FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Wang, B Alhassan, SM Pantelides, ST AF Wang, Bin Alhassan, Saeed M. Pantelides, Sokrates T. TI Formation of Large Polysulfide Complexes during the Lithium-Sulfur Battery Discharge SO PHYSICAL REVIEW APPLIED LA English DT Article ID RECHARGEABLE BATTERIES; LIQUID ELECTROLYTE; GRAPHENE; PERFORMANCE; CATHODE; COMPOSITE; MOLECULES; MECHANISM; CAPACITY; HYBRID AB Sulfur cathodes have much larger capacities than transition-metal-oxide cathodes used in commercial lithium-ion batteries but suffer from unsatisfactory capacity retention and long-term cyclability. Capacity degradation originates from soluble lithium polysulfides gradually diffusing into the electrolyte. Understanding of the formation and dynamics of soluble polysulfides during the discharging process at the atomic level remains elusive, which limits further development of lithium-sulfur (Li-S) batteries. Here we report first-principles molecular dynamics simulations and density functional calculations, through which the discharging products of Li-S batteries are studied. We find that, in addition to simple Li2Sn (1 <= n <= 8) clusters generated from single cyclooctasulfur (S-8) rings, large Li-S clusters form by collectively coupling several different rings to minimize the total energy. At high lithium concentration, a Li-S network forms at the sulfur surfaces. The results can explain the formation of the soluble Li-S complex, such as Li2S8, Li2S6, and Li2S4, and the insoluble Li2S2 and Li2S structures. In addition, we show that the presence of oxygen impurities in graphene, particularly oxygen atoms bonded to vacancies and edges, may stabilize the lithium polysulfides that may otherwise diffuse into the electrolyte. C1 [Wang, Bin; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Alhassan, Saeed M.] Petr Inst, Dept Chem Engn, Abu Dhabi, U Arab Emirates. [Pantelides, Sokrates T.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Pantelides, Sokrates T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Wang, B (reprint author), Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA. EM bin.wang@vanderbilt.edu RI Wang, Bin/E-8301-2011; OI Wang, Bin/0000-0001-8246-1422; Alhassan, Saeed/0000-0002-5148-3255 FU Gas Subcommittee Research and Development under Abu Dhabi National Oil Company (ADNOC); Department of Energy Basic Energy Sciences, Materials Science and Engineering; McMinn Endowment at Vanderbilt University FX This work was supported in part by the Gas Subcommittee Research and Development under Abu Dhabi National Oil Company (ADNOC), by the Department of Energy Basic Energy Sciences, Materials Science and Engineering, and by the McMinn Endowment at Vanderbilt University. NR 53 TC 25 Z9 25 U1 15 U2 111 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2331-7019 J9 PHYS REV APPL JI Phys. Rev. Appl. PD SEP 4 PY 2014 VL 2 IS 3 AR 034004 DI 10.1103/PhysRevApplied.2.034004 PG 7 WC Physics, Applied SC Physics GA AS5WT UT WOS:000344338100001 ER PT J AU Chang, TM Dang, LX AF Chang, Tsun-Mei Dang, Liem X. TI Computational Studies of [bmim][PF6]/n-Alcohol Interfaces with Many-Body Potentials SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID TEMPERATURE IONIC LIQUIDS; SUM-FREQUENCY SPECTROSCOPY; MOLECULAR-DYNAMICS; PHYSICAL-CHEMISTRY; X-RAY; SURFACE; WATER; CO2; SEPARATIONS; SIMULATION AB In this paper, we present the results from molecular dynamics simulations of the equilibrium properties of liquid/liquid interfaces of room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmirn][PF6]) and simple alcohols (i.e., methanol, 1-butanol, and 1-hexanol) at room temperature. Polarizable potential models are employed to describe the interactions among species. Results from our simulations show stable interfaces between the ionic liquid and n-alcohols, and we found that the interfacial widths decrease from methanol to 1-butanol systems and then increase for 1-hexanol interfaces. Angular distribution analysis reveals that the interface induces a strong orientational order of [bmim] and n-alcohol molecules near the interface, with [bmim] extending its butyl group into the alcohol phase, whereas the alcohol has the OH group pointing into the ionic liquid region, which is consistent with the recent sum-frequency-generation experiments. We found the interface to have a significant influence on the dynamics of ionic liquids and n-alcohols. The orientational autocorrelation functions illustrate that [bmirn] rotates more freely near the interface than in the bulk, whereas the rotation of n-alcohol is hindered at the interface. Additionally, the time scale associated with the diffusion along the interfacial direction is found to be faster for [bmim] but slowed down for n-alcohols approaching the interface. We also calculate the dipole moment of n-alcohols as a function of the distance normal to the interface. We found that, even though methanol and 1-butanol have different dipole moments in bulk phase, they reach a similar value at the interface. C1 [Chang, Tsun-Mei] Univ Wisconsin, Dept Chem, Parkside, WI 53141 USA. [Dang, Liem X.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Chang, TM (reprint author), Univ Wisconsin, Dept Chem, Parkside, WI 53141 USA. FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the Department of Energy by Battelle. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences. NR 57 TC 2 Z9 2 U1 3 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 4 PY 2014 VL 118 IS 35 BP 7186 EP 7193 DI 10.1021/jp405910k PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AO4UV UT WOS:000341337800002 PM 24063438 ER PT J AU Cave, RJ Newton, MD AF Cave, Robert J. Newton, Marshall D. TI Multistate Treatments of the Electronic Coupling in Donor-Bridge-Acceptor Systems: Insights and Caveats from a Simple Model SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID INTRAMOLECULAR CHARGE-TRANSFER; GENERALIZED MULLIKEN-HUSH; PROTON-TRANSFER REACTIONS; AB-INITIO CALCULATIONS; DNA PI-STACKS; DIABATIC STATES; BLOCK DIAGONALIZATION; TUNNELING CURRENTS; MATRIX-ELEMENTS; CONFIGURATIONAL UNIFORMITY AB We use a simple one-dimensional delta function electronic structure model (dfm) to investigate the results of a pair of multistate diabatization techniques (i.e., based on n states, with n >= 2) for linear DBA and DBBA (donor-bridge-acceptor) electron-transfer systems. In particular, we focus on the physical meaning of the couplings obtained from multistate methods and their relationship to two-state (n = 2) coupling elements. On the basis of the simple dfm approach, which allows exact as well as finite basis set treatment and has no many-electron effects, we conclude that for orthogonal diabatic states, it is difficult to assign clear physical significance to multistate matrix elements for coupling beyond nearest-neighbor contacts. The implications of these results for more complex multistate many-electron treatments are discussed. It is emphasized that physically meaningful coupling elements must involve states that are orthogonal, either explicitly or implicitly. C1 [Cave, Robert J.] Harvey Mudd Coll, Dept Chem, Claremont, CA 91711 USA. [Newton, Marshall D.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Cave, RJ (reprint author), Harvey Mudd Coll, Dept Chem, Claremont, CA 91711 USA. EM Robert_Cave@hmc.edu; Newton@bnl.gov FU National Science Foundation [CHE-0353199]; Harvey Mudd College; The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-98CH10886] FX R.J.C. gratefully acknowledges financial support from the National Science Foundation (CHE-0353199) and from Harvey Mudd College. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy is gratefully acknowledged for funding the research carried out by M.D.N. through Grant DE-AC02-98CH10886. We are also grateful to the reviewers for careful reading and helpful suggestions that both clarified the manuscript and suggested new avenues for investigation. NR 89 TC 7 Z9 7 U1 0 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 4 PY 2014 VL 118 IS 35 BP 7221 EP 7234 DI 10.1021/jp408913k PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AO4UV UT WOS:000341337800006 PM 24266545 ER PT J AU Alfonso, DR AF Alfonso, Dominic R. TI Kinetic Monte Carlo Simulation of CO Adsorption on Sulfur-Covered Pd(100) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SINGLE-CRYSTAL; CARBON-MONOXIDE; ADSORBATE INTERACTIONS; HYDROGEN; SURFACE; DISSOCIATION; PALLADIUM; FUEL; LEED; H-2 AB The use of atomistic Kinetic Monte Carlo method was explored to examine the influence of sulfur poisoning on CO adsorption on Pd(100) surface. The model explicitly incorporates key elementary processes such as CO adsorption and CO desorption including diffusion of surface CO and S species. Relevant energetic and kinetic parameters were derived using information calculated from density functional theory as a starting point. Kinetic Monte Carlo simulation was performed to determine relevant observables such as CO saturation coverage as a function of amount of preadsorbed sulfur and to predict temperature programmed desorption spectra. C1 US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Alfonso, DR (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM alfonso@netl.doe.gov FU United States Government FX Valuable advice by D. Liu and K. Reuter on KMC simulations is strongly acknowledged. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of the author(s) expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 45 TC 1 Z9 1 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 4 PY 2014 VL 118 IS 35 BP 7306 EP 7313 DI 10.1021/jp4115817 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AO4UV UT WOS:000341337800017 PM 24494801 ER PT J AU Myshakin, EM Makaremi, M Romanov, VN Jordan, KD Guthrie, GD AF Myshakin, Evgeniy M. Makaremi, Meysam Romanov, Vyacheslav N. Jordan, Kenneth D. Guthrie, George D. TI Molecular Dynamics Simulations of Turbostratic Dry and Hydrated Montmorillonite with Intercalated Carbon Dioxide SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID X-RAY-DIFFRACTION; DENSITY-FUNCTIONAL THEORY; FORCE-FIELD; DIOCTAHEDRAL SMECTITES; ELECTRON-DIFFRACTION; NA-MONTMORILLONITE; CA-MONTMORILLONITE; CO2 SEQUESTRATION; ILLITE SMECTITE; PART I AB Molecular dynamics simulations using classical force fields were carried out to study energetic and structural properties of rotationally disordered clay mineral water CO, systems at pressure and temperature relevant to geological carbon storage. The simulations show that turbostratic stacking of hydrated Na- and Ca-montmorillonite and hydrated montmorillonite with intercalated carbon dioxide is an energetically demanding process accompanied by an increase in the interlayer spacing. On the other hand, rotational disordering of dry or nearly dry smectite systems can be energetically favorable. The distributions of interlayer species are calculated as a function of the rotational angle between adjacent day layers. C1 [Myshakin, Evgeniy M.; Makaremi, Meysam; Romanov, Vyacheslav N.; Jordan, Kenneth D.; Guthrie, George D.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Myshakin, Evgeniy M.] URS Corp, South Pk, PA 15129 USA. [Makaremi, Meysam; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. RP Myshakin, EM (reprint author), Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. EM Evgeniy.Myshakin@netl.doe.gov RI Romanov, Vyacheslav/C-6467-2008 OI Romanov, Vyacheslav/0000-0002-8850-3539 FU National Energy Technology Laboratory under the RES [4000.4.641.061.002.254, DE-FE0004000]; Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through URS Energy and Construction, Inc. FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in Subtask 4000.4.641.061.002.254 under the RES Contract DE-FE0004000. The simulations were carried put on the NETL High-Performance Computer for Energy and the Environment (HPCEE) and on the computer clusters in the University of Pittsburgh's Center for Simulation and Modeling. This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with URS Energy and Construction, Inc. Neither the United States Government nor any agency thereof, nor any of their employees, nor URS Energy & Construction, Inc., nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 68 TC 7 Z9 7 U1 1 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 4 PY 2014 VL 118 IS 35 BP 7454 EP 7468 DI 10.1021/jp500221w PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AO4UV UT WOS:000341337800034 PM 24745358 ER PT J AU Chaka, AM Felmy, AR AF Chaka, Anne M. Felmy, Andrew R. TI Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DENSITY-FUNCTIONAL THEORY; WET SUPERCRITICAL CO2; JANAF THERMOCHEMICAL TABLES; EMPIRICAL DISPERSION TERM; PERIODIC HARTREE-FOCK; RATE THERMAL-ANALYSIS; X-RAY-DIFFRACTION; CRYSTAL-STRUCTURE; INTERACTION ENERGIES; MINERAL CARBONATION AB An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Emzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O-2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation. C1 [Chaka, Anne M.; Felmy, Andrew R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Chaka, AM (reprint author), Pacific NW Natl Lab, POB 999,MS K8-96, Richland, WA 99352 USA. FU Geosciences Research Program in the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; U.S. Department of Energy's Office of Biological and Environmental Research FX This work was supported by the Geosciences Research Program in the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. A portion of this research was performed using the computational resources of EMSL, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 133 TC 8 Z9 8 U1 6 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 4 PY 2014 VL 118 IS 35 BP 7469 EP 7488 DI 10.1021/jp500271n PG 20 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AO4UV UT WOS:000341337800035 PM 24679248 ER PT J AU Miliordos, E Apra, E Xantheas, SS AF Miliordos, Evangelos Apra, Edoardo Xantheas, Sotiris S. TI Benchmark Theoretical Study of the pi-pi Binding Energy in the Benzene Dimer SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID INTERMOLECULAR INTERACTION ENERGIES; CORRELATED MOLECULAR CALCULATIONS; PLESSET PERTURBATION-THEORY; GAUSSIAN-BASIS SETS; SUPRAMOLECULAR CHEMISTRY; CCSD(T) CALCULATIONS; COUPLED-CLUSTER; WAVE-FUNCTIONS; RECOGNITION; SURFACE AB We establish a new estimate for the binding energy between two benzene molecules in the parallel-displaced (PD) conformation by systematically converging (i) the intra- and intermolecular geometry at the minimum, (ii) the expansion of the orbital basis set, and (iii) the level of electron correlation. The calculations were performed at the second-order Moller-Plesset perturbation (MP2) and the coupled cluster including singles, doubles, and a perturbative estimate of triples replacement [CCSD(T)] levels of electronic structure theory. At both levels of theory, by including results corrected for basis set superposition error (BSSE), we have estimated the complete basis set (CBS) limit by employing the family of Dunning's correlation-consistent polarized valence basis sets. The largest MP2 calculation was performed with the cc-pV6Z basis set (2772 basis functions), whereas the largest CCSD(T) calculation was with the cc-pV5Z basis set (1752 basis functions). The cluster geometries were