosyan, Martin/N-2701-2015; Gulmez,
Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Sznajder,
Andre/L-1621-2016; Vilela Pereira, Antonio/L-4142-2016; Mundim,
Luiz/A-1291-2012; Konecki, Marcin/G-4164-2015; Xie, Si/O-6830-2016;
Leonardo, Nuno/M-6940-2016
OI Reis, Thomas/0000-0003-3703-6624; Luukka, Panja/0000-0003-2340-4641;
Jacob, Jeson/0000-0001-6895-5493; Vidal Marono,
Miguel/0000-0002-2590-5987; Vogel, Helmut/0000-0002-6109-3023;
Goldstein, Joel/0000-0003-1591-6014; Heath, Helen/0000-0001-6576-9740;
Grassi, Marco/0000-0003-2422-6736; ORTONA, Giacomo/0000-0001-8411-2971;
Ulrich, Ralf/0000-0002-2535-402X; Dudko, Lev/0000-0002-4462-3192;
Servoli, Leonello/0000-0003-1725-9185; KIM, Tae
Jeong/0000-0001-8336-2434; Paganoni, Marco/0000-0003-2461-275X; de Jesus
Damiao, Dilson/0000-0002-3769-1680; Calvo Alamillo,
Enrique/0000-0002-1100-2963; Flix, Josep/0000-0003-2688-8047; Cerrada,
Marcos/0000-0003-0112-1691; Perez-Calero Yzquierdo,
Antonio/0000-0003-3036-7965; Novaes, Sergio/0000-0003-0471-8549; Della
Ricca, Giuseppe/0000-0003-2831-6982; Bedoya,
Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Lo
Vetere, Maurizio/0000-0002-6520-4480; Ragazzi,
Stefano/0000-0001-8219-2074; Rovelli, Tiziano/0000-0002-9746-4842;
Matorras, Francisco/0000-0003-4295-5668; TUVE',
Cristina/0000-0003-0739-3153; Lazzizzera, Ignazio/0000-0001-5092-7531;
Sen, Sercan/0000-0001-7325-1087; D'Alessandro,
Raffaello/0000-0001-7997-0306; Wulz,
Claudia-Elisabeth/0000-0001-9226-5812; Belyaev,
Alexander/0000-0002-1733-4408; Trocsanyi, Zoltan/0000-0002-2129-1279;
Montanari, Alessandro/0000-0003-2748-6373; Hernandez Calama, Jose
Maria/0000-0001-6436-7547; ciocci, maria agnese /0000-0003-0002-5462;
Dahms, Torsten/0000-0003-4274-5476; Ferguson,
Thomas/0000-0001-5822-3731; Grandi, Claudio/0000-0001-5998-3070;
Chinellato, Jose Augusto/0000-0002-3240-6270; Benussi,
Luigi/0000-0002-2363-8889; Rizzi, Andrea/0000-0002-4543-2718; Gershtein,
Yuri/0000-0002-4871-5449; Androsov, Konstantin/0000-0003-2694-6542;
HSIUNG, YEE/0000-0003-4801-1238; Martinez Ruiz del Arbol,
Pablo/0000-0002-7737-5121; Toback, David/0000-0003-3457-4144; Tosi,
Nicolo/0000-0002-0474-0247; Marzocchi, Badder/0000-0001-6687-6214;
Costa, Salvatore/0000-0001-9919-0569; Margaroli,
Fabrizio/0000-0002-3869-0153; Gerosa, Raffaele/0000-0001-8359-3734;
Ligabue, Franco/0000-0002-1549-7107; Malik, Sudhir/0000-0002-6356-2655;
Staiano, Amedeo/0000-0003-1803-624X; Tonelli, Guido
Emilio/0000-0003-2606-9156; Abbiendi, Giovanni/0000-0003-4499-7562;
WANG, MIN-ZU/0000-0002-0979-8341; Goh, Junghwan/0000-0002-1129-2083;
Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301;
Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950;
Paulini, Manfred/0000-0002-6714-5787; Popov, Andrey/0000-0002-1207-0984;
Kasemann, Matthias/0000-0002-0429-2448; Barbieri,
Richard/0000-0002-7945-005X; Landsberg, Greg/0000-0002-4184-9380;
Blekman, Freya/0000-0002-7366-7098; Tomei, Thiago/0000-0002-1809-5226;
Dubinin, Mikhail/0000-0002-7766-7175; Stahl, Achim/0000-0002-8369-7506;
Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre
David/0000-0001-5854-7699; Sznajder, Andre/0000-0001-6998-1108; Vilela
Pereira, Antonio/0000-0003-3177-4626; Mundim, Luiz/0000-0001-9964-7805;
Konecki, Marcin/0000-0001-9482-4841; Xie, Si/0000-0003-2509-5731;
Leonardo, Nuno/0000-0002-9746-4594
FU Science and Technology Facilities Council [CMS]
NR 56
TC 8
Z9 8
U1 6
U2 64
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD OCT
PY 2014
VL 9
AR P10009
DI 10.1088/1748-0221/9/10/P10009
PG 82
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA AU8PK
UT WOS:000345858500052
ER
PT J
AU Drake, G
Garcia-Scivres, M
Paramonov, A
Stanek, R
Underwood, D
AF Drake, G.
Garcia-Scivres, M.
Paramonov, A.
Stanek, R.
Underwood, D.
TI Fiber-optic links based on silicon photonics for high-speed readout of
trackers
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article; Proceedings Paper
CT Workshop on Intelligent Trackers
CY MAY 14-16, 2014
CL Univ Penn, Philadelphia, PA
HO Univ Penn
DE Optical detector readout concepts; Data acquisition circuits;
Radiation-hard electronics; Data acquisition concepts
AB We propose to use silicon photonics technology to build radiation-hard fiber-optic links for high-bandwidth readout of tracking detectors. The CMOS integrated silicon photonics was developed by Luxtera and commercialized by Molex. The commercial off-the-shelf (COTS) fiber-optic links feature moderate radiation tolerance insufficient for trackers. A transceiver contains four RX and four TX channels operating at 10 Gbps each. The next generation will likely operate at 25 Gbps per channel. The approach uses a standard CMOS process and single-mode fibers, providing low power consumption and good scalability and reliability.
C1 [Drake, G.; Paramonov, A.; Stanek, R.; Underwood, D.] Argonne Natl Lab, Lemont, IL 60439 USA.
[Garcia-Scivres, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Paramonov, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA.
EM aparamonov@anl.gov
NR 12
TC 2
Z9 2
U1 1
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD OCT
PY 2014
VL 9
AR C10037
DI 10.1088/1748-0221/9/10/C10037
PG 8
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA AU8PK
UT WOS:000345858500037
ER
PT J
AU Garcia-Sciveres, M
Wang, X
AF Garcia-Sciveres, M.
Wang, X.
TI Data compression considerations for detectors with local intelligence
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article; Proceedings Paper
CT Workshop on Intelligent Trackers
CY MAY 14-16, 2014
CL Univ Penn, Philadelphia, PA
HO Univ Penn
DE Si microstrip and pad detectors; Data acquisition concepts; Data
reduction methods
AB This note summarizes the outcome of discussions about how data compression considerations apply to tracking detectors with local intelligence. The method for analyzing data compression efficiency is taken from a previous publication and applied to module characteristics from the WIT2014 workshop. We explore local intelligence and coupled layer structures in the language of data compression. In this context the original intelligent tracker concept of correlating hits to find matches of interest and discard others is just a form of lossy data compression. We now explore how these features (intelligence and coupled layers) can be exploited for lossless compression, which could enable full readout at higher trigger rates than previously envisioned, or even triggerless.
C1 [Wang, X.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Garcia-Sciveres, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Garcia-Sciveres, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM mgs@lbl.gov
NR 3
TC 1
Z9 1
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD OCT
PY 2014
VL 9
AR C10011
DI 10.1088/1748-0221/9/10/C10011
PG 8
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA AU8PK
UT WOS:000345858500011
ER
PT J
AU Lorca, D
Martin-Albo, J
Laing, A
Ferrario, P
Gomez-Cadenas, JJ
Alvarez, V
Borges, FIG
Camargo, M
Carcel, S
Cebrian, S
Cervera, A
Conde, CAN
Dafni, T
Diaz, J
Esteve, R
Fernandes, LMP
Ferreira, AL
Freitas, EDC
Gehman, VM
Goldschmidt, A
Gomez, H
Gonzalez-Diaz, D
Gutierrez, RM
Hauptman, J
Morata, JAH
Herrera, DC
Irastorza, IG
Labarga, L
Liubarsky, I
Losada, M
Luzon, G
Mari, A
Martinez-Lema, G
Martinez, A
Miller, T
Monrabal, F
Monserrate, M
Monteiro, CMB
Mora, FJ
Moutinho, LM
Vidal, JM
Nebot-Guinot, M
Nygren, D
Oliveira, CAB
Perez, J
Aparicio, JLP
Renner, J
Ripoll, L
Rodriguez, A
Rodriguez, J
Santos, FP
dos Santos, JMF
Segui, L
Serra, L
Shuman, D
Simon, A
Sofka, C
Sorel, M
Toledo, JF
Torrent, J
Tsamalaidze, Z
Veloso, JFCA
Webb, R
White, JT
Yahlali, N
AF Lorca, D.
Martin-Albo, J.
Laing, A.
Ferrario, P.
Gomez-Cadenas, J. J.
Alvarez, V.
Borges, F. I. G.
Camargo, M.
Carcel, S.
Cebrian, S.
Cervera, A.
Conde, C. A. N.
Dafni, T.
Diaz, J.
Esteve, R.
Fernandes, L. M. P.
Ferreira, A. L.
Freitas, E. D. C.
Gehman, V. M.
Goldschmidt, A.
Gomez, H.
Gonzalez-Diaz, D.
Gutierrez, R. M.
Hauptman, J.
Hernando Morata, J. A.
Herrera, D. C.
Irastorza, I. G.
Labarga, L.
Liubarsky, I.
Losada, M.
Luzon, G.
Mari, A.
Martinez-Lema, G.
Martinez, A.
Miller, T.
Monrabal, F.
Monserrate, M.
Monteiro, C. M. B.
Mora, F. J.
Moutinho, L. M.
Munoz Vidal, J.
Nebot-Guinot, M.
Nygren, D.
Oliveira, C. A. B.
Perez, J.
Perez Aparicio, J. L.
Renner, J.
Ripoll, L.
Rodriguez, A.
Rodriguez, J.
Santos, F. P.
dos Santos, J. M. F.
Segui, L.
Serra, L.
Shuman, D.
Simon, A.
Sofka, C.
Sorel, M.
Toledo, J. F.
Torrent, J.
Tsamalaidze, Z.
Veloso, J. F. C. A.
Webb, R.
White, J. T.
Yahlali, N.
TI Characterisation of NEXT-DEMO using xenon K-alpha X-rays
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article
DE Charge transport, multiplication and electroluminescence in rare gases
and liquids; Double-beta decay detectors; Time projection chambers
ID RESOLUTION
AB The NEXT experiment aims to observe the neutrinoless double beta decay of Xe-136 in a high-pressure xenon gas TPC using electroluminescence (EL) to amplify the signal from ionization. Understanding the response of the detector is imperative in achieving a consistent and well understood energy measurement. The abundance of xenon K-shell X-ray emission during data taking has been identified as a multitool for the characterisation of the fundamental parameters of the gas as well as the equalisation of the response of the detector.
The NEXT-DEMO prototype is a similar to 1.5 kg volume TPC filled with natural xenon. It employs an array of 19 PMTs as an energy plane and of 256 SiPMs as a tracking plane with the TPC light tube and SiPM surfaces being coated with tetraphenyl butadiene (TPB) which acts as a wavelength shifter for the VUV scintillation light produced by xenon. This paper presents the measurement of the properties of the drift of electrons in the TPC, the effects of the EL production region, and the extraction of position dependent correction constants using K-alpha X-ray deposits. These constants were used to equalise the response of the detector to deposits left by gammas from Na-22.
C1 [Lorca, D.; Martin-Albo, J.; Laing, A.; Ferrario, P.; Gomez-Cadenas, J. J.; Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Liubarsky, I.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain.
[Lorca, D.; Martin-Albo, J.; Laing, A.; Ferrario, P.; Gomez-Cadenas, J. J.; Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Liubarsky, I.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] Univ Valencia, Valencia 46980, Spain.
[Borges, F. I. G.; Conde, C. A. N.; Fernandes, L. M. P.; Freitas, E. D. C.; Monteiro, C. M. B.; Santos, F. P.; dos Santos, J. M. F.] Univ Coimbra, Dept Fis, P-3004516 Coimbra, Portugal.
[Cebrian, S.; Dafni, T.; Gomez, H.; Gonzalez-Diaz, D.; Herrera, D. C.; Irastorza, I. G.; Luzon, G.; Rodriguez, A.; Segui, L.] Univ Zaragoza, Lab Fis Nucl & Astroparticulas, E-50009 Zaragoza, Spain.
[Gehman, V. M.; Goldschmidt, A.; Miller, T.; Nygren, D.; Oliveira, C. A. B.; Renner, J.; Shuman, D.; Toledo, J. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Esteve, R.; Mari, A.; Mora, F. J.] Univ Politecn Valencia, Inst Instrumentac Imagen Mol I3M, Valencia 46022, Spain.
[Tsamalaidze, Z.] JINR, Dubna 141980, Russia.
[Ferreira, A. L.; Moutinho, L. M.; Veloso, J. F. C. A.] Univ Aveiro, Inst Nanostruct Nanomodelling & Nanofabricat I3N, P-3810193 Aveiro, Portugal.
[Camargo, M.; Gutierrez, R. M.; Losada, M.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia.
[Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Hernando Morata, J. A.; Martinez-Lema, G.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela 15782, Spain.
[Labarga, L.; Perez, J.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain.
[Perez Aparicio, J. L.] Univ Politecn Valencia, Dpto Mecan Medios Continuos & Teoria Estruct, E-46071 Valencia, Spain.
[Ripoll, L.; Torrent, J.] Univ Girona, Escola Politecn Super, Girona 17071, Spain.
[Sofka, C.; Webb, R.; White, J. T.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA.
RP Lorca, D (reprint author), CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain.
EM david.lorca@ific.uv.es; justo.martin-albo@ific.uv.es; gomez@mail.cern.ch
RI Monrabal, Francesc/A-5880-2015; Ripoll, Lluis/A-8413-2015; Gonzalez
Diaz, Diego/K-7265-2014; dos Santos, Joaquim/B-3058-2015; AMADE Research
Group, AMADE/B-6537-2014; Diaz, Jose/B-3454-2012; Perez-Aparicio,
Jose/H-7053-2015; Fernandes, Luis/E-2372-2011; veloso, joao/J-4478-2013;
Moutinho, Luis/J-6021-2013; Irastorza, Igor/B-2085-2012; Dafni,
Theopisti/J-9646-2012; Gomez Cadenas, Juan Jose/L-2003-2014;
OI Martin-Albo, Justo/0000-0002-7318-1469; Monrabal,
Francesc/0000-0002-4047-5620; Ripoll, Lluis/0000-0001-8194-5396;
Gonzalez Diaz, Diego/0000-0002-6809-5996; AMADE Research Group,
AMADE/0000-0002-5778-3291; Diaz, Jose/0000-0002-7239-223X;
Perez-Aparicio, Jose/0000-0003-2884-6991; Fernandes,
Luis/0000-0002-7061-8768; Moutinho, Luis/0000-0001-9074-4449; Irastorza,
Igor/0000-0003-1163-1687; Monteiro, Cristina Maria
Bernardes/0000-0002-1912-2804; dos Santos, Joaquim Marques
Ferreira/0000-0002-8841-6523; Dafni, Theopisti/0000-0002-8921-910X;
Gomez Cadenas, Juan Jose/0000-0002-8224-7714; Munoz Vidal,
Javier/0000-0002-9649-2251
FU European Research Council [339787-NEXT]; Ministerio de Economia y
Competitividad of Spain [CSD2008-0037, FPA2009-13697-C04,
FIS2012-37947-C04]; Office of Science, Office of Basic Energy Sciences,
of the US Department of Energy [DE-AC02-05CH11231]; Portuguese FCT;
FEDER [PTDC/FIS/103860/2008]
FX This work was supported by the following agencies and institutions: the
European Research Council under the Advanced Grant 339787-NEXT; the
Ministerio de Economia y Competitividad of Spain under grants
CONSOLIDER-Ingenio 2010 CSD2008-0037 (CUP), FPA2009-13697-C04 and
FIS2012-37947-C04; the Director, Office of Science, Office of Basic
Energy Sciences, of the US Department of Energy under contract no.
DE-AC02-05CH11231; and the Portuguese FCT and FEDER through the program
COMPETE, project PTDC/FIS/103860/2008.
NR 18
TC 9
Z9 9
U1 3
U2 17
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD OCT
PY 2014
VL 9
AR P10007
DI 10.1088/1748-0221/9/10/P10007
PG 20
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA AU8PK
UT WOS:000345858500050
ER
PT J
AU Madrak, R
Wildman, D
AF Madrak, R.
Wildman, D.
TI A fast chopper for medium energy beams
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article
DE Accelerator Subsystems and Technologies; Hardware and accelerator
control systems
AB The key elements have been constructed for a fast chopper system capable of removing single 2.5MeV proton bunches spaced at 325 MHz. The average chopping rate is similar to 1 MHz. The components include a pulse delaying microstrip structure for deflecting the beam, high voltage (1.2 kV) fast (ns rise time) pulsers, and an associated wideband combiner. Various designs for the deflecting structures have been studied. Measurements of the microstrip structures' coverage factors and pulse shapes are presented.
C1 [Madrak, R.; Wildman, D.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
RP Madrak, R (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
EM madrak@fnal.gov
NR 5
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD OCT
PY 2014
VL 9
AR T10009
DI 10.1088/1748-0221/9/10/T10009
PG 12
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA AU8PK
UT WOS:000345858500069
ER
PT J
AU Cherry, JF
Frandsen, MT
Shoemaker, IM
AF Cherry, John F.
Frandsen, Mads T.
Shoemaker, Ian M.
TI Halo-independent direct detection of momentum-dependent dark matter
SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS
LA English
DT Article
DE dark matter detectors; dark matter experiments; dark energy theory
AB We show that the momentum dependence of dark matter interactions with nuclei can be probed in direct detection experiments without knowledge of the dark matter velocity distribution. This is one of the few properties of DM microphysics that can be determined with direct detection alone, given a signal of dark matter in multiple direct detection experiments with different targets. Long-range interactions arising from the exchange of a light mediator are one example of momentum-dependent DM. For data produced from the exchange of a massless mediator we find for example that the mediator mass can be constrained to be less than or similar to 10 MeV for DM in the 20-1000 GeV range in a halo-independent manner.
C1 [Cherry, John F.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Frandsen, Mads T.; Shoemaker, Ian M.] Univ Southern Denmark, Origins CP3, DK-5230 Odense M, Denmark.
[Frandsen, Mads T.; Shoemaker, Ian M.] Univ Southern Denmark, Danish Inst Adv Study, DK-5230 Odense M, Denmark.
RP Cherry, JF (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA.
EM jcherry@lanl.gov; frandsen@cp3-origins.net; shoemaker@cp3-origins.net
FU Danish National Research Foundation [DNRF90]; Danish Council for
Independent Research [11-120829]; U.C. Office of the President; LDRD
Program at LANL
FX We would like to thank Andreas Crivellin, Eugenio Del Nobile, Martin
Hoferichter, Ranjan Laha, and Stefano Scopel for useful comments. The
CP3-Origins centre is partially funded by the Danish National Research
Foundation, grant number DNRF90. MTF acknowledges a Sapere Aude Grant
no. 11-120829 from the Danish Council for Independent Research. This
work was also supported in part by the U.C. Office of the President in
conjunction with the LDRD Program at LANL.
NR 40
TC 23
Z9 23
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1475-7516
J9 J COSMOL ASTROPART P
JI J. Cosmol. Astropart. Phys.
PD OCT
PY 2014
IS 10
AR 022
DI 10.1088/1475-7516/2014/10/022
PG 19
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA AW0OA
UT WOS:000345990800023
ER
PT J
AU Fox, PJ
Kahn, Y
McCullough, M
AF Fox, Patrick J.
Kahn, Yonatan
McCullough, Matthew
TI Taking Halo-independent dark matter methods out of the bin
SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS
LA English
DT Article
DE dark matter theory; dark matter detectors; dark matter experiments
AB We develop a new halo-independent strategy for analyzing emerging DM hints, utilizing the method of extended maximum likelihood. This approach does not require the binning of events, making it uniquely suited to the analysis of emerging DM direct detection hints. It determines a preferred envelope, at a given confidence level, for the DM velocity integral which best fits the data using all available information and can be used even in the case of a single anomalous scattering event. All of the halo-independent information from a direct detection result may then be presented in a single plot, allowing simple comparisons between multiple experiments. This results in the halo-independent analogue of the usual mass and cross-section plots found in typical direct detection analyses, where limit curves may be compared with best-fit regions in halo-space. The method is straightforward to implement, using already-established techniques, and its utility is demonstrated through the first unbinned halo-independent comparison of the three anomalous events observed in the CDMS-Si detector with recent limits from the LUX experiment.
C1 [Fox, Patrick J.] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA.
[Kahn, Yonatan; McCullough, Matthew] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA.
RP Fox, PJ (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA.
EM pjfox@fnal.gov; ykahn@mit.edu; mccull@mit.edu
FU Simons Postdoctoral Fellowship; NSF; Belfast Education Library Board;
Fermi Research Alliance, LLC [DE-AC02-07CH11359]; United States
Department of Energy
FX We would like to thank Prateek Agrawal, Kyle Cranmer, Brian Feldstein,
Felix Kahlhoefer, Joe Lykken, Christopher McCabe, and Jesse Thaler for
conversations. MM thanks the Princeton PCTP workshop "The Dark Matter
Paradigm: Current Status and Challenges" for stimulating a conversation
with David J. E. Marsh which motivated this work. MM is grateful for the
support of a Simons Postdoctoral Fellowship. YK thanks Grace Haaf,
Joshua Batson, and Tiankai Liu for helpful discussions about functional
optimization with inequality constraints. YK is supported by an NSF
Graduate Research Fellowship. PF and MM would like to thank the Belfast
Education & Library Board for support during the very early stages of
this work. Fermilab is operated by Fermi Research Alliance, LLC under
Contract No. DE-AC02-07CH11359 with the United States Department of
Energy.
NR 35
TC 18
Z9 18
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1475-7516
J9 J COSMOL ASTROPART P
JI J. Cosmol. Astropart. Phys.
PD OCT
PY 2014
IS 10
AR 076
DI 10.1088/1475-7516/2014/10/076
PG 19
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA AW0OA
UT WOS:000345990800077
ER
PT J
AU Mortonson, MJ
Seljak, U
AF Mortonson, Michael J.
Seljak, Uros
TI A joint analysis of Planck and BICEP2 B modes including dust
polarization uncertainty
SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS
LA English
DT Article
DE gravitational waves and CMBR polarization; CMBR experiments;
cosmological parameters from CMBR; inflation
ID MICROWAVE BACKGROUND POLARIZATION
AB We analyze BICEP2 and Planck data using a model that includes CMB lensing, gravity waves, and polarized dust. Recently published Planck dust polarization maps have highlighted the difficulty of estimating the amount of dust polarization in low intensity regions, suggesting that the polarization fractions have considerable uncertainties and may be significantly higher than previous predictions. In this paper, we start by assuming nothing about the dust polarization except for the power spectrum shape, which we take to be C-l(BB,dust) proportional to l(-2.42). The resulting joint BICEP2+Planck analysis favors solutions without gravity waves, and the upper limit on the tensor-to-scalar ratio is r < 0.11, a slight improvement relative to the Planck analysis alone which gives r < 0.13 (959 c.l.). The estimated amplitude of the dust polarization power spectrum agrees with expectations for this field based on both Hi column density and Planck polarization measurements at 353 GHz in the BICEP2 field. Including the latter constraint on the dust spectrum amplitude in our analysis improves the limit further to r < 0.09, placing strong constraints on theories of inflation (e.g., models with r > 0.14 are excluded with 99.5% confidence). We address the cross-correlation analysis of BICEP2 at 150 GHz with BICEP1 at 100 GHz as a test of foreground contamination. We find that the null hypothesis of dust and lensing with r = 0 gives Delta chi(2) < 2 relative to the hypothesis of no dust, so the frequency analysis does not strongly favor either model over the other. We also discuss how more accurate dust polarization maps may improve our constraints. If the dust polarization is measured perfectly, the limit can reach r < 0.05 (or the corresponding detection significance if the observed dust signal plus the expected lensing signal is below the BICEP2 observations), but this degrades quickly to almost no improvement if the dust calibration error is 20% or larger or if the dust maps are not processed through the BICEP2 pipeline, inducing sampling variance noise.
C1 [Mortonson, Michael J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Mortonson, Michael J.; Seljak, Uros] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Seljak, Uros] Univ Calif Berkeley, Dept Astron, Dept Phys, Berkeley, CA 94720 USA.
RP Mortonson, MJ (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
EM mmortonson@berkeley.edu; useljak@berkeley.edu
FU NASA ATP grant [NNX12AG71G]
FX M.M. and U.S. are supported in part by the NASA ATP grant NNX12AG71G. We
thank R. Flauger, W. Holzapfel, A. Lee, L. Senatore, B. Sherwin, M.
White, and M. Zaldarriaga for useful discussions.
NR 22
TC 94
Z9 94
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1475-7516
J9 J COSMOL ASTROPART P
JI J. Cosmol. Astropart. Phys.
PD OCT
PY 2014
IS 10
AR 035
DI 10.1088/1475-7516/2014/10/035
PG 13
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA AW0OA
UT WOS:000345990800036
ER
PT J
AU Naess, S
Hasselfield, M
McMahon, J
Niemack, MD
Addison, GE
Ade, PAR
Allison, R
Amiri, M
Battaglia, N
Beall, JA
de Bernardis, F
Bond, JR
Britton, J
Calabrese, E
Cho, HM
Coughlin, K
Crichton, D
Das, S
Datta, R
Devlin, MJ
Dicker, SR
Dunkley, J
Dunner, R
Fowler, JW
Fox, AE
Gallardo, P
Grace, E
Gralla, M
Hajian, A
Halpern, M
Henderson, S
Hill, JC
Hilton, GC
Hilton, M
Hincks, AD
Hlozek, R
Ho, P
Hubmayr, J
Huffenberger, KM
Hughes, JP
Infante, L
Irwin, K
Jackson, R
Kasanda, SM
Klein, J
Koopman, B
Kosowsky, A
Li, D
Louis, T
Lungu, M
Madhavacheril, M
Marriage, TA
Maurin, L
Menanteau, F
Moodley, K
Munson, C
Newburgh, L
Nibarger, J
Nolta, MR
Page, LA
Pappas, C
Partridge, B
Rojas, F
Schmitt, BL
Sehgal, N
Sherwin, BD
Sievers, J
Simon, S
Spergel, DN
Staggs, ST
Switzer, ER
Thornton, R
Trac, H
Tucker, C
Uehara, M
Van Engelen, A
Ward, JT
Wollack, EJ
AF Naess, Sigurd
Hasselfield, Matthew
McMahon, Jeff
Niemack, Michael D.
Addison, Graeme E.
Ade, Peter A. R.
Allison, Rupert
Amiri, Mandana
Battaglia, Nick
Beall, James A.
de Bernardis, Francesco
Bond, J. Richard
Britton, Joe
Calabrese, Erminia
Cho, Hsiao-mei
Coughlin, Kevin
Crichton, Devin
Das, Sudeep
Datta, Rahul
Devlin, Mark J.
Dicker, Simon R.
Dunkley, Joanna
Duenner, Rolando
Fowler, Joseph W.
Fox, Anna E.
Gallardo, Patricio
Grace, Emily
Gralla, Megan
Hajian, Amir
Halpern, Mark
Henderson, Shawn
Hill, J. Colin
Hilton, Gene C.
Hilton, Matt
Hincks, Adam D.
Hlozek, Renee
Ho, Patty
Hubmayr, Johannes
Huffenberger, Kevin M.
Hughes, John P.
Infante, Leopoldo
Irwin, Kent
Jackson, Rebecca
Kasanda, Simon Muya
Klein, Jeff
Koopman, Brian
Kosowsky, Arthur
Li, Dale
Louis, Thibaut
Lungu, Marius
Madhavacheril, Mathew
Marriage, Tobias A.
Maurin, Loic
Menanteau, Felipe
Moodley, Kavilan
Munson, Charles
Newburgh, Laura
Nibarger, John
Nolta, Michael R.
Page, Lyman A.
Pappas, Christine
Partridge, Bruce
Rojas, Felipe
Schmitt, Benjamin L.
Sehgal, Neelima
Sherwin, Blake D.
Sievers, Jon
Simon, Sara
Spergel, David N.
Staggs, Suzanne T.
Switzer, Eric R.
Thornton, Robert
Trac, Hy
Tucker, Carole
Uehara, Masao
Van Engelen, Alexander
Ward, Jonathan T.
Wollack, Edward J.
TI The Atacama Cosmology Telescope: CMB polarization at 200 < l < 9000
SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS
LA English
DT Article
DE CMBR polarisation; CMBR experiments; cosmological parameters from CMBR;
CMBR detectors
ID PROBE WMAP OBSERVATIONS; MICROWAVE BACKGROUND POLARIZATION; SPT-SZ
SURVEY; POWER SPECTRUM; CRAB-NEBULA; PARAMETERS; CATALOG; MAPS; GHZ;
CONSTRAINTS
AB We report on measurements of the cosmic microwave background (CMB) and celestial polarization at 146 GHz made with the Atacama Cosmology Telescope Polarimeter (ACTPol) in its first three months of observing. Four regions of sky covering a total of 270 square degrees were mapped with an angular resolution of 1.3'. The map noise levels in the four regions are between 11 and 17 mu K-arcmin. We present TT, TE, EE, TB, EB, and BB power spectra from three of these regions. The observed E-mode polarization power spectrum, displaying six acoustic peaks in the range 200 < l < 3000, is an excellent fit to the prediction of the best-fit cosmological models from WMAP9+ACT and Planck data. The polarization power spectrum, which mainly reflects primordial plasma velocity perturbations, provides an independent determination of cosmological parameters consistent with those based on the temperature power spectrum, which results mostly from primordial density perturbations. We find that without masking any point sources in the EE data at l < 9000, the Poisson tail of the EE power spectrum due to polarized point sources has an amplitude less than 2.4 mu K-2 at l = 3000 at 95% confidence. Finally, we report that the Crab Nebula, an important polarization calibration source at microwave frequencies, has 8.7% polarization with an angle of 150.7 degrees +/- 0.6 degrees when smoothed with a 5' Gaussian beam.
C1 [Naess, Sigurd; Allison, Rupert; Calabrese, Erminia; Dunkley, Joanna] Univ Oxford, Sub Dept Astrophys, Oxford OX1 3RH, England.
[Hasselfield, Matthew; Hill, J. Colin; Hlozek, Renee; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Hasselfield, Matthew; Addison, Graeme E.; Amiri, Mandana; Halpern, Mark; Hincks, Adam D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada.
[McMahon, Jeff; Coughlin, Kevin; Datta, Rahul; Jackson, Rebecca; Munson, Charles] Univ Michigan, Dept Phys, Ann Arbor, MI 48103 USA.
[Niemack, Michael D.; de Bernardis, Francesco; Gallardo, Patricio; Henderson, Shawn; Koopman, Brian] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA.
[Ade, Peter A. R.; Tucker, Carole] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
[Battaglia, Nick; Trac, Hy] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA.
[Beall, James A.; Britton, Joe; Cho, Hsiao-mei; Fowler, Joseph W.; Fox, Anna E.; Hilton, Gene C.; Hubmayr, Johannes; Li, Dale] NIST Quantum Devices Grp, Boulder, CO 80305 USA.
[Bond, J. Richard; Hajian, Amir; Nolta, Michael R.; Switzer, Eric R.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada.
[Crichton, Devin; Gralla, Megan; Marriage, Tobias A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Das, Sudeep] Argonne Natl Lab, Dept High Energy Phys, Argonne, IL 60439 USA.
[Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Lungu, Marius; Schmitt, Benjamin L.; Ward, Jonathan T.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[Duenner, Rolando; Gallardo, Patricio; Infante, Leopoldo; Maurin, Loic; Rojas, Felipe] Pontificia Univ Catolica Chile, Dept Astron & Astrophys, Santiago 22, Chile.
[Grace, Emily; Ho, Patty; Newburgh, Laura; Page, Lyman A.; Pappas, Christine; Simon, Sara; Staggs, Suzanne T.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA.
[Hilton, Matt; Kasanda, Simon Muya; Moodley, Kavilan] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa.
[Huffenberger, Kevin M.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA.
[Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
[Irwin, Kent] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Jackson, Rebecca] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA.
[Kasanda, Simon Muya; Sievers, Jon] Univ KwaZulu Natal, Sch Chem & Phys, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa.
[Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Madhavacheril, Mathew; Sehgal, Neelima; Van Engelen, Alexander] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Menanteau, Felipe] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA.
[Menanteau, Felipe] Univ Illinois, Dept Astron, Urbana, IL 61801 USA.
[Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA.
[Rojas, Felipe; Uehara, Masao] Sociedad Radiosky Asesoras Ingn Ltd Lincoyan, Concepcion, Chile.
[Sherwin, Blake D.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, LBL, Berkeley, CA 94720 USA.
[Sherwin, Blake D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Switzer, Eric R.; Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Thornton, Robert] Univ Penn, Dept Phys, W Chester, PA 19383 USA.
RP Naess, S (reprint author), Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England.
EM sigurd.naess@astro.ox.ac.uk
RI Trac, Hy/N-8838-2014; Wollack, Edward/D-4467-2012;
OI Trac, Hy/0000-0001-6778-3861; Wollack, Edward/0000-0002-7567-4451;
Huffenberger, Kevin/0000-0001-7109-0099; Sievers,
Jonathan/0000-0001-6903-5074; Tucker, Carole/0000-0002-1851-3918
FU U.S. National Science Foundation [AST-0408698, AST-0965625, PHY-0855887,
PHY-1214379]; Princeton University; University of Pennsylvania; Canada
Foundation for Innovation (CFI) award; Comision Nacional de
Investigacion Cientifica y Tecnologica de Chile (CONICYT); CFI under
Compute Canada; Government of Ontario; Ontario Research Fund - Research
Excellence; University of Toronto; NASA [NNX13AE56G, NNX14AB58G,
NNX12AM32H]; ERC [259505]; NASA ATP [NNX14AB57G]; DOE [DE-SC0011114];
NSF [AST-1312991]; NASA Space Technology Research Fellowships; CONICYT
[QUIMAL-120001, FONDECYT-1141113]; Mishrahi Fund; Wilkinson Fund
FX This work was supported by the U.S. National Science Foundation through
awards AST-0408698 and AST-0965625 for the ACT project, as well as
awards PHY-0855887 and PHY-1214379. Funding was also provided by
Princeton University, the University of Pennsylvania, and a Canada
Foundation for Innovation (CFI) award to UBC. ACT operates in the Parque
Astronomico Atacama in northern Chile under the auspices of the Comision
Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT).
Computations were performed on the GPC supercomputer at the SciNet HPC
Consortium. SciNet is funded by the CFI under the auspices of Compute
Canada, the Government of Ontario, the Ontario Research Fund - Research
Excellence; and the University of Toronto. The development of
multichroic detectors and lenses was supported by NASA grants NNX13AE56G
and NNX14AB58G. CM acknowledges support from NASA grant NNX12AM32H.
Funding from ERC grant 259505 supports SN, JD, EC, and TL. HT is
supported by grants NASA ATP NNX14AB57G, DOE DE-SC0011114, and NSF
AST-1312991. BS, BK, CM, and EG are funded by NASA Space Technology
Research Fellowships. R.D received funding from the CONICYT grants
QUIMAL-120001 and FONDECYT-1141113. We thank our many colleagues from
ABS, ALMA, APEX, and POLARBEAR who have helped us at critical junctures.
Colleagues at AstroNorte and Radio Sky provide logistical support and
keep operations in Chile running smoothly. We thank Jesse Treu for
multiple suggestions and comments. We also thank the Mishrahi Fund and
the Wilkinson Fund for their generous support of the project.
NR 89
TC 55
Z9 55
U1 0
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1475-7516
J9 J COSMOL ASTROPART P
JI J. Cosmol. Astropart. Phys.
PD OCT
PY 2014
IS 10
AR 007
DI 10.1088/1475-7516/2014/10/007
PG 32
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA AW0OA
UT WOS:000345990800008
ER
PT J
AU Patil, AA
Pandey, YN
Doxastakis, M
Stein, GE
AF Patil, Abhijit A.
Pandey, Yogendra Narayan
Doxastakis, Manolis
Stein, Gila E.
TI Characterizing acid diffusion lengths in chemically amplified resists
from measurements of deprotection kinetics
SO JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS
LA English
DT Article
DE photoresist; stochastic simulations; chemical amplification;
lithography; anomalous kinetics; acid trapping; reaction-diffusion;
poly(4-hydroxystyrene-co-tertbutyl acrylate); nonisothermal kinetics;
subdiffusive transport
ID GLASS-TRANSITION TEMPERATURE; ANOMALOUS DIFFUSION; POLYMER-FILMS; PROBE;
PHOTORESISTS; LITHOGRAPHY; CONFINEMENT; MODELS; FRONT; THIN
AB The acid-catalyzed deprotection of glassy poly(4-hydroxystyrene-co-tertbutyl acrylate) films was studied with infrared absorbance spectroscopy and stochastic simulations. Experimental data were interpreted with a simple description of subdiffusive acid transport coupled to second-order acid loss. This model predicts key attributes of observed deprotection rates, such as fast reaction at short times, slow reaction at long times, and a nonlinear dependence on acid loading. Fickian diffusion is approached by increasing the postexposure bake temperature or adding plasticizing agents to the polymer resin. These findings demonstrate that acid mobility and overall deprotection kinetics are coupled to glassy matrix dynamics. To complement the analysis of bulk kinetics, acid diffusion lengths were calculated from the anomalous transport model and compared with nano-pattern line widths. The consistent scaling between experiments and simulations suggests that the anomalous diffusion model could be further developed into a predictive lithography tool. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
C1 [Patil, Abhijit A.; Pandey, Yogendra Narayan; Stein, Gila E.] Univ Houston, Dept Chem & Biomol Engn, Houston, TX 77204 USA.
[Doxastakis, Manolis] Argonne Natl Lab, Inst Mol Engn, Argonne, IL 60439 USA.
RP Stein, GE (reprint author), Univ Houston, Dept Chem & Biomol Engn, 4800 Calhoun Rd, Houston, TX 77204 USA.
EM edoxastakis@anl.gov; gestein@uh.edu
RI Stein, Gila/P-1927-2016;
OI Stein, Gila/0000-0002-3973-4496; Pandey, Yogendra/0000-0002-6110-428X;
Doxastakis, Manolis/0000-0002-9175-9906
FU Semiconductor Research Corporation [2011-OJ-2128]; National Science
Foundation [CBET-1437878, CBET-1067356]
FX The authors acknowledge past funding from the Semiconductor Research
Corporation that helped to initiate this research program (Contract No.
2011-OJ-2128), as well as current funding from the National Science
Foundation (Grant No. CBET-1437878 to G.E.S., and Grant No. CBET-1067356
to M.D.). The authors thank Professor Vemuri Balakotaiah for helpful
discussions regarding nonisothermal effects in diffusion-controlled
reactions. The authors also thank DuPont Electronic Materials for
supplying the P(HOST-co-TBA) resin.
NR 29
TC 0
Z9 0
U1 2
U2 8
PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA
SN 1932-5150
EI 1932-5134
J9 J MICRO-NANOLITH MEM
JI J. Micro-Nanolithogr. MEMS MOEMS
PD OCT
PY 2014
VL 13
IS 4
AR 043017
DI 10.1117/1.JMM.13.4.043017
PG 7
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Materials Science, Multidisciplinary; Optics
SC Engineering; Science & Technology - Other Topics; Materials Science;
Optics
GA AW6UA
UT WOS:000346402500021
ER
PT J
AU Marcillo, O
Arrowsmith, S
Whitaker, R
Morton, E
Phillips, WS
AF Marcillo, Omar
Arrowsmith, Stephen
Whitaker, Rod
Morton, Emily
Phillips, W. Scott
TI Extracting changes in air temperature using acoustic coda phase delays
SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
LA English
DT Article
ID VELOCITY; ATTENUATION; WAVES
AB Blast waves produced by 60 high-explosive detonations were recorded at short distances (few hundreds of meters); the corresponding waveforms show charge-configuration independent coda-like features (i.e., similar shapes, amplitudes, and phases) lasting several seconds. These features are modeled as reflected and/or scattered waves by acoustic reflectors/scatters surrounding the explosions. Using explosion pairs, relative coda phase delays are extracted and modeled as changes in sound speed due to changes in air temperature. Measurements from nearby weather towers are used for validation.
C1 [Marcillo, Omar; Arrowsmith, Stephen; Whitaker, Rod; Morton, Emily; Phillips, W. Scott] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM 87545 USA.
RP Marcillo, O (reprint author), Los Alamos Natl Lab, Geophys Grp, POB 1663, Los Alamos, NM 87545 USA.
EM omarcillo@lanl.gov; arrows@lanl.gov; rww@lanl.gov; emorton@lanl.gov;
wsp@lanl.gov
FU Office of Defense Nuclear Nonproliferation Research and Development
within the U.S. Department of Energy's National Nuclear Security
Administration; U.S. Department of Energy by Los Alamos National
Laboratory [DE-AC52-06NA25396]
FX This work was funded by the Office of Defense Nuclear Nonproliferation
Research and Development within the U.S. Department of Energy's National
Nuclear Security Administration. This work was performed under the
auspices of the U.S. Department of Energy by Los Alamos National
Laboratory under Contract DE-AC52-06NA25396.
NR 10
TC 0
Z9 0
U1 0
U2 6
PU ACOUSTICAL SOC AMER AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 0001-4966
EI 1520-8524
J9 J ACOUST SOC AM
JI J. Acoust. Soc. Am.
PD OCT
PY 2014
VL 136
IS 4
BP EL309
EP EL314
DI 10.1121/1.4896404
PG 6
WC Acoustics; Audiology & Speech-Language Pathology
SC Acoustics; Audiology & Speech-Language Pathology
GA AW0JF
UT WOS:000345977400010
PM 25324115
ER
PT J
AU Sorensen, P
AF Sorensen, Paul
TI Black holes in cosmological natural selection
SO PHYSICS TODAY
LA English
DT Letter
C1 Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Sorensen, P (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
EM psorensen@bnl.gov
NR 0
TC 0
Z9 0
U1 0
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0031-9228
EI 1945-0699
J9 PHYS TODAY
JI Phys. Today
PD OCT
PY 2014
VL 67
IS 10
BP 8
EP 8
PG 1
WC Physics, Multidisciplinary
SC Physics
GA AW2MF
UT WOS:000346121600001
ER
PT J
AU Zurek, WH
AF Zurek, Wojciech H.
TI QUANTUM DARWINISM, CLASSICAL REALITY, and the randomness of quantum
jumps
SO PHYSICS TODAY
LA English
DT Article
ID DECOHERENCE; ENVIRONMENT
C1 [Zurek, Wojciech H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Zurek, Wojciech H.] Univ Ulm, D-89069 Ulm, Germany.
RP Zurek, WH (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
FU US Department of Energy; Foundational Questions Institute
FX I thank Charles Bennett, Robin Blume-Kohout, Jim Hartle, Raymond
Laflamme, Juan Pablo Paz, Hai-Tao Quan, Jess Riedel, Wolfgang Schleich,
Max Tegmark, and Michael Zwolak for enjoyable and helpful discussions,
and with appreciation I acknowledge support from the US Department of
Energy and the Foundational Questions Institute.
NR 19
TC 22
Z9 23
U1 4
U2 27
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0031-9228
EI 1945-0699
J9 PHYS TODAY
JI Phys. Today
PD OCT
PY 2014
VL 67
IS 10
BP 44
EP 50
PG 7
WC Physics, Multidisciplinary
SC Physics
GA AW2MF
UT WOS:000346121600021
ER
PT J
AU Cho, K
Tanatar, MA
Ni, N
Prozorov, R
AF Cho, K.
Tanatar, M. A.
Ni, N.
Prozorov, R.
TI Doping-evolution of the superconducting gap in single crystals of
(Ca1-xLax)(10)(Pt3As8)(Fe2As2)(5) superconductor from London penetration
depth measurements
SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY
LA English
DT Article
DE London penetration depth; iron based superconductors; pairing mechanisms
ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; IRON PNICTIDES; T-C; KFE2AS2; STATE
AB The doping-evolution of the superconducting gap structure in iron-based superconductor (Ca1-xLax)(10)(Pt3As8)(Fe2As2)(5) (x = 0.04, 0.06, 0.09, 0.11, and 0.18) was probed by high-resolution measurements of the London penetration depth, lambda(T). The samples spanned compositions from underdoped to slightly overdoped with superconducting critical temperatures, T-c, from 12.7 K (x = 0.04) through (optimal) 23.3 K (x = 0.11) to 21.9 K (x = 0.18). The low-temperature variation (up to 0.3 T-c) of lambda(T) was analysed using a power-law function, Delta lambda = AT(n). For compositions close to the optimal doping, (x = 0.09, 0.11, and 0.18), characterized by T-c > 20K, Delta lambda(T) shows a tendency to saturation, indicative of a full gap on the Fermi surface. Fitting over the lowest temperature range (T< 0.1T(c)) gives n = 2.6. This value is well outside the range 1 <= n <= 2 expected for the line-nodal superconductor. The exponent n decreased to n similar to 2 in the two most underdoped compositions x = 0.04 (T-c = 12.7 K) and 0.06 (T-c = 18.2 K), implying the development of a notable gap anisotropy revealed by the enhanced influence of pair-breaking scattering. This decrease is accompanied by a significant increase of the total variation of the penetration depth Delta lambda in a fixed temperature interval (e.g., T-min - 0.3 T-c). Both the decrease of the exponent and the increase of the absolute value of Delta lambda in the underdoped regime are similar to the observations in other charge-doped iron-based superconductors, such as doped BaFe2As2 and NaFeAs, suggesting a universal behavior in iron-based superconductors.
C1 [Cho, K.; Tanatar, M. A.; Prozorov, R.] Ames Lab, Ames, IA 50011 USA.
[Cho, K.; Tanatar, M. A.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Ni, N.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
RP Cho, K (reprint author), Ames Lab, Ames, IA 50011 USA.
EM prozorov@ameslab.gov
FU US Department of Energy (DOE), Office of Science, Basic Energy Sciences,
Materials Science and Engineering Division; Iowa State University
[DE-AC02-07CH11358]; U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences [DE-SC0011978]
FX The work in Ames was supported by the US Department of Energy (DOE),
Office of Science, Basic Energy Sciences, Materials Science and
Engineering Division. Ames Laboratory is operated for the US DOE by Iowa
State University under contract DE-AC02-07CH11358. Ni would like to
thank the support from U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences under Award Number DE-SC0011978.
NR 53
TC 2
Z9 2
U1 0
U2 15
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-2048
EI 1361-6668
J9 SUPERCOND SCI TECH
JI Supercond. Sci. Technol.
PD OCT
PY 2014
VL 27
IS 10
AR 104006
DI 10.1088/0953-2048/27/10/104006
PG 5
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA AW2KD
UT WOS:000346115500008
ER
PT J
AU Martin, NM
Van den Bossche, M
Hellman, A
Gronbeck, H
Hakanoglu, C
Gustafson, J
Blomberg, S
Johansson, N
Liu, Z
Axnanda, S
Weaver, JF
Lundgren, E
AF Martin, Natalia M.
Van den Bossche, Maxime
Hellman, Anders
Gronbeck, Henrik
Hakanoglu, Can
Gustafson, Johan
Blomberg, Sara
Johansson, Niclas
Liu, Zhi
Axnanda, Stephanus
Weaver, Jason F.
Lundgren, Edvin
TI Intrinsic Ligand Effect Governing the Catalytic Activity of Pd Oxide
Thin Films
SO ACS CATALYSIS
LA English
DT Article
DE heterogeneous catalysis; methane oxidation; palladium; PdO; (root 5 x
root 5)
ID ROOT-5)R27-DEGREES-O SURFACE OXIDE; AUGMENTED-WAVE METHOD; METHANE
OXIDATION; PALLADIUM; COMBUSTION; ACTIVATION; TRANSITION; REACTIVITY;
ALKANES; PHASE
AB High-pressure X-ray photoelectron spectroscopy, mass spectrometry, and density functional theory calculations have been combined to study methane oxidation over Pd(100). The measurements reveal a high activity when a two-layer PdO(101) oriented film is formed. Although a one-layer PdO(101) film exhibits a similar surface structure, no or very little activity is observed. The calculations show that the presence of an oxygen atom directly below the coordinatively unsaturated Pd atom in the two-layer PdO(101) film is crucial for efficient methane dissociation, demonstrating a ligand effect that may be broadly important in determining the catalytic properties of oxide thin films.
C1 [Martin, Natalia M.; Gustafson, Johan; Blomberg, Sara; Johansson, Niclas; Lundgren, Edvin] Lund Univ, Div Synchrotron Radiat Res, SE-22100 Lund, Sweden.
[Van den Bossche, Maxime; Hellman, Anders; Gronbeck, Henrik] Chalmers, Competence Ctr Catalysis, SE-41296 Gothenburg, Sweden.
[Van den Bossche, Maxime; Hellman, Anders; Gronbeck, Henrik] Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden.
[Hakanoglu, Can; Weaver, Jason F.] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA.
[Liu, Zhi; Axnanda, Stephanus] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Martin, NM (reprint author), Lund Univ, Div Synchrotron Radiat Res, Box 118, SE-22100 Lund, Sweden.
EM natalia.martin@sljus.lu.se
RI Liu, Zhi/B-3642-2009; COST, CM1104/I-8057-2015; Hellman,
Anders/A-4591-2016; Gronbeck, Henrik/B-6585-2016; Lundgren,
Edvin/F-5551-2010;
OI Liu, Zhi/0000-0002-8973-6561; Hellman, Anders/0000-0002-1821-159X;
Johansson, Niclas/0000-0002-1402-1502; Gronbeck,
Henrik/0000-0002-8709-2889
FU foundation for strategic research (SSF); Swedish Research Council;
Crafoord Foundation; Knut and Alice Wallenberg Foundation; Anna and
Edwin Berger Foundation; COST Action [CM1104]; NordForsk; C3SE
(Goteborg, Sweden); PDC (Stockholm, Sweden); U.S. Department of Energy,
Office of Basic Energy Sciences, Catalysis Science Division
[DE-FG02-03ER15478]; Office of Science, Office of Basic Energy Sciences,
of the U.S. Department of Energy [DE-AC02-05CH11231]
FX The ALS staff is gratefully acknowledged. This work was financially
supported by the foundation for strategic research (SSF), the Swedish
Research Council, the Crafoord Foundation, the Knut and Alice Wallenberg
Foundation, the Anna and Edwin Berger Foundation, COST Action CM1104,
and NordForsk. The calculations were performed at C3SE (Goteborg,
Sweden) and PDC (Stockholm, Sweden) via a SNIC grant. J.F.W. gratefully
acknowledges financial support by the U.S. Department of Energy, Office
of Basic Energy Sciences, Catalysis Science Division, through Grant
DE-FG02-03ER15478. For the ALS measurements, we acknowledge the
Director, Office of Science, Office of Basic Energy Sciences, of the
U.S. Department of Energy under Contract DE-AC02-05CH11231.
NR 45
TC 12
Z9 12
U1 2
U2 25
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2155-5435
J9 ACS CATAL
JI ACS Catal.
PD OCT
PY 2014
VL 4
IS 10
BP 3330
EP 3334
DI 10.1021/cs5010163
PG 5
WC Chemistry, Physical
SC Chemistry
GA AU6TS
UT WOS:000345735200003
ER
PT J
AU Hong, YC
Zhang, H
Sun, JM
Ayman, KM
Hensley, AJR
Gu, M
Engelhard, MH
McEwen, JS
Wang, Y
AF Hong, Yongchun
Zhang, He
Sun, Junming
Ayman, Karim M.
Hensley, Alyssa J. R.
Gu, Meng
Engelhard, Mark H.
McEwen, Jean-Sabin
Wang, Yong
TI Synergistic Catalysis between Pd and Fe in Gas Phase Hydrodeoxygenation
of m-Cresol
SO ACS CATALYSIS
LA English
DT Article
DE hydrodeoxygenation; biomass conversion; bimetallic catalysis;
synergistic effects; iron catalyst; noble metal catalysis; H-2 sticking
probability
ID BIMETALLIC NANOPARTICLE CATALYSTS; SULFIDE PARTIAL-PRESSURE; AB-INITIO;
TRICHLOROETHENE HYDRODECHLORINATION; DISSOCIATIVE ADSORPTION; HYDROGEN;
GUAIACOL; LIGNIN; AU; PHENOLS
AB In this work, a series of Pd/Fe2O3 catalysts were synthesized, characterized, and evaluated for the hydrodeoxygenation (HDO) of m-cresol. It was found that the addition of Pd remarkably promotes the catalytic activity of Fe while the product distributions resemble that of monometallic Fe catalyst, showing high selectivity toward the production of toluene (C-O cleavage without saturation of aromatic ring and C-C cleavage). Reduced catalysts featured with Pd patches on the top of reduced Fe nanoparticle surface, and the interaction between Pd and Fe, was further confirmed using X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and X-ray absorption near edge fine structure (XANES). A possible mechanism, including Pd assisted H-2 dissociation and Pd facilitated stabilization of the metallic Fe surface as well as Pd enhanced product desorption, is proposed to be responsible for the high activity and HDO selectivity in Pd-Fe catalysts. The synergic catalysis derived from Pd Fe interaction found in this work was proved to be applicable to other precious metal promoted Fe catalysts, providing a promising strategy for future design of highly active and selective HDO catalysts.
C1 [Hong, Yongchun; Zhang, He; Sun, Junming; Hensley, Alyssa J. R.; McEwen, Jean-Sabin; Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA.
[Hong, Yongchun; Ayman, Karim M.; Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA.
[Hong, Yongchun; Gu, Meng; Engelhard, Mark H.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
[McEwen, Jean-Sabin] Washington State Univ, Dept Chem, Pullman, WA 99164 USA.
RP Wang, Y (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA.
EM yong.wang@pnnl.gov
RI Sun, Junming/B-3019-2011; Karim, Ayman/G-6176-2012; Gu,
Meng/B-8258-2013;
OI Sun, Junming/0000-0002-0071-9635; Karim, Ayman/0000-0001-7449-542X;
Hong, Yongchun/0000-0002-8109-3282; Engelhard, Mark/0000-0002-5543-0812
FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences, and Biosciences; Voiland
School of Chemical Engineering and Bioengineering; Department of
Energy's Office of Biological and Environmental Research; U.S.
Department of Energy, Office of Basic Energy Sciences; Synchrotron
Catalysis Consortium [DE-FG02-05ER15688]
FX We acknowledge the financial support from the U.S. Department of Energy
(DOE), Office of Basic Energy Sciences, Division of Chemical Sciences,
Geosciences, and Biosciences. This work was also supported by
institutional funds provided to J.S.M. from the Voiland School of
Chemical Engineering and Bioengineering. We thank the Franceschi
Microscopy and Imaging Center (FMIC) at Washington State University for
the access to TEM. A portion of the research was performed at
Environmental Molecular Sciences Laboratory (EMSL), a national
scientific user facility sponsored by the Department of Energy's Office
of Biological and Environmental Research and located at Pacific
Northwest National Laboratory (PNNL). In situ XANES and XRD studies were
conducted at the National Synchrotron Light Source at Brookhaven
National Laboratory. Use of the National Synchrotron Light Source,
Brookhaven National Laboratory, for the XANES experiments was supported
by the U.S. Department of Energy, Office of Basic Energy Sciences. Beam
line X18A is supported, in part, by the Synchrotron Catalysis Consortium
(Grant# DE-FG02-05ER15688). The authors would like to thank Dr. Steve
Ehrlich and Dr. Nebojsa Marinkovic for their help and support during the
in situ XANES and XRD experiments.
NR 65
TC 35
Z9 35
U1 11
U2 77
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2155-5435
J9 ACS CATAL
JI ACS Catal.
PD OCT
PY 2014
VL 4
IS 10
BP 3335
EP 3345
DI 10.1021/cs500578g
PG 11
WC Chemistry, Physical
SC Chemistry
GA AU6TS
UT WOS:000345735200004
ER
PT J
AU Hensley, AJR
Hong, YC
Zhang, RQ
Zhang, H
Sun, JM
Wang, Y
McEwen, JS
AF Hensley, Alyssa J. R.
Hong, Yongchun
Zhang, Renqin
Zhang, He
Sun, Junming
Wang, Yong
McEwen, Jean-Sabin
TI Enhanced Fe2O3 Reducibility via Surface Modification with Pd:
Characterizing the Synergy within Pd/Fe Catalysts for Hydrodeoxygenation
Reactions
SO ACS CATALYSIS
LA English
DT Article
DE bimetallic catalysts; biomass conversion; hydrodeoxygenation; Pd-Fe;
density functional theory; oxide doping effects; enhanced oxide
reduction
ID GAS-PHASE HYDRODEOXYGENATION; SULFIDED COMO/GAMMA-AL2O3; GUAIACYL
GROUPS; MODEL COMPOUNDS; CO OXIDATION; FE CATALYSTS; META-CRESOL;
BIO-OIL; HYDROGEN; ENERGY
AB The synergistic catalysis in the hydrodeoxygenation of phenolic compounds over a Pd/Fe bimetallic surface has been well established. However, the nature of this synergy is still in part a mystery. In this work, we used a combined experimental and theoretical approach to understand a potential function of the surface Pd in the reduction of Pd/Fe2O3. This function of Pd was investigated via the comparison of the reduction properties as well as other physicochemical properties of samples synthesized by the reduction of Fe2O3 nanoparticles with and without surface Pd. Temperature-programmed reduction studies demonstrated the remarkable facilitation of reduction by addition of Pd, evidenced by a 150 degrees C shift toward lower temperature of the reduction peak of Fe3+. From X-ray photoelectron spectroscopy and theoretical calculation results, the interaction between Pd and the Fe2O3 surface occurs through the exchange of electrons with both the surface Fe and O atoms. This bonding between the Pd and surface oxide elements causes the Pd to partially donate electrons to the oxide surface, making the surface electrons more delocalized. This electron delocalization stabilizes the reduced oxide surfaces, as suggested by the TPR results and theoretical prediction. Therefore, the stabilization of the reduced Fe surface as well as the facilitated water formation by introduction of Pd is expected to significantly contribute to the Pd-Fe synergy in hydrodeoxygenation catalysis.
C1 [Hensley, Alyssa J. R.; Hong, Yongchun; Zhang, Renqin; Zhang, He; Sun, Junming; Wang, Yong; McEwen, Jean-Sabin] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA.
[McEwen, Jean-Sabin] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA.
[McEwen, Jean-Sabin] Washington State Univ, Dept Chem, Pullman, WA 99164 USA.
[Hong, Yongchun; Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA.
[Hong, Yongchun] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Wang, Y (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA.
EM yong.wang@pnnl.gov; js.mcewen@wsu.edu
RI Sun, Junming/B-3019-2011; Zhang, Renqin/Q-2789-2015;
OI Sun, Junming/0000-0002-0071-9635; Zhang, Renqin/0000-0002-4489-2050;
Hong, Yongchun/0000-0002-8109-3282
FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division
of Chemical Sciences, Geosciences, and Biosciences; Voiland School of
Chemical Engineering and Bioengineering; Department of Energy's Office
of Biological and Environmental Research; U.S. Department of Energy,
Office of Science, and Office of Basic Energy Sciences
[DE-AC02-06CH11357]
FX We acknowledge the financial support from the US Department of Energy
(DOE), Office of Basic Energy Sciences, Division of Chemical Sciences,
Geosciences, and Biosciences. This work was also supported by
institutional funds provided to J.S.M. from the Voiland School of
Chemical Engineering and Bioengineering. We thank the Franceschi
Microscopy and Imaging Center (FMIC) in Washington State University for
the access to their TEM. A portion of the research was performed using
EMSL, a national scientific user facility sponsored by the Department of
Energy's Office of Biological and Environmental Research and located at
Pacific Northwest National Laboratory. We would also like to acknowledge
Dr. Mark Engelhard at EMSL for his XPS measurement contributions.
Finally, we acknowledge computational resources provided by the Center
for Nanoscale Materials at Argonne National Laboratory. Use of the
Center for Nanoscale Materials was supported by the U.S. Department of
Energy, Office of Science, and Office of Basic Energy Sciences under
Contract No. DE-AC02-06CH11357.
NR 61
TC 27
Z9 27
U1 11
U2 62
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2155-5435
J9 ACS CATAL
JI ACS Catal.
PD OCT
PY 2014
VL 4
IS 10
BP 3381
EP 3392
DI 10.1021/cs500565e
PG 12
WC Chemistry, Physical
SC Chemistry
GA AU6TS
UT WOS:000345735200007
ER
PT J
AU Singh, D
Mamtani, K
Bruening, CR
Miller, JT
Ozkan, US
AF Singh, Deepika
Mamtani, Kuldeep
Bruening, Christopher R.
Miller, Jeffrey T.
Ozkan, Umit S.
TI Use of H2S to Probe the Active Sites in FeNC Catalysts for the Oxygen
Reduction Reaction (ORR) in Acidic Media
SO ACS CATALYSIS
LA English
DT Article
DE H2S; FeNC; CNx; sulfur deactivation; ORR
ID PEM FUEL-CELLS; NITROGEN-CONTAINING CARBON; X-RAY-ABSORPTION; SUPPORTED
METAL PARTICLES; FE/N/C-CATALYSTS; ELECTROCATALYTIC ACTIVITY; O-2
ELECTROREDUCTION; MAGNETIC-PROPERTIES; CATHODE CATALYST;
TRANSITION-METAL
AB H2S has been used as a probe molecule both in an "in situ" poisoning experiment and in intermediate-temperature heat-treatment steps during and after the preparation of FeNC catalysts in an attempt to analyze its effect on their ORR activity. The heat treatments were employed either on the ball-milled precursor of FeNC or after the Ar-NH3 high temperature heat treatments. ORR activity of the H2S-treated catalysts was seen to be significantly lower than the sulfur-free catalysts, whether the sulfur exposure was during a half-cell testing, or as an intermediate-temperature exposure to H2S. The incorporation of sulfur species and interaction of Fe with sulfur were confirmed by characterization using XPS, EXAFS, TPO, and TPD. This study provides crucial evidence regarding differences in active sites in FeNC versus nitrogen-containing carbon nanostructured (CNx) catalysts.
C1 [Singh, Deepika; Mamtani, Kuldeep; Bruening, Christopher R.; Ozkan, Umit S.] Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43202 USA.
[Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
RP Ozkan, US (reprint author), Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43202 USA.
EM ozkan.1@osu.edu
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-FG02-07ER15896]; E.I. DuPont de Nemours and Co.; Dow
Chemical Company; Northwestern University; U.S. DOE [DE-AC02-06CH11357]
FX We gratefully acknowledge the financial support by the U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-FG02-07ER15896. Portions of this work were performed at
the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located
at Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by
E.I. DuPont de Nemours and Co., The Dow Chemical Company, and
Northwestern University. Use of the APS, an Office of Science User
Facility operated for the U.S. Department of Energy (DOE) Office of
Science by Argonne National Laboratory, was supported by the U.S. DOE
under Contract No. DE-AC02-06CH11357.
NR 58
TC 26
Z9 26
U1 9
U2 70
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2155-5435
J9 ACS CATAL
JI ACS Catal.
PD OCT
PY 2014
VL 4
IS 10
BP 3454
EP 3462
DI 10.1021/cs500612k
PG 9
WC Chemistry, Physical
SC Chemistry
GA AU6TS
UT WOS:000345735200013
ER
PT J
AU Li, XL
Guo, ZY
Xiao, CX
Goh, TW
Tesfagaber, D
Huang, WY
AF Li, Xinle
Guo, Zhiyong
Xiao, Chaoxian
Goh, Tian Wei
Tesfagaber, Daniel
Huang, Wenyu
TI Tandem Catalysis by Palladium Nanoclusters Encapsulated in Metal-Organic
Frameworks
SO ACS CATALYSIS
LA English
DT Article
DE tandem synthesis; acetalization; bifunctional catalysts; UiO-66; acetal;
solid acid; selective oxidation
ID SELECTIVE OXIDATION; CASCADE REACTIONS; MULTIFUNCTIONAL CATALYSTS;
HETEROGENEOUS CATALYST; LINKER SUBSTITUTION; HYDROGEN-PEROXIDE; AEROBIC
OXIDATION; PRIMARY ALCOHOLS; GOLD CLUSTERS; FORMIC-ACID
AB A bifunctional Zr-MOF catalyst containing palladium nanoclusters (NCs) has been developed. The formation of Pd NCs was confirmed by transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS). Combining the oxidation activity of Pd NCs and the acetalization activity of the Lewis acid sites in UiO-66-NH2, this catalyst (Pd@UiO-66-NH2) exhibits excellent catalytic activity and selectivity in a one-pot tandem oxidation-acetalization reaction. This catalyst shows 99.9% selectivity to benzaldehyde ethylene acetal in the tandem reaction of benzyl alcohol and ethylene glycol at 99.9% conversion of benzyl alcohol. We also examined various substituted benzyl alcohols and found that alcohols with electron-donating groups showed better conversion and selectivity compared to those with electron-withdrawing groups. We further proved that there was no leaching of active catalytic species during the reaction and the catalyst can be recycled at least five times without significant deactivation.
C1 [Li, Xinle; Guo, Zhiyong; Xiao, Chaoxian; Goh, Tian Wei; Tesfagaber, Daniel; Huang, Wenyu] Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
[Li, Xinle; Guo, Zhiyong; Xiao, Chaoxian; Goh, Tian Wei; Tesfagaber, Daniel; Huang, Wenyu] US DOE, Ames Lab, Ames, IA 50011 USA.
RP Huang, WY (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
EM whuang@iastate.edu
RI Xiao, Chaoxian/E-7339-2013; Guo, Zhiyong/L-5541-2014; li,
xinle/B-8285-2016; Goh, Tian Wei/G-3463-2016; Huang, Wenyu/L-3784-2014
OI Xiao, Chaoxian/0000-0002-4012-0539; li, xinle/0000-0001-5747-4029; Goh,
Tian Wei/0000-0002-4141-3392; Huang, Wenyu/0000-0003-2327-7259
FU Laboratory Research and Development Program of The Ames Laboratory; U.S.
Department of Energy by Iowa State University [DE-AC02-07CH11358]; U.S.
DOE [DE-AC02-06CH11357]
FX We thank Ames Laboratory (Royalty Account) and Iowa State University for
startup funds. This work was also supported by the Laboratory Research
and Development Program of The Ames Laboratory. The Ames Laboratory is
operated for the U.S. Department of Energy by Iowa State University
under Contract No. DE-AC02-07CH11358. We thank to Dale L. Brewe, Steve
M. Heald, Trudy B. Bolin, Tianpin Wu, and Jeff Miller for the help
during XAS measurement at APS. Use of the Advanced Photon Source, an
Office of Science User Facility operated for the U.S. Department of
Energy (DOE) Office of Science by Argonne National Laboratory, was
supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. We thank
Robert J. Angelici for his advice during the writing of this manuscript.
We thank Gordon J. Miller for use of PXRD, Brent Shanks for use of TGA,
and Igor I. Slowing for use of gas adsorption analyzer and ICP-AES.
NR 69
TC 49
Z9 49
U1 49
U2 244
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2155-5435
J9 ACS CATAL
JI ACS Catal.
PD OCT
PY 2014
VL 4
IS 10
BP 3490
EP 3497
DI 10.1021/cs5006635
PG 8
WC Chemistry, Physical
SC Chemistry
GA AU6TS
UT WOS:000345735200017
ER
PT J
AU Bays, JT
Priyadarshani, N
Jeletic, MS
Hulley, EB
Miller, DL
Linehan, JC
Shaw, WJ
AF Bays, J. Timothy
Priyadarshani, Nilusha
Jeletic, Matthew S.
Hulley, Elliot B.
Miller, Deanna L.
Linehan, John C.
Shaw, Wendy J.
TI The Influence of the Second and Outer Coordination Spheres on
Rh(diphosphine)(2) CO2 Hydrogenation Catalysts
SO ACS CATALYSIS
LA English
DT Article
DE CO2 hydrogenation; amino acid catalysts; outer coordination sphere;
homogeneous catalysis; in situ NMR
ID CARBON-DIOXIDE; HOMOGENEOUS HYDROGENATION; OXIDATION CATALYST; H-2
PRODUCTION; FORMIC-ACID; COMPLEXES; WATER; ELECTROCATALYSTS; RATES;
LIGANDS
AB A series of [Rh((PCH2XCH2P)-C-R)(2)](+) complexes was prepared to investigate second and outer coordination sphere effects on CO2 hydrogenation catalysis, where X is CH2 (dppp) or X-R is N-CH3, N-CH2COOH (glycine), N-CH2COOCH3 (Gly-OMe), or N-CH2C(O)N-CH(CH3)-COOCH3 (GlyAla-OMe). All of these complexes were active for CO2 reduction to formate, with the N-CH3 derivative offering an 8-fold enhancement over the dppp derivative, which is consistent with increased electron density around the metal. Despite the increase in rate with the addition of the pendant nitrogen, the addition of electron withdrawing amino acids and dipeptides to the amine resulted in complexes with reductions in rate of 1 to 2 orders of magnitude, most consistent with a change in pK(a) of the pendant amine, resulting in lower activity. Collectively, the data suggest multiple contributions of the pendant amine in this catalytic system.
C1 [Bays, J. Timothy; Priyadarshani, Nilusha; Jeletic, Matthew S.; Hulley, Elliot B.; Miller, Deanna L.; Linehan, John C.; Shaw, Wendy J.] Pacific NW Natl Lab, Richland, WA 99354 USA.
RP Linehan, JC (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA.
EM john.linehan@pnnl.gov; wendy.shaw@pnnl.gov
OI Boralugodage, Nilusha/0000-0001-5472-6374
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Chemical Sciences, Geosciences Biosciences; Department of Energy's
Office of Biological and Environmental Research
FX The authors would like to thank Dr. Aaron Appel for helpful discussions.
This work was supported by the U.S. Department of Energy, Office of
Basic Energy Sciences, Division of Chemical Sciences, Geosciences &
Biosciences. Pacific Northwest National Laboratory (PNNL) is a
multiprogram national laboratory operated for the DOE by Battelle. A
portion of this research was performed using EMSL, a national scientific
user facility sponsored by the Department of Energy's Office of
Biological and Environmental Research and located at Pacific Northwest
National Laboratory.
NR 42
TC 9
Z9 9
U1 5
U2 29
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2155-5435
J9 ACS CATAL
JI ACS Catal.
PD OCT
PY 2014
VL 4
IS 10
BP 3663
EP 3670
DI 10.1021/cs5009199
PG 8
WC Chemistry, Physical
SC Chemistry
GA AU6TS
UT WOS:000345735200039
ER
PT J
AU Jeletic, MS
Helm, ML
Hulley, EB
Mock, MT
Appel, AM
Linehan, JC
AF Jeletic, Matthew S.
Helm, Monte L.
Hulley, Elliott B.
Mock, Michael T.
Appel, Aaron M.
Linehan, John C.
TI A Cobalt Hydride Catalyst for the Hydrogenation of CO2: Pathways for
Catalysis and Deactivation
SO ACS CATALYSIS
LA English
DT Article
DE CO2; cobalt; hydrogenation; catalysis; high-pressure NMR
ID TRANSITION-METAL HYDRIDES; CARBON-DIOXIDE HYDROGENATION; AB-INITIO
CALCULATIONS; DEFINED IRON CATALYST; FORMIC-ACID; HOMOGENEOUS
HYDROGENATION; AMBIENT-TEMPERATURE; MECHANISTIC ASPECTS; CHELATING
LIGANDS; PINCER COMPLEX
AB The complex Co(dmpe)(2)H catalyzes the hydrogenation of CO2 at 1 atm and 21 degrees C with significant improvement in turnover frequency relative to previously reported second- and third-row transition-metal complexes. New studies are presented to elucidate the catalytic mechanism as well as pathways for catalyst deactivation. The catalytic rate was optimized through the choice of the base to match the pK(a) of the [Co(dmpe)(2)(H)(2)](+) intermediate. With a strong enough base, the catalytic rate has a zeroth-order dependence on the base concentration and the pressure of hydrogen and a first-order dependence on the pressure of CO2. However, for CO2:H-2 ratios greater than 1, the catalytically inactive species [(mu-dmpe)-(Co(dmpe)(2))(2)](2+) and [Co(dmpe)(2)CO](+) were observed.
C1 [Jeletic, Matthew S.; Helm, Monte L.; Hulley, Elliott B.; Mock, Michael T.; Appel, Aaron M.; Linehan, John C.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Linehan, JC (reprint author), Pacific NW Natl Lab, POB 999,MS K2-57, Richland, WA 99352 USA.
EM john.linehan@pnnl.gov
OI Appel, Aaron/0000-0002-5604-1253
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Chemical Sciences, Geosciences, and Biosciences; Center for Molecular
Electrocatalysis, an Energy Frontier Research Center - U.S. Department
of Energy, Office of Science
FX Research by M.S.J., M.T.M., A.M.A., and J.C.L. was supported by the U.S.
Department of Energy, Office of Basic Energy Sciences, Division of
Chemical Sciences, Geosciences, and Biosciences. Research by M.L.H. and
E.B.H. was supported as part of the Center for Molecular
Electrocatalysis, an Energy Frontier Research Center funded by the U.S.
Department of Energy, Office of Science. Pacific Northwest National
Laboratory (PNNL) is a multiprogram national laboratory operated for the
DOE by Battelle.
NR 67
TC 28
Z9 28
U1 7
U2 99
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2155-5435
J9 ACS CATAL
JI ACS Catal.
PD OCT
PY 2014
VL 4
IS 10
BP 3755
EP 3762
DI 10.1021/cs5009927
PG 8
WC Chemistry, Physical
SC Chemistry
GA AU6TS
UT WOS:000345735200050
ER
PT J
AU Jimenez-Mier, J
Olalde-Velasco, P
Herrera-Perez, G
Carabali-Sandoval, G
Chavira, E
Yang, WL
Denlinger, J
AF Jimenez-Mier, J.
Olalde-Velasco, P.
Herrera-Perez, G.
Carabali-Sandoval, G.
Chavira, E.
Yang, W. -L.
Denlinger, J.
TI Strongly correlated transition metal compounds investigated by soft
X-ray spectroscopies and multiplet calculations
SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA
LA English
DT Article
DE Transition metal compounds; X-ray absorption; X-ray emission;
Mott-Hubbard insulator; Charge transfer insulator; Oxidation states
ID GEL ACRYLAMIDE POLYMERIZATION; SOLID-STATE REACTION;
ELECTRONIC-STRUCTURE; BAND-GAPS; SPECTRA; LACOO3
AB Direct probe of Mott-Hubbard (MH) to charge-transfer (CT) insulator transition in the MF2 (M = Cr-Zn) family of compounds was observed by combining F K and M LX-ray emission spectra (XES). This transition is evident as a crossover of the F-2p and M-3d occupied states. By combining F K XES data with F K edge Xray absorption (XAS) data we directly obtained values for the M-3d Hubbard energy (U-dd) and the F-2p to M-3d charge-transfer energy (Delta(CT)). Our results are in good agreement with the Zaanen-Sawatzky-Allen theory. We also present three examples where X-ray absorption at the transition metal L-2,L-3 edges is used to study the oxidation state of various strongly correlated transition metal compounds. The metal oxidation state is obtained by direct comparison with crystal field multiplet calculations. The compounds are CrF2, members of the La1-xSrxCoO3 family, and the MVO3 (M = La and Y) perovskites. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Jimenez-Mier, J.; Olalde-Velasco, P.; Herrera-Perez, G.; Carabali-Sandoval, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico.
[Olalde-Velasco, P.; Yang, W. -L.; Denlinger, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Chavira, E.] Univ Nacl Autonoma Mexico, Inst Invest Mat, Mexico City 04510, DF, Mexico.
RP Jimenez-Mier, J (reprint author), Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico.
EM jimenez@nucleares.unam.mx
RI Jimenez-Mier, Jose/A-5081-2009; Yang, Wanli/D-7183-2011
OI Jimenez-Mier, Jose/0000-0002-5939-9568; Yang, Wanli/0000-0003-0666-8063
FU DOE [DE-AC03-76sF0009]; CONACyT Mexico [56764]
FX The Advanced Light Source is supported by DOE (DE-AC03-76sF0009). This
work was supported by CONACyT Mexico under research grant No. 56764.
NR 28
TC 0
Z9 0
U1 1
U2 21
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0368-2048
EI 1873-2526
J9 J ELECTRON SPECTROSC
JI J. Electron Spectrosc. Relat. Phenom.
PD OCT
PY 2014
VL 196
SI SI
BP 136
EP 141
DI 10.1016/j.elspec.2014.07.002
PG 6
WC Spectroscopy
SC Spectroscopy
GA AU8CE
UT WOS:000345823400029
ER
PT J
AU Wen, JG
Miller, DJ
Chen, W
Xu, T
Yu, LP
Darling, SB
Zaluzec, NJ
AF Wen, Jianguo
Miller, Dean J.
Chen, Wei
Xu, Tao
Yu, Luping
Darling, Seth B.
Zaluzec, Nestor J.