optimized with basis sets up to quadruple-zeta quality, observing that both its intra- and intermolecular parts have practically converged with the triple-C quality sets. The use of converged geometries was found to play an important role for obtaining accurate estimates for the CBS limits. Our results demonstrate that the binding energies with the families of the plain (cc-pVnZ) and augmented (aug-cc-pVnZ) sets converge [within <0.01 kcal/mol for MP2 and <0.15 kcal/mol for CCSD(T)] to the same CBS limit. In addition, the average of the uncorrected and BSSE-corrected binding energies was found to converge to the same CBS limit much faster than either of the two constituents (uncorrected or BSSE-corrected binding energies). Due to the fact that the family of augmented basis sets (especially for the larger sets) causes serious linear dependency problems, the plain basis sets (for which no linear dependencies were found) are deemed as a more efficient and straightforward path for obtaining an accurate CBS limit. We considered extrapolations of the uncorrected (Delta E) and BSSE-corrected (Delta E-cp) binding energies, their average value (Delta E-ave), as well as the average of the latter over the plain and augmented sets (Delta(E) over tilde (ave)) with the cardinal number of the basis set n. Our best estimate of the CCSD(T)/CBS limit for the pi-pi binding energy in the PD benzene dimer is D-e = -2.65 +/- 0.02 kcal/mol. The best CCSD(T)/cc-pV5Z calculated value is -2.62 kcal/mol, just 0.03 kcal/mol away from the CBS limit. For comparison, the MP2/CBS limit estimate is -5.00 +/- 0.01 kcal/mol, demonstrating a 90% overbinding with respect to CCSD(T). The spin-component-scaled (SCS) MP2 variant was found to closely reproduce the CCSD(T) results for each basis set, while scaled opposite spin (SOS) MP2 yielded results that are too low when compared to CCSD(T). C1 [Miliordos, Evangelos; Xantheas, Sotiris S.] Pacific NW Natl Lab, Phys Sci Div, Richland, WA 99352 USA. [Apra, Edoardo] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Xantheas, SS (reprint author), Pacific NW Natl Lab, Phys Sci Div, 902 Battelle Blvd,POB 999,MS K1-83, Richland, WA 99352 USA. EM sotiris.xantheas@pnnl.gov RI Apra, Edoardo/F-2135-2010; Xantheas, Sotiris/L-1239-2015 OI Apra, Edoardo/0000-0001-5955-0734; FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; Department of Energy's Office of Biological and Environmental Research; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Dr. Karol Kowalski of PNNL for many helpful discussions and a critical review of the manuscript. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences (E.M. and S.S.X.). Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. A portion of this research was performed using the Molecular Science Computing Facility (MSCF) in EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. This research also used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 61 TC 24 Z9 24 U1 3 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 4 PY 2014 VL 118 IS 35 BP 7568 EP 7578 DI 10.1021/jp5024235 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AO4UV UT WOS:000341337800044 PM 24761749 ER PT J AU Heine, N Yacovitch, TI Schubert, F Brieger, C Neumark, DM Asmis, KR AF Heine, Nadja Yacovitch, Tara I. Schubert, Franziska Brieger, Claudia Neumark, Daniel M. Asmis, Knut R. TI Infrared Photodissociation Spectroscopy of Microhydrated Nitrate-Nitric Acid Clusters NO3-(HNO3)(m)(H2O)(n) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID HYDROGEN DINITRATE ION; VIBRATIONAL-SPECTRA; HARTREE-FOCK; COMPLEXES; DENSITY; PROTON; HNO3; CONFIGURATION; DECOMPOSITION; DISSOCIATION AB Infrared multiple photon dissociation (IRMPD) spectra of NO3-(HNO3)(m)(H2O) (H-2)(z) with m = 1-3, up to n = 8 and z >= 1, are measured in the fingerprint region (550-1880 cm(-1)), directly probing the NO-stretching modes, as well as bending and other lower frequency modes. The assignment of the spectra is aided by electronic structure calculations. The IRMPD spectrum of the m = 1, n = 0 cluster is distinctly different from all the other measured spectra as a result of strong hydrogen bonding, leading to an equally shared proton in between two nitrate moieties (O2NO-center dot center dot center dot H+center dot center dot center dot ONO2-). It exhibits a strong absorption at 877 cm(-1) and lacks the characteristic NO2-antisymmetric stretching/NOH-bending mode absorption close to 1650 cm(-1). Addition of at least one more nitric acid molecule or two more water molecules weakens the hydrogen bond network, breaking the symmetry of this arrangement and leading to localization of the proton near one of the nitrate cores, effectively forming HNO3 hydrogen-bonded to NO3-. Not all IR active modes are observed in the IRMPD spectra of the bare nitrate-nitric acid clusters. Addition of a water or a hydrogen molecule lowers the dissociation limit of the complexes and relaxes (H2O) or lifts (H-2) this IRMPD transparency. C1 [Heine, Nadja; Schubert, Franziska; Brieger, Claudia; Asmis, Knut R.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. [Yacovitch, Tara I.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Asmis, Knut R.] Univ Leipzig, Wilhelm Ostwald Inst Phys & Theoret Chem, D-04103 Leipzig, Germany. [Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu; knut.asmis@uni-leipzig.de RI Asmis, Knut/N-5408-2014; Heine, Nadja/G-8839-2013; Neumark, Daniel/B-9551-2009; OI Asmis, Knut/0000-0001-6297-5856; Neumark, Daniel/0000-0002-3762-9473; Lentz, Claudia/0000-0002-1876-9331 FU European Community [226716]; Air Force Office of Scientific Research [FA9550-12-1-1060]; National Science and Engineering Research Council of Canada (NSERC) FX We thank the Stichting voor Fundamenteel Onderzoek der Materie (FOM) for granting the required beam time and greatly appreciate the skill and assistance of the FELIX staff. This research is funded by the European Community's Seventh Framework Program (FP7/2007-2013, Grant 226716) and the Air Force Office of Scientific Research (FA9550-12-1-1060). T.I.Y. thanks the National Science and Engineering Research Council of Canada (NSERC) for a postgraduate scholarship. NR 62 TC 10 Z9 10 U1 3 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 4 PY 2014 VL 118 IS 35 BP 7613 EP 7622 DI 10.1021/jp412222q PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AO4UV UT WOS:000341337800048 PM 24666321 ER PT J AU Sassi, M Carter, DJ Uberuaga, BP Stanek, CR Mancera, RL Marks, NA AF Sassi, Michel Carter, Damien J. Uberuaga, Blas P. Stanek, Christopher R. Mancera, Ricardo L. Marks, Nigel A. TI Hydrogen Bond Disruption in DNA Base Pairs from C-14 Transmutation SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ELECTRON-DENSITIES; SOLID-STATE; REPLICATION; DECAY AB Recent ab initio molecular dynamics simulations have shown that radioactive carbon does not normally fragment DNA bases when it decays. Motivated by this finding, density functional theory and Bader analysis have been used to quantify the effect of C --> N transmutation on hydrogen bonding in DNA base pairs. We find that C-14 decay has the potential to significantly alter hydrogen bonds in a variety of ways including direct proton shuttling (thymine and cytosine), thermally activated proton shuttling (guanine), and hydrogen bond breaking (cytosine). Transmutation substantially modifies both the absolute and relative strengths of the hydrogen bonding pattern, and in two instances (adenine and cytosine), the density at the critical point indicates development of mild covalent character. Since hydrogen bonding is an important component of Watson-Crick pairing, these C-14-induced modifications, while infrequent, may trigger errors in DNA transcription and replication. C1 [Sassi, Michel; Carter, Damien J.] Curtin Univ, Nanochem Res Inst, Perth, WA 6845, Australia. [Sassi, Michel; Carter, Damien J.] Curtin Univ, Dept Chem, Perth, WA 6845, Australia. [Sassi, Michel] Pacific NW Natl Lab, Div Phys Sci, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Uberuaga, Blas P.; Stanek, Christopher R.