TI Visualization of Hierarchical Nanodomains in Polymer/Fullerene Bulk
Heterojunction Solar Cells
SO MICROSCOPY AND MICROANALYSIS
LA English
DT Article
DE organic photovoltaics; energy-filtered transmission electron microscopy;
chromatic aberration correction; electron energy-loss spectroscopy;
X-ray energy-dispersive spectroscopy
ID ELECTRON-MICROSCOPY; MORPHOLOGY; EFFICIENCY; TEM; RESOLUTION; CONTRAST;
BLENDS
AB Traditional electron microscopy techniques such as bright-field imaging provide poor contrast for organic films and identification of structures in amorphous material can be problematic, particularly in high-performance organic solar cells. By combining energy-filtered corrected transmission electron microscopy, together with electron energy loss and X-ray energy-dispersive hyperspectral imaging, we have imaged PTB7/PC61BM blended polymer optical photovoltaic films, and were able to identify domains ranging in size from several hundred nanometers to several nanometers in extent. This work verifies that microstructural domains exist in bulk heterojunctions in PTB7/PC61BM polymeric solar cells at multiple length scales and expands our understanding of optimal device performance providing insight for the design of even higher performance cells.
C1 [Wen, Jianguo; Miller, Dean J.; Zaluzec, Nestor J.] Argonne Natl Lab, Nanosci & Technol Div, Ctr Electron Microscopy, Argonne, IL 60439 USA.
[Chen, Wei] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Xu, Tao; Yu, Luping] Univ Chicago, James Franck Inst, Dept Chem, Chicago, IL 60637 USA.
[Darling, Seth B.] Argonne Natl Lab, Nanosci & Technol Div, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Darling, Seth B.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA.
RP Wen, JG (reprint author), Argonne Natl Lab, Nanosci & Technol Div, Ctr Electron Microscopy, 9700 South Cass Ave, Argonne, IL 60439 USA.
EM jgwen@anl.gov; miller@anl.gov
RI Chen, Wei/G-6055-2011
OI Chen, Wei/0000-0001-8906-4278
FU US Department of Energy, Office of Science, Basic Energy Sciences
[DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences [KC020301]; NSF; NSF-MRSEC; AFOSR; DOE;
University of Chicago-Argonne Strategic Collaborative Initiative Seed
Grant; University of Chicago and the Department of Energy under
Department of Energy [DE-AC02-06CH11357]
FX Use of the Electron Microscopy Center, the Advanced Photon Source (APS),
and the Center for Nanoscale Materials at Argonne National Laboratory
was supported by the US Department of Energy, Office of Science, Basic
Energy Sciences, under Contract No. DE-AC02-06CH11357. W. Chen
gratefully acknowledges financial support from the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under award
No. KC020301. L. Yu and T. Xu acknowledge support from NSF, NSF-MRSEC,
AFOSR, and DOE on the synthesis of polymers. This work was also
supported by a University of Chicago-Argonne Strategic Collaborative
Initiative Seed Grant, the University of Chicago and the Department of
Energy under Department of Energy Contract No. DE-AC02-06CH11357 awarded
to UChicago Argonne, LLC, the operator of Argonne National Laboratory.
NR 33
TC 5
Z9 5
U1 7
U2 33
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 1431-9276
EI 1435-8115
J9 MICROSC MICROANAL
JI Microsc. microanal.
PD OCT
PY 2014
VL 20
IS 5
BP 1507
EP 1513
DI 10.1017/S1431927614001615
PG 7
WC Materials Science, Multidisciplinary; Microscopy
SC Materials Science; Microscopy
GA AU6WT
UT WOS:000345742900021
PM 24950215
ER
PT J
AU Chen, X
Zuo, D
Kim, S
Mabon, J
Sardela, M
Wen, JG
Zuo, JM
AF Chen, Xin
Zuo, Daniel
Kim, Seongwon
Mabon, James
Sardela, Mauro
Wen, Jianguo
Zuo, Jian-Min
TI Large Area and Depth-Profiling Dislocation Imaging and Strain Analysis
in Si/SiGe/Si Heterostructures
SO MICROSCOPY AND MICROANALYSIS
LA English
DT Article
DE electron beam-induced current (EBIC); transmission electron microscopy
(TEM); X-ray diffraction reciprocal space mapping (XRD RSM); strained
silicon; dislocations
ID SCANNING-ELECTRON-MICROSCOPY; MISFIT DISLOCATIONS; RECOMBINATION
ACTIVITY; BUFFER LAYERS; RELAXATION; EPILAYERS; DEFECT
AB We demonstrate the combined use of large area depth-profiling dislocation imaging and quantitative composition and strain measurement for a strained Si/SiGe/Si sample based on nondestructive techniques of electron beam-induced current (EBIC) and X-ray diffraction reciprocal space mapping (XRD RSM). Depth and improved spatial resolution is achieved for dislocation imaging in EBIC by using different electron beam energies at a low temperature of similar to 7 K. Images recorded clearly show dislocations distributed in three regions of the sample: deep dislocation networks concentrated in the "strained" SiGe region, shallow misfit dislocations at the top Si/SiGe interface, and threading dislocations connecting the two regions. Dislocation densities at the top of the sample can be measured directly from the EBIC results. XRD RSM reveals separated peaks, allowing a quantitative measurement of composition and strain corresponding to different layers of different composition ratios. High-resolution scanning transmission electron microscopy cross-section analysis clearly shows the individual composition layers and the dislocation lines in the layers, which supports the EBIC and XRD RSM results.
C1 [Chen, Xin; Zuo, Jian-Min] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA.
[Chen, Xin; Mabon, James; Sardela, Mauro; Wen, Jianguo; Zuo, Jian-Min] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA.
[Chen, Xin] E China Univ Sci & Technol, Shanghai Key Lab Adv Polymer Mat, Sch Mat Sci & Engn, Key Lab Ultrafine Mat,Minist Educ, Shanghai 200237, Peoples R China.
[Zuo, Daniel] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA.
[Kim, Seongwon] Korea Inst Ceram Engn & Technol, Engn Ceram Ctr, Inchon 467843, South Korea.
[Wen, Jianguo] Argonne Natl Lab, Ctr Electron Microscopy, Argonne, IL 60439 USA.
RP Zuo, JM (reprint author), Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA.
EM jianzuo@illinois.edu
RI Chen, Xin/C-7667-2012
OI Chen, Xin/0000-0003-0271-2784
FU US Army Research Office [W911NF-10-1-0524]; Shanghai Leading Academic
Discipline Project [B502]; Shanghai Key Laboratory Project
[08DZ2230500]; Science and Technology Commission of Shanghai
Municipality Project [11nm0507000]
FX This work was carried out as part of the effort to establish the EBIC
technique for semiconductor defect analysis at the University of
Illinois supported by the US Army Research Office (Grant No. Army
W911NF-10-1-0524 and monitored by Dr. William Clark) through the MURI
program. Dr. Chen is also supported by the Shanghai Leading Academic
Discipline Project (B502), Shanghai Key Laboratory Project
(08DZ2230500), and Science and Technology Commission of Shanghai
Municipality Project (11nm0507000).
NR 18
TC 0
Z9 0
U1 3
U2 19
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 1431-9276
EI 1435-8115
J9 MICROSC MICROANAL
JI Microsc. microanal.
PD OCT
PY 2014
VL 20
IS 5
BP 1521
EP 1527
DI 10.1017/S1431927614012963
PG 7
WC Materials Science, Multidisciplinary; Microscopy
SC Materials Science; Microscopy
GA AU6WT
UT WOS:000345742900023
PM 25158752
ER
PT J
AU Fan, JL
Yan, CS
Roston, R
Shanklin, J
Xu, CC
AF Fan, Jilian
Yan, Chengshi
Roston, Rebecca
Shanklin, John
Xu, Changcheng
TI Arabidopsis Lipins, PDAT1 Acyltransferase, and SDP1 Triacylglycerol
Lipase Synergistically Direct Fatty Acids toward beta-Oxidation, Thereby
Maintaining Membrane Lipid Homeostasis
SO PLANT CELL
LA English
DT Article
ID CHLOROPLAST INNER ENVELOPE; STORAGE OIL MOBILIZATION; DIACYLGLYCEROL
ACYLTRANSFERASE; ENDOPLASMIC-RETICULUM; CONTACT SITES;
SACCHAROMYCES-CEREVISIAE; PHOSPHOLIPID-SYNTHESIS; PHOSPHATIDIC-ACID;
CARRIER PROTEIN; BRASSICA-NAPUS
AB Triacylglycerol (TAG) metabolism is a key aspect of intracellular lipid homeostasis in yeast and mammals, but its role in vegetative tissues of plants remains poorly defined. We previously reported that PHOSPHOLIPID: DIACYLGLYCEROL ACYLTRANSFERASE1 (PDAT1) is crucial for diverting fatty acids (FAs) from membrane lipid synthesis to TAG and thereby protecting against FA-induced cell death in leaves. Here, we show that overexpression of PDAT1 enhances the turnover of FAs in leaf lipids. Using the trigalactosyldiacylglycerol1-1 (tgd1-1) mutant, which displays substantially enhanced PDAT1-mediated TAG synthesis, we demonstrate that disruption of SUGAR-DEPENDENT1 (SDP1) TAG lipase or PEROXISOMAL TRANSPORTER1 (PXA1) severely decreases FA turnover, leading to increases in leaf TAG accumulation, to 9% of dry weight, and in total leaf lipid, by 3-fold. The membrane lipid composition of tgd1-1 sdp1-4 and tgd1-1 pxa1-2 double mutants is altered, and their growth and development are compromised. We also show that two Arabidopsis thaliana lipin homologs provide most of the diacylglycerol for TAG synthesis and that loss of their functions markedly reduces TAG content, but with only minor impact on eukaryotic galactolipid synthesis. Collectively, these results show that Arabidopsis lipins, along with PDAT1 and SDP1, function synergistically in directing FAs toward peroxisomal beta-oxidation via TAG intermediates, thereby maintaining membrane lipid homeostasis in leaves.
C1 [Fan, Jilian; Yan, Chengshi; Shanklin, John; Xu, Changcheng] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA.
[Roston, Rebecca] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA.
RP Xu, CC (reprint author), Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA.
EM cxu@bnl.gov
RI Yan, Chengshi/O-5639-2014
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, Chemical Sciences, Geosciences, and Biosciences Division
[DEAC0298CH10886]; Office of Basic Energy Sciences, U.S. Department of
Energy [DEAC0298CH10886]
FX We thank John Ohlrogge and Kent Chapman for providing pdat1-2 and cgi58
mutant seeds, respectively. This material is based upon work supported
by the U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences, Chemical Sciences, Geosciences, and Biosciences
Division under Contract DEAC0298CH10886. Use of the transmission
electron microscope and the confocal microscope at the Center of
Functional Nanomaterials was supported by the Office of Basic Energy
Sciences, U.S. Department of Energy, under Contract DEAC0298CH10886.
NR 95
TC 23
Z9 25
U1 11
U2 48
PU AMER SOC PLANT BIOLOGISTS
PI ROCKVILLE
PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA
SN 1040-4651
EI 1532-298X
J9 PLANT CELL
JI Plant Cell
PD OCT
PY 2014
VL 26
IS 10
BP 4119
EP 4134
DI 10.1105/tpc.114.130377
PG 16
WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology
SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology
GA AU9NO
UT WOS:000345920900025
PM 25293755
ER
PT J
AU Gangodagamage, C
Foufoula-Georgiou, E
Belmont, P
AF Gangodagamage, Chandana
Foufoula-Georgiou, Efi
Belmont, Patrick
TI River basin organization around the main stem: Scale invariance in
tributary branching and the incremental area function
SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE
LA English
DT Article
DE tributary organization; lidar topographic analysis; width function;
spatial heterogeneity; multiplicative cascades; distance between
tributaries for a given incremental area; intermittency coefficient
ID MULTIFRACTAL FORMALISM; GEOMORPHOLOGICAL DISPERSION; NORTHERN
CALIFORNIA; TEMPORAL RAINFALL; CHANNEL NETWORKS; WIDTH FUNCTION;
ELEVATION; WAVELETS; CASCADE; MODELS
AB The incremental increase in contributing area along a main stem river, called here the incremental area function (IAF), has direct relevance to the spatial heterogeneity of environmental fluxes (water, sediment, nutrients, etc.) entering the stream from hillslopes and side tributaries. It also dictates, to a large extent, possible ecohydrologic discontinuities or transitions resulting from large tributary contributions. Mathematically, the IAF directly reflects the topological and geometrical structure of the river network and maps the two-dimensional landscape organization into a one-dimensional function. In this paper, we use two approaches to investigate the spatial heterogeneity of the IAF. First, we implement a multithreshold decomposition on IAF to study the distribution of distances between tributaries as a function of the imposed threshold contributing area and verify the presence of a simple power law scaling relationship between the threshold and the average distance between tributaries. Second, we use a wavelet-based multiscale approach and document the presence of statistical self-affinity (multifractality) in the IAF with a high intermittency coefficient, reflecting the complex arrangement of extreme contributions of different size tributaries. We propose a multiplicative cascade model, parameterized in terms of basin-specific properties, to statistically simulate the IAF along the main stem. Finally, we point out the relation between the IAF and the widely used width function of a basin and show how the latter can be constructed from the former via a convolution on the self-similar structure of a tree.
Key Points Examine the probabilistic structure of incremental drainage areaRelate the main stem incremental area function to the width functionQuantify the spatial heterogeneity of environmental fluxes
C1 [Gangodagamage, Chandana] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA.
[Gangodagamage, Chandana; Foufoula-Georgiou, Efi; Belmont, Patrick] Univ Minnesota, St Anthony Falls Lab, Minneapolis, MN USA.
[Gangodagamage, Chandana; Foufoula-Georgiou, Efi; Belmont, Patrick] Univ Minnesota, Dept Civil Engn, Natl Ctr Earth Surface Dynam, Minneapolis, MN USA.
[Belmont, Patrick] Utah State Univ, Dept Watershed Sci, Logan, UT 84322 USA.
RP Gangodagamage, C (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA.
EM chhandana@gmail.com
OI Gangodagamage, Chandana/0000-0001-6511-1711
FU NSF's Division of Earth Sciences, Instrumentation and Facilities Program
[EAR-1043051, 10.5069/G9639MPN]; National Center for Earth-surface
Dynamics (NCED), a Science and Technology Center - NSF's Office of
Integrative Activities [EAR-0120914]; NSF CDI grant [EAR-0835789];
Doctoral Dissertation Fellowship by the graduate school of the
University of Minnesota; Ling Chair in Environmental Engineering
FX We thank Collin Bode for providing us with the lidar data. Lidar data
acquisition and processing were completed by the National Center for
Airborne Laser Mapping (NCALM: http://www.ncalm.org). NCALM funding was
provided by NSF's Division of Earth Sciences, Instrumentation and
Facilities Program (EAR-1043051, 10.5069/G9639MPN). Lidar dataset used
in this study are freely available at the following url:
http://opentopo.sdsc.edu/gridsphere/gridsphere?
cid=geonlidarframeportlet&gs_action =datasetMetadata&otCollectionID=
OT.022013.26910.1. Discussions throughout the course of this work with
William Dietrich are greatly appreciated. This work has been partially
supported by the National Center for Earth-surface Dynamics (NCED), a
Science and Technology Center funded by NSF's Office of Integrative
Activities under agreement EAR-0120914, an NSF CDI grant EAR-0835789, a
Doctoral Dissertation Fellowship by the graduate school of the
University of Minnesota, and the Ling Chair in Environmental Engineering
to the senior author. Computer resources were provided by the Minnesota
Supercomputing Institute, Digital Technology Center, at the University
of Minnesota. We thank Andrea Rinaldo and Paolo Tarolli for their
extremely helpful comments and thorough review of this paper. Finally,
we would like to thank the Editor Alexander Densmore and Associate
Editor John Pelletier for their valuable insight and comments on this
work.
NR 65
TC 3
Z9 3
U1 0
U2 16
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9003
EI 2169-9011
J9 J GEOPHYS RES-EARTH
JI J. Geophys. Res.-Earth Surf.
PD OCT
PY 2014
VL 119
IS 10
BP 2174
EP 2193
DI 10.1002/2014JF003304
PG 20
WC Geosciences, Multidisciplinary
SC Geology
GA AU1FN
UT WOS:000345366600005
ER
PT J
AU Ryser, C
Luthi, MP
Andrews, LC
Catania, GA
Funk, M
Hawley, R
Hoffman, M
Neumann, TA
AF Ryser, C.
Luethi, M. P.
Andrews, L. C.
Catania, G. A.
Funk, M.
Hawley, R.
Hoffman, M.
Neumann, T. A.
TI Caterpillar-like ice motion in the ablation zone of the Greenland ice
sheet
SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE
LA English
DT Article
DE ice dynamics; summer variations; stress transfer
ID JAKOBSHAVN ISBRAE; DRAINAGE SYSTEM; GLACIER MOTION; OUTLET GLACIER;
SURFACE MELT; BASAL MOTION; DEFORMATION; ACCELERATION; FLOW; DYNAMICS
AB Current understanding of ice dynamics predicts that increasing availability and variability of meltwater will have an impact on basal motion and therefore on the evolution and future behavior of the Greenland ice sheet. We present measurements of ice deformation, subglacial water pressure, and surface velocity that show periodic and episodic variations on several time scales (seasonal, multiday, and diurnal). These variations, observed with GPS and sensors at different depths throughout the ice column, are not synchronous but show delayed responses of ice deformation with increasing depth and basal water pressure in antiphase with surface velocity. With the help of a Full-Stokes ice flow model, these observations are explained as ice motion in a caterpillar-like fashion. Caused by patches of different basal slipperiness, horizontal stress transfer through the stiff central part of the ice body leads to spatially varying surface velocities and ice deformation patterns. Variation of this basal slipperiness induces characteristic patterns of ice deformation variability that explain the observed behavior. Ice flow in the ablation zone of the Greenland ice sheet is therefore controlled by activation of basal patches by varying slipperiness in the course of a melt season, leading to caterpillar-like ice motion superposed on the classical shear deformation.
C1 [Ryser, C.; Luethi, M. P.; Funk, M.] ETH, Versuchsanstalt Wasserbau Hydrol & Glaziol, Zurich, Switzerland.
[Andrews, L. C.; Catania, G. A.] Univ Texas Austin, Inst Geophys, Austin, TX USA.
[Andrews, L. C.; Catania, G. A.] Univ Texas Austin, Dept Geol Sci, Austin, TX USA.
[Hawley, R.] Dartmouth Coll, Dept Earth Sci, Hanover, NH 03755 USA.
[Hoffman, M.] Los Alamos Natl Lab, Fluid Dynam & Solid Mech Grp, Los Alamos, NM USA.
[Neumann, T. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Ryser, C (reprint author), ETH, Versuchsanstalt Wasserbau Hydrol & Glaziol, Zurich, Switzerland.
EM ryser@vaw.baug.ethz.ch
RI Catania, Ginny/B-9787-2008; Neumann, Thomas/D-5264-2012; Andrews,
Lauren/D-8274-2017;
OI Andrews, Lauren/0000-0003-3727-4737; Luthi, Martin
Peter/0000-0003-4419-8496
FU Swiss National Science Foundation [200021_127197]; US-NSF [OPP 0908156,
OPP 0909454, ANT-0424589]; NASA Cryospheric Sciences; Climate Modeling
Programs within the U.S. Department of Energy Office of Science
FX We thank several people who were essential in this project: Cornelius
Senn, Edi Imhof, Thomas Wyder, Andreas Bauder, Christian Birchler,
Michael Meier, Blaine Moriss, and Fabian Walter. This project was
supported by Swiss National Science Foundation grant 200021_127197;
US-NSF grants OPP 0908156, OPP 0909454, and ANT-0424589 (to CRe-SIS);
NASA Cryospheric Sciences; and Climate Modeling Programs within the U.S.
Department of Energy Office of Science. Logistical support was provided
by CH2MHill Polar Services. GPS receivers were provided by UNAVCO. We
thank "Microwave and Remote Sensing, DTU Space, the Technical University
of Denmark" for providing bedrock topography data of the area. We also
acknowledge the help of pilots and airport cargo staff of Air Greenland
in Ilulissat. Further, we thank Jason Gulley and Martin Truffer for
commenting on the manuscript. We acknowledge the reviews by David
Podrasky, two anonymous referees, and scientific Editor Bryn Hubbard.
NR 45
TC 12
Z9 12
U1 1
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9003
EI 2169-9011
J9 J GEOPHYS RES-EARTH
JI J. Geophys. Res.-Earth Surf.
PD OCT
PY 2014
VL 119
IS 10
BP 2258
EP 2271
DI 10.1002/2013JF003067
PG 14
WC Geosciences, Multidisciplinary
SC Geology
GA AU1FN
UT WOS:000345366600009
ER
PT J
AU Viveiros, F
Vandemeulebrouck, J
Rinaldi, AP
Ferreira, T
Silva, C
Cruz, JV
AF Viveiros, Fatima
Vandemeulebrouck, Jean
Rinaldi, Antonio P.
Ferreira, Teresa
Silva, Catarina
Cruz, Jose V.
TI Periodic behavior of soil CO2 emissions in diffuse degassing areas of
the Azores archipelago: Application to seismovolcanic monitoring
SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
LA English
DT Article
DE soil diffuse degassing; volcanic gases; CO2 flux; daily cycles;
seasonality; hydrothermal areas
ID ATMOSPHERIC-PRESSURE; SEISMIC ACTIVITY; FURNAS VOLCANO; SAO-MIGUEL;
PHLEGRAEAN FIELDS; FLUX MEASUREMENTS; CANARY-ISLANDS; TIME-SERIES; EARTH
TIDES; RADON
AB Time series of soil CO2 efflux recorded in the Azores archipelago volcanic-hydrothermal areas feature daily and seasonal variations. The recorded CO2 efflux values were lower during summer than in the winter season. The diurnal CO2 efflux values were higher at dawn and lower in the early afternoon, contrary to that observed in biogenic environments. CO2 efflux cycles correlated well with the environmental variables, such as air temperature, wind speed, and barometric pressure, which also showed low- and high-frequency periodicities. Several simulations were performed here using the Transport of Unsaturated Groundwater and Heat 2 (TOUGH2) geothermal simulator to complement the study of Rinaldi et al. (2012). The effects of the water table depth, air temperature perturbation amplitude, and soil thermal gradient contributed to an explanation of the contrasts observed in the diurnal (S-1) and semidiurnal (S-2) soil CO2 efflux peaks for the different monitoring sites and seasons. Filtering techniques (multivariate regression analysis and fast Fourier transform filters) were also applied to the recorded time series to remove effects of external variables on the soil CO2 efflux. The resulting time series (the residuals) correspond to the best approach to the deep-seated (volcanic/hydrothermal) CO2 emissions and thus should be used in seismovolcanic monitoring programs. Even if no evident correlation can be established yet between the soil CO2 residuals and seismicity over the monitored time, a seismic swarm that occurred around the end of 2008 might have triggered some deviations from the observed daily cycles.
Key Points Daily and seasonal cycles are identified in CO2 efflux in volcanic areasWater table and thermal amplitudes are explicative factors of diurnal cycles
C1 [Viveiros, Fatima; Ferreira, Teresa; Silva, Catarina; Cruz, Jose V.] Univ Acores, Ctr Vulcanol & Avaliacao Riscos Geol, Ponta Delgada, Portugal.
[Vandemeulebrouck, Jean] Univ Savoie, CNRS, ISTerre, Chambery, France.
[Rinaldi, Antonio P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Viveiros, F (reprint author), Univ Acores, Ctr Vulcanol & Avaliacao Riscos Geol, Ponta Delgada, Portugal.
EM Maria.FB.Viveiros@azores.gov.pt
RI Cruz, Jose/N-1724-2013; Rinaldi, Antonio Pio/N-3284-2013;
OI Cruz, Jose/0000-0002-6475-3824; Rinaldi, Antonio
Pio/0000-0001-7052-8618; Viveiros, Fatima/0000-0002-0442-7955; Silva,
Catarina/0000-0002-1196-306X
FU Regional Civil Protection; Fundo Regional da Ciencia, Regiao Autonoma
dos Acores (PROEMPREGO Operational Program); DOE-LBNL
[DE-AC02-05CH11231]; Azores Regional Government/Servico Regional de
Proteccao Civil e Bombeiros dos Acores; European Union [308665]; EDA
Renovaveis
FX The data that support this study were recorded by the permanent stations
installed in the Azores archipelago, which are under the propriety of
the CVARG/CIVISA. The gas monitoring activities were funded both by the
Regional Civil Protection and by private companies (e.g., EDA
Renovaveis), and for this reason these data can only be released under
request and with approval of the above mentioned institutions. F.
Viveiros is supported by a PostDoctoral grant from Fundo Regional da
Ciencia, Regiao Autonoma dos Acores (PROEMPREGO Operational Program).
A.P. Rinaldi is currently supported by DOE-LBNL contract
DE-AC02-05CH11231. This study was supported by the Azores Regional
Government/Servico Regional de Proteccao Civil e Bombeiros dos Acores,
in the scope of the scientific and technical protocols to guarantee the
Azores Seismovolcanic Surveillance and the Emergency Planning Studies.
This study was also a part of the MED-SUV project, which received
funding from the European Union Seventh Programme for Research,
Technological Development and Demonstration under grant agreement
308665. The authors would like to thank Pedro Hernandez and an anonymous
reviewer for their comments and suggestions that improved the quality of
this paper.
NR 66
TC 7
Z9 7
U1 1
U2 14
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9313
EI 2169-9356
J9 J GEOPHYS RES-SOL EA
JI J. Geophys. Res.-Solid Earth
PD OCT
PY 2014
VL 119
IS 10
BP 7578
EP 7597
DI 10.1002/2014JB011118
PG 20
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AU1GH
UT WOS:000345368500012
ER
PT J
AU Hijazi, H
Bannister, ME
Meyer, HM
Rouleau, CM
Barghouty, AF
Rickman, DL
Meyer, FW
AF Hijazi, H.
Bannister, M. E.
Meyer, H. M., III
Rouleau, C. M.
Barghouty, A. F.
Rickman, D. L.
Meyer, F. W.
TI Anorthite sputtering by H+ and Arq+ (q=1-9) at solar wind velocities
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE solar wind; lunar highlands; sputtering; ion-surface interactions
ID QUARTZ-CRYSTAL MICROBALANCE; HIGHLY-CHARGED IONS; DECELERATED BEAMS;
ENERGY-DEPENDENCE; LUNAR POLES; SURFACE; ORNL; HYDROGEN; IMPACT; YIELD
AB We report sputtering measurements of anorthite-like material, taken to be representative of soils found in the lunar highlands, impacted by singly and multicharged ions representative of the solar wind. The ions investigated include protons, as well as singly and multicharged Ar ions (as proxies for the nonreactive heavy solar wind constituents), in the charge state range +1 to +9, at fixed solar wind-relevant impact velocities of 165 and 310km/s (0.25keV/amu and 0.5keV/amu). A quartz microbalance approach (QCM) for determination of total sputtering yields was used. The goal of the measurements was to determine the sputtering contribution of the heavy, multicharged minority solar wind constituents in comparison to that due to the dominant H+ fraction. The QCM results show a yield increase of a factor of about 80 for Ar+ versus H+ sputtering and an enhancement by a factor of 1.67 between Ar9+ and Ar+, which is a clear indication of a potential sputtering effect.
C1 [Hijazi, H.; Bannister, M. E.; Meyer, F. W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Meyer, H. M., III] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Rouleau, C. M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Barghouty, A. F.; Rickman, D. L.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
RP Meyer, FW (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
EM meyerfw@ornl.gov
RI Rouleau, Christopher/Q-2737-2015
OI Rouleau, Christopher/0000-0002-5488-3537
FU NASA [10-LASER10-0053]; Laboratory Directed Research and Development
Program of Oak Ridge National Laboratory; NASA's Solar System
Exploration Research Institute (SSERVI); Office of Basic Energy
Sciences, U.S. Department of Energy; Scientific User Facilities (SUF)
Division, U.S. Department of Energy
FX Research supported by NASA grant 10-LASER10-0053, by the Laboratory
Directed Research and Development Program of Oak Ridge National
Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of
Energy, and in part by NASA's Solar System Exploration Research
Institute (SSERVI). Work performed in part via ORNL's Shared Research
Equipment (ShaRE) User Program, which is sponsored by the Office of
Basic Energy Sciences, U.S. Department of Energy, and at the Center for
Nanophase Materials Sciences user facility, which is sponsored at Oak
Ridge National Laboratory by the Scientific User Facilities (SUF)
Division, U.S. Department of Energy. H. H. was appointed through the
ORNL Postdoctoral Research Associates Program administered jointly by
Oak Ridge Institute of Science and Education (ORISE), Oak Ridge
Associated Universities (ORAU), and Oak Ridge National Laboratory
(ORNL). The data for this paper can be requested from meyerfw@ornl.gov
(F.W. Meyer).
NR 34
TC 2
Z9 2
U1 1
U2 11
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD OCT
PY 2014
VL 119
IS 10
BP 8006
EP 8016
DI 10.1002/2014JA020140
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AU2JW
UT WOS:000345445400003
ER
PT J
AU Yue, C
Wang, CP
Lyons, L
Liang, J
Donovan, EF
Zaharia, SG
Henderson, M
AF Yue, Chao
Wang, Chih-Ping
Lyons, Larry
Liang, Jun
Donovan, Eric F.
Zaharia, Sorin G.
Henderson, Michael
TI Current sheet scattering and ion isotropic boundary under 3-D empirical
force-balanced magnetic field
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE 3-D force-balanced magnetic field; current sheet scattering; isotropic
boundary
ID MT-INDEX; PRECIPITATION; CONFIGURATION; MAGNETOTAIL; IONOSPHERE; B2I
AB To determine statistically the extent to which current sheet scattering is sufficient to account for the observed ion isotropic boundaries (IBs) for <30keV ions, we have computed IBs from our 3-D empirical force-balanced magnetic field, identified IBs in FAST observations, and investigated the model-observation consistency. We have found in both model and FAST results the same dependences of IB latitudes on magnetic local time, ion energy, Kp, and solar wind dynamic pressure (P-SW) levels: IB moves to higher latitudes from midnight toward dawn/dusk and to lower latitudes as energy increases and as Kp or P-SW increases. The model predicts well the observed energy dependence, and the modeled IB latitudes match fairly well with those from FAST for Kp=0. As Kp increases, the latitude agreement at midnight remains good but a larger discrepancy is found near dusk. The modeled IBs at the equator are located around the earthward boundary of highly isotropic ions observed by Time History of Events and Macroscale Interactions during Substorms at midnight and postmidnight, but with some discrepancy near dusk under high Kp. Thus, our results indicate that current sheet scattering generally plays the dominant role. The discrepancies suggest the importance of pitch angle scattering by electromagnetic ion cyclotron waves, which occur more often from dusk to noon and are more active during higher Kp. The comparison with the observed IBs is better with our model than under the nonforce-balanced T89, indicating that using a forced-balanced model improves the description of the magnetic field configuration and reinforces our conclusions regarding the role of current sheet scattering.
C1 [Yue, Chao; Wang, Chih-Ping; Lyons, Larry] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA.
[Liang, Jun; Donovan, Eric F.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada.
[Zaharia, Sorin G.; Henderson, Michael] Los Alamos Natl Lab, Los Alamos, NM USA.
RP Yue, C (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA.
EM yuechao@atmos.ucla.edu
RI Yue, Chao/C-2535-2015;
OI Yue, Chao/0000-0001-9720-5210; Donovan, Eric/0000-0002-8557-4155;
Henderson, Michael/0000-0003-4975-9029
FU NASA [NNX11AJ12G, NNX08A135G, NNH10AP09I]; NSF [ATM-1003595, 1131873,
1203460]; IGPPS Program at Los Alamos National Laboratory
FX The work by C. Yue, C.-P. Wang, and L. R. Lyons at UCLA has been
supported by NASA grants NNX11AJ12G and NNX08A135G, NSF grant
ATM-1003595, and IGPPS Program at Los Alamos National Laboratory. The
work by S. G. Zaharia has been supported by NSF grants 1131873 and
1203460, NASA grant NNH10AP09I, and by the IGPPS Program at Los Alamos
National Laboratory. The FAST data used in this study come exclusively
from the publicly available ESA ion data provided by CDAWeb.
NR 19
TC 5
Z9 5
U1 0
U2 2
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD OCT
PY 2014
VL 119
IS 10
BP 8202
EP 8211
DI 10.1002/2014JA020172
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AU2JW
UT WOS:000345445400016
ER
PT J
AU Fu, XR
Cowee, MM
Friedel, RH
Funsten, HO
Gary, SP
Hospodarsky, GB
Kletzing, C
Kurth, W
Larsen, BA
Liu, KJ
MacDonald, EA
Min, K
Reeves, GD
Skoug, RM
Winske, D
AF Fu, Xiangrong
Cowee, Misa M.
Friedel, Reinhard H.
Funsten, Herbert O.
Gary, S. Peter
Hospodarsky, George B.
Kletzing, Craig
Kurth, William
Larsen, Brian A.
Liu, Kaijun
MacDonald, Elizabeth A.
Min, Kyungguk
Reeves, Geoffrey D.
Skoug, Ruth M.
Winske, Dan
TI Whistler anisotropy instabilities as the source of banded chorus: Van
Allen Probes observations and particle-in-cell simulations
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE chorus; particle-in-cell simulation; HOPE; Van Allen Probes
ID RADIATION-BELT ELECTRONS; MAGNETOSPHERIC CHORUS; ACCELERATION; WAVES;
EMISSIONS
AB Magnetospheric banded chorus is enhanced whistler waves with frequencies (r)<(e), where (e) is the electron cyclotron frequency, and a characteristic spectral gap at (r)similar or equal to(e)/2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that the hot component drives the electromagnetic lower band chorus; the gap at approximate to(e)/2 is a natural consequence of the growth of two whistler modes with different properties.
C1 [Fu, Xiangrong; Cowee, Misa M.; Friedel, Reinhard H.; Funsten, Herbert O.; Larsen, Brian A.; Reeves, Geoffrey D.; Skoug, Ruth M.; Winske, Dan] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Gary, S. Peter] Space Sci Inst, Boulder, CO USA.
[Hospodarsky, George B.; Kletzing, Craig; Kurth, William] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
[Liu, Kaijun; Min, Kyungguk] Auburn Univ, Dept Phys, Auburn, AL 36849 USA.
[MacDonald, Elizabeth A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Fu, XR (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
EM xrfu@lanl.gov
RI Funsten, Herbert/A-5702-2015; Friedel, Reiner/D-1410-2012; Larsen,
Brian/A-7822-2011; Fu, Xiangrong/C-7895-2016; Reeves,
Geoffrey/E-8101-2011;
OI Funsten, Herbert/0000-0002-6817-1039; Friedel,
Reiner/0000-0002-5228-0281; Larsen, Brian/0000-0003-4515-0208; Fu,
Xiangrong/0000-0002-4305-6624; Reeves, Geoffrey/0000-0002-7985-8098;
Kletzing, Craig/0000-0002-4136-3348; Kurth, William/0000-0002-5471-6202;
Hospodarsky, George/0000-0001-9200-9878
FU U.S. Department of Energy; Defense Threat Reduction Agency; National
Aeronautics and Space Administration; National Science Foundation;
JHU/APL under NASA [921647, NAS5-01072]; NSF [AGS-1303300]; NASA
[NNX14AD62G]
FX The Los Alamos portion of this research was performed under the auspices
of the U.S. Department of Energy. This research was supported in part by
the Defense Threat Reduction Agency, by the National Aeronautics and
Space Administration, and by the National Science Foundation. The work
at the University of Iowa was supported by JHU/APL through contract
921647 under NASA Prime contract NAS5-01072. S.P.G.'s contributions to
this research were supported by NSF award AGS-1303300. The work at
Auburn University was supported by NASA grant NNX14AD62G.
NR 32
TC 25
Z9 25
U1 0
U2 12
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD OCT
PY 2014
VL 119
IS 10
BP 8288
EP 8298
DI 10.1002/2014JA020364
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AU2JW
UT WOS:000345445400023
ER
PT J
AU Denton, RE
Jordanova, VK
Fraser, BJ
AF Denton, R. E.
Jordanova, V. K.
Fraser, B. J.
TI Effect of spatial density variation and O plus concentration on the
growth and evolution of electromagnetic ion cyclotron waves
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE electromagnetic ion cyclotron waves; EMIC; magnetosphere; density; ion
concentration; O
ID 1-2 MAGNETIC PULSATIONS; EMIC WAVES; EQUATORIAL MAGNETOSPHERE;
ANISOTROPY INSTABILITY; STATISTICAL-ANALYSIS; PROTON; LOSSES; PLASMA;
MODEL; RING
AB We simulate electromagnetic ion cyclotron (EMIC) wave growth and evolution within three regions, the plasmasphere (or plasmaspheric plume), the plasmapause, and the low-density plasmatrough outside the plasmapause. First, we use a ring current simulation with a plasmasphere model to model the particle populations that give rise to the instability for conditions observed on 9 June 2001. Then, using two different models for the cold ion composition, we do a full-scale hybrid code simulation in dipole coordinates of the EMIC waves on a meridional plane at magnetic local time = 18 and at 1900 UT within a range of L shell from L=4.9 to 6.7. EMIC waves were observed during 9 June 2001 by Geostationary Operational Environmental Satellite (GOES) spacecraft. While an exact comparison between observed and simulated spectra is not possible here, we do find significant similarities between the two, at least at one location within the region of largest wave growth. We find that the plasmapause is not a preferred region for EMIC wave growth, though waves can grow in that region. The density gradient within the plasmapause does, however, affect the orientation of wavefronts and wave vector both within the plasmapause and in adjacent regions. There is a preference for EMIC waves to be driven in the He+ band (frequencies between the O+ and He+ gyrofrequencies) within the plasmasphere, although they can also grow in the plasmatrough. If present, H+ band waves are more likely to grow in the plasmatrough. This fact, plus L dependence of the frequency and possible time evolution toward lower frequency waves, can be explained by a simple model. Large O+ concentration limits the frequency range of or even totally quenches EMIC waves. This is more likely to occur in the plasmatrough at solar maximum. Such large O+ concentration significantly affects the H+ cutoff frequency and hence the width in frequency of the stop band above the He+ gyrofrequency. EMIC wave surfaces predicted by cold plasma theory are altered by the finite temperature of the ring current H+.
C1 [Denton, R. E.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA.
[Jordanova, V. K.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Fraser, B. J.] Univ Newcastle, Ctr Space Phys, Callaghan, NSW 2308, Australia.
RP Denton, RE (reprint author), Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA.
EM richard.e.denton@dartmouth.edu
OI Jordanova, Vania/0000-0003-0475-8743
FU NASA [NNX10AQ60G, NNX13AD65G, NNX08AM58G, NNH10AP09I, NNH13AW83I];
United States Department of Energy; NSF [AGR1203460]; ARC [DP0772504]
FX We thank Alexa Halford, Jay Johnson, and Jacob Bortnik for helpful
discussions. Work at Dartmouth was supported by NASA grants NNX10AQ60G,
NNX13AD65G, and NNX08AM58G. Work at Los Alamos was conducted under the
auspices of the United States Department of Energy with partial support
from NASA grants NNH10AP09I and NNH13AW83I and NSF grant AGR1203460.
Work at Newcastle Australia was supported by ARC grant DP0772504. We
thank Howard Singer for supplying GOES magnetometer data. Numerical data
shown in this paper are available from the lead author upon request.
NR 68
TC 19
Z9 19
U1 0
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD OCT
PY 2014
VL 119
IS 10
BP 8372
EP 8395
DI 10.1002/2014JA020384
PG 24
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AU2JW
UT WOS:000345445400028
ER
PT J
AU Li, Z
Hudson, M
Jaynes, A
Boyd, A
Malaspina, D
Thaller, S
Wygant, J
Henderson, M
AF Li, Zhao
Hudson, Mary
Jaynes, Allison
Boyd, Alexander
Malaspina, David
Thaller, Scott
Wygant, John
Henderson, Michael
TI Modeling gradual diffusion changes in radiation belt electron phase
space density for the March 2013 Van Allen Probes case study
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE radial diffusion; March 2013; Van Allen Probes
ID RELATIVISTIC ELECTRONS; MAGNETIC STORM; ACCELERATION; CHORUS
AB March 2013 provided the first equinoctial period when all of the instruments on the Van Allen Probes spacecraft were fully operational. This interval was characterized by disturbances of outer zone electrons with two time scales of variation, diffusive and rapid dropout and restoration. A radial diffusion model was applied to the monthlong interval to confirm that electron phase space density is well described by radial diffusion for the whole month at low first invariant 400MeV/G but peaks in phase space density observed by the Energetic Particle, Composition, and Thermal Plasma (ECT) instrument suite at higher first invariant are not reproduced by radial transport from a source at higher L. The model does well for much of the monthlong interval, capturing three of four enhancements in phase space density which emerge from the outer boundary, while the strong enhancement following dropout on 17-18 March requires local acceleration at higher first invariant (M=1000 MeV/G versus 200 MeV/G) not included in our model. We have incorporated phase space density from ECT measurement at the outer boundary and plasmapause determination from the Electric Field and Waves (EFW) instrument to separate hiss and chorus loss models.
C1 [Li, Zhao; Hudson, Mary] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA.
[Jaynes, Allison; Malaspina, David] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA.
[Boyd, Alexander] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA.
[Thaller, Scott; Wygant, John] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
[Henderson, Michael] Los Alamos Natl Lab, Los Alamos, NM USA.
RP Li, Z (reprint author), Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA.
EM zhao.li.gr@dartmouth.edu
RI Henderson, Michael/A-3948-2011;
OI Henderson, Michael/0000-0003-4975-9029; Boyd,
Alexander/0000-0002-9725-508X
FU JHU/APL under NASA [NAS5-01072]; ECT [967399]; UNH; EFW [922613]; UMN
FX This work was supported by JHU/APL under NASA's prime contract
NAS5-01072, with work at Dartmouth supported under ECT (967399)
sub-contract from UNH and EFW (922613) subcontract from UMN. Solar wind
data and geomagnetic indexes are obtained from NSSDC OMNIWeb. We thank
Van Allen Probes ECT and EFW teams for phase space density and
plasmapause data.
NR 26
TC 4
Z9 4
U1 1
U2 7
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD OCT
PY 2014
VL 119
IS 10
BP 8396
EP 8403
DI 10.1002/2014JA020359
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AU2JW
UT WOS:000345445400029
ER
PT J
AU Clear, R
Rubinstein, F
AF Clear, Robert
Rubinstein, Francis
TI A Time-Dependent Risk Assessment for Broken Compact Fluorescent Lamps
SO RISK ANALYSIS
LA English
DT Article
DE Body or tissue burden model; compact fluorescent lamp (CFL); mercury; no
observable adverse effect level (NOAEL)
ID MERCURY; EXPOSURE
AB Environmental Protection Agency (EPA) ambient air quality guidelines are meant to limit long-term exposures of toxins to safe levels. Unfortunately, there is little guidance for what constitutes a safe level from a one-time (or very infrequent) short exposure(s). In the case of mercury, a review of the derivation of the EPA ambient air quality standard shows that it implicitly assumes a tissue burden model. The time dependence of the tissue burden is commonly described in terms of a half-life, a modeling assumption that presumes that the decline in the tissue burden after a single exposure can be approximately described as an exponential decay. In this article, we use a simple exponential tissue burden model to derive a time-dependent no observable adverse effect level (NOAEL) for mercury concentrations in air. The model predicts that tissue body burden will asymptotically approach the EPA air quality level for long exposure times, and reach workplace standard levels for exposures of a few hours. The model was used along with data on mercury levels from experimental work done by the Maine Department of Environmental Protection to evaluate the risks from a broken compact fluorescent lamp in a residential setting. Mercury levels approached the NOAEL only when the debris was left in an almost sealed room. Normal common-sense cleaning measures: removal of debris to an outside area, and ventilation of the room for several minutes, reduced exposures to less than 1% of the NOAEL.
C1 [Clear, Robert; Rubinstein, Francis] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Rubinstein, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,Bldg 90R3111, Berkeley, CA 94720 USA.
EM FMRubinstein@lbl.gov
NR 24
TC 0
Z9 0
U1 1
U2 3
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0272-4332
EI 1539-6924
J9 RISK ANAL
JI Risk Anal.
PD OCT
PY 2014
VL 34
IS 10
BP 1957
EP 1967
DI 10.1111/risa.12229
PG 11
WC Public, Environmental & Occupational Health; Mathematics,
Interdisciplinary Applications; Social Sciences, Mathematical Methods
SC Public, Environmental & Occupational Health; Mathematics; Mathematical
Methods In Social Sciences
GA AU0NR
UT WOS:000345320600016
PM 24975461
ER
PT J
AU Ge, QW
Liu, XP
Parada, G
Mallapragada, SK
Akinc, M
AF Ge, Qinwen
Liu, Xunpei
Parada, German
Mallapragada, Surya K.
Akinc, Mufit
TI Synthesis of Mesoporous Zirconia Templated by Block Copolymer-Lysozyme
Conjugate in Aqueous Media
SO SCIENCE OF ADVANCED MATERIALS
LA English
DT Article
DE Mesoporous; Zirconia; Templation; Block Copolymer; Synthesis
ID HIGH-SURFACE-AREA; NANOCRYSTALLINE ZIRCONIA; PRECIPITATING AGENT; ZRO2
NANOPARTICLES; PROCESS PARAMETERS; SULFATED ZIRCONIA; HYDROUS ZIRCONIA;
CRYSTALLIZATION; POWDER; MORPHOLOGY
AB A high surface area mesoporous zirconia/polymer nanocomposite was obtained using a block copolymer-lysozyme conjugate template and applying aqueous sol-gel method. The effects of several parameters, such as pH, zirconyl ion concentration, and calcination temperature on the structure and morphology of the resulting mesoporous zirconia were studied. Samples were characterized by X-ray diffraction (XRD), nitrogen sorption, and transmission electron microscopy (TEM). The results showed that tetragonal zirconia started to crystallize from amorphous precipitate above 300 degrees C, became fully crystalline above 500 degrees C, grew larger with higher temperatures, and a monoclinic phase formed above 900 degrees C. It was also found that a more dilute precursor solution led to more thermally stable and smaller particles with higher surface area. Likewise, higher pH (e. g., pH = 10) facilitated obtainment of higher surface area, thermally stable tetragonal zirconia with smaller particle sizes compared to samples precipitated at lower pH (e.g., pH = 4, 6, and 8). The aging at pH = 4 formed ill-defined gels rather than distinct particles. The surface area of the synthesized zirconia increased with calcination temperature up to 500 degrees C, reaching a maximum with a specific surface area of 348 m(2)/g using 0.08 mol/L [ZrO2+] and precipitating at pH = 10 before decreasing at higher temperatures.
C1 [Ge, Qinwen; Liu, Xunpei; Mallapragada, Surya K.; Akinc, Mufit] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA.
[Ge, Qinwen; Mallapragada, Surya K.; Akinc, Mufit] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
[Liu, Xunpei; Parada, German; Mallapragada, Surya K.; Akinc, Mufit] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA.
RP Akinc, M (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA.
EM makinc@iastate.edu
FU U.S. Department of Energy, Office of Basic Energy Science, Division of
Materials Sciences and Engineering; U.S. Department of Energy by Iowa
State University [DE-AC02-07CH11358]
FX This work was supported by the U.S. Department of Energy, Office of
Basic Energy Science, Division of Materials Sciences and Engineering.
The research was performed at the Ames Laboratory. Ames Laboratory is
operated for the U.S. Department of Energy by Iowa State University
under Contract No. DE-AC02-07CH11358.
NR 49
TC 0
Z9 0
U1 4
U2 27
PU AMER SCIENTIFIC PUBLISHERS
PI VALENCIA
PA 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA
SN 1947-2935
EI 1947-2943
J9 SCI ADV MATER
JI Sci. Adv. Mater.
PD OCT
PY 2014
VL 6
IS 10
BP 2106
EP 2114
DI 10.1166/sam.2014.1976
PG 9
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA AT6QD
UT WOS:000345062900003
ER
PT J
AU Millstein, DE
Fischer, ML
AF Millstein, D. E.
Fischer, M. L.
TI Reflective 'cool' roofs under aerosol-burdened skies: radiative benefits
across selected Indian cities
SO ENVIRONMENTAL RESEARCH LETTERS
LA English
DT Article
DE cool roof; mitigation; radiative transfer; aerosols
ID ENERGY SAVINGS; HEAT-ISLAND; SOUTH-ASIA; CALIFORNIA; BUILDINGS; STRATEGY
AB The use of reflective surfaces offers one low-cost solution for reducing solar loading to urban environments and the Earth that should be considered as part of sustainable urban design. Here, we characterize the radiative benefits, i.e. the additional shortwave radiation leaving the atmosphere, from the installation of highly reflective 'cool' roofs in urban areas in India that face relatively large local aerosol burdens. We use a previously tested column radiative transfer model to estimate the energy per unit area reflected to space from increasing the surface albedo at six cities within India. The model is used to characterize radiative transfer each day over five years (2008-2012) based on mid-day satellite retrievals of MODIS aerosol depth, cloud water path, and average surface albedo and MERRA atmospheric profiles of temperature and composition. Compared against ten months of field observations in two cities, the model derived incoming surface shortwave radiation estimates relative to observations show small biases (0.5% and -2.6%, at Pantnagar and Nainital, respectively). Despite the high levels of local aerosols we found cool roofs provided significant radiative benefits at all locations. Averaged over the five year period we found that increasing the albedo of 1 m(2) of roof area by 0.5 would reflect to space 0.9-1.2 kWh daily from 08:30-15:30 LST, depending on location. This is equivalent to a constant forcing of 37-50Wm(-2) (equivalent to reducing CO2 emissions by 74 to 101 kg CO2 m(-2) roof area). Last, we identify a co-benefit of improving air quality, in that removing aerosols from the atmosphere could increase the radiative benefits from cool roofs by 23-74%, with the largest potential increase found at Delhi and the smallest change found at Nainital.
C1 [Millstein, D. E.; Fischer, M. L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
RP Millstein, DE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
EM dmillstein@lbl.gov
FU US DOE Office of Energy Efficiency and Renewable Energy; US DOE Office
of Science, Atmospheric Radiation Measurement program
[DE-AC02-05CH11231]
FX We thank Ram Sagar, Rao Kotamarthi, Bipin Shah, Ken Reichl, Jyotirmay
Mathur, Jaipur J Niranjan for assistance during and in support of the
RAWEX-GVAEX campaign and subsequent analysis. We also thank Shaheen
Tonse, Surabi Menon, Francisco Salamanca, Vishal Garg, Krishna P Singh
and Manish Naja for assistance with field measurements at Pantnagar and
Nainital, and RRTMG configuration. We thank Ronnen Levinson for helpful
discussions. Computing resources were provided by the Lawrencium cluster
at LBNL. This work is supported by the US DOE Office of Energy
Efficiency and Renewable Energy, and the US DOE Office of Science,
Atmospheric Radiation Measurement program, under contract
DE-AC02-05CH11231.
NR 43
TC 1
Z9 1
U1 1
U2 21
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-9326
J9 ENVIRON RES LETT
JI Environ. Res. Lett.
PD OCT
PY 2014
VL 9
IS 10
AR 104014
DI 10.1088/1748-9326/9/10/104014
PG 11
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA AT5DP
UT WOS:000344964000018
ER
PT J
AU Sharma, V
Fricke, B
Bansal, P
AF Sharma, Vishaldeep
Fricke, Brian
Bansal, Pradeep
TI Comparative analysis of various CO2 configurations in supermarket
refrigeration systems
SO INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID
LA English
DT Article
DE Refrigeration; Transcritical booster system; Cascade system; Secondary
loop system; Carbon dioxide; Thermodynamics
ID CYCLES
AB This paper presents an analysis of various CO2 transcritical and cascade/secondary loop refrigeration systems that are becoming popular in supermarket applications with the objective of optimizing the operating parameters of these systems. In addition, the performance of selected CO2-based refrigeration systems is compared to the baseline R404A multiplex direct expansion system using bin analyses in the eight climate zones of the United States. For the refrigeration systems investigated, it was found that the Transcritical Booster System with Bypass Compressor (TBS-BC) had the lowest energy consumption for ambient temperatures (T-amb) less than 8 degrees C, and for higher ambient temperatures the R404A direct expansion system was found to have the lowest energy consumption. Also, the TBS-BC performs equivalent to or better than the R404A direct expansion system in the northern two-thirds of the US. For the southern portion of the US, the R404A multiplex DX system performs better than CO2 systems. (C) 2014 Elsevier Ltd and IIR. All rights reserved.
C1 [Sharma, Vishaldeep; Fricke, Brian; Bansal, Pradeep] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Fricke, B (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA.
EM frickeba@ornl.gov
OI Fricke, Brian/0000-0001-8197-3477
FU UT-Battelle, LLC [DE-AC05-00OR22725]; U.S. Department of Energy
FX This manuscript has been authored by UT-Battelle, LLC, under Contract
No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United
States Government retains and the publisher, by accepting the article
for publication, acknowledges that the United States Government retains
a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do
so, for United States Government purposes.
NR 22
TC 15
Z9 15
U1 2
U2 9
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0140-7007
EI 1879-2081
J9 INT J REFRIG
JI Int. J. Refrig.-Rev. Int. Froid
PD OCT
PY 2014
VL 46
BP 86
EP 99
DI 10.1016/j.ijrefrig.2014.07.001
PG 14
WC Thermodynamics; Engineering, Mechanical
SC Thermodynamics; Engineering
GA AT9FN
UT WOS:000345233500011
ER
PT J
AU Chandross, M
AF Chandross, Michael
TI Energetics of the formation of Cu-Ag core-shell nanoparticles
SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING
LA English
DT Article
DE nanoparticles; core/shell; molecular dynamics; Monte Carlo;
embedded-atom method; silver; copper
AB This work presents molecular dynamics and Monte Carlo simulations aimed at developing an understanding of the formation of core-shell Cu-Ag nanoparticles. The effects of surface and interfacial energies were considered and used to form a phenomenological model that calculates the energy gained upon the formation of a core-shell structure from two previously distinct, non-interacting nanoparticles. In the majority of cases, the core-shell structure was found to be energetically favored. Specifically, the difference in energy as a function of the radii of the individual Cu and Ag particles was examined, with the assumption that a core-shell structure forms. In general, it was found that the energetic gain from forming such a structure increased with increasing size of the initial Ag particle. This result was interpreted as a result of the reduction in surface energy. For two separate particles, both Cu and Ag contribute to the surface energy; however, for a core-shell structure, the only contribution to the surface energy is from the Ag shell and the Cu contribution is changed to a Cu-Ag interfacial energy, which is always smaller.
C1 Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Chandross, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM mechand@sandia.gov
FU Laboratory Directed Research and Development (LDRD) program at Sandia
National Laboratories; US Department of Energy's National Nuclear
Security Administration [DE-AC04-94AL85000]
FX This work was supported by the Laboratory Directed Research and
Development (LDRD) program at Sandia National Laboratories. Sandia
National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the US Department of Energy's National Nuclear Security
Administration under contract DE-AC04-94AL85000.
NR 9
TC 1
Z9 1
U1 3
U2 22
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0965-0393
EI 1361-651X
J9 MODEL SIMUL MATER SC
JI Model. Simul. Mater. Sci. Eng.
PD OCT
PY 2014
VL 22
IS 7
AR 075012
DI 10.1088/0965-0393/22/7/075012
PG 11
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA AT4XW
UT WOS:000344946700012
ER
PT J
AU Luscher, DJ
Buechler, MA
Miller, NA
AF Luscher, D. J.
Buechler, M. A.
Miller, N. A.
TI Self-consistent modeling of the influence of texture on thermal
expansion in polycrystalline TATB
SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING
LA English
DT Article
DE self-consistent; thermoelastic; TATB; texture; anisotropy
ID 1,3,5-TRIAMINO-2,4,6-TRINITROBENZENE TATB; VISCOPLASTIC POLYCRYSTALS;
CRYSTALLINE TATB; STRAIN; FIELD; SIMULATIONS; COMPOSITE; BEHAVIOR;
SPHERE; GROWTH
AB This paper presents a modeling approach for simulating the anisotropic thermal expansion of polycrystalline (1,3,5-triamino-2,4,6-trinitrobenzene) TATB-based explosives which utilizes microstructural information including the porosity, crystal aspect ratio and processing-induced texture. A self-consistent homogenization procedure is used to relate the macroscopic thermoelastic response to the constitutive behavior of single-crystal TATB. The model includes a representation of the grain aspect ratio, porosity and, crystallographic texture attributed to the consolidation process. A quantitative model is proposed for describing the evolution of the preferred orientation of basal planes in TATB during consolidation and an algorithm constructed for developing a discrete representation of the associated orientation distribution function. Analytical and numerical solutions using this model are shown to produce textures consistent with previous measurements and characterization for isostatically and uniaxially 'die-pressed' specimens.
Predicted thermal strain versus temperature results for textured specimens are shown to be in agreement with corresponding experimental measurements. Results from these simulations are used to identify qualitative trends. Key conclusions from this work include the following. Both porosity and grain aspect ratio have an influence on the thermal expansion of polycrystal TATB, considering realistic material variability. The preferred orientation of the single-crystal TATB [001] poles within a polycrystal gives rise to pronounced anisotropy of the macroscopic thermal expansion. The extent of this preferred orientation depends on the magnitude of the deformation and, consequently, is expected to vary spatially throughout manufactured components much like the porosity. The modeling approach presented here has utility toward bringing spatially variable microstructural features into macroscale system engineering models.
C1 [Luscher, D. J.] Los Alamos Natl Lab, Div Theoret, Fluid Dynam & Solid Mech Grp, Los Alamos, NM 87545 USA.
[Buechler, M. A.; Miller, N. A.] Los Alamos Natl Lab, Weapon Engn Div, Adv Engn Anal Grp, Los Alamos, NM 87545 USA.
RP Luscher, DJ (reprint author), Los Alamos Natl Lab, Div Theoret, Fluid Dynam & Solid Mech Grp, POB 1663, Los Alamos, NM 87545 USA.
EM djl@lanl.gov
FU US Department of Energy [DE-AC52-06NA25396]
FX The authors are grateful for technical discussions with Ricardo
Lebensohn and Ricardo Schwarz on details of this work. Additionally,
feedback from Matt Lewis, Devin Shunk and Bob Stevens improved the
communication of key points. The authors are also appreciative of
correspondence with Bruce Cunningham to clarify details of the
experiments used for comparisons with this work, and Cary Skidmore for
tracking down internal correspondence containing the orientation
distributions measured by Cady. This work was performed under the
auspices of the US Department of Energy under contract
DE-AC52-06NA25396.
NR 38
TC 5
Z9 5
U1 1
U2 12
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0965-0393
EI 1361-651X
J9 MODEL SIMUL MATER SC
JI Model. Simul. Mater. Sci. Eng.
PD OCT
PY 2014
VL 22
IS 7
AR 075008
DI 10.1088/0965-0393/22/7/075008
PG 21
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA AT4XW
UT WOS:000344946700008
ER
PT J
AU Schuetz, M
Benske, A
Smith, RA
Watanabe, Y
Tobimatsu, Y
Ralph, J
Demura, T
Ellis, B
Samuels, AL
AF Schuetz, Mathias
Benske, Anika
Smith, Rebecca A.
Watanabe, Yoichiro
Tobimatsu, Yuki
Ralph, John
Demura, Taku
Ellis, Brian
Samuels, A. Lacey
TI Laccases Direct Lignification in the Discrete Secondary Cell Wall
Domains of Protoxylem
SO PLANT PHYSIOLOGY
LA English
DT Article
ID TRACHEARY ELEMENT DIFFERENTIATION; FLUORESCENCE-TAGGED MONOLIGNOLS;
VASCULAR-RELATED NAC-DOMAIN6; ZINNIA MESOPHYLL-CELLS;
ARABIDOPSIS-THALIANA; LIGNIN BIOSYNTHESIS; VESSEL FORMATION; VECTOR SET;
TRANSPORT; PROTEIN
AB Plants precisely control lignin deposition in spiral or annular secondary cell wall domains during protoxylem tracheary element (TE) development. Because protoxylem TEs function to transport water within rapidly elongating tissues, it is important that lignin deposition is restricted to the secondary cell walls in order to preserve the plasticity of adjacent primary wall domains. The Arabidopsis (Arabidopsis thaliana) inducible VASCULAR NAC DOMAIN7 (VND7) protoxylem TE differentiation system permits the use of mutant backgrounds, fluorescent protein tagging, and high-resolution live-cell imaging of xylem cells during secondary cell wall development. Enzymes synthesizing monolignols, as well as putative monolignol transporters, showed a uniform distribution during protoxylem TE differentiation. By contrast, the oxidative enzymes LACCASE4 (LAC4) and LAC17 were spatially localized to secondary cell walls throughout protoxylem TE differentiation. These data support the hypothesis that precise delivery of oxidative enzymes determines the pattern of cell wall lignification. This view was supported by lac4lac17 mutant analysis demonstrating that laccases are necessary for protoxylem TE lignification. Overexpression studies showed that laccases are sufficient to catalyze ectopic lignin polymerization in primary cell walls when exogenous monolignols are supplied. Our data support a model of protoxylem TE lignification in which monolignols are highly mobile once exported to the cell wall, and in which precise targeting of laccases to secondary cell wall domains directs lignin deposition.
C1 [Schuetz, Mathias; Benske, Anika; Smith, Rebecca A.; Watanabe, Yoichiro; Samuels, A. Lacey] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada.
[Benske, Anika; Smith, Rebecca A.; Ellis, Brian] Univ British Columbia, Michael Smith Labs, Vancouver, BC V6T 1Z4, Canada.
[Tobimatsu, Yuki; Ralph, John] Univ Wisconsin, Dept Biochem, Great Lakes Bioenergy Res Ctr, Wisconsin Energy Inst, Madison, WI 53705 USA.
[Tobimatsu, Yuki; Ralph, John] Univ Wisconsin, US DOE, Great Lakes Bioenergy Res Ctr, Wisconsin Energy Inst, Madison, WI USA.
[Demura, Taku] Nara Inst Sci & Technol, Nara 6300192, Japan.
[Tobimatsu, Yuki] Kyoto Univ, Grad Sch Agr, Kyoto 6068502, Japan.
RP Samuels, AL (reprint author), Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada.
EM lsamuels@mail.ubc.ca
FU Natural Sciences and Engineering Research Council of Canada; Japan
Society for the Promotion of Science (Kakenhi) [24114002, 25291062];
Nara Institute of Science and Technology Global Initiative Program; U.S.
Department of Energy Office of Science [DE-SC0006930]; U.S. Department
of Energy Great Lakes Bioenergy Research Center [BER DE-FC02-07ER64494]
FX This work was supported by the Natural Sciences and Engineering Research
Council of Canada (Discovery and Collaborative Research and Training
Experience Program grants to B.E. and A.L.S.), the Japan Society for the
Promotion of Science (Kakenhi grant nos. 24114002 and 25291062 to T.D.),
the Nara Institute of Science and Technology Global Initiative Program
(to T.D.), the U.S. Department of Energy Office of Science (grant no.
DE-SC0006930 to Y.T. and J.R.), and the U.S. Department of Energy Great
Lakes Bioenergy Research Center (grant no. BER DE-FC02-07ER64494 to Y.T.
and J.R.).
NR 41
TC 31
Z9 33
U1 3
U2 40
PU AMER SOC PLANT BIOLOGISTS
PI ROCKVILLE
PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA
SN 0032-0889
EI 1532-2548
J9 PLANT PHYSIOL
JI Plant Physiol.
PD OCT
PY 2014
VL 166
IS 2
BP 798
EP U489
DI 10.1104/pp.114.245597
PG 16
WC Plant Sciences
SC Plant Sciences
GA AT6TH
UT WOS:000345071500031
PM 25157028
ER
PT J
AU Roschzttardtz, H
Paez-Valencia, J
Dittakavi, T
Jali, S
Reyes, FC
Baisa, G
Anne, P
Gissot, L
Palauqui, JC
Masson, PH
Bednarek, SY
Otegui, MS
AF Roschzttardtz, Hannetz
Paez-Valencia, Julio
Dittakavi, Tejaswi
Jali, Sathya
Reyes, Francisca C.
Baisa, Gary
Anne, Pauline
Gissot, Lionel
Palauqui, Jean-Christophe
Masson, Patrick H.
Bednarek, Sebastian Y.
Otegui, Marisa S.
TI The VASCULATURE COMPLEXITY AND CONNECTIVITY Gene Encodes a
Plant-Specific Protein Required for Embryo Provasculature Development
SO PLANT PHYSIOLOGY
LA English
DT Article
ID ARABIDOPSIS-THALIANA; AUXIN TRANSPORT; TISSUE-DEVELOPMENT;
PATTERN-FORMATION; PRIMARY ROOT; EXPRESSION; POLARITY; KINASE; MUTATION;
MUTANTS
AB The molecular mechanisms by which vascular tissues acquire their identities are largely unknown. Here, we report on the identification and characterization of VASCULATURE COMPLEXITY AND CONNECTIVITY (VCC), a member of a 15-member, plant-specific gene family in Arabidopsis (Arabidopsis thaliana) that encodes proteins of unknown function with four predicted transmembrane domains. Homozygous vcc mutants displayed cotyledon vein networks of reduced complexity and disconnected veins. Similar disconnections or gaps were observed in the provasculature of vcc embryos, indicating that defects in vein connectivity appear early in mutant embryo development. Consistently, the overexpression of VCC leads to an unusually high proportion of cotyledons with high-complexity vein networks. Neither auxin distribution nor the polar localization of the auxin efflux carrier were affected in vcc mutant embryos. Expression of VCC was detected in developing embryos and procambial, cambial, and vascular cells of cotyledons, leaves, roots, hypocotyls, and anthers. To evaluate possible genetic interactions with other genes that control vasculature patterning in embryos, we generated a double mutant for VCC and OCTOPUS (OPS). The vcc ops double mutant embryos showed a complete loss of high-complexity vascular networks in cotyledons and a drastic increase in both provascular and vascular disconnections. In addition, VCC and OPS interact physically, suggesting that VCC and OPS are part of a complex that controls cotyledon vascular complexity.
C1 [Roschzttardtz, Hannetz; Paez-Valencia, Julio; Dittakavi, Tejaswi; Reyes, Francisca C.; Otegui, Marisa S.] Univ Wisconsin, Dept Bot, Madison, WI 53706 USA.
[Jali, Sathya; Masson, Patrick H.; Otegui, Marisa S.] Univ Wisconsin, Dept Genet, Madison, WI 53706 USA.
[Baisa, Gary; Bednarek, Sebastian Y.] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA.
[Roschzttardtz, Hannetz; Jali, Sathya; Baisa, Gary] Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA.
[Anne, Pauline; Gissot, Lionel; Palauqui, Jean-Christophe] INRA, F-78000 Versailles, France.
[Gissot, Lionel; Palauqui, Jean-Christophe] AgroParisTech, Inst Jean Pierre Bourgin, Unite Mixte Rech 1318, Saclay Plant Sci, F-78000 Versailles, France.
RP Roschzttardtz, H (reprint author), Univ Wisconsin, Dept Bot, Madison, WI 53706 USA.
EM hannetz@gmail.com; otegui@wisc.edu
RI Paez-Valencia, Julio /N-1928-2015
FU Department of Energy Great Lakes Bioenergy Research Center
[DE-FC02-07ER64494]; National Science Foundation [MCB1157824];
University of Wisconsin Graduate School
FX This work was supported by the Department of Energy Great Lakes
Bioenergy Research Center (grant no. DE-FC02-07ER64494), the National
Science Foundation (grant no. MCB1157824), and the University of
Wisconsin Graduate School (grant to M.S.O.).
NR 66
TC 3
Z9 3
U1 4
U2 18
PU AMER SOC PLANT BIOLOGISTS
PI ROCKVILLE
PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA
SN 0032-0889
EI 1532-2548
J9 PLANT PHYSIOL
JI Plant Physiol.
PD OCT
PY 2014
VL 166
IS 2
BP 889
EP U640
DI 10.1104/pp.114.246314
PG 22
WC Plant Sciences
SC Plant Sciences
GA AT6TH
UT WOS:000345071500038
PM 25149602
ER
PT J
AU Odunowo, TO
Moridis, GJ
Blasingame, TA
Olorode, OM
Freeman, CM
AF Odunowo, T. O.
Moridis, G. J.
Blasingame, T. A.
Olorode, O. M.
Freeman, C. M.
TI Evaluation of Well Performance for the Slot-Drill Completion in Low- and
Ultralow-Permeability Oil and Gas Reservoirs
SO SPE JOURNAL
LA English
DT Article
AB Low- to ultralow-permeability formations require "special" treatments/stimulation to make them produce economical quantities of hydrocarbon, and at the moment, multistage hydraulic fracturing (MSHF) is the most commonly used stimulation method for enhancing the exploitation of these reservoirs. Recently, the slot-drill (SD) completion technique was proposed as an alternative treatment method in such formations (Carter 2009).
This paper documents the results of a comprehensive numerical- simulation study conducted to evaluate the production performance of the SD technique and compare its performance to that of the standard MSHF approach. We investigated three low-permeability formations of interest-namely, a shale-gas formation, a tight-gas formation, and a tight/shale-oil formation. The simulation domains were discretized with Voronoi-gridding schemes to create representative meshes of the different reservoir and completion systems modeled in this study.
The results from this study indicated that the SD method does not, in general, appear to be competitive in terms of reservoir performance and recovery compared with the more traditional MSHF method. Our findings indicate that the larger surface area to flow that results from the application of MSHF is much more significant than the higher conductivity achieved by use of the SD technique. However, there may exist cases, for example, a lack of adequate water volumes for hydraulic fracturing, or very high irreducible water saturation that leads to adverse relative permeability conditions and production performance, in which the low-cost SD method may make production feasible from an otherwise challenging (if not inaccessible) resource.
C1 [Odunowo, T. O.] DeGolyer & MacNaughton, Dallas, TX 75244 USA.
[Odunowo, T. O.; Moridis, G. J.; Blasingame, T. A.; Olorode, O. M.; Freeman, C. M.] Texas A&M Univ, Dept Petr Engn, College Stn, TX 77843 USA.
[Moridis, G. J.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA.
[Moridis, G. J.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA.
[Moridis, G. J.] Middle E Tech Univ, Petr & Nat Gas Engn Dept, TR-06531 Ankara, Turkey.
RP Odunowo, TO (reprint author), DeGolyer & MacNaughton, Dallas, TX 75244 USA.
FU RPSEA [08122-45]
FX This work was supported by RPSEA (Contract No. 08122-45) through the
Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum
Resources Research and Development Program as authorized by the US
Energy Policy Act (EPAct) of 2005.
NR 18
TC 0
Z9 0
U1 3
U2 18
PU SOC PETROLEUM ENG
PI RICHARDSON
PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA
SN 1086-055X
EI 1930-0220
J9 SPE J
JI SPE J.
PD OCT
PY 2014
VL 19
IS 5
BP 748
EP 760
PG 13
WC Engineering, Petroleum
SC Engineering
GA AU0AX
UT WOS:000345286600001
ER
PT J
AU Wu, YS
Li, JF
Ding, DY
Wang, C
Di, Y
AF Wu, Yu-Shu
Li, Jianfang
Ding, Didier-Yu
Wang, Cong
Di, Yuan
TI A Generalized Framework Model for the Simulation of Gas Production in
Unconventional Gas Reservoirs
SO SPE JOURNAL
LA English
DT Article
ID POROUS-MEDIA; FLUID-FLOW
AB Unconventional gas resources from tight-sand and shale gas reservoirs have received great attention in the past decade around the world because of their large reserves and technical advances in developing these resources. As a result of improved horizontal-drilling and hydraulic-fracturing technologies, progress is being made toward commercial gas production from such reservoirs, as demonstrated in the US. However, understandings and technologies needed for the effective development of unconventional reservoirs are far behind the industry needs (e.g., gas-recovery rates from those unconventional resources remain very low). There are some efforts in the literature on how to model gas flow in shale gas reservoirs by use of various approaches-from modified commercial simulators to simplified analytical solutions-leading to limited success. Compared with conventional reservoirs, gas flow in ultralow-permeability unconventional reservoirs is subject to more nonlinear, coupled processes, including nonlinear adsorption/desorption, non-Darcy flow (at both high flow rate and low flow rate), strong rock/fluid interaction, and rock deformation within nanopores or microfractures, coexisting with complex flow geometry and multiscaled heterogeneity. Therefore, quantifying flow in unconventional gas reservoirs has been a significant challenge, and the traditional representative-elementary-volume-(REV) based Darcy's law, for example, may not be generally applicable.
In this paper, we discuss a generalized mathematical framework model and numerical approach for unconventional-gas-reservoir simulation. We present a unified framework model able to incorporate known mechanisms and processes for two-phase gas flow and transport in shale gas or tight gas formations. The model and numerical scheme are based on generalized flow models with unstructured grids. We discuss the numerical implementation of the mathematical model and show results of our model-verification effort. Specifically, we discuss a multidomain, multicontinuum concept for handling multiscaled heterogeneity and fractures [i.e., the use of hybrid modeling approaches to describe different types and scales of fractures or heterogeneous pores-from the explicit modeling of hydraulic fractures and the fracture network in stimulated reservoir volume (SRV) to distributed natural fractures, microfractures, and tight matrix]. We demonstrate model application to quantify hydraulic fractures and transient flow behavior in shale gas reservoirs.
C1 [Wu, Yu-Shu; Wang, Cong] Colorado Sch Mines, Golden, CO 80401 USA.
[Wu, Yu-Shu] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA.
[Li, Jianfang] PetroChina, RIPED, Beijing, Peoples R China.
[Ding, Didier-Yu] IFP Energies Nouvelles, Nouvelles, France.
[Di, Yuan] Peking Univ, Coll Engn, Dept Energy & Resources Engn, Beijing, Peoples R China.
RP Wu, YS (reprint author), Colorado Sch Mines, Golden, CO 80401 USA.
RI Wu, Yu-Shu/A-5800-2011; R16, Direction Geoscience/H-9011-2012; IFPEN,
Publications/A-8028-2008
FU EMG Research Center; UNGI of the Petroleum Engineering Department at
Colorado School of Mines; CMG; RIPED of PetroChina Company; IFPEN
FX This work was supported in part by EMG Research Center and UNGI of the
Petroleum Engineering Department at Colorado School of Mines; by
Foundation CMG; by RIPED of PetroChina Company; and by IFPEN.
NR 39
TC 19
Z9 21
U1 3
U2 26
PU SOC PETROLEUM ENG
PI RICHARDSON
PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA
SN 1086-055X
EI 1930-0220
J9 SPE J
JI SPE J.
PD OCT
PY 2014
VL 19
IS 5
BP 845
EP 857
PG 13
WC Engineering, Petroleum
SC Engineering
GA AU0AX
UT WOS:000345286600009
ER
PT J
AU Ruddell, BL
Adams, EA
Rushforth, R
Tidwell, VC
AF Ruddell, Benjamin L.
Adams, Elizabeth A.
Rushforth, Richard
Tidwell, Vincent C.
TI Embedded resource accounting for coupled natural-human systems: An
application to water resource impacts of the western US electrical
energy trade
SO WATER RESOURCES RESEARCH
LA English
DT Article
DE water resources; virtual water; economics; water and energy; networks
ID INPUT-OUTPUT-ANALYSIS; VIRTUAL WATER; ECOLOGICAL FOOTPRINT;
INTERNATIONAL-TRADE; NATIONS; CONSUMPTION; SCARCITY; POLICY; FLOWS;
SUSTAINABILITY
AB In complex coupled natural-human systems (CNH), multitype networks link social, environmental, and economic systems with flows of matter, energy, information, and value. Embedded Resource Accounting (ERA) is a systems analysis framework that includes the indirect connections of a multitype CNH network. ERA is conditioned on perceived system boundaries, which may vary according to the accountant's point of view. Both direct and indirect impacts are implicit whenever two subnetworks interact in such a system; the ratio of two subnetworks' impacts is the embedded intensity. For trade in the services of water, this is understood as the indirect component of a water footprint, and as virtual water trade. ERA is a generalization of input-output, footprint, and substance flow methods, and is a type of life cycle analysis. This paper presents results for the water and electrical energy system in the western U.S. This system is dominated by California, which outsources the majority of its water footprint of electrical energy. Electricity trade increases total water consumption for electricity production in the western U.S. by 15% and shifts water use to water-stressed Colorado River Basin States. A systemic underaccounting for water footprints occurs because state-level processes discount a portion of the water footprint occurring outside of the state boundary.
C1 [Ruddell, Benjamin L.; Adams, Elizabeth A.; Rushforth, Richard] Arizona State Univ, Fulton Sch Engn, Tempe, AZ 85287 USA.
[Ruddell, Benjamin L.] Arizona State Univ, Global Inst Sustainabil, Tempe, AZ USA.
[Tidwell, Vincent C.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Ruddell, BL (reprint author), Arizona State Univ, Fulton Sch Engn, Tempe, AZ 85287 USA.
EM bruddell@asu.edu
OI Rushforth, Richard/0000-0001-9179-7665
FU U.S. Department of Energy's Sandia National Laboratories; Great Lakes
Protection Fund [946]; U.S. National Science Foundation (NSF), under
Water Sustainability and Climate grant [EAR-1360509]; U.S. National
Science Foundation (NSF), under Central Arizona-Phoenix Long-Term
Ecological Research (CAP-LTER) grant [BCS-1026865]
FX Interested parties are invited to contact the authors for access to the
ERA 1.0 Matlab code that calculates ERA results, and to cite this
publication in reference to that software. Readers may also wish to
examine Martin and Ruddell [2012] because that work's approximations
provide a shortcut to some results without employing the full
theoretical rigor of the ERA framework and its detailed assumptions.
This work was supported by the U.S. Department of Energy's Sandia
National Laboratories, by the Great Lakes Protection Fund via grant 946,
and by the U.S. National Science Foundation (NSF), under Water
Sustainability and Climate grant EAR-1360509 and Central Arizona-Phoenix
Long-Term Ecological Research (CAP-LTER) grant BCS-1026865. We
gratefully acknowledge correspondence with Mikhail Chester, Martin
Pasqualetti, Kerry Smith, David Iwaniec at Arizona State University, Eli
Fenichel at Yale University, and Daniel Nidzgorski at the University of
Minnesota. The arguments in this paper are those of the authors, and not
necessarily those of the sponsors and correspondents.
NR 101
TC 9
Z9 9
U1 12
U2 45
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
EI 1944-7973
J9 WATER RESOUR RES
JI Water Resour. Res.