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Mancera, Ricardo L.] Curtin Univ, CHIRI Biosci, Sch Biomed Sci, Perth, WA 6845, Australia. [Marks, Nigel A.] Curtin Univ, Discipline Phys & Astron, Perth, WA 6845, Australia. RP Marks, NA (reprint author), Curtin Univ, Discipline Phys & Astron, GPO Box U1987, Perth, WA 6845, Australia. EM N.Marks@curtin.edu.au RI Marks, Nigel/F-6084-2010; Sassi, Michel/A-6080-2011; Carter, Damien/H-9768-2012 OI Marks, Nigel/0000-0003-2372-1284; Sassi, Michel/0000-0003-2582-3735; FU Australian Research Council (ARC) [DP1097076]; ARC [FT120100924] FX The project used advanced computational resources provided by the iVEC facility at Murdoch University. The authors thank the Australian Research Council (ARC) for support under Discovery Project DP1097076, and N.A.M. thanks the ARC for a fellowship (FT120100924). NR 38 TC 0 Z9 0 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD SEP 4 PY 2014 VL 118 IS 35 BP 10430 EP 10435 DI 10.1021/jp508118f PG 6 WC Chemistry, Physical SC Chemistry GA AO4US UT WOS:000341337500013 PM 25127298 ER PT J AU Shkrob, IA Marin, TW Wishart, JF Grills, DC AF Shkrob, Ilya A. Marin, Timothy W. Wishart, James F. Grills, David C. TI Radiation Stability of Cations in Ionic Liquids. 5. Task-Specific Ionic Liquids Consisting of Biocompatible Cations and the Puzzle of Radiation Hypersensitivity SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ELECTRON-SPIN-RESONANCE; CRYSTALLINE CHOLINE CHLORIDE; IRRADIATED SINGLE-CRYSTALS; SOLUBILIZING METAL-OXIDES; DEEP EUTECTIC SOLVENTS; GLYCYL RADICAL ENZYMES; PULSE-RADIOLYSIS; SOLVATION DYNAMICS; IONIZING-RADIATION; 2-PHOTON IONIZATION AB In 1953, an accidental discovery by Melvin Calvin and co-workers provided the first example of a solid (the a-polymorph of choline chloride) showing hypersensitivity to ionizing radiation: under certain conditions, the radiolytic yield of decomposition approached 5 x 10(4) per 100 eV (which is 4 orders of magnitude greater than usual values), suggesting an uncommonly efficient radiation-induced chain reaction. Twenty years later, the still-accepted mechanism for this rare condition was suggested by Martyn Symons, but no validation for this mechanism has been supplied. Meanwhile, ionic liquids and deep eutectic mixtures that are based on choline, betainium, and other derivitized natural amino compounds are presently finding an increasing number of applications as diluents in nuclear separations, where the constituent ions are exposed to ionizing radiation that is emitted by decaying radionuclides. Thus, the systems that are compositionally similar to radiation hypersensitive solids are being considered for use in high radiation fields, where this property is particularly undesirable! In Part 5 of this series on organic cations, we revisit the phenomenon of radiation hypersensitivity and explore mechanistic aspects of radiation-induced reactions involving this class of task-specific, biocompatible, functionalized cations, both in ionic liquids and in reference crystalline compounds. We demonstrate that Symons' mechanism needs certain revisions and rethinking, and suggest its modification. Our reconsideration suggests that there cannot be conditions leading to hypersensitivity in ionic liquids. C1 [Shkrob, Ilya A.; Marin, Timothy W.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Marin, Timothy W.] Benedictine Univ, Dept Chem, Lisle, IL 60532 USA. [Wishart, James F.; Grills, David C.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Shkrob, IA (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shkrob@anl.gov RI Wishart, James/L-6303-2013; Grills, David/F-7196-2016 OI Wishart, James/0000-0002-0488-7636; Grills, David/0000-0001-8349-9158 FU U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357, DE-AC02-98CH10886]; DOE SISGR grant; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX We thank D. Quigley, S. Chemerisov, Y. Portilla, B. Layne and S. Ramati for technical support. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under Award Numbers DE-AC02-06CH11357 (Argonne) and DE-AC02-98CH10886 (Brookhaven). This research used resources of the LEAF Facility of the Brookhaven Accelerator Center for Energy Research, which is a DOE Office of Science User Facility. Programmatic support via a DOE SISGR grant "An Integrated Basic Research Program for Advanced Nuclear Energy Separations Systems Based on Ionic Liquids" is gratefully acknowledged. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 121 TC 3 Z9 3 U1 6 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD SEP 4 PY 2014 VL 118 IS 35 BP 10477 EP 10492 DI 10.1021/jp5049716 PG 16 WC Chemistry, Physical SC Chemistry GA AO4US UT WOS:000341337500018 PM 25127187 ER PT J AU al-Wahish, A Jalarvo, N Bi, ZH Herwig, KW Bridges, C Paranthaman, MP Mandrus, D AF al-Wahish, Amal Jalarvo, Niina Bi, Zhonghe Herwig, K. W. Bridges, Craig Paranthaman, M. P. Mandrus, D. TI Quasi-Elastic Neutron Scattering Reveals Fast Proton Diffusion in Ca-Doped LaPO4 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SR-SUBSTITUTED LAPO4; LANTHANUM ORTHOPHOSPHATE; CONDUCTION; SRCE0.95YB0.05H0.02O2.985; VISUALIZATION; PRINCIPLES; MECHANISM; PROSPECTS; DYNAMICS; CRYSTAL AB We have investigated the diffusion dynamics of protons in hydrated 4.2% Ca-doped LaPO4, a candidate electrolyte for proton-conducting intermediate temperature fuel cells. The macroscopic and microscopic dynamics have been studied using electrochemical impedance spectroscopy (EIS) and quasi-elastic neutron scattering (QENS), respectively. The conductivity of the bulk hydrated sample was determined in the temperature range of 500-850 degrees C by EIS and showed a clear signature of proton conductivity with an activation energy of about 1.0 eV. The QENS experiment revealed a fast dynamical process below 500 degrees C that was not observed by EIS. The activation energy of the fast proton diffusion is 0.09 eV in the temperature range from 150 degrees C to 500 degrees C. C1 [al-Wahish, Amal; Mandrus, D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Jalarvo, Niina] Oak Ridge Natl Lab, Forschungszentrum Julich, JCNS, Outstn Spallat Neutron Source SNS, Oak Ridge, TN 37831 USA. [Bi, Zhonghe; Bridges, Craig; Paranthaman, M. P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Herwig, K. W.] Oak Ridge Natl Lab, Instrument & Source Design Div, Oak Ridge, TN 37861 USA. [Mandrus, D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Mandrus, D.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Mandrus, D (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM dmandrus@utk.edu RI Paranthaman, Mariappan/N-3866-2015; Jalarvo, Niina/Q-1320-2015 OI Paranthaman, Mariappan/0000-0003-3009-8531; Jalarvo, Niina/0000-0003-0644-6866 FU U.S. Department of Energy (DOE), Basic Energy Sciences (BES) Materials Sciences and Engineering Division; U.S. Department of Energy, Basic Energy Sciences (B.E.S.) Scientific User Facilities Division; Research Centre of Julich; Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the U.S. Department of Energy (DOE), Basic Energy Sciences (BES) Materials Sciences and Engineering Division (A.A.W., Z.B., C.B., M.P.P., and D.M.), by the U.S. Department of Energy, Basic Energy Sciences (B.E.S.) Scientific User Facilities Division (K.W.H.), and by the Research Centre of Julich (N.J.). We would like to thank T. Norby for suggesting that LaPO4 would make a good system for QENS studies. We thank L. Tetard and S. Tang for assistance with the SEM measurements. The SEM work of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy. NR 33 TC 5 Z9 5 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 4 PY 2014 VL 118 IS 35 BP 20112 EP 20121 DI 10.1021/jp5048425 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AO4UU UT WOS:000341337700008 ER PT J AU Sambasivarao, SV Liu, Y Horan, JL Seifert, S Herring, AM Maupin, CM AF Sambasivarao, Somisetti V. Liu, Yuan Horan, James L. Seifert, Soenke Herring, Andrew M. Maupin, C. Mark TI Enhancing Proton Transport and Membrane Lifetimes in Perfluorosulfonic Acid Proton Exchange Membranes: A Combined Computational and Experimental Evaluation of the Structure and Morphology Changes Due to H3PW12O40 Doping SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; PERFLUORINATED IONOMER MEMBRANES; POLYMER ELECTROLYTE MEMBRANES; FUEL-CELL APPLICATIONS; X-RAY-SCATTERING; COMPOSITE MEMBRANES; HETEROPOLY ACIDS; HYDRATED MORPHOLOGIES; LOW-TEMPERATURE; NAFION AB The impact of loading the heteropoly acid, 12-phosphotungstic acid (HPW), on a perfluorosulfonic acid (PFSA) proton exchange membrane's morphology was evaluated by means of molecular dynamics (MD) simulations and small-angle X-ray scattering (SAXS) experiments. It is found that the addition of HPW significantly modifies the solvent structure and dynamics in the PFSA membrane, which favors the formation of interconnected proton conducting networks. It is hypothesized that these HPW induced solvent modifications account for the enhanced proton conducting characteristics of these doped membranes. Radial distribution functions and water cluster analysis indicate that the HPW organizes the local solvent water and attracts the nearby excess protons thereby creating localized "nodes" of ordered water and hydronium ions. The "nodes" are found to connect surrounding water wires/channels resulting in a more efficient proton conducting network. This redistribution of solvent and hydronium ions upon addition of HPW creates a shift in the hydrophilic cluster size distribution and the overall membrane morphology. Hydrophilic cluster size analysis indicates that a high percentage of small clusters (d < 15 angstrom) exist in low HPW doped systems (i.e., 1%), while larger clusters (d > 15 angstrom) exist for the high HPW doped systems (i.e., 596). At low hydration levels, the water domains are found to be spheroidal inverted micelles embedded in an ionomer matrix, while at high hydration levels the solvent morphology shifts to a parallel spheroidal elongated cylinder. It is also observed that for the high HPW doping levels the SAXS pattern changes intensity at the low q region and Bragg peaks become present, which indicates the presence of crystalline HPW. These morphological changes create a more interconnected pathway through which the hydrated excess protons may transverse thereby enhancing the PFSA membrane's conductivity C1 [Sambasivarao, Somisetti V.; Liu, Yuan; Horan, James L.; Herring, Andrew M.; Maupin, C. Mark] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. [Seifert, Soenke] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Herring, AM (reprint author), Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. EM aherring@mines.edu; cmmaupin@mines.edu OI Herring, Andrew/0000-0001-7318-5999 FU Renewable energy MRSEC - NSF [DMR-0820518]; DOE Office of Science [DE-AC02-06CH11357] FX This research was supported by by the Renewable energy MRSEC funded by the NSF under Grant DMR-0820518. We want to thank 3M for supplying ionomer samples and technical support in addition to the Colorado School of Mines Campus Computing, Communications, and Information Technologies for the computational resources. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 52 TC 6 Z9 6 U1 3 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 4 PY 2014 VL 118 IS 35 BP 20193 EP 20202 DI 10.1021/jp5059325 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AO4UU UT WOS:000341337700016 ER PT J AU Zhou, XW Foster, ME van Swol, FB Martin, JE Wong, BM AF Zhou, X. W. Foster, M. E. van Swol, F. B. Martin, J. E. Wong, Bryan M. TI Analytical Bond-Order Potential for the Cd-Te-Se Ternary System SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID EPITAXIAL-GROWTH; GAAS; OPTIMIZATION; SIMULATION; CRYSTALS; SILICON; SURFACE; ZN AB CdTe/CdSe core/shell structured quantum dots do not suffer from the defects typically seen in lattice-mismatched films and can therefore lead to improved solid-state lighting devices as compared to the multilayered structures (e.g., InxGa1-x,N/GaN). To achieve these devices, however, the quantum dots must be optimized with respect to the structural details at an atomistic level. Molecular dynamics simulations are effective for exploring nano structures at a resolution unattainable by experimental techniques. To enable accurate molecular dynamics simulations of CdTe/CdSe core/shell structures, we have developed a full Cd-Te-Se ternary bond-order potential based on the analytical formalisms derived from quantum mechanical theories by Pettifor et al. A variety of elemental and compound configurations (with coordination varying from 1 to 12) including small dusters, bulk lattices, defects, and surfaces are explicitly considered during potential parametrization. More importantly, enormous iterations are performed to strictly ensure that our potential can simulate the correct crystalline growth of the ground-state structures for Cd, Te, and Se elements as well as CdTe, CdSe, and CdTe1-xSex compounds during molecular dynamics vapor deposition simulations. Extensive test simulation results clearly indicate that our new Cd-Te-Se potential has unique advantages over the existing literature potential involving Cd, Te, and Se elements. C1 [Zhou, X. W.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. [Foster, M. E.] Sandia Natl Labs, Mat Chem Dept, Livermore, CA 94550 USA. [van Swol, F. B.] Sandia Natl Labs, Computat Mat & Data Sci Dept, Albuquerque, NM 87185 USA. [Martin, J. E.] Sandia Natl Labs, Nanoscale Sci Dept, Albuquerque, NM 87185 USA. [Wong, Bryan M.] Univ Calif Riverside, Dept Chem & Environm Engn & Mat Sci, Riverside, CA 92521 USA. RP Zhou, XW (reprint author), Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. EM xzhou@sandia.gov RI Wong, Bryan/B-1663-2009 OI Wong, Bryan/0000-0002-3477-8043 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was performed under a Laboratory Directed Research and Development (LDRD) project. NR 46 TC 2 Z9 2 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 4 PY 2014 VL 118 IS 35 BP 20661 EP 20679 DI 10.1021/jp505915u PG 19 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AO4UU UT WOS:000341337700069 ER PT J AU Nguyen, SC Lomont, JP Caplins, BW Harris, CB AF Nguyen, Son C. Lomont, Justin P. Caplins, Benjamin W. Harris, Charles B. TI Studying the Dynamics of Photochemical Reactions via Ultrafast Time-Resolved Infrared Spectroscopy of the Local Solvent SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID VIBRATIONAL-ENERGY REDISTRIBUTION; IR-RAMAN SPECTROSCOPY; CIS-STILBENE; POLYATOMIC LIQUIDS; ACETONITRILE; SOLVATION; NANOPARTICLES; RELAXATION; HEXANE; ABSORPTION AB Conventional ultrafast spectroscopic studies on the dynamics of chemical reactions in solution directly probe the solute undergoing the reaction. We provide an alternative method for probing reaction dynamics via monitoring of the