PD OCT
PY 2014
VL 50
IS 10
BP 7957
EP 7972
DI 10.1002/2013WR014531
PG 16
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA AT2RX
UT WOS:000344783800025
ER
PT J
AU McClintock, ME
Hepp, GR
Kennamer, RA
AF McClintock, Maureen E.
Hepp, Gary R.
Kennamer, Robert A.
TI Plasticity of incubation behaviors helps Wood Ducks (Aix sponsa)
maintain an optimal thermal environment for developing embryos
SO AUK
LA English
DT Article
DE Aix sponsa; Anatidae; incubation behaviors; incubation temperature;
reproduction costs; tradeoffs; Wood Duck
ID SWALLOWS TACHYCINETA-BICOLOR; TREE SWALLOWS; TEMPERATURE AFFECTS; CLUTCH
SIZE; REPRODUCTIVE-PERFORMANCE; SOMATERIA-MOLLISSIMA;
GEOGRAPHIC-VARIATION; NEST TEMPERATURE; HORNED LARKS; BLUE TIT
AB Optimal development of avian embryos occurs within a narrow range of incubation temperatures. Most parents that physically incubate their eggs through direct contact are challenged to balance their time on the nest with taking foraging recesses to satisfy their energetic requirements. To explore the costs and investment strategies of incubating female Wood Ducks (Aix sponsa), we manipulated the nnicroclimate of nests by reducing down insulation from the typical 4.0 g to 0.5 g. Cooling rates of clutches during morning recesses increased when down insulation was reduced, especially at low ambient temperatures. Females with reduced down responded to increased cooling rates by shortening morning recesses and increasing daily incubation constancy, and these behavioral changes were independent of their body mass at the start of incubation. Females in both treatment groups responded similarly to changes in ambient temperature and spent less time incubating as ambient temperatures increased. Clutch temperatures at the end of morning recesses were similar for females with reduced and normal insulation. Average clutch temperatures for the full incubation period did not differ between treatments, and, correspondingly, there were no differences in length of the incubation period, hatching success, or duckling phenotype. Our results show that female Wood Ducks were sensitive to changes in both clutch temperature and ambient temperature and that they modified their time on the nest to provide developing eggs with an optimal thermal environment without negatively affecting their body mass at the end of incubation. Further examination of the limits of behavioral plasticity in incubating birds will be essential, particularly in light of future challenges presented by climate change.
C1 [McClintock, Maureen E.; Hepp, Gary R.] Auburn Univ, Sch Forestry & Wildlife Sci, Auburn, AL 36849 USA.
[Kennamer, Robert A.] Savannah River Ecol Lab, Aiken, SC USA.
RP Hepp, GR (reprint author), Auburn Univ, Sch Forestry & Wildlife Sci, Auburn, AL 36849 USA.
EM heppgar@auburn.edu
FU National Science Foundation [IOB-0615361]; Alabama Agricultural
Experiment Station; Department of Energy [DE-FC09-07SR22506]
FX Thanks are due to our field crew, J. McPherson, N. Allen, C. Weithman,
and C. Gesmundo. We also thank T. Steury for statistical assistance, and
the staff at the Savannah River Ecology Lab for support and hospitality.
The Institutional Animal Care and Use Committee of Auburn University
approved our research (PRN 2010-1691). Ducklings were collected under
permits issued by the U.S. Fish and Wildlife Service (MB 748024-0) and
South Carolina (G-10-02). Research was supported by National Science
Foundation grant IOB-0615361 to G.R.H., the Alabama Agricultural
Experiment Station, and the Department of Energy under award
DE-FC09-07SR22506 to the University of Georgia Research Foundation.
NR 62
TC 5
Z9 5
U1 8
U2 37
PU AMER ORNITHOLOGISTS UNION
PI LAWRENCE
PA ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA
SN 0004-8038
EI 1938-4254
J9 AUK
JI AUK
PD OCT
PY 2014
VL 131
IS 4
BP 672
EP 680
DI 10.1642/AUK-14-57.1
PG 9
WC Ornithology
SC Zoology
GA AT3GF
UT WOS:000344823200018
ER
PT J
AU Dai, XG
Hu, QJ
Cai, QL
Feng, K
Ye, N
Tuskan, GA
Milne, R
Chen, YN
Wan, ZB
Wang, ZF
Luo, WC
Wang, K
Wan, DS
Wang, MX
Wang, J
Liu, JQ
Yin, TM
AF Dai, Xiaogang
Hu, Quanjun
Cai, Qingle
Feng, Kai
Ye, Ning
Tuskan, Gerald A.
Milne, Richard
Chen, Yingnan
Wan, Zhibing
Wang, Zefu
Luo, Wenchun
Wang, Kun
Wan, Dongshi
Wang, Mingxiu
Wang, Jun
Liu, Jianquan
Yin, Tongming
TI The willow genome and divergent evolution from poplar after the common
genome duplication
SO CELL RESEARCH
LA English
DT Letter
ID POPULUS; SALIX; RATES
C1 [Dai, Xiaogang; Feng, Kai; Ye, Ning; Chen, Yingnan; Wan, Zhibing; Wang, Mingxiu; Yin, Tongming] Nanjing Forestry Univ, Southern Modern Forestry Collaborat Innovat Ctr, Nanjing 210037, Jiangsu, Peoples R China.
[Hu, Quanjun; Wang, Zefu; Luo, Wenchun; Wang, Kun; Wan, Dongshi; Liu, Jianquan] Lanzhou Univ, Coll Life Sci, State Key Lab Grassland Agroecosyst, Lanzhou 730000, Peoples R China.
[Cai, Qingle; Wang, Jun] BGI Shenzhen, Shenzhen 518083, Peoples R China.
[Tuskan, Gerald A.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
[Milne, Richard] Univ Edinburgh, Inst Mol Plant Sci, Edinburgh EH9 3JH, Midlothian, Scotland.
RP Yin, TM (reprint author), Nanjing Forestry Univ, Southern Modern Forestry Collaborat Innovat Ctr, Nanjing 210037, Jiangsu, Peoples R China.
EM wangj@genomics.org.cn; liujq@lzu.edu.cn; tmyin@njfu.edu.cn
RI Ye, Ning/O-3246-2015; Wang, Jun/C-8434-2016; Tuskan, Gerald/A-6225-2011;
Wang, Jun/B-9503-2016
OI Ye, Ning/0000-0001-7249-8352; Wang, Jun/0000-0002-8540-8931; Tuskan,
Gerald/0000-0003-0106-1289; Hu, Quanjun/0000-0001-6922-2144; Wang,
Jun/0000-0002-2113-5874
NR 10
TC 26
Z9 29
U1 4
U2 27
PU INST BIOCHEMISTRY & CELL BIOLOGY
PI SHANGHAI
PA SIBS, CAS, 319 YUEYANG ROAD, SHANGHAI, 200031, PEOPLES R CHINA
SN 1001-0602
EI 1748-7838
J9 CELL RES
JI Cell Res.
PD OCT
PY 2014
VL 24
IS 10
BP 1274
EP 1277
DI 10.1038/cr.2014.83
PG 4
WC Cell Biology
SC Cell Biology
GA AT5OZ
UT WOS:000344993300015
PM 24980958
ER
PT J
AU Sahajpal, R
Zhang, XS
Izaurralde, RC
Gelfand, I
Hurtt, GC
AF Sahajpal, Ritvik
Zhang, Xuesong
Izaurralde, Roberto C.
Gelfand, Ilya
Hurtt, George C.
TI Identifying representative crop rotation patterns and grassland loss in
the US Western Corn Belt
SO COMPUTERS AND ELECTRONICS IN AGRICULTURE
LA English
DT Article
DE Cropland data layer; Crop rotations; US Midwest; RECRUIT algorithm;
Prairie pothole region
ID AGRICULTURAL LANDSCAPE SIMPLIFICATION; MISSISSIPPI RIVER-BASIN; LAND-USE
CHANGE; UNITED-STATES; RESOURCESAT-1 AWIFS; INSECTICIDE USE; NDVI DATA;
SEQUESTRATION; BIOENERGY; SWAT
AB Crop rotations (the practice of growing crops on the same land in sequential seasons) reside at the core of agronomic management as they can influence key ecosystem services such as crop yields, carbon and nutrient cycling, soil erosion, water quality, pest and disease control. Despite the availability of the Cropland Data Layer (CDL) which provides remotely sensed data on crop type in the US on an annual basis, crop rotation patterns remain poorly mapped due to the lack of tools that allow for consistent and efficient analysis of multi-year CDLs. This study presents the Representative Crop Rotations Using Edit Distance (RECRUIT) algorithm, implemented as a Python software package, to select representative crop rotations by combining and analyzing multi-year CDLs. Using CDLs from 2010 to 2012 for 5 states in the US Midwest, we demonstrate the performance and parameter sensitivity of RECRUIT in selecting representative crop rotations that preserve crop area and capture land-use changes. Selecting only 82 representative crop rotations accounted for over 90% of the spatio-temporal variability of the more than 13,000 rotations obtained from combining the multi-year CDLs. Furthermore, the accuracy of the crop rotation product compared favorably with total state-wide planted crop area available from agricultural census data. The RECRUIT derived crop rotation product was used to detect land-use conversion from grassland to crop cultivation in a wetland dominated part of the US Midwest. Monoculture corn and monoculture soybean cropping were found to comprise the dominant land-use on the newly cultivated lands. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Sahajpal, Ritvik; Izaurralde, Roberto C.; Hurtt, George C.] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA.
[Zhang, Xuesong; Hurtt, George C.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA.
[Zhang, Xuesong; Hurtt, George C.] Univ Maryland, College Pk, MD 20740 USA.
[Zhang, Xuesong; Izaurralde, Roberto C.; Gelfand, Ilya] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA.
[Gelfand, Ilya] Michigan State Univ, WK Kellogg Biol Stn, Hickory Corners, MI 49060 USA.
RP Sahajpal, R (reprint author), Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA.
EM ritvik@umd.edu
RI zhang, xuesong/B-7907-2009; Gelfand, Ilya/J-9017-2012;
OI Gelfand, Ilya/0000-0002-8576-0978; sahajpal, ritvik/0000-0002-6418-289X
FU US DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science)
[DE-FC02-07ER64494]; US DOE Office of Science (DOE BER Office of
Science) [DE-AC06-76RLO 1830]; NASA [NNH08ZDA001N, NNX10AO03G,
NNH12AU03I, NNH13ZDA001N]
FX We gratefully acknowledge the support provided by the US DOE Great Lakes
Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494)
and US DOE Office of Science (DOE BER Office of Science DE-AC06-76RLO
1830) and NASA (NNH08ZDA001N, NNX10AO03G, NNH12AU03I and NNH13ZDA001N).
Thanks to Dr. Jonathan Resop from the University of Maryland for
providing useful feedback on a draft version of the manuscript. We would
like to thank two anonymous reviewers and the editor Dr. Qin Zhang for
their guidance in improving this manuscript.
NR 58
TC 7
Z9 7
U1 4
U2 38
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0168-1699
EI 1872-7107
J9 COMPUT ELECTRON AGR
JI Comput. Electron. Agric.
PD OCT
PY 2014
VL 108
BP 173
EP 182
DI 10.1016/j.compag.2014.08.005
PG 10
WC Agriculture, Multidisciplinary; Computer Science, Interdisciplinary
Applications
SC Agriculture; Computer Science
GA AS7KX
UT WOS:000344436100020
ER
PT J
AU Howard, DC
Saha, PK
Shankar, S
England, TD
Cardoso, AS
Diestelhorst, RM
Jung, S
Cressler, JD
AF Howard, Duane C.
Saha, Prabir K.
Shankar, Subramaniam
England, Troy D.
Cardoso, Adilson S.
Diestelhorst, Ryan M.
Jung, Seungwoo
Cressler, John D.
TI A SiGe 8-18-GHz Receiver With Built-In-Testing Capability for
Self-Healing Applications
SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES
LA English
DT Article
DE Built-in test (BIT); built-in self-test (BIST); SiGe BiCMOS; microwave
integrated circuits (ICs); signal generation; tunable microwave circuits
ID CIRCUITS; AMPLIFIER
AB A wideband (8-18 GHz) built-in test receiver in silicon-germanium technology is presented. The receiver chain consists of a low-noise amplifier (LNA), an image-reject mixer, on-chip automatic gain control ring oscillator sources that are used to provide test signals of a predefined amplitude, and control circuitry in the form of digital-to-analog converters and data registers. Both the LNA and the mixer circuit blocks incorporate tuning knobs to enable tuning of RF metrics to ensure consistent performance and mitigate the negative effects of process, voltage, and temperature variations, aging, and damage from extreme environments such as ionizing radiation. A maximum post-healed gain greater than 30 dB, an image rejection ratio exceeding 30 dB, output third-order intercept point greater than 8 dBm, and noise figure less than 9 dB are obtained in measurement. An automated healing algorithm was developed and shown to be effective at improving the overall performance of the receiver. The receiver was fabricated in an 0.18-mu m SiGe BiCMOS process with a peak f(T) of 150 GHz, and consumes 240-260 mA from a 4-V supply.
C1 [Howard, Duane C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Saha, Prabir K.; Cardoso, Adilson S.; Jung, Seungwoo; Cressler, John D.] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30332 USA.
[Shankar, Subramaniam] Inphi Corp, Thousand Oaks, CA 91362 USA.
[England, Troy D.] Sandia Natl Labs, Albuquerque, NM 87123 USA.
[Diestelhorst, Ryan M.] NextInput Inc, Atlanta, GA 30308 USA.
RP Howard, DC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM duane.c.howard@jpl.nasa.gov
FU Defense Advanced Research Projects Agency (DARPA) under HEALICs Program
FX This work was supported by the Defense Advanced Research Projects Agency
(DARPA) under the HEALICs Program.
NR 21
TC 5
Z9 5
U1 0
U2 2
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9480
EI 1557-9670
J9 IEEE T MICROW THEORY
JI IEEE Trans. Microw. Theory Tech.
PD OCT
PY 2014
VL 62
IS 10
BP 2370
EP 2380
DI 10.1109/TMTT.2014.2345334
PG 11
WC Engineering, Electrical & Electronic
SC Engineering
GA AT5NX
UT WOS:000344990600015
ER
PT J
AU Dennis, GR
Hudson, SR
Hole, MJ
AF Dennis, Graham R.
Hudson, Stuart R.
Hole, Matthew J.
TI Modeling the Single-Helical Axis State in the Reversed-Field Pinch
SO IEEE TRANSACTIONS ON PLASMA SCIENCE
LA English
DT Article
DE Magnetic confinement; plasma simulation
AB The classical paradigm of the reversed-field pinch as a chaotic plasma has been challenged in recent years by the observation of the high-confinement single-helical axis (SHAx) state in which the plasma spontaneously develops a helical core. A reconstruction of this state using a minimally constrained model that captures the self-organized nature of the SHAx state is presented.
C1 [Dennis, Graham R.; Hole, Matthew J.] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 0200, Australia.
[Hudson, Stuart R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Dennis, GR (reprint author), Australian Natl Univ, Res Sch Phys & Engn, GPO Box 4, Canberra, ACT 0200, Australia.
EM graham.dennis@anu.edu.au; shudson@pppl.gov; matthew.hole@anu.edu.au
RI Hudson, Stuart/H-7186-2013
OI Hudson, Stuart/0000-0003-1530-2733
FU Australian Research Council
FX Manuscript received November 3, 2013; accepted March 26, 2014. Date of
publication July 1, 2014; date of current version October 21, 2014. This
work was supported by the Australian Research Council.
NR 4
TC 0
Z9 0
U1 1
U2 3
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0093-3813
EI 1939-9375
J9 IEEE T PLASMA SCI
JI IEEE Trans. Plasma Sci.
PD OCT
PY 2014
VL 42
IS 10
SI SI
BP 2514
EP 2515
DI 10.1109/TPS.2014.2314469
PN 1
PG 2
WC Physics, Fluids & Plasmas
SC Physics
GA AS9FK
UT WOS:000344548300095
ER
PT J
AU Anders, A
Ni, P
Andersson, J
AF Anders, Andre
Ni, Pavel
Andersson, Joakim
TI Drifting Ionization Zone in DC Magnetron Sputtering Discharges at Very
Low Currents
SO IEEE TRANSACTIONS ON PLASMA SCIENCE
LA English
DT Article
DE Plasma diagnostics; plasma materials processing; plasma measurements;
plasma sources; plasma stability
ID PLASMA
AB Discharges with crossed electric and magnetic fields are known to develop instabilities that are crucial in the transport of charged particles. Sputtering magnetrons are no exception. While most recent studies focused on traveling ionization zones in high-power impulse magnetron sputtering, we show here fast camera images of magnetron discharges at very low current. A single drifting ionization zone is always present, even down to the threshold current of similar to 10 mA.
C1 [Anders, Andre; Ni, Pavel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Andersson, Joakim] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore.
RP Anders, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM aanders@lbl.gov; pani@lbl.gov; profoss@gmail.com
RI Andersson, Joakim/A-3017-2009; Anders, Andre/B-8580-2009
OI Andersson, Joakim/0000-0003-2991-1927; Anders, Andre/0000-0002-5313-6505
FU U.S. Department of Energy [DE-AC02-05CH11231]; National Research
Foundation; Ministry of Education, Singapore
FX The work of A. Anders and P. Ni was supported by the U.S. Department of
Energy under Contract DE-AC02-05CH11231. The work of J. Andersson was
supported in part by the National Research Foundation and in part by the
Ministry of Education, Singapore.
NR 11
TC 7
Z9 7
U1 2
U2 15
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0093-3813
EI 1939-9375
J9 IEEE T PLASMA SCI
JI IEEE Trans. Plasma Sci.
PD OCT
PY 2014
VL 42
IS 10
SI SI
BP 2578
EP 2579
DI 10.1109/TPS.2014.2334601
PN 1
PG 2
WC Physics, Fluids & Plasmas
SC Physics
GA AS9FK
UT WOS:000344548300127
ER
PT J
AU Frayer, D
Ekdahl, CA
Johnson, D
AF Frayer, Daniel
Ekdahl, Carl A.
Johnson, Douglas
TI Fidelity of a Time-Resolved Imaging Diagnostic for Electron Beam
Profiles
SO IEEE TRANSACTIONS ON PLASMA SCIENCE
LA English
DT Article
DE Beams; instumentation and measurement; lenses; measurements; optics;
particle beam measurements physics; particle imaging; reconstruction
algorithms lasers and electrooptics; tomography
AB An optical tomographic diagnostic instrument has been fielded at the Dual-Axis Radiographic Hydrodynamic Test Facility at Los Alamos National Laboratory. Four optical lines of sight create projections of an image of an electron beam on a Cerenkov target, which are relayed via optical fiber to streak cameras. From these projections, a reconstruction algorithm creates time histories of the beam's cross section. The instrument was fielded during and after facility commissioning, and tomographic reconstructions reported beam parameters. Results from reconstructions and analysis are noted.
C1 [Frayer, Daniel; Johnson, Douglas] Natl Secur Technol, Los Alamos, NM 87544 USA.
[Ekdahl, Carl A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Frayer, D (reprint author), Natl Secur Technol, Los Alamos, NM 87544 USA.
EM frayerdk@nv.doe.gov; cekdahl@lanl.gov; johnsode@nv.doe.gov
NR 3
TC 0
Z9 0
U1 0
U2 0
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0093-3813
EI 1939-9375
J9 IEEE T PLASMA SCI
JI IEEE Trans. Plasma Sci.
PD OCT
PY 2014
VL 42
IS 10
SI SI
BP 2594
EP 2595
DI 10.1109/TPS.2014.2348797
PN 1
PG 2
WC Physics, Fluids & Plasmas
SC Physics
GA AS9FK
UT WOS:000344548300135
ER
PT J
AU Kolbeck, J
Anders, A
AF Kolbeck, Jonathan
Anders, Andre
TI Unusual Cathode Erosion Patterns Observed for Steered Arc Sources
SO IEEE TRANSACTIONS ON PLASMA SCIENCE
LA English
DT Article
DE Arc discharges; cathodes; plasma devices; plasma sources
AB A cathodic arc source with a magnetron-type magnetic field was investigated for stability, erosion, and compatibility with a linear macroparticle filter. Cathodic arc spot and plasma distributions were photographed during the transition from a pure argon background (0.5 Pa) to a mixture of argon and oxygen. We report about unusual cathode erosion patterns, which were narrow (similar to 2 mm) with periodic pits when operating in argon, and broad (similar to 10 mm) with periodic groves and ridges when operating in argon and oxygen mixtures.
C1 [Kolbeck, Jonathan; Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Kolbeck, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM jonathan_kolbeck@hotmail.com; aanders@lbl.gov
RI Anders, Andre/B-8580-2009
OI Anders, Andre/0000-0002-5313-6505
FU U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the U.S. Department of Energy under Contract
DE-AC02-05CH11231.
NR 6
TC 0
Z9 0
U1 1
U2 5
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0093-3813
EI 1939-9375
J9 IEEE T PLASMA SCI
JI IEEE Trans. Plasma Sci.
PD OCT
PY 2014
VL 42
IS 10
SI SI
BP 2602
EP 2603
DI 10.1109/TPS.2014.2328333
PN 1
PG 2
WC Physics, Fluids & Plasmas
SC Physics
GA AS9FK
UT WOS:000344548300139
ER
PT J
AU Huebl, A
Pugmire, D
Schmitt, F
Pausch, R
Bussmann, M
AF Huebl, Axel
Pugmire, David
Schmitt, Felix
Pausch, Richard
Bussmann, Michael
TI Visualizing the Radiation of the Kelvin-Helmholtz Instability
SO IEEE TRANSACTIONS ON PLASMA SCIENCE
LA English
DT Article
DE (Data) visualization; electromagnetic radiation; parallel machines;
plasma simulation; plasma stability
ID MAGNETIC-FIELD; SIMULATIONS; PLASMA
AB Emerging new technologies in plasma simulations allow tracking billions of particles while computing their radiative spectra. We present a visualization of the relativistic Kelvin-Helmholtz instability from a simulation performed with the fully-relativistic particle-in-cell code PIConGPU powered by 18,000 GPUs on the USA's fastest supercomputer Titan.
C1 [Huebl, Axel; Pausch, Richard; Bussmann, Michael] Helmholtz Zentrum Dresden Rossendorf, Inst Radiat Phys, D-01328 Dresden, Germany.
[Pugmire, David] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA.
[Schmitt, Felix] Tech Univ Dresden, D-01069 Dresden, Germany.
RP Huebl, A (reprint author), Helmholtz Zentrum Dresden Rossendorf, Inst Radiat Phys, D-01328 Dresden, Germany.
EM a.huebl@hzdr.de; pugmire@ornl.gov; felix.schmitt@zih.tu-dresden.de;
r.pausch@hzdr.de; m.bussmann@hzdr.de
RI Bussmann, Michael/A-3422-2009;
OI Bussmann, Michael/0000-0002-8258-3881; Hubl, Axel/0000-0003-1943-7141
FU Office of Science, U.S. Department of Energy through the Oak Ridge
Leadership Computing Facility, Oak Ridge National Laboratory, Oak Ridge,
TN, USA [DE-AC05-00OR22725]
FX This work was supported by the Office of Science, U.S. Department of
Energy, under Contract DE-AC05-00OR22725, through the Oak Ridge
Leadership Computing Facility, Oak Ridge National Laboratory, Oak Ridge,
TN, USA.
NR 9
TC 0
Z9 0
U1 1
U2 6
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0093-3813
EI 1939-9375
J9 IEEE T PLASMA SCI
JI IEEE Trans. Plasma Sci.
PD OCT
PY 2014
VL 42
IS 10
SI SI
BP 2638
EP 2639
DI 10.1109/TPS.2014.2327392
PN 1
PG 2
WC Physics, Fluids & Plasmas
SC Physics
GA AS9FK
UT WOS:000344548300157
ER
PT J
AU Muscatello, CM
Domier, CW
Hu, X
Luhmann, NC
Ren, XX
Riemenschneider, P
Spear, A
Yu, LB
Tobias, B
AF Muscatello, Christopher M.
Domier, Calvin W.
Hu, Xing
Luhmann, Neville C., Jr.
Ren, Xiaoxin
Riemenschneider, Paul
Spear, Alexander
Yu, Liubing
Tobias, Benjamin
TI Multidimensional Visualization of MHD and Turbulence in Fusion Plasmas
SO IEEE TRANSACTIONS ON PLASMA SCIENCE
LA English
DT Article
AB Quasi-optical imaging at sub-THz frequencies has a major impact on fusion plasma diagnostics. Millimeter-wave imaging reflectometry utilizes microwaves to actively probe fusion plasmas, inferring the local properties of electron density fluctuations. Electron cyclotron emission imaging is a multichannel radiometer that passively measures the spontaneous emission of microwaves from the plasma to infer local properties of electron temperature fluctuations. These imaging diagnostics work together to diagnose the characteristics of turbulence and magnetohydrodynamic activity. Important quantities, such as amplitude and wavenumber of coherent fluctuations, correlation lengths and decorrelation times of turbulence, and poloidal flow velocity of the plasma, are readily inferred.
C1 [Muscatello, Christopher M.; Domier, Calvin W.; Hu, Xing; Luhmann, Neville C., Jr.; Ren, Xiaoxin; Riemenschneider, Paul; Spear, Alexander; Yu, Liubing] Univ Calif Davis, Davis, CA 95616 USA.
[Tobias, Benjamin] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA.
RP Muscatello, CM (reprint author), Univ Calif Davis, Davis, CA 95616 USA.
EM cmuscate@ucdavis.edu; cwdomier@ucdavis.edu; imxhu@ucdavis.edu;
ncluhmann@ucdavis.edu; xren@ucdavis.edu; periemens@ucdavis.edu;
agspear@ucdavis.edu; yuliubing@gmail.com; bjtobias@pppl.gov
FU U.S. Department of Energy [DE-AC02-09CH11466, DE-FG02-99ER54531,
DE-FC02-04ER54698]
FX This work was supported by the U.S. Department of Energy under Grant
DE-AC02-09CH11466, Grant DE-FG02-99ER54531, and Grant DE-FC02-04ER54698.
NR 7
TC 1
Z9 1
U1 1
U2 9
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0093-3813
EI 1939-9375
J9 IEEE T PLASMA SCI
JI IEEE Trans. Plasma Sci.
PD OCT
PY 2014
VL 42
IS 10
SI SI
BP 2734
EP 2735
DI 10.1109/TPS.2014.2345275
PN 1
PG 2
WC Physics, Fluids & Plasmas
SC Physics
GA AS9FK
UT WOS:000344548300205
ER
PT J
AU Andersson, J
Ni, P
Anders, A
AF Andersson, Joakim
Ni, Pavel
Anders, Andre
TI Smoothing of Discharge Inhomogeneities at High Currents in Gasless High
Power Impulse Magnetron Sputtering
SO IEEE TRANSACTIONS ON PLASMA SCIENCE
LA English
DT Article
DE Plasma diagnostics; plasma materials processing; plasma measurements;
plasma sources; plasma stability
AB The discharges in high-power impulse magnetron sputtering (HiPIMS) have been reported to consist of azimuthally inhomogeneous plasma with locally increased light emission. The luminous zones seemingly travel around the racetrack and are implicated in generation of the high ion kinetic energies observed in HiPIMS. We show that the inhomogeneities smooth out at high discharge current to yield azimuthally homogeneous plasma. This may have implications for the spatial and kinetic energy distribution of sputtered particles, and therefore also on the thin films deposited by HiPIMS.
C1 [Andersson, Joakim] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore.
[Ni, Pavel; Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Andersson, J (reprint author), Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore.
EM aanders@lbl.gov; pani@lbl.gov; profoss@gmail.com
RI Andersson, Joakim/A-3017-2009; Anders, Andre/B-8580-2009
OI Andersson, Joakim/0000-0003-2991-1927; Anders, Andre/0000-0002-5313-6505
FU U.S. Department of Energy [DE-AC02-05CH11231]; National Research
Foundation; Ministry of Education, Singapore
FX This work was supported in part by the U.S. Department of Energy under
Contract DE-AC02-05CH11231, in part by the National Research Foundation,
and in part by the Ministry of Education, Singapore.
NR 8
TC 2
Z9 2
U1 0
U2 15
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0093-3813
EI 1939-9375
J9 IEEE T PLASMA SCI
JI IEEE Trans. Plasma Sci.
PD OCT
PY 2014
VL 42
IS 10
SI SI
BP 2856
EP 2857
DI 10.1109/TPS.2014.2334600
PN 1
PG 2
WC Physics, Fluids & Plasmas
SC Physics
GA AS9FK
UT WOS:000344548300266
ER
PT J
AU Reass, WA
Baca, DM
Griego, JR
Oro, DM
Reinovsky, RE
Rousculp, CL
Turchi, PJ
AF Reass, William A.
Baca, David M.
Griego, Jeffrey R.
Oro, David M.
Reinovsky, Robert E.
Rousculp, Christopher L.
Turchi, Peter J.
TI Electrical Design and Operation of the Phelix Pulsed Power System
SO IEEE TRANSACTIONS ON PLASMA SCIENCE
LA English
DT Article
DE Hydrodynamics; marx banks; pulse transformer; pulsed power
AB The Precision High Energy-Density Liner Implosion Experiment (PHELIX) is a pulsed power driver capable of delivering multimegampere currents to cylindrical loads. The PHELIX hardware includes novel design features to provide a high-energy conversion efficiency of approximately 10-MA output current per megajoule of stored energy. This is achieved by a rail-gap switched low-inductance Marx design (resistively damped) driving a multifilar air-core pulse transformer. The Marx output cables form the toroidal transformer that is an integral part of the disc line and removable load cassette assembly. The transformer and disc line uses conformal insulation methods and does not require replacement; after each shot, the transformer is completely reusable. Load cassettes can be easily exchanged to facilitate experimental variation. PHELIX is self-contained within its own transport container and Faraday cage that can be moved from the maintenance building to the Los Alamos Neutron Science Center 800-MeV proton accelerator facility to perform multipulse proton radiography. This paper details the electrical and mechanical design of the Marx and multifilar transformer assemblies as well as presenting the operational performance achieved to date.
C1 [Reass, William A.; Baca, David M.; Griego, Jeffrey R.; Oro, David M.; Reinovsky, Robert E.; Rousculp, Christopher L.; Turchi, Peter J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Reass, WA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM wreass@lanl.gov; dbaca@lanl.gov; jrgriego@lanl.gov; oro@lanl.gov;
bobr@lanl.gov; rousculp@lanl.gov; turchi@lanl.gov
FU U.S. Department of Energy
FX This work was supported by the U.S. Department of Energy.
NR 8
TC 4
Z9 5
U1 1
U2 1
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0093-3813
EI 1939-9375
J9 IEEE T PLASMA SCI
JI IEEE Trans. Plasma Sci.
PD OCT
PY 2014
VL 42
IS 10
SI SI
BP 2934
EP 2942
DI 10.1109/TPS.2014.2326335
PN 2
PG 9
WC Physics, Fluids & Plasmas
SC Physics
GA AS9EP
UT WOS:000344546200009
ER
PT J
AU Vanderburg, A
Stefani, F
Sitzman, A
Crawford, M
Surls, D
Ling, C
McDonald, J
AF Vanderburg, Andrew
Stefani, Francis
Sitzman, Alex
Crawford, Mark
Surls, Dwayne
Ling, Chloe
McDonald, Jason
TI The Electrical Specific Action to Melt of Structural Copper and Aluminum
Alloys
SO IEEE TRANSACTIONS ON PLASMA SCIENCE
LA English
DT Article
DE Al6061; Al7075; aluminum alloy; C10100; C11000; C18000; C18200;
electrical action to melt; exploding wire experiment; specific action to
melt
AB This paper describes an exploding wire experiment to measure the electrical specific action to melt of structural alloys of copper and aluminum, including C10100, C11000, C18000, C18200, Al6061, and Al7075. These alloys, which are commonly used in railguns and other pulsed power devices, are not produced in fine wire form. Instead of wires, we developed a technique to test macroscopic samples (0.25 mm x 0.5 mm cross section) manufactured with wire electrical discharge machining. This paper includes a description of the design considerations for such macroscopic exploding wire experiments.
C1 [Vanderburg, Andrew] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Stefani, Francis] Univ Texas Austin, Ctr Aeromech Res, Austin, TX 78712 USA.
[Sitzman, Alex] Univ Texas Austin, Dept Elect Engn, Austin, TX 78712 USA.
[Crawford, Mark] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Surls, Dwayne] Univ Texas Austin, Ctr Electromech, Austin, TX 78712 USA.
[Ling, Chloe] CALTECH, Pasadena, CA 91125 USA.
[McDonald, Jason] Bowhead Sci & Technol, Aberdeen, MD 21005 USA.
RP Vanderburg, A (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
EM andrew.vanderburg@berkeley.edu; stefani@utexas.edu; asitzman@gmail.com;
mtc@lanl.gov; d.surls@cem.utexas.edu; cling@caltech.edu;
jason.r.mcdonald27.ctr@mail.mil
FU U.S. Army Research Laboratory [W911QX-07-D-0002]
FX This work was supported by the U.S. Army Research Laboratory under
Contract W911QX-07-D-0002.
NR 8
TC 3
Z9 3
U1 1
U2 6
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0093-3813
EI 1939-9375
J9 IEEE T PLASMA SCI
JI IEEE Trans. Plasma Sci.
PD OCT
PY 2014
VL 42
IS 10
SI SI
BP 3167
EP 3172
DI 10.1109/TPS.2014.2313292
PN 2
PG 6
WC Physics, Fluids & Plasmas
SC Physics
GA AS9EP
UT WOS:000344546200041
ER
PT J
AU Baxter, EA
Kovaleski, SD
Gall, BB
VanGordon, JA
Norgard, P
Dale, GE
AF Baxter, Emily A.
Kovaleski, Scott D.
Gall, Brady B.
VanGordon, James A.
Norgard, Peter
Dale, Gregory E.
TI Hydrogen and Deuterium Ion Extraction From a Piezoelectric Transformer
Plasma Source
SO IEEE TRANSACTIONS ON PLASMA SCIENCE
LA English
DT Article
DE Ion sources; piezoelectric materials; plasma generation
ID HIGHLY ENRICHED URANIUM; ACTIVE INTERROGATION; CROSS-SECTIONS; NEUTRON;
ACCELERATORS
AB A piezoelectric transformer plasma source (PTPS) has been developed as a plasma ion source for D(d,n)He-3 neutron production. This neutron production system is compact, radioisotope free, and can be easily turned ON and OFF. The PTPS consists of a lithium niobate piezoelectric disk in a differentially pumped chamber with controlled gas flow from an external source. The PTPS was previously characterized using a range of gas flows, extraction voltages, and aperture geometries to demonstrate its capabilities as an ion source. Ion current measurements are presented for deuterium and hydrogen gas at PTPS pressures from 1.5 to 8.5 torr, RF driving voltages from 200 to 400 V, and extraction voltages up to 2000 V. Ion current yields on the order of 10 mu A were measured.
C1 [Baxter, Emily A.; Kovaleski, Scott D.; Gall, Brady B.; VanGordon, James A.; Norgard, Peter] Univ Missouri, Dept Elect & Comp Engn, Columbia, MO 65211 USA.
[Dale, Gregory E.] Los Alamos Natl Lab, Power Electrodynam Grp, Los Alamos, NM 87545 USA.
RP Baxter, EA (reprint author), Univ Missouri, Dept Elect & Comp Engn, Columbia, MO 65211 USA.
EM eab7rf@mail.missouri.edu; kovaleskis@missouri.edu;
bbgb62@mail.missouri.edu; jav4zc@mail.missouri.edu;
norgardp@missouri.edu; gedale@lanl.gov
OI Norgard, Peter/0000-0002-5332-5998
FU Los Alamos National Laboratory, Los Alamos, NM, USA
FX This work was supported by the Los Alamos National Laboratory, Los
Alamos, NM, USA.
NR 22
TC 0
Z9 0
U1 2
U2 10
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0093-3813
EI 1939-9375
J9 IEEE T PLASMA SCI
JI IEEE Trans. Plasma Sci.
PD OCT
PY 2014
VL 42
IS 10
SI SI
BP 3253
EP 3257
DI 10.1109/TPS.2014.2345019
PN 2
PG 5
WC Physics, Fluids & Plasmas
SC Physics
GA AS9EP
UT WOS:000344546200055
ER
PT J
AU Gao, MC
AF Gao, Michael C.
TI Progress in High-Entropy Alloys
SO JOM
LA English
DT Editorial Material
ID MULTICOMPONENT ALLOYS
C1 URS Corp, Natl Energy Technol Lab, Albany, OR 97321 USA.
RP Gao, MC (reprint author), URS Corp, Natl Energy Technol Lab, 1450 Queen Ave SW, Albany, OR 97321 USA.
EM michael.gao@contr.netl.doe.gov
NR 9
TC 3
Z9 3
U1 3
U2 32
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
EI 1543-1851
J9 JOM-US
JI JOM
PD OCT
PY 2014
VL 66
IS 10
BP 1964
EP 1965
DI 10.1007/s11837-014-1136-3
PG 2
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA AT0HG
UT WOS:000344617000002
ER
PT J
AU Antonaglia, J
Xie, X
Tang, Z
Tsai, CW
Qiao, JW
Zhang, Y
Laktionova, MO
Tabachnikova, ED
Yeh, JW
Senkov, ON
Gao, MC
Uhl, JT
Liaw, PK
Dahmen, KA
AF Antonaglia, J.
Xie, X.
Tang, Z.
Tsai, C. -W.
Qiao, J. W.
Zhang, Y.
Laktionova, M. O.
Tabachnikova, E. D.
Yeh, J. W.
Senkov, O. N.
Gao, M. C.
Uhl, J. T.
Liaw, P. K.
Dahmen, K. A.
TI Temperature Effects on Deformation and Serration Behavior of
High-Entropy Alloys (HEAs)
SO JOM
LA English
DT Article
ID PRINCIPAL-ELEMENT ALLOYS; V-ZR SYSTEM; MULTICOMPONENT ALLOYS;
MECHANICAL-PROPERTIES; TENSILE PROPERTIES; STRAIN-RATE;
CORROSION-RESISTANCE; ACTIVATION-ENERGY; PHASE-COMPOSITION;
SOLID-SOLUTION
AB Many materials are known to deform under shear in an intermittent way with slip avalanches detected as acoustic emission and serrations in the stress-strain curves. Similar serrations have recently been observed in a new class of materials, called high-entropy alloys (HEAs). Here, we discuss the serration behaviors of several HEAs from cryogenic to elevated temperatures. The experimental results of slow compression and tension tests are compared with the predictions of a slip-avalanche model for the deformation of a broad range of solids. The results shed light on the deformation processes in HEAs. Temperature effects on the distributions of stress drops and the decrease of the cutoff (i.e., of the largest observed slip size) for increasing temperature qualitatively agree with the model predictions. The model is used to quantify the serration characteristics of HEAs, and pertinent implications are discussed.
C1 [Antonaglia, J.; Dahmen, K. A.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Xie, X.; Tang, Z.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Tsai, C. -W.; Yeh, J. W.] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan.
[Qiao, J. W.] Taiyuan Univ Technol, Coll Mat Sci & Engn, Taiyuan 030024, Peoples R China.
[Zhang, Y.] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China.
[Laktionova, M. O.; Tabachnikova, E. D.] Natl Acad Sci Ukraine, BI Verkin Inst Low Temp Phys & Engn, UA-61103 Kharkov, Ukraine.
[Senkov, O. N.] Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA.
[Gao, M. C.] Natl Energy Technol Lab, Albany, OR 97321 USA.
[Gao, M. C.] USR Corp, Albany, OR 97321 USA.
RP Antonaglia, J (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.
EM dahmen@illinois.edu
RI ZHANG, Yong/B-7928-2009;
OI ZHANG, Yong/0000-0002-6355-9923; Senkov, Oleg/0000-0001-5587-415X
FU U.S. National Science Foundation [DMR-0909037, CMMI-0900271,
CMMI-1100080]; Department of Energy (DOE), Office of Nuclear Energy's
Nuclear Energy University Program (NEUP) [00119262]; DOE, Office of
Fossil Energy, National Energy Technology Laboratory [DE-FE-0008855];
NSF [DMR-1005209, DMS-1069224]; DOE [FE0011194]; National Natural
Science Foundation of China [51010001, 51001009]; 111 Project [B07003];
Program for Changjiang Scholars and the Innovative Research Team of the
University; U.S. Army Research Office [W911NF-13-1-0438]; Air Force
[FA8650-10-D-5226]
FX X.X., Z.T., and P. K. L. appreciate the financial support from the U.S.
National Science Foundation (DMR-0909037, CMMI-0900271, and
CMMI-1100080), the Department of Energy (DOE), Office of Nuclear
Energy's Nuclear Energy University Program (NEUP) 00119262, and the DOE,
Office of Fossil Energy, National Energy Technology Laboratory
(DE-FE-0008855) with C. Huber, C. V. Cooper, D. Finotello, A. Ardell, E.
Taleff, V. Cedro, R.O. Jensen, L. Tan, and S. Lesica as contract
monitors. K. A. D. and J.A. gratefully acknowledge the NSF Grants
DMR-1005209 and DMS-1069224 with D. Hess and J. Curry as contract
monitors. K. A. D., X. X., and P. K. L. thank DOE for the support
through project FE0011194 with the project manager S. Markovich. Y.Z.
appreciates the financial support from the National Natural Science
Foundation of China (Nos. 51010001 and 51001009), 111 Project (B07003),
and the Program for Changjiang Scholars and the Innovative Research Team
of the University. M. C. G. and P. K. L. very much appreciate the
support from the U.S. Army Research Office project (W911NF-13-1-0438)
with the program manager S.N. Mathaudhu. Work of ONS was supported
through the Air Force on-site contract FA8650-10-D-5226 conducted by
UES, Inc., Dayton, Ohio. All authors are grateful to the suggestions and
comments of Dr. D. B. Miracle.
NR 59
TC 21
Z9 21
U1 7
U2 98
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
EI 1543-1851
J9 JOM-US
JI JOM
PD OCT
PY 2014
VL 66
IS 10
BP 2002
EP 2008
DI 10.1007/s11837-014-1130-9
PG 7
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA AT0HG
UT WOS:000344617000007
ER
PT J
AU Salehinia, I
Shao, S
Wang, J
Zbib, HM
AF Salehinia, I.
Shao, S.
Wang, J.
Zbib, H. M.
TI Plastic Deformation of Metal/Ceramic Nanolayered Composites
SO JOM
LA English
DT Review
ID TRANSMISSION ELECTRON-MICROSCOPY; METAL-CERAMIC COMPOSITES;
MECHANICAL-PROPERTIES; THIN-FILMS; NANOINDENTATION BEHAVIOR; INTERATOMIC
POTENTIALS; ATOMISTIC SIMULATIONS; INDENTATION BEHAVIOR; INTERFACE
STRUCTURES; W/NBN SUPERLATTICES
AB Metal/ceramic multilayers combine high hardness of the ceramic layer and the high ductility of the metallic layer, enabling the design of novel composite coatings with high hardness and measurable ductility when the layer thickness reduces to a few nanometers. In this article, we review recent work with a focus on plastic deformation of metal/ceramic nanolayered composites from three aspects: experiment, theory, and atomistic modeling, and we propose several research directions in this topic.
C1 [Salehinia, I.; Zbib, H. M.] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA.
[Shao, S.; Wang, J.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA.
RP Salehinia, I (reprint author), Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA.
EM iman.salehinia@email.wsu.edu
RI Shao, Shuai/B-2037-2014; Wang, Jian/F-2669-2012
OI Shao, Shuai/0000-0002-4718-2783; Wang, Jian/0000-0001-5130-300X
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences [DE-FG02-07ER46435]; U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences; Los Alamos National
Laboratory Directed Research and Development [LDRD-ER20140450]
FX This work was supported by the U.S. Department of Energy, Office of
Basic Energy Sciences, Division of Materials Sciences
(DE-FG02-07ER46435). J.W. acknowledges the support provided by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, and the Los Alamos National Laboratory Directed Research and
Development (LDRD-ER20140450).
NR 75
TC 10
Z9 10
U1 5
U2 33
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
EI 1543-1851
J9 JOM-US
JI JOM
PD OCT
PY 2014
VL 66
IS 10
BP 2078
EP 2085
DI 10.1007/s11837-014-1132-7
PG 8
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA AT0HG
UT WOS:000344617000015
ER
PT J
AU Carsley, JE
Hovanski, Y
Clarke, KD
Krajewski, PE
AF Carsley, John E.
Hovanski, Yuri
Clarke, Kester D.
Krajewski, Paul E.
TI Deformation and Forming of Joined Materials
SO JOM
LA English
DT Article
AB As manufacturers strive to improve product performance and reduce weight, particularly in the transportation industries, designers are optimizing material usage with combinations of many different materials and alloys. The goal is to optimize mechanical behavior by selecting material specifically tailored for locations within a product or component. Such mixed material solutions require innovative joining technologies to combine, for example, aluminum and steel or magnesium and carbon fiber composite, etc. Critical to expanding the use of such joined materials in structural applications is the relevant technical understanding of how they form and deform across varying strain rates ranging from superplastic forming to stamping to crash events. With an increasingly rapid development of advanced materials, knowledge gained by assessing the post-weld formability of joined similar and multimaterial structures is crucial to providing the data needed to enable more widespread utilization. On the other end of the spectrum, increased insight characterizing the deformation of these joined structures is also critical to paving the way toward successful implementation. Characterizations via experimentation as well as predictive capabilities are essential to this effort as explored by the articles included in this issue.
First, Judy Schneider and Ron Radzilowski provide a history of various processes for joining aluminum and iron-based materials in "Welding of Very Dissimilar Materials (Fe-Al).'' They discuss how welding technologies were developed for specific families of materials followed by the joining of dissimilar materials and how such technologies are implemented in the automotive industry.
C1 [Carsley, John E.; Krajewski, Paul E.] Gen Motors Co, Warren, MI 48092 USA.
[Hovanski, Yuri] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Clarke, Kester D.] Los Alamos Natl Lab, Los Alamos, NM USA.
RP Carsley, JE (reprint author), Gen Motors Co, Warren, MI 48092 USA.
EM john.carsley@gm.com; yuri.hovanski@pnnl.gov; kclarke@lanl.gov;
paul.e.krajewski@gm.com
NR 0
TC 0
Z9 0
U1 3
U2 16
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
EI 1543-1851
J9 JOM-US
JI JOM
PD OCT
PY 2014
VL 66
IS 10
BP 2121
EP 2122
DI 10.1007/s11837-014-1150-5
PG 2
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA AT0HG
UT WOS:000344617000019
ER
PT J
AU Miles, M
Karki, U
Hovanski, Y
AF Miles, M.
Karki, U.
Hovanski, Y.
TI Temperature and Material Flow Prediction in Friction-Stir Spot Welding
of Advanced High-Strength Steel
SO JOM
LA English
DT Article
ID ULTRAHIGH CARBON-STEEL; PHASE DP600 STEELS; RESISTANCE; MICROSTRUCTURE;
REQUIREMENTS; SHEETS
AB Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11-14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge (R) software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within 4%, and the position of the joint interface to within 10%, of the experimental results.
C1 [Miles, M.; Karki, U.] Brigham Young Univ, Provo, UT 84602 USA.
[Hovanski, Y.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Miles, M (reprint author), Brigham Young Univ, Provo, UT 84602 USA.
EM mmiles@byu.edu
FU National Science Foundation [CMMI-1131203]; Department of Energy,
EERE-Vehicle Technologies Office, via PNNL [116126]
FX This work was supported by National Science Foundation grant
CMMI-1131203 and by funding from the Department of Energy, EERE-Vehicle
Technologies Office, via PNNL subcontract 116126.
NR 26
TC 1
Z9 1
U1 3
U2 34
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
EI 1543-1851
J9 JOM-US
JI JOM
PD OCT
PY 2014
VL 66
IS 10
BP 2130
EP 2136
DI 10.1007/s11837-014-1125-6
PG 7
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA AT0HG
UT WOS:000344617000021
ER
PT J
AU Lin, HJ
Tang, JJ
Yu, Q
Wang, H
Ouyang, LZ
Zhao, YJ
Liu, JW
Wang, WH
Zhu, M
AF Lin, Huai-Jun
Tang, Jia-Jun
Yu, Qian
Wang, Hui
Ouyang, Liu-Zhang
Zhao, Yu-Jun
Liu, Jiang-Wen
Wang, Wei-Hua
Zhu, Min
TI Symbiotic CeH2.73/CeO2 catalyst: A novel hydrogen pump
SO NANO ENERGY
LA English
DT Article
DE Hydrogen storage; MgH2; Symbiotic CeH2.73/CeO2; Catalysis; In situ
HRTEM; Theoretical calculations
ID TOTAL-ENERGY CALCULATIONS; ELASTIC BAND METHOD; MG-BASED MATERIALS; WAVE
BASIS-SET; SORPTION KINETICS; SADDLE-POINTS; METAL-OXIDES; STORAGE;
MECHANISM; NICKEL
AB Using additives/catalysts to destabilize hydrides of high hydrogen storage density, e.g. MgH2 with 7.6 wt%-H and desorption temperature as high as 300-400 degrees C, is one of the most important strategies to overcome the hurdle of applying hydrogen storage materials in technologies related to hydrogen energy. Despite tremendous efforts, to develop additives/catalysts with high catalytic activity and easy doping remains a great challenge. Here, we report a simple method to induce a novel symbiotic CeH2.73/CeO2 catalyst in Mg-based hydrides, which is capable of massive fabrication. More importantly, we reveal a spontaneous hydrogen release effect at the CeH2.73/CeO2 interface, which leads to dramatic increase of catalysis than either sole CeH2.73 or CeO2 catalyst. Maximum hydrogen desorption temperature reduction of MgH2 could reach down to similar to 210 degrees C as molar ratio of CeH2.73 to CeO2 was 1:1. The dynamic boundary evolution during hydrogen desorption was observed in the symbiotic CeH2.73/CeO2 at atomic resolution using in situ High-Resolution Transmission Electron Microscope (HRTEM). Combining the ab-initio calculations, which show significant reduction of the formation energy of V-H (hydrogen vacancy) in the CeH2.73/CeO2 boundary region in comparison to those in the bulk MgH2 and CeH2.73, we demonstrate that the outstanding catalytic activity can be attributed to the spontaneous hydrogen release effect at the CeH2.73/CeO2 interface. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Lin, Huai-Jun; Tang, Jia-Jun; Wang, Hui; Ouyang, Liu-Zhang; Liu, Jiang-Wen; Zhu, Min] S China Univ Technol, Sch Mat Sci & Engn, Key Lab Adv Energy Storage Mat Guangdong Prov, Guangzhou 510640, Peoples R China.
[Yu, Qian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA.
[Tang, Jia-Jun; Zhao, Yu-Jun] S China Univ Technol, Dept Phys, Guangzhou 510640, Guangdong, Peoples R China.
[Wang, Wei-Hua] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China.
[Yu, Qian] Zhejiang Univ, Ctr Electron Microscopy, Dept Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China.
RP Yu, Q (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA.
EM gyu@lbl.gov; whw@iphy.ac.cn; memzhu@scut.edu.cn
RI Zhao, Yu-Jun/A-1219-2011; Lin, Huaijun/D-5108-2014; Ouyang,
Liuzhang/K-8371-2012; Tang, Jia-Jun/J-1320-2014
OI Zhao, Yu-Jun/0000-0002-6923-1099; Lin, Huaijun/0000-0002-4505-9562;
Ouyang, Liuzhang/0000-0002-2754-4011; Tang, Jia-Jun/0000-0002-0413-8862
FU Ministry of Science and Technology of China [2010CB631302]; National
Natural Science Foundation of China [U1201241, 51071068, 51271078];
KLGHEI [KLB11003]; Fundamental Research Funds for the Central
Universities
FX This work was financially supported by the Ministry of Science and
Technology of China (No. 2010CB631302), the National Natural Science
Foundation of China (Nos. U1201241, 51071068 and 51271078) and KLGHEI
(KLB11003) and the Fundamental Research Funds for the Central
Universities.
NR 37
TC 14
Z9 14
U1 14
U2 65
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2211-2855
EI 2211-3282
J9 NANO ENERGY
JI Nano Energy
PD OCT
PY 2014
VL 9
BP 80
EP 87
DI 10.1016/j.nanoen.2014.06.026
PG 8
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA AT0NN
UT WOS:000344632800009
ER
PT J
AU An, CH
Liu, JX
Wang, ST
Zhang, J
Wang, ZJ
Long, R
Sun, YG
AF An, Changhua
Liu, Junxue
Wang, Shutao
Zhang, Jun
Wang, Zhaojie
Long, Ran
Sun, Yugang
TI Concaving Agl sub-microparticles for enhanced photocatalysis
SO NANO ENERGY
LA English
DT Article
DE Concave Agl nanopartides; Photocatalysis; Controlled etching; Silver
halide
ID ROOM-TEMPERATURE; BETA-AGI; TIO2; NANOPARTICLES; COMPOSITE;
NANOSTRUCTURES; CONDUCTIVITY; MORPHOLOGY; PARTICLES; PHASE
AB Concave particles represent a new class of structures with their surfaces curving in or hollowed inward and thus presence of regions with negative curvatures. Owing to the potential high-index facets and negative curvatures, crystalline particles with concave surfaces are expected to show unexplored or substantially enhanced performance in comparison with the counterpart particles with convex surfaces. In this report, we highlight a facile approach for the first-time synthesis of concave Agl nanoparticles through a controlled etching of spherical Agl particles in a solution containing ethylenediamine, absolute alcohol, and polyvinylpyrrolidone. Physical parameters including morphology and size of the resulting concave Agl particles can be tuned by carefully controlling the reaction conditions such as the amount of precursors and the injection rate of precursor solutions. Most importantly, the concave Agl particles exhibit a much higher efficiency towards photocatalytic degradation of organic molecules than the corresponding spherical Agl particles. The as-synthesized concave Agl particles are expected to be useful not only for the fundamental investigation on shape- and composition-dependent properties but also for potential applications in photocatalysis, electrocatalysis, photonics, etc. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [An, Changhua; Liu, Junxue; Wang, Shutao; Zhang, Jun; Wang, Zhaojie] China Univ Petr, Coll Chem Engn, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China.
[An, Changhua; Liu, Junxue; Wang, Shutao; Zhang, Jun; Wang, Zhaojie] China Univ Petr, Coll Sci, Qingdao 266580, Peoples R China.
[Sun, Yugang] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Long, Ran] Univ Sci & Technol China, Sch Chem & Mat Sci, Hefei 230026, Anhui, Peoples R China.
RP An, CH (reprint author), China Univ Petr, Coll Chem Engn, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China.
EM anchh@upc.edu.cn; ygsun@anl.gov
RI Sun, Yugang /A-3683-2010; Zhang, Jun/A-9732-2012; Liu,
Junxue/L-8206-2013
OI Sun, Yugang /0000-0001-6351-6977; Zhang, Jun/0000-0002-7068-5135; Liu,
Junxue/0000-0001-8349-1017
FU National Natural Science Foundation of China [21001116]; China
Postdoctoral Science Foundation [2013M541963]; U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]; [13CX05022A]; [13CX02002A]
FX The authors gratefully acknowledge the financial support by National
Natural Science Foundation of China (Grant no. 21001116), China
Postdoctoral Science Foundation (2013M541963), and the (13CX05022A,
13CX02002A). Use of the Center for Nanoscale Materials was supported by
the U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract no. DE-AC02-06CH11357.
NR 33
TC 15
Z9 15
U1 8
U2 75
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2211-2855
EI 2211-3282
J9 NANO ENERGY
JI Nano Energy
PD OCT
PY 2014
VL 9
BP 204
EP 211
DI 10.1016/j.nanoen.2014.07.015
PG 8
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA AT0NN
UT WOS:000344632800023
ER
PT J
AU Wang, C
Higgins, D
Wang, FF
Li, DY
Liu, RQ
Xia, GF
Li, N
Li, Q
Xu, H
Wu, G
AF Wang, Chen
Higgins, Drew
Wang, Fangfang
Li, Deyu
Liu, Ruiqing
Xia, Guofeng
Li, Ning
Li, Qing
Xu, Hui
Wu, Gang
TI Controlled synthesis of micro/nanostructured CuO anodes for lithium-ion
batteries
SO NANO ENERGY
LA English
DT Article
DE Copper oxide; Morphology dependence; Electrochemical performance; Anode;
Lithium ion batteries
ID ELECTROCHEMICAL PERFORMANCE; FACILE FABRICATION; IMPEDANCE SPECTROSCOPY;
ENHANCED PERFORMANCE; STORAGE PERFORMANCE; HOLLOW MICROSPHERES;
ELECTRODE MATERIALS; METAL-OXIDES; MORPHOLOGY; CONVERSION
AB Three different morphology controlled copper oxide materials (porous microspheres, flower-like, and thom-like CuO) were prepared by facile and environmentally friendly processes, which were further investigated for their electrochemical properties and performance at lithium-ion battery anodes. CuO microspheres were prepared by simply solution chemistry, whereas flower-like and thorn-like CuO structures were prepared hydrothermally, with the structural transformations arising due to selection of chloride or sulfate counter ions in the precursor salts, respectively. After a 400 C heat treatment in air, the morphology controlled materials demonstrated excellent phase purity as indicated by X-ray diffraction (XRD), and we propose a growth mechanism for the various materials based on systematic investigation of the structure and properties of the intermediate species. The electrochemical and lithium-ion battery performance employing the shape controlled CuO materials was investigated, allowing for elucidation of the synthesis-structure-performance correlations of CuO-based anodes. The performance of lithium-ion batteries was found to be highly dependent on the CuO morphology. The CuO microspheres exhibit a superior electrochemical performance to the other two CuO samples in terms of cycle capacity and rate performance, indicating a viable strategy to prepare next-generation lithium-ion battery systems with improved storage capacities. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Wang, Chen; Wang, Fangfang; Li, Deyu; Liu, Ruiqing; Xia, Guofeng; Li, Ning] Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China.
[Higgins, Drew; Li, Qing; Xu, Hui; Wu, Gang] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
[Wu, Gang] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA.
RP Li, N (reprint author), SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA.
EM ninglihit@263.net; qinglilanl@gmail.com; gangwu@buffalo.edu
RI Wu, Gang/E-8536-2010; Li, Qing/G-4502-2011
OI Wu, Gang/0000-0003-4956-5208; Li, Qing/0000-0003-4807-030X
FU Los Alamos National Laboratory Laboratory-Directed Research and
Development (LDRD) Program; University at Buffalo, SUNY
FX Financial support from the Los Alamos National Laboratory
Laboratory-Directed Research and Development (LDRD) Program and the
start-up funding from the University at Buffalo, SUNY for this work is
gratefully acknowledged.
NR 63
TC 39
Z9 39
U1 12
U2 141
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2211-2855
EI 2211-3282
J9 NANO ENERGY
JI Nano Energy
PD OCT
PY 2014
VL 9
BP 334
EP 344
DI 10.1016/j.nanoen.2014.08.009
PG 11
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA AT0NN
UT WOS:000344632800038
ER
PT J
AU Liao, JY
Chabot, V
Gu, M
Wang, CM
Xiao, XC
Chen, ZW
AF Liao, Jin-Yun
Chabot, Victor
Gu, Meng
Wang, Chongmin
Xiao, Xingcheng
Chen, Zhongwei
TI Dual phase Li4Ti5O12-TiO2 nanowire arrays as integrated anodes for
high-rate lithium-ion batteries
SO NANO ENERGY
LA English
DT Article
DE Li-ion batteries; Li4Ti5O12-TiO2; Dual phase; Nanowire arrays
ID PERFORMANCE; ELECTRODES; NANOSHEETS; NANOTUBE; LIFE
AB Lithium titanate (Li4Ti5O12) is well known as a zero strain material inherently, which provides excellent long cycle stability as a negative electrode for lithium ion batteries. However, the low specific capacity (175 mA h g(-1)) limits it to power batteries although the low electrical conductivity is another intrinsic issue need to be solved. In this work, we developed a facile hydrothermal and ionexchange route to synthesize the self-supported dual-phase Li4Ti5O12-TiO2 nanowire arrays to further improve its capacity as well as rate capability. The ratio of Li4Ti5O12 to TiO2 in the dual phase Li4Ti5O12-TiO2 nanowire is around 2:1. The introduction of TiO2 into Li4Ti5O12 increases the specific capacity. More importantly, by interface design, it creates a dual-phase nanostructure with high grain boundary density that facilitates both electron and Li ion transport. Compared with phase-pure nanowire Li4Ti5O12 and TiO2 nanaowire arrays, the dual-phase nanowire electrode yielded superior rate capability (135.5 at 5 C, 129.4 at 10 C, 120.2 at 20 C and 115.5 mA h g(-1) at 30 C). In-situ transmission electron microscope clearly shows the near zero deformation of the dual phase structure, which explains its excellent cycle stability. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Liao, Jin-Yun; Chabot, Victor; Chen, Zhongwei] Univ Waterloo, Waterloo Inst Nanotechnol, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada.
[Gu, Meng; Wang, Chongmin] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
[Xiao, Xingcheng] Gen Motors Global Res & Dev Ctr, Warren, MI 48090 USA.
RP Xiao, XC (reprint author), Gen Motors Global Res & Dev Ctr, 30500 Mound Rd, Warren, MI 48090 USA.
EM xingcheng.xiao@gm.com; zhwchen@uwaterloo.ca
RI chen, zhongwei/A-5605-2015; Liao, Jin-Yun/E-3798-2013; Gu,
Meng/B-8258-2013
FU Natural Sciences and Engineering Research Council of Canada (NSERC)
[CRDPJ418270]; University of Waterloo; Waterloo Institute for
Nanotechnology; Energy Efficiency and Renewable Energy, Vehicle
Technologies Office of the U.S. Department of Energy
[DE-AC02-05CH11231]; Batteries for Advanced Transportation Technologies
(BATT) Program [7056410]; Chemical Imaging Initiative at Pacific
Northwest National Laboratory (PNNL); U.S. Department of Energy (DOE)
[DE-AC05-76RLO1830]; DOE's Office of Biological and Environmental
Research and located at PNNL
FX This work was financially supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) (Grant no. CRDPJ418270),
the University of Waterloo and the Waterloo Institute for
Nanotechnology. The authors thank Mr. Hey Woong Park, Mr. Drew Higgins,
and Mr. Gregory Lui at the University of Waterloo for their help in
editing the manuscript. X. Xiao also acknowledges the support by the
Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle
Technologies Office of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231, subcontract No. 7056410 under the Batteries for
Advanced Transportation Technologies (BATT) Program. M. Gu and C. M.
Wang acknowledge the support of Chemical Imaging Initiative at Pacific
Northwest National Laboratory (PNNL). It was conducted under the
Laboratory Directed Research and Development Program at PNNL, a
multi-program national laboratory operated by Battelle under Contract
DE-AC05-76RLO1830 for the U.S. Department of Energy (DOE). The work was
conducted in the William R. Wiley Environmental Molecular Sciences
Laboratory (EMSL), a national scientific user facility sponsored by
DOE's Office of Biological and Environmental Research and located at
PNNL.
NR 32
TC 31
Z9 31
U1 20
U2 126
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2211-2855
EI 2211-3282
J9 NANO ENERGY
JI Nano Energy
PD OCT
PY 2014
VL 9
BP 383
EP 391
DI 10.1016/j.nanoen.2014.06.032
PG 9
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA AT0NN
UT WOS:000344632800043
ER
PT J
AU Lin, Z
Nan, CY
Ye, YF
Guo, JH
Zhu, JF
Cairns, EJ
AF Lin, Zhan
Nan, Caiyun
Ye, Yifan
Guo, Jinghua
Zhu, Junfa
Cairns, Elton J.
TI High-performance lithium/sulfur cells with a bi-functionally immobilized
sulfur cathode
SO NANO ENERGY
LA English
DT Article
DE Lithium/sulfur cell; Lithium sulfide; Sulfur composite cathode;
Core-shell nanoparticles; Lithium sulfide cell; Carbon coating
ID POLYMER ELECTROLYTES; ELECTRONIC-STRUCTURE; GRAPHENE OXIDE; ION
BATTERIES; SULFIDE; COMPOSITES; NANOFIBERS; PARTICLES; NANOTUBES; ENERGY
AB Lithium/sulfur (Li/S) cells have a theoretical specific energy five times higher than that of Lithium-ion (Li-ion) cells (2600 vs. similar to 500 Wh kg(-1)). The conventional Li/S cells that use an organic liquid electrolyte are short-lived with low coulombic efficiency due to the polysulfide shuttle. We herein design carbon-coated NanoLi(2)S (NanoLi(2)S@carbon) composites, which consist of Li2S nanoparticles as the core and a carbon coating as the shell. The carbon shell prevents the NanoLi(2)S core from directly contacting the liquid electrolyte, which improves the performance of Li/S cells to provide longer cycle life and high sulfur utilization. The cyclability of Li/S cells is further enhanced by mixing the core-shell NanoLi(2)S carbon composites with graphene oxide, which chemically immobilizes polysulfides in the cathode through their functional groups. The resulting Li/S cell shows an initial specific discharge capacity of 1263 mAh g(-1) (normalized to sulfur) at the C/10 rate and a capacity retention of 65.4% after 200 cycles. The capacity decay mechanism during cycling is also characterized in detail using near edge X-ray absorption fine structure (NEXAFS) spectra. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Lin, Zhan; Nan, Caiyun; Cairns, Elton J.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Lin, Zhan; Nan, Caiyun; Cairns, Elton J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
[Nan, Caiyun] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China.
[Ye, Yifan; Zhu, Junfa] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China.
[Ye, Yifan; Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Guo, Jinghua] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA.
RP Cairns, EJ (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
EM ejcairns@lbl.gov
RI Foundry, Molecular/G-9968-2014; Zhu, Junfa/E-4020-2010; Lin,
Zhan/C-6806-2011; Cairns, Elton/E-8873-2012
OI Zhu, Junfa/0000-0003-0888-4261; Lin, Zhan/0000-0001-5009-8198; Cairns,
Elton/0000-0002-1179-7591
FU Robert Bosch LLC through the Bosch Energy Research Network [16.11.BS11];
University of California-Berkeley, Energy and Climate Research
Innovation Seed Fund; Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; National
Natural Science Foundation of China [U1232102]
FX This work was sponsored by Robert Bosch LLC through the Bosch Energy
Research Network Grant no. 16.11.BS11, and by the University of
California-Berkeley, Energy and Climate Research Innovation Seed Fund.
The Advanced Light Source is supported by the Director, Office of
Science, Office of Basic Energy Sciences, of the U.S. Department of
Energy under Contract no. DE-AC02-05CH11231. We thank Dr. Tev Kuykendall
for his support in the Molecular Foundry of LBNL. Y.EY. and J.F.Z.
greatly acknowledge the financial support from the National Natural
Science Foundation of China (Grant no. U1232102).
NR 34
TC 19
Z9 19
U1 13
U2 139
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2211-2855
EI 2211-3282
J9 NANO ENERGY
JI Nano Energy
PD OCT
PY 2014
VL 9
BP 408
EP 416
DI 10.1016/j.nanoen.2014.08.003
PG 9
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA AT0NN
UT WOS:000344632800046
ER
PT J
AU Olson, BJ
Greenough, JA
AF Olson, Britton J.
Greenough, Jeffrey A.
TI Comparison of two- and three-dimensional simulations of miscible
Richtmyer-Meshkov instability with multimode initial conditions
SO PHYSICS OF FLUIDS
LA English
DT Article
ID RAYLEIGH-TAYLOR INSTABILITY; SCHEMES
AB A comparison between two- and three-dimensional large-eddy simulations of the planar Richtmyer-Meshkov instability with multimode initial conditions is made. The three-dimensional calculation achieves a turbulent state where an inertial range of length scales is present after the second shock wave impacts the interface. Grid independence of the mixing width up until the time of reshock is demonstrated through mesh refinement in both two and three dimensions. Quantitative measures of mixing are compared including the mixing width, mixedness, mixed mass, and spectra of velocity and density. A proposed approximate relation for the mixed mass is evaluated in one, two, and three dimensions and is proportional to the product of the mixing width and the mass fraction variance in the layer. The variance of the velocity field and the scalar mass fraction are compared in two and three dimensions and demonstrate large differences in behavior. (C) 2014 AIP Publishing LLC.
C1 [Olson, Britton J.; Greenough, Jeffrey A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Olson, BJ (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract No.
DE-AC52-07NA27344. The authors wish to thank A. Cook, W. Cabot, O.
Schilling, and B. Morgan for many valuable discussions.
NR 17
TC 3
Z9 3
U1 2
U2 17
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-6631
EI 1089-7666
J9 PHYS FLUIDS
JI Phys. Fluids
PD OCT
PY 2014
VL 26
IS 10
AR 101702
DI 10.1063/1.4898157
PG 7
WC Mechanics; Physics, Fluids & Plasmas
SC Mechanics; Physics
GA AS9YC
UT WOS:000344593300010
ER
PT J
AU Sun, GY
Lignell, DO
Hewson, JC
Gin, CR
AF Sun, Guangyuan
Lignell, David O.
Hewson, John C.
Gin, Craig R.
TI Particle dispersion in homogeneous turbulence using the one-dimensional
turbulence model
SO PHYSICS OF FLUIDS
LA English
DT Article
ID FLOW; FORMULATION; SIMULATION; MOTION; FLAMES; JET; DIFFUSION;
TRANSPORT; SPHERE
AB Lagrangian particle dispersion is studied using the one-dimensional turbulence (ODT) model in homogeneous decaying turbulence configurations. The ODT model has been widely and successfully applied to a number of reacting and nonreacting flow configurations, but only limited application has been made to multiphase flows. Here, we present a version of the particle implementation and interaction with the stochastic and instantaneous ODT eddy events. The model is characterized by comparison to experimental data of particle dispersion for a range of intrinsic particle time scales and body forces. Particle dispersion, velocity, and integral time scale results are presented. The particle implementation introduces a single model parameter beta(p), and sensitivity to this parameter and behavior of the model are discussed. Good agreement is found with experimental data and the ODT model is able to capture the particle inertial and trajectory crossing effects. These results serve as a validation case of the multiphase implementations of ODT for extensions to other flow configurations. (C) 2014 AIP Publishing LLC.
C1 [Sun, Guangyuan; Lignell, David O.] Brigham Young Univ, Dept Chem Engn, Provo, UT 84602 USA.
[Hewson, John C.] Sandia Natl Labs, Fire Sci & Technol Dept, Albuquerque, NM 87123 USA.
[Gin, Craig R.] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA.
RP Sun, GY (reprint author), Brigham Young Univ, Dept Chem Engn, Provo, UT 84602 USA.
EM gysungrad@gmail.com; davidlignell@byu.edu; jchewso@sandia.gov;
cgin@math.tamu.edu
FU Defense Threat Reduction Agency [HDTRA-11-4503I]; (U.S.) Department of
Energy's (DOE) National Nuclear Security Administration
[DE-AC04-94AL85000]
FX The authors acknowledge helpful discussions with Alan Kerstein. This
work was supported by the Defense Threat Reduction Agency under Award
No. HDTRA-11-4503I. Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the (U.S.) Department of
Energy's (DOE) National Nuclear Security Administration under Contract
No. DE-AC04-94AL85000.
NR 33
TC 1
Z9 1
U1 0
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-6631
EI 1089-7666
J9 PHYS FLUIDS
JI Phys. Fluids
PD OCT
PY 2014
VL 26
IS 10
AR 103301
DI 10.1063/1.4896555
PG 18
WC Mechanics; Physics, Fluids & Plasmas
SC Mechanics; Physics
GA AS9YC
UT WOS:000344593300022
ER
PT J
AU Barnat, EV
Laity, GR
Baalrud, SD
AF Barnat, E. V.
Laity, G. R.
Baalrud, S. D.
TI Response of the plasma to the size of an anode electrode biased near the
plasma potential
SO PHYSICS OF PLASMAS
LA English
DT Article
ID SHEATHS
AB As the size of a positively biased electrode increases, the nature of the interface formed between the electrode and the host plasma undergoes a transition from an electron-rich structure (electron sheath) to an intermediate structure containing both ion and electron rich regions (double layer) and ultimately forms an electron-depleted structure (ion sheath). In this study, measurements are performed to further test how the size of an electron-collecting electrode impacts the plasma discharge the electrode is immersed in. This is accomplished using a segmented disk electrode in which individual segments are individually biased to change the effective surface area of the anode. Measurements of bulk plasma parameters such as the collected current density, plasma potential, electron density, electron temperature and optical emission are made as both the size and the bias placed on the electrode are varied. Abrupt transitions in the plasma parameters resulting from changing the electrode surface area are identified in both argon and helium discharges and are compared to the interface transitions predicted by global current balance [S. D. Baalrud, N. Hershkowitz, and B. Longmier, Phys. Plasmas 14, 042109 (2007)]. While the size-dependent transitions in argon agree, the size-dependent transitions observed in helium systematically occur at lower electrode sizes than those nominally derived from prediction. The discrepancy in helium is anticipated to be caused by the finite size of the interface that increases the effective area offered to the plasma for electron loss to the electrode. (C) 2014 AIP Publishing LLC.
C1 [Barnat, E. V.; Laity, G. R.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Baalrud, S. D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
RP Barnat, EV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
FU Office of Fusion Energy Science at the U.S. Department of Energy
[DE-AC04-94SL85000]
FX This work was supported by the Office of Fusion Energy Science at the
U.S. Department of Energy under Contract No. DE-AC04-94SL85000.
NR 21
TC 8
Z9 8
U1 1
U2 26
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD OCT
PY 2014
VL 21
IS 10
AR 103512
DI 10.1063/1.4897927
PG 12
WC Physics, Fluids & Plasmas
SC Physics
GA AS9YG
UT WOS:000344593700094
ER
PT J
AU Bessho, N
Bhattacharjee, A
AF Bessho, N.
Bhattacharjee, A.
TI Instability of the current sheet in the Earth's magnetotail with normal
magnetic field
SO PHYSICS OF PLASMAS
LA English
DT Article
ID 2-DIMENSIONAL MAGNETOTAIL; COLLISIONLESS RECONNECTION; TEARING
STABILITY; EQUILIBRIA; DYNAMICS; ONSET; TAIL
AB Instability of a current sheet in the Earth's magnetotail has been investigated by two-dimensional fully kinetic simulations. Two types of magnetic configuration have been studied; those with uniform normal magnetic field along the current sheet and those in which the normal magnetic field has a spatial hump. The latter configuration has been proposed by Sitnov and Schindler [Geophys. Res. Lett. 37, L08102 (2010)] as one in which ion tearing modes might grow. The first type of configuration exhibits electron tearing modes when the normal magnetic field is small. The second type of configuration exhibits an instability which does not tear or change the topology of magnetic field lines. The hump in the initial configuration can propagate Earthward in the nonlinear regime, leading to the formation of a dipolarization front. Secondary magnetic islands can form in regions where the normal magnetic field is very weak. Under no conditions do we find the ion tearing instability. (C) 2014 AIP Publishing LLC.
C1 [Bessho, N.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Bessho, N.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA.
[Bhattacharjee, A.] Princeton Univ, Dept Astrophys Sci, Ctr Heliophys, Princeton, NJ 08543 USA.
[Bhattacharjee, A.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Bessho, N (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
EM naoki.bessho@nasa.gov
FU NSF [ATM-090315, AGS-1338944]; NASA [NNX09AJ86G]; DOE under Center for
Integrated Computation and Analysis of Reconnection and Turbulence
[DE-FG02-14-07ER46372]
FX It is a pleasure to acknowledge trenchant discussions with Dr. M. Sitnov
on the subject of ion tearing modes, and we thank him for his
encouragement to continue with our research on this problem. This work
was supported by NSF Grant Nos. ATM-090315 and AGS-1338944, NASA Grant
No. NNX09AJ86G, and DOE Grant No. DE-FG02-14-07ER46372, under the
auspices of the Center for Integrated Computation and Analysis of
Reconnection and Turbulence. We acknowledge the use of computer
resources at the National Energy Research Scientific Computing Center.
NR 21
TC 9
Z9 9
U1 0
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD OCT
PY 2014
VL 21
IS 10
AR 102905
DI 10.1063/1.4899043
PG 6
WC Physics, Fluids & Plasmas
SC Physics
GA AS9YG
UT WOS:000344593700067
ER
PT J
AU Brennan, DP
Finn, JM
AF Brennan, D. P.
Finn, J. M.
TI Control of linear modes in cylindrical resistive magnetohydrodynamics
with a resistive wall, plasma rotation, and complex gain
SO PHYSICS OF PLASMAS
LA English
DT Article
ID ACTIVE FEEDBACK STABILIZATION; EXTERNAL-MODES; TOKAMAKS; SHELL;
INSTABILITIES; STABILITY; GEOMETRY; KINK
AB Feedback stabilization of magnetohydrodynamic (MHD) modes in a tokamak is studied in a cylindrical model with a resistive wall, plasma resistivity, viscosity, and toroidal rotation. The control is based on a linear combination of the normal and tangential components of the magnetic field just inside the resistive wall. The feedback includes complex gain, for both the normal and for the tangential components, and it is known that the imaginary part of the feedback for the former is equivalent to plasma rotation [J. M. Finn and L. Chacon, Phys. Plasmas 11, 1866 (2004)]. The work includes (1) analysis with a reduced resistive MHD model for a tokamak with finite beta and with stepfunction current density and pressure profiles, and (2) computations with a full compressible visco-resistive MHD model with smooth decreasing profiles of current density and pressure. The equilibria are stable for beta = 0 and the marginal stability values beta(rp,rw)< beta(rp,iw) 2. Numerical modeling is performed to examine the ionization and breakdown of both beams. The modeled breakdown threshold of the NIR, including assist by pre-ionization, is in reasonable agreement with the experimental results. (C) 2014 AIP Publishing LLC.
C1 [Yalin, Azer P.; Dumitrache, Ciprian; Joshi, Sachin] Colorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA.
[Wilvert, Nick] Sandia Lab, Albuquerque, NM 87123 USA.
[Joshi, Sachin] Cummins Inc, Columbus, IN 47201 USA.
[Shneider, Mikhail N.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA.
RP Yalin, AP (reprint author), Colorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA.
EM ayalin@engr.colostate.edu
FU NSF/DOE Partnership in Basic Plasma Science and Engineering (NSF)
[PHY-1418845]; NSF/DOE Partnership in Basic Plasma Science and
Engineering (DOE) [DE-SC0012454]
FX The authors acknowledge support from the NSF/DOE Partnership in Basic
Plasma Science and Engineering (NSF award PHY-1418845 and DOE award
DE-SC0012454).
NR 31
TC 6
Z9 6
U1 2
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD OCT
PY 2014
VL 21
IS 10
AR 103511
DI 10.1063/1.4898059
PG 6
WC Physics, Fluids & Plasmas
SC Physics
GA AS9YG
UT WOS:000344593700093
ER
PT J
AU Zhou, Y
Qin, H
Burby, JW
Bhattacharjee, A
AF Zhou, Yao
Qin, Hong
Burby, J. W.
Bhattacharjee, A.
TI Variational integration for ideal magnetohydrodynamics with built-in
advection equations
SO PHYSICS OF PLASMAS
LA English
DT Article
ID CONTINUUM-THEORIES; MHD
AB Newcomb's Lagrangian for ideal magnetohydrodynamics (MHD) in Lagrangian labeling is discretized using discrete exterior calculus. Variational integrators for ideal MHD are derived thereafter. Besides being symplectic and momentum-preserving, the schemes inherit built-in advection equations from Newcomb's formulation, and therefore avoid solving them and the accompanying error and dissipation. We implement the method in 2D and show that numerical reconnection does not take place when singular current sheets are present. We then apply it to studying the dynamics of the ideal coalescence instability with multiple islands. The relaxed equilibrium state with embedded current sheets is obtained numerically. (C) 2014 AIP Publishing LLC.
C1 [Zhou, Yao; Qin, Hong; Burby, J. W.; Bhattacharjee, A.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA.
[Qin, Hong] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.
RP Zhou, Y (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
FU U.S. Department of Energy [DE-AC02-09CH11466]
FX Y. Zhou would like to thank K. Crane, Y. Huang, S. Jardin, M. Kraus, C.
Liu, Z. Lu, Y. Shi, J. Squire, and J. Stone for helpful discussion. This
research was supported by the U.S. Department of Energy under Contract
No. DE-AC02-09CH11466.
NR 24
TC 12
Z9 12
U1 1
U2 10
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD OCT
PY 2014
VL 21
IS 10
AR 102109
DI 10.1063/1.4897372
PG 8
WC Physics, Fluids & Plasmas
SC Physics
GA AS9YG
UT WOS:000344593700015
ER
PT J
AU Barnhoorn, S
Uittenboogaard, LM
Jaarsma, D
Vermeij, WP
Tresini, M
Weymaere, M
Menoni, H
Brandt, RMC
de Waard, MC
Botter, SM
Sarker, AH
Jaspers, NGJ
van der Horst, GTJ
Cooper, PK
Hoeijmakers, JHJ
van der Pluijm, I
AF Barnhoorn, Sander
Uittenboogaard, Lieneke M.
Jaarsma, Dick
Vermeij, Wilbert P.
Tresini, Maria
Weymaere, Michael
Menoni, Herve
Brandt, Renata M. C.
de Waard, Monique C.
Botter, Sander M.
Sarker, Altaf H.
Jaspers, Nicolaas G. J.
van der Horst, Gijsbertus T. J.
Cooper, Priscilla K.
Hoeijmakers, Jan H. J.
van der Pluijm, Ingrid
TI Cell-Autonomous Progeroid Changes in Conditional Mouse Models for Repair
Endonuclease XPG Deficiency
SO PLOS GENETICS
LA English
DT Article
ID NUCLEOTIDE-EXCISION-REPAIR; TRANSCRIPTION-COUPLED REPAIR; UV-SENSITIVE
SYNDROME; OXIDATIVE DNA-DAMAGE; PIGMENTOSUM GROUP-A; RNA-POLYMERASE-II;
SHORT LIFE-SPAN; GROUP-G GENE; COCKAYNE-SYNDROME; XERODERMA-PIGMENTOSUM
AB As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg(-/-) mouse model which -in a C57BL6/FVB F1 hybrid genetic background-displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4-5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e. g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue-and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg(-/-) mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.
C1 [Barnhoorn, Sander; Uittenboogaard, Lieneke M.; Vermeij, Wilbert P.; Tresini, Maria; Weymaere, Michael; Menoni, Herve; Brandt, Renata M. C.; Jaspers, Nicolaas G. J.; van der Horst, Gijsbertus T. J.; Hoeijmakers, Jan H. J.; van der Pluijm, Ingrid] Erasmus Univ, Med Ctr, Dept Genet, Rotterdam, Netherlands.
[Jaarsma, Dick] Erasmus Univ, Med Ctr, Dept Neurosci, Rotterdam, Netherlands.
[de Waard, Monique C.] Vrije Univ Amsterdam, Med Ctr, Dept Intens Care, Amsterdam, Netherlands.
[Botter, Sander M.] Uniklin Balgrist, Zurich, Switzerland.
[Sarker, Altaf H.; Cooper, Priscilla K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA.
[van der Pluijm, Ingrid] Erasmus Univ, Dept Vasc Surg, Med Ctr, Rotterdam, Netherlands.
RP Barnhoorn, S (reprint author), Erasmus Univ, Med Ctr, Dept Genet, Rotterdam, Netherlands.
EM j.hoeijmakers@erasmusmc.nl; i.vanderpluijm@erasmusmc.nl
RI van der Horst, Gijsbertus/E-3661-2015;
OI Tresini, Maria/0000-0001-7711-3204; Vermeij, Wilbert/0000-0002-9690-1385
FU European commission FP7 Markage [FP7-Health-2008-200880]; European
commission DNA Repair [LSHG-CT-2005-512113]; European commission
LifeSpan [LSHG-CT-2007-036894]; National Institute of Health
(NIH)/National Institute of Ageing (NIA) [1PO1 AG-17242-02]; NIEHS [1UO1
ES011044]; NIH/National Cancer Institute [R01 CA063503, P01 CA092584];
Royal Academy of Arts and Sciences of the Netherlands; European Research
Council; European Community [HEALTH-F2-2010-259893]
FX We acknowledge financial support of the European commission FP7 Markage
(FP7-Health-2008-200880), DNA Repair (LSHG-CT-2005-512113) and LifeSpan
(LSHG-CT-2007-036894), National Institute of Health (NIH)/National
Institute of Ageing (NIA) (1PO1 AG-17242-02), NIEHS (1UO1 ES011044),
NIH/National Cancer Institute R01 CA063503 and P01 CA092584 to PKC, and
the Royal Academy of Arts and Sciences of the Netherlands (academia
professorship to JHJH) and a European Research Council Advanced Grant to
JHJH. The research leading to these results has received funding from
the European Community's Seventh Framework Programme (FP7/2007-2013)
under grant agreement No. HEALTH-F2-2010-259893. The funders had no role
in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.
NR 124
TC 8
Z9 9
U1 2
U2 9
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1553-7390
EI 1553-7404
J9 PLOS GENET
JI PLoS Genet.
PD OCT
PY 2014
VL 10
IS 10
AR e1004686
DI 10.1371/journal.pgen.1004686
PG 21
WC Genetics & Heredity
SC Genetics & Heredity
GA AT0UR
UT WOS:000344650700050
PM 25299392
ER
PT J
AU Pena, J
Plante, JA
Carillo, AC
Roberts, KK
Smith, JK
Juelich, TL
Beasley, DWC
Freiberg, AN
Labute, MX
Naraghi-Arani, P
AF Pena, Jose
Plante, Jessica A.
Carillo, Alda Celena
Roberts, Kimberly K.
Smith, Jennifer K.
Juelich, Terry L.
Beasley, David W. C.
Freiberg, Alexander N.
Labute, Montiago X.
Naraghi-Arani, Pejman
TI Multiplexed Digital mRNA Profiling of the Inflammatory Response in the
West Nile Swiss Webster Mouse Model
SO PLOS NEGLECTED TROPICAL DISEASES
LA English
DT Article
ID CENTRAL-NERVOUS-SYSTEM; TOLL-LIKE RECEPTOR-3; LARGE GENE LISTS; CD8(+)
T-CELLS; VIRUS-INFECTION; CLINICAL CHARACTERISTICS; COMPLEMENT
ACTIVATION; CHEMOKINE EXPRESSION; LETHAL ENCEPHALITIS; ADAPTIVE IMMUNITY
AB Background and purpose: The ability to track changes in gene expression following viral infection is paramount to understanding viral pathogenesis. This study was undertaken to evaluate the nCounter, a high throughput digital gene expression system, as a means to better understand West Nile virus (WNV) dissemination and the inflammatory response against WNV in the outbred Swiss Webster (SW) mouse model over the course of infection.
Methodology: The nCounter Mouse Inflammation gene expression kit containing 179 inflammation related genes was used to analyze gene expression changes in multiple tissues over a nine day course of infection in SW mice following intraperitoneal injection with WNV. Protein expression levels for a subset of these cytokine/chemokine genes were determined using a multiplex protein detection system (BioPlex) and comparisons of protein/RNA expression levels made.
Results: Expression analysis of spleen, lung, liver, kidney and brain of SW mice infected with WNV revealed that Cxcl10 and Il12b are differentially expressed in all tissues tested except kidney. Data stratification of positively confirmed infected (WNV (+)) versus non-infected (WNV (-) tissues allowed differentiation of the systemic inflammatory gene response from tissuespecific responses arising from WNV infection. Significant (p<0.05) decrease in C3ar1 was found in WNV (-) spleen. Il23a was significantly upregulated, while Il10rb was down-regulated in WNV (-) lung. Il3 and Mbl2 were down-regulated in WNV (-) liver. In WNV (+) livers, Stat1, Tlr2, chemokines Cxcl1, Cxcl3, Cxcl9, Cxcl10, cytokines Il6, Il18, cytokine-related gene Il1r and cytokine agonist Ilrn were significantly upregulated. In WNV (-) brain tissues, Csf2 and Cxcl10 were significantly upregulated. Similar gene and protein expression kinetics were found for Ccl2, Ccl3, Ccl4 and Ccl5 and correlated with the presence of infectious virus. In summary, the utility of the nCounter platform for rapid identification of gene expression changes in SW mice associated with WNV infection was demonstrated.
C1 [Pena, Jose; Carillo, Alda Celena; Labute, Montiago X.; Naraghi-Arani, Pejman] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Plante, Jessica A.; Smith, Jennifer K.; Juelich, Terry L.; Beasley, David W. C.; Freiberg, Alexander N.] Univ Texas Med Branch, Dept Pathol, Galveston, TX 77555 USA.
[Plante, Jessica A.; Beasley, David W. C.; Freiberg, Alexander N.] Univ Texas Med Branch, Sealy Ctr Vaccine Dev, Galveston, TX 77555 USA.
[Roberts, Kimberly K.; Beasley, David W. C.] Univ Texas Med Branch, Dept Microbiol & Immunol, Galveston, TX 77555 USA.
[Beasley, David W. C.; Freiberg, Alexander N.] Univ Texas Med Branch, Ctr Biodef & Emerging Infect Dis, Galveston, TX 77555 USA.
RP Pena, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM naraghiarani2@llnl.gov
FU National Institutes of Health [AI093500]; Biodefense Training Program,
NIH [T32-AI060549]
FX This work was supported by National Institutes of Health grant AI093500
to PNA. JAP was supported by the Biodefense Training Program, NIH grant
T32-AI060549. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.
NR 61
TC 5
Z9 5
U1 2
U2 8
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1935-2735
J9 PLOS NEGLECT TROP D
JI Plos Neglect. Trop. Dis.
PD OCT
PY 2014
VL 8
IS 10
AR e3216
DI 10.1371/journal.pntd.0003216
PG 21
WC Infectious Diseases; Parasitology; Tropical Medicine
SC Infectious Diseases; Parasitology; Tropical Medicine
GA AS9WJ
UT WOS:000344589000034
PM 25340818
ER
PT J
AU Barajas, D
Xu, K
Martin, IFD
Sasvari, Z
Brandizzi, F
Risco, C
Nagy, PD
AF Barajas, Daniel
Xu, Kai
de Castro Martin, Isabel Fernandez
Sasvari, Zsuzsanna
Brandizzi, Federica
Risco, Cristina
Nagy, Peter D.
TI Co-opted Oxysterol-Binding ORP and VAP Proteins Channel Sterols to RNA
Virus Replication Sites via Membrane Contact Sites
SO PLOS PATHOGENS
LA English
DT Article
ID BUSHY-STUNT-VIRUS; GENES AFFECTING REPLICATION; HOST FACTORS;
HEPATITIS-C; ENDOPLASMIC-RETICULUM; TOMBUSVIRUS REPLICATION;
LIPID-METABOLISM; VIRAL-RNA; MODEL HOST; SCREEN REVEALS
AB Viruses recruit cellular membranes and subvert cellular proteins involved in lipid biosynthesis to build viral replicase complexes and replication organelles. Among the lipids, sterols are important components of membranes, affecting the shape and curvature of membranes. In this paper, the tombusvirus replication protein is shown to co-opt cellular Oxysterol-binding protein related proteins (ORPs), whose deletion in yeast model host leads to decreased tombusvirus replication. In addition, tombusviruses also subvert Scs2p VAP protein to facilitate the formation of membrane contact sites (MCSs), where membranes are juxtaposed, likely channeling lipids to the replication sites. In all, these events result in redistribution and enrichment of sterols at the sites of viral replication in yeast and plant cells. Using in vitro viral replication assay with artificial vesicles, we show stimulation of tombusvirus replication by sterols. Thus, co-opting cellular ORP and VAP proteins to form MCSs serves the virus need to generate abundant sterol-rich membrane surfaces for tombusvirus replication.
C1 [Barajas, Daniel; Xu, Kai; Sasvari, Zsuzsanna; Nagy, Peter D.] Univ Kentucky, Dept Plant Pathol, Lexington, KY 40546 USA.
[de Castro Martin, Isabel Fernandez; Risco, Cristina] Ctr Nacl Biotecnol CNB CSIC, Cell Struct Lab, Madrid, Spain.
[Brandizzi, Federica] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA.
RP Nagy, PD (reprint author), Univ Kentucky, Dept Plant Pathol, Lexington, KY 40546 USA.
EM pdnagy2@uky.edu
OI Xu, Kai/0000-0003-2036-3469; Barajas, Daniel/0000-0002-5758-5631
FU NSF [MCB 1122039]; FPI program fellowship for IFdCM; Spanish Ministry of
Economy and Competitiveness [BIO2009-07255, BIO2012-33314]
FX This research is supported by NSF (MCB 1122039) for PDN, and an FPI
program fellowship for IFdCM and research grants BIO2009-07255 and
BIO2012-33314 from the Spanish Ministry of Economy and Competitiveness
for CR. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.
NR 98
TC 25
Z9 25
U1 2
U2 13
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1553-7366
EI 1553-7374
J9 PLOS PATHOG
JI PLoS Pathog.
PD OCT
PY 2014
VL 10
IS 10
AR e1004388
DI 10.1371/journal.ppat.1004388
PG 18
WC Microbiology; Parasitology; Virology
SC Microbiology; Parasitology; Virology
GA AS9FO
UT WOS:000344548800008
PM 25329172
ER
PT J
AU Ouyang, SQ
Park, G
Atamian, HS
Han, CS
Stajich, JE
Kaloshian, I
Borkovich, KA
AF Ouyang, Shouqiang
Park, Gyungsoon
Atamian, Hagop S.
Han, Cliff S.
Stajich, Jason E.
Kaloshian, Isgouhi
Borkovich, Katherine A.
TI MicroRNAs Suppress NB Domain Genes in Tomato That Confer Resistance to
Fusarium oxysporum
SO PLOS PATHOGENS
LA English
DT Article
ID SMALL RNAS; SIRNA BIOGENESIS; LRR PROTEIN; MI-1-MEDIATED RESISTANCE;
ARABIDOPSIS-THALIANA; DISEASE RESISTANCE; IMMUNE RECEPTORS; PLANT
MICRORNAS; DOWN-REGULATION; MESSENGER-RNAS
AB MicroRNAs (miRNAs) suppress the transcriptional and post-transcriptional expression of genes in plants. Several miRNA families target genes encoding nucleotide-binding site-leucine-rich repeat (NB-LRR) plant innate immune receptors. The fungus Fusarium oxysporum f. sp. lycopersici causes vascular wilt disease in tomato. We explored a role for miRNAs in tomato defense against F. oxysporum using comparative miRNA profiling of susceptible (Moneymaker) and resistant (Motelle) tomato cultivars. slmiR482f and slmiR5300 were repressed during infection of Motelle with F. oxysporum. Two predicted mRNA targets each of slmiR482f and slmiR5300 exhibited increased expression in Motelle and the ability of these four targets to be regulated by the miRNAs was confirmed by co-expression in Nicotiana benthamiana. Silencing of the targets in the resistant Motelle cultivar revealed a role in fungal resistance for all four genes. All four targets encode proteins with full or partial nucleotide-binding (NB) domains. One slmiR5300 target corresponds to tm-2, a susceptible allele of the Tomato Mosaic Virus resistance gene, supporting functions in immunity to a fungal pathogen. The observation that none of the targets correspond to I-2, the only known resistance (R) gene for F. oxysporum in tomato, supports roles for additional R genes in the immune response. Taken together, our findings suggest that Moneymaker is highly susceptible because its potential resistance is insufficiently expressed due to the action of miRNAs.
C1 [Ouyang, Shouqiang; Park, Gyungsoon; Stajich, Jason E.; Borkovich, Katherine A.] Univ Calif Riverside, Dept Plant Pathol & Microbiol, Inst Integrat Genome Biol, Riverside, CA 92521 USA.
[Atamian, Hagop S.; Kaloshian, Isgouhi] Univ Calif Riverside, Dept Nematol, Inst Integrat Genome Biol, Riverside, CA 92521 USA.
[Han, Cliff S.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA.
RP Ouyang, SQ (reprint author), Univ Calif Riverside, Dept Plant Pathol & Microbiol, Inst Integrat Genome Biol, Riverside, CA 92521 USA.
EM Katherine.Borkovich@ucr.edu
RI Stajich, Jason/C-7297-2008
OI Stajich, Jason/0000-0002-7591-0020
FU Los Alamos National Laboratory-UC Riverside Collaborative Program in
Infectious Disease
FX Seed funding from the Los Alamos National Laboratory-UC Riverside
Collaborative Program in Infectious Disease was provided to KAB and IK.
The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.
NR 88
TC 12
Z9 12
U1 6
U2 59
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1553-7366
EI 1553-7374
J9 PLOS PATHOG
JI PLoS Pathog.
PD OCT
PY 2014
VL 10
IS 10
AR e1004464
DI 10.1371/journal.ppat.1004464
PG 15
WC Microbiology; Parasitology; Virology
SC Microbiology; Parasitology; Virology
GA AS9FO
UT WOS:000344548800051
PM 25330340
ER
PT J
AU Grossan, B
Kumar, P
Perley, D
Smoot, GF
AF Grossan, B.
Kumar, P.
Perley, D.
Smoot, G. F.
TI A Small, Rapid Optical-IR Response Gamma-Ray Burst Space Observatory
Concept: The NGRG
SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC
LA English
DT Article
ID AFTERGLOW EMISSION; DUST DESTRUCTION; PROMPT EMISSION; REVERSE SHOCK;
GRB 080319B; ROTSE-III; X-RAY; TELESCOPE; CATALOG; CONSTRAINTS
AB After Swift, there is no sure plan to furnish a replacement for the rapidly disseminated, high-precision GRB positions it provides, nor a new type of observatory to probe new GRB parameter space. We propose a new GRB mission concept, the Next Generation Rapid Optical-NIR (near infrared) Response GRB Observatory (NGRG) concept, and demonstrate, through analysis of Swift BAT data, studies of new GRB samples, and extinction predictions, that a relatively modest size observatory will produce valuable new measurements and good GRB detection rates. As with Swift, GRBs are initially located with a coded-mask X-ray camera. However, the NGRG has two distinguishing features: first, a beam-steering system to begin optical observations within similar to 1 s after location; second, in addition to the optical camera, a separate near-IR (NIR) camera viewing the same field, greatly increasing sensitivity to extinguished bursts. These features yield the unique capability of exploring the rise phase of GRB optical-NIR emission. Thus far, among GRBs with optical afterglow detections, a peak is measured in only similar to 26-40% of the light curves. The rise time for prompt, or pre-afterglow, optical emission is rarely measured, as is the transition to afterglow emission. Prompt or pre-afterglow NIR emission is even less frequently measured. Rapid-response measurements give new tools for exploration of many science topics, including optical emission mechanisms (synchrotron vs. SSC, photospheric emission) and jet characteristics (reverse vs. forward shock emission, baryon-dominated vs. magnetic dominated). The rapid-response capability also allows measurement of dynamic evolution of extinction due to vaporization of progenitor system dust. This dynamic dust measurement is the only tool we know of to separate the effects of star-system-scale dust and galactic-structure-scale dust; it is remarkable that this probe of small-scale phenomena can be used at the high redshifts where GRBs are observed. In this paper, we discuss techniques and the feasibility of these measurements, and give detection rate estimates using only measured Swift performance (without extrapolations). The NGRG will explore two new frontiers: optical and NIR GRB emission measured earlier than ever before, via rapid-response, and potentially fainter, more extinguished GRBs than ever before, via sensitive, early NIR measurements. In an era with little funding for new extragalactic science space missions, costs are important. Our modest NGRG concept will produce new GRB science, while providing crucial access to rapid GRB alerts for the community. An X-ray instrument barely 1/5 the detecting area of Swift BAT, 1024 cm(2), will yield a significant fraction of BAT's GRB detection rate: more than 65 X-ray detections per year. With a 30 cm optical-IR telescope and modern cameras, more than 19 NIR and 14 optical band detections would be produced each year for community follow-up. In addition, active control of the beam-steering system, via feedback from a fast-read optical camera, would remove the need for arcsec pointing stabilization of the spacecraft platform, for a substantial cost saving and a wider range of potential space platforms.
C1 [Grossan, B.; Smoot, G. F.] Moscow MV Lomonosov State Univ, Extreme Universe Lab, Moscow 119991, Russia.
[Grossan, B.] Univ Calif Berkeley, Space Sci Lab, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Kumar, P.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA.
[Perley, D.] CALTECH, Pasadena, CA 91125 USA.
[Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Grossan, B (reprint author), Moscow MV Lomonosov State Univ, Extreme Universe Lab, GSP 1, Moscow 119991, Russia.
EM Bruce_Grossan@lbl.gov; pk@surya.as.utexas.edu;
dperley@astro.caltech.edu; GFSmoot@lbl.gov
FU Ministry of Education of the Russian Federation; NSF [1133016]
FX This work was supported, in part, by a "Mega Grant" from the Ministry of
Education of the Russian Federation, for operation of the Extreme
Universe Laboratory at Moscow State University. This research has made
use of data obtained through the High Energy Astrophysics Science
Archive Research Center Online Service, provided by the NASA/Goddard
Space Flight Center. We acknowledge support from NSF grant Award Number
1133016 for support for this project. The authors wish to thank the
following students at Moscow State University, B. Goncharov, G. Rozhkov,
K. Saleev, and E. Grobovskoj, for their work in obtaining and checking
data. We thank Paul Connell for sharing his expertise during numerous
discussions and exceptional work on projects leading up to this one. We
also thank Nikolay Vedenkin for helpful discussions on spacecraft and
instrument communications.
NR 66
TC 1
Z9 1
U1 0
U2 2
PU UNIV CHICAGO PRESS
PI CHICAGO
PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA
SN 0004-6280
EI 1538-3873
J9 PUBL ASTRON SOC PAC
JI Publ. Astron. Soc. Pac.
PD OCT
PY 2014
VL 126
IS 944
BP 885
EP 900
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AT1WD
UT WOS:000344720900001
ER
PT J
AU Alvine, KJ
Kafentzis, TA
Pitman, SG
Johnson, KI
Skorski, D
Tucker, JC
Roosendaal, TJ
Dahl, ME
AF Alvine, K. J.
Kafentzis, T. A.
Pitman, S. G.
Johnson, K. I.
Skorski, D.
Tucker, J. C.
Roosendaal, T. J.
Dahl, M. E.
TI An in situ tensile test apparatus for polymers in high pressure hydrogen
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID DECOMPRESSION; SOLUBILITY; FRACTURE; PB(ZR
AB Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex situ measurements of mechanical properties problematic. Designing in situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials such as Nd. Here we detail the design and operation of a solenoid based in situ tensile tester under high-pressure hydrogen environments up to 42 MPa (6000 psi). Modulus data from high-density polyethylene samples tested under high-pressure hydrogen at 35 MPa (5000 psi) are also reported as compared to baseline measurements taken in air. (C) 2014 AIP Publishing LLC.
C1 [Alvine, K. J.; Kafentzis, T. A.; Pitman, S. G.; Johnson, K. I.; Skorski, D.; Tucker, J. C.; Roosendaal, T. J.; Dahl, M. E.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA.
RP Alvine, KJ (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA.
EM kyle.alvine@pnnl.gov
FU Pacific Northwest National Laboratory, Richland WA under DOE
[DE-AC05-76RL01830]; DOE Hydrogen and Fuel Cells Technology Program
office
FX This work was performed at the Pacific Northwest National Laboratory,
Richland WA under DOE Contract No. DE-AC05-76RL01830. Funding provided
by the DOE Hydrogen and Fuel Cells Technology Program office is
gratefully acknowledged. Conversations with staff from Boeing and
Quantum with regards to testing requirements are also gratefully
acknowledged.
NR 23
TC 0
Z9 0
U1 1
U2 10
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD OCT
PY 2014
VL 85
IS 10
AR 105110
DI 10.1063/1.4899315
PG 8
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA AS9YL
UT WOS:000344594200094
PM 25362459
ER
PT J
AU Benafan, O
Padula, SA
Skorpenske, HD
An, K
Vaidyanathan, R
AF Benafan, O.
Padula, S. A., II
Skorpenske, H. D.
An, K.
Vaidyanathan, R.
TI Design and implementation of a multiaxial loading capability during
heating on an engineering neutron diffractometer
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID SHAPE-MEMORY ALLOY; SUPERELASTIC NITI; ELASTIC STRAINS; HIGH-PRESSURE;
DIFFRACTION; TEXTURE; EVOLUTION; BEHAVIOR; VULCAN; STRESS
AB A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel (R) R 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to similar to 1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes. (C) 2014 AIP Publishing LLC.
C1 [Benafan, O.; Padula, S. A., II] NASA, Glenn Res Ctr, Struct & Mat Div, Cleveland, OH 44135 USA.
[Benafan, O.; Vaidyanathan, R.] Univ Cent Florida, Mat Sci & Engn Dept, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA.
[Skorpenske, H. D.; An, K.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA.
RP Benafan, O (reprint author), NASA, Glenn Res Ctr, Struct & Mat Div, Cleveland, OH 44135 USA.
EM othmane.benafan@nasa.gov
RI An, Ke/G-5226-2011
OI An, Ke/0000-0002-6093-429X
FU Division of Scientific User Facilities, Office of Basic Energy Sciences,
U.S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC.; ORNL
User Partnership Program for Sample Environment Equipment Development,
NASA [NNX08AB51A, NNX11AI57A]; NASA Fundamental Aeronautics Program
FX This work has benefited from the use of the Spallation Neutron Source at
Oak Ridge National Laboratory, which is funded by the Division of
Scientific User Facilities, Office of Basic Energy Sciences, U.S.
Department of Energy under Contract No. DE-AC05-00OR22725 with
UT-Battelle, LLC. Financial support from the ORNL User Partnership
Program for Sample Environment Equipment Development, NASA (Grants
NNX08AB51A and NNX11AI57A to UCF) and NASA Fundamental Aeronautics
Program is gratefully acknowledged. The authors thank D. E. Nicholson
(University of Central Florida), D. P. Armitage (ORNL), and D. Leech
(Leech Industries, Inc.) for technical support and experimental
assistance.
NR 33
TC 2
Z9 2
U1 4
U2 14
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD OCT
PY 2014
VL 85
IS 10
AR 103901
DI 10.1063/1.4896042
PG 12
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA AS9YL
UT WOS:000344594200045
PM 25362410
ER
PT J
AU Dubuis, G
He, X
Bozovic, I
AF Dubuis, Guy
He, Xi
Bozovic, Ivan
TI Sub-millikelvin stabilization of a closed cycle cryocooler
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID TEMPERATURE; HELIUM
AB Intrinsic temperature oscillations (with the amplitude up to 1 K) of a closed cycle cryocooler are stabilized by a simple thermal damping system. It employs three different materials with different thermal conductivity and specific heat at various temperatures. The amplitude of oscillations of the sample temperature is reduced to less than 1 mK, in the temperature range from 4 K to 300 K, while the cooling power is virtually undiminished. The damping system is small, inexpensive, can be retrofitted to most existing closed cycle cryocoolers, and may improve measurements of any temperature-sensitive physics properties. (C) 2014 AIP Publishing LLC.
C1 [Dubuis, Guy; He, Xi; Bozovic, Ivan] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Dubuis, Guy] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland.
RP Dubuis, G (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
RI Dubuis, Guy/A-6849-2012
OI Dubuis, Guy/0000-0002-8199-4953
FU US Department of Energy, Basic Energy Sciences, Materials Sciences and
Engineering Division; Laboratory for Physics of Complex Matter-EPFL;
Swiss National Science Foundation
FX This research was supported by the US Department of Energy, Basic Energy
Sciences, Materials Sciences and Engineering Division. G.D. was
supported by the Laboratory for Physics of Complex Matter-EPFL, and the
Swiss National Science Foundation.
NR 9
TC 6
Z9 6
U1 0
U2 8
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD OCT
PY 2014
VL 85
IS 10
AR 103902
DI 10.1063/1.4896049
PG 4
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA AS9YL
UT WOS:000344594200046
PM 25362411
ER
PT J
AU Grierson, BA
Burrell, KH
Crowley, B
Grisham, L
Scoville, JT
AF Grierson, B. A.
Burrell, K. H.
Crowley, B.
Grisham, L.
Scoville, J. T.
TI High speed measurements of neutral beam turn-on and impact of beam
modulation on measurements of ion density
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID PLASMA; SPECTROSCOPY; DESIGN
AB Modulation of neutral beams on tokamaks is performed routinely, enabling background rejection for active spectroscopic diagnostics, and control of injected power and torque. We find that there exists an anomalous initial transient in the beam neutrals delivered to the tokamak that is not accounted for by the accelerator voltage and power supply current. Measurements of the charge-exchange and beam photoemission on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] at high speed (200 mu s) reveal that the energy of the beam neutrals is constant, but the density of beam neutrals displays dramatic variation in the first 2-3 ms following beam turn-on. The impact of this beam density variation on inferred ion densities and impurity transport is presented, with suggested means to correct for the anomalous transient. (C) 2014 AIP Publishing LLC.
C1 [Grierson, B. A.; Grisham, L.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Burrell, K. H.; Crowley, B.; Scoville, J. T.] Gen Atom Co, San Diego, CA 92186 USA.
RP Grierson, BA (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
EM bgriers@pppl.gov
FU U.S. Department of Energy [DE-AC02-09CH11466, DE-FC02-04ER54698]
FX This work was supported in part by the U.S. Department of Energy under
Grant Nos. DE-AC02-09CH11466 and DE-FC02-04ER54698. DIII-D data shown in
this paper can be obtained in digital format by following the links at
https://fusion.gat.com/global/D3D_DMP. The originating developer of ADAS
is the JET Joint Undertaking. The author gratefully acknowledges
discussions with D. M. Thomas, W. W. Heidbrink, and J. Rauch.
NR 16
TC 1
Z9 1
U1 0
U2 2
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD OCT
PY 2014
VL 85
IS 10
AR 103502
DI 10.1063/1.4896514
PG 7
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA AS9YL
UT WOS:000344594200023
PM 25362388
ER
PT J
AU Rosenberg, MJ
Zylstra, AB
Frenje, JA
Rinderknecht, HG
Johnson, MG
Waugh, CJ
Seguin, FH
Sio, H
Sinenian, N
Li, CK
Petrasso, RD
Glebov, VY
Hohenberger, M
Stoeckl, C
Sangster, TC
Yeamans, CB
LePape, S
Mackinnon, AJ
Bionta, RM
Talison, B
Casey, DT
Landen, OL
Moran, MJ
Zacharias, RA
Kilkenny, JD
Nikroo, A
AF Rosenberg, M. J.
Zylstra, A. B.
Frenje, J. A.
Rinderknecht, H. G.
Johnson, M. Gatu
Waugh, C. J.
Seguin, F. H.
Sio, H.
Sinenian, N.
Li, C. K.
Petrasso, R. D.
Glebov, V. Yu.
Hohenberger, M.
Stoeckl, C.
Sangster, T. C.
Yeamans, C. B.
LePape, S.
Mackinnon, A. J.
Bionta, R. M.
Talison, B.
Casey, D. T.
Landen, O. L.
Moran, M. J.
Zacharias, R. A.
Kilkenny, J. D.
Nikroo, A.
TI A compact proton spectrometer for measurement of the absolute DD proton
spectrum from which yield and rho R are determined in thin-shell
inertial-confinement-fusion implosions
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID NATIONAL-IGNITION-FACILITY; DIRECT-DRIVE; OMEGA; DETECTORS; CAPSULES;
PLASMAS
AB A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (rho R) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of similar to 1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are +/-<10% in yield and +/-120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF. (C) 2014 AIP Publishing LLC.
C1 [Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Rinderknecht, H. G.; Johnson, M. Gatu; Waugh, C. J.; Seguin, F. H.; Sio, H.; Sinenian, N.; Li, C. K.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA.
[Glebov, V. Yu.; Hohenberger, M.; Stoeckl, C.; Sangster, T. C.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA.
[Yeamans, C. B.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Talison, B.; Casey, D. T.; Landen, O. L.; Moran, M. J.; Zacharias, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Kilkenny, J. D.; Nikroo, A.] Gen Atom Co, San Diego, CA 92186 USA.
RP Rosenberg, MJ (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
EM mrosenbe@mit.edu
RI MacKinnon, Andrew/P-7239-2014; lepape, sebastien/J-3010-2015
OI MacKinnon, Andrew/0000-0002-4380-2906;
FU US DoE [DE-NA0001857]; NLUF [DE-NA0002035]; LLE [415935-G]; LLNL
[B600100]; FSC [5-24431]
FX The authors thank the OMEGA and NIF operations and target fabrication
crews for their assistance in carrying out these experiments and R.
Frankel, E. Doeg, M. Valadez, M. Cairel, and M. McKernan for their help
in processing of CR-39 data used in this work. The authors also thank G.
Grim (LANL) for access to two OMEGA shots. This work was performed in
partial fulfillment of the first author's Ph.D. thesis and supported in
part by US DoE (Grant No. DE-NA0001857), NLUF (Grant No. DE-NA0002035),
LLE (Grant No. 415935-G), LLNL (Grant No. B600100), and FSC (Grant No.
5-24431).
NR 29
TC 8
Z9 8
U1 0
U2 5
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD OCT
PY 2014
VL 85
IS 10
AR 103504
DI 10.1063/1.4897193
PG 11
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA AS9YL
UT WOS:000344594200025
PM 25362390
ER
PT J
AU Sears, J
Intrator, TP
Feng, Y
Swan, HO
Klarenbeek, J
Gao, K
AF Sears, Jason
Intrator, T. P.
Feng, Y.
Swan, H. O.
Klarenbeek, J.
Gao, K.
TI Investigating the momentum balance of a plasma pinch: An air-side
stereoscopic imaging system for locating probes
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
AB The momentum balance of a plasma pinch in the Reconnection Scaling Experiment (RSX) is examined in three dimensions using several repositionable, insertable probes. A new camera-based system described here triangulates the locations of the probe tips so that their measurements are spatially registered. The optical system locates probes to within +/- 1.5 mm of their absolute 3D position in the vessel and to within +/- 0.7 mm relative to other probes, on the order of the electron inertial length (1-2 mm). (C) 2014 AIP Publishing LLC.
C1 [Sears, Jason; Intrator, T. P.; Feng, Y.; Swan, H. O.; Klarenbeek, J.; Gao, K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Sears, J (reprint author), Lawrence Livermore Natl Lab, POB 808 L-153, Livermore, CA 94551 USA.
EM jason.sears@alum.mit.edu
FU Center for Magnetic Self Organization, NASA Geospace [NNHIOA044I-Basic];
Department of Energy [DE-AC52-06NA25369]; U.S. Department of Energy by
Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
FX Supported by Center for Magnetic Self Organization, NASA Geospace
NNHIOA044I-Basic, Department of Energy DE-AC52-06NA25369. J.S.
acknowledges support from the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract No. DE-AC52-07NA27344. In
memory of Tom Intrator, a magnanimous friend and mentor, who passed away
on June 3, 2014.
NR 18
TC 0
Z9 0
U1 3
U2 8
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD OCT
PY 2014
VL 85
IS 10
AR 103509
DI 10.1063/1.4898176
PG 9
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA AS9YL
UT WOS:000344594200030
PM 25362395
ER
PT J
AU Zastrau, U
Fletcher, LB
Forster, E
Galtier, EC
Gamboa, E
Glenzer, SH
Heimann, P
Marschner, H
Nagler, B
Schropp, A
Wehrhan, O
Lee, HJ
AF Zastrau, Ulf
Fletcher, Luke B.
Foerster, Eckhart
Galtier, Eric Ch.
Gamboa, Eliseo
Glenzer, Siegfried H.
Heimann, Philipp
Marschner, Heike
Nagler, Bob
Schropp, Andreas
Wehrhan, Ortrud
Lee, Hae Ja
TI Bent crystal spectrometer for both frequency and wavenumber resolved x-
ray scattering at a seeded free- electron laser (vol 85, 093106, 2014)
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Correction
C1 [Zastrau, Ulf; Foerster, Eckhart; Marschner, Heike; Wehrhan, Ortrud] Univ Jena, Inst Opt & Quantum Elect, D-07743 Jena, Germany.
[Zastrau, Ulf; Fletcher, Luke B.; Galtier, Eric Ch.; Gamboa, Eliseo; Glenzer, Siegfried H.; Heimann, Philipp; Nagler, Bob; Schropp, Andreas; Lee, Hae Ja] SLAC, Menlo Pk, CA 94025 USA.
[Foerster, Eckhart] Helmholtz Inst Jena, D-07743 Jena, Germany.
RP Zastrau, U (reprint author), Univ Jena, Inst Opt & Quantum Elect, Max Wien Pl 1, D-07743 Jena, Germany.
EM ulf.zastrau@uni-jena.de
NR 1
TC 0
Z9 0
U1 0
U2 5
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD OCT
PY 2014
VL 85
IS 10
AR 109902
DI 10.1063/1.4897476
PG 1
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA AS9YL
UT WOS:000344594200103
PM 25362468
ER
PT J
AU Sachan, R
Malasi, A
Ge, JX
Yadavali, S
Krishna, H
Gangopadhyay, AK
Garcia, H
Duscher, G
Kalyanaraman, R
AF Sachan, Ritesh
Malasi, Abhinav
Ge, Jingxuan
Yadavali, Sagar
Krishna, Hare
Gangopadhyay, Anup K.
Garcia, Hernando
Duscher, Gerd
Kalyanaraman, Ramki
TI Ferroplasmons: Intense Localized Surface Plasmons in Metal-Ferromagnetic
Nanoparticles
SO ACS NANO
LA English
DT Article
DE localized surface plasmon resonance; electron energy-loss spectroscopy;
bimetallic nanoparticles; hybridization; silver; scanning transmission
electron microscopy; ferromagnet
ID ELECTROMAGNETICALLY INDUCED TRANSPARENCY; ENHANCED RAMAN-SCATTERING;
ELECTRON-ENERGY-LOSS; FANO RESONANCES; DIFFRACTION LIMIT;
NANOSTRUCTURES; HETERODIMERS; MODEL; SPECTROSCOPY; NANOROD
AB Interaction of photons with matter at length scales far below their wavelengths has given rise to many novel phenomena, including localized surface plasmon resonance (LSPR). However, LSPR with narrow bandwidth (BW) is observed only in a select few noble metals, and ferromagnets are not among them. Here, we report the discovery of LSPR in ferromagnetic Co and CoFe alloy (8% Fe) in contact with Ag in the form of bimetallic nanoparticles prepared by pulsed laser dewetting. These plasmons in metal-ferromagnetic nanostructures, or ferroplasmons (FP) for short, are in the visible spectrum with comparable intensity and BW to those of the LSPRs from the Ag regions. This finding was enabled by electron energy-loss mapping across individual nanoparticles in a monochromated scanning transmission electron microscope. The appearance of the FP is likely due to plasmonic interaction between the contacting Ag and Co nanoparticles. Since there is no previous evidence for materials that simultaneously show ferromagnetism and such intense LSPRs, this discovery may lead to the design of improved plasmonic materials and applications. It also demonstrates that materials with interesting plasmonic properties can be synthesized using bimetallic nanostructures in contact with each other.
C1 [Sachan, Ritesh; Ge, Jingxuan; Duscher, Gerd; Kalyanaraman, Ramki] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Malasi, Abhinav; Yadavali, Sagar; Kalyanaraman, Ramki] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA.
[Krishna, Hare; Gangopadhyay, Anup K.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
[Garcia, Hernando] So Illinois Univ, Dept Phys, Edwardsville, IL 62026 USA.
[Duscher, Gerd] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Duscher, G (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
EM gduscher@utk.edu; ramki@utk.edu
RI Malasi, Abhinav/J-6025-2015; Duscher, Gerd/G-1730-2014
OI Duscher, Gerd/0000-0002-2039-548X
FU Army Research Office [W911NF-13-1-0428]; Scientific User Facilities
Division, Office of Basic Energy Sciences, U.S. Department of Energy
[CNMS2013-284]; Sustainable Energy Education and Research Center;
TN-SCORE; Center for Materials Processing; NSF [CMMI-0855949]; NSF EAGER
Grant [CBET-1349507]; U.S. Department of Energy, Basic Energy Sciences,
Materials Sciences and Engineering Division [ERKCS81]
FX For the experimental work performed on various substrates as well as the
analysis of the work, we acknowledge discussions with Dr. Rich Hammond
and support by the Army Research Office through grant W911NF-13-1-0428.
For the characterization and analysis portion of this work, the authors
thank the Joint Institute of Advanced Materials (JIAM) at University of
Tennessee-Knoxville (UTK) and Grant CNMS2013-284 at the Center for
Nanophase Materials Science, which is sponsored at ORNL by the
Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy. For the materials synthesis aspects of this
work, the authors also acknowledge support by the Sustainable Energy
Education and Research Center, TN-SCORE, Center for Materials
Processing, and the NSF through Grant CMMI-0855949. S.Y. was supported
by NSF EAGER Grant CBET-1349507. G.D. acknowledges support by the U.S.
Department of Energy, Basic Energy Sciences, Materials Sciences and
Engineering Division under Award No. ERKCS81.
NR 52
TC 16
Z9 16
U1 6
U2 79
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2014
VL 8
IS 10
BP 9790
EP 9798
DI 10.1021/nn5031719
PG 9
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AS0FC
UT WOS:000343952600011
PM 25068441
ER
PT J
AU Srivastava, S
Nykypanchuk, D
Fukuto, M
Gang, O
AF Srivastava, Sunita
Nykypanchuk, Dmytro
Fukuto, Masafumi
Gang, Oleg
TI Tunable Nanoparticle Arrays at Charged Interfaces
SO ACS NANO
LA English
DT Article
DE self-assembly; lipid membrane; liquid interfaces; charged nanoparticle
ID SENSITIZED SOLAR-CELLS; GOLD NANOPARTICLES; IONIC-STRENGTH;
POLYELECTROLYTE BRUSHES; DRUG-DELIVERY; DNA; MONOLAYERS; FILMS;
CRYSTALLIZATION; COMPACTION
AB Structurally tunable two-dimensional (2D) arrays of nanoscale objects are important for modulating functional responses of thin films. We demonstrate that such tunable and ordered nanoparticles (NP) arrays can be assembled at charged air-water interfaces from nanoparticles coated with polyelectrolyte chains, DNA. The electrostatic attraction between the negatively charged nonhybridizing DNA-coated gold NPs and a positively charged lipid layer at the interface facilitates the formation of a 2D hexagonally closed packed (HCP) nanoparticle lattice. We observed about 4-fold change of the monolayer nanoparticle density by varying the ionic strength of the subphase. The tunable NP arrays retain their structure reasonably well when transferred to a solid support. The influence of particle's DNA corona and lipid layer composition on the salt-induced in-plane and normal structural evolution of NP arrays was studied in detail using a combination of synchrotron-based in situ surface scattering methods, grazing incidence X-ray scattering (GISAXS), and X-ray reflectivity (XRR). Comparative analysis of the interparticle distances as a function of ionic strength reveals the difference between the studied 2D nanoparticle arrays and analogous bulk polyelectrolyte star polymers systems, typically described by Daoud-Cotton model and power law scaling. The observed behavior of the 2D nanoparticle array manifests a nonuniform deformation of the nanoparticle DNA corona due to its electrostatically induced confinement at the lipid interface. The present study provides insight on the interfacial properties of the NPs coated with charged soft shells.
C1 [Srivastava, Sunita; Nykypanchuk, Dmytro; Gang, Oleg] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Fukuto, Masafumi] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
[Fukuto, Masafumi] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA.
RP Gang, O (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
EM ogang@bnl.gov
FU U.S. Department of Energy, Office of Basic Energy Sciences
[DE-AC02-98CH10886]; U.S. Department of Energy, Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering
[DE-AC02-98CH10886]; U.S. Department of Energy, Office of Basic Energy
Sciences
FX Research carried out at the Center for Functional Nanomaterials,
Brookhaven National Laboratory, which is supported by the U.S.
Department of Energy, Office of Basic Energy Sciences, under Contract
No. DE-AC02-98CH10886. M.F. acknowledges support by the U.S. Department
of Energy, Office of Basic Energy Sciences, Division of Materials
Sciences and Engineering, under Contract No. DE-AC02-98CH10886. Use of
the National Synchrotron Light Source was supported by the U.S.
Department of Energy, Office of Basic Energy Sciences, under Contract
No. DE-AC02-98CH10886.
NR 46
TC 12
Z9 12
U1 12
U2 132
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2014
VL 8
IS 10
BP 9857
EP 9866
DI 10.1021/nn5042416
PG 10
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AS0FC
UT WOS:000343952600019
PM 25197949
ER
PT J
AU Sinitskii, A
Erickson, KJ
Lu, W
Gibb, AL
Zhi, CY
Bando, Y
Golberg, D
Zettl, A
Tour, JM
AF Sinitskii, Alexander
Erickson, Kristopher J.
Lu, Wei
Gibb, Ashley L.
Zhi, Chunyi
Bando, Yoshio
Golberg, Dmitri
Zettl, Alex
Tour, James M.
TI High-Yield Synthesis of Boron Nitride Nanoribbons via Longitudinal
Splitting of Boron Nitride Nanotubes by Potassium Vapor
SO ACS NANO
LA English
DT Article
DE boron nitride nanotubes; potassium splitting; boron nitride nanoribbons
ID CARBON NANOTUBES; GRAPHENE NANORIBBONS; FACILE SYNTHESIS; BN NANOTUBES;
EXFOLIATION; NANOSHEETS
AB Boron nitride nanoribbons (BNNRs) are theorized to have interesting electronic and magnetic properties, but their high-yield synthesis remains challenging. Here we demonstrate that potassium-induced splitting of BN nanotubes (BNNTs) is an effective high-yield method to obtain bulk quantities of high-quality BNNRs if a proper precursor material is chosen. The resulting BNNRs are crystalline; many of them have a high aspect ratio and straight parallel edges. We have observed numerous few-layer and monolayer BNNRs; the multilayered ribbons predominantly have an AA' stacking. We present a detailed microscopy study of BNNRs that provides important insights into the mechanism of the formation of BNNRs from BNNTs. We also demonstrate that the BNNTs prepared by different synthetic approaches could exhibit dramatically different reactivities in the potassium splitting reaction, which highlights the need for future comparison studies of BN nanomaterials prepared using different methods to better understand their preparation-dependent physical and chemical properties.
C1 [Sinitskii, Alexander] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA.
[Erickson, Kristopher J.; Gibb, Ashley L.; Zettl, Alex] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Erickson, Kristopher J.; Gibb, Ashley L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Erickson, Kristopher J.; Gibb, Ashley L.; Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Lu, Wei; Tour, James M.] Rice Univ, Dept Chem, Houston, TX 77005 USA.
[Zhi, Chunyi] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China.
[Bando, Yoshio; Golberg, Dmitri] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton MANA, Tsukuba, Ibaraki 3050044, Japan.
[Tour, James M.] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA.
[Tour, James M.] Rice Univ, Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA.
RP Sinitskii, A (reprint author), Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA.
EM sinitskii@unl.edu; azettl@berkeley.edu; tour@rice.edu
RI Sinitskii, Alexander/J-6619-2015; Golberg, Dmitri/H-2776-2011; Zettl,
Alex/O-4925-2016;
OI Sinitskii, Alexander/0000-0002-8688-3451; Golberg,
Dmitri/0000-0003-2298-6539; Zettl, Alex/0000-0001-6330-136X; ZHI,
Chunyi/0000-0001-6766-5953; Tour, James/0000-0002-8479-9328
FU Air Force Research Laboratory through University Technology Corporation
[09-S568-064-01-C1]; Air Force Office of Scientific Research
[FA9550-09-1-0581]; Office of Naval Research MURI Graphene Program
[N00014-09-1-1066]; Office of Energy Research, Office of Basic Energy
Sciences, Materials Sciences and Engineering Division, of the U.S.
Department of Energy [DE-AC02-05CH11231]; Center of Integrated
Nanomechanical Systems under NSF Grant [EED-0832819]; NIMS [BE063]; NSF
through Nebraska MRSEC [DMR-0820521]; EPSCoR [EPS-1004094]
FX This work was supported in part by the Air Force Research Laboratory
through University Technology Corporation (09-S568-064-01-C1); the Air
Force Office of Scientific Research (FA9550-09-1-0581); the Office of
Naval Research MURI Graphene Program (N00014-09-1-1066); the Director,
Office of Energy Research, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division, of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231, which provided for student support
and detailed TEM and SEM characterization; and the Center of Integrated
Nanomechanical Systems under NSF Grant EED-0832819, which provided for
staff support. D.G. acknowledges support from the NIMS Grant No. BE063.
A.S. also acknowledges support from the NSF through Nebraska MRSEC
(DMR-0820521) and EPSCoR (EPS-1004094).
NR 31
TC 9
Z9 9
U1 7
U2 68
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2014
VL 8
IS 10
BP 9867
EP 9873
DI 10.1021/nn504809n
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AS0FC
UT WOS:000343952600020
PM 25227319
ER
PT J
AU Balke, N
Maksymovych, P
Jesse, S
Kravchenko, II
Li, Q
Kalinin, SV
AF Balke, Nina
Maksymovych, Petro
Jesse, Stephen
Kravchenko, Ivan I.
Li, Qian
Kalinin, Sergei V.
TI Exploring Local Electrostatic Effects with Scanning Probe Microscopy:
Implications for Piezoresponse Force Microscopy and Triboelectricity
SO ACS NANO
LA English
DT Article
DE scanning probe microscopy; electrostatics; charge storage; HfO2; thin
films
ID ACOUSTIC MICROSCOPY; NANOSCALE; HFO2
AB The implementation of contact mode Kelvin probe force microscopy (cKPFM) utilizes the electrostatic interactions between tip and sample when the tip and sample are in contact with each other. Surprisingly, the electrostatic forces in contact are large enough to be measured even with tips as stiff as 4.5 N/m. As for traditional noncontact KPFM, the signal depends strongly on electrical properties of the sample, such as the dielectric constant, and the tip properties, such as the stiffness. Since the tip is in contact with the sample, bias-induced changes in the junction potential between tip and sample can be measured with higher lateral and temporal resolution compared to traditional noncontact KPFM. Significant and reproducible variations of tip-surface capacitance are observed and attributed to surface electrochemical phenomena. Observations of significant surface charge states at zero bias and strong hysteretic electromechanical responses at a nonferroelectric surface have significant implications for fields such as triboelectricity and piezoresponse force microscopy.
C1 [Balke, Nina; Maksymovych, Petro; Jesse, Stephen; Kravchenko, Ivan I.; Li, Qian; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Rige, TN 37831 USA.
RP Balke, N (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Rige, TN 37831 USA.
EM balken@ornl.gov
RI Kravchenko, Ivan/K-3022-2015; Balke, Nina/Q-2505-2015; Kalinin,
Sergei/I-9096-2012; Maksymovych, Petro/C-3922-2016; Jesse,
Stephen/D-3975-2016
OI Kravchenko, Ivan/0000-0003-4999-5822; Balke, Nina/0000-0001-5865-5892;
Kalinin, Sergei/0000-0001-5354-6152; Maksymovych,
Petro/0000-0003-0822-8459; Jesse, Stephen/0000-0002-1168-8483
FU Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy
FX Personal support was provided by the U.S. Department of Energy, Basic
Energy Sciences, Materials Sciences and Engineering Division, through
the Office of Science Early Career Research Program (N.B., Q.L.).The
experiments were performed at the Center for Nanophase Materials
Sciences, which is sponsored at Oak Ridge National Laboratory by the
Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy, which also provided personal support (P.M.,
S.J., I.I.K., S.V.K.).
NR 28
TC 24
Z9 24
U1 7
U2 75
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2014
VL 8
IS 10
BP 10229
EP 10236
DI 10.1021/nn505176a
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AS0FC
UT WOS:000343952600057
PM 25257028
ER
PT J
AU Lynch, J
Kotiuga, M
Doan-Nguyen, VVT
Queen, WL
Forster, JD
Schlitz, RA
Murray, CB
Neaton, JB
Chabinyc, ML
Urban, JJ
AF Lynch, Jared
Kotiuga, Michele
Doan-Nguyen, Vicky V. T.
Queen, Wendy L.
Forster, Jason D.
Schlitz, Ruth A.
Murray, Christopher B.
Neaton, Jeffrey B.
Chabinyc, Michael L.
Urban, Jeffrey J.
TI Ligand Coupling Symmetry Correlates with Thermopower Enhancement in
Small-Molecule/Nanocrystal Hybrid Materials
SO ACS NANO
LA English
DT Article
DE thermoelectrics; coupling; ligand exchange; copper selenide;
nanocrystal; composite; hybrid; organic
ID NANOSTRUCTURED THERMOELECTRICS; MOLECULAR HETEROJUNCTIONS;
ELECTRICAL-PROPERTIES; SURFACE-CHEMISTRY; PBSE; NANOCRYSTALS; TRANSPORT;
FILMS; SEMICONDUCTOR; SUPERLATTICES
AB We investigate the impact of the coupling symmetry and chemical nature of organic-inorganic interfaces on thermoelectric transport in Cu-2-Se-x nanocrystal thin films. By coupling ligand-exchange techniques with layer-by-layer assembly methods, we are able to systematically vary nanocrystal-organic linker interfaces, demonstrating how the functionality of the polar headgroup and the coupling symmetry of the organic linkers can change the power factor (S-2 sigma) by nearly 2 orders of magnitude. Remarkably, we observe that ligand-coupling symmetry has a profound effect on thermoelectric transport in these hybrid materials. We shed light on these results using intuition from a simplified model for interparticle charge transport via tunneling through the frontier orbital of a bound ligand. Our analysis indicates that ligand-coupling symmetry and binding mechanisms correlate with enhanced conductivity approaching 2000 S/cm, and we employ this concept to demonstrate among the highest power factors measured for quantum-dot based thermoelectric inorganic-organic composite materials of similar to 30 mu W/m.K(2).
C1 [Lynch, Jared; Kotiuga, Michele; Queen, Wendy L.; Forster, Jason D.; Neaton, Jeffrey B.; Urban, Jeffrey J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Div Mat Sci, Berkeley, CA 94720 USA.
[Kotiuga, Michele; Neaton, Jeffrey B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Murray, Christopher B.] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA.
[Doan-Nguyen, Vicky V. T.; Murray, Christopher B.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.
[Neaton, Jeffrey B.] Kavli Energy NanoSci Inst Berkeley, Berkeley, CA USA.
[Schlitz, Ruth A.; Chabinyc, Michael L.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA.
RP Urban, JJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Div Mat Sci, One Cyclotron Rd, Berkeley, CA 94720 USA.
EM jjurban@lbl.gov
RI Neaton, Jeffrey/F-8578-2015; Foundry, Molecular/G-9968-2014;
OI Neaton, Jeffrey/0000-0001-7585-6135; Queen, Wendy/0000-0002-8375-2341
FU AFOSR MURI [FA9550-12-1-0002]; Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. DOE
[DE-AC02-06CH11357]; NSF MRSEC [DMR-0520020]
FX This work is supported by AFOSR MURI FA9550-12-1-0002. Portions of this
work were done at the Molecular Foundry, supported by the Office of
Science, Office of Basic Energy Sciences, of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231. Use of the Advanced Photon
Source, an Office of Science User Facility operated for the U.S.
Department of Energy (DOE) Office of Science by Argonne National
Laboratory, was supported by the U.S. DOE under Contract No.
DE-AC02-06CH11357 and supported by NSF MRSEC DMR-0520020. We acknowledge
Dr. Nelson Coates for his thoughtful insight and helpful discussion of
the transport properties in our composite systems. We alsoacknowledge
Amy Bergerud for her assistance in measuring XPS spectra of our
composite thin films.
NR 33
TC 7
Z9 7
U1 8
U2 98
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2014
VL 8
IS 10
BP 10528
EP 10536
DI 10.1021/nn503972v
PG 9
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AS0FC
UT WOS:000343952600088
PM 25211028
ER
PT J
AU Yager, KG
Lai, E
Black, CT
AF Yager, Kevin G.
Lai, Erica
Black, Charles T.
TI Self-Assembled Phases of Block Copolymer Blend Thin Films
SO ACS NANO
LA English
DT Article
DE block copolymers; thin films; block copolymer blends; self-assembly;
phase diagram
ID LINEAR FLEXIBLE MACROMOLECULES; FORMING COPOLYMERS; ORDERED STRUCTURE;
POLYMER; SURFACE; HOMOPOLYMERS; BEHAVIOR; MIXTURES; CONFORMATIONS;
ORIENTATION
AB The patterns formed by self-assembled thin films of blended cylindrical and lamellar polystyrene-b-poly(methyl methacrylate) block copolymers can be either a spatially uniform, single type of nanostructure or separate, coexisting regions of cylinders and lamellae, depending on fractional composition and molecular weight ratio of the blend constituents. In blends of block copolymers with different molecular weights, the morphology of the smaller molecular weight component more strongly dictates the resulting pattern. Although molecular scale chain mixing distorts microdomain characteristic length scales from those of the pure components, even coexisting morphologies exhibit the same domain spacing. We quantitatively account for the phase behavior of thin-film blends of cylinders and lamellae using a physical, thermodynamic model balancing the energy of chain distortions with the entropy of mixing.
C1 [Yager, Kevin G.; Lai, Erica; Black, Charles T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Black, CT (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
EM ctblack@bnl.gov
RI Yager, Kevin/F-9804-2011
OI Yager, Kevin/0000-0001-7745-2513
FU U.S. Department of Energy, Office of Basic Energy Sciences
[DE-AC02-98CH10886]
FX The authors thank C. J. Hawker (U. C. Santa Barbara) for synthesis of
the random copolymer used in these experiments. Research carried out at
the Center for Functional Nanomaterials, Brookhaven National Laboratory,
which is supported by the U.S. Department of Energy, Office of Basic
Energy Sciences, under Contract No. DE-AC02-98CH10886.
NR 41
TC 12
Z9 12
U1 10
U2 57
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2014
VL 8
IS 10
BP 10582
EP 10588
DI 10.1021/nn504977r
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AS0FC
UT WOS:000343952600093
PM 25285733
ER
PT J
AU Ma, XD
Roslyak, O
Wang, F
Duque, JG
Piryatinski, A
Doorn, SK
Htoon, H
AF Ma, Xuedan
Roslyak, Oleksiy
Wang, Feng
Duque, Juan G.
Piryatinski, Andrei
Doorn, Stephen K.
Htoon, Han
TI Influence of Exciton Dimensionality on Spectral Diffusion of
Single-Walled Carbon Nanotubes
SO ACS NANO
LA English
DT Article
DE carbon nanotubes; quantum-confined Stark effect; surface plasmons;
photoluminescence; spectral diffusion
ID QUANTUM DOTS; FLUORESCENCE; EMISSION; PHOTOLUMINESCENCE; INTERMITTENCY;
TEMPERATURE; PLASMONICS
AB We study temporal evolution of photoluminescence (PL) spectra from individual single-walled carbon nanotubes (SWCNTs) at cryogenic and room temperatures. Sublinear and superlinear correlations between fluctuating PL spectral positions and line widths are observed at cryogenic and room temperatures, respectively. We develop a simple model to explain these two different spectral diffusion behaviors in the framework of quantum-confined Stark effect (QCSE) caused by surface charges trapped in the vicinity of SWCNTs. We show that the wave function properties of excitons, namely, localization at cryogenic temperature and delocalization at room temperature, play a critical role in defining sub- and superlinear correlations. Room temperature PL spectral positions and line widths of SWCNTs coupled to gold dimer nanoantennas on the other hand exhibit sublinear correlations, indicating that excitonic emission mainly originates from nanometer range regions and excitons appear to be localized. Our numerical simulations show that such apparent localization of excitons results from plasmonic confinement of excitation and an enhancement of decay rates in the gap of the dimer nanoantennas.
C1 [Ma, Xuedan; Roslyak, Oleksiy; Wang, Feng; Doorn, Stephen K.; Htoon, Han] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
[Roslyak, Oleksiy; Piryatinski, Andrei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Duque, Juan G.] Los Alamos Natl Lab, Div Chem, Phys Chem & Appl Spect Grp, Los Alamos, NM 87545 USA.
RP Ma, XD (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA.
EM xma@lanl.gov; htoon@lanl.gov
RI Piryatinski, Andrei/B-5543-2009;
OI Htoon, Han/0000-0003-3696-2896
FU Los Alamos National Laboratory Directed Research and Development Funds
FX This work was conducted at the Center for Integrated Nanotechnologies
(CINT), a U.S. Department of Energy, Office of Basic Energy Sciences
(OBES) user facility and supported in part by Los Alamos National
Laboratory Directed Research and Development Funds.
NR 43
TC 6
Z9 6
U1 6
U2 47
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2014
VL 8
IS 10
BP 10613
EP 10620
DI 10.1021/nn504138m
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AS0FC
UT WOS:000343952600097
PM 25251324
ER
PT J
AU Punjabi, A
Wu, X
Tokatli-Apollon, A
El-Rifai, M
Lee, H
Zhang, YW
Wang, C
Liu, Z
Chan, EM
Duan, CY
Han, G
AF Punjabi, Amol
Wu, Xiang
Tokatli-Apollon, Amira
El-Rifai, Mahmoud
Lee, Hyungseok
Zhang, Yuanwei
Wang, Chao
Liu, Zhuang
Chan, Emory M.
Duan, Chunying
Han, Gang
TI Amplifying the Red-Emission of Upconverting Nanoparticles for
Biocompatible Clinically Used Prodrug-Induced Photodynamic Therapy
SO ACS NANO
LA English
DT Article
DE upconverting; nanoparticles; red-emission; prodrug; photodynamic therapy
ID UP-CONVERSION NANOPARTICLES; NEAR-INFRARED LIGHT; RESONANCE
ENERGY-TRANSFER; SINGLET OXYGEN; DRUG-DELIVERY; CORE/SHELL
NANOPARTICLES; SHELL NANOPARTICLES; CANCER-CELLS; PHOTOSENSITIZER;
NANOTRANSDUCERS
AB A class of biocompatible upconverting nanoparticles (UCNPs) with largely amplified red-emissions was developed. The optimal UCNP shows a high absolute upconversion quantum yield of 3.2% in red-emission, which is 15-fold stronger than the known optimal beta-phase core/shell UCNPs. When conjugated to aminolevulinic acid, a clinically used photodynamic therapy (PDT) prodrug, significant PDT effect in tumor was demonstrated in a deep-tissue (>1.2 cm) setting in vivo at a biocompatible laser power density. Furthermore, we show that our UCNP-PDT system with NIR irradiation outperforms clinically used red light irradiation in a deep tumor setting in vivo. This study marks a major step forward in photodynamic therapy utilizing UCNPs to effectively access deep-set tumors. It also provides an opportunity for the wide application of upconverting red radiation in photonics and biophotonics.
C1 [Punjabi, Amol; Wu, Xiang; Tokatli-Apollon, Amira; El-Rifai, Mahmoud; Lee, Hyungseok; Zhang, Yuanwei; Han, Gang] Univ Massachusetts, Sch Med, Dept Biochem & Mol Pharmacol, Worcester, MA 01605 USA.
[Wu, Xiang; Duan, Chunying] Dalian Univ Technol, State Key Lab Fine Chem, Dalian 116012, Liaoning, Peoples R China.
[Wang, Chao; Liu, Zhuang] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China.
[Chan, Emory M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
RP Han, G (reprint author), Univ Massachusetts, Sch Med, Dept Biochem & Mol Pharmacol, Worcester, MA 01605 USA.
EM gang.han@umassmed.edu
RI Liu, Zhuang/H-4352-2011; Foundry, Molecular/G-9968-2014;
OI Liu, Zhuang/0000-0002-1629-1039; han, gang/0000-0002-2300-5862
FU University of Massachusetts Medical School, UMass CVIP Technology
Development Award; National Institute of Health [R01MH103133]; Human
Frontier Science Program; Office of Science, Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering, of the U.S.
Department of Energy [DE-AC02-05CH11231]
FX G.H. was supported by a start-up fund through the University of
Massachusetts Medical School, UMass CVIP Technology Development Award,
and by National Institute of Health R01MH103133 and the Human Frontier
Science Program. Work at the Molecular Foundry was supported by the
Director, Office of Science, Office of Basic Energy Sciences, Division
of Materials Sciences and Engineering, of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.
NR 44
TC 75
Z9 76
U1 27
U2 258
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2014
VL 8
IS 10
BP 10621
EP 10630
DI 10.1021/nn505051d
PG 10
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AS0FC
UT WOS:000343952600098
PM 25291544
ER
PT J
AU Keene, JD
McBride, JR
Orfield, NJ
Rosenthal, SJ
AF Keene, Joseph D.
McBride, James R.
Orfield, Noah J.
Rosenthal, Sandra J.
TI Elimination of Hole-Surface Overlap in Graded CdSxSe1-x Nanocrystals
Revealed by Ultrafast Fluorescence Upconversion Spectroscopy
SO ACS NANO
LA English
DT Article
DE ultrafast fluorescence upconversion; nanocrystal spectroscopy;
quasi-type-II; CdSxSe1-x; core/shell; graded alloy
ID SEMICONDUCTOR QUANTUM DOTS; CDSE NANOCRYSTALS; AUGER RECOMBINATION;
RELAXATION DYNAMICS; SOLVATION DYNAMICS; CARRIER DYNAMICS; STATE;
NANOPARTICLES; TRANSITIONS; ABSORPTION
AB Interaction of charge carriers with the surface of semiconductor nanocrystals plays an integral role in determining the ultimate fate of the excited state. The surface contains a dynamic ensemble of trap states that can localize excited charges, preventing radiative recombination and reducing fluorescence quantum yields. Here we report quasi-type-II band alignment in graded alloy CdSxSe1-x nanocrystals revealed by femtosecond fluorescence upconversion spectroscopy. Graded alloy CdSxSe1-x quantum dots are a compositionally inhomogeneous nano-heterostructure designed to decouple the exciton from the nanocrystal surface. The large valence band offset between the CdSe-rich core and CdS-rich shell separates the excited hole from the surface by confining it to the core of the nanocrystal. The small conduction band offset, however, allows the electron to delocalize throughout the entire nanocrystal and maintain overlap with the surface. Indeed, the ultrafast charge carrier dynamics reveal that the fast 1-3 ps hole-trapping process is fully eliminated with increasing sulfur composition and the decay constant for electron trapping (similar to 20-25 ps) shows a slight increase. These findings demonstrate progress toward highly efficient nanocrystal fluorophores that are independent of their surface chemistry to ultimately enable their incorporation into a diverse range of applications without experiencing adverse effects arising from dissimilar environments.
C1 [Keene, Joseph D.; McBride, James R.; Orfield, Noah J.; Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA.
[Rosenthal, Sandra J.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
[Rosenthal, Sandra J.] Vanderbilt Univ, Dept Pharmacol, Nashville, TN 37235 USA.
[Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA.
[Keene, Joseph D.; McBride, James R.; Orfield, Noah J.; Rosenthal, Sandra J.] Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, Nashville, TN 37235 USA.
[Rosenthal, Sandra J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP McBride, JR (reprint author), Vanderbilt Univ, Dept Chem, Box 1583, Nashville, TN 37235 USA.
EM james.r.mcbride@vanderbilt.edu; sandra.j.rosenthal@vanderbilt.edu
RI Keene, Joseph/F-8874-2010; McBride, James/D-2934-2012; Orfield,
Noah/K-4548-2014;
OI McBride, James/0000-0003-0161-7283; Orfield, Noah/0000-0003-4555-8668
FU National Science Foundation [CHE-1213758]
FX J.D.K. and N.J.O. were supported by the National Science Foundation
(CHE-1213758). HRTEM and EDS-STEM images were acquired using an FEI
Tecnai Osiris electron microscope supported by the National Science
Foundation (EPS-1004083).
NR 41
TC 21
Z9 21
U1 10
U2 53
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2014
VL 8
IS 10
BP 10665
EP +
DI 10.1021/nn504235w
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AS0FC
UT WOS:000343952600102
PM 25203834
ER
PT J
AU Jensen, KMO
Andersen, HL
Tyrsted, C
Bojesen, ED
Dippel, AC
Lock, N
Billinge, SJL
Iversen, BB
Christensen, M
AF Jensen, Kirsten M. O.
Andersen, Henrik L.
Tyrsted, Christoffer
Bojesen, Espen D.
Dippel, Ann-Christin
Lock, Nina
Billinge, Simon J. L.
Iversen, Bo B.
Christensen, Mogens
TI Mechanisms for Iron Oxide Formation under Hydrothermal Conditions: An in
Situ Total Scattering Study
SO ACS NANO
LA English
DT Article
DE maghemite; hydrothermal; pair distribution function analysis; total
scattering; in situ
ID PAIR DISTRIBUTION-FUNCTIONS; X-RAY; SUPERCRITICAL WATER;
MAGNETIC-PROPERTIES; SYNCHROTRON-RADIATION; POWDER DIFFRACTION;
NANOPARTICLE FORMATION; NEUTRON-DIFFRACTION; FE3O4 NANOPARTICLES;
INORGANIC MATERIALS
AB The formation and growth of maghemite (gamma-Fe2O3) nanoparticles from ammonium iron(III) citrate solutions (C6O7H6Fe3+NH4) in hydrothermal synthesis conditions have been studied by in situ total scattering. The local structure of the precursor in solution is similar to that of the crystalline coordination polymer [Fe(H(2)cit(H2O)](n), where corner-sharing [FeO6] octahedra are linked by citrate. As hydrothermal treatment of the solution is initiated, clusters of edge-sharing [FeO6] units form (with extent of the structural order <5 angstrom). Tetrahedrally coordinated iron subsequently appears, and as the synthesis continues the clusters slowly assemble into crystalline maghemite, giving rise to clear Brag peaks after 90 s at 320 degrees C. The primary transformation from amorphous clusters to nanocrystallites takes place by condensation of the clusters along the corner-sharing tetrahedral iron units. The crystallization process is related to large changes in the local structure as the interatomic distances in the clusters change dramatically with cluster growth. The local atomic structure is size dependent, and particles smaller than 6 nm are highly disordered. The final crystallite size (<10 nm) is dependent on both synthesis temperature and precursor concentration.
C1 [Jensen, Kirsten M. O.; Andersen, Henrik L.; Tyrsted, Christoffer; Bojesen, Espen D.; Lock, Nina; Iversen, Bo B.; Christensen, Mogens] Aarhus Univ, Dept Chem, Ctr Mat Crystallog, DK-8000 Aarhus C, Denmark.
[Jensen, Kirsten M. O.; Andersen, Henrik L.; Tyrsted, Christoffer; Bojesen, Espen D.; Lock, Nina; Iversen, Bo B.; Christensen, Mogens] Aarhus Univ, INANO, DK-8000 Aarhus C, Denmark.
[Jensen, Kirsten M. O.; Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.
[Dippel, Ann-Christin] Deutsch Elekt Synchrotron DESY, D-22607 Hamburg, Germany.
[Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
RP Iversen, BB (reprint author), Aarhus Univ, Dept Chem, Ctr Mat Crystallog, DK-8000 Aarhus C, Denmark.
EM bo@chem.au.dk; mch@chem.au.dk
RI Jensen, Kirsten Marie Ornsbj/I-9367-2012; Bojesen, Espen/O-7391-2015
OI Jensen, Kirsten Marie Ornsbj/0000-0003-0291-217X; Bojesen,
Espen/0000-0002-9352-9514
FU Danish National Research Foundation (Center for Materials
Crystallography) [DNRF93]; Danish Research Council for Technology and
Production Sciences (Improved Permanent Magnets through
Nanosctructuring); Danish Research Council for Nature and Universe
(Danscatt); Villum Foundation; U.S. DOE [DE-AC02-98CH10886]
FX This work was supported by the Danish National Research Foundation
(Center for Materials Crystallography, DNRF93), the Danish Research
Council for Technology and Production Sciences (Improved Permanent
Magnets through Nanosctructuring), and the Danish Research Council for
Nature and Universe (Danscatt). K.M.O.J is funded by the Individual
Postdoc Grant program from the Villum Foundation. S.J.L.B. acknowledges
funding from U.S. DOE under contract no. DE-AC02-98CH10886. We are
grateful for beamtime granted at PO2.1 at PETRA III and at ID11 at the
European Synchrotron Radiation Facility and thank G. Vaughan for
assistance in using beamline ID11. Haraldur P. Gunnlaugsson is thanked
for Mossbauer data collection and analysis.
NR 66
TC 18
Z9 18
U1 14
U2 111
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2014
VL 8
IS 10
BP 10704
EP 10714
DI 10.1021/nn5044096
PG 11
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AS0FC
UT WOS:000343952600107
PM 25256366
ER
PT J
AU Huang, Y
Sutter, E
Sadowski, JT
Cotlet, M
Monti, OLA
Racke, DA
Neupane, MR
Wickramaratne, D
Lake, RK
Parkinson, BA
Sutter, P
AF Huang, Yuan
Sutter, Eli
Sadowski, Jerzy T.
Cotlet, Mircea
Monti, Oliver L. A.
Racke, David A.
Neupane, Mahesh R.
Wickramaratne, Darshana
Lake, Roger K.
Parkinson, Bruce A.
Sutter, Peter
TI Tin Disulfide-An Emerging Layered Metal Dichalcogenide Semiconductor:
Materials Properties and Device Characteristics
SO ACS NANO
LA English
DT Article
DE tin disulfide; 2D materials; monolayer; field-effect transistor;
photodetector; charge transport
ID FIELD-EFFECT TRANSISTORS; HEXAGONAL BORON-NITRIDE; BAND-STRUCTURE;
MONOLAYER MOS2; GRAPHENE HETEROSTRUCTURES; STRUCTURAL POLYTYPISM;
MOLYBDENUM-DISULFIDE; ELECTRONIC-STRUCTURE; THIN-FILMS; SNS2
AB Layered metal dichalcogenides have attracted significant interest as a family of single- and few-layer materials that show new physics and are of interest for device applications. Here, we report a comprehensive characterization of the properties of tin disulfide (SnS2), an emerging semiconducting metal dichalcogenide, down to the monolayer limit. Using flakes exfoliated from layered bulk crystals, we establish the characteristics of single- and few-layer SnS2 in optical and atomic force microscopy, Raman spectroscopy and transmission electron microscopy. Band structure measurements in conjunction with ab initio calculations and photoluminescence spectroscopy show that SnS2 is an indirect bandgap semiconductor over the entire thickness range from bulk to single-layer. Field effect transport in SnS2 supported by SiO2/Si suggests predominant scattering by centers at the support interface. Ultrathin transistors show on-off current ratios >10(6), as well as carrier mobilities up to 230 cm(2)/(V s), minimal hysteresis, and near-ideal subthreshold swing for devices screened by a high-k (deionized water) top gate. SnS2 transistors are efficient photodetectors but, similar to other metal dichalcogenides, show a relatively slow response to pulsed irradiation, likely due to adsorbate-induced long-lived extrinsic trap states.
C1 [Huang, Yuan; Sutter, Eli; Sadowski, Jerzy T.; Cotlet, Mircea; Sutter, Peter] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Monti, Oliver L. A.; Racke, David A.] Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA.
[Neupane, Mahesh R.; Wickramaratne, Darshana; Lake, Roger K.] Univ Calif Riverside, Dept Elect & Comp Engn, Lab Terahertz & Terascale Elect, Riverside, CA 92521 USA.
[Parkinson, Bruce A.] Univ Wyoming, Sch Energy Resources, Laramie, WY 82071 USA.
[Parkinson, Bruce A.] Univ Wyoming, Dept Chem, Laramie, WY 82071 USA.
RP Sutter, P (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
EM psutter@bnl.gov
OI Sadowski, Jerzy/0000-0002-4365-7796
FU U.S. Department of Energy, Office of Basic Energy Sciences
[DE-AC02-98CH10886]; National Science Foundation [CHE-1213243, 1124733,
1128304]; FAME, one of six centers of STARnet, a Semiconductor Research
Corporation program - MARCO; DARPA; NSF [OCI-1053575]
FX Research carried out at the Center for Functional Nanomaterials and
National Synchrotron Light Source, Brookhaven National Laboratory, which
is supported by the U.S. Department of Energy, Office of Basic Energy
Sciences, under Contract No. DE-AC02-98CH10886. OLAM and DAR gratefully
acknowledge support under National Science Foundation Grant No.