surrounding solvent. When the reaction exchanges the energy (in form of heat) with the solvent, the absorption cross sections of the solvent's infrared bands are sensitive to the heat transfer, allowing spectral tracking of the reaction dynamics. This spectroscopic technique was demonstrated to be able to distinguish the differing photoisomerization dynamics of the trans and cis isomers of stilbene in acetonitrile solution. We highlight the potential of this spectroscopic approach for studying the dynamics of chemical reactions or other heat transfer processes when probing the solvent is more experimentally feasible than probing the solute directly. C1 [Harris, Charles B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Harris, CB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM cbharris@berkeley.edu FU NSF [CHE-1213135]; VIED; NSF FX This work was supported by NSF Grant CHE-1213135. S.C.N. acknowledges support through a VIED fellowship. J.P.L. acknowledges support through an NSF graduate research fellowship. NR 37 TC 2 Z9 2 U1 3 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD SEP 4 PY 2014 VL 5 IS 17 BP 2974 EP 2978 DI 10.1021/jz501400t PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AO4UR UT WOS:000341337400009 PM 26278245 ER PT J AU Suich, DE Caplins, BW Shearer, AJ Harris, CB AF Suich, David E. Caplins, Benjamin W. Shearer, Alex J. Harris, Charles B. TI Femtosecond Trapping of Free Electrons in Ultrathin Films of NaCl on Ag(100) SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID ALKALI-HALIDES; THIN-FILMS; DYNAMICS; INTERFACES; LOCALIZATION; SURFACES; DEFECTS; STATES; CELLS AB We report the excited-state electron dynamics for ultrathin films of NaCl on Ag(100). The first three image potential states (IPSs) were initially observed following excitation. The electrons in the spatially delocalized n = 1 IPS decayed on the ultrafast time scale into multiple spatially localized states lower in energy. The localized electronic states are proposed to correspond to electrons trapped at defects in the NaCl islands. Coverage and temperature dependence of the localized states support the assignment to surface trap states existing at the NaCl/vacuum interface. These results highlight the importance of electron trapping in ultrathin insulating layers. C1 [Harris, Charles B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Harris, CB (reprint author), Univ Calif Berkeley, Dept Chem, 419 Latimer Hall, Berkeley, CA 94720 USA. EM cbharris@berkeley.edu FU Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy, under contract no. DE-AC02-05CH11231. NR 32 TC 7 Z9 7 U1 2 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD SEP 4 PY 2014 VL 5 IS 17 BP 3073 EP 3077 DI 10.1021/jz501572z PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AO4UR UT WOS:000341337400028 PM 26278263 ER PT J AU Fiksel, G Fox, W Bhattacharjee, A Barnak, DH Chang, PY Germaschewski, K Hu, SX Nilson, PM AF Fiksel, G. Fox, W. Bhattacharjee, A. Barnak, D. H. Chang, P. -Y. Germaschewski, K. Hu, S. X. Nilson, P. M. TI Magnetic Reconnection between Colliding Magnetized Laser-Produced Plasma Plumes SO PHYSICAL REVIEW LETTERS LA English DT Article ID OMEGA AB Observations of magnetic reconnection between colliding plumes of magnetized laser-produced plasma are presented. Two counterpropagating plasma flows are created by irradiating oppositely placed plastic ( CH) targets with 1.8-kJ, 2-ns laser beams on the Omega EP Laser System. The interaction region between the plumes is prefilled with a low-density background plasma and magnetized by an externally applied magnetic field, imposed perpendicular to the plasma flow, and initialized with an X-type null point geometry with B = 0 at the midplane and B = 8 T at the targets. The counterflowing plumes sweep up and compress the background plasma and the magnetic field into a pair of magnetized ribbons, which collide, stagnate, and reconnect at the midplane, allowing the first detailed observations of a stretched current sheet in laser-driven reconnection experiments. The dynamics of current sheet formation are in good agreement with first-principles particle-in-cell simulations that model the experiments. C1 [Fiksel, G.; Barnak, D. H.; Chang, P. -Y.; Hu, S. X.; Nilson, P. M.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Fiksel, G.; Barnak, D. H.; Chang, P. -Y.; Nilson, P. M.] Univ Rochester, Fus Sci Ctr Extreme States Matter, Rochester, NY 14623 USA. [Fox, W.; Bhattacharjee, A.] Dept Astrophys Sci, Princeton, NJ 08543 USA. [Fox, W.; Bhattacharjee, A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Germaschewski, K.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. RP Fiksel, G (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. EM gfik@lle.rochester.edu RI Hu, Suxing/A-1265-2007; Chang, Po-Yu/L-5745-2016 OI Hu, Suxing/0000-0003-2465-3818; FU U.S. Department of Energy [DE-SC0007168, DE-SC0008655, DE-SC0006670]; National Laser User Facility program; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX This work is supported by the U.S. Department of Energy under Contracts No. DE-SC0007168, No. DE-SC0008655, and No. DE-SC0006670, and the National Laser User Facility program. The particle-in-cell simulations were conducted on the Jaguar and Titan supercomputers through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Oak Ridge Leadership Computing Facility located in the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 21 TC 18 Z9 18 U1 4 U2 40 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 4 PY 2014 VL 113 IS 10 AR 105003 DI 10.1103/PhysRevLett.113.105003 PG 5 WC Physics, Multidisciplinary SC Physics GA AO3WN UT WOS:000341267800011 PM 25238366 ER PT J AU Takhistov, V Abe, K Haga, Y Hayato, Y Ikeda, M Iyogi, K Kameda, J Kishimoto, Y Miura, M Moriyama, S Nakahata, M Nakano, Y Nakayama, S Sekiya, H Shiozawa, M Suzuki, Y Takeda, A Tanaka, H Tomura, T Ueno, K Wendell, RA Yokozawa, T Irvine, T Kajita, T Kametani, I Kaneyuki, K Lee, KP McLachlan, T Nishimura, Y Richard, E Okumura, K Labarga, L Fernandez, P Berkman, S Tanaka, HA Tobayama, S Gustafson, J Kearns, E Raaf, JL Stone, JL Sulak, LR Goldhaber, M Carminati, G Kropp, WR Mine, S Weatherly, P Renshaw, A Smy, MB Sobel, HW Ganezer, KS Hartfiel, BL Hill, J Keig, WE Hong, N Kim, JY Lim, IT Akiri, T Himmel, A Scholberg, K Walter, CW Wongjirad, T Ishizuka, T Tasaka, S Jang, JS Learned, JG Matsuno, S Smith, SN Hasegawa, T Ishida, T Ishii, T Kobayashi, T Nakadaira, T Nakamura, K Oyama, Y Sakashita, K Sekiguchi, T Tsukamoto, T Suzuki, AT Takeuchi, Y Bronner, C Hirota, S Huang, K Ieki, K Kikawa, T Minamino, A Murakami, A Nakaya, T Suzuki, K Takahashi, S Tateishi, K Fukuda, Y Choi, K Itow, Y Mitsuka, G Mijakowski, P Hignight, J Imber, J Jung, CK Yanagisawa, C Ishino, H Kibayashi, A Koshio, Y Mori, T Sakuda, M Yamaguchi, R Yano, T Kuno, Y Tacik, R Kim, SB Okazawa, H Choi, Y Nishijima, K Koshiba, M Suda, Y Totsuka, Y Yokoyama, M Martens, K Marti, L Vagins, MR Martin, JF de Perio, P Konaka, A Wilking, MJ Chen, S Zhang, Y Connolly, K Wilkes, RJ AF