CHE-1213243. MRN, DW, and RKL acknowledge support from the National
Science Foundation Grants No. 1124733 and 1128304 and FAME, one of six
centers of STARnet, a Semiconductor Research Corporation program
sponsored by MARCO and DARPA. This work used the Extreme Science and
Engineering Discovery Environment (XSEDE), which is supported by NSF
Grant No. OCI-1053575, and Information Technology at Purdue University,
West Lafayette, IN, USA.
NR 73
TC 60
Z9 61
U1 26
U2 163
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2014
VL 8
IS 10
BP 10743
EP 10755
DI 10.1021/nn504481r
PG 13
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AS0FC
UT WOS:000343952600111
PM 25247490
ER
PT J
AU Ma, XD
Adamska, L
Yamaguchi, H
Yalcin, SE
Tretiak, S
Doorn, SK
Htoon, H
AF Ma, Xuedan
Adamska, Lyudmyla
Yamaguchi, Hisato
Yalcin, Sibel Ebru
Tretiak, Sergei
Doorn, Stephen K.
Htoon, Han
TI Electronic Structure and Chemical Nature of Oxygen Dopant States in
Carbon Nanotubes
SO ACS NANO
LA English
DT Article
DE carbon nanotubes; electronic structure; oxygen doping;
photoluminescence; exciton localization
ID PHOTOLUMINESCENCE; FLUORESCENCE; EXCITONS; BRIGHT; DEFECTS
AB We performed low temperature photoluminescence (PL) studies on individual oxygen-doped single-walled carbon nanotubes (SWCNTs) and correlated our observations to electronic structure simulations. Our experiment reveals multiple sharp asymmetric emission peaks at energies 50-300 meV red-shifted from that of the E-11 bright exciton peak. Our simulation suggests an association of these peaks with deep trap states tied to different specific chemical adducts. In addition, oxygen doping is also observed to split the E-11 exciton into two or more states with an energy splitting <40 meV. We attribute these states to dark states that are brightened through defect-induced symmetry breaking. While the wave functions of these brightened states are delocalized, those of the deep-trap states are strongly localized and pinned to the dopants. These findings are consistent with our experimental observation of asymmetric broadening of the deep trap emission peaks, which can result from interaction between pinned excitons and one-dimensional phonons. Exciton pinning also increases the sensitivity of the deep traps to the local dielectric environment, leading to a large inhomogeneous broadening. Observations of multiple spectral features on single nanotubes indicate the possibility of different chemical adducts coexisting on a given nanotube.
C1 [Ma, Xuedan; Yamaguchi, Hisato; Yalcin, Sibel Ebru; Tretiak, Sergei; Doorn, Stephen K.; Htoon, Han] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
[Adamska, Lyudmyla; Tretiak, Sergei] Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA.
RP Doorn, SK (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA.
EM skdoorn@lanl.gov; htoon@lanl.gov
RI Yamaguchi, Hisato/C-5571-2008; Tretiak, Sergei/B-5556-2009;
OI Yamaguchi, Hisato/0000-0002-6703-8826; Tretiak,
Sergei/0000-0001-5547-3647; Htoon, Han/0000-0003-3696-2896
FU Los Alamos National Laboratory (LANL) Directed Research and Development
Funds; LANL Director's postdoctoral fellowship
FX This work was conducted, in part, at the Center for Integrated
Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy
Sciences user facility and supported in part by Los Alamos National
Laboratory (LANL) Directed Research and Development Funds. We thank
Nicholas Parra-Vasquez of LANL for insightful discussion on ozonation
chemistry of SWCNTs and Juan Duque of LANL for providing (6,5) enriched
SWCNT samples. H.Y. acknowledges the LANL Director's postdoctoral
fellowship for financial support.
NR 54
TC 31
Z9 31
U1 9
U2 58
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2014
VL 8
IS 10
BP 10782
EP 10789
DI 10.1021/nn504553y
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AS0FC
UT WOS:000343952600115
PM 25265272
ER
PT J
AU Brown, KA
Song, Q
Mulder, DW
King, PW
AF Brown, Katherine A.
Song, Qing
Mulder, David W.
King, Paul W.
TI Diameter Dependent Electron Transfer Kinetics in Semiconductor-Enzyme
Complexes
SO ACS NANO
LA English
DT Article
DE nanoparticle; biohybrid; binding complex; interfacial electron-transfer;
photochemical; hydrogen
ID CDSE QUANTUM DOTS; HYDROGEN-PRODUCTION; NANOROD HETEROSTRUCTURES; H-2
GENERATION; NANOCRYSTALS; NANOPARTICLES; REDUCTION; PHOTOCATALYSIS;
CONFINEMENT; PRINCIPLES
AB Excited state electron transfer (ET) is a fundamental step for the catalytic conversion of solar energy into chemical energy. To understand the properties controlling ET between photoexcited nanoparticles and catalysts, the ET kinetics were measured for solution-phase complexes of CdTe quantum dots and Clostridium acetobutylicum [FeFe]-hydrogenase I (CaI) using time-resolved photoluminescence spectroscopy. Over a 2.0-3.5 nm diameter range of CdTe nanoparticles, the observed ET rate (k(ET)) was sensitive to CaI concentration. To account for diameter effects on CaI binding, a Langmuir isotherm and two geometric binding models were created to estimate maximal CaI affinities and coverages at saturating concentrations. Normalizing the ET kinetics to CaI surface coverage for each CdTe diameter led to kET values that were insensitive to diameter, despite a decrease in the free energy for photoexcited ET (triangle GET) with increasing diameter. The turnover frequency (TOF) of CaI in CdTe-CaI complexes was measured at several molar ratios. Normalization for diameter-dependent changes in CaI coverage showed an increase in TOF with diameter. These results suggest that kET and H2 production for CdTe-CaI complexes are not strictly controlled by triangle GET and that other factors must be considered.
C1 [Brown, Katherine A.; Mulder, David W.; King, Paul W.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA.
[Song, Qing] IBM Almaden Res Ctr, San Jose, CA 95120 USA.
RP King, PW (reprint author), Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA.
EM paul.king@nrel.gov
RI King, Paul/D-9979-2011
OI King, Paul/0000-0001-5039-654X
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences, and Biosciences;
U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable
Energy Laboratory
FX K.A.B, D.W.M, and P.W.K. gratefully acknowledge funding support by the
U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences, and Biosciences;
and support of the U.S. Department of Energy under Contract No.
DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. Q.S
gratefully acknowledges insightful discussions with X. Ai, and research
support from IBM for synthesis of CdTe nanoparticles. K.A.B acknowledges
the assistance of A. Ferguson of the NREL Solar Photochemistry Group
with TRPL measurements. All the authors gratefully acknowledge M. W.
Ratzloff, G. Dukovic and M. Wilker for helpful and insightful
discussions.
NR 55
TC 7
Z9 7
U1 3
U2 44
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2014
VL 8
IS 10
BP 10790
EP 10798
DI 10.1021/nn504561v
PG 9
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AS0FC
UT WOS:000343952600116
PM 25244026
ER
PT J
AU Zhao, PD
Kiriya, D
Azcatl, A
Zhang, CX
Tosun, M
Liu, YS
Hettick, M
Kang, JS
McDonnell, S
Santosh, KC
Guo, JH
Cho, K
Wallace, RM
Javey, A
AF Zhao, Peida
Kiriya, Daisuke
Azcatl, Angelica
Zhang, Chenxi
Tosun, Mahmut
Liu, Yi-Sheng
Hettick, Mark
Kang, Jeong Seuk
McDonnell, Stephen
Santosh, K. C.
Guo, Jinghua
Cho, Kyeongjae
Wallace, Robert M.
Javey, Ali
TI Air Stable p-Doping of WSe2 by Covalent Functionalization
SO ACS NANO
LA English
DT Article
DE layered materials; covalent binding; NO2; chemisorption; doping
ID TRANSITION-METAL DICHALCOGENIDES; AUGMENTED-WAVE METHOD;
THERMAL-DECOMPOSITION; TUNGSTEN-OXIDE; SPECTROSCOPY; NO; ENERGY;
PHOTOEMISSION; ADSORPTION; DYNAMICS
AB Covalent functionalization of transition metal dichalcogenides (TMDCs) is investigated for air-stable chemical doping. Specifically, p-doping of WSe2 via NOx chemisorption at 150 degrees C is explored, with the hole concentration tuned by reaction time. Synchrotron based soft X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) depict the formation of various WSe2-x-yOxNy species both on the surface and interface between layers upon chemisorption reaction. Ab initio simulations corroborate our spectroscopy results in identifying the energetically favorable complexes, and predicting WSe2:NO at the Se vacancy sites as the predominant dopant species. A maximum hole concentration of similar to 10(19) cm(-3) is obtained from XPS and electrical measurements, which is found to be independent of WSe2 thickness. This degenerate doping level facilitates 5 orders of magnitude reduction in contact resistance between Pd, a common p-type contact metal, and WSe2. More generally, the work presents a platform for manipulating the electrical properties and band structure of TMDCs using covalent functionalization.
C1 [Zhao, Peida; Kiriya, Daisuke; Tosun, Mahmut; Hettick, Mark; Kang, Jeong Seuk; Javey, Ali] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Zhao, Peida; Kiriya, Daisuke; Tosun, Mahmut; Hettick, Mark; Kang, Jeong Seuk; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Azcatl, Angelica; Zhang, Chenxi; McDonnell, Stephen; Santosh, K. C.; Cho, Kyeongjae; Wallace, Robert M.] Univ Texas Dallas, Richardson, TX 75080 USA.
[Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Javey, A (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA.
EM ajavey@berkeley.edu
RI McDonnell, Stephen/E-1868-2011; Javey, Ali/B-4818-2013; Wallace,
Robert/A-5283-2008
OI McDonnell, Stephen/0000-0001-9173-2060; Wallace,
Robert/0000-0001-5566-4806
FU LEAST Center; U.S. Department of Energy [DE-AC02-05CH11231]
FX The device fabrication and characterization components of this work were
supported by NSF E3S Center. The materials characterization and ab
initio simulation were funded by the LEAST Center. The work at ALS is
supported by the U.S. Department of Energy under the Contract No.
DE-AC02-05CH11231. All the DFT calculations were performed using
computational resources of Texas Advanced Computer Center (TACC) at
University of Texas at Austin.
NR 31
TC 39
Z9 39
U1 11
U2 111
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2014
VL 8
IS 10
BP 10808
EP 10814
DI 10.1021/nn5047844
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AS0FC
UT WOS:000343952600118
PM 25229426
ER
PT J
AU Vasudevan, RK
Tselev, A
Baddorf, AP
Kalinin, SV
AF Vasudevan, Rama K.
Tselev, Alexander
Baddorf, Arthur P.
Kalinin, Sergei V.
TI Big-Data Reflection High Energy Electron Diffraction Analysis for
Understanding Epitaxial Film Growth Processes
SO ACS NANO
LA English
DT Article
DE RHEED; big data; surface diffraction; multivariate statistics; oxides;
epitaxial film growth
ID MOLECULAR-BEAM EPITAXY; PULSED-LASER DEPOSITION; STEP DENSITY MODEL;
HOMOEPITAXIAL GROWTH; OSCILLATION; PHASE; DECOMPOSITION; SYSTEM; GAAS;
GAN
AB Reflection high energy electron diffraction (RHEED) has by now become a standard tool for in situ monitoring of film growth by pulsed laser deposition and molecular beam epitaxy. Yet despite the widespread adoption and wealth of information in RHEED images, most applications are limited to observing intensity oscillations of the specular spot, and much additional information on growth is discarded. With ease of data acquisition and increased computation speeds, statistical methods to rapidly mine the data set are now feasible. Here, we develop such an approach to the analysis of the fundamental growth processes through multivariate statistical analysis of a RHEED image sequence. This approach is illustrated for growth of LaxCa1-xMnO3 films grown on etched (001) SrTiO3 substrates, but is universal. The multivariate methods including principal component analysis and k-means clustering provide insight into the relevant behaviors, the timing and nature of a disordered to ordered growth change, and highlight statistically significant patterns. Fourier analysis yields the harmonic components of the signal and allows separation of the relevant components and baselines, isolating the asymmetric nature of the step density function and the transmission spots from the imperfect layer-by-layer (LBL) growth. These studies show the promise of big data approaches to obtaining more insight into film properties during and after epitaxial film growth. Furthermore, these studies open the pathway to use forward prediction methods to potentially allow significantly more control over growth process and hence final film quality.
C1 [Vasudevan, Rama K.; Tselev, Alexander; Baddorf, Arthur P.; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Vasudevan, Rama K.; Tselev, Alexander; Baddorf, Arthur P.; Kalinin, Sergei V.] Oak Ridge Natl Lab, ORNL Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA.
RP Vasudevan, RK (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM rvv@ornl.gov; sergei2@ornl.gov
RI Tselev, Alexander/L-8579-2015; Vasudevan, Rama/Q-2530-2015; Kalinin,
Sergei/I-9096-2012; Baddorf, Arthur/I-1308-2016
OI Tselev, Alexander/0000-0002-0098-6696; Vasudevan,
Rama/0000-0003-4692-8579; Kalinin, Sergei/0000-0001-5354-6152; Baddorf,
Arthur/0000-0001-7023-2382
FU Division of Materials Sciences and Engineering, BES, DOE; Scientific
User Facilities Division, Office of Basic Energy Sciences, U.S.
Department of Energy
FX This research was sponsored by the Division of Materials Sciences and
Engineering, BES, DOE (R.K.V, A. T., S.V.K.). This research was
conducted and partially supported (A.P.B.) at the Center for Nanophase
Materials Sciences, which is sponsored at Oak Ridge National Laboratory
by the Scientific User Facilities Division, Office of Basic Energy
Sciences, U.S. Department of Energy.
NR 31
TC 4
Z9 4
U1 3
U2 46
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2014
VL 8
IS 10
BP 10899
EP 10908
DI 10.1021/nn504730n
PG 10
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AS0FC
UT WOS:000343952600129
PM 25268549
ER
PT J
AU Meng, XB
Comstock, DJ
Fister, TT
Elam, JW
AF Meng, Xiangbo
Comstock, David J.
Fister, Timothy T.
Elam, Jeffrey W.
TI Vapor-Phase Atomic-Controllable Growth of Amorphous Li2S for
High-Performance Lithium-Sulfur Batteries
SO ACS NANO
LA English
DT Article
DE atomic layer deposition; lithium-sulfur battery; nanoscale Li2S films
ID MESOCARBON MICROBEADS MCMB; LAYER DEPOSITION; ION BATTERIES; CATHODE
MATERIAL; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; LIQUID
ELECTROLYTE; ENERGY-STORAGE; GRAPHENE OXIDE; FILM GROWTH
AB Lithium-sulfur (Li-S) batteries hold great promise to meet the formidable energy storage requirements of future electrical vehicles but are prohibited from practical implementation by their severe capacity fading and the risks imposed by Li metal anodes. Nanoscale Li2S offers the possibility to overcome these challenges, but no synthetic technique exists for fine-tailoring Li2S at the nanoscale. Herein we report a vapor-phase atomic layer deposition (ALD) method for the atomic-scale-controllable synthesis of Li2S. Besides a comprehensive investigation of the ALD Li2S growth mechanism, we further describe the high performance of the resulting amorphous Li2S nanofilms as cathodes in Li-S batteries, achieving a stable capacity of similar to 800 mA.h/g, nearly 100% Coulombic efficiency, and excellent rate capability. Nanoscale Li2S holds great potential for both bulk-type and thin-film high-energy Li-S batteries.
C1 [Meng, Xiangbo; Comstock, David J.; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
[Fister, Timothy T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
RP Elam, JW (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM jelam@anl.gov
OI Meng, Xiangbo/0000-0002-4631-7260
FU Center for Electrical Energy Storage: Tailored Interfaces, an Energy
Frontier Research Center - U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences; U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National
Science Foundation-Earth Sciences [EAR-1128799]; Department of
Energy-GeoSciences [DE-FG02-94ER14466]; Canada NSERC
FX This work was supported as part of the Center for Electrical Energy
Storage: Tailored Interfaces, an Energy Frontier Research Center funded
by the U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences. Electron microscopy was performed at the Electron
Microscopy Center for Materials Research (EMCMR) at Argonne National
Laboratory. Use of the EMCMR was supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357 operated by UChicago Argonne, LLC. XAS
was performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source
(APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by
the National Science Foundation-Earth Sciences (EAR-1128799) and
Department of Energy-GeoSciences (DE-FG02-94ER14466). Use of the
Advanced Photon Source was supported by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. We greatly appreciate Dr. Paul A. Fenter, a Scientist
in Chemical Sciences and Engineering Division at Argonne National
Laboratory, for his valuable discussions and review of the paper, and
the generous use of his experimental facilities. X.M. appreciates the
financial support from a Canada NSERC Postdoctoral Fellowship.
NR 60
TC 26
Z9 26
U1 21
U2 200
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2014
VL 8
IS 10
BP 10963
EP 10972
DI 10.1021/nn505480w
PG 10
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AS0FC
UT WOS:000343952600136
PM 25321606
ER
PT J
AU Worsley, MA
Pham, TT
Yan, AM
Shin, SJ
Lee, JRI
Bagge-Hansen, M
Mickelson, W
Zettl, A
AF Worsley, Marcus A.
Pham, Thang T.
Yan, Aiming
Shin, Swanee J.
Lee, Jonathan R. I.
Bagge-Hansen, Michael
Mickelson, William
Zettl, Alex
TI Synthesis and Characterization of Highly Crystalline Graphene Aerogels
SO ACS NANO
LA English
DT Article
DE aerogel; graphene
ID HIGH-SURFACE-AREA; THERMAL-CONDUCTIVITY; SENSING INDENTATION; CARBON
AEROGELS; GRAPHITE; OXIDE; ARCHITECTURES; CAPACITANCE; LIGHT; FILMS
AB Aerogels are used in a broad range of scientific and industrial applications due to their large surface areas, ultrafine pore sizes, and extremely low densities. Recently, a large number of reports have described graphene aerogels based on the reduction of graphene oxide (GO). Though these GO-based aerogels represent a considerable advance relative to traditional carbon aerogels, they remain significantly inferior to individual graphene sheets due to their poor crystallinity. Here, we report a straightforward method to synthesize highly crystalline GO-based graphene aerogels via high-temperature processing common in commercial graphite production. The crystallization of the graphene aerogels versus annealing temperature is characterized using Raman and X-ray absorption spectroscopy, X-ray diffraction, and electron microscopy. Nitrogen porosimetry shows that the highly crystalline graphene macrostructure maintains a high surface area and ultrafine pore size. Because of their enhanced crystallinity, these graphene aerogels exhibit a similar to 200 degrees C improvement in oxidation temperature and an order of magnitude increase in electrical conductivity.
C1 [Worsley, Marcus A.; Shin, Swanee J.; Lee, Jonathan R. I.; Bagge-Hansen, Michael] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
[Pham, Thang T.; Mickelson, William; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Pham, Thang T.; Yan, Aiming; Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Mickelson, William; Zettl, Alex] Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA.
[Zettl, Alex] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.
[Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Worsley, MA (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
EM worsley1@llnl.gov
RI Zettl, Alex/O-4925-2016;
OI Zettl, Alex/0000-0001-6330-136X; Worsley, Marcus/0000-0002-8012-7727
FU UC Lab Fees Research Program [12-LR-235323]; Lawrence Livermore National
Laboratory under U.S. Department of Energy [DE-AC52-07NA27344]; Lawrence
Livermore National Laboratory through LDRD [13-LW-099]; National Science
Foundation under the Center of Integrated Nanomechanical Systems
[EEC-0832819]; Office of Basic Energy Sciences, Materials Sciences and
Engineering Division of the U.S. Department of Energy
[DE-AC02-05CH11231]; National Center for Electron Microscopy of the
Lawrence Berkeley National Laboratory [DE-AC02-05CH11231, 1770]; Office
of Science, OBES of the US DoE [DE-AC02-05CH11231]
FX This work was supported by the UC Lab Fees Research Program under Award
No. 12-LR-235323; by Lawrence Livermore National Laboratory under the
auspices of the U.S. Department of Energy under Contract No.
DE-AC52-07NA27344, through LDRD Award No. 13-LW-099; by the National
Science Foundation under the Center of Integrated Nanomechanical Systems
Grant No. EEC-0832819; by the Director, Office of Basic Energy Sciences,
Materials Sciences and Engineering Division, of the U.S. Department of
Energy under Contract DE-AC02-05CH11231, within the
sp2-bonded Materials Program, and the National Center for
Electron Microscopy of the Lawrence Berkeley National Laboratory, under
Contract DE-AC02-05CH11231 (Proposal No. 1770), which provided for
aberration corrected microscopy measurements. The Advanced Light Source
is supported by the Director, Office of Science, OBES, of the US DoE
under Contract No. DE-AC02-05CH11231.
NR 55
TC 38
Z9 38
U1 30
U2 230
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2014
VL 8
IS 10
BP 11013
EP 11022
DI 10.1021/nn505335u
PG 10
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AS0FC
UT WOS:000343952600142
PM 25283720
ER
PT J
AU Tang, JY
Cao, PQ
Fu, YB
Li, PH
Ma, XH
AF Tang Jia-Yong
Cao Pei-Qi
Fu Yan-Bao
Li Peng-Hui
Ma Xiao-Hua
TI Synthesis of a Mesoporous Manganese Dioxide-Graphene Composite by a
Simple Template-Free Strategy for High-Performance Supercapacitors
SO ACTA PHYSICO-CHIMICA SINICA
LA English
DT Article
DE Manganese oxide; Graphene; Composite; Supercapacitor; Hydrothermal
method; Energy storage
ID HYDROTHERMAL SYNTHESIS; ELECTROCHEMICAL PROPERTIES; NANOSTRUCTURED MNO2;
ENERGY-STORAGE; ELECTRODES; CAPACITANCE; ULTRACAPACITORS; NANOSPHERES;
BATTERIES; DESIGN
AB A manganese dioxide (MnO2)-graphene composite material with a unique structure consisting of MnO2 surrounded by graphene sheets was prepared by a simple hydrothermal and thermal decomposition method. The morphology and structure of the obtained materials were examined by scanning electron microscopy, transition electron microscopy, Raman spectroscopy, X-ray diffraction, and N-2 adsorption-desorption. Electrochemical properties were evaluated by cyclic voltammetry, galvanostatic charge- discharge and electrochemical impedance spectroscopy. The specific surface area increased from 109 to 168 m(2).g(-1) for the composite containing 15% (w) graphene. The specific capacitance also increased from 294 to 454 F.g(-1) at a current density of 0.2 A.g(-1) in an aqueous electrolyte supercapacitor. Moreover, after 2000 cycles of a galvanostatic charge-discharge test, the hybrid electrode still had excellent cycle stability (92% retention rate).
C1 [Tang Jia-Yong; Cao Pei-Qi; Li Peng-Hui; Ma Xiao-Hua] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China.
[Fu Yan-Bao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm & Energy Technol Div, Berkeley, CA 94720 USA.
RP Ma, XH (reprint author), Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China.
EM xhma@fudan.edu.cn
RI Fu, Yanbao/F-9583-2011
OI Fu, Yanbao/0000-0001-7752-680X
FU Ministry of Science and Technology of China [51201035]
FX The project was supported by the Ministry of Science and Technology of
China (51201035).
NR 40
TC 0
Z9 1
U1 5
U2 30
PU PEKING UNIV PRESS
PI BEIJING
PA PEKING UNIV, CHEMISTRY BUILDING, BEIJING 100871, PEOPLES R CHINA
SN 1000-6818
J9 ACTA PHYS-CHIM SIN
JI Acta Phys.-Chim. Sin.
PD OCT
PY 2014
VL 30
IS 10
BP 1876
EP 1882
DI 10.3866/PKU.WHXB201407172
PG 7
WC Chemistry, Physical
SC Chemistry
GA AS4BQ
UT WOS:000344218900013
ER
PT J
AU Ko, JH
Jeon, HW
Kim, WC
Kim, JY
Han, KH
AF Ko, J. -H.
Jeon, H. -W.
Kim, W. -C.
Kim, J. -Y.
Han, K. -H.
TI The MYB46/MYB83-mediated transcriptional regulatory programme is a
gatekeeper of secondary wall biosynthesis
SO ANNALS OF BOTANY
LA English
DT Review
DE Plant cell wall; secondary wall biosynthesis; MYB46; transcription
factor; At5g12870; transcriptional regulation; biomass; Arabidopsis
thaliana
ID SYRINGYL LIGNIN BIOSYNTHESIS; VASCULAR-RELATED NAC-DOMAIN7; XYLEM VESSEL
FORMATION; CELL-WALL; ARABIDOPSIS-THALIANA; CELLULOSE SYNTHESIS;
GLUCURONOXYLAN BIOSYNTHESIS; ANTHER DEHISCENCE; MASTER SWITCH; FACTOR
FAMILY
AB Background The secondary cell wall is a defining feature of xylem cells and allows them to resist both gravitational forces and the tension forces associated with the transpirational pull on their internal columns of water. Secondary walls also constitute the majority of plant biomass. Formation of secondary walls requires co-ordinated transcriptional regulation of the genes involved in the biosynthesis of cellulose, hemicellulose and lignin. This co-ordinated control appears to involve a multifaceted and multilayered transcriptional regulatory programme.
Scope Transcription factor MYB46 (At5g12870) has been shown to function as a master regulator in secondary wall formation in Arabidopsis thaliana. Recent studies show that MYB46 not only regulates the transcription factors but also the biosynthesis genes for all of the three major components (i.e. cellulose, hemicellulose and lignin) of secondary walls. This review considers our current understanding of the MYB46-mediated transcriptional regulatory network, including upstream regulators, downstream targets and negative regulators of MYB46.
Conclusions and Outlook MYB46 is a unique transcription factor in that it directly regulates the biosynthesis genes for all of the three major components of the secondary wall as well as the transcription factors in the biosynthesis pathway. As such, MYB46 may offer a useful means for pathway-specific manipulation of secondary wall biosynthesis. However, realization of this potential requires additional information on the 'MYB46-mediated transcriptional regulatory programme', such as downstream direct targets, upstream regulators and interacting partners of MYB46.
C1 [Ko, J. -H.; Jeon, H. -W.] Kyung Hee Univ, Dept Plant & Environm New Resources, Yongin, South Korea.
[Kim, W. -C.; Kim, J. -Y.; Han, K. -H.] Michigan State Univ, Dept Hort, E Lansing, MI 48824 USA.
[Kim, W. -C.; Han, K. -H.] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA.
[Han, K. -H.] Michigan State Univ, Dept Forestry, E Lansing, MI 48824 USA.
RP Han, KH (reprint author), Michigan State Univ, Dept Hort, E Lansing, MI 48824 USA.
EM hanky@msu.edu
OI Jeon, Hyung-Woo/0000-0001-7587-6689
FU DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER)
[DR-FC02-07ER64494]; National Research Foundation of Korea (NRF)
[2011-0008840]; Korea Forest Service [S111213L080110]
FX This work was funded by the DOE Great Lakes Bioenergy Research Center
(DOE Office of Science BER DR-FC02-07ER64494), in part by a grant to
J.-H.K. from the Basic Science Research Program through the National
Research Foundation of Korea (NRF) (2011-0008840) and a grant to J.-H.K.
from the Korea Forest Service (S111213L080110).
NR 91
TC 12
Z9 13
U1 1
U2 25
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0305-7364
EI 1095-8290
J9 ANN BOT-LONDON
JI Ann. Bot.
PD OCT
PY 2014
VL 114
IS 6
SI SI
BP 1099
EP 1107
DI 10.1093/aob/mcu126
PG 9
WC Plant Sciences
SC Plant Sciences
GA AS6FJ
UT WOS:000344359600006
PM 24984711
ER
PT J
AU Serra, P
Lagache, G
Dore, O
Pullen, A
White, M
AF Serra, P.
Lagache, G.
Dore, O.
Pullen, A.
White, M.
TI Cross-correlation of cosmic far-infrared background anisotropies with
large scale structures
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE cosmic background radiation; infrared: diffuse background; galaxies:
evolution; large-scale structure of Universe; galaxies: statistics
ID STAR-FORMING GALAXIES; PHOTOMETRIC LUMINOUS GALAXIES; POWER SPECTRUM
ANALYSIS; SOUTH-POLE TELESCOPE; DARK-MATTER HALOES; DUST EMISSION;
SDSS-III; COSMOLOGICAL IMPLICATIONS; SUBMILLIMETER GALAXIES;
HIGH-REDSHIFT
AB We measure the cross-power spectra between luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS)-III data release 8 (DR8) and cosmic infrared background (CIB) anisotropies from Planck and data from the Improved Reprocessing (IRIS) of the Infrared Astronomical Satellite (IRAS) at 353, 545, 857, and 3000 GHz, corresponding to 850, 550, 350 and 100 mu m, respectively, in the multipole range 100 < l < 1000. Using approximately 6.5 x 10(5) photometrically determined LRGs in 7760 deg(2) of the northern hemisphere in the redshift range 0.45 < z < 0.65, we model the far-infrared background (FIRB) anisotropies with an extended version of the halo model. With these methods, we confirm the basic picture obtained from recent analyses of FIRB anisotropies with Herschel and Planck that the most efficient halo mass at hosting star forming galaxies is log(M-eff = M-circle dot) = 12.84 +/- 0.15. We estimate the percentage of FIRB anisotropies correlated with LRGs as approximately 11.8%, 3.9%, 1.8%, and 1.0% of the total at 3000, 857, 545, and 353 GHz, respectively. At redshift z similar to 0.55, the bias of FIRB galaxies with respect to the dark matter density field has the value b(FIRB) similar to 1.45, and the mean dust temperature of FIRB galaxies is T-d = 26 K. Finally, we discuss the impact of present and upcoming cross-correlations with far-infrared background anisotropies on the determination of the global star formation history and the link between galaxies and dark matter.
C1 [Serra, P.; Lagache, G.] Univ Paris 11, IAS, F-91405 Orsay, France.
[Serra, P.; Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France.
[Dore, O.; Pullen, A.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Dore, O.; Pullen, A.] CALTECH, Pasadena, CA 91125 USA.
[White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[White, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Serra, P (reprint author), Univ Paris 11, IAS, Bat 121, F-91405 Orsay, France.
EM pserra@ias.u-psud.fr
RI Pullen, Anthony/I-7007-2015; White, Martin/I-3880-2015
OI Pullen, Anthony/0000-0002-2091-8738; White, Martin/0000-0001-9912-5070
FU ESA (France); CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy);
CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK);
CSIC (Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF
(Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada);
DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland);
FCT/MCTES (Portugal); PRACE (EU); National Aeronautics and Space
Administration
FX The development of Planck has been supported by: ESA; CNES and
CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE
(USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and
CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark);
SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); and PRACE (EU). A description of the Planck Collaboration
and a list of its members, including the technical or scientific
activities in which they have been involved, can be found at
http://www.sciops.esa.int/index.php?
project=planck&page=Planck_Collaboration. We would like to thank the
anonymous referee for providing us with constructive comments and
suggestions. P.S. would like to thank Alex Amblard and Shirley Ho for
useful discussions. Part of the research described in this paper was
carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space
Administration.
NR 77
TC 4
Z9 4
U1 0
U2 0
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD OCT
PY 2014
VL 570
AR A98
DI 10.1051/0004-6361/201423958
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AS3EE
UT WOS:000344158500057
ER
PT J
AU Metcalfe, TS
Creevey, OL
Dogan, G
Mathur, S
Xu, H
Bedding, TR
Chaplin, WJ
Christensen-Dalsgaard, J
Karoff, C
Trampedach, R
Benomar, O
Brown, BP
Buzasi, DL
Campante, TL
Celik, Z
Cunha, MS
Davies, GR
Deheuvels, S
Derekas, A
Di Mauro, MP
Garcia, RA
Guzik, JA
Howe, R
MacGregor, KB
Mazumdar, A
Montalban, J
Monteiro, MJPFG
Salabert, D
Serenelli, A
Stello, D
Steslicki, M
Suran, MD
Yildiz, M
Aksoy, C
Elsworth, Y
Gruberbauer, M
Guenther, DB
Lebreton, Y
Molaverdikhani, K
Pricopi, D
Simoniello, R
White, TR
AF Metcalfe, T. S.
Creevey, O. L.
Dogan, G.
Mathur, S.
Xu, H.
Bedding, T. R.
Chaplin, W. J.
Christensen-Dalsgaard, J.
Karoff, C.
Trampedach, R.
Benomar, O.
Brown, B. P.
Buzasi, D. L.
Campante, T. L.
Celik, Z.
Cunha, M. S.
Davies, G. R.
Deheuvels, S.
Derekas, A.
Di Mauro, M. P.
Garcia, R. A.
Guzik, J. A.
Howe, R.
MacGregor, K. B.
Mazumdar, A.
Montalban, J.
Monteiro, M. J. P. F. G.
Salabert, D.
Serenelli, A.
Stello, D.
Steslicki, M.
Suran, M. D.
Yildiz, M.
Aksoy, C.
Elsworth, Y.
Gruberbauer, M.
Guenther, D. B.
Lebreton, Y.
Molaverdikhani, K.
Pricopi, D.
Simoniello, R.
White, T. R.
TI PROPERTIES OF 42 SOLAR-TYPE KEPLER TARGETS FROM THE ASTEROSEISMIC
MODELING PORTAL
SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
LA English
DT Article
DE methods: numerical; stars: evolution; stars: interiors; stars:
oscillations
ID MAIN-SEQUENCE STARS; STELLAR EVOLUTION CODE; TURBULENT CONVECTION;
HELIUM ABUNDANCE; OSCILLATION FREQUENCIES; AUTOMATIC-DETERMINATION;
BOLOMETRIC CORRECTIONS; FUNDAMENTAL PROPERTIES; PULSATIONAL STABILITY;
INPUT CATALOG
AB Recently the number of main-sequence and subgiant stars exhibiting solar-like oscillations that are resolved into individual mode frequencies has increased dramatically. While only a few such data sets were available for detailed modeling just a decade ago, the Kepler mission has produced suitable observations for hundreds of new targets. This rapid expansion in observational capacity has been accompanied by a shift in analysis and modeling strategies to yield uniform sets of derived stellar properties more quickly and easily. We use previously published asteroseismic and spectroscopic data sets to provide a uniform analysis of 42 solar-type Kepler targets from the Asteroseismic Modeling Portal. We find that fitting the individual frequencies typically doubles the precision of the asteroseismic radius, mass, and age compared to grid-based modeling of the global oscillation properties, and improves the precision of the radius and mass by about a factor of three over empirical scaling relations. We demonstrate the utility of the derived properties with several applications.
C1 [Metcalfe, T. S.; Mathur, S.] Space Sci Inst, Boulder, CO 80301 USA.
[Metcalfe, T. S.; Dogan, G.; Christensen-Dalsgaard, J.; Karoff, C.; Trampedach, R.] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, DK-8000 Aarhus C, Denmark.
[Creevey, O. L.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, F-91405 Orsay, France.
[Dogan, G.; Mathur, S.; MacGregor, K. B.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA.
[Xu, H.] Natl Ctr Atmospher Res, Computat & Informat Syst Lab, Boulder, CO 80307 USA.
[Bedding, T. R.; Benomar, O.; Stello, D.; White, T. R.] Univ Sydney, Sydney Inst Astron SIfA, Sch Phys, Sydney, NSW 2006, Australia.
[Chaplin, W. J.; Campante, T. L.; Davies, G. R.; Elsworth, Y.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England.
[Trampedach, R.] Univ Colorado, JILA, Boulder, CO 80309 USA.
[Trampedach, R.] Natl Inst Stand & Technol, Boulder, CO 80309 USA.
[Benomar, O.] Univ Tokyo, Dept Astron, Tokyo 1130033, Japan.
[Brown, B. P.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA.
[Brown, B. P.] Univ Wisconsin, Ctr Magnet Self Org, Lab & Astrophys Plasmas, Madison, WI 53706 USA.
[Brown, B. P.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA.
[Buzasi, D. L.] Florida Gulf Coast Univ, Dept Chem & Phys, Ft Myers, FL 33965 USA.
[Celik, Z.; Yildiz, M.; Aksoy, C.] Ege Univ, Dept Astron & Space Sci, TR-35100 Izmir, Turkey.
[Cunha, M. S.; Monteiro, M. J. P. F. G.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal.
[Cunha, M. S.; Monteiro, M. J. P. F. G.] Univ Porto, Fac Ciencias, P-4150762 Oporto, Portugal.
[Deheuvels, S.] Univ Toulouse, UPS, OMP, IRAP, Toulouse, France.
[Deheuvels, S.] CNRS, IRAP, F-31400 Toulouse, France.
[Derekas, A.] MTA CSFK, Konkoly Observ, H-1121 Budapest, Hungary.
[Derekas, A.] ELTE Gothard Astrophys Observ, H-9704 Szombathely, Hungary.
[Di Mauro, M. P.] Ist Astrofis & Planetol Spaziali, INAF IAPS, I-00133 Rome, Italy.
[Garcia, R. A.; Salabert, D.; Simoniello, R.] Univ Paris Diderot, Ctr Saclay, Lab AIM, CEA DSM CNRS,IRFU SAp, F-91191 Gif Sur Yvette, France.
[Guzik, J. A.] Los Alamos Natl Lab, XTD NTA, Los Alamos, NM 87545 USA.
[Mazumdar, A.] Homi Bhabha Ctr Sci Educ, TIFR, Bombay 400088, Maharashtra, India.
[Montalban, J.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium.
[Serenelli, A.] CSIC, IEEC, Inst Space Sci, E-08193 Bellaterra, Spain.
[Steslicki, M.] Polish Acad Sci, Space Res Ctr, Wroclaw, Poland.
[Suran, M. D.; Pricopi, D.] Acad Romana, Astron Inst, RO-040557 Bucharest, Romania.
[Gruberbauer, M.; Guenther, D. B.] St Marys Univ, Dept Phys & Astron, Inst Computat Astrophys, Halifax, NS B3H 3C3, Canada.
[Lebreton, Y.] CNRS, GEPI, Observ Paris, F-92195 Meudon, France.
[Lebreton, Y.] Univ Rennes 1, CNRS, UMR 6251, Inst Phys Rennes, F-35042 Rennes, France.
[Molaverdikhani, K.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA.
[White, T. R.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany.
RP Metcalfe, TS (reprint author), Space Sci Inst, 4750 Walnut St Suite 205, Boulder, CO 80301 USA.
RI Monteiro, Mario J.P.F.G./B-4715-2008; Derekas, Aliz/G-2091-2016;
OI Monteiro, Mario J.P.F.G./0000-0003-0513-8116; Serenelli,
Aldo/0000-0001-6359-2769; Di Mauro, Maria Pia/0000-0001-7801-7484;
Davies, Guy/0000-0002-4290-7351; Derekas, Aliz/0000-0002-6526-9444;
Metcalfe, Travis/0000-0003-4034-0416; Karoff,
Christoffer/0000-0003-2009-7965; Garcia, Rafael/0000-0002-8854-3776
FU NASA [NNX13AC44G, NNX13AE91G]; White Dwarf Research Corporation through
the Pale Blue Dot project; Danish National Research Foundation
[DNRF106]; European Research Council [267864]; Scientific and
Technological Research Council of Turkey [TUBITAK:112T989]; European
Commission grant for the SPACEINN project [FP7-SPACE-2012-312844]; NSF
Astronomy and Astrophysics postdoctoral fellowship [AST 09-02004]; NSF
[PHY 08-21899, PHY 11-25915]; Investigador FCT contract - FCT/MCTES
(Portugal); POPH/FSE (EC); Hungarian OTKA [K83790, KTIA
URKUT_10-1-2011-0019]; Lendulet Young Researchers Programme of the
Hungarian Academy of Sciences; Janos Bolyai Research Scholarship of the
Hungarian Academy of Sciences; City of Szombathely [S-11-1027]; European
Community Seventh Framework Programme (FP7) [269194 (IRSES/ASK)]; CNES
grant at CEA-Saclay; NIUS programme of HBCSE (TIFR); MICINN grant
[AYA2011-24704]; ESF EUROCORES Program EuroGENESIS (MICINN)
[EUI2009-04170]; Australian Research Council
FX We would like to thank Victor Silva Aguirre for helpful discussions.
This work was supported in part by NASA grants NNX13AC44G and
NNX13AE91G, and by White Dwarf Research Corporation through the Pale
Blue Dot project (http://whitedwarf.org/palebluedot/). Computational
time on Kraken at the National Institute of Computational Sciences was
provided through XSEDE allocation TG-AST090107. Funding for the Stellar
Astrophysics Centre is provided by The Danish National Research
Foundation (grant DNRF106). We acknowledge the ASTERISK project
(ASTERoseismic Investigations with SONG and Kepler) funded by the
European Research Council (grant agreement No.: 267864), the Scientific
and Technological Research Council of Turkey (TUBITAK:112T989), and a
European Commission grant for the SPACEINN project
(FP7-SPACE-2012-312844). B.P.B. was supported in part by NSF Astronomy
and Astrophysics postdoctoral fellowship AST 09-02004. C.M.S.O. is
supported by NSF grant PHY 08-21899 and K.I.T.P. is supported by NSF
grant PHY 11-25915. M.S.C. is supported by an Investigador FCT contract
funded by FCT/MCTES (Portugal) and POPH/FSE (EC). A.D. has been
supported by the Hungarian OTKA grants K83790, KTIA URKUT_10-1-2011-0019
grant, the Lendulet-2009 Young Researchers Programme of the Hungarian
Academy of Sciences, the Janos Bolyai Research Scholarship of the
Hungarian Academy of Sciences and the City of Szombathely under
agreement No. S-11-1027. A.D. and R.A.G. acknowledge the support of the
European Community Seventh Framework Programme (FP7/2007-2013) under
grant agreement No. 269194 (IRSES/ASK). R.A.G. and D. Salabert
acknowledge the support of the CNES grant at CEA-Saclay. A.M.
acknowledges support from the NIUS programme of HBCSE (TIFR). A.S. is
supported by the MICINN grant AYA2011-24704 and by the ESF EUROCORES
Program EuroGENESIS (MICINN grant EUI2009-04170). D. Stello is supported
by the Australian Research Council.
NR 97
TC 43
Z9 43
U1 0
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0067-0049
EI 1538-4365
J9 ASTROPHYS J SUPPL S
JI Astrophys. J. Suppl. Ser.
PD OCT
PY 2014
VL 214
IS 2
AR 27
DI 10.1088/0067-0049/214/2/27
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AS2YE
UT WOS:000344141500013
ER
PT J
AU Weissenrieder, J
Gustafson, J
Stacchiola, D
AF Weissenrieder, Jonas
Gustafson, Johan
Stacchiola, Dario
TI Reactivity and Mass Transfer of Low-Dimensional Catalysts
SO CHEMICAL RECORD
LA English
DT Article
DE cluster compounds; heterogeneous catalysis; surface analysis; surface
chemistry; thin films
ID RAY PHOTOELECTRON-SPECTROSCOPY; GAS SHIFT REACTION; MODEL HYDROGENATION
CATALYSTS; CO OXIDATION; IN-SITU; METAL-OXIDE; ELECTRON-MICROSCOPY;
BOND-BREAKING; SURFACE; GOLD
AB Understanding the mechanisms governing chemical and morphological changes induced by an ambient-pressure gas and how such changes influence the activity of heterogeneous catalysts is central to the formation of a predictive capability for structure-reactivity relationships. With techniques such as ambient-pressure photoelectron spectroscopy, scanning tunneling microscopy, and surface X-ray diffraction, active phases and reaction intermediates can be probed in situ on relevant samples to form a comprehensive picture of this dynamic interplay between gases and surfaces. Of particular interest is the interaction of oxygen and carbon monoxide with catalysts. We will describe how model systems of increased complexity can be used to investigate gas-mediated mass transfer processes that may occur even at relatively modest temperatures. Furthermore, we will discuss how the morphology may be tailored to study specific contributions from defect sites and charge transfer to catalytic activity.
C1 [Weissenrieder, Jonas] KTH Royal Inst Technol, S-16440 Kista, Sweden.
[Gustafson, Johan] Lund Univ, Div Synchrotron Radiat Res, S-22100 Lund, Sweden.
[Stacchiola, Dario] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
RP Weissenrieder, J (reprint author), KTH Royal Inst Technol, S-16440 Kista, Sweden.
EM jonas@kth.se
RI Stacchiola, Dario/B-1918-2009;
OI Stacchiola, Dario/0000-0001-5494-3205; Weissenrieder,
Jonas/0000-0003-1631-4293
FU Swedish Research Council (VR); Knut and Alice Wallenberg Foundation;
U.S. Department of Energy, Office of Science [DE-AC02-98CH10886];
Division of Chemical Sciences, Geosciences, and Biosciences within the
Office of Basic Energy Sciences
FX The Swedish Research Council (VR) and the Knut and Alice Wallenberg
Foundation are acknowledged for their financial support. The work at
Brookhaven National Laboratory was carried out under Contract No.
DE-AC02-98CH10886 with the U.S. Department of Energy, Office of Science,
and supported by its Division of Chemical Sciences, Geosciences, and
Biosciences within the Office of Basic Energy Sciences.
NR 85
TC 2
Z9 2
U1 2
U2 15
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1527-8999
EI 1528-0691
J9 CHEM REC
JI Chem. Rec.
PD OCT
PY 2014
VL 14
IS 5
SI SI
BP 857
EP 868
DI 10.1002/tcr.201402006
PG 12
WC Chemistry, Multidisciplinary
SC Chemistry
GA AS1CB
UT WOS:000344013300011
PM 25065579
ER
PT J
AU Wu, ZL
AF Wu, Zili
TI Multi-wavelength Raman spectroscopy study of supported vanadia
catalysts: Structure identification and quantification
SO CHINESE JOURNAL OF CATALYSIS
LA English
DT Review
DE Multi-wavelength; Raman spectroscopy; Resonance Raman; Vanadia; Silica;
Ceria
ID METAL-OXIDE CATALYSTS; DENSITY-FUNCTIONAL THEORY; DEFINED SURFACE
PLANES; DIFFUSE-REFLECTANCE SPECTROSCOPY; TEMPERATURE-PROGRAMMED
REDUCTION; PROBING DEFECT SITES; OXIDATIVE DEHYDROGENATION;
MOLECULAR-STRUCTURE; METHANOL OXIDATION; CEO2 NANOCRYSTALS
AB Revealing the structure of supported metal oxide catalysts is a prerequisite for establishing the structure-catalysis relationship. Among a variety of characterization techniques, multi-wavelength Raman spectroscopy, combining resonance Raman and non-resonance Raman with different excitation wavelengths, has recently emerged as a particularly powerful tool in not only identifying but also quantifying the structure of supported metal oxide clusters. In this review, we make use of two supported vanadia systems, VOx/SiO2 and VOx/CeO2, as examples to showcase how one can employ this technique to investigate the heterogeneous structure of active oxide clusters and to understand the complex interaction between the oxide clusters and the support. The qualitative and quantitative structural information gained from the multi-wavelength Raman spectroscopy can be utilized to provide fundamental insights for designing more efficient supported metal oxide catalysts. (C) 2014, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
C1 [Wu, Zili] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Wu, Zili] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Wu, ZL (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM wuz1@ornl.gov
RI Wu, Zili/F-5905-2012
OI Wu, Zili/0000-0002-4468-3240
FU Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy; U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and
Biosciences Division
FX This research was conducted at the Center for Nanophase Materials
Sciences, which is sponsored at Oak Ridge National Laboratory by the
Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy. Part of the work including the synthesis of
ceria nanoshapes was supported by the U.S. Department of Energy, Office
of Science, Office of Basic Energy Sciences, Chemical Sciences,
Geosciences, and Biosciences Division.
NR 107
TC 1
Z9 1
U1 6
U2 47
PU SCIENCE PRESS
PI BEIJING
PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA
SN 0253-9837
EI 1872-2067
J9 CHINESE J CATAL
JI Chin. J. Catal.
PD OCT
PY 2014
VL 35
IS 10
BP 1591
EP 1608
DI 10.1016/S1872-2067(14)60082-6
PG 18
WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA AS2WE
UT WOS:000344136500001
ER
PT J
AU Vay, JL
Godfrey, BB
AF Vay, Jean-Luc
Godfrey, Brendan B.
TI Modeling of relativistic plasmas with the Particle-In-Cell method
SO COMPTES RENDUS MECANIQUE
LA English
DT Article
DE Particle-In-Cell; Plasma simulation; Special relativity; Numerical
instability
ID NONSTANDARD FINITE-DIFFERENCES; PIC SIMULATIONS; NUMERICAL SIMULATION;
CHARGE CONSERVATION; GAUSS LAW; ALGORITHM; CODES; INSTABILITY;
STABILITY; SOLVERS
AB Standard methods employed in relativistic electromagnetic Particle-In-Cell codes are reviewed, as well as novel techniques that were introduced recently. Advances in the analysis and mitigation of the numerical Cherenkov instability are also presented with comparison between analytical theory and numerical experiments. The algorithmic and numerical analytic advances are expanding the range of applicability of the method in the ultra-relativistic regime in particular, where the numerical Cherenkov instability is the strongest without corrective measures. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
C1 [Vay, Jean-Luc; Godfrey, Brendan B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Godfrey, Brendan B.] Univ Maryland, College Pk, MD 20742 USA.
RP Vay, JL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
OI Godfrey, Brendan/0000-0003-2311-7060
FU US-DOE [DE-AC02-05CH11231, DE-AC52-07NA27344]; US-DOE SciDAC program
ComPASS [DE-AC02-05CH11231]; United States Government
FX We are thankful to David Grote for his support of the code Warp. This
work was supported in part by US-DOE Contracts DE-AC02-05CH11231 and
DE-AC52-07NA27344, and US-DOE SciDAC program ComPASS (Grant no.
DE-AC02-05CH11231). It used resources of NERSC, supported by US-DOE
Contract DE-AC02-05CH11231.r This document was prepared as an account of
work sponsored in part by the United States Government. While this
document is believed to contain correct information, neither the United
States Government nor any agency thereof, nor The Regents of the
University of California, nor any of their employees, nor the authors
makes any warranty, express or implied, or assumes any legal
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by its trade
name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or The Regents of the
University of California. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or any agency thereof or The Regents of the University of
California.
NR 42
TC 1
Z9 1
U1 1
U2 11
PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
PI PARIS
PA 23 RUE LINOIS, 75724 PARIS, FRANCE
SN 1631-0721
EI 1873-7234
J9 CR MECANIQUE
JI C. R. Mec.
PD OCT-NOV
PY 2014
VL 342
IS 10-11
BP 610
EP 618
DI 10.1016/j.crme.2014.07.006
PG 9
WC Mechanics
SC Mechanics
GA AS4BC
UT WOS:000344217500006
ER
PT J
AU Chapman, JL
Lu, L
Anderson-Cook, CM
AF Chapman, Jessica L.
Lu, Lu
Anderson-Cook, Christine M.
TI Incorporating response variability and estimation uncertainty into
Pareto front optimization
SO COMPUTERS & INDUSTRIAL ENGINEERING
LA English
DT Article
DE Response surface; Multiple response optimization; Incorporating
estimation uncertainty; Trade-offs; Graphical summaries
ID MULTIDISCIPLINARY DESIGN OPTIMIZATION; POLYNOMIAL CHAOS EXPANSION;
RELIABILITY-ANALYSIS; MULTIPLE CRITERIA; SURFACE DESIGN
AB Pareto front optimization has been commonly used for balancing trade-offs between different estimated responses. Using maximum likelihood or least squares point estimates or the worst case confidence bound values of the response surface, it is straightforward to find preferred locations in the input factor space that simultaneously perform well for the various responses. A new approach is proposed that directly incorporates model parameter estimation uncertainty into the Pareto front optimization. This step-by-step approach provides more realistic information about variability in the estimated Pareto front and how it affects our decisions about the potential best input factor locations. The method is illustrated with a manufacturing example involving three responses and two input factors. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Chapman, Jessica L.] St Lawrence Univ, Dept Math Comp Sci & Stat, Canton, NY 13617 USA.
[Lu, Lu] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA.
[Anderson-Cook, Christine M.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM USA.
RP Chapman, JL (reprint author), St Lawrence Univ, Dept Math Comp Sci & Stat, Canton, NY 13617 USA.
NR 17
TC 9
Z9 9
U1 3
U2 11
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-8352
EI 1879-0550
J9 COMPUT IND ENG
JI Comput. Ind. Eng.
PD OCT
PY 2014
VL 76
BP 253
EP 267
DI 10.1016/j.cie.2014.07.028
PG 15
WC Computer Science, Interdisciplinary Applications; Engineering,
Industrial
SC Computer Science; Engineering
GA AS7LY
UT WOS:000344438700022
ER
PT J
AU Dodds, WK
Collins, SM
Hamilton, SK
Tank, JL
Johnson, S
Webster, JR
Simon, KS
Whiles, MR
Rantala, HM
McDowell, WH
Peterson, SD
Riis, T
Crenshaw, CL
Thomas, SA
Kristensen, PB
Cheever, BM
Flecker, AS
Griffiths, NA
Crowl, T
Rosi-Marshall, EJ
El-Sabaawi, R
Marti, E
AF Dodds, W. K.
Collins, S. M.
Hamilton, S. K.
Tank, J. L.
Johnson, S.
Webster, J. R.
Simon, K. S.
Whiles, M. R.
Rantala, H. M.
McDowell, W. H.
Peterson, S. D.
Riis, T.
Crenshaw, C. L.
Thomas, S. A.
Kristensen, P. B.
Cheever, B. M.
Flecker, A. S.
Griffiths, N. A.
Crowl, T.
Rosi-Marshall, E. J.
El-Sabaawi, R.
Marti, E.
TI You are not always what we think you eat: selective assimilation across
multiple whole-stream isotopic tracer studies
SO ECOLOGY
LA English
DT Article
DE N-15; consumer; food resources; food web; label mismatch; nitrogen
cycling; stable isotope tracer addition
ID WATER FOOD WEBS; STABLE-ISOTOPE; ORGANIC-MATTER; PRAIRIE STREAM; FOREST
STREAM; NITROGEN DYNAMICS; AQUATIC CONSUMERS; TROPHIC BASIS; ECOSYSTEM;
FLOW
AB Analyses of 21 N-15 stable isotope tracer experiments, designed to examine food web dynamics in streams around the world, indicated that the isotopic composition of food resources assimilated by primary consumers (mostly invertebrates) poorly reflected the presumed food sources. Modeling indicated that consumers assimilated only 33-50% of the N available in sampled food sources such as decomposing leaves, epilithon, and fine particulate detritus over feeding periods of weeks or more. Thus, common methods of sampling food sources consumed by animals in streams do not sufficiently reflect the pool of N they assimilate. Isotope tracer studies, combined with modeling and food separation techniques, can improve estimation of N pools in food sources that are assimilated by consumers. Food web studies that use putative food samples composed of actively cycling (more readily assimilable) and refractory (less assimilable) N fractions may draw erroneous conclusions about diets, N turnover, and trophic linkages of consumers. By extension, food web studies using stoichiometric or natural abundance approaches that rely on an accurate description of food-source composition could result in errors when an actively cycling pool that is only a fraction of the N pool in sampled food resources is not accounted for.
C1 [Dodds, W. K.] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA.
[Collins, S. M.; Flecker, A. S.] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY 14853 USA.
[Hamilton, S. K.] Michigan State Univ, WK Kellogg Biol Stn, Hickory Corners, MI 49060 USA.
[Tank, J. L.] Univ Notre Dame, Dept Biol Sci, Galvin Life Sci Ctr 100, Notre Dame, IN 46556 USA.
[Johnson, S.] US Forest Serv, USDA, Pacific NW Res Stn, Corvallis, OR 97331 USA.
[Webster, J. R.] Virginia Tech, Dept Biol Sci, Blacksburg, VA 24601 USA.
[Simon, K. S.] Univ Auckland, Sch Environm, Auckland 1142, New Zealand.
[Whiles, M. R.; Rantala, H. M.] So Illinois Univ, Dept Zool, Carbondale, IL 62901 USA.
[Whiles, M. R.; Rantala, H. M.] So Illinois Univ, Ctr Ecol, Carbondale, IL 62901 USA.
[McDowell, W. H.] Univ New Hampshire, Durham, NH 03824 USA.
[Peterson, S. D.] Murray State Univ, Dept Biol Sci, Watershed Studies Inst, Murray, KY 42071 USA.
[Riis, T.; Kristensen, P. B.] Aarhus Univ, Dept Biosci, DK-8000 Aarhus C, Denmark.
[Crenshaw, C. L.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA.
[Thomas, S. A.] Univ Nebraska, Sch Nat Resources, Lincoln, NE 68583 USA.
[Cheever, B. M.] Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI 48824 USA.
[Griffiths, N. A.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA.
[Griffiths, N. A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Crowl, T.] Florida Int Univ, Southeast Environm Res Ctr, Miami, FL 33199 USA.
[Crowl, T.] Florida Int Univ, Dept Biol, Miami, FL 33199 USA.
[Rosi-Marshall, E. J.] Cary Inst Ecosyst Studies, Millbrook, NY 12545 USA.
[El-Sabaawi, R.] Univ Victoria, Dept Biol, Victoria, BC V8P 5C2, Canada.
[Marti, E.] CSIC, CEAB, Biogeodynam & Biodivers Grp, Blanes, Catalonia, Spain.
RP Dodds, WK (reprint author), Kansas State Univ, Div Biol, 106 Ackert Hall, Manhattan, KS 66506 USA.
EM wkdodds@ksu.edu
RI McDowell, William/E-9767-2010; Hamilton, Stephen/N-2979-2014; Marti,
Eugenia/J-9146-2012; Riis, Tenna/K-8346-2013;
OI McDowell, William/0000-0002-8739-9047; Hamilton,
Stephen/0000-0002-4702-9017; Marti, Eugenia/0000-0002-6910-4874;
Griffiths, Natalie/0000-0003-0068-7714; Collins,
Sarah/0000-0001-5503-7386
FU U.S. National Science Foundation [DEB 1052399]; U.S. DOE
[DE-AC05-00OR22725]; U.S. Department of Energy [DE-AC05-00OR22725]
FX We thank all the researchers involved in the isotopic release
experiments that we report on; in particular, we are grateful to Pat
Mulholland for his intellectual inspiration and fantastic leadership.
The workshop that generated this paper was funded by grant DEB 1052399
by the U.S. National Science Foundation. This is contribution 14-334-J
from the Kansas Agricultural Experiment Station. Partial support during
manuscript preparation to N. A. Griffiths was from the Department of
Energy's Office of Science, Biological, and Environmental Research. Oak
Ridge National Laboratory is managed by UT-Battelle, for the U.S. DOE
under contract DE-AC05-00OR22725. The manuscript has been authored by
UT-Battelle, under Contract No. DE-AC05-00OR22725 with the U.S.
Department of Energy. The United States Government retains, and the
publisher, by accepting the article for publication, acknowledges that
the United States Government retains, a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for the United States
Government purposes.
NR 61
TC 11
Z9 11
U1 12
U2 99
PU ECOLOGICAL SOC AMER
PI WASHINGTON
PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA
SN 0012-9658
EI 1939-9170
J9 ECOLOGY
JI Ecology
PD OCT
PY 2014
VL 95
IS 10
BP 2757
EP 2767
DI 10.1890/13-2276.1
PG 11
WC Ecology
SC Environmental Sciences & Ecology
GA AS5NL
UT WOS:000344317300009
ER
PT J
AU Bonner, IJ
Cafferty, KG
Muth, DJ
Tomer, MD
James, DE
Porter, SA
Karlen, DL
AF Bonner, Ian J.
Cafferty, Kara G.
Muth, David J., Jr.
Tomer, Mark D.
James, David E.
Porter, Sarah A.
Karlen, Douglas L.
TI Opportunities for Energy Crop Production Based on Subfield Scale
Distribution of Profitability
SO ENERGIES
LA English
DT Article
DE biomass; subfield management; switchgrass; corn stover; Landscape
Environmental Assessment Framework (LEAF)
ID AGRICULTURAL RESIDUE REMOVAL; SWITCHGRASS PANICUM-VIRGATUM;
UNITED-STATES; NITROGEN-FERTILIZATION; BIOENERGY; BIOMASS; CORN;
IMPACTS; LAND; FEEDSTOCKS
AB Incorporation of dedicated herbaceous energy crops into row crop landscapes is a promising means to supply an expanding biofuel industry while benefiting soil and water quality and increasing biodiversity. Despite these positive traits, energy crops remain largely unaccepted due to concerns over their practicality and cost of implementation. This paper presents a case study for Hardin County, Iowa, to demonstrate how subfield decision making can be used to target candidate areas for conversion to energy crop production. Estimates of variability in row crop production at a subfield level are used to model the economic performance of corn (Zea mays L.) grain and the environmental impacts of corn stover collection using the Landscape Environmental Analysis Framework (LEAF). The strategy used in the case study integrates switchgrass (Panicum virgatum L.) into subfield landscape positions where corn grain is modeled to return a net economic loss. Results show that switchgrass integration has the potential to increase sustainable biomass production from 48% to 99% (depending on the rigor of conservation practices applied to corn stover collection), while also improving field level profitability of corn. Candidate land area is highly sensitive to grain price (0.18 to 0.26$.kg(-1)) and dependent on the acceptable subfield net loss for corn production (ranging from 0 to -1000$.ha(-1)) and the ability of switchgrass production to meet or exceed this return. This work presents the case that switchgrass may be economically incorporated into row crop landscapes when management decisions are applied at a subfield scale within field areas modeled to have a negative net profit with current management practices.
C1 [Bonner, Ian J.] Idaho Natl Lab, Biofuels & Renewable Energy Technol Dept, Idaho Falls, ID 83415 USA.
[Cafferty, Kara G.] Idaho Natl Lab, Environm Engn & Technol Dept, Idaho Falls, ID 83415 USA.
[Muth, David J., Jr.] AgSolver Inc, Ames, IA 50010 USA.
[Tomer, Mark D.; James, David E.; Porter, Sarah A.; Karlen, Douglas L.] ARS, Natl Lab Agr & Environm, USDA, Ames, IA 50011 USA.
RP Bonner, IJ (reprint author), Idaho Natl Lab, Biofuels & Renewable Energy Technol Dept, Idaho Falls, ID 83415 USA.
EM ian.bonner@inl.gov; kara.cafferty@inl.gov; david.muth@agsolver.com;
mark.tomer@ars.usda.gov; david.james@ars.usda.gov;
sarah.porter@ars.usda.gov; doug.karlen@ars.usda.gov
FU U.S. Department of Energy's Office of Energy Efficiency and Renewable
Energy, Bioenergy Technologies Office, under DOE Idaho Operations Office
[DE-AC07-05ID14517]; agency of the U.S. Government
FX This work is supported by the U.S. Department of Energy's Office of
Energy Efficiency and Renewable Energy, Bioenergy Technologies Office,
under DOE Idaho Operations Office Contract DE-AC07-05ID14517.
Accordingly, the U.S. Government retains a nonexclusive, royalty-free
license to publish or reproduce the published form of this contribution,
or allow others to do so, for U. S. Government purposes.; U.S.
Department of Energy Disclaimer; This information was prepared as an
account of work sponsored by an agency of the U.S. Government. Neither
the U.S. Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that is use would not infringe privately owned rights. References herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the U.S.
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the U.S.
Government or any agency thereof.
NR 47
TC 9
Z9 9
U1 3
U2 21
PU MDPI AG
PI BASEL
PA POSTFACH, CH-4005 BASEL, SWITZERLAND
SN 1996-1073
J9 ENERGIES
JI Energies
PD OCT
PY 2014
VL 7
IS 10
BP 6509
EP 6526
DI 10.3390/en7106509
PG 18
WC Energy & Fuels
SC Energy & Fuels
GA AS7YG
UT WOS:000344467200016
ER
PT J
AU Lister, TE
Wang, PM
Anderko, A
AF Lister, Tedd E.
Wang, Peiming
Anderko, Andre
TI Recovery of critical and value metals from mobile electronics enabled by
electrochemical processing
SO HYDROMETALLURGY
LA English
DT Article
DE Critical materials; Mobile electronics scrap; Recycling;
Electrochemistry; Electrowinning; Metal dissolution
ID PRINTED-CIRCUIT BOARDS; SOLVENT ELECTROLYTE SYSTEMS; SPOUTED-BED
ELECTRODES; VALUABLE METALS; RARE-EARTHS; COPPER; WASTE; TECHNOLOGIES;
DISSOLUTION; BATTERIES
AB Electrochemistry-based schemes were investigated as a means to recover critical and value metals from scrap mobile electronics. Mobile electronics offer a growing feedstock for replenishing value and critical metals and reducing need to exhaust primary sources. The electrorecycling process generates oxidizing agents at an anode to dissolve metals from the scrap matrix while reducing dissolved metals at the cathode. The process uses a single cell to maximize energy efficiency. E vs pH diagrams and metal dissolution experiments were used to assess effectiveness of various solution chemistries. Following this work, a flow chart was developed where two stages of electrorecycling were proposed: 1) initial dissolution of Cu, Sn,Ag and magnet materials using Fe+3 generated in acidic sulfate and 2) final dissolution of Pd and Au using Cl-2 generated in an HCl solution. Experiments were performed using a simulated metal mixture equivalent to 5 cell phones. Both Cu and Ag were recovered at similar to 97% using Fe+3 while leaving Au and Pd intact. Strategy for extraction of rare earth elements (REE) from dissolved streams is discussed as well as future directions in process development. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Lister, Tedd E.] Idaho Natl Lab, Idaho Falls, ID 83404 USA.
[Wang, Peiming; Anderko, Andre] OLI Syst Inc, Cedar Knolls, NJ 07927 USA.
RP Lister, TE (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83404 USA.
EM tedd.lister@inl.gov
OI Anderko, Andrzej/0000-0002-1522-4889
FU Critical Materials Institute, an Energy Innovation Hub - U.S. Department
of Energy, Office of Energy Efficiency and Renewable Energy, Advanced
Manufacturing Office; Battelle Energy Alliance, LLC [DE-AC07-051D14517]
FX This work is supported by the Critical Materials Institute, an Energy
Innovation Hub funded by the U.S. Department of Energy, Office of Energy
Efficiency and Renewable Energy, Advanced Manufacturing Office. This
manuscript has been authored by Battelle Energy Alliance, LLC under
Contract No. DE-AC07-051D14517. We thank Byron White for providing
analytical services that supported this work.
NR 52
TC 10
Z9 10
U1 4
U2 73
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-386X
EI 1879-1158
J9 HYDROMETALLURGY
JI Hydrometallurgy
PD OCT
PY 2014
VL 149
BP 228
EP 237
DI 10.1016/j.hydromet.2014.08.011
PG 10
WC Metallurgy & Metallurgical Engineering
SC Metallurgy & Metallurgical Engineering
GA AS3UW
UT WOS:000344204400027
ER
PT J
AU Cao, T
Azmoun, B
Babst, B
Blatnik, M
Purschke, ML
Stoll, S
Vaska, P
Woody, C
AF Cao, T.
Azmoun, B.
Babst, B.
Blatnik, M.
Purschke, M. L.
Stoll, S.
Vaska, P.
Woody, C.
TI A Study of a GEM Tracking Detector for Imaging Positrons from PET
Radioisotopes in Plants
SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE
LA English
DT Article
DE Gas Electron Multiplier (GEM); plant; Positron Emission Tomography
(PET); positron imaging
ID TRANSPORT; RICE
AB Positron Emission Tomography is a powerful imaging technique used for humans and animals that can also be used to study plant biology. However, since many of the structures found on plants (e. g., leaves) are very thin, a large portion of the positrons emitted from PET isotopes escape before annihilation, leading to low efficiency and quantification inaccuracies. In this study, a gas tracking detector was used to measure escaping positrons from PET radiotracer isotopes which has the ability to reconstruct three dimensional tracks that can be used to form an image of the emitting object. This device uses a triple GEM detector with a short drift region and an XY strip readout plane to measure a vector for positrons passing through a drift gap. By projecting each particle track back to the object surface, a 2-D image of the spatial distribution of the positrons that escaped from that surface can be reconstructed. In this paper, we will describe the basic principle of the GEM detector and present results on its performance using various types of phantoms and actual plant specimens. Monte Carlo simulations are also used to better understand the detector performance and compare to actual measurements.
C1 [Cao, T.; Vaska, P.] SUNY Stony Brook, Stony Brook, NY 11790 USA.
[Azmoun, B.; Babst, B.; Purschke, M. L.; Stoll, S.; Vaska, P.; Woody, C.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Blatnik, M.] Cleveland State Univ, Cleveland, OH 44115 USA.
RP Cao, T (reprint author), SUNY Stony Brook, Stony Brook, NY 11790 USA.
EM tuoyucao@bnl.gov
OI Babst, Benjamin/0000-0001-5657-0633
FU U.S. Department of Energy [DE-AC02-98CH10886]
FX This work was supported in part by the U.S. Department of Energy under
Prime Contract No. DE-AC02-98CH10886.
NR 21
TC 1
Z9 1
U1 1
U2 7
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9499
EI 1558-1578
J9 IEEE T NUCL SCI
JI IEEE Trans. Nucl. Sci.
PD OCT
PY 2014
VL 61
IS 5
BP 2464
EP 2471
DI 10.1109/TNS.2014.2333740
PN 1
PG 8
WC Engineering, Electrical & Electronic; Nuclear Science & Technology
SC Engineering; Nuclear Science & Technology
GA AS0PJ
UT WOS:000343979600006
ER
PT J
AU Lee, K
Bolotnikov, A
Bae, S
Roy, U
Camarda, G
Petryk, M
Cui, YG
Hossain, A
Yang, G
Dedic, V
Kim, K
James, RB
AF Lee, Kisung
Bolotnikov, Aleksey
Bae, Seungbin
Roy, Utpal
Camarda, Giuseppe
Petryk, Matthew
Cui, Yonggang
Hossain, Anwar
Yang, Ge
Dedic, Vaclav
Kim, Kihyun
James, Ralph B.
TI New Virtual Frisch-Grid CdZnTe Detector Design With Sub-Millimeter
Spatial Resolution
SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE
LA English
DT Article
DE CdZnTe; Frisch-grid; position-sensitive; positioning algorithm;
radiation detector
ID READOUT
AB We evaluated the performance of a position-sensitive virtual Frisch-grid (VFG) CdZnTe detector, mm mm mm, via sensing strips on its side surfaces. Once the signals were collected from the anode, and from four or eight strips attached to the detector's sides, we assessed the anode's energy spectra and derived histograms from the side electrodes to evaluate the feasibility of achieving sub-millimeter spatial resolution in the X-Y plane. Using a highly collimated 30-keV X-ray beam at the National Synchrotron Light Source, and applying corrections to the raw data, we determined the photon-interaction points by conventional Anger logic and via a more sophisticated statistics-based positioning (SBP) algorithm. With the VFG detector's current configuration, we achieved a resolution below 1 mm, even for low-energy X-rays.
C1 [Lee, Kisung; Bae, Seungbin; Kim, Kihyun] Korea Univ, Seoul 136701, South Korea.
[Bolotnikov, Aleksey; Roy, Utpal; Camarda, Giuseppe; Cui, Yonggang; Hossain, Anwar; Yang, Ge; James, Ralph B.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Petryk, Matthew] SUNY Binghamton, Binghamton, NY 13902 USA.
[Dedic, Vaclav] Charles Univ Prague, CR-11636 Prague, Czech Republic.
RP Lee, K (reprint author), Korea Univ, Seoul 136701, South Korea.
EM kisung@korea.ac.kr; bolotnik@bnl.gov
RI Dedic, Vaclav/Q-3847-2016; Dedic, Vaclav/A-2946-2017
OI Dedic, Vaclav/0000-0001-7159-5521
FU U.S. Department of Energy, Office of Defense Nuclear Nonproliferation
Research and Development; DNN RD; Defense Threat Reduction Agency; Basic
Atomic Energy Research Institute (BAERI) [2010-0018616]; U.S. Department
of Energy [DE-AC02-98CH1-886]
FX This work was supported by the U.S. Department of Energy, Office of
Defense Nuclear Nonproliferation Research and Development, DNN R&D and
Defense Threat Reduction Agency and also jointly supported by the Basic
Atomic Energy Research Institute (BAERI, 2010-0018616). The manuscript
was authored by Brookhaven Science Associates, LLC under Contract
DE-AC02-98CH1-886 with the U.S. Department of Energy.
NR 12
TC 0
Z9 0
U1 0
U2 16
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9499
EI 1558-1578
J9 IEEE T NUCL SCI
JI IEEE Trans. Nucl. Sci.
PD OCT
PY 2014
VL 61
IS 5
BP 2567
EP 2572
DI 10.1109/TNS.2014.2348572
PN 2
PG 6
WC Engineering, Electrical & Electronic; Nuclear Science & Technology
SC Engineering; Nuclear Science & Technology
GA AS0PX
UT WOS:000343980900008
ER
PT J
AU Kouzes, RT
Ely, JH
Lintereur, AT
Siciliano, ER
AF Kouzes, Richard T.
Ely, James H.
Lintereur, Azaree T.
Siciliano, Edward R.
TI Boron-10 Based Neutron Coincidence Counter for Safeguards
SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE
LA English
DT Article
DE Alternative neutron detectors; boron-10; coincidence counter; helium-3
alternative; neutron detection; safeguards; UNCL
ID HE-3
AB The shortage of He-3 has triggered the search for effective alternative neutron detection technologies for national security applications, including international nuclear safeguards. Any alternative neutron detection technology must meet a neutron detection efficiency requirement while being insensitive to gamma-ray interference at a prescribed level. For nuclear safeguards, a system must perform measurements in the field with a prescribed precision in a specified time. This paper describes an effort to design, model and test an alternatives-based neutron coincidence counter for nuclear safeguards applications. The technology chosen for use in an alternatives-based uranium neutron coincidence collar was boron-lined proportional counters. Extensive modeling was performed of various system configurations and comparisons were made to measurements on a commercial prototype boron-10 based uranium neutron coincidence collar.
C1 [Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Kouzes, RT (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM rkouzes@pnnl.gov; james.ely@pnnl.gov; azaree.lintereur@pnnl.gov;
edward.siciliano@pnnl.gov
FU U.S. Department of Energy Office of Nuclear Safeguards and Security
[NA-241]; U.S. Department of Energy [DE-AC05-76RLO 1830]; Next
Generation Safeguards Initiative, Office of Nuclear Safeguards and
Security, National Nuclear Security Administration
FX This work was supported by the U.S. Department of Energy Office of
Nuclear Safeguards and Security (NA-241). The Pacific Northwest National
Laboratory is operated for the U.S. Department of Energy under Contract
DE-AC05-76RLO 1830. A. Lintereur was a post Masters Research Assistant
supported by the Next Generation Safeguards Initiative, Office of
Nuclear Safeguards and Security, National Nuclear Security
Administration.
NR 42
TC 0
Z9 0
U1 2
U2 8
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9499
EI 1558-1578
J9 IEEE T NUCL SCI
JI IEEE Trans. Nucl. Sci.
PD OCT
PY 2014
VL 61
IS 5
BP 2608
EP 2618
DI 10.1109/TNS.2014.2353619
PN 2
PG 11
WC Engineering, Electrical & Electronic; Nuclear Science & Technology
SC Engineering; Nuclear Science & Technology
GA AS0PX
UT WOS:000343980900014
ER
PT J
AU VanDevender, BA
Dion, MP
Fast, JE
Rodriguez, DC
Taubman, MS
Wilen, CD
Wood, LS
Wright, ME
AF VanDevender, Brent A.
Dion, Michael P.
Fast, James E.
Rodriguez, Douglas C.
Taubman, Matthew S.
Wilen, Christopher D.
Wood, Lynn S.
Wright, Michael E.
TI High-Purity Germanium Spectroscopy at Rates in Excess of 10(6) Events/s
SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE
LA English
DT Article
DE Digital filters; finite impulse response filters; gamma-ray detectors;
germanium; nuclear electronics; preamplifiers; semiconductor radiation
detectors; signal processing algorithms; spectroscopy
ID GAMMA-RAY SPECTROMETRY; REAL-TIME; POSITION
AB In gamma spectroscopy, a compromise must be made between energy resolution and event-rate capability. Some foreseen nuclear material safeguards applications require a spectrometer with energy resolution typical of high purity germanium (HPGe) detectors, operated at event rates up to and exceeding per second. We report the performance of an HPGe spectrometer system adapted to run under such conditions. Our system consists of a commercial semi-coaxial HPGe detector, a modified high-voltage-rail, resistive-feedback, charge-sensitive preamplifier and a continuous waveform digitizer. Digitized waveforms are analyzed offline with a novel time-variant trapezoidal filter algorithm. Several time-invariant trapezoidal filters are run in parallel and the slowest one not rejected by instantaneous pileup conditions is used to measure each pulse height. We have attained full-width-at-half-maximum energy resolution approximately 8 keV measured at 662 keV with per second incoming event rate and 39% throughput. An additional constraint on the width of the fast trigger filter removes a significant amount of rising edge pileup that passes the first pileup cut, reducing throughput to 25%. While better resolution has been reported by other authors, our throughput is an order of magnitude higher than any other reported HPGe system operated at such an event rate.
C1 [VanDevender, Brent A.; Dion, Michael P.; Fast, James E.; Rodriguez, Douglas C.; Taubman, Matthew S.; Wilen, Christopher D.; Wood, Lynn S.; Wright, Michael E.] Pacific NW Natl Lab, Richland, WA 99354 USA.
RP VanDevender, BA (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA.
EM brent.vandevender@pnnl.gov; michael.dion@pnnl.gov; james.fast@pnnl.gov;
Douglas.Rodriguez@pnnl.gov; matthew.taubman@pnnl.gov; cwilen@wisc.edu;
lynn.wood@pnnl.gov; michael.wright@pnnl.gov
OI Dion, Michael/0000-0002-3030-0050
FU U.S. Department of Energy by Battelle Memorial Institute [DE-AC06-76RLO
1830]; U.S. Department of Energy National Nuclear Security
Administration, Office of Nonproliferation Research and Development;
Next Generation Safeguards Initiative Human Capital Development Program
FX Pacific Northwest National Laboratory is operated for the U.S.