Takhistov, V. Abe, K. Haga, Y. Hayato, Y. Ikeda, M. Iyogi, K. Kameda, J. Kishimoto, Y. Miura, M. Moriyama, S. Nakahata, M. Nakano, Y. Nakayama, S. Sekiya, H. Shiozawa, M. Suzuki, Y. Takeda, A. Tanaka, H. Tomura, T. Ueno, K. Wendell, R. A. Yokozawa, T. Irvine, T. Kajita, T. Kametani, I. Kaneyuki, K. Lee, K. P. McLachlan, T. Nishimura, Y. Richard, E. Okumura, K. Labarga, L. Fernandez, P. Berkman, S. Tanaka, H. A. Tobayama, S. Gustafson, J. Kearns, E. Raaf, J. L. Stone, J. L. Sulak, L. R. Goldhaber, M. Carminati, G. Kropp, W. R. Mine, S. Weatherly, P. Renshaw, A. Smy, M. B. Sobel, H. W. Ganezer, K. S. Hartfiel, B. L. Hill, J. Keig, W. E. Hong, N. Kim, J. Y. Lim, I. T. Akiri, T. Himmel, A. Scholberg, K. Walter, C. W. Wongjirad, T. Ishizuka, T. Tasaka, S. Jang, J. S. Learned, J. G. Matsuno, S. Smith, S. N. Hasegawa, T. Ishida, T. Ishii, T. Kobayashi, T. Nakadaira, T. Nakamura, K. Oyama, Y. Sakashita, K. Sekiguchi, T. Tsukamoto, T. Suzuki, A. T. Takeuchi, Y. Bronner, C. Hirota, S. Huang, K. Ieki, K. Kikawa, T. Minamino, A. Murakami, A. Nakaya, T. Suzuki, K. Takahashi, S. Tateishi, K. Fukuda, Y. Choi, K. Itow, Y. Mitsuka, G. Mijakowski, P. Hignight, J. Imber, J. Jung, C. K. Yanagisawa, C. Ishino, H. Kibayashi, A. Koshio, Y. Mori, T. Sakuda, M. Yamaguchi, R. Yano, T. Kuno, Y. Tacik, R. Kim, S. B. Okazawa, H. Choi, Y. Nishijima, K. Koshiba, M. Suda, Y. Totsuka, Y. Yokoyama, M. Martens, K. Marti, Ll. Vagins, M. R. Martin, J. F. de Perio, P. Konaka, A. Wilking, M. J. Chen, S. Zhang, Y. Connolly, K. Wilkes, R. J. TI Search for Trilepton Nucleon Decay via p -> e(+)vv and p -> mu(+)vv in the Super-Kamiokande Experiment SO PHYSICAL REVIEW LETTERS LA English DT Article ID WATER CHERENKOV DETECTOR; ATMOSPHERIC FLUX; PROTON-DECAY; MODES; LIFETIME; LIMITS; COLOR AB The trilepton nucleon decay modes p -> e(+)nu nu and p -> mu(+)nu nu violate vertical bar Delta(B - L)vertical bar by two units. Using data from a 273.4 kt yr exposure of Super-Kamiokande a search for these decays yields a fit consistent with no signal. Accordingly, lower limits on the partial lifetimes of tau(p -> e+nu nu) > 1.7 x 10(32) years and tau(p ->mu+nu nu) > 2.2 x 10(32) years at a 90% confidence level are obtained. These limits can constrain Grand Unified Theories which allow for such processes. C1 [Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakano, Y.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Tanaka, H.; Tomura, T.; Ueno, K.; Wendell, R. A.; Yokozawa, T.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Kamioka, Gifu 5061205, Japan. [Irvine, T.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Lee, K. P.; McLachlan, T.; Nishimura, Y.; Richard, E.; Okumura, K.] Univ Tokyo, Res Ctr Cosm Neutrinos, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan. [Labarga, L.; Fernandez, P.] Univ Autonoma Madrid, Dept Theoret Phys, E-28049 Madrid, Spain. [Gustafson, J.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Berkman, S.; Tanaka, H. A.; Tobayama, S.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6TIZ4, Canada. [Goldhaber, M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Takhistov, V.; Carminati, G.; Kropp, W. R.; Mine, S.; Weatherly, P.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Vagins, M. R.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Keig, W. E.] Calif State Univ Dominguez Hills, Dept Phys, Carson, CA 90747 USA. [Hong, N.; Kim, J. Y.; Lim, I. T.] Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. [Akiri, T.; Himmel, A.; Scholberg, K.; Walter, C. W.; Wongjirad, T.] Duke Univ, Dept Phys, Durham, NC 27708 USA. Fukuoka Inst Technol, Jr Coll, Fukuoka 8110295, Japan. [Tasaka, S.] Gifu Univ, Dept Phys, Gifu 5011193, Japan. [Jang, J. S.] Gwangju Inst Sci & Technol, GIST Coll, Kwangju 500712, South Korea. [Learned, J. G.; Matsuno, S.; Smith, S. N.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. [Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Suzuki, A. T.; Takeuchi, Y.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. [Bronner, C.; Hirota, S.; Huang, K.; Ieki, K.; Kikawa, T.; Minamino, A.; Murakami, A.; Nakaya, T.; Suzuki, K.; Takahashi, S.; Tateishi, K.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Fukuda, Y.] Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 9800845, Japan. [Choi, K.; Itow, Y.; Mitsuka, G.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648602, Japan. [Hignight, J.; Imber, J.; Jung, C. K.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ishino, H.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Yamaguchi, R.; Yano, T.; Kuno, Y.] Okayama Univ, Dept Phys, Okayama 7008530, Japan. Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. [Tacik, R.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Kim, S. B.] Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. [Okazawa, H.] Shizuoka Univ Welf, Dept Informat Social Welf, Shizuoka 4258611, Japan. [Choi, Y.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Nishijima, K.] Tokai Univ, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan. [Koshiba, M.; Suda, Y.; Totsuka, Y.; Yokoyama, M.] Univ Tokyo, Tokyo 1130033, Japan. [Abe, K.; Hayato, Y.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Tomura, T.; Wendell, R. A.; Kajita, T.; Kaneyuki, K.; Okumura, K.; Kearns, E.; Stone, J. L.; Smy, M. B.; Sobel, H. W.; Scholberg, K.; Walter, C. W.; Nakamura, K.; Nakaya, T.; Yokoyama, M.; Martens, K.; Marti, Ll.; Vagins, M. R.] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, Todai Inst Adv Study, Kashiwa, Chiba 2778582, Japan. [Martin, J. F.; de Perio, P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Konaka, A.; Wilking, M. J.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Chen, S.; Zhang, Y.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Connolly, K.; Wilkes, R. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Mijakowski, P.] Nat Ctr Nucl Res, PL-00681 Warsaw, Poland. RP Takhistov, V (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RI Suzuki, Yoichiro/F-7542-2010; Ishino, Hirokazu/C-1994-2015; Koshio, Yusuke/C-2847-2015; Yokoyama, Masashi/A-4458-2011; Kibayashi, Atsuko/K-7327-2015; Nakano, Yuuki/S-2684-2016 OI Ishino, Hirokazu/0000-0002-8623-4080; Koshio, Yusuke/0000-0003-0437-8505; Yokoyama, Masashi/0000-0003-2742-0251; FU Japanese Ministry of Education, Culture, Sports, Science and Technology; United States Department of Energy; U.S. National Science Foundation; Korean Research Foundation (BK21); National Research Foundation of Korea [NRF-20110024009]; State Committee for Scientific Research in Poland [1757/B/H03/2008/35]; Japan Society for Promotion of Science; National Natural Science Foundation of China [10575056] FX We gratefully acknowledge cooperation of the Kamioka Mining and Smelting Company. The Super-Kamiokande experiment was built and has been operated with funding from the Japanese Ministry of Education, Culture, Sports, Science and Technology, the United States Department of Energy, and the U.S. National Science Foundation. Some of us have been supported by funds from the Korean Research Foundation (BK21), the National Research Foundation of Korea (NRF-20110024009), the State Committee for Scientific Research in Poland (Grant No. 1757/B/H03/2008/35), the Japan Society for Promotion of Science, and the National Natural Science Foundation of China under Grant No. 10575056. NR 30 TC 5 Z9 5 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 4 PY 2014 VL 113 IS 10 AR 101801 DI 10.1103/PhysRevLett.113.101801 PG 6 WC Physics, Multidisciplinary SC Physics GA AO3WN UT WOS:000341267800005 PM 25238348 ER PT J AU Lin, JF Wu, JJ Zhu, J Mao, Z Said, AH Leu, BM Cheng, JG Uwatoko, Y Jin, CQ Zhou, JS AF Lin, Jung-Fu Wu, Junjie Zhu, Jie Mao, Zhu Said, Ayman H. Leu, Bogdan M. Cheng, Jinguang Uwatoko, Yoshiya Jin, Changqing Zhou, Jianshi TI Abnormal Elastic and Vibrational Behaviors of Magnetite at High Pressures SO SCIENTIFIC REPORTS LA English DT Article ID RAY-EMISSION SPECTROSCOPY; VERWEY TRANSITION; FE3O4; PHASE; CRYSTAL; SPIN AB Magnetite exhibits unique electronic, magnetic, and structural properties in extreme conditions that are of great research interest. Previous studies have suggested a number of transitional models, although the nature of magnetite at high pressure remains elusive. We have studied a highly