Department of Energy by Battelle Memorial Institute under Contract
DE-AC06-76RLO 1830. This research was supported by the U.S. Department
of Energy National Nuclear Security Administration, Office of
Nonproliferation Research and Development. D. C. Rodriguez was supported
by the Next Generation Safeguards Initiative Human Capital Development
Program.
NR 18
TC 4
Z9 4
U1 1
U2 9
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9499
EI 1558-1578
J9 IEEE T NUCL SCI
JI IEEE Trans. Nucl. Sci.
PD OCT
PY 2014
VL 61
IS 5
BP 2619
EP 2627
DI 10.1109/TNS.2014.2357059
PN 2
PG 9
WC Engineering, Electrical & Electronic; Nuclear Science & Technology
SC Engineering; Nuclear Science & Technology
GA AS0PX
UT WOS:000343980900015
ER
PT J
AU Payne, SA
Hunter, S
Ahle, L
Cherepy, NJ
Swanberg, E
AF Payne, Stephen A.
Hunter, Steven
Ahle, Larry
Cherepy, Nerine J.
Swanberg, Erik
TI Nonproportionality of Scintillator Detectors. III. Temperature
Dependence Studies
SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE
LA English
DT Article
DE Gamma ray detectors; luminescence; solid scintillation detectors
ID LIGHT YIELD NONPROPORTIONALITY; GAMMA-RAY SPECTROMETERS; ENERGY
RESOLUTION; NON-PROPORTIONALITY; COMPTON ELECTRONS; CRYSTALS; NAI(TL);
CSI(TL)
AB This paper is the third in a series of articles on the basic physics of nonproportionality in scintillators. Here, we focus on the temperature dependence of six scintillators, NaI(Tl), CsI(Tl), CsI(Na), CeBr3, LaBr3(Ce), and undoped SrI2, and report their nonproportionality curves at -40 degrees C, 0 degrees C and +40 degrees C. We fit the data to a modified form of our previously employed model, including the competition of carrier trapping with the Onsager-mediated attraction between electrons and holes.
C1 [Payne, Stephen A.; Hunter, Steven; Ahle, Larry; Cherepy, Nerine J.; Swanberg, Erik] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Payne, SA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM payne3@llnl.gov
RI Cherepy, Nerine/F-6176-2013
OI Cherepy, Nerine/0000-0001-8561-923X
FU National Nuclear Security Administration, Defense Nuclear
Nonproliferation Research and Development Office of the U.S.DOE
[DE-AC03-765F00098]; U.S. DOE by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work was supported by the National Nuclear Security Administration,
Defense Nuclear Nonproliferation Research and Development Office of the
U.S.DOE under Contract DE-AC03-765F00098, and was performed under the
auspices of the U.S. DOE by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.
NR 44
TC 6
Z9 6
U1 0
U2 16
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9499
EI 1558-1578
J9 IEEE T NUCL SCI
JI IEEE Trans. Nucl. Sci.
PD OCT
PY 2014
VL 61
IS 5
BP 2771
EP 2777
DI 10.1109/TNS.2014.2343572
PN 2
PG 7
WC Engineering, Electrical & Electronic; Nuclear Science & Technology
SC Engineering; Nuclear Science & Technology
GA AS0PX
UT WOS:000343980900034
ER
PT J
AU Langston, MA
Levine, RS
Kilbourne, BJ
Rogers, GL
Kershenbaum, AD
Baktash, SH
Coughlin, SS
Saxton, AM
Agboto, VK
Hood, DB
Litchveld, MY
Oyana, TJ
Matthews-Juarez, P
Juarez, PD
AF Langston, Michael A.
Levine, Robert S.
Kilbourne, Barbara J.
Rogers, Gary L., Jr.
Kershenbaum, Anne D.
Baktash, Suzanne H.
Coughlin, Steven S.
Saxton, Arnold M.
Agboto, Vincent K.
Hood, Darryl B.
Litchveld, Maureen Y.
Oyana, Tonny J.
Matthews-Juarez, Patricia
Juarez, Paul D.
TI Scalable Combinatorial Tools for Health Disparities Research
SO INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH
LA English
DT Article
DE combinatorial algorithms; data science; graph theoretical techniques;
health disparities research; heterogeneous data analysis; high
performance computing; public health exposome; relevance networks;
scalable computation
ID FALSE DISCOVERY RATE; PUBLIC-HEALTH; MORTALITY; 21ST-CENTURY;
EPIDEMIOLOGY; NETWORKS; VALIDITY; GENOME; FPT
AB Despite staggering investments made in unraveling the human genome, current estimates suggest that as much as 90% of the variance in cancer and chronic diseases can be attributed to factors outside an individual's genetic endowment, particularly to environmental exposures experienced across his or her life course. New analytical approaches are clearly required as investigators turn to complicated systems theory and ecological, place-based and life-history perspectives in order to understand more clearly the relationships between social determinants, environmental exposures and health disparities. While traditional data analysis techniques remain foundational to health disparities research, they are easily overwhelmed by the ever-increasing size and heterogeneity of available data needed to illuminate latent gene x environment interactions. This has prompted the adaptation and application of scalable combinatorial methods, many from genome science research, to the study of population health. Most of these powerful tools are algorithmically sophisticated, highly automated and mathematically abstract. Their utility motivates the main theme of this paper, which is to describe real applications of innovative transdisciplinary models and analyses in an effort to help move the research community closer toward identifying the causal mechanisms and associated environmental contexts underlying health disparities. The public health exposome is used as a contemporary focus for addressing the complex nature of this subject.
C1 [Langston, Michael A.; Baktash, Suzanne H.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA.
[Levine, Robert S.; Kilbourne, Barbara J.; Agboto, Vincent K.] Meharry Med Coll, Dept Family & Community Med, Nashville, TN 37208 USA.
[Rogers, Gary L., Jr.] Oak Ridge Natl Lab, Natl Inst Computat Sci, Oak Ridge, TN 37831 USA.
[Kershenbaum, Anne D.] Univ Tennessee, Dept Publ Hlth, Knoxville, TN 37996 USA.
[Coughlin, Steven S.] Emory Univ, Dept Epidemiol, Atlanta, GA 30322 USA.
[Saxton, Arnold M.] Univ Tennessee, Inst Agr, Dept Anim Sci, Knoxville, TN 37996 USA.
[Hood, Darryl B.] Ohio State Univ, Div Environm Hlth Sci, Coll Publ Hlth, Columbus, OH 43210 USA.
[Litchveld, Maureen Y.] Tulane Univ, Dept Global Environm Hlth Sci, New Orleans, LA 70112 USA.
[Oyana, Tonny J.; Matthews-Juarez, Patricia; Juarez, Paul D.] Univ Tennessee, Hlth Sci Ctr, Res Ctr Hlth Dispar Equ & Exposome, Memphis, TN 38163 USA.
RP Langston, MA (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA.
EM langston@eecs.utk.edu; rlevine@mmc.edu; bkilbourne@mmc.edu;
grogers3@utk.edu; akershen@utk.edu; sbaktash@utk.edu;
stevecatlanta@aol.com; asaxton@utk.edu; vagboto@mmc.edu;
dhood@cph.osu.edu; mlichtve@tulane.edu; toyana@uthsc.edu;
pmatthe3@uthsc.edu; pjuarez@uthsc.edu
OI Oyana, Tonny/0000-0003-0108-2370
FU National Institute on Minority Health and Health Disparities
[P20MD000516]; National Institute on Alcohol Abuse and Alcoholism
[R01AA018776]; National Institute on Drug Abuse [R01AA018776];
University of Tennessee Research Center on Health Disparities, Equity,
and the Exposome
FX This research has been supported in part by the National Institute on
Minority Health and Health Disparities under grant P20MD000516, jointly
by the National Institute on Alcohol Abuse and Alcoholism and the
National Institute on Drug Abuse under grant R01AA018776, and by the
University of Tennessee Research Center on Health Disparities, Equity,
and the Exposome. The content is solely the responsibility of the
authors, and does not necessarily represent the official views of the
National Institutes of Health or the University of Tennessee. We thank
the anonymous reviewers for their thoughtful critiques and helpful
comments.
NR 58
TC 3
Z9 3
U1 0
U2 14
PU MDPI AG
PI BASEL
PA POSTFACH, CH-4005 BASEL, SWITZERLAND
SN 1660-4601
J9 INT J ENV RES PUB HE
JI Int. J. Environ. Res. Public Health
PD OCT
PY 2014
VL 11
IS 10
BP 10419
EP 10443
DI 10.3390/ijerph111010419
PG 25
WC Environmental Sciences; Public, Environmental & Occupational Health
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health
GA AS6FA
UT WOS:000344358700030
PM 25310540
ER
PT J
AU Canini, L
Perelson, AS
AF Canini, Laetitia
Perelson, Alan S.
TI Viral kinetic modeling: state of the art
SO JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS
LA English
DT Review
DE Viral kinetics; Hepatitis C; Influenza; Mathematical modeling; Antiviral
drug; Resistance emergence
ID HEPATITIS-C VIRUS; INFLUENZA-A VIRUS; COMPLEX DECAY PROFILES; DYNAMICS
IN-VIVO; B-VIRUS; ANTIVIRAL THERAPY; IMMUNE-RESPONSE; PEGYLATED
INTERFERON-ALPHA-2B; DRUG EFFECTIVENESS; NS5A INHIBITOR
AB Viral kinetic (VK) modeling has led to increased understanding of the within host dynamics of viral infections and the effects of therapy. Here we review recent developments in the modeling of viral infection kinetics with emphasis on two infectious diseases: hepatitis C and influenza. We review how VK modeling has evolved from simple models of viral infections treated with a drug or drug cocktail with an assumed constant effectiveness to models that incorporate drug pharmacokinetics and pharmacodynamics, as well as phenomenological models that simply assume drugs have time varying-effectiveness. We also discuss multiscale models that include intracellular events in viral replication, models of drug-resistance, models that include innate and adaptive immune responses and models that incorporate cell-to-cell spread of infection. Overall, VK modeling has provided new insights into the understanding of the disease progression and the modes of action of several drugs. We expect that VK modeling will be increasingly used in the coming years to optimize drug regimens in order to improve therapeutic outcomes and treatment tolerability for infectious diseases.
C1 [Canini, Laetitia; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Perelson, AS (reprint author), Los Alamos Natl Lab, MS K710, Los Alamos, NM 87545 USA.
EM asp@lanl.gov
FU US Department of Energy [DE-AC52-06NA25396]; NIH [R01-AI028433,
P20-GM10345, R01-AI078881, R34-HL109334]; National Center for Research
Resources; Office of Research Infrastructure Programs (ORIP)
[R01-OD011095]
FX This work was done under the auspices of US Department of Energy under
contract DE-AC52-06NA25396, and supported by NIH Grants R01-AI028433,
P20-GM10345, R01-AI078881, R34-HL109334, and the National Center for
Research Resources and the Office of Research Infrastructure Programs
(ORIP) through Grant R01-OD011095.
NR 101
TC 13
Z9 13
U1 5
U2 26
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1567-567X
EI 1573-8744
J9 J PHARMACOKINET PHAR
JI J. Pharmacokinet. Pharmacodyn.
PD OCT
PY 2014
VL 41
IS 5
SI SI
BP 431
EP 443
DI 10.1007/s10928-014-9363-3
PG 13
WC Pharmacology & Pharmacy
SC Pharmacology & Pharmacy
GA AS5TE
UT WOS:000344331600004
PM 24961742
ER
PT J
AU Mullner, T
Zankel, A
Svec, F
Tallarek, U
AF Muellner, Tibor
Zankel, Armin
Svec, Frantisek
Tallarek, Ulrich
TI Finite-size effects in the 3D reconstruction and morphological analysis
of porous polymers
SO MATERIALS TODAY
LA English
DT Article
ID ANALYTICAL SILICA MONOLITHS; FOCUSED ION-BEAM; ELECTROCHEMICALLY ACTIVE
POLYMERS; LASER-SCANNING MICROSCOPY; RANDOM SPHERE PACKINGS; FUEL-CELL
MATERIALS; ELECTRON-MICROSCOPY; CHORD-LENGTH; PORE-SCALE; GEOMETRICAL
PARAMETERS
AB The morphology of porous polymers determines their transport characteristics and thus their efficiency in numerous applications. Tailoring the properties of a structure to the intended use presents a major challenge to materials scientists, as long as methods for an accurate morphological characterization are lacking. We demonstrate the large-volume reconstruction and analysis of a polymeric monolith using serial block face scanning electron microscopy. Skeleton and void space of the monolith are statistically evaluated to extract key structural parameters relevant to mass transport, and to quantify finite-size effects, which are usually neglected, on their values.
C1 [Muellner, Tibor; Tallarek, Ulrich] Univ Marburg, Dept Chem, D-35032 Marburg, Germany.
[Zankel, Armin] Graz Univ Technol, Inst Elect Microscopy, A-8010 Graz, Austria.
[Zankel, Armin] Ctr Elect Microscopy Graz, A-8010 Graz, Austria.
[Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Tallarek, U (reprint author), Univ Marburg, Dept Chem, Hans Meerwein Str, D-35032 Marburg, Germany.
EM tallarek@staff.uni-marburg.de
NR 97
TC 18
Z9 18
U1 5
U2 33
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1369-7021
EI 1873-4103
J9 MATER TODAY
JI Mater. Today
PD OCT
PY 2014
VL 17
IS 8
BP 404
EP 411
DI 10.1016/j.mattod.2014.07.003
PG 8
WC Materials Science, Multidisciplinary
SC Materials Science
GA AS3YA
UT WOS:000344209800020
ER
PT J
AU He, JT
Sun, XF
Shi, TJ
Schepmoes, AA
Fillmore, TL
Petyuk, VA
Xie, F
Zhao, R
Gritsenko, MA
Yang, F
Kitabayashi, N
Chae, SS
Rubin, MA
Siddiqui, J
Wei, JT
Chinnaiyan, AM
Qian, WJ
Smith, RD
Kagan, J
Srivastava, S
Rodland, KD
Liu, T
Camp, DG
AF He, Jintang
Sun, Xuefei
Shi, Tujin
Schepmoes, Athena A.
Fillmore, Thomas L.
Petyuk, Vladislav A.
Xie, Fang
Zhao, Rui
Gritsenko, Marina A.
Yang, Feng
Kitabayashi, Naoki
Chae, Sung-Suk
Rubin, Mark A.
Siddiqui, Javed
Wei, John T.
Chinnaiyan, Arul M.
Qian, Wei-Jun
Smith, Richard D.
Kagan, Jacob
Srivastava, Sudhir
Rodland, Karin D.
Liu, Tao
Camp, David G., II
TI Antibody-independent targeted quantification of TMPRSS2-ERG fusion
protein products in prostate cancer
SO MOLECULAR ONCOLOGY
LA English
DT Article
DE TMPRSS2-ERG gene fusion; ERG protein isoform; PRISM-SRM; Targeted
quantification; Prostate cancer
ID ABSOLUTE QUANTIFICATION; TRANSCRIPTION FACTORS; MASS-SPECTROMETRY; GENE
FUSIONS; PROTEOMICS; DISCOVERY; PLASMA; CELLS
AB Fusions between the transmembrane protease serine 2 (TMPRSS2) and ETS related gene (ERG) represent one of the most specific biomarkers that define a distinct molecular subtype of prostate cancer. Studies of TMPRSS2-ERG gene fusions have seldom been performed at the protein level, primarily due to the lack of high-quality antibodies suitable for quantitative studies. Herein, we applied a recently developed PRISM (high-pressure high-resolution separations with intelligent selection and multiplexing)-SRM (selected reaction monitoring) strategy for quantifying ERG protein in prostate cancer cell lines and tumors. The highly sensitive PRISM-SRM assays provided confident detection of 6 unique ERG peptides in both TMPRSS2-ERG positive cell lines and tissues, but not in cell lines or tissues lacking the TMPRSS2-ERG rearrangement, clearly indicating that ERG protein expression is significantly increased in the presence of the TMPRSS2ERG gene fusion. Significantly, our results provide evidence that two distinct ERG protein isoforms are simultaneously expressed in TMPRSS2-ERG positive samples as evidenced by the concomitant detection of two mutually exclusive peptides in two patient tumors and in the VCaP prostate cancer cell line. Three peptides, shared across almost all fusion protein products, were determined to be the most abundant peptides, providing "signature" peptides for detection of ERG over-expression resulting from TMPRSS2-ERG gene fusion. The PRISM-SRM assays provide valuable tools for studying TMPRSS2-ERG gene fusion protein products in prostate cancer. (C) 2014 Published by Elsevier B.V. on behalf of Federation of European Biochemical Societies.
C1 [He, Jintang; Sun, Xuefei; Shi, Tujin; Schepmoes, Athena A.; Petyuk, Vladislav A.; Xie, Fang; Gritsenko, Marina A.; Yang, Feng; Qian, Wei-Jun; Smith, Richard D.; Rodland, Karin D.; Liu, Tao; Camp, David G., II] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
[Fillmore, Thomas L.; Zhao, Rui] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
[Kitabayashi, Naoki; Chae, Sung-Suk; Rubin, Mark A.] Weill Cornell Med Coll, Dept Pathol & Lab Med, New York, NY USA.
[Siddiqui, Javed; Wei, John T.] Univ Michigan, Sch Med, Dept Urol, Ann Arbor, MI USA.
[Siddiqui, Javed; Chinnaiyan, Arul M.] Univ Michigan, Sch Med, Michigan Ctr Translat Pathol, Ann Arbor, MI USA.
[Kagan, Jacob; Srivastava, Sudhir] NCI, Div Canc Prevent, Rockville, MD USA.
RP Liu, T (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MSIN K8-98, Richland, WA 99352 USA.
EM tao.liu@pnnl.gov; dave.camp@pnnl.gov
RI Shi, Tujin/O-1789-2014; Smith, Richard/J-3664-2012; Wei,
John/E-8967-2012;
OI Smith, Richard/0000-0002-2381-2349; Petyuk,
Vladislav/0000-0003-4076-151X; Rubin, Mark/0000-0002-8321-9950
FU National Cancer Institute (NCI) Early Detection Research Network
Interagency Agreement [Y01-CN-05013-29]; National Institutes of Health
[P41 GM103493]; Environmental Molecular Sciences Laboratory; Department
of Energy and located at Pacific Northwest National Laboratory; Battelle
Memorial Institute for the Department of Energy [DE-ACO5-76RL0 1830]
FX Portions of this work were supported by the National Cancer Institute
(NCI) Early Detection Research Network Interagency Agreement
Y01-CN-05013-29 (to K.D.R. and D.G.C.), and National Institutes of
Health grant P41 GM103493 (to R.D.S.). The experimental work described
herein was performed in the Environmental Molecular Sciences Laboratory,
a national scientific user facility sponsored by the Department of
Energy and located at Pacific Northwest National Laboratory, which is
operated by Battelle Memorial Institute for the Department of Energy
under Contract DE-ACO5-76RL0 1830.
NR 32
TC 5
Z9 5
U1 1
U2 7
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1574-7891
EI 1878-0261
J9 MOL ONCOL
JI Mol. Oncol.
PD OCT
PY 2014
VL 8
IS 7
BP 1169
EP 1180
DI 10.1016/j.molonc.2014.02.004
PG 12
WC Oncology
SC Oncology
GA AS7KK
UT WOS:000344434900003
PM 25266362
ER
PT J
AU Fan, SF
Hatta, M
Kim, JH
Halfmann, P
Imai, M
Macken, CA
Le, MQ
Nguyen, T
Neumann, G
Kawaoka, Y
AF Fan, Shufang
Hatta, Masato
Kim, Jin Hyun
Halfmann, Peter
Imai, Masaki
Macken, Catherine A.
Le, Mai Quynh
Tung Nguyen
Neumann, Gabriele
Kawaoka, Yoshihiro
TI Novel residues in avian influenza virus PB2 protein affect virulence in
mammalian hosts
SO NATURE COMMUNICATIONS
LA English
DT Article
ID SINGLE-AMINO-ACID; A VIRUSES; WILD BIRDS; GENE CONTRIBUTES;
MOLECULAR-BASIS; CAP-BINDING; HONG-KONG; H5N1; PATHOGENICITY;
REPLICATION
AB Highly pathogenic avian H5N1 influenza viruses have sporadically transmitted to humans causing high mortality. The mechanistic basis for adaptation is still poorly understood, although several residues in viral protein PB2 are known to be important for this event. Here, we demonstrate that three residues, 147T, 339T and 588T, in PB2 play critical roles in the virulence of avian H5N1 influenza viruses in a mammalian host in vitro and in vivo and, together, result in a phenotype comparable to that conferred by the previously known PB2-627K mutation with respect to virus polymerase activity. A virus with the three residues and 627K in PB2, as has been isolated from a lethal human case, is more pathogenic than viruses with only the three residues or 627K in PB2. Importantly, H5N1 viruses bearing the former three PB2 residues have circulated widely in recent years in avian species in nature.
C1 [Fan, Shufang; Hatta, Masato; Kim, Jin Hyun; Halfmann, Peter; Imai, Masaki; Neumann, Gabriele; Kawaoka, Yoshihiro] Univ Wisconsin, Sch Vet Med, Influenza Res Inst, Madison, WI 53711 USA.
[Macken, Catherine A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Le, Mai Quynh] Natl Inst Hyg & Epidemiol, Dept Virol, Hanoi 10000, Vietnam.
[Tung Nguyen] Natl Ctr Vet Diagnost, Dept Anim Hlth, Hanoi 10000, Vietnam.
[Kawaoka, Yoshihiro] Univ Tokyo, Inst Med Sci, Dept Microbiol & Immunol, Div Virol, Tokyo 1088639, Japan.
[Kawaoka, Yoshihiro] Univ Tokyo, Int Res Ctr Infect Dis, Inst Med Sci, Tokyo 1088639, Japan.
[Kawaoka, Yoshihiro] Exploratory Res Adv Technol, Infect Induced Host Responses Project, Saitama 3320012, Japan.
RP Hatta, M (reprint author), Univ Wisconsin, Sch Vet Med, Influenza Res Inst, Madison, WI 53711 USA.
EM mhatta@facstaff.wisc.edu; kawaokay@svm.vetmed.wisc.edu
FU NIAID [HHSN266200700010C]; Japan Initiative for Global Research Network
on Infectious Diseases from the Ministry of Education, Culture, Sports,
Science, and Technology, Japan; ERATO, Japan; National Institute of
Allergy and Infectious Diseases Public Health Service research grant
FX We thank Susan Watson for scientific editing. We thank Kelly Moore, Lisa
Burley and Sasha Karasin for technical assistance. We thank the Centers
for Disease Control and Prevention for providing us with
A/Muscovy/duck/Vietnam/NCVD18/2003 virus. We also thank Drs Peter
Staeheli and Otto Haller (University of Freiburg, Freiburg, Germany) for
providing Mx1+/+ fertilized mouse embryos. This work was
supported by the NIAID-funded Center for Research on Influenza
Pathogenesis (CRIP, HHSN266200700010C), by the Japan Initiative for
Global Research Network on Infectious Diseases from the Ministry of
Education, Culture, Sports, Science, and Technology, Japan, by ERATO,
Japan and by a National Institute of Allergy and Infectious Diseases
Public Health Service research grant.
NR 48
TC 19
Z9 19
U1 2
U2 13
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD OCT
PY 2014
VL 5
DI 10.1038/ncomms6021
PG 12
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AR9ZB
UT WOS:000343935100001
PM 25289523
ER
PT J
AU Guo, H
Khan, MI
Cheng, C
Fan, W
Dames, C
Wu, J
Minor, AM
AF Guo, H.
Khan, M. I.
Cheng, C.
Fan, W.
Dames, C.
Wu, J.
Minor, A. M.
TI Vanadium dioxide nanowire-based microthermometer for quantitative
evaluation of electron beam heating
SO NATURE COMMUNICATIONS
LA English
DT Article
ID INSULATOR TRANSITION; THERMAL MICROSCOPY; VO2
AB Temperature measurement is critical for many technological applications and scientific experiments, and different types of thermometers have been developed to detect temperature at macroscopic length scales. However, quantitative measurement of the temperature of nanostructures remains a challenge. Here, we show a new type of microthermometer based on a vanadium dioxide nanowire. Its mechanism is derived from the metal-insulator transition of vanadium dioxide at 68 degrees C. As our results demonstrate, this microthermometer can serve as a thermal flow meter to investigate sample heating from the incident electron beam using a transmission electron microscope. Owing to its small size the vanadium dioxide nanowire-based microthermometer has a large measurement range and high sensitivity, making it a good candidate to explore the temperature environment of small spaces or to monitor the temperature of tiny, nanoscale objects.
C1 [Guo, H.; Cheng, C.; Fan, W.; Wu, J.; Minor, A. M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Guo, H.; Minor, A. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Elect Microscopy Mol Foundry, Berkeley, CA 94720 USA.
[Khan, M. I.; Dames, C.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
RP Minor, AM (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
EM aminor@berkeley.edu
RI Wu, Junqiao/G-7840-2011; Foundry, Molecular/G-9968-2014
OI Wu, Junqiao/0000-0002-1498-0148;
FU US Department of Energy Early Career Award [DE-FG02-11ER46796]; UC
Berkeley Graduate Division Block Grant Award; Saitama University/NEDO
[SU-034142]; Office of Science, Office of Basic Energy Sciences,
Scientific User Facilities Division, of the US Department of Energy
[DE-AC02-05CH11231]
FX The in situ experiments were performed at the Molecular Foundry, which
is supported by the Office of Science, Office of Basic Energy Sciences,
Scientific User Facilities Division, of the US Department of Energy
under Contract No. DE-AC02-05CH11231. Materials synthesis and data
analysis were supported by the US Department of Energy Early Career
Award DE-FG02-11ER46796. M.I.K. and C.D. acknowledge partial support
from a UC Berkeley Graduate Division Block Grant Award and Saitama
University/NEDO (SU-034142).
NR 19
TC 3
Z9 3
U1 9
U2 54
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD OCT
PY 2014
VL 5
AR 4986
DI 10.1038/ncomms5986
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AR9YU
UT WOS:000343934500001
PM 25307160
ER
PT J
AU Piao, SL
Nan, HJ
Huntingford, C
Ciais, P
Friedlingstein, P
Sitch, S
Peng, SS
Ahlstrom, A
Canadell, JG
Cong, N
Levis, S
Levy, PE
Liu, LL
Lomas, MR
Mao, JF
Myneni, RB
Peylin, P
Poulter, B
Shi, XY
Yin, GD
Viovy, N
Wang, T
Wang, XH
Zaehle, S
Zeng, N
Zeng, ZZ
Chen, AP
AF Piao, Shilong
Nan, Huijuan
Huntingford, Chris
Ciais, Philippe
Friedlingstein, Pierre
Sitch, Stephen
Peng, Shushi
Ahlstrom, Anders
Canadell, Josep G.
Cong, Nan
Levis, Sam
Levy, Peter E.
Liu, Lingli
Lomas, Mark R.
Mao, Jiafu
Myneni, Ranga B.
Peylin, Philippe
Poulter, Ben
Shi, Xiaoying
Yin, Guodong
Viovy, Nicolas
Wang, Tao
Wang, Xuhui
Zaehle, Soenke
Zeng, Ning
Zeng, Zhenzhong
Chen, Anping
TI Evidence for a weakening relationship between interannual temperature
variability and northern vegetation activity
SO NATURE COMMUNICATIONS
LA English
DT Article
ID NET PRIMARY PRODUCTION; CARBON-DIOXIDE; CLIMATE; CO2; ACCLIMATION;
ADAPTATION; ECOSYSTEMS; DROUGHT; TRENDS; GROWTH
AB Satellite-derived Normalized Difference Vegetation Index (NDVI), a proxy of vegetation productivity, is known to be correlated with temperature in northern ecosystems. This relationship, however, may change over time following alternations in other environmental factors. Here we show that above 30 degrees N, the strength of the relationship between the interannual variability of growing season NDVI and temperature (partial correlation coefficient RNDV-GT) declined substantially between 1982 and 2011. This decrease in RNDVI-GT is mainly observed in temperate and arctic ecosystems, and is also partly reproduced by process-based ecosystem model results. In the temperate ecosystem, the decrease in RNDVI-GT coincides with an increase in drought. In the arctic ecosystem, it may be related to a nonlinear response of photosynthesis to temperature, increase of hot extreme days and shrub expansion over grass-dominated tundra. Our results caution the use of results from interannual time scales to constrain the decadal response of plants to ongoing warming.
C1 [Piao, Shilong; Cong, Nan; Wang, Tao] Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Alpine Ecol & Biodivers, Beijing 100085, Peoples R China.
[Piao, Shilong; Nan, Huijuan; Peng, Shushi; Yin, Guodong; Wang, Xuhui; Zeng, Zhenzhong] Peking Univ, Coll Urban & Environm Sci, Sino French Inst Earth Syst Sci, Beijing 100871, Peoples R China.
[Piao, Shilong] Chinese Acad Sci, CAS Ctr Excellence Tibetan Plateau Earth Sci, Beijing 100085, Peoples R China.
[Huntingford, Chris] Ctr Ecol & Hydrol, Wallingford OX10 8BB, Oxon, England.
[Ciais, Philippe; Peng, Shushi; Peylin, Philippe; Poulter, Ben; Viovy, Nicolas; Wang, Tao] UVSQ, CNRS, CEA, Lab Sci Climat & Environn, F-91191 Gif Sur Yvette, France.
[Friedlingstein, Pierre] Univ Exeter, Coll Engn Comp & Math, Exeter EX4 4QF, Devon, England.
[Sitch, Stephen] Univ Exeter, Coll Life & Environm Sci, Exeter EX4 4RJ, Devon, England.
[Ahlstrom, Anders] Lund Univ, Dept Earth & Ecosyst Sci, SE-22362 Lund, Sweden.
[Canadell, Josep G.] CSIRO, Ocean & Atmospher Flagship, Global Carbon Project, Canberra, ACT 2601, Australia.
[Levis, Sam] Natl Ctr Atmospher Res, Boulder, CO 80301 USA.
[Levy, Peter E.] Ctr Ecol & Hydrol, Penicuik EH26 0QB, Midlothian, Scotland.
[Liu, Lingli] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China.
[Lomas, Mark R.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England.
[Mao, Jiafu; Shi, Xiaoying] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA.
[Mao, Jiafu; Shi, Xiaoying] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Myneni, Ranga B.] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA.
[Zaehle, Soenke] Max Planck Inst Biogeochem, D-07701 Jena, Germany.
[Zeng, Ning] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20740 USA.
[Chen, Anping] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA.
RP Piao, SL (reprint author), Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Alpine Ecol & Biodivers, Beijing 100085, Peoples R China.
EM slpiao@pku.edu.cn
RI Huntingford, Chris/A-4307-2008; Chen, Anping/H-9960-2014; Myneni,
Ranga/F-5129-2012; Mao, Jiafu/B-9689-2012; Sitch, Stephen/F-8034-2015;
Zaehle, Sonke/C-9528-2017; Canadell, Josep/E-9419-2010; wang,
tao/H-2830-2013; Peng, Shushi/J-4779-2014; Liu, Lingli/A-7771-2008;
Zeng, Ning/A-3130-2008; Vuichard, Nicolas/A-6629-2011; Friedlingstein,
Pierre/H-2700-2014; Ahlstrom, Anders/F-3215-2017;
OI Mao, Jiafu/0000-0002-2050-7373; Sitch, Stephen/0000-0003-1821-8561;
Zaehle, Sonke/0000-0001-5602-7956; Canadell, Josep/0000-0002-8788-3218;
wang, tao/0000-0003-4792-5898; Peng, Shushi/0000-0001-5098-726X; Liu,
Lingli/0000-0002-5696-3151; Zeng, Ning/0000-0002-7489-7629; Ahlstrom,
Anders/0000-0003-1642-0037; Huntingford, Chris/0000-0002-5941-7770;
Poulter, Benjamin/0000-0002-9493-8600
FU Strategic Priority Research Program (B) of the Chinese Academy of
Sciences [XDB03030404]; National Basic Research Program of China
[2013CB956303]; Chinese Ministry of Environmental Protection
[201209031]; National Natural Science Foundation of China [41125004,
31321061]; 111 Project [B14001]; US Department of Energy (DOE), Office
of Science, Biological and Environmental Research; DOE
[DE-AC05-00OR22725]
FX This study was supported by a Strategic Priority Research Program (B) of
the Chinese Academy of Sciences (Grant No. XDB03030404), the National
Basic Research Program of China (grant number 2013CB956303), Chinese
Ministry of Environmental Protection Grant (201209031), National Natural
Science Foundation of China (41125004 and 31321061) and the 111 Project
(B14001). J.M. and X.S. are supported by the US Department of Energy
(DOE), Office of Science, Biological and Environmental Research. Oak
Ridge National Laboratory is managed by UT-BATTELLE for DOE under
contract DE-AC05-00OR22725.
NR 41
TC 31
Z9 35
U1 16
U2 151
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD OCT
PY 2014
VL 5
AR 5018
DI 10.1038/ncomms6018
PG 7
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AR9ZA
UT WOS:000343935000001
PM 25318638
ER
PT J
AU Stoica, GM
Stoica, AD
Miller, MK
Ma, D
AF Stoica, G. M.
Stoica, A. D.
Miller, M. K.
Ma, D.
TI Temperature-dependent elastic anisotropy and mesoscale deformation in a
nanostructured ferritic alloy
SO NATURE COMMUNICATIONS
LA English
DT Article
ID INTERGRANULAR STRAINS; STRENGTHENING MECHANISMS; POLYCRYSTALS;
CONSTANTS; STRESSES; STEEL; DIFFRACTION; NANOCLUSTERS; ZIRCALOY-2;
GENERATION
AB Nanostructured ferritic alloys are a new class of ultrafine-grained oxide dispersion-strengthened steels that have promising properties for service in extreme environments in future nuclear reactors. This is due to the remarkable stability of their complex microstructures containing numerous Y-Ti-O nanoclusters within grains and along grain boundaries. Although nanoclusters account primarily for the exceptional resistance to irradiation damage and high-temperature creep, little is known about the mechanical roles of the polycrystalline grains that constitute the ferritic matrix. Here we report an in situ mesoscale characterization of anisotropic responses of ultrafine ferrite grains to stresses using state-of-the-art neutron diffraction. We show the experimental determination of single-crystal elastic constants for a 14YWT alloy, and reveal a strong temperature-dependent elastic anisotropy that leads to elastic softening and instability of the ferrite. We also demonstrate, from anisotropy-induced intergranular strains, that a deformation crossover exists from low-temperature lattice hardening to high-temperature lattice softening in response to extensive plastic deformation.
C1 [Stoica, G. M.; Stoica, A. D.; Ma, D.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Spallat Neutron Source, Oak Ridge, TN 37831 USA.
[Miller, M. K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Ma, D (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, Spallat Neutron Source, Oak Ridge, TN 37831 USA.
EM dongma@ornl.gov
RI Ma, Dong/G-5198-2011; Stoica, Alexandru/K-3614-2013
OI Ma, Dong/0000-0003-3154-2454; Stoica, Alexandru/0000-0001-5118-0134
FU US Department of Energy, Division of Materials Sciences and Engineering;
Scientific User Facilities Division, Office of Basic Energy Sciences, US
Department of Energy at Oak Ridge National Laboratory
[DE-AC05-00OR22725]; UT-Battelle
FX This research was supported by the US Department of Energy, Division of
Materials Sciences and Engineering. The neutron scattering work at the
SNS was sponsored by the Scientific User Facilities Division, Office of
Basic Energy Sciences, US Department of Energy, at Oak Ridge National
Laboratory under contract DE-AC05-00OR22725 with UT-Battelle. The
authors (G. M. S. and D. M.) thank Dr E.A. Payzant for useful
discussions. A. D. S. and D. M. acknowledge the conceptual contribution
of Professor X.-L. Wang (City University Hong Kong) to the early stage
of this study. We also thank Harley Skorpenske for technical support at
VULCAN.
NR 42
TC 13
Z9 13
U1 6
U2 37
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD OCT
PY 2014
VL 5
AR 5178
DI 10.1038/ncomms6178
PG 8
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AS0QF
UT WOS:000343981800002
PM 25300893
ER
PT J
AU Sun, ZJ
Wells, D
Segebade, C
Chemerisov, S
Quigley, K
AF Sun Zai-Jing
Wells, D.
Segebade, C.
Chemerisov, S.
Quigley, K.
TI A study of quasi-absolute method in photon activation analysis
SO NUCLEAR SCIENCE AND TECHNIQUES
LA English
DT Article
DE Photon activation analysis (PAA); Monte Carlo Simulation; LINAC
ID GIANT DIPOLE RESONANCE; MONTE-CARLO-SIMULATION; OR-EQUAL-TO;
CROSS-SECTIONS; MASS REGION; THICK TARGETS; NEUTRON; NUCLEI;
BREMSSTRAHLUNG; SAMPLES
AB Relative methods, which are performed with the assistance of reference materials, are widely used in photon activation analysis (PAA). On the contrary, absolute methods, which are conducted without any reference material, are rarely applied due to the difficulty in obtaining photon flux. To realize absolute measurement in PAA, we retrieve photon flux in the sample via Monte Carlo simulation and raise a novel procedure-quasi-absolute method. With simulated photon flux and cross section data from existing databases, it is possible to calculate the concentration of target elements in the sample straightforwardly. A controlled experiment indicates that results from the quasi-absolute method for certain elements are nearly comparable to relative methods in practice. This technique of absolute measurement has room for improvement in the future and can serve as a validation technique for experimental data on cross sections as well.
C1 [Sun Zai-Jing; Chemerisov, S.; Quigley, K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Wells, D.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA.
[Segebade, C.] Idaho State Univ, Idaho Accelerator Ctr, Pocatello, ID 83209 USA.
RP Sun, ZJ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM sunz@anl.gov
FU U.S. Department of Energy, Basic Energy Sciences, Office of Science
[DE-AC02-06CH11357]
FX Supported by the U.S. Department of Energy, Basic Energy Sciences,
Office of Science (No. DE-AC02-06CH11357)
NR 41
TC 1
Z9 1
U1 1
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1001-8042
EI 2210-3147
J9 NUCL SCI TECH
JI Nucl. Sci. Tech.
PD OCT
PY 2014
VL 25
IS 5
AR 050201
PG 6
WC Nuclear Science & Technology; Physics, Nuclear
SC Nuclear Science & Technology; Physics
GA AS7PJ
UT WOS:000344447300003
ER
PT J
AU Pan, LH
Li, J
Tai, YY
Graf, MJ
Zhu, JX
Ting, CS
AF Pan, Lihua
Li, Jian
Tai, Yuan-Yen
Graf, Matthias J.
Zhu, Jian-Xin
Ting, C. S.
TI Evolution of quasiparticle states with and without a Zn impurity in
doped 122 iron pnictides
SO PHYSICAL REVIEW B
LA English
DT Article
ID UNCONVENTIONAL SUPERCONDUCTORS; ENERGY GAPS; BA0.6K0.4FE2AS2;
SPECTROSCOPY; SURFACE; WAVE; SYMMETRY; MODEL
AB Based on a minimal two-orbital model [Tai et al., Europhys. Lett. 103, 67001 (2013)], which captures the canonical electron-hole-doping phase diagram of the iron-pnictide BaFe2As2, we study the evolution of quasiparticle states as a function of doping using the Bogoliubov-de Gennes equations with and without a single impurity. Analyzing the density of states of uniformly doped samples, we are able to identify the origin of the two superconducting gaps observed in optimally hole- or electron-doped systems. The local density of states (LDOS) is then examined near a single impurity in samples without antiferromagnetic order. The qualitative features of our results near the single impurity are consistent with a work based on a five-orbital model [T. Kariyado et al., J. Phys. Soc. Jpn. 79, 083704 (2010)]. Some of the results are consistent with recent angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy experiments. This further supports the validity of our two-orbital model in dealing with LDOS in the single-impurity problem. Finally, we investigate the evolution of the LDOS with doping near a single impurity in the unitary or strong scattering limit, such as Zn replacing Fe. The positions of the in-gap resonance peaks exhibited in our LDOS may indirectly reflect the evolution of the Fermi surface topology according to the phase diagram. Our prediction of in-gap states and the evolution of the LDOS near a strong scattering single impurity can be validated by further experiments probing the local quasiparticle spectrum.
C1 [Pan, Lihua; Li, Jian; Tai, Yuan-Yen; Ting, C. S.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA.
[Pan, Lihua; Li, Jian; Tai, Yuan-Yen; Ting, C. S.] Univ Houston, Dept Phys, Houston, TX 77204 USA.
[Pan, Lihua] Yangzhou Univ, Sch Phys Sci & Technol, Yangzhou 225002, Peoples R China.
[Tai, Yuan-Yen; Graf, Matthias J.; Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Zhu, Jian-Xin] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
RP Pan, LH (reprint author), Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA.
FU Texas Center for Superconductivity at the University of Houston; Robert
A. Welch Foundation [E-1146]; US AFOSR [FA9550-09-1-0656]; US DOE
[DE-AC52-06NA25396]; LDRD program; Center for Integrated
Nanotechnologies, an Office of Basic Energy Sciences user facility
FX We thank Hong-Yi Chen and Bo Li for helpful discussions. This work was
supported in part by the Texas Center for Superconductivity at the
University of Houston and by the Robert A. Welch Foundation under the
Grant No. E-1146, and also by the US AFOSR Grant No. FA9550-09-1-0656
(L.P., J.L., Y.-Y.T., and C.S.T.). Work at the Los Alamos National
Laboratory was performed under the auspices of the US DOE Contract No.
DE-AC52-06NA25396 and supported through the LDRD program (Y.-Y.T. and
M.J.G.), and the Center for Integrated Nanotechnologies, an Office of
Basic Energy Sciences user facility (J.-X.Z.).
NR 66
TC 3
Z9 3
U1 2
U2 15
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD OCT 1
PY 2014
VL 90
IS 13
AR 134501
DI 10.1103/PhysRevB.90.134501
PG 12
WC Physics, Condensed Matter
SC Physics
GA AS1DB
UT WOS:000344016900001
ER
PT J
AU Zhang, CL
Song, Y
Regnault, LP
Su, YX
Enderle, M
Kulda, J
Tan, GT
Sims, ZC
Egami, T
Si, QM
Dai, PC
AF Zhang, Chenglin
Song, Yu
Regnault, L. -P.
Su, Yixi
Enderle, M.
Kulda, J.
Tan, Guotai
Sims, Zachary C.
Egami, Takeshi
Si, Qimiao
Dai, Pengcheng
TI Anisotropic neutron spin resonance in underdoped superconducting
NaFe1-xCoxAs
SO PHYSICAL REVIEW B
LA English
DT Article
AB We use polarized inelastic neutron scattering (INS) to study spin excitations in superconducting NaFe0.985Co0.015As (C15) with static antiferromagnetic (AF) order along the a axis of the orthorhombic structure and NaFe0.935Co0.045As (C45) without AF order. In previous unpolarized INS work, spin excitations in C15 were found to have a dispersive sharp resonance near E-r1 = 3.25 meV and a broad dispersionless mode at E-r2 = 6 meV. Our neutron polarization analysis reveals that the dispersive resonance in C15 is highly anisotropic and polarized along the a and c axes, while the dispersionless mode is isotropic similar to that of C45. Since the a-axis polarized spin excitations of the anisotropic resonance appear below T-c, our data suggests that the itinerant electrons contributing to the magnetism are also coupled to the superconductivity.
C1 [Zhang, Chenglin; Song, Yu; Si, Qimiao; Dai, Pengcheng] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.
[Zhang, Chenglin; Tan, Guotai; Sims, Zachary C.; Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Regnault, L. -P.] UJF Grenoble 1, INAC, UMR E CEA, SPSMS MDN, F-38054 Grenoble, France.
[Su, Yixi] Forschungszentrum Julich, Julich Ctr Neutron Sci, Outstn MLZ, D-85747 Garching, Germany.
[Enderle, M.; Kulda, J.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France.
[Egami, Takeshi] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Zhang, CL (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.
EM pdai@rice.edu
RI Dai, Pengcheng /C-9171-2012; Su, Yixi/K-9119-2013; Kulda,
Jiri/G-8667-2016;
OI Dai, Pengcheng /0000-0002-6088-3170; Su, Yixi/0000-0001-8434-1758;
Kulda, Jiri/0000-0002-0570-0570; Song, Yu/0000-0002-3460-393X
FU BES [DE-SC0012311]; NSF [DMR-1309531]; Robert A. Welch Foundation
[C-1839, C-1411]; US DOE BES through EPSCoR [DE-FG02-08ER46528]; US DOE
FX We thank Weicheng Lv, Ilya Eremin, Rong Yu, and E. Nica for useful
discussions. The crystal growth and neutron scattering work at Rice was
supported by the US DOE, BES, Contract No. DE-SC0012311 (P.D.). Work at
Rice University was supported by NSF Grant No. DMR-1309531 (Q.S.) and
Robert A. Welch Foundation Grants No. C-1839 (P.D.) and No. C-1411 (Q.
S.). C.L.Z. and T.E. are partially supported by the US DOE BES through
EPSCoR Grant No. DE-FG02-08ER46528.
NR 36
TC 7
Z9 7
U1 1
U2 14
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD OCT 1
PY 2014
VL 90
IS 14
AR 140502
DI 10.1103/PhysRevB.90.140502
PG 5
WC Physics, Condensed Matter
SC Physics
GA AS1DF
UT WOS:000344017500002
ER
PT J
AU An, FP
Balantekin, AB
Band, HR
Beriguete, W
Bishai, M
Blyth, S
Butorov, I
Cao, GF
Cao, J
Chan, YL
Chang, JF
Chang, LC
Chang, Y
Chasman, C
Chen, H
Chen, QY
Chen, SM
Chen, X
Chen, X
Chen, YX
Chen, Y
Cheng, YP
Cherwinka, JJ
Chu, MC
Cummings, JP
de Arcos, J
Deng, ZY
Ding, YY
Diwan, MV
Draeger, E
Du, XF
Dwyer, DA
Edwards, WR
Ely, SR
Fu, JY
Ge, LQ
Gill, R
Gonchar, M
Gong, GH
Gong, H
Grassi, M
Gu, WQ
Guan, MY
Guo, XH
Hackenburg, RW
Han, GH
Hans, S
He, M
Heeger, KM
Heng, YK
Hinrichs, P
Hor, YK
Hsiung, YB
Hu, BZ
Hu, LM
Hu, LJ
Hu, T
Hu, W
Huang, EC
Huang, H
Huang, XT
Huber, P
Hussain, G
Isvan, Z
Jaffe, DE
Jaffke, P
Jen, KL
Jetter, S
Ji, XP
Ji, XL
Jiang, HJ
Jiao, JB
Johnson, RA
Kang, L
Kettell, SH
Kramer, M
Kwan, KK
Kwok, MW
Kwok, T
Lai, WC
Lau, K
Lebanowski, L
Lee, J
Lei, RT
Leitner, R
Leung, A
Leung, JKC
Lewis, CA
Li, DJ
Li, F
Li, GS
Li, QJ
Li, WD
Li, XN
Li, XQ
Li, YF
Li, ZB
Liang, H
Lin, CJ
Lin, GL
Lin, PY
Lin, SK
Lin, YC
Ling, JJ
Link, JM
Littenberg, L
Littlejohn, BR
Liu, DW
Liu, H
Liu, JL
Liu, JC
Liu, SS
Liu, YB
Lu, C
Lu, HQ
Luk, KB
Ma, QM
Ma, XY
Ma, XB
Ma, YQ
McDonald, KT
McFarlane, MC
McKeown, RD
Meng, Y
Mitchell, I
Kebwaro, JM
Nakajima, Y
Napolitano, J
Naumov, D
Naumova, E
Nemchenok, I
Ngai, HY
Ning, Z
Ochoa-Ricoux, JP
Olshevski, A
Patton, S
Pec, V
Peng, JC
Piilonen, LE
Pinsky, L
Pun, CSJ
Qi, FZ
Qi, M
Qian, X
Raper, N
Ren, B
Ren, J
Rosero, R
Roskovec, B
Ruan, XC
Shao, BB
Steiner, H
Sun, GX
Sun, JL
Tam, YH
Tang, X
Themann, H
Tsang, KV
Tsang, RHM
Tull, CE
Tung, YC
Viren, B
Vorobel, V
Wang, CH
Wang, LS
Wang, LY
Wang, M
Wang, NY
Wang, RG
Wang, W
Wang, WW
Wang, X
Wang, YF
Wang, Z
Wang, Z
Wang, ZM
Webber, DM
Wei, HY
Wei, YD
Wen, LJ
Whisnant, K
White, CG
Whitehead, L
Wise, T
Wong, HLH
Wong, SCF
Worcester, E
Wu, Q
Xia, DM
Xia, JK
Xia, X
Xing, ZZ
Xu, JY
Xu, JL
Xu, J
Xu, Y
Xue, T
Yan, J
Yang, CC
Yang, L
Yang, MS
Yang, MT
Ye, M
Yeh, M
Yeh, YS
Young, BL
Yu, GY
Yu, JY
Yu, ZY
Zang, SL
Zeng, B
Zhan, L
Zhang, C
Zhang, FH
Zhang, JW
Zhang, QM
Zhang, Q
Zhang, SH
Zhang, YC
Zhang, YM
Zhang, YH
Zhang, YX
Zhang, ZJ
Zhang, ZY
Zhang, ZP
Zhao, J
Zhao, QW
Zhao, Y
Zhao, YB
Zheng, L
Zhong, WL
Zhou, L
Zhou, ZY
Zhuang, HL
Zou, JH
AF An, F. P.
Balantekin, A. B.
Band, H. R.
Beriguete, W.
Bishai, M.
Blyth, S.
Butorov, I.
Cao, G. F.
Cao, J.
Chan, Y. L.
Chang, J. F.
Chang, L. C.
Chang, Y.
Chasman, C.
Chen, H.
Chen, Q. Y.
Chen, S. M.
Chen, X.
Chen, X.
Chen, Y. X.
Chen, Y.
Cheng, Y. P.
Cherwinka, J. J.
Chu, M. C.
Cummings, J. P.
de Arcos, J.
Deng, Z. Y.
Ding, Y. Y.
Diwan, M. V.
Draeger, E.
Du, X. F.
Dwyer, D. A.
Edwards, W. R.
Ely, S. R.
Fu, J. Y.
Ge, L. Q.
Gill, R.
Gonchar, M.
Gong, G. H.
Gong, H.
Grassi, M.
Gu, W. Q.
Guan, M. Y.
Guo, X. H.
Hackenburg, R. W.
Han, G. H.
Hans, S.
He, M.
Heeger, K. M.
Heng, Y. K.
Hinrichs, P.
Hor, Y. K.
Hsiung, Y. B.
Hu, B. Z.
Hu, L. M.
Hu, L. J.
Hu, T.
Hu, W.
Huang, E. C.
Huang, H.
Huang, X. T.
Huber, P.
Hussain, G.
Isvan, Z.
Jaffe, D. E.
Jaffke, P.
Jen, K. L.
Jetter, S.
Ji, X. P.
Ji, X. L.
Jiang, H. J.
Jiao, J. B.
Johnson, R. A.
Kang, L.
Kettell, S. H.
Kramer, M.
Kwan, K. K.
Kwok, M. W.
Kwok, T.
Lai, W. C.
Lau, K.
Lebanowski, L.
Lee, J.
Lei, R. T.
Leitner, R.
Leung, A.
Leung, J. K. C.
Lewis, C. A.
Li, D. J.
Li, F.
Li, G. S.
Li, Q. J.
Li, W. D.
Li, X. N.
Li, X. Q.
Li, Y. F.
Li, Z. B.
Liang, H.
Lin, C. J.
Lin, G. L.
Lin, P. Y.
Lin, S. K.
Lin, Y. C.
Ling, J. J.
Link, J. M.
Littenberg, L.
Littlejohn, B. R.
Liu, D. W.
Liu, H.
Liu, J. L.
Liu, J. C.
Liu, S. S.
Liu, Y. B.
Lu, C.
Lu, H. Q.
Luk, K. B.
Ma, Q. M.
Ma, X. Y.
Ma, X. B.
Ma, Y. Q.
McDonald, K. T.
McFarlane, M. C.
McKeown, R. D.
Meng, Y.
Mitchell, I.
Kebwaro, J. Monari
Nakajima, Y.
Napolitano, J.
Naumov, D.
Naumova, E.
Nemchenok, I.
Ngai, H. Y.
Ning, Z.
Ochoa-Ricoux, J. P.
Olshevski, A.
Patton, S.
Pec, V.
Peng, J. C.
Piilonen, L. E.
Pinsky, L.
Pun, C. S. J.
Qi, F. Z.
Qi, M.
Qian, X.
Raper, N.
Ren, B.
Ren, J.
Rosero, R.
Roskovec, B.
Ruan, X. C.
Shao, B. B.
Steiner, H.
Sun, G. X.
Sun, J. L.
Tam, Y. H.
Tang, X.
Themann, H.
Tsang, K. V.
Tsang, R. H. M.
Tull, C. E.
Tung, Y. C.
Viren, B.
Vorobel, V.
Wang, C. H.
Wang, L. S.
Wang, L. Y.
Wang, M.
Wang, N. Y.
Wang, R. G.
Wang, W.
Wang, W. W.
Wang, X.
Wang, Y. F.
Wang, Z.
Wang, Z.
Wang, Z. M.
Webber, D. M.
Wei, H. Y.
Wei, Y. D.
Wen, L. J.
Whisnant, K.
White, C. G.
Whitehead, L.
Wise, T.
Wong, H. L. H.
Wong, S. C. F.
Worcester, E.
Wu, Q.
Xia, D. M.
Xia, J. K.
Xia, X.
Xing, Z. Z.
Xu, J. Y.
Xu, J. L.
Xu, J.
Xu, Y.
Xue, T.
Yan, J.
Yang, C. C.
Yang, L.
Yang, M. S.
Yang, M. T.
Ye, M.
Yeh, M.
Yeh, Y. S.
Young, B. L.
Yu, G. Y.
Yu, J. Y.
Yu, Z. Y.
Zang, S. L.
Zeng, B.
Zhan, L.
Zhang, C.
Zhang, F. H.
Zhang, J. W.
Zhang, Q. M.
Zhang, Q.
Zhang, S. H.
Zhang, Y. C.
Zhang, Y. M.
Zhang, Y. H.
Zhang, Y. X.
Zhang, Z. J.
Zhang, Z. Y.
Zhang, Z. P.
Zhao, J.
Zhao, Q. W.
Zhao, Y.
Zhao, Y. B.
Zheng, L.
Zhong, W. L.
Zhou, L.
Zhou, Z. Y.
Zhuang, H. L.
Zou, J. H.
CA Daya Bay Collaboration
TI Search for a Light Sterile Neutrino at Daya Bay
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID OSCILLATIONS; NU(MU)
AB A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiment's unique configuration of multiple baselines from six 2.9 GW(th) nuclear reactors to six antineutrino detectors deployed in two near (effective baselines 512 m and 561 m) and one far (1579 m) underground experimental halls makes it possible to test for oscillations to a fourth (sterile) neutrino in the 10(-3) eV(2) < vertical bar Delta m(41)(2)vertical bar < 0.3 eV(2) range. The relative spectral distortion due to the disappearance of electron antineutrinos was found to be consistent with that of the three-flavor oscillation model. The derived limits on sin(2) 2 theta(14) cover the 10(-3) eV(2) less than or similar to vertical bar Delta m(41)(2)vertical bar less than or similar to 0.1 eV(2) region, which was largely unexplored.
C1 [An, F. P.] E China Univ Sci & Technol, Inst Modern Phys, Shanghai 200237, Peoples R China.
[Balantekin, A. B.; Band, H. R.; Cherwinka, J. J.; Heeger, K. M.; Hinrichs, P.; Lewis, C. A.; McFarlane, M. C.; Webber, D. M.; Wise, T.] Univ Wisconsin, Madison, WI USA.
[Beriguete, W.; Bishai, M.; Chasman, C.; Diwan, M. V.; Gill, R.; Hackenburg, R. W.; Hans, S.; Hu, L. M.; Isvan, Z.; Jaffe, D. E.; Kettell, S. H.; Ling, J. J.; Littenberg, L.; Qian, X.; Rosero, R.; Themann, H.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Blyth, S.; Hsiung, Y. B.; Tung, Y. C.] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan.
[Butorov, I.; Gonchar, M.; Naumov, D.; Nemchenok, I.; Olshevski, A.] Joint Inst Nucl Res, Dubna, Moscow Region, Russia.
[Cao, G. F.; Cao, J.; Chang, J. F.; Chen, H.; Chen, X.; Cheng, Y. P.; Deng, Z. Y.; Ding, Y. Y.; Du, X. F.; Fu, J. Y.; Grassi, M.; Guan, M. Y.; He, M.; Heng, Y. K.; Hu, T.; Hu, W.; Jetter, S.; Ji, X. L.; Li, F.; Li, Q. J.; Li, W. D.; Li, X. N.; Li, Y. F.; Liu, J. C.; Liu, Y. B.; Lu, H. Q.; Ma, Q. M.; Ma, X. Y.; Ma, Y. Q.; Ning, Z.; Qi, F. Z.; Sun, G. X.; Tang, X.; Wang, L. S.; Wang, L. Y.; Wang, R. G.; Wang, Y. F.; Wang, Z.; Wang, Z. M.; Wen, L. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. L.; Yang, C. C.; Yang, M. S.; Ye, M.; Yu, Z. Y.; Zhan, L.; Zhang, F. H.; Zhang, J. W.; Zhang, S. H.; Zhang, Y. H.; Zhang, Z. Y.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zhong, W. L.; Zhou, L.; Zhuang, H. L.; Zou, J. H.] Inst High Energy Phys, Beijing 100039, Peoples R China.
[Chan, Y. L.; Chen, X.; Chu, M. C.; Kwan, K. K.; Kwok, M. W.; Tam, Y. H.; Wong, S. C. F.; Xu, J. Y.] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China.
[Chang, L. C.; Hu, B. Z.; Jen, K. L.; Lin, G. L.; Lin, P. Y.; Yeh, Y. S.] Natl Chiao Tung Univ, Inst Phys, Hsinchu, Taiwan.
[Chang, Y.; Wang, C. H.] Natl United Univ, Miaoli, Taiwan.
[Chen, Q. Y.; Huang, X. T.; Jiao, J. B.; Wang, M.; Wu, Q.; Xia, X.; Yang, M. T.] Shandong Univ, Jinan 250100, Peoples R China.
[Chen, S. M.; Gong, G. H.; Gong, H.; Hussain, G.; Lebanowski, L.; Shao, B. B.; Wang, Z.; Wei, H. Y.; Xue, T.; Yu, J. Y.; Zhang, Y. M.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China.
[Chen, Y. X.; Ma, X. B.; Zhao, Y.] North China Elect Power Univ, Beijing, Peoples R China.
[Chen, Y.] Shenzhen Univ, Shenzhen, Peoples R China.
[Cummings, J. P.] Siena Coll, Loudonville, NY USA.
[de Arcos, J.; Draeger, E.; White, C. G.] IIT, Dept Phys, Chicago, IL 60616 USA.
[Dwyer, D. A.; Edwards, W. R.; Kramer, M.; Lee, J.; Lin, C. J.; Luk, K. B.; Nakajima, Y.; Ochoa-Ricoux, J. P.; Patton, S.; Steiner, H.; Tsang, K. V.; Tull, C. E.; Wong, H. L. H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Ely, S. R.; Huang, E. C.; Ling, J. J.; Peng, J. C.] Univ Illinois, Dept Phys, Urbana, IL USA.
[Ge, L. Q.; Jiang, H. J.; Lai, W. C.; Li, F.; Lin, Y. C.; Zeng, B.; Zhang, Q.] Chengdu Univ Technol, Chengdu, Peoples R China.
[Gu, W. Q.; Li, G. S.; Liu, J. L.] Shanghai Jiao Tong Univ, Shanghai, Peoples R China.
[Guo, X. H.; Hu, L. J.; Wang, N. Y.; Xu, J.] Beijing Normal Univ, Beijing 100875, Peoples R China.
[Han, G. H.; McKeown, R. D.; Wang, W.; Zhao, Y.] Coll William & Mary, Williamsburg, VA USA.
[Heeger, K. M.] Yale Univ, Dept Phys, New Haven, CT USA.
[Hor, Y. K.; Huber, P.; Jaffke, P.; Link, J. M.; Meng, Y.; Piilonen, L. E.] Virginia Tech, Ctr Neutrino Phys, Blacksburg, VA USA.
[Huang, H.; Ren, J.; Ruan, X. C.; Zhou, L.] China Inst Atom Energy, Beijing, Peoples R China.
[Ji, X. P.; Li, X. Q.; Xu, Y.] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China.
[Johnson, R. A.; Littenberg, L.] Univ Cincinnati, Dept Phys, Cincinnati, OH USA.
[Kang, L.; Lei, R. T.; Ren, B.; Wei, Y. D.; Yang, L.; Zhang, Z. J.] Dongguan Univ Technol, Dongguan, Peoples R China.
[Kramer, M.; Luk, K. B.; Steiner, H.; Wong, H. L. H.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Kwok, T.; Leung, A.; Leung, J. K. C.; Liu, S. S.; Ngai, H. Y.; Pun, C. S. J.] Univ Hong Kong, Dept Phys, Pokfulam, Hong Kong, Peoples R China.
[Lau, K.; Lin, S. K.; Liu, D. W.; Liu, H.; Mitchell, I.; Pinsky, L.; Whitehead, L.] Univ Houston, Dept Phys, Houston, TX USA.
[Leitner, R.; Pec, V.; Roskovec, B.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic.
[Li, D. J.; Liang, H.; Zhang, Y. C.; Zhang, Z. P.; Zheng, L.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Li, Z. B.; Wang, W.] Sun Yat Sen Zhongshan Univ, Guangzhou, Guangdong, Peoples R China.
[Lu, C.; McDonald, K. T.] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA.
[McKeown, R. D.; Tsang, R. H. M.] CALTECH, Pasadena, CA 91125 USA.
[Kebwaro, J. Monari; Yan, J.; Zhang, Q. M.] Xi An Jiao Tong Univ, Xian 710049, Peoples R China.
[Napolitano, J.] Temple Univ, Dept Phys, Coll Sci & Technol, Philadelphia, PA 19122 USA.
[Ochoa-Ricoux, J. P.] Pontificia Univ Catolica Chile, Inst Fis, Santiago, Chile.
[Qi, M.; Wang, W. W.; Yu, G. Y.; Zang, S. L.] Nanjing Univ, Nanjing 210008, Jiangsu, Peoples R China.
[Raper, N.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY USA.
[Sun, J. L.; Zhang, Y. X.] China Gen Nucl Power Grp, Shenzhen, Peoples R China.
[Wang, X.] Natl Univ Def Technol, Coll Elect Sci & Engn, Changsha, Hunan, Peoples R China.
[Whisnant, K.; Young, B. L.] Iowa State Univ, Ames, IA USA.
RP An, FP (reprint author), E China Univ Sci & Technol, Inst Modern Phys, Shanghai 200237, Peoples R China.
RI Link, Jonathan/L-2560-2013; Cao, Jun/G-8701-2012; Balantekin, Akif
Baha/E-4776-2010; Wen, Liangjian/C-5113-2015; Zhang,
Shengbai/D-4885-2013; Nemchenok, Igor/F-9715-2014; Olshevskiy,
Alexander/I-1580-2016; Ling, Jiajie/I-9173-2014; Liu,
Jianglai/P-2587-2015;
OI Zhong, Weili/0000-0002-4566-5490; Ngai, Ho Yin/0000-0003-0336-2165;
HSIUNG, YEE/0000-0003-4801-1238; Qian, Xin/0000-0002-7903-7935; Zhang,
Chao/0000-0003-2298-6272; Grassi, Marco/0000-0003-2422-6736;
Ochoa-Ricoux, Juan Pedro/0000-0001-7376-5555; Link,
Jonathan/0000-0002-1514-0650; Cao, Jun/0000-0002-3586-2319; Balantekin,
Akif Baha/0000-0002-2999-0111; Wen, Liangjian/0000-0003-4541-9422;
Zhang, Shengbai/0000-0003-0833-5860; Olshevskiy,
Alexander/0000-0002-8902-1793; Ling, Jiajie/0000-0003-2982-0670; Liu,
Jianglai/0000-0002-4563-3157; Wang, Zhimin/0000-0002-8651-8999
FU Ministry of Science and Technology of China; U.S. Department of Energy;
Chinese Academy of Sciences; National Natural Science Foundation of
China; Guangdong provincial government; Shenzhen municipal government;
China General Nuclear Power Group; Key Laboratory of Particle and
Radiation Imaging (Tsinghua University); Ministry of Education, Key
Laboratory of Particle Physics and Particle Irradiation (Shandong
University); Ministry of Education, Shanghai Laboratory for Particle
Physics and Cosmology; Research Grants Council of the Hong Kong Special
Administrative Region of China; University Development Fund of The
University of Hong Kong; MOE program for Research of Excellence at
National Taiwan University, National Chiao-Tung University; Taiwan, the
U.S. National Science Foundation; Alfred P. Sloan Foundation; Ministry
of Education, Youth, and Sports of the Czech Republic; Joint Institute
of Nuclear Research in Dubna, Russia; CNFC-RFBR joint research program;
National Commission of Scientific and Technological Research of Chile;
Tsinghua University Initiative Scientific Research Program
FX Daya Bay is supported in part by the Ministry of Science and Technology
of China, the U.S. Department of Energy, the Chinese Academy of
Sciences, the National Natural Science Foundation of China, the
Guangdong provincial government, the Shenzhen municipal government, the
China General Nuclear Power Group, Key Laboratory of Particle and
Radiation Imaging (Tsinghua University), the Ministry of Education, Key
Laboratory of Particle Physics and Particle Irradiation (Shandong
University), the Ministry of Education, Shanghai Laboratory for Particle
Physics and Cosmology, the Research Grants Council of the Hong Kong
Special Administrative Region of China, the University Development Fund
of The University of Hong Kong, the MOE program for Research of
Excellence at National Taiwan University, National Chiao-Tung
University, and NSC fund support from Taiwan, the U.S. National Science
Foundation, the Alfred P. Sloan Foundation, the Ministry of Education,
Youth, and Sports of the Czech Republic, the Joint Institute of Nuclear
Research in Dubna, Russia, the CNFC-RFBR joint research program, the
National Commission of Scientific and Technological Research of Chile,
and the Tsinghua University Initiative Scientific Research Program. We
acknowledge Yellow River Engineering Consulting Co., Ltd., and China
Railway 15th Bureau Group Co., Ltd., for building the underground
laboratory. We are grateful for the ongoing cooperation from the China
General Nuclear Power Group and China Light and Power Company.
NR 57
TC 40
Z9 40
U1 3
U2 55
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 1
PY 2014
VL 113
IS 14
AR 141802
DI 10.1103/PhysRevLett.113.141802
PG 7
WC Physics, Multidisciplinary
SC Physics
GA AS1PD
UT WOS:000344051700002
PM 25325631
ER
PT J
AU Mitamura, H
Watanuki, R
Kaneko, K
Onozaki, N
Amou, Y
Kittaka, S
Kobayashi, R
Shimura, Y
Yamamoto, I
Suzuki, K
Chi, S
Sakakibara, T
AF Mitamura, H.
Watanuki, R.
Kaneko, K.
Onozaki, N.
Amou, Y.
Kittaka, S.
Kobayashi, R.
Shimura, Y.
Yamamoto, I.
Suzuki, K.
Chi, S.
Sakakibara, T.
TI Spin-Chirality-Driven Ferroelectricity on a Perfect Triangular Lattice
Antiferromagnet
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID MAGNETIZATION PROCESS; PHASE-TRANSITION; RBFE(MOO4)(2); CSFE(SO4)(2)
AB Magnetic field (B) variation of the electrical polarization P-c (parallel to c) of the perfect triangular lattice antiferromagnet RbFe(MoO4)(2) is examined up to the saturation point of the magnetization for B perpendicular to c.P-c is observed only in phases for which chirality is predicted in the in-plane magnetic structures. No strong anomaly is observed in P-c at the field at which the spin modulation along the c axis, and hence the spin helicity, exhibits a discontinuity to the commensurate state. These results indicate that the ferroelectricity in this compound originates predominantly from the spin chirality, the explanation of which would require a new mechanism for magnetoferroelectricity. The obtained field-temperature phase diagram of ferroelectricity agree well with those theoretically predicted for the spin chirality of a Heisenberg spin triangular lattice antiferromagnet.
C1 [Mitamura, H.; Kittaka, S.; Kobayashi, R.; Shimura, Y.; Sakakibara, T.] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan.
[Watanuki, R.; Onozaki, N.; Amou, Y.; Yamamoto, I.; Suzuki, K.] Yokohama Natl Univ, Fac Engn, Yokohama, Kanagawa 2408501, Japan.
[Kaneko, K.] Japan Atom Energy Agcy, Quantum Beam Sci Ctr, Naka, Ibaraki 3191195, Japan.
[Kobayashi, R.; Chi, S.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA.
RP Mitamura, H (reprint author), Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan.
EM mitamura@issp.u-tokyo.ac.jp
RI Chi, Songxue/A-6713-2013;
OI Chi, Songxue/0000-0002-3851-9153; Suzuki, Kazuya/0000-0002-2231-4225;
Yamamoto, Isao/0000-0001-5031-3994
FU Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy; [26400329]
FX We thank T. Inami and T. Waki for critical discussions and useful
technical advice. The work at ORNL was supported by the Scientific User
Facilities Division, Office of Basic Energy Sciences, U.S. Department of
Energy. WAND is operated jointly by ORNL and Japan Atomic Energy Agency
under US-Japan Cooperative Program on Neutron Scattering. The present
study was supported by a Grant-in-Aid for Scientific Research C (No.
26400329).
NR 29
TC 5
Z9 5
U1 2
U2 23
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 1
PY 2014
VL 113
IS 14
AR 147202
DI 10.1103/PhysRevLett.113.147202
PG 5
WC Physics, Multidisciplinary
SC Physics
GA AS1PD
UT WOS:000344051700006
PM 25325654
ER
PT J
AU Molvig, K
Vold, EL
Dodd, ES
Wilks, SC
AF Molvig, Kim
Vold, Erik L.
Dodd, Evan S.
Wilks, Scott C.
TI Nonlinear Structure of the Diffusing Gas-Metal Interface in a
Thermonuclear Plasma
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
AB This Letter describes the theoretical structure of the plasma diffusion layer that develops from an initially sharp gas-metal interface. The layer dynamics under isothermal and isobaric conditions is considered so that only mass diffusion (mixing) processes can occur. The layer develops a distinctive structure with asymmetric and highly nonlinear features. On the gas side of the layer the diffusion coefficient goes nearly to zero, causing a sharp "front," or well defined boundary between mix layer and clean gas with similarities to the Marshak thermal waves. Similarity solutions for the nonlinear profiles are found and verified with full ion kinetic code simulations. A criterion for plasma diffusion to significantly affect burn is given.
C1 [Molvig, Kim; Vold, Erik L.; Dodd, Evan S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Molvig, Kim] MIT, Cambridge, MA 02139 USA.
[Wilks, Scott C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Molvig, K (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
FU Thermonuclear Burn Initiative at Los Alamos National Laboratory, LLC for
the U.S. Department of Energy [DE-AC52-06NA25396]; Thermonuclear Burn
Initiative at Lawrence Livermore National Laboratory, LLC under Office
of Science [DE-AC52-07NA27344]
FX This work was performed under the auspices of the Thermonuclear Burn
Initiative at Los Alamos National Laboratory, LLC for the U.S.
Department of Energy under Contract No. DE-AC52-06NA25396 and at
Lawrence Livermore National Laboratory, LLC under Office of Science
Contract No. DE-AC52-07NA27344.
NR 25
TC 9
Z9 9
U1 0
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 1
PY 2014
VL 113
IS 14
AR 145001
DI 10.1103/PhysRevLett.113.145001
PG 5
WC Physics, Multidisciplinary
SC Physics
GA AS1PD
UT WOS:000344051700005
PM 25325648
ER
PT J
AU Althaus, CL
Joos, B
Perelson, AS
Gunthard, HF
AF Althaus, Christian L.
Joos, Beda
Perelson, Alan S.
Guenthard, Huldrych F.
TI Quantifying the Turnover of Transcriptional Subclasses of HIV-1-Infected
Cells
SO PLOS COMPUTATIONAL BIOLOGY
LA English
DT Article
ID POTENT ANTIRETROVIRAL THERAPY; BLOOD MONONUCLEAR-CELLS; VIRUS TYPE-1
INFECTION; VIRAL GENERATION TIME; CD8(+) T-LYMPHOCYTES; DYNAMICS
IN-VIVO; HIV-1 INFECTION; PERIPHERAL-BLOOD; LATENT RESERVOIR;
MATHEMATICAL-ANALYSIS
AB HIV-1-infected cells in peripheral blood can be grouped into different transcriptional subclasses. Quantifying the turnover of these cellular subclasses can provide important insights into the viral life cycle and the generation and maintenance of latently infected cells. We used previously published data from five patients chronically infected with HIV-1 that initiated combination antiretroviral therapy (cART). Patient-matched PCR for unspliced and multiply spliced viral RNAs combined with limiting dilution analysis provided measurements of transcriptional profiles at the single cell level. Furthermore, measurement of intracellular transcripts and extracellular virion-enclosed HIV-1 RNA allowed us to distinguish productive from non-productive cells. We developed a mathematical model describing the dynamics of plasma virus and the transcriptional subclasses of HIV-1-infected cells. Fitting the model to the data allowed us to better understand the phenotype of different transcriptional subclasses and their contribution to the overall turnover of HIV-1 before and during cART. The average number of virus-producing cells in peripheral blood is small during chronic infection. We find that a substantial fraction of cells can become defectively infected. Assuming that the infection is homogenous throughout the body, we estimate an average in vivo viral burst size on the order of 10(4) virions per cell. Our study provides novel quantitative insights into the turnover and development of different subclasses of HIV-1-infected cells, and indicates that cells containing solely unspliced viral RNA are a good marker for viral latency. The model illustrates how the pool of latently infected cells becomes rapidly established during the first months of acute infection and continues to increase slowly during the first years of chronic infection. Having a detailed understanding of this process will be useful for the evaluation of viral eradication strategies that aim to deplete the latent reservoir of HIV-1.
C1 [Althaus, Christian L.] Univ Bern, ISPM, Bern, Switzerland.
[Joos, Beda; Guenthard, Huldrych F.] Univ Zurich, Div Infect Dis & Hosp Epidemiol, Univ Hosp Zurich, Zurich, Switzerland.
[Perelson, Alan S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA.
RP Althaus, CL (reprint author), Univ Bern, ISPM, Bern, Switzerland.
EM christian.althaus@alumni.ethz.ch
RI Infektiologie, USZ/A-6921-2011; Althaus, Christian/F-6008-2015; Joos,
Beda/D-5547-2009; gunthard, huldrych/F-1724-2011
OI Althaus, Christian/0000-0002-5230-6760; Joos, Beda/0000-0002-3082-8875;
gunthard, huldrych/0000-0002-1142-6723
FU Swiss National Science Foundation (SNSF) [136737]; Novartis Foundation
[02A03]; Hartmann Muller Stiftung [898]; Hermann Klaus Stiftung; Abbott
Inc. [SWIT-02-002]; Roche Research Foundation [281-2005]; SNSF [112670];
University of Zurich's Clinical Research Priority Program (CRPP) "Viral
infectious diseases: Zurich Primary HIV Infection Study"; National
Institutes of Health (NIH) [AI028433, OD011095, AI067854, AI100645]
FX CLA is funded by an Ambizione grant from the Swiss National Science
Foundation (SNSF, http://www.snf.ch, grant 136737). Furthermore, the
clinical and laboratory based work was supported by the Novartis
Foundation (grant 02A03), Hartmann Muller Stiftung
(http://www.hms.uzh.ch, grant 898), the Hermann Klaus Stiftung, an
unrestricted educational grant by Abbott Inc. (grant SWIT-02-002), the
Roche Research Foundation (grant 281-2005), the SNSF (grant 112670) and
the University of Zurich's Clinical Research Priority Program (CRPP)
"Viral infectious diseases: Zurich Primary HIV Infection Study" (to
HFG). ASP was supported by the National Institutes of Health
(http://www.nih.gov, NIH, grant AI028433, OD011095, AI067854 (Center for
HIV Vaccine Immunology, http://chavi.org) and AI100645 (Center for HIV
Vaccine Immunology - Immunogen Discovery, http://chavi-id.org). The
funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.
NR 71
TC 7
Z9 7
U1 0
U2 7
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1553-734X
EI 1553-7358
J9 PLOS COMPUT BIOL
JI PLoS Comput. Biol.
PD OCT
PY 2014
VL 10
IS 10
AR e1003871
DI 10.1371/journal.pcbi.1003871
PG 11
WC Biochemical Research Methods; Mathematical & Computational Biology
SC Biochemistry & Molecular Biology; Mathematical & Computational Biology
GA AS9FG
UT WOS:000344547900025
PM 25340797
ER
PT J
AU Axen, SD
Erbilgin, O
Kerfeld, CA
AF Axen, Seth D.
Erbilgin, Onur
Kerfeld, Cheryl A.
TI A Taxonomy of Bacterial Microcompartment Loci Constructed by a Novel
Scoring Method
SO PLOS COMPUTATIONAL BIOLOGY
LA English
DT Article
ID B-12-DEPENDENT 1,2-PROPANEDIOL DEGRADATION; MULTIPLE SEQUENCE ALIGNMENT;
SEROVAR TYPHIMURIUM LT2; PENTAMERIC VERTEX PROTEINS;
SALMONELLA-TYPHIMURIUM; CARBOXYSOME SHELL; ETHANOLAMINE UTILIZATION;
CARBONIC-ANHYDRASE; ESCHERICHIA-COLI; CLOSTRIDIUM-KLUYVERI
AB Bacterial microcompartments (BMCs) are proteinaceous organelles involved in both autotrophic and heterotrophic metabolism. All BMCs share homologous shell proteins but differ in their complement of enzymes; these are typically encoded adjacent to shell protein genes in genetic loci, or operons. To enable the identification and prediction of functional (sub)types of BMCs, we developed LoClass, an algorithm that finds putative BMC loci and inventories, weights, and compares their constituent pfam domains to construct a locus similarity network and predict locus (sub)types. In addition to using LoClass to analyze sequences in the Non-redundant Protein Database, we compared predicted BMC loci found in seven candidate bacterial phyla (six from single-cell genomic studies) to the LoClass taxonomy. Together, these analyses resulted in the identification of 23 different types of BMCs encoded in 30 distinct locus (sub)types found in 23 bacterial phyla. These include the two carboxysome types and a divergent set of metabolosomes, BMCs that share a common catalytic core and process distinct substrates via specific signature enzymes. Furthermore, many Candidate BMCs were found that lack one or more core metabolosome components, including one that is predicted to represent an entirely new paradigm for BMC-associated metabolism, joining the carboxysome and metabolosome. By placing these results in a phylogenetic context, we provide a framework for understanding the horizontal transfer of these loci, a starting point for studies aimed at understanding the evolution of BMCs. This comprehensive taxonomy of BMC loci, based on their constituent protein domains, foregrounds the functional diversity of BMCs and provides a reference for interpreting the role of BMC gene clusters encoded in isolate, single cell, and metagenomic data. Many loci encode ancillary functions such as transporters or genes for cofactor assembly; this expanded vocabulary of BMC-related functions should be useful for design of genetic modules for introducing BMCs in bioengineering applications.
C1 [Axen, Seth D.] DOE Joint Genome Inst, Walnut Creek, CA 94595 USA.
[Erbilgin, Onur; Kerfeld, Cheryl A.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA.
[Kerfeld, Cheryl A.] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA.
[Kerfeld, Cheryl A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Kerfeld, Cheryl A.] Berkeley Synthet Biol Inst, Berkeley, CA USA.
RP Axen, SD (reprint author), DOE Joint Genome Inst, Walnut Creek, CA 94595 USA.
EM ckerfeld@lbl.gov
OI erbilgin, onur/0000-0002-6122-6156
FU National Science Foundation [EF1105892, MCB1160614]; US Department of
Energy [DE-AC02 05CH11231]
FX This work was supported by the National Science Foundation (EF1105892
and MCB1160614 to CAK) and the US Department of Energy contract no.
DE-AC02 05CH11231 (to CAK). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the
manuscript.
NR 121
TC 29
Z9 29
U1 1
U2 14
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1553-734X
EI 1553-7358
J9 PLOS COMPUT BIOL
JI PLoS Comput. Biol.
PD OCT
PY 2014
VL 10
IS 10
AR e1003898
DI 10.1371/journal.pcbi.1003898
PG 20
WC Biochemical Research Methods; Mathematical & Computational Biology
SC Biochemistry & Molecular Biology; Mathematical & Computational Biology
GA AS9FG
UT WOS:000344547900042
PM 25340524
ER
PT J
AU Benedict, MN
Mundy, MB
Henry, CS
Chia, N
Price, ND
AF Benedict, Matthew N.
Mundy, Michael B.
Henry, Christopher S.
Chia, Nicholas
Price, Nathan D.
TI Likelihood-Based Gene Annotations for Gap Filling and Quality Assessment
in Genome-Scale Metabolic Models
SO PLOS COMPUTATIONAL BIOLOGY
LA English
DT Article
ID TRANSPOSON MUTANT LIBRARY; NON-MEVALONATE PATHWAY; FLUX BALANCE
ANALYSIS; ESCHERICHIA-COLI; STAPHYLOCOCCUS-AUREUS; ADAPTIVE EVOLUTION;
RECONSTRUCTION; IDENTIFICATION; NETWORKS; MUTAGENESIS
AB Genome-scale metabolic models provide a powerful means to harness information from genomes to deepen biological insights. With exponentially increasing sequencing capacity, there is an enormous need for automated reconstruction techniques that can provide more accurate models in a short time frame. Current methods for automated metabolic network reconstruction rely on gene and reaction annotations to build draft metabolic networks and algorithms to fill gaps in these networks. However, automated reconstruction is hampered by database inconsistencies, incorrect annotations, and gap filling largely without considering genomic information. Here we develop an approach for applying genomic information to predict alternative functions for genes and estimate their likelihoods from sequence homology. We show that computed likelihood values were significantly higher for annotations found in manually curated metabolic networks than those that were not. We then apply these alternative functional predictions to estimate reaction likelihoods, which are used in a new gap filling approach called likelihood-based gap filling to predict more genomically consistent solutions. To validate the likelihood-based gap filling approach, we applied it to models where essential pathways were removed, finding that likelihood-based gap filling identified more biologically relevant solutions than parsimony-based gap filling approaches. We also demonstrate that models gap filled using likelihood-based gap filling provide greater coverage and genomic consistency with metabolic gene functions compared to parsimony-based approaches. Interestingly, despite these findings, we found that likelihoods did not significantly affect consistency of gap filled models with Biolog and knockout lethality data. This indicates that the phenotype data alone cannot necessarily be used to discriminate between alternative solutions for gap filling and therefore, that the use of other information is necessary to obtain a more accurate network. All described workflows are implemented as part of the DOE Systems Biology Knowledgebase (KBase) and are publicly available via API or command-line web interface.
C1 [Benedict, Matthew N.; Price, Nathan D.] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA.
[Mundy, Michael B.; Chia, Nicholas] Mayo Clin, Ctr Individualized Med, Rochester, MN USA.
[Henry, Christopher S.] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL USA.
[Chia, Nicholas] Mayo Clin, Dept Surg, Rochester, MN USA.
[Chia, Nicholas] Mayo Clin, Dept Physiol & Bioengn, Rochester, MN USA.
[Price, Nathan D.] Inst Syst Biol, Seattle, WA USA.
RP Benedict, MN (reprint author), Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA.
EM chia.nicholas@mayo.edu; nprice@systemsbiology.org
FU Department of Energy Genomic Sciences program [DE-FG02-10ER64999,
ER65103]; Camille Dreyfus Teacher-Scholar Award; Center for
Individualized Medicine at the Mayo Clinic, the Minnesota Biotechnology
Partnership; NIH [R01 CA179243]; Mayo Clinic Research National
Institutes of Health (NIH) Relief Grant Program; Office of Science,
Office of Biological and Environmental Research of the US Department of
Energy as part of the DOE Systems Biology Knowledgebase
[DE-ACO2-06CH11357]
FX MNB and NDP gratefully acknowledge support from the Department of Energy
Genomic Sciences program awards #DE-FG02-10ER64999 and ER65103
(http://genomicscience.energy.gov/) and the Camille Dreyfus
Teacher-Scholar Award
(http://www.dreyfus.org/awards/camille_dreyfus_teacher_award.shtml). MBM
and NC gratefully acknowledge support from the Center for Individualized
Medicine at the Mayo Clinic
(http://mayoresearch.mayo.edu/center-for-individualized-medicine/), the
Minnesota Biotechnology Partnership (http://minnesotapartnership.info/),
from the NIH (grant number R01 CA179243), and from the Mayo Clinic
Research National Institutes of Health (NIH) Relief Grant Program. CSH
acknowledges support from the Office of Science, Office of Biological
and Environmental Research, of the US Department of Energy under
contract number DE-ACO2-06CH11357, as part of the DOE Systems Biology
Knowledgebase (http://kbase.us/). The funders had no role in study
design, data collection and analysis, decision to publish, or
preparation of the manuscript.
NR 63
TC 18
Z9 18
U1 2
U2 15
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1553-734X
EI 1553-7358
J9 PLOS COMPUT BIOL
JI PLoS Comput. Biol.
PD OCT
PY 2014
VL 10
IS 10
AR e1003882
DI 10.1371/journal.pcbi.1003882
PG 14
WC Biochemical Research Methods; Mathematical & Computational Biology
SC Biochemistry & Molecular Biology; Mathematical & Computational Biology
GA AS9FG
UT WOS:000344547900035
PM 25329157
ER
PT J
AU Chavez, D
Klapotke, TM
Parrish, D
Piercey, DG
Stierstorfer, J
AF Chavez, David
Klapoetke, Thomas M.
Parrish, Damon
Piercey, Davin G.
Stierstorfer, Joerg
TI The Synthesis and Energetic Properties of
3,4-Bis(2,2,2-trinitroethylamino)furazan (BTNEDAF)
SO PROPELLANTS EXPLOSIVES PYROTECHNICS
LA English
DT Article
DE Explosives; Furazans; Trinitroethyl; HEDM
ID SET MODEL CHEMISTRY; SALTS
AB Energetic furazan 3,4-bis(trinitroethylamino)furazan (BTNEDAF) was synthesized in 70% yield. BTNEDAF was characterized as an energetic material in terms of performance, mechanical sensitivity, and thermal stability. BTNEDAF was crystallized from various solvents resulting in multiple polymorphs with varying densities. Some of these polymorphs were characterized with respect to their sensitivity properties. Additionally, the performance of these different polymorphs were calculated using the EXPLO5 code. BTNEDAF was also characterized by vibrational spectroscopy, multinuclear NMR spectroscopy, elemental analysis, scanning electron microscopy (SEM), and calorimetric experiments.
C1 [Chavez, David; Piercey, Davin G.] Los Alamos Natl Lab, Weap Expt Div, Los Alamos, NM 87545 USA.
[Klapoetke, Thomas M.; Piercey, Davin G.; Stierstorfer, Joerg] Univ Munich, Dept Chem, D-81377 Munich, Germany.
[Klapoetke, Thomas M.] Univ Maryland, Dept Mech Engn, UMD, CECD, College Pk, MD 20742 USA.
[Parrish, Damon] US Navy, Res Lab, Struct Matter Lab, Washington, DC 20375 USA.
RP Chavez, D (reprint author), Los Alamos Natl Lab, Weap Expt Div, POB 1663, Los Alamos, NM 87545 USA.
EM dechavez@lanl.gov
RI Stierstorfer, Joerg/B-5261-2015; Klapoetke, Thomas/B-6055-2014
OI Stierstorfer, Joerg/0000-0002-2105-1275; Klapoetke,
Thomas/0000-0003-3276-1157
FU Ludwig-Maximilian University of Munich (LMU); Fonds der Chemischen
Industrie (FCI); European Research Office (ERO) of the U.S. Army
Research Laboratory (ARL); Armament Research, Development and
Engineering Center (ARDEC) [W911NF-09-2-0018, W911NF-09-1-0120,
W011NF-09-1-0056]; Joint Munitions Technology Development Program;
Office of Naval Research [N00014-11-AF-0-0002]
FX Financial support of this work by the Ludwig-Maximilian University of
Munich (LMU), the Fonds der Chemischen Industrie (FCI), the European
Research Office (ERO) of the U.S. Army Research Laboratory (ARL) and the
Armament Research, Development and Engineering Center (ARDEC) under
contract nos. W911NF-09-2-0018, W911NF-09-1-0120 and W011NF-09-1-0056 is
gratefully acknowledged. The authors acknowledge collaborations with Dr.
Mila Krupka (OZM Research, Czech Republic) in the development of new
testing and evaluation methods for energetic materials and with Dr.
Muhamed Sucesca (Brodarski Institute, Croatia) in the development of new
computational codes to predict the detonation and propulsion parameters
of novel explosives. We are indebted to and thank Drs. Betsy M. Rice and
Brad Forch (ARL, Aberdeen, Proving Ground, MD). Stefan Huber is thanked
for assistance with sensitivity measurements. The authors (D. E. C.)
would also like to thank the Joint Munitions Technology Development
Program for funding. D. E. C. would also like to thank Anna Giambra,
Daniel Prestion, Mary Sandstrom, Jose Archuleta, Bettina Reardon, and
Greg Long for performing the sensitivity characterization and testing.
We (D. E. C. and D. A. P.) would also like to thank the Office of Naval
Research (Award No. N00014-11-AF-0-0002).
NR 42
TC 8
Z9 8
U1 2
U2 36
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0721-3115
EI 1521-4087
J9 PROPELL EXPLOS PYROT
JI Propellants Explos. Pyrotech.
PD OCT
PY 2014
VL 39
IS 5
BP 641
EP 648
DI 10.1002/prep.201300135
PG 8
WC Chemistry, Applied; Engineering, Chemical
SC Chemistry; Engineering
GA AS0MD
UT WOS:000343970200003
ER
PT J
AU He, L
Wang, MX
Chen, W
Conzelmann, G
AF He, Lin
Wang, Mingxian
Chen, Wei
Conzelmann, Guenter
TI Incorporating social impact on new product adoption in choice modeling:
A case study in green vehicles
SO TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT
LA English
DT Article
DE Discrete choice analysis; Social impact; Social network simulations;
Product adoption; Hybrid vehicles
ID DISCRETE-CHOICE; NETWORK; DESIGN; PREFERENCES; DYNAMICS
AB While discrete choice analysis is prevalent in capturing consumer preferences and describing their choice behaviors in product design, the traditional choice modeling approach assumes that each individual makes independent decisions, without considering the social impact. However, empirical studies show that choice is social - influenced by many factors beyond engineering performance of a product and consumer attributes. To alleviate this limitation, we propose a new choice modeling framework to capture the dynamic influence from social networks on consumer adoption of new products. By introducing social influence attributes into a choice utility function, social network simulation is integrated with the traditional discrete choice analysis in a three-stage process. Our study shows the need for considering social impact in forecasting new product adoption. Using hybrid electric vehicles as an example, our work illustrates the procedure of social network construction, social influence evaluation, and choice model estimation based on data from the National Household Travel Survey. Our study also demonstrates several interesting findings on the dynamic nature of new technology adoption and how social networks may influence hybrid electric vehicle adoption. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [He, Lin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
[Wang, Mingxian; Chen, Wei] Northwestern Univ, Evanston, IL 60208 USA.
[Conzelmann, Guenter] Argonne Natl Lab, Ctr Energy Environm & Econ Syst Anal, Argonne, IL 60439 USA.
RP Chen, W (reprint author), Northwestern Univ, 2145 Sheridan Rd,Tech 8224, Evanston, IL 60208 USA.
EM weichen@northwestern.edu
RI Chen, Wei/B-7574-2009
FU National Science Foundation [CMMI-0700585, DUE-0920047]; ISEN
(Initiative for Sustainability and Energy at Northwestern)
FX Grant supports from National Science Foundation (CMMI-0700585 and
DUE-0920047) and ISEN (Initiative for Sustainability and Energy at
Northwestern) are greatly appreciated.
NR 50
TC 8
Z9 8
U1 7
U2 32
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1361-9209
J9 TRANSPORT RES D-TR E
JI Transport. Res. Part D-Transport. Environ.
PD OCT
PY 2014
VL 32
BP 421
EP 434
DI 10.1016/j.trd.2014.08.007
PG 14
WC Environmental Studies; Transportation; Transportation Science &
Technology
SC Environmental Sciences & Ecology; Transportation
GA AS3ZD
UT WOS:000344212600036
ER
PT J
AU Boyle, K
Zoback, M
AF Boyle, Katie
Zoback, Mark
TI The Stress State of the Northwest Geysers, California Geothermal Field,
and Implications for Fault-Controlled Fluid Flow
SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA
LA English
DT Article
ID NORTHERN CALIFORNIA; AREA; EARTHQUAKES; RESERVOIR
AB A dataset comprised of well-constrained focal mechanisms for 6147 earthquakes recorded in the northwest Geysers geothermal field during the period of 2005-2012 was utilized to conduct a detailed stress study within and below the geothermal reservoir. The high-quality focal mechanisms were organized into grid blocks of varying size using a 3D octree gridding algorithm in which discretization was governed by data density. This method allows for separate inversions of contiguous blocks of seismicity at a relatively fine scale. We obtained the three principal stress orientations for every grid block containing at least 25 events by inverting for the best-fit stress tensor within each grid block. The principal stress orientations were used to determine which of the two nodal planes for each focal mechanism had the highest ratio of resolved shear-to-normal stresses and was thus more likely to be the fault plane. We found a normal/strike-slip faulting regime (S-H max approximate to S-v > S-h min) both within and below the reservoir, consistent with the extensional and strike-slip tectonics in the region surrounding The Geysers. In addition, an average S-H max orientation of N26 degrees E was obtained for the studied crustal volume. These observations suggest that injection and production activities over the past 50+ years do not appear to have significantly affected the local stress field. The presumed fault planes are steeply dipping with northeast-southwest to east-west strike directions suggesting that these are the principal flow directions both within the low matrix permeability graywacke reservoir and in the wholly concealed granitic pluton (locally referred to as the felsite) basement below.
C1 [Boyle, Katie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Zoback, Mark] Stanford Univ, Stanford, CA 94305 USA.
RP Boyle, K (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd Mail Stop 74R316C, Berkeley, CA 94720 USA.
FU Assistant Secretary for Energy Efficiency and Renewable Energy,
Geothermal Technologies Program of the U.S. Department of Energy
[DE-AC02-05CH11231]; United States Government
FX We would like to thank Ernest Majer and Steve Jarpe for their
suggestions and Mark Walters, Melinda Wright, and Craig Hartline of
Calpine Corporation for input and access to data. We thank Hiroke Sone
for use of the stress inversion program that he developed. This work is
funded by the Assistant Secretary for Energy Efficiency and Renewable
Energy, Geothermal Technologies Program of the U.S. Department of Energy
under Contract Number DE-AC02-05CH11231.; This document was prepared as
an account of work sponsored by the United States Government. Although
this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the
University of California, nor any of their employees, makes any
warranty, express or implied, or assumes any legal responsibility for
the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by its trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government
or any agency thereof, or the Regents of the University of California.
The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof or the Regents of the University of California.
NR 32
TC 9
Z9 9
U1 0
U2 10
PU SEISMOLOGICAL SOC AMER
PI ALBANY
PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA
SN 0037-1106
EI 1943-3573
J9 B SEISMOL SOC AM
JI Bull. Seismol. Soc. Amer.
PD OCT
PY 2014
VL 104
IS 5
BP 2303
EP 2312
DI 10.1785/0120130284
PG 10
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AR5TG
UT WOS:000343645700012
ER
PT J
AU Schiayon, S
Webster, T
Dickerhoff, D
Bauman, F
AF Schiayon, Stefano
Webster, Tom
Dickerhoff, Darryl
Bauman, Fred
TI Stratification prediction model for perimeter zone UFAD diffusers based
on laboratory testing with solar simulator
SO ENERGY AND BUILDINGS
LA English
DT Article
DE Underfloor air distribution (UFAD); Air temperature stratification;
Diffuser; Ventilation; Thermal comfort
ID AIR-DISTRIBUTION SYSTEM; COOLING LOAD; FLOOR
AB Underfloor air distribution (UFAD) is an air distribution strategy for providing ventilation and space conditioning in buildings. UFAD systems use the underfloor plenum beneath a raised floor to provide conditioned air through floor diffusers that creates a vertical thermal stratification under cooling operation. Thermal stratification affects energy, indoor air quality and thermal comfort performance.
The purpose of this study was to characterize the influence of linear bar grilles and VAV directional diffusers on thermal stratification in perimeter zones by developing theoretically and empirically based prediction models. Forty-seven laboratory experiments were carried out in a climatic chamber equipped with a solar simulator. Linear bar grilles tend to produce less stratification than VAV directional diffusers and, in some cases with high airflow rates, may generate reverse stratification. Lowering internal blinds causes an increase in thermal stratification. Models to predict temperature stratification for the two tested diffusers have been developed. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Schiayon, Stefano; Webster, Tom; Dickerhoff, Darryl; Bauman, Fred] Univ Calif Berkeley, Ctr Built Environm, Berkeley, CA 94720 USA.
[Dickerhoff, Darryl] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Schiayon, S (reprint author), Univ Calif Berkeley, Ctr Built Environm, 390 Wurster Hall, Berkeley, CA 94720 USA.
EM stefanoschiavon@gmail.com
OI Schiavon, Stefano/0000-0003-1285-5682
FU California Energy Commission Public Interest Energy Research (PIER)
Buildings Program under Advanced Design and Commissioning Tools for
Energy-Efficient Building Technologies project [500-06-049]
FX This work was supported by the California Energy Commission Public
Interest Energy Research (PIER) Buildings Program under Advanced Design
and Commissioning Tools for Energy-Efficient Building Technologies
project (contract number 500-06-049). We would like to express our
sincere appreciation to Chris Scruton of the Energy Commission PIER
Buildings Team, who expertly managed this project. Additional support
for this project was also provided by the Center for the Built
Environment (CBE) at the University of California, Berkeley
(www.cbe.berkeley.edu). Furthermore, we would like to acknowledge the
support of George Anwar for the design and implementation of the
laboratory control system; express our deep gratitude to Bill Scott and
Mike McQueeny of Walnut manufacturing for making their full-scale
laboratory test facility available to us; and Pedro Bermudez and other
staff members for their support during our testing work.
NR 27
TC 3
Z9 4
U1 4
U2 15
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0378-7788
EI 1872-6178
J9 ENERG BUILDINGS
JI Energy Build.
PD OCT
PY 2014
VL 82
BP 786
EP 794
DI 10.1016/j.enbuild.2014.07.056
PG 9
WC Construction & Building Technology; Energy & Fuels; Engineering, Civil
SC Construction & Building Technology; Energy & Fuels; Engineering
GA AR7SZ
UT WOS:000343781400075
ER
PT J
AU Justice, NB
Li, Z
Wang, YF
Spaudling, SE
Mosier, AC
Hettich, RL
Pan, CL
Banfield, JF
AF Justice, Nicholas B.
Li, Zhou
Wang, Yingfeng
Spaudling, Susan E.
Mosier, Annika C.
Hettich, Robert L.
Pan, Chongle
Banfield, Jillian F.
TI N-15- and H-2 proteomic stable isotope probing links nitrogen flow to
archaeal heterotrophic activity
SO ENVIRONMENTAL MICROBIOLOGY
LA English
DT Article
ID DRAINAGE BIOFILM COMMUNITIES; PROTEIN-SIP; MASS-SPECTROMETRY; YEAST
PROTEOME; BACTERIA; IRON; DEUTERIUM; CARBON; SULFOBACILLUS; METABOLISM
AB Understanding how individual species contribute to nutrient transformations in a microbial community is critical to prediction of overall ecosystem function. We conducted microcosm experiments in which floating acid mine drainage (AMD) microbial biofilms were submerged - recapitulating the final stage in a natural biofilm life cycle. Biofilms were amended with either (NH4+)-N-15 or deuterium oxide ((H2O)-H-2) and proteomic stable isotope probing (SIP) was used to track the extent to which different members of the community used these molecules in protein synthesis across anaerobic iron-reducing, aerobic iron-reducing and aerobic iron-oxidizing environments. Sulfobacillus spp. synthesized N-15-enriched protein almost exclusively under iron-reducing conditions whereas the Leptospirillum spp. synthesized N-15-enriched protein in all conditions. There were relatively few N-15-enriched archaeal proteins, and all showed low atom% enrichment, consistent with Archaea synthesizing protein using the predominantly N-14 biomass derived from recycled biomolecules. In parallel experiments using (H2O)-H-2, extensive archaeal protein synthesis was detected in all conditions. In contrast, the bacterial species showed little protein synthesis using (H2O)-H-2. The nearly exclusive ability of Archaea to synthesize proteins using (H2O)-H-2 may be due to archaeal heterotrophy, whereby Archaea offset deleterious effects of H-2 by accessing H-1 generated by respiration of organic compounds.
C1 [Justice, Nicholas B.; Spaudling, Susan E.; Mosier, Annika C.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
[Li, Zhou; Wang, Yingfeng; Hettich, Robert L.; Pan, Chongle] Oak Ridge Natl Lab, Oak Ridge, TN USA.
[Li, Zhou] Univ Tennessee, Oak Ridge Natl Lab, Grad Sch Genome Sci & Technol, Knoxville, TN USA.
RP Banfield, JF (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
EM jbanfield@berkeley.edu
RI Li, Zhou/L-7976-2015; Hettich, Robert/N-1458-2016
OI Hettich, Robert/0000-0001-7708-786X
FU Office of Science of the U. S. Department of Energy [DE-AC05-00OR22725];
U. S. Department of Energy Office of Science, Biological and
Environmental Research [DE-SC0004665, DE-AC02-05CH11231]
FX We thank T. W. Arman, president, Iron Mountain Mines, and R. Sugarek for
access to the Richmond Mine, and R. Carver and M. Jones for on-site
assistance. Thanks to Robert Bulter for assistance with iron-reduction
assays, Andrea Singh and Brian Thomas for bioinformatic support. This
research used resources of the Oak Ridge Leadership Computing Facility
at the Oak Ridge National Laboratory, which is supported by the Office
of Science of the U. S. Department of Energy under Contract No.
DE-AC05-00OR22725. This work was supported by the U. S. Department of
Energy Office of Science, Biological and Environmental Research, Carbon
Cycling (DE-SC0004665) and Knowledgebase (DE-AC02-05CH11231) programmes.
NR 47
TC 8
Z9 8
U1 5
U2 46
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1462-2912
EI 1462-2920
J9 ENVIRON MICROBIOL
JI Environ. Microbiol.
PD OCT
PY 2014
VL 16
IS 10
SI SI
BP 3224
EP 3237
DI 10.1111/1462-2920.12488
PG 14
WC Microbiology
SC Microbiology
GA AR9CC
UT WOS:000343867700017
PM 24750948
ER
PT J
AU Giusti, F
Rieger, J
Catoire, LJ
Qian, S
Calabrese, AN
Watkinson, TG
Casiraghi, M
Radford, SE
Ashcroft, AE
Popot, JL
AF Giusti, Fabrice
Rieger, Jutta
Catoire, Laurent J.
Qian, Shuo
Calabrese, Antonio N.
Watkinson, Thomas G.
Casiraghi, Marina
Radford, Sheena E.
Ashcroft, Alison E.
Popot, Jean-Luc
TI Synthesis, Characterization and Applications of a Perdeuterated Amphipol
SO JOURNAL OF MEMBRANE BIOLOGY
LA English
DT Article
DE Amphipol; A8-35; Deuteration; Mass spectrometry; NMR
ID INTEGRAL MEMBRANE-PROTEINS; RESONANCE ENERGY-TRANSFER;
MASS-SPECTROMETRY; SOLUTION NMR; NONIONIC SURFACTANTS;
AQUEOUS-SOLUTIONS; CROSS-RELAXATION; ACRYLIC-ACID; BIO-SANS; NANODISCS
AB Amphipols are short amphipathic polymers that can substitute for detergents at the hydrophobic surface of membrane proteins (MPs), keeping them soluble in the absence of detergents while stabilizing them. The most widely used amphipol, known as A8-35, is comprised of a polyacrylic acid (PAA) main chain grafted with octylamine and isopropylamine. Among its many applications, A8-35 has proven particularly useful for solution-state NMR studies of MPs, for which it can be desirable to eliminate signals originating from the protons of the surfactant. In the present work, we describe the synthesis and properties of perdeuterated A8-35 (perDAPol). Perdeuterated PAA was obtained by radical polymerization of deuterated acrylic acid. It was subsequently grafted with deuterated amines, yielding perDAPol. The number-average molar mass of hydrogenated and perDAPol, similar to 4 and similar to 5 kDa, respectively, was deduced from that of their PAA precursors, determined by size exclusion chromatography in tetrahydrofuran following permethylation. Electrospray ionization-ion mobility spectrometry-mass spectrometry measurements show the molar mass and distribution of the two APols to be very similar. Upon neutron scattering, the contrast match point of perDAPol is found to be similar to 120 % D2O. In H-1-H-1 nuclear overhauser effect NMR spectra, its contribution is reduced to similar to 6 % of that of hydrogenated A8-35, making it suitable for extended uses in NMR spectroscopy. PerDAPol ought to also be of use for inelastic neutron scattering studies of the dynamics of APol-trapped MPs, as well as small-angle neutron scattering and analytical ultracentrifugation.
C1 [Giusti, Fabrice; Catoire, Laurent J.; Casiraghi, Marina; Popot, Jean-Luc] CNRS, Lab Physicochim Mol Membranes Biol, Inst Biol Physicochim, UMR 7099,FRC 550, F-75005 Paris, France.
[Giusti, Fabrice; Catoire, Laurent J.; Casiraghi, Marina; Popot, Jean-Luc] Univ Paris 07, F-75005 Paris, France.
[Rieger, Jutta] Univ Paris 06, Sorbonne Univ, IPCM, UMR 8232,Equipe Chim Polymeres, F-75005 Paris, France.
[Rieger, Jutta] CNRS, IPCM, Equipe Chim Polymeres, UMR 8232, F-75005 Paris, France.
[Qian, Shuo] Oak Ridge Natl Lab, Ctr Struct Mol Biol, Oak Ridge, TN 37831 USA.
[Qian, Shuo] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA.
[Calabrese, Antonio N.; Watkinson, Thomas G.; Radford, Sheena E.; Ashcroft, Alison E.] Univ Leeds, Sch Mol & Cellular Biol, Astbury Ctr Struct Mol Biol, Leeds LS2 9JT, W Yorkshire, England.
RP Popot, JL (reprint author), CNRS, Lab Physicochim Mol Membranes Biol, Inst Biol Physicochim, UMR 7099,FRC 550, 13 Rue Pierre & Marie Curie, F-75005 Paris, France.
EM jean-luc.popot@ibpc.fr
OI Calabrese, Antonio/0000-0003-2437-7761; Qian, Shuo/0000-0002-4842-828X;
Radford, Sheena/0000-0002-3079-8039
FU Biotechnology and Biological Sciences Research Council of the UK
[BB/E012558/1, BB/K000659/1, BB/K501827/1]; French Centre National de la
Recherche Scientifique (CNRS); Universite Paris-7 Denis Diderot; grant
"DYNAMO," from the French "Initiative d'Excellence'' program
[ANR-11-LABX-0011-01]; Office of Biological and Environmental Research,
US Department of Energy (Bio-SANS); Scientific User Facilities Division,
Office of Basic Energy Sciences, US Department of Energy (ORNL's High
Flux Isotope Reactor)
FX Particular thanks are due to Alain Fradet (UPMC - CNRS, IPCM) for his
support and his comments on the manuscript, to Gaelle Pembouong and
Marion Chenal (same laboratory) for assistance with SEC analyses, to
Christophe Tribet (Ecole Normale Superieure, Paris) for his kind help at
interpreting the results of the SEC experiments and to the Biotechnology
and Biological Sciences Research Council of the UK for funding for the
Synapt HDMS mass spectrometer (BB/E012558/1), ANC (BB/K000659/1) and TGW
(BB/K501827/1). This work was supported by the French Centre National de
la Recherche Scientifique (CNRS), by Universite Paris-7 Denis Diderot,
by grant "DYNAMO," ANR-11-LABX-0011-01 from the French "Initiative
d'Excellence'' program, by the Office of Biological and Environmental
Research, US Department of Energy (Bio-SANS, operated by ORNL's Center
for Structural Molecular Biology) and the Scientific User Facilities
Division, Office of Basic Energy Sciences, US Department of Energy
(ORNL's High Flux Isotope Reactor).
NR 73
TC 14
Z9 14
U1 3
U2 19
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2631
EI 1432-1424
J9 J MEMBRANE BIOL
JI J. Membr. Biol.
PD OCT
PY 2014
VL 247
IS 9-10
SI SI
BP 909
EP 924
DI 10.1007/s00232-014-9656-x
PG 16
WC Biochemistry & Molecular Biology; Cell Biology; Physiology
SC Biochemistry & Molecular Biology; Cell Biology; Physiology
GA AR8OU
UT WOS:000343835500011
PM 24652511
ER
PT J
AU Sverzhinsky, A
Qian, S
Yang, L
Allaire, M
Moraes, I
Ma, DW
Chung, JW
Zoonens, M
Popot, JL
Coulton, JW
AF Sverzhinsky, Aleksandr
Qian, Shuo
Yang, Lin
Allaire, Marc
Moraes, Isabel
Ma, Dewang
Chung, Jacqueline W.
Zoonens, Manuela
Popot, Jean-Luc
Coulton, James W.
TI Amphipol-Trapped ExbB-ExbD Membrane Protein Complex from Escherichia
coli: A Biochemical and Structural Case Study
SO JOURNAL OF MEMBRANE BIOLOGY
LA English
DT Article
DE Membrane protein complex; Amphipol; Detergent; EM; SAXS/SANS
ID FIELD-FLOW FRACTIONATION; BLUE NATIVE ELECTROPHORESIS; RESONANCE
ENERGY-TRANSFER; OUTER-MEMBRANE; IN-VITRO; ANALYTICAL ULTRACENTRIFUGE;
CYTOPLASMIC MEMBRANE; PERIPLASMIC DOMAINS; ELECTRON-MICROSCOPY; ANGLE
SCATTERING
AB Nutrient import across Gram-negative bacteria's outer membrane is powered by the proton-motive force, delivered by the cytoplasmic membrane protein complex ExbB-ExbD-TonB. Having purified the ExbB(4)-ExbD(2) complex in the detergent dodecyl maltoside, we substituted amphipol A8-35 for detergent, forming a water-soluble membrane protein/amphipol complex. Properties of the ExbB(4)-ExbD(2) complex in detergent or in amphipols were compared by gel electrophoresis, size exclusion chromatography, asymmetric flow field-flow fractionation, thermal stability assays, and electron microscopy. Bound detergent and fluorescently labeled amphipol were assayed quantitatively by 1D NMR and analytical ultracentrifugation, respectively. The structural arrangement of ExbB(4)-ExbD(2) was examined by EM, small-angle X-ray scattering, and small-angle neutron scattering using a deuterated amphipol. The amphipol-trapped ExbB(4)-ExbD(2) complex is slightly larger than its detergent-solubilized counterpart. We also investigated a different oligomeric form of the two proteins, ExbB(6)-ExbD(4), and propose a structural arrangement of its transmembrane alpha-helical domains.
C1 [Sverzhinsky, Aleksandr; Chung, Jacqueline W.; Coulton, James W.] McGill Univ, Dept Microbiol & Immunol, Montreal, PQ H3A 2B4, Canada.
[Qian, Shuo] Oak Ridge Natl Lab, Ctr Struct Mol Biol, Oak Ridge, TN 37831 USA.
[Qian, Shuo] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA.
[Yang, Lin; Allaire, Marc] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA.
[Moraes, Isabel] Membrane Prot Lab, Diamond Light Source, Didcot OX11 0DE, Oxon, England.
[Moraes, Isabel] Harwell Appleton Lab, Didcot OX11 0DE, Oxon, England.
[Moraes, Isabel] Univ London Imperial Coll Sci Technol & Med, Dept Life Sci, London SW7 2AZ, England.
[Ma, Dewang] Univ Montreal, Fac Pharm, Montreal, PQ H3C 3J7, Canada.
[Ma, Dewang] Univ Montreal, Dept Chim, Montreal, PQ H3C 3J7, Canada.
[Zoonens, Manuela; Popot, Jean-Luc] Lab Biol Physicochim Prot Membranaires, UMR 7099, Paris, France.
[Zoonens, Manuela; Popot, Jean-Luc] Univ Paris 07, CNRS, Inst Biol Physicochim, FRC 550, Paris, France.
[Coulton, James W.] Microbiome & Dis Tolerance Ctr, Montreal, PQ H3A 2B4, Canada.
RP Coulton, JW (reprint author), Microbiome & Dis Tolerance Ctr, 3775 Univ St, Montreal, PQ H3A 2B4, Canada.
EM james.coulton@mcgill.ca
OI Moraes, Isabel/0000-0002-7427-5467; Qian, Shuo/0000-0002-4842-828X
FU Canadian Institutes of Health Research (CIHR)
[200709MOP-178048-BMA-CFAA-11449]; Fonds de la recherche en sante du
Quebec (FRSQ); CREATE program, Cellular Dynamics of Macromolecular
Complexes, Natural Sciences and Engineering Research Council (NSERC) of
Canada; GEPROM; F.C. Harrison and the Rozanis Funds, Department of
Microbiology and Immunology, McGill University; French Centre National
de la Recherche Scientifique (CNRS); Universite Paris-7 Denis Diderot;
grant "DYNAMO", from the French "Initiative d'Excellence" program
[ANR-11-LABX-0011-01]; U.S. Department of Energy's Office of Biological
and Environmental Research; Scientific User Facilities Division, Office
of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-98CH10886]
FX Particular thanks are due to F. Giusti (UMR 7099, Paris) for
synthesizing the deuterated and the fluorescent amphipols used in this
project. This work was supported by an operating grant to J.W.C. from
the Canadian Institutes of Health Research (CIHR reference number
200709MOP-178048-BMA-CFAA-11449). The Groupe d'etude des proteines
membranaires (GE PROM), supported by the Fonds de la recherche en sante
du Quebec (FRSQ), awarded a Projet Novateur to J.W.C. A.S. was awarded
fellowships from the CREATE program, Cellular Dynamics of Macromolecular
Complexes, Natural Sciences and Engineering Research Council (NSERC) of
Canada; from GEPROM; and from the F.C. Harrison and the Rozanis Funds,
Department of Microbiology and Immunology, McGill University. Work in
UMR 7099 was supported by the French Centre National de la Recherche
Scientifique (CNRS), by Universite Paris-7 Denis Diderot, and by grant
"DYNAMO", ANR-11-LABX-0011-01, from the French "Initiative d'Excellence"
program. Canada Foundation for Innovation provided infrastructure for
the Facility for Electron Microscope Research, McGill University;
www.medicine.mcgill.ca/femr/home.html. We appreciate support from
Isabelle Rouiller for EM studies. Tara Sprules, manager of the
Quebec/Eastern Canada High Field NMR Facility, www.nmrlab.mcgill.ca,
guided NMR experiments to quantitate detergent. Research at the Bio-SANS
(Center for Structural Molecular Biology) was supported by the U.S.
Department of Energy's Office of Biological and Environmental Research.
Research at Oak Ridge National Laboratory's High Flux Isotope Reactor
was sponsored by the Scientific User Facilities Division, Office of
Basic Energy Sciences, U.S. Department of Energy. Oak Ridge National
Laboratory is managed by UT-Battelle, LLC for the U.S. Department of
Energy. Use of the National Synchrotron Light Source, Brookhaven
National Laboratory, was supported by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-98CH10886. We appreciate the access to AF4 equipment in the
laboratory of Francoise Winnik at the Universite de Montreal. This work
was facilitated by computing resources from CLUMEQ, under Compute/Calcul
Canada. We appreciate laboratory support from Nathalie Croteau and
suggestions on the manuscript by J.A. Kashul.
NR 63
TC 3
Z9 3
U1 6
U2 20
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2631
EI 1432-1424
J9 J MEMBRANE BIOL
JI J. Membr. Biol.
PD OCT
PY 2014
VL 247
IS 9-10
SI SI
BP 1005
EP 1018
DI 10.1007/s00232-014-9678-4
PG 14
WC Biochemistry & Molecular Biology; Cell Biology; Physiology
SC Biochemistry & Molecular Biology; Cell Biology; Physiology
GA AR8OU
UT WOS:000343835500020
PM 24862870
ER
PT J
AU DeJarnette, D
Jang, GG
Blake, P
Roper, DK
AF DeJarnette, D.
Jang, G. G.
Blake, P.
Roper, D. K.
TI Polarization angle affects energy of plasmonic features in Fano resonant
regular lattices
SO JOURNAL OF OPTICS
LA English
DT Article
DE plasmonics; Fano resonance; polarization
ID GOLD NANOPARTICLE ARRAYS; OPTICAL-PROPERTIES; SURFACE-PLASMONS; SIZE;
ENHANCEMENT; WAVELENGTH; EXTINCTION; SHAPE
AB Plasmonic nanoparticles in ordered lattices exhibit spectral features supported by Fano resonant coupling between dipole and/or quadrupole oscillations and constructively interfering diffracted modes. This work showed that the angle at which incident resonant irradiation was polarized relative to the axes of a rectangular 655 x 649 nm(2) lattice of 264 nm diameter gold nanospheres predictably modulated the energy of plasmonic spectral features. Measured peak wavelengths varied sinusoidally as polarization angle was rotated 360 degrees. Quadrupole and dipole lattice resonance oscillations were phase shifted by 90 degrees, consistent with theory. Experimental wavelengths were within 12 nanometers (1.8%) of wavelengths simulated for the lattice using a coupled dipole/quadrupole approximation.
C1 [DeJarnette, D.; Roper, D. K.] Univ Arkansas, Fayetteville, AR 72701 USA.
[Jang, G. G.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
[Blake, P.; Roper, D. K.] Univ Arkansas, Ralph E Martin Dept Chem Engn, Fayetteville, AR 72701 USA.
RP DeJarnette, D (reprint author), Univ Arkansas, 3202 Bell Engn Ctr, Fayetteville, AR 72701 USA.
EM dkroper@uark.edu
OI Blake, Phillip/0000-0003-1417-1532
FU NSF [CMMI-0909749, CBET 1134222, ECCS-1006927]; Walton Family Charitable
Support Foundation; Arkansas Bioscience Institute; University of
Arkansas Foundation
FX This work was supported in part by NSF CMMI-0909749, NSF CBET 1134222,
NSF ECCS-1006927, the Walton Family Charitable Support Foundation,
Arkansas Bioscience Institute, and the University of Arkansas
Foundation. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation. D
DeJarnette conducted simulations and prepared data and text for the
manuscript. G Jang performed metallization and spectral characterization
of samples and prepared preliminary text. P Blake performed EBL and
aided in text revision. D K Roper directed the work and organized the
final text.
NR 39
TC 5
Z9 5
U1 3
U2 11
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2040-8978
EI 2040-8986
J9 J OPTICS-UK
JI J. Opt.
PD OCT
PY 2014
VL 16
IS 10
AR 105006
DI 10.1088/2040-8978/16/10/105006
PG 7
WC Optics
SC Optics
GA AR6AM
UT WOS:000343665200010
ER
PT J
AU Sancho, R
Novell, A
Svec, F
Minguillon, C
AF Sancho, Raquel
Novell, Arnau
Svec, Frantisek
Minguillon, Cristina
TI Monolithic silica columns functionalized with substituted
polyproline-derived chiral selectors as chiral stationary phases for
high-performance liquid chromatography
SO JOURNAL OF SEPARATION SCIENCE
LA English
DT Article
DE Chiral selectors; Chiral stationary phases; Enantioseparation;
Poly-L-proline oligomers; Silica monoliths
ID ENANTIOMER SEPARATIONS; MOLECULAR-DYNAMICS; ENANTIOSEPARATION;
IMPROVEMENT; CELLULOSE
AB In this study, two polyproline-derived chiral selectors are bonded to monolithic silica gel columns. In spite of high chiral selector coverage, the derivatization was found to have only a slight effect on the hydrodynamics of the mobile phase through the column. The enantioseparation ability of the resulting chiral monolithic columns was evaluated with a series of structurally diverse racemic test compounds. When compared to analogous bead-based chiral stationary phases, higher enantioseparation and broader application domain were observed for monolithic columns. Moreover, the increase in flow rate produces a minor reduction of resolution, which permits to shorten analysis time. Additionally, increased loadability defines chiral polyproline derived monoliths as adequate for preparative chromatography.
C1 [Sancho, Raquel; Novell, Arnau; Minguillon, Cristina] Univ Barcelona, E-08921 Barcelona, Spain.
[Sancho, Raquel; Novell, Arnau; Minguillon, Cristina] Univ Barcelona, Fac Pharm, Lab Quim Farmaceut, E-08921 Barcelona, Spain.
[Svec, Frantisek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
RP Minguillon, C (reprint author), Univ Barcelona, Food & Nutr Torribera Campus,Verdaguer Bldg,Off 1, E-08921 Barcelona, Spain.
EM cminguillon@ub.edu
RI Foundry, Molecular/G-9968-2014; Minguillon, Cristina/F-3936-2016
OI Minguillon, Cristina/0000-0003-3857-0976
FU Ministerio de Educacion y Ciencia; European Regional Development Fund
(ERDF) [CTQ 2006-03378/PPQ]; Agencia de Gestio d'Ajuts Universitaris i
de Recerca (AGAUR) of the Generalitat de Catalunya; Generalitat de
Catalunya [2006 BE-2-00230]; Office of Science, Office of Basic Energy
Sciences, Scientific User Facilities Division of the US Department of
Energy [DE-AC02-05CH11231]
FX Funding from Ministerio de Educacion y Ciencia and European Regional
Development Fund (ERDF) (project number CTQ 2006-03378/PPQ) is
gratefully acknowledged. R. Sancho and A. Novell acknowledge the Agencia
de Gestio d'Ajuts Universitaris i de Recerca (AGAUR) of the Generalitat
de Catalunya for predoctoral fellowships. R. S. also thanks the
Generalitat de Catalunya for a grant for stays abroad (2006 BE-2-00230).
Part of the experimental work was performed at the Molecular Foundry,
Lawrence Berkeley National Laboratory and supported by the Office of
Science, Office of Basic Energy Sciences, Scientific User Facilities
Division of the US Department of Energy, under Contract no.
DE-AC02-05CH11231.
NR 25
TC 6
Z9 6
U1 4
U2 23
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 1615-9306
EI 1615-9314
J9 J SEP SCI
JI J. Sep. Sci.
PD OCT
PY 2014
VL 37
IS 20
BP 2805
EP 2813
DI 10.1002/jssc.201400640
PG 9
WC Chemistry, Analytical
SC Chemistry
GA AR8IR
UT WOS:000343819300001
PM 25099215
ER
PT J
AU Sreedhar, B
Suzuki, T
Hobbs, DT
Kawajiri, Y
AF Sreedhar, Balamurali
Suzuki, Tatsuya
Hobbs, David T.
Kawajiri, Yoshiaki
TI Evaluation of tertiary pyridine resin for the separation of lanthanides
by simulated moving-bed chromatography
SO JOURNAL OF SEPARATION SCIENCE
LA English
DT Article
DE Actinides; Lanthanides; Nuclear fuel; Simulated moving-bed; Tertiary
pyridine
ID SPENT NUCLEAR-FUELS; MINOR ACTINIDES; ACID SOLUTIONS; RARE-EARTHS;
OPTIMIZATION; EXTRACTION; FRAMEWORK; SYSTEMS; DESIGN; COLUMN
AB Lanthanide separation by simulated moving-bed chromatography was studied as a model system for separating lanthanide fission products and minor actinides from used nuclear fuels. The simulated moving-bed system was modeled for a tertiary pyridine anion-exchange resin supported on silica particles as the stationary phase and a mixture of methanol and 1M nitric acid as the mobile phase. Pulse injection tests using a single packed column were used to obtain chromatographic parameters for mathematical modeling of the simulated moving-bed system. Higher concentrations of methanol improved the separation, but the chromatograms showed evidence of nonlinearity of the isotherms. The mathematical model of the simulated moving-bed process predicted a production rate of purified samarium and neodymium at 118 g solute/L resin/day and a purity of 99.5%. The optimal methanol ratio for the production rate for various product purities was determined from the model. The excellent separation of Nd and Sm suggests that the simulated moving-bed system could be applied to the separation of minor actinides such as americium and curium.
C1 [Sreedhar, Balamurali; Kawajiri, Yoshiaki] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA.
[Suzuki, Tatsuya] Nagaoka Univ Technol, Nagaoka, Niigata 94021, Japan.
[Hobbs, David T.] Savannah River Natl Lab, Aiken, SC USA.
RP Kawajiri, Y (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, 311 Ferst Dr NW, Atlanta, GA 30332 USA.
EM ykawajiri@chbe.gatech.edu
FU Strategic Energy Institute at Georgia Institute of Technology
FX Funding from the Strategic Energy Institute at Georgia Institute of
Technology is gratefully acknowledged.
NR 44
TC 1
Z9 1
U1 4
U2 18
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1615-9306
EI 1615-9314
J9 J SEP SCI
JI J. Sep. Sci.
PD OCT
PY 2014
VL 37
IS 20
BP 2892
EP 2899
DI 10.1002/jssc.201400516
PG 8
WC Chemistry, Analytical
SC Chemistry
GA AR8IR
UT WOS:000343819300011
PM 25088396
ER
PT J
AU Chen, CF
Kelly, J
Asphjell, O
Papin, PA
Forsyth, RT
Guidry, DR
Safarik, DJ
Llobet, A
AF Chen, Ching-Fong
Kelly, Julian
Asphjell, Oystein
Papin, Pallas A.
Forsyth, Robert T.
Guidry, Dennis R.
Safarik, Doug J.
Llobet, Anna
TI Processing of ThO2/CeO2 Ceramic Fuel
SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
LA English
DT Article
ID THORIUM-BASED FUELS; WATER-REACTORS; PLUTONIUM; PELLETS
AB The paper describes an effective procedure for mixing and conditioning ThO2 and CeO2 powders so they are suited for pressing and sintering into high-density (Th-0.9,Ce-0.1)O-2 ceramic pellets - this material being a pilot for (Th,Pu)O-2 fuels. Wet ball milling with an organic dispersant aided the powder dispersing process by reducing the agglomeration of very small oxide particles. Homogeneous elemental distributions were seen within the calcined powder mixture. Heat treatments were applied to the calcined, mixed ThO2/CeO2 mix to study phase and surface area transformations. Solid solution formation commences at around 1300 degrees C and goes to completion at a temperature of 1500 degrees C. We also report the effect of a granulation strategy that can be applied to the production of high quality, mixed ThO2 nuclear fuel ceramics. Sized granules of blended ThO2/CeO2 powder were produced from precompacted disks of this material that were subsequently heat treated. This had a positive effect on die filling and compaction into green pellets, as well as on final sintered (Th,Ce)O-2 pellet density. The microstructure of the sintered (Th,Ce)O-2 ceramic was characterized using SEM-based electron back-scatter diffraction from which a uniform density and grain size were readily apparent. XRD results showed that a single phase Th0.9Ce0.1O2, fuel ceramic had been produced. Its density was similar to 94% TD.
C1 [Chen, Ching-Fong; Papin, Pallas A.; Forsyth, Robert T.; Guidry, Dennis R.; Safarik, Doug J.] Los Alamos Natl Lab, Mat Sci Technol Div, Los Alamos, NM 87545 USA.
[Kelly, Julian; Asphjell, Oystein] THOR ENERGY, NO-0255 Oslo, Norway.
[Llobet, Anna] Los Alamos Natl Lab, LANSCE, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA.
RP Chen, CF (reprint author), Los Alamos Natl Lab, Mat Sci Technol Div, POB 1663, Los Alamos, NM 87545 USA.
EM cchen@lanl.gov
RI Llobet, Anna/B-1672-2010;
OI Safarik, Douglas/0000-0001-8648-9377
FU THOR ENERGY of Norway [FIA-10-006]; DOE [DE-AC52-06NA25396]
FX This program was supported by THOR ENERGY of Norway under the agreement
FIA-10-006. The authors would like to thank Dr. Pat McClure of LANL for
managing the program. Los Alamos National Laboratory is operated by Los
Alamos National Security LLC under DOE Contract DE-AC52-06NA25396
NR 27
TC 1
Z9 1
U1 2
U2 23
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0002-7820
EI 1551-2916
J9 J AM CERAM SOC
JI J. Am. Ceram. Soc.
PD OCT
PY 2014
VL 97
IS 10
BP 3062
EP 3070
DI 10.1111/jace.13114
PG 9
WC Materials Science, Ceramics
SC Materials Science
GA AR8MT
UT WOS:000343829900008
ER
PT J
AU Vienna, JD
Kim, DS
Muller, IS
Piepel, GF
Kruger, AA
AF Vienna, John D.
Kim, Dong-Sang
Muller, Isabelle S.
Piepel, Greg F.
Kruger, Albert A.
TI Toward Understanding the Effect of Low-Activity Waste Glass Composition
on Sulfur Solubility
SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
LA English
DT Article
ID SILICATE-GLASSES; SULFATE INCORPORATION; BOROSILICATE MELT; REDOX
EQUILIBRIA; IMMOBILIZATION; NUCLEAR; ENVIRONMENTS; DEPENDENCE;
SPECIATION; CHEMISTRY
AB The concentration of sulfur in Hanford low-activity waste (LAW) glass melter feed will be maintained below the point where the salt accumulates on the melt surface. The allowable concentrations may range from near zero to over 2.05wt% (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have traditionally been placed on sulfur loading in melter feed, which in turn significantly increases the amount of LAW glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15years. These data were compiled and analyzed. An empirical model was developed to predict the solubility of SO3 in glass based on 253 simulated Hanford LAW glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the maximum amount of sulfur in melter feed that did not form a salt layer in 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options (e.g., scale of supplemental LAW treatment facility, and pretreatment facility performance requirements). The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that increase sulfur solubility most are Li2O>V2O5>CaO approximate to P2O5>Na2O approximate to B2O3>K2O. The components that decrease sulfur solubility most are Cl>Cr2O3>Al2O3>ZrO2 approximate to SnO2>Others (i.e., the sum of minor components) approximate to SiO2. The order of component effects is similar to previous literature data, in most cases.
C1 [Vienna, John D.; Kim, Dong-Sang; Piepel, Greg F.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Muller, Isabelle S.] Catholic Univ Amer, Vitreous State Lab, Washington, DC 20064 USA.
[Kruger, Albert A.] US DOE, Off River Protect, Richland, WA 99354 USA.
RP Vienna, JD (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM john.vienna@pnnl.gov
FU DOE Office of River Protection; DOE [DE-AC05-76RL01830]
FX The authors would like to thank the DOE Office of River Protection for
their support of this work. The testing results analyzed in this article
were generated by the Catholic University of America in support of DOE
and were generously shared with the authors for the work in this
article. We thank those that participated in the generation of the data,
in particular KS Matlack, IL Pegg, and H Gan. DK Peeler and CM Jantzen
made valuable contributions to the article through their comments to the
initial manuscript. The Pacific Northwest National Laboratory is
operated by Battelle for the DOE under contract DE-AC05-76RL01830.
NR 59
TC 7
Z9 8
U1 0
U2 12
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0002-7820
EI 1551-2916
J9 J AM CERAM SOC
JI J. Am. Ceram. Soc.
PD OCT
PY 2014
VL 97
IS 10
BP 3135
EP 3142
DI 10.1111/jace.13125
PG 8
WC Materials Science, Ceramics
SC Materials Science
GA AR8MT
UT WOS:000343829900018
ER
PT J
AU Chu, HJ
Wang, SP
Yue, HW
Lin, QY
Hu, YG
Li, XZ
Zhou, JZ
Yang, YF
AF Chu, Houjuan
Wang, Shiping
Yue, Haowei
Lin, Qiaoyan
Hu, Yigang
Li, Xiangzhen
Zhou, Jizhong
Yang, Yunfeng
TI Contrasting soil microbial community functional structures in two major
landscapes of the Tibetan alpine meadow
SO MICROBIOLOGYOPEN
LA English
DT Article
DE Alpine grassland; GeoChip; soil microbial community; Tibetan plateau
ID AGRICULTURAL MANAGEMENT; ENVIRONMENTAL-SAMPLES; ORGANIC-CARBON; PLATEAU;
GRASSLAND; NITROGEN; VEGETATION; ECOSYSTEM; CLIMATE; DENITRIFICATION
AB The grassland and shrubland are two major landscapes of the Tibetan alpine meadow, a region very sensitive to the impact of global warming and anthropogenic perturbation. Herein, we report a study showing that a majority of differences in soil microbial community functional structures, measured by a functional gene array named GeoChip 4.0, in two adjacent shrubland and grassland areas, were explainable by environmental properties, suggesting that the harsh environments in the alpine grassland rendered niche adaptation important. Furthermore, genes involved in labile carbon degradation were more abundant in the shrubland than those of the grassland but genes involved in recalcitrant carbon degradation were less abundant, which was conducive to long-term carbon storage and sequestration in the shrubland despite low soil organic carbon content. In addition, genes of anerobic nitrogen cycling processes such as denitrification and dissimilatory nitrogen reduction were more abundant, shifting soil nitrogen cycling toward ammonium biosynthesis and consequently leading to higher soil ammonium contents. We also noted higher abundances of stress genes responsive to nitrogen limitation and oxygen limitation, which might be attributed to low total nitrogen and higher water contents in the shrubland. Together, these results provide mechanistic knowledge about microbial linkages to soil carbon and nitrogen storage and potential consequences of vegetation shifts in the Tibetan alpine meadow.
C1 [Chu, Houjuan; Yue, Haowei; Zhou, Jizhong; Yang, Yunfeng] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China.
[Wang, Shiping] Chinese Acad Sci, Inst Tibetan Plateau Res, Lab Alpine Ecol & Biodivers, Beijing 100085, Peoples R China.
[Lin, Qiaoyan; Hu, Yigang] Chinese Acad Sci, Northwest Inst Plateau Biol, Key Lab Adapt & Evolut Plateau Biota, Xining 810008, Peoples R China.
[Hu, Yigang] Chinese Acad Sci, Cold & Arid Reg & Environm & Engn Res Inst, Shapotou Desert Expt & Res Stn, Lanzhou 730000, Peoples R China.
[Li, Xiangzhen] Chengdu Inst Biol, Chinese Acad Sci, Chengdu 610041, Peoples R China.
[Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA.
[Zhou, Jizhong] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA.
[Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Yang, YF (reprint author), Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China.
EM yangyf@tsinghua.edu.cn
FU National High Technology Research and Development Program of China
[2012AA061401]; National Key Basic Research Program of China
[2013CB956601]; National Science Foundation of China [41171201];
Collaborative Innovation Center for Regional Environmental Quality;
National Key Basic Research Program [2010CB833502]; US Department of
Energy [DE-SC0004601]; US National Science Foundation [EF-1065844];
Ecosystems and Networks Integrated with Genes and Molecular Assemblies
(ENIGMA) through the US Department of Energy [DE-AC02-05CH11231]
FX This research was supported by grants to Yunfeng Yang from the National
High Technology Research and Development Program of China
(2012AA061401), National Key Basic Research Program of China
(2013CB956601), National Science Foundation of China (41171201) and
Collaborative Innovation Center for Regional Environmental Quality, to
Shiping Wang from the National Key Basic Research Program
(2010CB833502), to Jizhong Zhou from the US Department of Energy
(DE-SC0004601) and the US National Science Foundation (EF-1065844). The
development of GeoChip and associated computational pipelines used in
this study was supported by Ecosystems and Networks Integrated with
Genes and Molecular Assemblies (ENIGMA) through the US Department of
Energy (DE-AC02-05CH11231).
NR 52
TC 3
Z9 4
U1 15
U2 73
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2045-8827
J9 MICROBIOLOGYOPEN
JI MicrobiologyOpen
PD OCT
PY 2014
VL 3
IS 5
BP 585
EP 594
DI 10.1002/mbo3.190
PG 10
WC Microbiology
SC Microbiology
GA AR7LQ
UT WOS:000343761600001
PM 25044404
ER
PT J
AU Koshelev, A
Calafiore, G
Peroz, C
Dhuey, S
Cabrini, S
Sasorov, P
Goltsov, A
Yankov, V
AF Koshelev, A.
Calafiore, G.
Peroz, C.
Dhuey, S.
Cabrini, S.
Sasorov, P.
Goltsov, A.
Yankov, V.
TI Combination of a spectrometer-on-chip and an array of Young's
interferometers for laser spectrum monitoring
SO OPTICS LETTERS
LA English
DT Article
ID WAVE-GUIDES; SILICON; GRATINGS; FILTERS
AB This Letter presents the design and experimental results for an on-chip photonic device for laser spectrum monitoring that combines a nanospectrometer and an array of Young's interferometers. The array of Young's interferometers and the spectrometer measure the width and wavelength of a spectrum in visible light, respectively. The accuracy of spectral width measurements is around 10% for FWHM higher than 2.5 pm. The spectrometeron-chip is based on a digital planar hologram, and provides a resolution around 145 pm within the spectral range of 719-861 nm (142 nm bandwidth). The performance of the device is demonstrated for distinguishing between the single- and two-longitudinal mode operation of a fiber Bragg grating laser diode with 23 pm mode separation. (C) 2014 Optical Society of America
C1 [Koshelev, A.; Goltsov, A.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Moscow Region, Russia.
[Calafiore, G.; Peroz, C.] aBeam Technol, Castro Valley, CA 94546 USA.
[Dhuey, S.; Cabrini, S.] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94702 USA.
[Sasorov, P.; Goltsov, A.; Yankov, V.] Nanoopt Devices, Santa Clara, CA 95054 USA.
RP Koshelev, A (reprint author), State Univ, Moscow Inst Phys & Technol, Inst Skii Per 9, Dolgoprudnyi, Moscow Region, Russia.
EM koshelev@nanoopticdevices.com
RI Foundry, Molecular/G-9968-2014
FU Office of Science, Office of Basic Energy Sciences, of the United States
Department of Energy [DEAC02-05CH11231]; Air Force Office of Scientific
Research (AFOSR), Air Force Material Command, United States Air Force
[FA9550-12-C-0077]
FX Work at the Molecular Foundry was supported by the Office of Science,
Office of Basic Energy Sciences, of the United States Department of
Energy under contract DEAC02-05CH11231. This Letter is partially
supported by the Air Force Office of Scientific Research (AFOSR), Air
Force Material Command, United States Air Force, under grant/contract
FA9550-12-C-0077.
NR 17
TC 0
Z9 0
U1 2
U2 13
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 0146-9592
EI 1539-4794
J9 OPT LETT
JI Opt. Lett.
PD OCT 1
PY 2014
VL 39
IS 19
BP 5645
EP 5648
DI 10.1364/OL.39.005645
PG 4
WC Optics
SC Optics
GA AR9PH
UT WOS:000343906400045
PM 25360949
ER
PT J
AU Skigin, DC
Fowlkes, JD
Roberts, NA
Scaffardi, LB
Schinca, DC
Lester, M
AF Skigin, D. C.
Fowlkes, J. D.
Roberts, N. A.
Scaffardi, L. B.
Schinca, D. C.
Lester, M.
TI Control of the diffracted response of a metallic wire array with double
period: experimental demonstration
SO OPTICS LETTERS
LA English
DT Article
ID GRATINGS; TRANSMISSION
AB In recent papers, it has been theoretically shown that by using dual-period wire gratings, it is possible to control the relative efficiencies of the diffracted orders, regardless of the wires' material, incident polarization and wavelength. In this Letter, we experimentally demonstrate, for the first time, that by appropriately choosing the geometrical parameters of a nanometric periodic structure, it is possible to control the optical response in the visible range. We show examples of nanostructures designed to cancel out or to intensify a particular diffraction order. Such nanostructures allow a broad control over the directionality and the intensity of the diffracted light, which makes them useful for applications such as highly directional optical nanoantennas and photonic multiplexers. (C) 2014 Optical Society of America
C1 [Skigin, D. C.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Grp Electromagnetismo Aplicado,IFIBA CONICET, RA-1428 Buenos Aires, DF, Argentina.
[Fowlkes, J. D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37381 USA.
[Roberts, N. A.] Utah State Univ, Logan, UT 84322 USA.
[Scaffardi, L. B.; Schinca, D. C.] Univ Nacl La Plata, Fac Ingn, Dept Ciencias Basicas, La Plata, Buenos Aires, Argentina.
[Scaffardi, L. B.; Schinca, D. C.] CONICET La Plata CIC, Ctr Invest Opt CIOp, La Plata, Argentina.
[Lester, M.] CIFICEN CONICET, IFAS, Grp Opt Solidos Elfo, Tandil, Argentina.
[Lester, M.] Univ Nacl Ctr Prov Buenos Aires, Tandil, Argentina.
RP Skigin, DC (reprint author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Grp Electromagnetismo Aplicado,IFIBA CONICET, RA-1428 Buenos Aires, DF, Argentina.
EM dcs@df.uba.ar
RI Roberts, Nicholas/H-3275-2014
OI Roberts, Nicholas/0000-0002-6490-9454
FU CONICET [PIP 0145, PIP 112-200801-01880, PIP 0394]; UNI-CEN; UBACyT
[20020100100533]; Facultad de Ingeniera, UNLP [11/I151]; Scientific User
Facilities Division, Office of Basic Energy Sciences, U. S. Department
of Energy
FX ML thanks Dr. Eduardo Caselli and Dr. Javier Diez for their
collaboration and comments. ML gratefully acknowledges support from
CONICET (PIP 0145) and UNI-CEN; DS acknowledges support from CONICET
(PIP 112-200801-01880) and UBACyT (20020100100533); LBS and DCS
acknowledge support fron CONICET (PIP 0394) and grant 11/I151 from
Facultad de Ingeniera, UNLP. A portion of this research was conducted at
the Center for Nanophase Materials Sciences, which is sponsored at Oak
Ridge National Laboratory by the Scientific User Facilities Division,
Office of Basic Energy Sciences, U. S. Department of Energy.
NR 16
TC 1
Z9 1
U1 1
U2 3
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 0146-9592
EI 1539-4794
J9 OPT LETT
JI Opt. Lett.
PD OCT 1
PY 2014
VL 39
IS 19
BP 5693
EP 5696
DI 10.1364/OL.39.005693
PG 4
WC Optics
SC Optics
GA AR9PH
UT WOS:000343906400057
PM 25360961
ER
PT J
AU Lookman, T
Xue, DZ
Vasseur, R
Zong, HX
Ding, XD
AF Lookman, Turab
Xue, Dezhen
Vasseur, Romain
Zong, Hongxiang
Ding, Xiangdong
TI On glassy behavior in ferroics
SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
LA English
DT Article
DE cooperative behavior; ferroic glass; martensites; perovskites
ID SPIN-GLASS; MARTENSITIC TRANSFORMATIONS; RELAXOR FERROELECTRICS; PHASE;
TWEED
AB Ferroics include a range of materials classes with functionalities such as magnetism, polarization, and strain. We review coexistence and glassy behavior, as studied over the last decade, in systems such as perovskite manganites, ferroelectrics, and martensites to distil a common theme that includes the interplay of long-range interactions, disorder, and cooperative behavior. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
C1 [Lookman, Turab; Xue, Dezhen; Zong, Hongxiang] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA.
[Vasseur, Romain] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France.
[Zong, Hongxiang; Ding, Xiangdong] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China.
RP Lookman, T (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87544 USA.
EM txl@lanl.gov
RI XUE, Dezhen/A-6062-2010; Ding, Xiangdong/K-4971-2013
OI XUE, Dezhen/0000-0001-6132-1236; Ding, Xiangdong/0000-0002-1220-3097
NR 40
TC 1
Z9 1
U1 3
U2 19
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0370-1972
EI 1521-3951
J9 PHYS STATUS SOLIDI B
JI Phys. Status Solidi B-Basic Solid State Phys.
PD OCT
PY 2014
VL 251
IS 10
SI SI
BP 2003
EP 2009
DI 10.1002/pssb.201350400
PG 7
WC Physics, Condensed Matter
SC Physics
GA AS6FN
UT WOS:000344360000005
ER
PT J
AU Lloveras, P
Touchagues, G
Castan, T
Lookman, T
Porta, M
Saxena, A
Planes, A
AF Lloveras, Pol
Touchagues, Gilles
Castan, Teresa
Lookman, Turab
Porta, Marcel
Saxena, Avadh
Planes, Antoni
TI Modelling magnetostructural textures in magnetic shape-memory alloys:
Strain and magnetic glass behaviour
SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
LA English
DT Article
DE magnetic glass; magnetic shape memory; martensitic transition; strain
glass
ID MARTENSITIC TRANSFORMATIONS; PHASE-TRANSFORMATION; ELECTRON-MICROSCOPY;
FIELD
AB In this paper, we propose a model that combines a Landau free energy part and a micromagnetic free energy part aimed at describing a magnetostructural multiferroic. We show that in the limit of high-elastic anisotropy and strong magnetostructural interplay, the model is able to reproduce characteristic strain and magnetization configurations typical of magnetic shapememory materials. For low-elastic anisotropy, in the presence of disorder arising from compositional fluctuations giving rise to a distribution of local transition temperatures, the model is able to reproduce strain glass behaviour. In this case, the temperature dependence of the magnetization measured after zero magnetic field cooling deviates from the magnetization measured after magnetic field cooling protocol, which proves that the strain glass behaviour induces non-ergodicity in the magnetic degrees of freedom as well. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
C1 [Lloveras, Pol] Univ Politecn Cataluna, Dept Fis & Engn Nucl, E-08028 Barcelona, Catalonia, Spain.
[Touchagues, Gilles; Castan, Teresa; Planes, Antoni] Univ Barcelona, Fac Fis, Dept Estruct & Constituents Mat, E-08028 Barcelona, Catalonia, Spain.
[Touchagues, Gilles] Ecole Normale Super Lyon, F-69364 Lyon, France.
[Lookman, Turab; Porta, Marcel; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Planes, A (reprint author), Univ Barcelona, Fac Fis, Dept Estruct & Constituents Mat, E-08028 Barcelona, Catalonia, Spain.
EM toni@ecm.ub.edu
RI Planes, Antoni/O-1904-2015;
OI Planes, Antoni/0000-0001-5213-5714; Porta Tena,
Marcel/0000-0001-7582-9671; Lloveras, Pol/0000-0003-4133-2223
FU CICyT (Spain) [MAT2013-40590-P, FIS2011-24439]; U.S. Department of
Energy
FX This work was supported by CICyT (Spain) through projects
MAT2013-40590-P and FIS2011-24439, and in part by the U.S. Department of
Energy. P. Ll. acknowledges the hospitality of the Theoretical Division
of Los Alamos National Laboratory during his visit where this work was
initiated.
NR 31
TC 2
Z9 2
U1 2
U2 18
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0370-1972
EI 1521-3951
J9 PHYS STATUS SOLIDI B
JI Phys. Status Solidi B-Basic Solid State Phys.
PD OCT
PY 2014
VL 251
IS 10
SI SI
BP 2080
EP 2087
DI 10.1002/pssb.201350394
PG 8
WC Physics, Condensed Matter
SC Physics
GA AS6FN
UT WOS:000344360000015
ER
PT J
AU Khovaylo, VV
Rodionova, VV
Shevyrtalov, SN
Novosad, V
AF Khovaylo, Vladimir V.
Rodionova, Valeria V.
Shevyrtalov, Sergey N.
Novosad, Val
TI Magnetocaloric effect in "reduced" dimensions: Thin films, ribbons, and
microwires of Heusler alloys and related compounds
SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
LA English
DT Article
DE magnetocaloric effect; melt spinning; microwires; thin films
ID NI-MN-GA; MELT-SPUN RIBBONS; MAGNETIC-ENTROPY CHANGE; EXCHANGE BIAS
BEHAVIOR; MARTENSITIC-TRANSFORMATION; PHASE-TRANSITIONS;
AMORPHOUS-ALLOYS; ROOM-TEMPERATURE; REFRIGERATION; MICROSTRUCTURE
AB Room temperature magnetic refrigeration is an energy saving and environmentally-friendly technology, which has developed rapidly from a basic idea to prototype devices. The performance of magnetic refrigerators crucially depends on the magnetocaloric properties and the geometry of the employed refrigerants. Here we review the magnetocaloric properties of Heusler alloys and related compounds with a high surface to volume ratio such as films, ribbons, and microwires, and compare them with their bulk counterparts. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
C1 [Khovaylo, Vladimir V.; Rodionova, Valeria V.] Natl Univ Sci & Technol MISiS, Moscow 119049, Russia.
[Khovaylo, Vladimir V.] ITMO Univ, St Petersburg 197101, Russia.
[Rodionova, Valeria V.; Shevyrtalov, Sergey N.] Immanuel Kant Balt Fed Univ, Kaliningrad 236041, Russia.
[Rodionova, Valeria V.; Shevyrtalov, Sergey N.] Immanuel Kant Balt Fed Univ, Inst Phys & Technol, Kaliningrad 236041, Russia.
[Novosad, Val] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Khovaylo, VV (reprint author), Natl Univ Sci & Technol MISiS, Moscow 119049, Russia.
EM khovaylo@misis.ru
RI Khovaylo, Vladimir/A-9706-2010; Novosad, V /J-4843-2015
OI Khovaylo, Vladimir/0000-0001-7815-100X;
FU Ministry of Education and Science of the Russian Federation; U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]; [K3-2014-037]
FX This work was carried out with financial support from the Ministry of
Education and Science of the Russian Federation in the framework of
Increase Competitiveness Program of NUST "MISiS" and grant No.
K3-2014-037. Work at Argonne was supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357.
NR 152
TC 10
Z9 10
U1 11
U2 67
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0370-1972
EI 1521-3951
J9 PHYS STATUS SOLIDI B
JI Phys. Status Solidi B-Basic Solid State Phys.
PD OCT
PY 2014
VL 251
IS 10
SI SI
BP 2104
EP 2113
DI 10.1002/pssb.201451217
PG 10
WC Physics, Condensed Matter
SC Physics
GA AS6FN
UT WOS:000344360000018
ER
PT J
AU D'Angelo, S
Kumar, S
Naranjo, L
Ferrara, F
Kiss, C
Bradbury, ARM
AF D'Angelo, Sara
Kumar, Sandeep
Naranjo, Leslie
Ferrara, Fortunato
Kiss, Csaba
Bradbury, Andrew R. M.
TI From deep sequencing to actual clones
SO PROTEIN ENGINEERING DESIGN & SELECTION
LA English
DT Article
DE antibody; inverse PCR; deep sequencing; phage display; yeast display
ID VITRO DISPLAY TECHNOLOGIES; PHAGE DISPLAY; ANTIBODY DISCOVERY; GENE
REPERTOIRE; DIVERSITY; LIBRARY; REGION
AB The application of deep sequencing to in vitro display technologies has been invaluable for the straightforward analysis of enriched clones. After sequencing in vitro selected populations, clones are binned into identical or similar groups and ordered by abundance, allowing identification of those that are most enriched. However, the greatest strength of deep sequencing is also its greatest weakness: clones are easily identified by their DNA sequences, but are not physically available for testing without a laborious multistep process involving several rounds of polymerization chain reaction (PCR), assembly and cloning. Here, using the isolation of antibody genes from a phage and yeast display selection as an example, we show the power of a rapid and simple inverse PCR-based method to easily isolate clones identified by deep sequencing. Once primers have been received, clone isolation can be carried out in a single day, rather than two days. Furthermore the reduced number of PCRs required will reduce PCR mutations correspondingly. We have observed a 100% success rate in amplifying clones with an abundance as low as 0.5% in a polyclonal population. This approach allows us to obtain full-length clones even when an incomplete sequence is available, and greatly simplifies the subcloning process. Moreover, rarer, but functional clones missed by traditional screening can be easily isolated using this method, and the approach can be extended to any selected library (scFv, cDNA, libraries based on scaffold proteins) where a unique sequence signature for the desired clones of interest is available.
C1 [D'Angelo, Sara; Ferrara, Fortunato] New Mexico Consortium, Los Alamos, NM 87544 USA.
[Kumar, Sandeep; Naranjo, Leslie; Kiss, Csaba; Bradbury, Andrew R. M.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA.
RP D'Angelo, S (reprint author), New Mexico Consortium, Los Alamos, NM 87544 USA.
EM sdangelo@lanl.gov; amb@lanl.gov
OI Bradbury, Andrew/0000-0002-5567-8172
FU National Institutes of Health [1-U54-DK093500-01]; Los Alamos National
Laboratory LDRD program; NIH [1R01HG004852-01A1]
FX This work was supported by the National Institutes of Health
(1-U54-DK093500-01 to A. R. M. B.); and the Los Alamos National
Laboratory LDRD program and NIH grant (1R01HG004852-01A1 to A. R. M.
B.). Funding for open access charge: National Institutes of Health.
NR 26
TC 12
Z9 12
U1 0
U2 13
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1741-0126
EI 1741-0134
J9 PROTEIN ENG DES SEL
JI Protein Eng. Des. Sel.
PD OCT
PY 2014
VL 27
IS 10
SI SI
BP 301
EP 307
DI 10.1093/protein/gzu032
PG 7
WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology
GA AR9KU
UT WOS:000343893400002
PM 25183780
ER
PT J
AU Manard, BT
Gonzalez, JJ
Sarkar, A
Mao, X
Zhang, LX
Konegger-Kappel, S
Marcus, RK
Russo, RE
AF Manard, Benjamin T.
Gonzalez, Jhanis J.
Sarkar, Arnab
Mao, Xianglei
Zhang, Lynn X.
Konegger-Kappel, Stefanie
Marcus, R. Kenneth
Russo, Richard E.
TI Investigation of spectrochemical matrix effects in the liquid
sampling-atmospheric pressure glow discharge source
SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY
LA English
DT Article
DE Liquid sampling-atmospheric pressure glow discharge; LS-APGD; Matrix
effects; Excitation conditions; Plasma robustness
ID INDUCTIVELY-COUPLED PLASMA; ATOMIC EMISSION-SPECTROMETRY; EASILY
IONIZABLE ELEMENTS; MICROWAVE-INDUCED PLASMAS; OPTICAL-EMISSION;
LASER-ABLATION; EXCITATION TEMPERATURES; IONIZATION SOURCE;
SPECTROSCOPY; ARGON
AB The liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma was evaluated with regard to its spectrochemical robustness in its application as a miniaturized optical emission spectroscopy (OES) source for liquid samples. The susceptibility to perturbations in excitation/ionization conditions was probed across a wide range test species, including transition metals, easily ionized elements (group I), and elements with low second ionization potentials (group II). Spectrochemical metrics included the plasma excitation temperature (T-exc), ionization temperatures (T-ion), and magnesium (Mg) ionic: atomic (Mg II:Mg I) ratios. The introduction of the 11 different matrix elements into the LS-APGD at concentrations of 500 mu g mL(-1) yielded no significant changes in the optically-determined plasma characteristics, indicating a relative immunity to spectrochemical matrix effects. T-exe values for the plasma, using He I as the spectrometric species averaged 2769 +/- 79 K across the test matrix, with Mg-based ionization temperature values centered at 6665 +/- 151 K. Typical Mg II:Mg I ratios (the so-called robustness parameter) were 0.95 +/- 03. The lack of appreciable perturbation in excitation/ionization conditions observed here is also manifested in virtually no changes in the probe Mg II and I species' intensities, even at matrix loadings of up to 1000 mu g mL(-1) of Ba. These observations indicate that the IS-APGD could serve as an OES source for the analysis of diverse aqueous samples without appreciable spectroscopic matrix effects, though potential physical matrix effects induding vaporization effects must be evaluated. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Manard, Benjamin T.; Zhang, Lynn X.; Konegger-Kappel, Stefanie; Marcus, R. Kenneth] Clemson Univ, Dept Chem, Clemson, SC 29634 USA.
[Manard, Benjamin T.; Gonzalez, Jhanis J.; Sarkar, Arnab; Mao, Xianglei; Russo, Richard E.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Sarkar, Arnab] Bhabha Atom Res Ctr, Div Fuel Chem, Bombay 400085, Maharashtra, India.
RP Marcus, RK (reprint author), Clemson Univ, Dept Chem, Clemson, SC 29634 USA.
EM marcusr@clemson.edu
OI Sarkar, Arnab/0000-0003-3783-8299
FU Office of Science, Office of Basic Energy Sciences, Chemical Sciences,
Geosciences, and Biosciences Division; Deputy Administrator for Defense
Nuclear Nonproliferation; Assistant Deputy Administrator for
Nonproliferation Research and Development of the U.S. Department of
Energy [DE-AC02-05CH11231]
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences
Division, the Deputy Administrator for Defense Nuclear Nonproliferation,
and the Assistant Deputy Administrator for Nonproliferation Research and
Development of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 48
TC 3
Z9 3
U1 2
U2 21
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0584-8547
J9 SPECTROCHIM ACTA B
JI Spectroc. Acta Pt. B-Atom. Spectr.
PD OCT 1
PY 2014
VL 100
BP 44
EP 51
DI 10.1016/j.sab.2014.08.006
PG 8
WC Spectroscopy
SC Spectroscopy
GA AR8WZ
UT WOS:000343853400011
ER
PT J
AU Dong, MR
Chan, GCY
Mao, XL
Gonzalez, JJ
Lu, JD
Russo, RE
AF Dong, Meirong
Chan, George C. -Y.
Mao, Xianglei
Gonzalez, Jhanis J.
Lu, Jidong
Russo, Richard E.
TI Elucidation of C-2 and CN formation mechanisms in laser-induced plasmas
through correlation analysis of carbon isotopic ratio
SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY
LA English
DT Article
DE Laser induced breakdown spectroscopy; Laser ablation molecular isotopic
spectrometry; Laser ablation organic material; C-2-radical formation
mechanism; CN-radical formation mechanism
ID INDUCED BREAKDOWN SPECTROSCOPY; TRANSFORM EMISSION-SPECTROSCOPY; 1.064
MU-M; ORGANIC-COMPOUNDS; AMBIENT AIR; SWAN SYSTEM; NITROGEN ENVIRONMENT;
OPTICAL-EMISSION; ABLATION; GRAPHITE
AB Laser ablation molecular isotopic spectrometry (LAMIS) was recently reported for rapid isotopic analysis by measuring molecular emission from laser-induced plasmas at atmospheric pressure. With C-13-labeled benzoic acid as a model sample, this research utilized the LAMIS approach to clarify the formation mechanisms of C-2 and CN molecules during laser ablation of organic materials. Because the isotopic ratios in the molecular bands could deviate from statistical distribution depending on their formation pathways, the dominant mechanism can be identified through a comparison of the experimental observed isotopic patterns in the molecular emission with the theoretical statistical pattern. For C-2 formation, the experimental (CC)-C-12-C-12/(CC)-C-13-C-12 ratios not only support a recombination mechanism through atomic carbon at early delay time but also indicate the presence of other operating mechanisms as the plasma evolves; it is proposed that some of the C-2 molecules are released directly from the aromatic ring of the sample as molecular fragments. In contrast, the temporal profiles in the C-12/C-13 ratios derived from CN emission exhibited opposite behavior with those derived from C-2 emission, which unambiguously refutes mechanisms that require C-2 as a precursor for CN formation; CN formation likely involves atomic carbon or species with a single carbon atom. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Dong, Meirong; Lu, Jidong] S China Univ Technol, Sch Elect Power, Guangzhou 510640, Guangdong, Peoples R China.
[Dong, Meirong; Chan, George C. -Y.; Mao, Xianglei; Gonzalez, Jhanis J.; Russo, Richard E.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Russo, RE (reprint author), S China Univ Technol, Sch Elect Power, Guangzhou 510640, Guangdong, Peoples R China.
EM RERusso@lbl.gov
FU Office of Basic Energy Sciences, Chemical Science Division of the U.S.
Department of Energy [DE-ACO2-05CH11231]; Lawrence Berkeley National
Laboratory; National Natural Science Foundation of China [51071069,
51206055]; Foundation of State Key Laboratory of Silicate Materials for
Architectures [SYSJJ2014-01]
FX The research was supported by the Office of Basic Energy Sciences,
Chemical Science Division of the U.S. Department of Energy under
contract number DE-ACO2-05CH11231 at the Lawrence Berkeley National
Laboratory. Meirong Dong and Jidong Lu acknowledge support from the
National Natural Science Foundation of China (No. 51071069 and 51206055)
and the Foundation of State Key Laboratory of Silicate Materials for
Architectures (No. SYSJJ2014-01); we also thank Prof. Hongbin Ding from
Dalian University of Technology for the helpful discussion.
NR 53
TC 13
Z9 14
U1 6
U2 27
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0584-8547
J9 SPECTROCHIM ACTA B
JI Spectroc. Acta Pt. B-Atom. Spectr.
PD OCT 1
PY 2014
VL 100
BP 62
EP 69
DI 10.1016/j.sab.2014.08.009
PG 8
WC Spectroscopy
SC Spectroscopy
GA AR8WZ
UT WOS:000343853400013
ER
PT J
AU Kulasinski, K
Keten, S
Churakov, SV
Guyer, R
Carmeliet, J
Derome, D
AF Kulasinski, Karol
Keten, Sinan
Churakov, Sergey V.
Guyer, Robert
Carmeliet, Jan
Derome, Dominique
TI Molecular Mechanism of Moisture-Induced Transition in Amorphous
Cellulose
SO ACS MACRO LETTERS
LA English
DT Article
ID EFFECTIVE WATER CONDUCTIVITY; MAGNETIC-RESONANCE; BOUND WATER; WOOD;
SOLVATION; BEHAVIOR; SAPWOOD; SPRUCE; VAPOR
AB We investigate the influence of adsorbed water on amorphous cellulose structure and properties, within the full range of moisture content from the dry state to saturation, by molecular dynamics simulation. Increasing water content results in overall swelling, a substantial decrease in stiffness, and higher diffusivity of the water molecules. The obtained sorption curve as well as the range of swelling and weakening are confirmed by experiments. The measured properties undergo a noticeable change at about 10% of moisture content, which suggests that a transition occurs in the porous system, indicating that the sorption process is stepwise. Our analysis of water network formation reveals that the onset of percolation coincides with the moisture content at which a transition in the material properties is observed. An in-depth analysis of the molecular mechanism of hydrogen bonding, van der Waals interactions, and water network in the two regimes enhances the understanding of the adsorption process.
C1 [Kulasinski, Karol; Carmeliet, Jan] Swiss Fed Inst Technol Zurich, CH-8093 Zurich, Switzerland.
[Keten, Sinan] Northwestern Univ, Dept Mech Engn, Dept Civil & Environm Engn, Evanston, IL 60208 USA.
[Churakov, Sergey V.] Paul Scherrer Inst, Lab Waste Management, CH-5232 Villigen, Switzerland.
[Guyer, Robert] Los Alamos Natl Lab, Solid Earth Geophys Grp, Los Alamos, NM 87545 USA.
[Guyer, Robert] Univ Nevada, Dept Phys, Reno, NV 89557 USA.
[Carmeliet, Jan; Derome, Dominique] Swiss Fed Labs Mat Sci & Technol, Empa, Lab Bldg Sci & Technol, CH-8600 Dubendorf, Switzerland.
RP Kulasinski, K (reprint author), Swiss Fed Inst Technol Zurich, Stefano Franscini Pl 5, CH-8093 Zurich, Switzerland.
EM kulasinski@arch.ethz.ch
RI Keten, Sinan/F-4080-2010; Kulasinski, Karol/R-6709-2016
OI Kulasinski, Karol/0000-0002-7704-7048
NR 21
TC 12
Z9 12
U1 5
U2 31
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2161-1653
J9 ACS MACRO LETT
JI ACS Macro Lett.
PD OCT
PY 2014
VL 3
IS 10
BP 1037
EP 1040
DI 10.1021/mz500528m
PG 4
WC Polymer Science
SC Polymer Science
GA AR6DJ
UT WOS:000343673200016
ER
PT J
AU Black, KA
Priftis, D
Perry, SL
Yip, J
Byun, WY
Tirrell, M
AF Black, Katie A.
Priftis, Dimitrios
Perry, Sarah L.
Yip, Jeremy
Byun, William Y.
Tirrell, Matthew
TI Protein Encapsulation via Polypeptide Complex Coacervation
SO ACS MACRO LETTERS
LA English
DT Article
ID BIOMEDICAL APPLICATIONS; THERAPEUTIC PROTEINS; DELIVERY; NANOPARTICLES;
MICROENCAPSULATION; MICROSPHERES; SYSTEMS
AB Proteins have gained increasing success as therapeutic agents; however, challenges exist in effective and efficient delivery. In this work, we present a simple and versatile method for encapsulating proteins via complex coacervation with oppositely charged polypeptides, poly(L-lysine) (PLys) and poly(D/L-glutamic acid) (PGlu). A model protein system, bovine serum albumin (BSA), was incorporated efficiently into coacervate droplets via electrostatic interaction up to a maximum loading of one BSA per PLys/PGlu pair and could be released under conditions of decreasing pH. Additionally, encapsulation within complex coacervates did not alter the secondary structure of the protein. Lastly the complex coacervate system was shown to be biocompatible and interact well with cells in vitro. A simple, modular system for encapsulation such as the one presented here may be useful in a range of drug delivery applications.
C1 [Black, Katie A.; Yip, Jeremy; Byun, William Y.; Tirrell, Matthew] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
[Black, Katie A.] UC Berkeley UCSF Grad Program Bioengn, Berkeley, CA 94720 USA.
[Priftis, Dimitrios; Perry, Sarah L.; Tirrell, Matthew] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA.
[Tirrell, Matthew] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Tirrell, M (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
EM mtirrell@uchicago.edu
OI Perry, Sarah/0000-0003-2301-6710
FU National Science Foundation [CBET - 1015026]
FX This work was supported by the National Science Foundation award number
CBET - 1015026.
NR 29
TC 30
Z9 30
U1 6
U2 63
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2161-1653
J9 ACS MACRO LETT
JI ACS Macro Lett.
PD OCT
PY 2014
VL 3
IS 10
BP 1088
EP 1091
DI 10.1021/mz500529v
PG 4
WC Polymer Science
SC Polymer Science
GA AR6DJ
UT WOS:000343673200027
ER
PT J
AU Eichhorn, CD
Kang, MJ
Feigon, J
AF Eichhorn, Catherine D.
Kang, Mijeong
Feigon, Juli
TI Structure and function of preQ(1) riboswitches
SO BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS
LA English
DT Review
DE Queuosine; tRNA modification; NMR; X-ray crystallography; Queuine;
PreQ(0)
ID RNA-GUANINE TRANSGLYCOSYLASE; TRANSFER-RIBONUCLEIC-ACIDS;
ESCHERICHIA-COLI; CELL-PROLIFERATION; SHIGELLA-FLEXNERI; LIGAND-BINDING;
HYPERMODIFIED NUCLEOSIDES; DEPENDENT RIBOSWITCH; SENSING RIBOSWITCH;
CRYSTAL-STRUCTURES
AB PreQ(1) riboswitches help regulate the biosynthesis and transport of preQ(1) (7-aminomethyl-7-deazaguanine), a precursor of the hypermodified guanine nucleotide queuosine (Q), in a number of Firmicutes, Proteobacteria, and Fusobacteria. Queuosine is almost universally found at the wobble position of the anticodon in asparaginyl, tyrosyl, histidyl and aspartyl tRNAs, where it contributes to translational fidelity. Two classes of preQ(1) riboswitches have been identified (preQ(1)-I and preQ(1)-II), and structures of examples from both classes have been determined. Both classes form H-type pseudoknots upon preQi binding, each of which has distinct unusual features and modes of preQ(1) recognition. These features include an unusually long loop 2 in preQ(1)-I pseudoknots and an embedded hairpin in loop 3 in preQ(1)-II pseudoknots. PreQ(1)-I riboswitches are also notable for their unusually small aptamer domain, which has been extensively investigated by NMR, X-ray crystallography, FRET, and other biophysical methods. Here we review the discovery, structural biology, ligand specificity, cation interactions, folding, dynamics, and applications to biotechnology of preQi riboswitches. This article is part of a Special Issue entitled: Riboswitches. (c) 2014 Elsevier B.V. All rights reserved.
C1 [Eichhorn, Catherine D.; Kang, Mijeong; Feigon, Juli] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA.
[Kang, Mijeong; Feigon, Juli] Univ Calif Los Angeles, DOE Inst Genom & Prote, Los Angeles, CA 90095 USA.
RP Feigon, J (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA.
FU U.S. Department of Energy [DE-FC03-02ER63421]; National Institutes of
Health [GM48123]; UCLA Tumor Biology USHHS Ruth L. Kirschstein NRSA T32
award [CA009056]
FX This work was supported by grants from the U.S. Department of Energy
(DE-FC03-02ER63421) and the National Institutes of Health (GM48123) to
J.F. and a UCLA Tumor Biology USHHS Ruth L. Kirschstein NRSA T32 award
(CA009056) to C.D.E.
NR 87
TC 6
Z9 6
U1 3
U2 28
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1874-9399
EI 0006-3002
J9 BBA-GENE REGUL MECH
JI Biochim. Biophys. Acta-Gene Regul. Mech.
PD OCT
PY 2014
VL 1839
IS 10
SI SI
BP 939
EP 950
DI 10.1016/j.bbagrm.2014.04.019
PG 12
WC Biochemistry & Molecular Biology; Biophysics
SC Biochemistry & Molecular Biology; Biophysics
GA AR5JH
UT WOS:000343620700006
PM 24798077
ER
PT J
AU Sanbonmatsu, KY
AF Sanbonmatsu, Karissa Y.
TI Dynamics of riboswitches: Molecular simulations
SO BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS
LA English
DT Review
DE Riboswitch; Molecular dynamics simulation; RNA
ID SAM-I RIBOSWITCH; ADENINE-SENSING RIBOSWITCH; S-ADENOSYLMETHIONINE
RIBOSWITCH; MESSENGER-RNA ELEMENT; COARSE-GRAINED MODEL; APTAMER DOMAIN;
LIGAND-BINDING; GENE-EXPRESSION; TRANSCRIPTION TERMINATION;
CONFORMATIONAL ENSEMBLE
AB Riboswitch RNAs play key roles in bacterial metabolism and represent a promising new class of antibiotic targets for treatment of infectious disease. While many studies of riboswitches have been performed, the exact mechanism of riboswitch operation is still not fully understood at the atomistic level of detail. Molecular dynamics simulations are useful for interpreting existing experimental data and producing predictions for new experiments. Here, a wide range of computational studies on riboswitches is reviewed. By elucidating the key principles of riboswitch operation, computation may aid in the effort to design more specific antibiotics with affinities greater than those of the native ligand. Such a detailed understanding may be required to improve efficacy and reduce side effects. These studies are laying the groundwork for understanding the action mechanism of new compounds that inhibit riboswitch activity. Future directions such as magnesium effects, large-scale conformational changes, expression platforms and co-transcriptional folding are also discussed. This article is part of a Special Issue entitled: Riboswitches. Published by Elsevier B.V.
C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Sanbonmatsu, KY (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
NR 104
TC 3
Z9 3
U1 6
U2 29
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1874-9399
EI 0006-3002
J9 BBA-GENE REGUL MECH
JI Biochim. Biophys. Acta-Gene Regul. Mech.
PD OCT
PY 2014
VL 1839
IS 10
SI SI
BP 1046
EP 1050
DI 10.1016/j.bbagrm.2014.06.010
PG 5
WC Biochemistry & Molecular Biology; Biophysics
SC Biochemistry & Molecular Biology; Biophysics
GA AR5JH
UT WOS:000343620700017
PM 24953187
ER
PT J
AU Tomasi, D
Wang, RL
Wang, GJ
Volkow, ND
AF Tomasi, Dardo
Wang, Ruiliang
Wang, Gene-Jack
Volkow, Nora D.
TI Functional Connectivity and Brain Activation: A Synergistic Approach
SO CEREBRAL CORTEX
LA English
DT Article
DE attention; FCD; fMRI; hub; performance
ID LOW-FREQUENCY FLUCTUATION; DEFAULT MODE NETWORK; RESTING-STATE FMRI;
VISUAL-ATTENTION; WORKING-MEMORY; AREA V2; 4 TESLA; TASK; MOTION; MRI
AB Traditional functional magnetic resonance imaging (fMRI) studies exploit endogenous brain activity for mapping brain activation during "periodic" cognitive/emotional challenges or brain functional connectivity during the "resting state". Previous studies demonstrated that these approaches provide a limited view of brain function which can be complemented by each other. We hypothesized that graph theory functional connectivity density (FCD) mapping would demonstrate regional FCD decreases between resting-state scan and a continuous "task-state" scan. Forty-five healthy volunteers underwent functional connectivity MRI during resting-state as well as a continuous visual attention task, and standard fMRI with a blocked version of the visual attention task. High-resolution data-driven FCD mapping was used to measure task-related connectivity changes without a priori hypotheses. Results demonstrate that task performance was associated with FCD decreases in brain regions weakly activated/deactivated by the task. Furthermore, a pronounced negative correlation between blood oxygen level-dependent-fMRI activation and task-related FCD decreases emerged across brain regions that also suggest the disconnection of task-irrelevant networks during task performance. The correlation between improved accuracy and stronger FCD decreases further suggests the disconnection of task-irrelevant networks during task performance. Functional connectivity can potentiate traditional fMRI studies and offer a more complete picture of brain function.
C1 [Tomasi, Dardo; Volkow, Nora D.] NIAAA, Bethesda, MD USA.
[Wang, Ruiliang; Wang, Gene-Jack] Brookhaven Natl Lab, Lab Neuroimaging LNI NIAAA, Dept Biosci, Upton, NY 11973 USA.
[Wang, Gene-Jack] SUNY Stony Brook, Dept Radiol, Stony Brook, NY 11794 USA.
[Volkow, Nora D.] NIDA, Bethesda, MD 20892 USA.
RP Tomasi, D (reprint author), Brookhaven Natl Lab, Lab Neuroimaging LNI NIAAA, Dept Biosci, Bldg 490,30 Bell Ave, Upton, NY 11973 USA.
EM tomasi@bnl.gov
RI Tomasi, Dardo/J-2127-2015
FU National Institutes of Alcohol Abuse and Alcoholism [2RO1AA09481]
FX This work was accomplished with support from the National Institutes of
Alcohol Abuse and Alcoholism (2RO1AA09481).
NR 62
TC 18
Z9 18
U1 0
U2 8
PU OXFORD UNIV PRESS INC
PI CARY
PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA
SN 1047-3211
EI 1460-2199
J9 CEREB CORTEX
JI Cereb. Cortex
PD OCT
PY 2014
VL 24
IS 10
BP 2619
EP 2629
DI 10.1093/cercor/bht119
PG 11
WC Neurosciences
SC Neurosciences & Neurology
GA AR2IT
UT WOS:000343408200009
PM 23645721
ER
PT J
AU Rahman, M
Yu, E
Forman, E
Roberson-Mailloux, C
Tung, J
Tringe, J
Stroeve, P
AF Rahman, Masoud
Yu, Erick
Forman, Evan
Roberson-Mailloux, Cameron
Tung, Jonathan
Tringe, Joseph
Stroeve, Pieter
TI Modified release from lipid bilayer coated mesoporous silica
nanoparticles using PEO-PPO-PEO triblock copolymers
SO COLLOIDS AND SURFACES B-BIOINTERFACES
LA English
DT Article
DE Drug delivery; Controlled release; Diffusion; Critical micelle
concentration; Pluronic
ID PLURONIC BLOCK-COPOLYMERS; DRUG-DELIVERY; TRIGGERED RELEASE;
CANCER-CELLS; RANGE
AB Triblock copolymers comprised of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, or trade name Pluronic) interact with lipid bilayers to increase their permeability. Here we demonstrate a novel application of Pluronic L61 and L64 as modification agents in tailoring the release rate of a molecular indicator species from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayer-coated superparamagnetic Fe3O4/mesoporous silica core-shell nanoparticles. We show there is a direct relationship between the Pluronics' concentration and the indicator molecule release, suggesting Pluronics may be useful for the controlled release of drugs from lipid bilayer-coated carriers. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Rahman, Masoud; Yu, Erick; Forman, Evan; Roberson-Mailloux, Cameron; Tung, Jonathan; Stroeve, Pieter] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA.
[Tringe, Joseph] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Stroeve, P (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA.
EM pstroeve@ucdavis.edu
FU U. S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; University of California Lab Fee Program through
the Office of the President in Oakland, California
FX This work was supported by the University of California Lab Fee Program
through the Office of the President in Oakland, California. Parts of
this work were performed under the auspices of the U. S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.
NR 20
TC 7
Z9 7
U1 4
U2 45
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-7765
EI 1873-4367
J9 COLLOID SURFACE B
JI Colloid Surf. B-Biointerfaces
PD OCT 1
PY 2014
VL 122
BP 818
EP 822
DI 10.1016/j.colsurfb.2014.08.013
PG 5
WC Biophysics; Chemistry, Physical; Materials Science, Biomaterials
SC Biophysics; Chemistry; Materials Science
GA AR5GK
UT WOS:000343612900102
PM 25200097
ER
PT J
AU Kayzar, TM
Nelson, BK
Bachmann, O
Bauer, AM
Izbekov, PE
AF Kayzar, Theresa M.
Nelson, Bruce K.
Bachmann, Olivier
Bauer, Ann M.
Izbekov, Pavel E.
TI Deciphering petrogenic processes using Pb isotope ratios from
time-series samples at Bezymianny and Klyuchevskoy volcanoes, Central
Kamchatka Depression
SO CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
LA English
DT Article
DE Assimilation; Kamchatka; Magma mixing; Pb isotopes; Trace element; Major
element
ID HIGH-ALUMINA BASALTS; TRACE-ELEMENT; CONTINENTAL-CRUST; SUBDUCTION ZONE;
ARC MAGMAS; SEISMIC TOMOGRAPHY; STORAGE-CONDITIONS; ALEUTIAN JUNCTION;
PARENTAL MAGMAS; MELT INCLUSIONS
AB The Klyuchevskoy group of volcanoes in the Kamchatka arc erupts compositionally diverse magmas (high-Mg basalts to dacites) over small spatial scales. New high-precision Pb isotope data from modern juvenile (1956-present) erupted products and hosted enclaves and xenoliths from Bezymianny volcano reveal that Bezymianny and Klyuchevskoy volcanoes, separated by only 9 km, undergo varying degrees of crustal processing through independent crustal columns. Lead isotope compositions of Klyuchevskoy basalts-basaltic andesites are more radiogenic than Bezymianny andesites (Pb-208/Pb-204 = 37.850-37.903, Pb-207/Pb-204 = 15.468-15.480, and Pb-206/Pb-204 = 18.249-18.278 at Bezymianny; Pb-208/Pb-204 = 37.907-37.949, Pb-207/Pb-204 = 15.478-15.487, and Pb-206/Pb-204 = 18.289-18.305 at Klyuchevskoy). A mid-crustal xenolith with a crystallization pressure of 5.2 +/- 0.6 kbars inferred from two-pyroxene geobarometry and basaltic andesite enclaves from Bezymianny record less radiogenic Pb isotope compositions than their host magmas. Hence, assimilation of such lithologies in the middle or lower crust can explain the Pb isotope data in Bezymianny andesites, although a component of magma mixing with less radiogenic mafic recharge magmas and possible mantle heterogeneity cannot be excluded. Lead isotope compositions for the Klyuchevskoy Group are less radiogenic than other arc segments (Karymsky-Eastern Volcanic Zone; Shiveluch-Northern Central Kamchatka Depression), which indicate increased lower-crustal assimilation beneath the Klyuchevskoy Group. Decadal timescale Pb isotope variations at Klyuchevskoy demonstrate rapid changes in the magnitude of assimilation at a volcanic center. Lead isotope data coupled with trace element data reflect the influence of crustal processes on magma compositions even in thin mafic volcanic arcs.
C1 [Kayzar, Theresa M.; Nelson, Bruce K.; Bachmann, Olivier; Bauer, Ann M.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA.
[Kayzar, Theresa M.] Lawrence Livermore Natl Lab, US DOE, Livermore, CA 94550 USA.
[Bachmann, Olivier] ETH, Inst Geochem & Petrol, Dept Earth Sci, CH-8092 Zurich, Switzerland.
[Bauer, Ann M.] MIT, Cambridge, MA 02139 USA.
[Izbekov, Pavel E.] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA.
RP Kayzar, TM (reprint author), Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA.
EM kayzar1@llnl.gov
FU National Science Foundation (PIRE-Kamchatka grant) [OISE-0530278];
National Science Foundation (Graduate Research Fellowship); University
of Washington Department of Earth and Space Sciences
FX This project was supported by the National Science Foundation
(PIRE-Kamchatka grant OISE-0530278 to Izbekov and a Graduate Research
Fellowship to T.M. Kayzar), as well as awards given by the University of
Washington Department of Earth and Space Sciences. We owe many thanks to
our Russian collaborators at The Institute of Volcanology and Seismology
in Petropavlovsk-Kamchatsky, Russia, for their field guidance and
support: specifically Evgeny Gordeev, Sergey Ushakov, Marina Belousova,
Alexander Belousov, Sergey Serovetnikov and Slava Pilipenko. Discussions
with Maxim Portnyagin as well as members of the UAF PIRE-Kamchatka
research team (Taryn Lopez, Ronni Grapenthin, Steven J. Turner, Vasily
Shcherbakov, Jill Shipman, Weston Thelen and others) significantly
improved this manuscript. T.M.K. thanks Taryn Lopez for her field
support from 2007 to 2009.
NR 108
TC 1
Z9 1
U1 0
U2 10
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0010-7999
EI 1432-0967
J9 CONTRIB MINERAL PETR
JI Contrib. Mineral. Petrol.
PD OCT
PY 2014
VL 168
IS 4
AR 1067
DI 10.1007/s00410-014-1067-6
PG 28
WC Geochemistry & Geophysics; Mineralogy
SC Geochemistry & Geophysics; Mineralogy
GA AR7II
UT WOS:000343752400007
ER
PT J
AU Schofield, PF
Smith, AD
Scholl, A
Doran, A
Covey-Crump, SJ
Young, AT
Ohldag, H
AF Schofield, Paul F.
Smith, Andrew D.
Scholl, Andreas
Doran, Andrew
Covey-Crump, Stephen J.
Young, Antony T.
Ohldag, Hendrik
TI Chemical and oxidation-state imaging of mineralogical intergrowths: The
application of X-ray photo-emission electron microscopy (XPEEM)
SO COORDINATION CHEMISTRY REVIEWS
LA English
DT Review
DE XPEEM; Oxidation state; L-edge XANES; Mineralogy; Geochemistry;
Non-destructive
ID MAGNETIC CIRCULAR-DICHROISM; ABSORPTION-SPECTROSCOPY; L-EDGE;
SYNCHROTRON-RADIATION; FERRIC IRON; K-EDGE; XANES SPECTROSCOPY;
CRYSTAL-STRUCTURE; LINEAR DICHROISM; VALENCE STATES
AB We describe the application of X-ray photo-emission electron microscopy (XPEEM) to studies of minerals and mineral intergrowths in which the spatial integrity of the sample must be maintained in order to retain the chronological context of the study. Chemical imaging, oxidation state imaging and area selective spectroscopy of minerals are described for a range of samples that includes oxides, sulphides and silicates. Oxidation state images with spatial resolutions between similar to 200 nm and similar to 500 nm are presented for Fe3+ in igneous pyroxenes, for Mn2+/Mn4+ in deep sea Mn nodules, and for Fe2+/Fe3+ in a skeletal intergrowth of magnetite in magnesiowustite.
Spatially resolved, quantitative L-edge XANES analysis from XPEEM image stacks is reported for a chromite grain from a Martian basalt and for a chemically-zoned metamorphic garnet crystal. In the Martian chromite grain the Fe3+/Sigma Fe and Cr3+/Sigma Cr ratios were found to be constant at 0.18 +/- 0.02 and 1.0 respectively. The Fe3+/Sigma Fe ratio across a metamorphic garnet was found to increase from 0.07 +/- 0.02 at the centre of the crystal to 0.13 +/- 0.02 at the rim while the Mn2+/Sigma Mn ratio remained at 1.0 throughout. It is shown that for complex mineral intergrowths XPEEM can be used for mineral identification at a length-scale of a few 10 s of nm.
While the spatial resolution from which high quality L-edge XANES spectra have been extracted from mineralogical samples to date is about 100 nm, XPEEM offers an achievable resolution approaching 30 nm in the soft X-ray region (2000 eV and below). The non-destructive nature of XPEEM is of particular importance for natural and synthetic samples of high scientific value that may be required for further analysis by other microscopy, chemical analysis or isotope techniques. XPEEM can be used as a stand-alone spectromicroscopy method for the study of mineralogical samples or can be combined with other well established synchrotron methods such as hard X-ray, microfocus XANES spectroscopy and soft X-ray, scanning transmission X-ray microscopy. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Schofield, Paul F.] Nat Hist Museum, Dept Earth Sci, London SW7 5BD, England.
[Smith, Andrew D.] STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England.
[Scholl, Andreas; Doran, Andrew; Young, Antony T.; Ohldag, Hendrik] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Covey-Crump, Stephen J.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England.
[Ohldag, Hendrik] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA.
RP Schofield, PF (reprint author), Nat Hist Museum, Dept Earth Sci, Cromwell Rd, London SW7 5BD, England.
EM p.schofield@nhm.ac.uk
RI Scholl, Andreas/K-4876-2012; Ohldag, Hendrik/F-1009-2014;
OI Covey-Crump, Stephen/0000-0002-9806-6870; Doran,
Andrew/0000-0001-5158-4569
FU Advanced Light Source; Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; NERC;
STFC Daresbury Laboratory
FX Some of the work presented in this manuscript was carried out with the
support of the Advanced Light Source. The Advanced Light Source is
supported by the Director, Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. The authors gratefully acknowledge Professor C.M.B.
Henderson, the STFC Daresbury Laboratory and the NERC for funding under
the Envirosynch programme. The authors are grateful for the help of J.C.
Bridges, G. Cressey, P.M. Doyle, R.A.D. Pattrick, I.C. Stretton and
A.H.G. Wighton.
NR 85
TC 2
Z9 2
U1 4
U2 33
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0010-8545
EI 1873-3840
J9 COORDIN CHEM REV
JI Coord. Chem. Rev.
PD OCT 1
PY 2014
VL 277
SI SI
BP 31
EP 43
DI 10.1016/j.ccr.2014.02.006
PG 13
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA AR1OI
UT WOS:000343354100004
ER
PT J
AU Shelby, ML
Mara, MW
Chen, LX
AF Shelby, Megan L.
Mara, Michael W.
Chen, Lin X.
TI New insight into metalloporphyrin excited state structures and axial
ligand binding from X-ray transient absorption spectroscopic studies
SO COORDINATION CHEMISTRY REVIEWS
LA English
DT Review
DE Metalloporphyrins; Photodissociation of the ligand; Hemeproteins;
Excited state molecular structures; X-ray transient absorption;
Catalysis
ID PHOTOLYZED CARBONMONOXY-MYOGLOBIN; NONPLANAR NICKEL(II) PORPHYRINS;
BRIDGE-ACCEPTOR SYSTEMS; HEME-PROTEINS; MOLECULAR-STRUCTURES;
RAMAN-SPECTROSCOPY; ELECTRON-TRANSFER; CONFORMATIONAL DYNAMICS;
DEPENDENT ELECTRON; NI(II) PORPHYRINS
AB Metalloporphyrin axial ligation is an important process in catalysis and the enzymatic chemistry of proteins and is metal center dependent. Direct structural dynamics measurements on different metalloporphyrins using X-ray transient absorption spectroscopy (XTA) have brought new insight into this extensively studied process. This review uses two representative open shell metalloporphyrins, nickel tetramesitylporphyrin (NiTMP) and iron protoporphyrin (FePP), to demonstrate the capability of XTA in resolving both electronic and nuclear structures of these porphyrins in axial ligation processes. A surprisingly broad 3d orbital energy level distribution has been related to differences in the conformational distribution of NiTMP in the ground and excited state, which suggests a unified mechanism for axial ligation in open shell metalloporphyrins driven by transient vacancies in the 3d(z)(2) orbital, which is aligned with the axial ligation coordinate. XTA studies also show that dynamic and structural differences in the CO dissociation process are influenced by the metal site environments, demonstrated by the comparison of FePP in solution and heme in myoglobin. These results imply a porphyrin conformational control of ligation and therefore insight into metalloporphyrin catalyst design involving control the axial ligation/deligation processes as well as deduction of enzymatic regulation of ligand binding. (C) 2014 Published by Elsevier B.V.
C1 [Shelby, Megan L.; Mara, Michael W.; Chen, Lin X.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Mara, Michael W.; Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA.
RP Chen, LX (reprint author), Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
EM lchen@anl.gov
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX We thank the support from the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. Use of the Advanced Photon Source at Argonne National
Laboratory was supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. The authors would like to thank Drs. Klaus Attenkofer
(now at NSLS-II, Brookhaven National Laboratory), Xiaoyi Zhang, Guy
Jennings and Mr. Charles Kurtz of the Advanced Photon Source for their
contributions in the XTA facility at Beamline 11 ID-D, APS. LXC would
like to thank her collaborators from both Argonne National Laboratory
and Northwestern University, Drs. G.B. Shaw, E.C. Wasinger, J.V.
Lockard, M.R. Harpham, A.B. Stickrath, J. Huang, for their efforts in
experiments mentioned here. Also, many discussions and exchanges with
our collaborators, Drs. G. Smolentsev, Kristoffer M. Haldrup, and Profs.
Jonathan S. Lindsey, are appreciated.
NR 103
TC 6
Z9 6
U1 6
U2 48
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0010-8545
EI 1873-3840
J9 COORDIN CHEM REV
JI Coord. Chem. Rev.
PD OCT 1
PY 2014
VL 277
SI SI
BP 291
EP 299
DI 10.1016/j.ccr.2014.05.025
PG 9
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA AR1OI
UT WOS:000343354100014
ER
PT J
AU Kim, J
Reed, JL
AF Kim, Joonhoon
Reed, Jennifer L.
TI Refining metabolic models and accounting for regulatory effects
SO CURRENT OPINION IN BIOTECHNOLOGY
LA English
DT Review
ID GENOME-SCALE MODELS; ESCHERICHIA-COLI; TRANSCRIPTIONAL REGULATION;
SACCHAROMYCES-CEREVISIAE; HIGH-THROUGHPUT; NETWORK MODEL; OMIC DATA;
RECONSTRUCTION; EXPRESSION; GENE
AB Advances in genome-scale metabolic modeling allow us to investigate and engineer metabolism at a systems level. Metabolic network reconstructions have been made for many organisms and computational approaches have been developed to convert these reconstructions into predictive models. However, due to incomplete knowledge these reconstructions often have missing or extraneous components and interactions, which can be identified by reconciling model predictions with experimental data. Recent studies have provided methods to further improve metabolic model predictions by incorporating transcriptional regulatory interactions and high-throughput omics data to yield context-specific metabolic models. Here we discuss recent approaches for resolving model-data discrepancies and building context-specific metabolic models. Once developed highly accurate metabolic models can be used in a variety of biotechnology applications.
C1 [Kim, Joonhoon; Reed, Jennifer L.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA.
[Kim, Joonhoon; Reed, Jennifer L.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA.
RP Reed, JL (reprint author), Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA.
EM reed@engr.wisc.edu
RI Reed, Jennifer/E-5137-2011; Kim, Joonhoon/E-6253-2012
OI Kim, Joonhoon/0000-0002-7425-1828
FU U.S. Department of Energy Great Lakes Bioenergy Research Center (DOE BER
Office of Science) [DE-FC02-07ER64494]; Office of Science (BER), U.S.
Department of Energy [DE-SC008103]
FX This work was funded by the U.S. Department of Energy Great Lakes
Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494)
and the Office of Science (BER), U.S. Department of Energy
(DE-SC008103).
NR 50
TC 7
Z9 7
U1 1
U2 24
PU CURRENT BIOLOGY LTD
PI LONDON
PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND
SN 0958-1669
EI 1879-0429
J9 CURR OPIN BIOTECH
JI Curr. Opin. Biotechnol.
PD OCT
PY 2014
VL 29
BP 34
EP 38
DI 10.1016/j.copbio.2014.02.009
PG 5
WC Biochemical Research Methods; Biotechnology & Applied Microbiology
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology
GA AR1XO
UT WOS:000343378100006
PM 24632483
ER
PT J
AU Stoupin, S
AF Stoupin, Stanislav
TI Novel diamond X-ray crystal optics for synchrotrons and X-ray
free-electron lasers
SO DIAMOND AND RELATED MATERIALS
LA English
DT Article
DE HPHT; Diamond crystal; Defects; X-ray optics; XFEL
ID REFRACTIVE LENSES; PHASE RETARDER; MONOCHROMATOR; BEAMLINE;
REFLECTIVITY; WAVELENGTH
AB The most common applications of diamond crystals in X-ray optics are high-heat-load monochromators for synchrotron beamlines and phase retarders for polarization control. Here, less common applications of diamond at the frontier of X-ray crystal optics are reviewed and summarized. These include a sub-meV-bandwidth X-ray monochromator with high spectral efficiency [1] and all-diamond optical assemblies for a beam-multiplexing double-crystal monochromator at the Linac Coherent Light Source [2]. Also, novel applications for the realization of fully coherent hard X-ray sources are discussed, such as, diamond crystal optics for self-seeding of hard X-rays in the Linac Coherent Light Source [3,4] and Bragg mirrors for the highly anticipated X-tay free-electron laser oscillator [5,6]. These examples present diamond as a material for the next generation of X-ray optics, optics which can provide unique characteristics and capabilities to modem X-ray sources. In addition, details of practical importance on fabrication and characterization methods of diamond crystals with the suitable quality are presented. (C) 2014 Elsevier B.V. All rights reserved.
C1 Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Stoupin, S (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave,Bldg 401,Rm B3181, Argonne, IL 60439 USA.
EM sstoupin@aps.anl.gov
RI BM, MRCAT/G-7576-2011
FU U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]
FX Yu. V. Shvyd'ko, D. Shu, S.A. Terentyev and V.D. Blank are acknowledged
for years of fruitful collaboration on diamond X-ray optics projects.
The members of the XPP instrument team at the LCLS are acknowledged for
their input on performance of diamond optics at the LCLS. The members of
the Optics group at the Advanced Photon Source are acknowledged for the
helpful discussions and for the technical support. The use of the
Advanced Photon Source was supported by the U.S. Department of Energy,
Office of Science, under Contract No. DE-AC02-06CH11357.
NR 51
TC 4
Z9 4
U1 4
U2 17
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0925-9635
EI 1879-0062
J9 DIAM RELAT MATER
JI Diam. Relat. Mat.
PD OCT
PY 2014
VL 49
BP 39
EP 47
DI 10.1016/j.diamond.2014.08.002
PG 9
WC Materials Science, Multidisciplinary
SC Materials Science
GA AR6KA
UT WOS:000343691300007
ER
PT J
AU Curran, SJ
Wagner, RM
Graves, RL
Keller, M
Green, JB
AF Curran, Scott J.
Wagner, Robert M.
Graves, Ronald L.
Keller, Martin
Green, Johney B., Jr.
TI Well-to-wheel analysis of direct and indirect use of natural gas in
passenger vehicles
SO ENERGY
LA English
DT Article
DE WTW (well-to-wheels); Compressed natural gas; Natural gas; Natural gas
vehicles; Electric vehicles
ID ENERGY
AB The abundance of natural gas in the United States because of the number of existing natural gas reserves and the recent advances in extracting unconventional reserves has been one of the main drivers for low natural gas prices. A question arises of what is the optimal use of natural gas as a transportation fuel. Is it more efficient to use natural gas in a stationary power application to generate electricity to charge electric vehicles, compress natural gas for onboard combustion in vehicles, or re-form natural gas into a denser transportation fuel? This study investigates the well-to-wheels energy use and greenhouse gas emissions from various natural gas to transportation fuel pathways and compares the results to conventional gasoline vehicles and electric vehicles using the US electrical generation mix. Specifically, natural gas vehicles running on compressed natural gas are compared against electric vehicles charged with electricity produced solely from natural gas combustion in stationary power plants. The results of the study show that the dependency on the combustion efficiency of natural gas in stationary power can outweigh the inherent efficiency of electric vehicles, thus highlighting the importance of examining energy use on a well-to-wheels basis. (C) 2014 The Authors. Published by Elsevier Ltd.
C1 [Curran, Scott J.; Wagner, Robert M.; Graves, Ronald L.; Keller, Martin; Green, Johney B., Jr.] Oak Ridge Natl Lab, Knoxville, TN 37932 USA.
RP Curran, SJ (reprint author), Oak Ridge Natl Lab, 2360 Cherahala Blvd, Knoxville, TN 37932 USA.
EM curransj@ornl.gov
RI Green, Johney/B-3391-2017;
OI Green, Johney/0000-0003-2383-7260; Curran, Scott/0000-0002-4665-0231
FU Oak Ridge National Laboratory (ORNL) Energy Science and Transportation
Division; ORNL Sustainable Transportation Program
FX This work was supported by the Oak Ridge National Laboratory (ORNL)
Energy Science and Transportation Division and the ORNL Sustainable
Transportation Program. The authors gratefully acknowledge the guidance
of Jake Ward, Kevin Stork, and Steve Przesmitzki at the DOE Vehicle
Technologies Office. Special thanks also goes out to Brian West, VJ
Ewing, Charlie Horak, Karson Stone and Michelle Edwards at ORNL for
editorial comments.
NR 35
TC 16
Z9 16
U1 1
U2 12
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-5442
EI 1873-6785
J9 ENERGY
JI Energy
PD OCT 1
PY 2014
VL 75
SI SI
BP 194
EP 203
DI 10.1016/j.energy.2014.07.035
PG 10
WC Thermodynamics; Energy & Fuels
SC Thermodynamics; Energy & Fuels
GA AR1IW
UT WOS:000343339900021
ER
PT J
AU Cano, EL
Groissbock, M
Moguerza, JM
Stadler, M
AF Cano, Emilio L.
Groissboeck, Markus
Moguerza, Javier M.
Stadler, Michael
TI A strategic optimization model for energy systems planning
SO ENERGY AND BUILDINGS
LA English
DT Article
DE Energy efficiency in buildings; Energy systems planning; Building
strategic planning; Decision support systems; Energy systems
optimization; Energy balance
ID ELECTRICITY MARKET; INTEGRATION; POWER
AB Strategic decisions regarding energy systems deployment at the building level are becoming a great challenge in the global market. On the one hand, competition policies are allowing the arriving of new actors to the market, resulting in sophisticated pricing options. On the other hand, efficiency and sustainability policies and regulations aim at encouraging building managers and operators to adopt an active role in the energy market. In this paper, an optimization model which deals with such strategic decisions is presented. The model integrates features such as scaled operational performance in the short term, different technologies and market options, and different energy types, as well as technologies' aging and renovation. This integration results on a holistic model, which constitutes the main contribution of the paper, suitable to be implemented in decision support systems (DSS). (C) 2014 Elsevier B.V. All rights reserved.
C1 [Cano, Emilio L.; Moguerza, Javier M.] Rey Juan Carlos Univ, Dept Stat & Operat Res, Madrid 28933, Spain.
[Groissboeck, Markus; Stadler, Michael] Ctr Energy & Innovat Technol CET, Yspertal, Austria.
[Groissboeck, Markus; Stadler, Michael] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
RP Cano, EL (reprint author), Rey Juan Carlos Univ, Dept Stat & Operat Res, Calle Tulipan S-N, Madrid 28933, Spain.
EM emilio.lopez@urjc.es; mgroissboeck@cet.or.at; javier.moguerza@urjc.es;
mstadler@cet.or.at
OI Cano, Emilio L./0000-0002-6101-9755
FU EC's Seventh Framework Programme via the "Energy Efficiency and Risk
Management in Public Buildings" (EnRiMa) project [260041]; national
project OPTIMOS 3 [MTM2012-36163-C06-06]; national project RIESGOS-CM
[S2009/ESP-1685]; national project HAUS [IPT-2011-1049-430000]; national
project EDUCALAB [IPT-2011-1071-430000]; national project DEMOCRACY4ALL
[IPT-2011-0869-430000]; national project CORPORATE COMMUNITY
[IPT-2011-0871-430000]; Austrian Federal Ministry for Transport,
Innovation and Technology [GZ. BMVIT-607.337/0001-111/I3/2011]; Theodor
Kery Foundation of the province of Burgenland
FX This work is partially supported by the EC's Seventh Framework Programme
via the "Energy Efficiency and Risk Management in Public Buildings"
(EnRiMa) project (number 260041). URIC also acknowledge national
projects OPTIMOS 3 (MTM2012-36163-C06-06), RIESGOS-CM (code
S2009/ESP-1685), HAUS (IPT-2011-1049-430000), EDUCALAB
(IPT-2011-1071-430000), DEMOCRACY4ALL (IPT-2011-0869-430000) and
CORPORATE COMMUNITY (IPT-2011-0871-430000). The Center for Energy and
innovative Technologies (CET) was supported by the Austrian Federal
Ministry for Transport, Innovation and Technology (GZ.
BMVIT-607.337/0001-lll/I3/2011) through the Building of Tomorrow program
as well as by the Theodor Kery Foundation of the province of Burgenland
in course of EnRiMa. We also want to thank the University of Applied
Science at Pinkafeld and University of Applied Science at Vienna
(ENERGYbase) for their great support of the EnRiMa project.
NR 25
TC 5
Z9 5
U1 0
U2 14
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0378-7788
EI 1872-6178
J9 ENERG BUILDINGS
JI Energy Build.
PD OCT
PY 2014
VL 81
BP 416
EP 423
DI 10.1016/j.enbuild.2014.06.030
PG 8
WC Construction & Building Technology; Energy & Fuels; Engineering, Civil
SC Construction & Building Technology; Energy & Fuels; Engineering
GA AR1SA
UT WOS:000343363700039
ER
PT J
AU Bahadur, J
Melnichenko, YB
Mastalerz, M
Furmann, A
Clarkson, CR
AF Bahadur, J.
Melnichenko, Y. B.
Mastalerz, Maria
Furmann, Agnieszka
Clarkson, Chris R.
TI Hierarchical Pore Morphology of Cretaceous Shale: A Small-Angle Neutron
Scattering and Ultrasmall-Angle Neutron Scattering Study
SO ENERGY & FUELS
LA English
DT Article
ID MISSISSIPPIAN BARNETT SHALE; NORTH-CENTRAL TEXAS; FORT-WORTH BASIN;
GAS-ADSORPTION; SIZE DISTRIBUTION; ORGANIC-MATTER; SURFACE-AREA;
POROSITY; MUDSTONES; ROCKS
AB Shale reservoirs are becoming an increasingly important source of oil and natural gas supply and a potential candidate for CO2 sequestration. Understanding the pore morphology in shale may provide clues to making gas extraction more efficient and cost-effective. The porosity of Cretaceous shale samples from Alberta, Canada, collected from different depths with varying mineralogical compositions, has been investigated by small- and ultrasmall-angle neutron scattering. The samples come from the Second White Specks and Belle Fourche formations, and their organic matter content ranges between 2 and 3%. The scattering length density of the shale specimens has been estimated using the chemical composition of the different mineral components. Scattering experiments reveal the presence of fractal and non-fractal pores. It has been shown that the porosity and specific surface area are dominated by the contribution from meso- and micropores. The fraction of closed porosity has been calculated by comparing the porosities estimated by He pycnometry and scattering techniques. Although there is no correlation between total porosity and mineral components, a strong correlation has been observed between closed porosity and major mineral components in the studied specimens.
C1 [Bahadur, J.; Melnichenko, Y. B.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA.
[Mastalerz, Maria] Indiana Univ, Indiana Geol Survey, Bloomington, IN 47405 USA.
[Furmann, Agnieszka] Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA.
[Clarkson, Chris R.] Univ Calgary, Dept Geosci, Calgary, AB T2N 1N4, Canada.
RP Melnichenko, YB (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA.
EM melnichenkoy@ornl.gov
FU National Science Foundation [DMR-0454672]; National Institute of
Standards and Technology; United States Department of Commerce; Tight
Oil Consortium (TOC) at the University of Calgary; Laboratory Directed
Research and Development Program and the Scientific User Facilities
Division, Office of Basic Energy Sciences, United States Department of
Energy; ORNL Postdoctoral Research Associates Program
FX The authors acknowledge D. F. R. Mildner for his help during USANS
experiments. Partial funding for this research was provided by the Tight
Oil Consortium (TOC) at the University of Calgary. The research at the
High Flux Isotope Reactor of Oak Ridge National Laboratory (ORNL) was
sponsored by the Laboratory Directed Research and Development Program
and the Scientific User Facilities Division, Office of Basic Energy
Sciences, United States Department of Energy. This research was
supported in part by the ORNL Postdoctoral Research Associates Program,
administered jointly by the ORNL and the Oak Ridge Institute for Science
and Education. This work used facilities supported in part by the
National Science Foundation under Agreement DMR-0454672. The authors
acknowledge the support of the National Institute of Standards and
Technology, United States Department of Commerce, in providing the
neutron research facilities used in this work.
NR 31
TC 7
Z9 7
U1 5
U2 38
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0887-0624
EI 1520-5029
J9 ENERG FUEL
JI Energy Fuels
PD OCT
PY 2014
VL 28
IS 10
BP 6336
EP 6344
DI 10.1021/ef501832k
PG 9
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA AR1HJ
UT WOS:000343336000018
ER
PT J
AU Reese, D
Oakley, J
Navarro-Nunez, A
Rothamer, D
Weber, C
Bonazza, R
AF Reese, Daniel
Oakley, Jason
Navarro-Nunez, Alonso
Rothamer, David
Weber, Chris
Bonazza, Riccardo
TI Simultaneous concentration and velocity field measurements in a
shock-accelerated mixing layer
SO EXPERIMENTS IN FLUIDS
LA English
DT Article
ID RICHTMYER-MESHKOV INSTABILITY; IMAGE VELOCIMETRY; TURBULENT FLOWS;
TRANSITION; PERTURBATIONS; PIV
AB A novel technique to obtain simultaneous velocity and concentration measurements is applied to the Richtmyer-Meshkov instability. After acceleration by a Mach 2.2 shock wave, the interface between the two gases develops into a turbulent mixing layer. A time-separated pair of acetone planar laser-induced fluorescence images are processed to yield concentration and, through application of the Advection-Corrected Correlation Image Velocimetry technique, velocity fields. This is the first application of this technique to shock-accelerated flows. We show that when applied to numerical simulations, this technique reproduces the velocity field to a similar quality as particle image velocimetry. When applied to the turbulent mixing layer of the experiments, information about the Reynolds number and anisotropy of the flow is obtained.
C1 [Reese, Daniel; Oakley, Jason; Navarro-Nunez, Alonso; Bonazza, Riccardo] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA.
[Rothamer, David] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA.
[Weber, Chris] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Reese, D (reprint author), Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA.
EM dtreese@wisc.edu
FU US Department of Energy Grant [DE-FG52-06NA26196]
FX The authors would like to thank Dr. Xylar Asay-Davis for his valuable
correspondence and assistance with the ACCIV software. This research was
partially supported by US Department of Energy Grant DE-FG52-06NA26196.
NR 23
TC 0
Z9 0
U1 2
U2 11
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0723-4864
EI 1432-1114
J9 EXP FLUIDS
JI Exp. Fluids
PD OCT
PY 2014
VL 55
IS 10
AR 1823
DI 10.1007/s00348-014-1823-4
PG 8
WC Engineering, Mechanical; Mechanics
SC Engineering; Mechanics
GA AR6UQ
UT WOS:000343719000006
ER
PT J
AU Marin, O
Runborg, O
Tornberg, AK
AF Marin, Oana
Runborg, Olof
Tornberg, Anna-Karin
TI Corrected trapezoidal rules for a class of singular functions
SO IMA JOURNAL OF NUMERICAL ANALYSIS
LA English
DT Article
DE singular functions; quadrature methods; high order
ID HIGH-ORDER QUADRATURES; SCATTERING PROBLEMS; DIMENSIONS; INTEGRANDS;
SURFACES; POINT
AB A set of accurate quadrature rules applicable to a class of integrable functions with isolated singularities is designed and analysed theoretically in one and two dimensions. These quadrature rules are based on the trapezoidal rule with corrected quadrature weights for points in the vicinity of the singularity. To compute the correction weights, small-size ill-conditioned systems have to be solved. The convergence of the correction weights is accelerated by the use of compactly supported functions that annihilate boundary errors. Convergence proofs with error estimates for the resulting quadrature rules are given in both one and two dimensions. The tabulated weights are specific for the singularities under consideration, but the methodology extends to a large class of functions with integrable isolated singularities. Furthermore, in one dimension we have obtained a closed form expression based on which the modified weights can be computed directly.
C1 [Marin, Oana; Runborg, Olof; Tornberg, Anna-Karin] KTH, Dept Math, S-10044 Stockholm, Sweden.
[Runborg, Olof; Tornberg, Anna-Karin] KTH, SeRC, S-10044 Stockholm, Sweden.
RP Marin, O (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM oanam@mcs.anl.gov; olofr@kth.se; akto@kth.se
RI Runborg, Olof/D-1510-2016
NR 19
TC 4
Z9 4
U1 0
U2 4
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0272-4979
EI 1464-3642
J9 IMA J NUMER ANAL
JI IMA J. Numer. Anal.
PD OCT
PY 2014
VL 34
IS 4
BP 1509
EP 1540
DI 10.1093/imanum/drt046
PG 32
WC Mathematics, Applied
SC Mathematics
GA AR1DD
UT WOS:000343320900008
ER
PT J
AU Jilek, RE
Tomson, NC
Scott, BL
Boncella, JM
AF Jilek, Robert E.
Tomson, Neil C.
Scott, Brian L.
Boncella, James M.
TI [2+2] cycloaddition reactions at terminal imido uranium(IV) complexes to
yield isolable cycloadducts
SO INORGANICA CHIMICA ACTA
LA English
DT Article
DE Uranium imido; Actinide imido; Uranium cycloaddition; Ureato complexes
ID VALENT ORGANOURANIUM COMPLEXES; NITROGEN MULTIPLE BOND; BIS(IMIDO)
COMPLEXES; ELECTRONIC-STRUCTURE; FUNCTIONAL-GROUPS; URANYL-ION;
REACTIVITY; LIGAND; ARYL; ORGANOIMIDO
AB The terminal imido complexes U(NDipp)Cl-2(tppo)(3) (tppo = triphenylphosphine oxide) and U(NDipp)Cl-2 (R(2)bpy)(2) (Dipp = 2,6-Pr-i(2)-C6H3; R(2)bpy = 4,4'-R-2-2,2'-bipyridyl; R = Me, tBu) contain reactive U=N bonds, which undergo [2 + 2] cycloaddition reactions with the N-C multiple bonds of isocyanates and benzonitrile. These low valent imido complexes display a preference for forming cycloaddition products, in contrast to high valent bis(imido)complexes, which undergo imido group exchange when treated with isocyanates. This disparity suggests that the U(IV)=NR linkage, already known to be more ionic than U(VI)=NR bonds, is also weaker than its U(VI) congener. The cycloaddition products that were used in this qualitative bond strength analysis have been characterized by X-ray crystallography and NMR spectroscopy. Most importantly, U(NDipp)Cl-2(tppo)(3) and U(NDipp)Cl-2(R(2)bpy) appear to be excellent synthetic precursors to new and intriguing organometallic uranium complexes. (C) 2014 Elsevier B. V. All rights reserved.
C1 [Jilek, Robert E.; Tomson, Neil C.; Scott, Brian L.; Boncella, James M.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
RP Boncella, JM (reprint author), POB 1663 MS J514, Los Alamos, NM 87545 USA.
EM boncella@lanl.gov
RI Tomson, Neil/R-6686-2016; Scott, Brian/D-8995-2017;
OI Tomson, Neil/0000-0001-9131-1039; Scott, Brian/0000-0003-0468-5396;
Boncella, James/0000-0001-8393-392X
FU Seaborg Institute at Los Alamos National Laboratory
FX R.E.J. and N.C.T. thank the Seaborg Institute at Los Alamos National
Laboratory for fellowships that provided partial support of their work.
We also wish to thank the BES heavy element program for funding the
studies on the nitrile and isocyanate addition chemistry.
NR 50
TC 3
Z9 3
U1 0
U2 19
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0020-1693
EI 1873-3255
J9 INORG CHIM ACTA
JI Inorg. Chim. Acta
PD OCT 1
PY 2014
VL 422
BP 78
EP 85
DI 10.1016/j.ica.2014.07.032
PG 8
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA AR4WB
UT WOS:000343585800013
ER
PT J
AU Trevisan, L
Cihan, A
Fagerlund, F
Agartan, E
Mori, H
Birkholzer, JT
Zhou, QL
Illangasekare, TH
AF Trevisan, Luca
Cihan, Abdullah
Fagerlund, Fritjof
Agartan, Elif
Mori, Hiroko
Birkholzer, Jens T.
Zhou, Quanlin
Illangasekare, Tissa H.
TI Investigation of mechanisms of supercritical CO2 trapping in deep saline
reservoirs using surrogate fluids at ambient laboratory conditions
SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL
LA English
DT Article
DE Multidimensional experimental analysis; Capillary trapping; Dimensional
analysis; Trapping models
ID STORAGE CAPACITY ESTIMATION; CARBON-DIOXIDE; POROUS-MEDIA; RELATIVE
PERMEABILITY; GEOLOGICAL STORAGE; MULTIPHASE-FLOW; PORE-SCALE;
INJECTION; AQUIFERS; GRAVITY
AB Geological storage of carbon dioxide relies on the effectiveness of immobilizing CO2 in the pore space of deep geological formations through a number of trapping mechanisms that include capillary, dissolution, and mineral trapping. Improved fundamental understanding of these processes is expected to contribute toward better conceptual models, improved numerical models, more accurate assessment of storage capacities, and optimized placement strategies. However, studying these processes at a fundamental level is not feasible in field settings because fully characterizing the geologic variability at all relevant scales and making observations on the spatial and temporal distribution of the migration and trapping of supercritical CO2 (scCO(2)) is not practical. The specific goal of this study is to develop and implement an experimental method in intermediate scale test tanks under ambient laboratory conditions to make observations and generate data to improve the understanding of capillary trapping affected by fluid and formation properties. Since it is challenging to visualize multiphase flow processes occurring at high pressure conditions at the meter scale, a testing method was developed based on the use of surrogate test fluids to replace the scCO(2) and formation saline water. To set a foundation for extrapolating experimental results to the field, we chose a set of dimensionless groups that define the relative contributions of buoyancy, viscous, and capillary forces to the displacement behavior of immiscible fluids. The experiments were designed with the goal of understanding and accurately quantifying the immobilization of the scCO(2) analog in a homogeneous formation confined by a slightly dipping structural barrier. A set of three displacement experiments through unconsolidated sands with variable permeability was conducted in a quasi-two-dimensional flow cell to gain insight into the influence of buoyancy forces on the propagation of the displacing phase. This work takes advantage of laboratory experiments at the intermediate scale to investigate gravitational and hysteresis effects on entrapment of scCO(2) currents in brine-saturated reservoirs. Understanding these phenomena at a fundamental level represents a critical step to improve injection strategies and to enhance capillary trapping mechanisms. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Trevisan, Luca; Agartan, Elif; Mori, Hiroko; Illangasekare, Tissa H.] Colorado Sch Mines, Ctr Expt Study Subsurface Environm Proc CESEP, Golden, CO 80401 USA.
[Cihan, Abdullah; Birkholzer, Jens T.; Zhou, Quanlin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Fagerlund, Fritjof] Uppsala Univ, Dept Earth Sci, S-75236 Uppsala, Sweden.
RP Trevisan, L (reprint author), Colorado Sch Mines, Ctr Expt Study Subsurface Environm Proc CESEP, Golden, CO 80401 USA.
EM luca.trevisan@gmail.com
RI Zhou, Quanlin/B-2455-2009; Birkholzer, Jens/C-6783-2011; Cihan,
Abdullah/D-3704-2015;
OI Zhou, Quanlin/0000-0001-6780-7536; Birkholzer, Jens/0000-0002-7989-1912;
Trevisan, Luca/0000-0002-7172-5020
FU U.S. Department of Energy through the National Energy Technology
Laboratory's CO2 sequestration RD Program [DE-FE0004630]; National
Science Foundation [EAR-1045282]
FX Funding for this research is provided by the U.S. Department of Energy
through the National Energy Technology Laboratory's CO2
sequestration R&D Program under grant DE-FE0004630 and National Science
Foundation Award no.: EAR-1045282 through the Hydrologic Sciences
Program. We are grateful to Dr. Matthew Liberatore's group at CSM for
providing rheometer and tensiometer.
NR 63
TC 10
Z9 10
U1 0
U2 13
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1750-5836
EI 1878-0148
J9 INT J GREENH GAS CON
JI Int. J. Greenh. Gas Control
PD OCT
PY 2014
VL 29
BP 35
EP 49
DI 10.1016/j.ijggc.2014.07.012
PG 15
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering,
Environmental
SC Science & Technology - Other Topics; Energy & Fuels; Engineering
GA AR5QK
UT WOS:000343638500004
ER
PT J
AU Carroll, SA
Keating, E
Mansoor, K
Dai, ZX
Sun, YW
Trainor-Guitton, W
Brown, C
Bacon, D
AF Carroll, Susan A.
Keating, Elizabeth
Mansoor, Kayyum
Dai, Zhenxue
Sun, Yunwei
Trainor-Guitton, Whitney
Brown, Chris
Bacon, Diana
TI Key factors for determining groundwater impacts due to leakage from
geologic carbon sequestration reservoirs
SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL
LA English
DT Article
DE Carbon storage; CO2 and brine leakage; Groundwater impacts;
Reactive-transport simulations; Reduced-order models
ID NATURAL ANALOG SITE; CO2 SEQUESTRATION; HETEROGENEOUS AQUIFERS;
RISK-ASSESSMENT; SHALLOW; STORAGE; SYSTEM; MODEL; SCALE; WATER
AB In this paper we describe potential impacts to groundwater quality due to CO2 and brine leakage, discuss an approach to calculate thresholds under which "no impact" to groundwater occurs, describe the time scale for impact on groundwater, and discuss the probability of detecting a groundwater plume should leakage occur. To facilitate this, multi-phase flow and reactive transport simulations and reduced-order models were developed for two classes of aquifers, considering uncertainty in leakage source terms and aquifer hydrogeology. We targeted an unconfined fractured carbonate aquifer based on the Edwards Aquifer in Texas and a confined alluvium aquifer based on the High Plains Aquifer in Kansas, which share characteristics typical of many drinking water aquifers in the United States. The hypothetical leakage scenarios centered on the notion that wellbores are the most likely conduits for brine and CO2 leaks. Leakage uncertainty was based on hypothetical injection of CO2 for 50 years at a rate of 5 million tons per year into a depleted oil/gas reservoir with high permeability and, one or more wells provided leakage pathways from the storage reservoir to the overlying aquifer. This scenario corresponds to a storage site with historical oil/gas production and some poorly completed legacy wells that went undetected through site evaluation, operations, and post-closure.
For the aquifer systems and leakage scenarios studied here, CO2 and brine leakage are likely to drive pH below and increase total dissolved solids (TDS) above the "no-impact thresholds"; and the subsequent plumes, although small, are likely to persist for long periods of time in the absence of remediation. In these scenarios, however, risk to human health may not be significant for two reasons. First, our simulated plume volumes are much smaller than the average inter-well spacing (1-2.6 wells/km(2)) for these representative aquifers, so the impacted groundwater would be unlikely to be pumped for drinking water. Second, even within the impacted plume volumes little water exceeds the primary maximum contamination levels. These observations point to.
The potential utility of uncertainty quantification methods to evaluate the risk of leakage and inform monitoring and corrective action plans of a potential site for long-term CO2 storage by capturing storage reservoir, leakage pathway, and aquifer heterogeneity.
The importance of establishing baseline groundwater chemistry that captures the pre-injection variability of underground sources of drinking water (USDW) above the reservoir because the EPA has adopted a "no net degradation" policy toward the protection of groundwater resources.
The need to test and develop spatially diverse monitoring techniques capable of detecting leakage early to employ effective mitigation strategies, and more importantly to add confidence to assessments used to evaluate the length of the post-injection site care. In our study, the probability of detecting plumes using existing wells to sample the groundwater chemistry was very low, because the plumes were relatively small in both aquifers.
The need to develop methodologies that prevent and/or directly detect leakage prior to reaching USDWs, because our simulations predict that even small amounts of CO2 and brine, when left unmitigated, can change USDW pH and TDS concentrations for long periods of time. (C) 2014 The Authors. Published by Elsevier Ltd.
C1 [Carroll, Susan A.; Mansoor, Kayyum; Sun, Yunwei; Trainor-Guitton, Whitney] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Keating, Elizabeth; Dai, Zhenxue] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Brown, Chris; Bacon, Diana] Pacific NW Natl Lab, Richland, WA 99354 USA.
RP Carroll, SA (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
EM carro116@llnl.gov; ekeating@lanl.gov; mansoor1@llnl.gov; daiz@lanl.gov;
sun4@llnl.gov; trainorguitton@lln.gov; Christopher.Brown@pnnl.gov;
Diana.Bacon@pnnl.gov
RI Sun, Yunwei/C-9751-2010;
OI Bacon, Diana/0000-0001-9122-5333; Dai, Zhenxue/0000-0002-0805-7621
FU DOE Office of Fossil Energy's Crosscutting Research program
FX This work was completed as part of National Risk Assessment Partnership
(NRAP) project. Support for this project came from the DOE Office of
Fossil Energy's Crosscutting Research program. The authors wish to
acknowledge Robert Romanosky (NETL Strategic Center for Coal) and Regis
Conrad (DOE Office of Fossil Energy) for programmatic guidance,
direction, and support.
NR 62
TC 28
Z9 28
U1 6
U2 53
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1750-5836
EI 1878-0148
J9 INT J GREENH GAS CON
JI Int. J. Greenh. Gas Control
PD OCT
PY 2014
VL 29
BP 153
EP 168
DI 10.1016/j.ijggc.2014.07.007
PG 16
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering,
Environmental
SC Science & Technology - Other Topics; Energy & Fuels; Engineering
GA AR5QK
UT WOS:000343638500014
ER
PT J
AU Newell, DL
Larson, TE
Perkins, G
Pugh, JD
Stewart, BW
Capo, RC
Trautz, RC
AF Newell, D. L.
Larson, T. E.
Perkins, G.
Pugh, J. D.
Stewart, B. W.
Capo, R. C.
Trautz, R. C.
TI Tracing CO2 leakage into groundwater using carbon and strontium isotopes
during a controlled CO2 release field test
SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL
LA English
DT Article
DE CO2 sequestration; Carbon isotopes; Strontium isotopes; Groundwater
monitoring
ID SHALLOW; INTRUSION; RESERVOIR; TRACERS; WATERS; SYSTEM
AB During a carbon sequestration field study to simulate the impact of CO2 migration on shallow groundwater chemistry, the isotope composition of dissolved inorganic carbon (delta C-13(DIC)) and dissolved strontium (Sr-87/Sr-86) were evaluated as tracers. Dissolved CO2 in groundwater was introduced using a closed-loop dipole-style well field situated in a shallow sand-dominated aquifer. Baseline delta C-13(DIC) values, oxygen and hydrogen isotope ratios, and Sr-87/Sr-86 values of groundwater were established in four monitoring wells (MW-1 to 4) and one up-gradient background well (BG-1) prior to the introduction of dissolved CO2. Baseline groundwater delta C-13(DIC-PDB), oxygen (delta O-18(SMOW)) and hydrogen (delta D-SMOW) stable isotope values averaged -17, -4.1 and -19.5 parts per thousand, respectively. Groundwater Sr-87/Sr-86 baseline values averaged 0.70840 at MW-3 and 0.70818 at MW-2. Arrival of the dissolved CO2 plume at the monitoring wells is modeled using a 1-D analytical equation, which yields breakthrough curves with flow velocities that are consistent with prior numerical modeling estimates. The delta C-13(DIC-PDB) rose to an average steady-state value of 0.16 +/- 0.3 parts per thousand during the test; delta O-18 and delta D of water did not change from their baseline values. Sr-87/Sr-86 dropped sharply by 0.00022 at MW-3 and 0.00005 at MW-2 in the first two weeks after plume arrival at the wells, and then slowly increased toward baseline values, correlating with the behavior of dissolved Na, K, Ca, Sr and Si. Carbonate dissolution and desorption from organic matter and Fe-bearing phases at the low-pH plume front is the likely mechanism producing this behavior. The delta C-13(DIC) and the Sr-87/Sr-86 of dissolved strontium served as excellent tracers of plume movement during this experiment. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Newell, D. L.] Utah State Univ, Dept Geol, Logan, UT 84322 USA.
[Larson, T. E.] Univ Texas Austin, Dept Geol Sci, Austin, TX 78712 USA.
[Perkins, G.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Pugh, J. D.] Southern Co Serv Inc, Birmingham, AL 35242 USA.
[Stewart, B. W.; Capo, R. C.] Univ Pittsburgh, Dept Geol & Planetary Sci, Pittsburgh, PA 15260 USA.
[Trautz, R. C.] Elect Power Res Inst, Palo Alto, CA 94303 USA.
RP Newell, DL (reprint author), Utah State Univ, Dept Geol, Logan, UT 84322 USA.
EM dennis.newell@usu.edu
FU Electric Power Research, Institute; U.S. Environmental Protection
Agency, Office of Water under U.S. Department of Energy (DOE) at LBNL
[DE-AC02-05CH11231]; National Energy Technology Laboratory (NETL),
National Risk Assessment Program (NRAP), of the US Department of Energy
[DEAC02-05CH11231]
FX This work was supported in part by the Electric Power Research,
Institute; the U.S. Environmental Protection Agency, Office of Water,
under an Interagency Agreement with the U.S. Department of Energy (DOE)
at LBNL, under contract number DE-AC02-05CH11231; and the Assistant
Secretary for Fossil Energy, National Energy Technology Laboratory
(NETL), National Risk Assessment Program (NRAP), of the US Department of
Energy under Contract No. DEAC02-05CH11231. We thank E. Burt and A. Wall
for assistance with the Sr isotope processing and analysis. Two
anonymous reviews greatly improved this manuscript.
NR 28
TC 3
Z9 3
U1 4
U2 18
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1750-5836
EI 1878-0148
J9 INT J GREENH GAS CON
JI Int. J. Greenh. Gas Control
PD OCT
PY 2014
VL 29
BP 200
EP 208
DI 10.1016/j.ijggc.2014.08.015
PG 9
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering,
Environmental
SC Science & Technology - Other Topics; Energy & Fuels; Engineering
GA AR5QK
UT WOS:000343638500018
ER
PT J
AU Henderson, MA
AF Henderson, M. A.
TI Roles of Fe2+, Fe3+, and Cr3+ surface sites in the oxidation of NO on
the (Fe,Cr)(3)O-4(111) surface termination of an
alpha-(Fe,Cr)(2)O-3(0001) mixed oxide
SO JOURNAL OF CATALYSIS
LA English
DT Article
DE Nitric oxide; Mixed oxide surface; Temperature-programmed desorption;
Oxidation; Photocatalysis
ID SELECTIVE CATALYTIC-REDUCTION; SCANNING-TUNNELING-MICROSCOPY; LASER
INDUCED DESORPTION; NITRIC-OXIDE; PHOTOCATALYTIC REDUCTION; WATER
PHOTOOXIDATION; FE-ZSM-5 CATALYST; SOLID-SOLUTIONS; NITROGEN-OXIDE; FORM
ZEOLITES
AB The oxidation of NO was explored on a mixed Fe + Cr oxide surface using temperature-programmed desorption (TPD). NO desorbs from (Fe,Cr)(3)O-4(111) in two main peaks at 220 and 370 K, with a third minor peak at similar to 315 K. O-2 TPD shows similar behavior. The strongly and weakly bound molecules are due to adsorption at Fe2+ and Fe3+ sites, respectively, and the minor states are assigned to Cr3+ sites. No thermal decomposition was detected for adsorbed NO, whereas similar to 10% of the adsorbed O-2 dissociated at Fe2+ sites. NO reacts with preadsorbed O-2 to produce surface nitrate, as confirmed by isotopic labeling, which decomposes in TPD at 425 K. Atomically adsorbed O does not react with NO. Fe3+ and Cr3+ sites do not appear to participate in NO oxidation. Irradiation of adsorbed NO or NO + O-2 with 460 nm light results predominantly in photodesorption, which limits the extent of possible surface photoreactions. (C) 2014 Elsevier Inc. All rights reserved.
C1 Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Phys Sci, Richland, WA 99352 USA.
RP Henderson, MA (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Phys Sci, POB 999,MS K8-87, Richland, WA 99352 USA.
EM ma.henderson@pnnl.gov
FU US Department of Energy, Office of Basic Energy Sciences, Division of
Chemical Sciences, Geosciences Biosciences; Department of Energy's
Office of Biological and Environmental Research and located at Pacific
Northwest National Laboratory
FX The author thank Drs. Sara Chamberlin and Scott Chambers for supplying
the film used in this work. This work was supported by the US Department
of Energy, Office of Basic Energy Sciences, Division of Chemical
Sciences, Geosciences & Biosciences. Pacific Northwest National
Laboratory (PNNL) is a multiprogram national laboratory operated for DOE
by Battelle. The research was performed using EMSL, a national
scientific user facility sponsored by the Department of Energy's Office
of Biological and Environmental Research and located at Pacific
Northwest National Laboratory.
NR 57
TC 7
Z9 7
U1 2
U2 31
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9517
EI 1090-2694
J9 J CATAL
JI J. Catal.
PD OCT
PY 2014
VL 318
BP 53
EP 60
DI 10.1016/j.jcat.2014.07.015
PG 8
WC Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA AR1QX
UT WOS:000343360800006
ER
PT J
AU Childers, DJ
Schweitzer, NM
Shahari, SMK
Rioux, RM
Miller, JT
Meyer, RJ
AF Childers, David J.
Schweitzer, Neil M.
Shahari, Seyed Mehdi Kamali
Rioux, Robert M.
Miller, Jeffrey T.
Meyer, Randall J.
TI Modifying structure-sensitive reactions by addition of Zn to Pd
SO JOURNAL OF CATALYSIS
LA English
DT Article
DE Structure-sensitive reaction; Intermetallic PdZn; Propane
dehydrogenation; CleanCat; DRIFTS; CO calorimetry; EXAFS; Neopentane
conversion
ID RAY-ABSORPTION SPECTROSCOPY; WATER-GAS SHIFT; PALLADIUM CATALYSTS;
PROPANE DEHYDROGENATION; PARTICLE-SIZE; ALLOY FORMATION; METHANOL;
HYDROGENOLYSIS; CO; PLATINUM
AB Silica-supported Pd and PdZn nanoparticles of a similar size were evaluated for neopentane hydrogenolysis/isomerization and propane hydrogenolysis/dehydrogenation. Monometallic Pd showed high neopentane hydrogenolysis selectivity. Addition of small amounts of Zn to Pd lead Pd-Zn scatters in the EXAFS spectrum and an increase in the linear bonded CO by IR. In addition, the neopentane turnover rate decreased by nearly 10 times with little change in the selectivity. Increasing amounts of Zn lead to greater Pd-Zn interactions, higher linear-to-bridging CO ratios by IR and complete loss of neopentane conversion. Pd NPs also had high selectivity for propane hydrogenolysis and thus were poorly selective for propylene. The PdZn bimetallic catalysts, however, were able to preferentially catalyze dehydrogenation, were not active for propane hydrogenolysis, and thus were highly selective for propylene formation. The decrease in hydrogenolysis selectivity was attributed to the isolation of active Pd atoms by inactive metallic Zn, demonstrating that hydrogenolysis requires a particular reactive ensemble whereas propane dehydrogenation does not. (C) 2014 Elsevier Inc. All rights reserved.
C1 [Childers, David J.; Meyer, Randall J.] Univ Illinois, Dept Chem Engn, Chicago, IL 60680 USA.
[Schweitzer, Neil M.] Northwestern Univ, Ctr Catalysis & Surface Sci, Evanston, IL 60208 USA.
[Shahari, Seyed Mehdi Kamali; Rioux, Robert M.] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA.
[Miller, Jeffrey T.] Argonne Natl Lab, Div Chem Sci & Engn, Argonne, IL 60439 USA.
RP Miller, JT (reprint author), Argonne Natl Lab, Div Chem Sci & Engn, Argonne, IL 60439 USA.
EM millerjt@anl.gov; rjm@uic.edu
FU Institute for Atom-Efficient Chemical Transformations (IACT), an Energy
Frontier Research Center - United States Department of Energy, Office of
Science, Office of Basic Energy Sciences; National Science Foundation
(CBET) [0747646]; Chemical Sciences and Engineering Division at Argonne
National Laboratory; Office of the Vice Chancellor for Research at the
University of Illinois at Chicago; Department of Energy, Office of Basic
Energy Sciences, Chemical Sciences, Geosciences, and Biosciences
Division, Catalysis Sciences Program [DE-FG02-12ER16364]; 3M Non-Tenured
Faculty Grant (NTFG); U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of
Energy [DE-AC02-06CH11357, DE-FG02-03ER15457]; MRCAT member institutions
FX JTM and NS were supported as part of the Institute for Atom-Efficient
Chemical Transformations (IACT), an Energy Frontier Research Center
funded by the United States Department of Energy, Office of Science,
Office of Basic Energy Sciences. R.J.M. and D.C. gratefully acknowledge
funding for this work from the National Science Foundation (CBET Grant
No. 0747646). Partial funding for DC was provided by the Chemical
Sciences and Engineering Division at Argonne National Laboratory and the
Office of the Vice Chancellor for Research at the University of Illinois
at Chicago. S.M.K.S. and R.M