stoichiometric magnetite using inelastic X-ray scattering, X-ray diffraction and emission, and Raman spectroscopies in diamond anvil cells up to, similar to 20 GPa, while complementary electrical conductivity measurements were conducted in a cubic anvil cell up to 8.5 GPa. We have observed an elastic softening in the diagonal elastic constants (C-11 and C-44) and a hardening in the off-diagonal constant (C-12) at similar to 8 GPa where significant elastic anisotropies in longitudinal and transverse acoustic waves occur, especially along the [110] direction. An additional vibrational Raman band between the A(1g) and T-2g modes was also detected at the transition pressure. These abnormal elastic and vibrational behaviors of magnetite are attributed to the occurrence of the octahedrally-coordinated Fe2+-Fe3+-Fe2+ ions charge-ordering along the [110] direction in the inverse spinel structure. We propose a new phase diagram of magnetite in which the temperature for the metal-insulator and distorted structural transitions decreases with increasing pressure while the charge-ordering transition occurs at similar to 8 GPa and room temperature. C1 [Lin, Jung-Fu; Mao, Zhu] Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78712 USA. [Lin, Jung-Fu; Cheng, Jinguang; Zhou, Jianshi] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. [Lin, Jung-Fu; Wu, Junjie] Ctr High Pressure Sci & Technol Adv Res HPSTAR, Shanghai, Peoples R China. [Wu, Junjie; Zhu, Jie; Jin, Changqing] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. [Mao, Zhu] Univ Sci & Technol China, Sch Earth & Planetary Sci, Lab Seismol & Phys Earths Interior, Hefei 230026, Anhui, Peoples R China. [Said, Ayman H.; Leu, Bogdan M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Cheng, Jinguang; Zhou, Jianshi] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. [Cheng, Jinguang; Uwatoko, Yoshiya] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. RP Lin, JF (reprint author), Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78712 USA. EM afu@jsg.utexas.edu RI Lin, Jung-Fu/B-4917-2011; Mao, Zhu/A-9015-2015 FU DOE-BES [DE-AC02-06CH11357]; U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-AC02-06CH11357]; National Science Foundation [EAR-0622171]; Department of Energy [DE-AC02-06CH11357, DE-FG02-94ER14466]; DOE-NNSA; DOE-BES; NSF; Energy Frontier Research in Extreme Environments (EFree) Center, HPSTAR; NSF Earth Sciences [EAR-0838221]; NSF [DMR 1122603]; JSPS fellowship for foreign researchers [12F02023]; National Natural Science Foundation of China (NSFC); Ministry of Science and Technology (MOST); Collaborative Innovation Center of Quantum Matter in Beijing, China FX We thank J.B. Goodenough, E. E. Alp, H. K. Mao, and M. Pasternak for fruitful discussions, J. Liu and J. Yang for helping to prepare samples and figures, and Y. Xiang, P. Chow, and V. Prakapenka for their assistance with synchrotron experiments. We acknowledge XOR-30, XOR-3, HPCAT, and GSECARS of the APS, ANL for the use of the synchrotron and laser facilities. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. Use of the Advanced Photon Source was supported by U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under contract No. DE-AC02-06CH11357. GSECARS was supported by the National Science Foundation (EAR-0622171) and Department of Energy (DE-FG02-94ER14466) under Contract No. DE-AC02-06CH11357. HPCAT is supported by DOE-NNSA, DOE-BES and NSF. J. F. L. acknowledges financial support from Energy Frontier Research in Extreme Environments (EFree) Center, HPSTAR, and NSF Earth Sciences (EAR-0838221), J.S.Z. acknowledges the financial support from NSF (DMR 1122603), and JGC acknowledges the financial support of the JSPS fellowship for foreign researchers (Grant No. 12F02023). Research at the Chinese Academy of Sciences was supported by National Natural Science Foundation of China (NSFC), Ministry of Science and Technology (MOST), and Collaborative Innovation Center of Quantum Matter in Beijing, China through research projects. NR 34 TC 8 Z9 9 U1 5 U2 62 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD SEP 4 PY 2014 VL 4 AR 6282 DI 10.1038/srep06282 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO6FE UT WOS:000341444400001 PM 25186916 ER PT J AU Cheng, YW Shao, YY Zhang, JG Sprenkle, VL Liu, J Li, GS AF Cheng, Yingwen Shao, Yuyan Ji-Guang Zhang Sprenkle, Vincent L. Liu, Jun Li, Guosheng TI High performance batteries based on hybrid magnesium and lithium chemistry SO CHEMICAL COMMUNICATIONS LA English DT Article ID RECHARGEABLE MG BATTERIES; ELECTROLYTE-SOLUTIONS; ENERGY-STORAGE; CHALLENGE AB This work studied hybrid batteries assembled with a Mg metal anode, a Li+ ion intercalation cathode and a dual-salt electrolyte containing Mg2+ and Li+ ions. We show that such hybrid batteries were able to combine the advantages of Li and Mg electrochemistry. They delivered outstanding rate performance (83% capacity retention at 15 C) with superior safety and stability (similar to 5% fade for 3000 cycles). C1 [Cheng, Yingwen; Shao, Yuyan; Ji-Guang Zhang; Sprenkle, Vincent L.; Liu, Jun; Li, Guosheng] Pacific NW Natl Lab, Energy Proc & Mat Div, Richland, WA 99354 USA. RP Liu, J (reprint author), Pacific NW Natl Lab, Energy Proc & Mat Div, Richland, WA 99354 USA. EM jun.liu@pnnl.gov; guosheng.li@pnnl.gov RI Shao, Yuyan/A-9911-2008; Cheng, Yingwen/B-2202-2012 OI Shao, Yuyan/0000-0001-5735-2670; Cheng, Yingwen/0000-0002-0778-5504 FU U.S. Department of Energy (DOE); PNNL Laboratory Directed Research and Development program; U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability [57558]; Office of Basic Energy Science; Division of Materials Sciences and Engineering [KC020105-FWP12152]; DOE's Office of Biological and Environmental Research and located at PNNL FX The development and understanding of hybrid batteries are supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award KC020105-FWP12152. The electro-chemistry and battery performance works are supported by PNNL Laboratory Directed Research and Development program and the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability under Contract No. 57558. TEM and SEM characterization was conducted at the Environmental and Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is a multiprogramme national laboratory operated for DOE by Battelle under contract DE AC05-76RL01830. NR 20 TC 34 Z9 34 U1 13 U2 141 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PD SEP 4 PY 2014 VL 50 IS 68 BP 9644 EP 9646 DI 10.1039/c4cc03620d PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA AN6KI UT WOS:000340703000004 PM 24964330 ER PT J AU Stone, KH Kortright, JB AF Stone, Kevin H. Kortright, Jeffrey B. TI Molecular anisotropy effects in carbon K-edge scattering: Depolarized diffuse scattering and optical anisotropy SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-SCATTERING; SHELL EXCITATION-SPECTRA; SHORT-RANGE ORDER; ATACTIC POLYSTYRENE; THIN-FILMS; DYNAMICS SIMULATION; ORIENTATION FLUCTUATIONS; NEXAFS SPECTRA; GAS-PHASE; SURFACE AB Some polymer properties, such as conductivity, are very sensitive to short-and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylenelike backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter. C1 [Stone, Kevin H.; Kortright, Jeffrey B.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Kortright, JB (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jbkortright@lbl.gov RI Stone, Kevin/N-9311-2016 OI Stone, Kevin/0000-0003-1387-1510 FU US Department of Energy, Office of Science, Materials Sciences and Engineering Division [DE-AC02-05CH1123] FX We acknowledge samples provided by Dr. Chen Zhang and Dr. Keith M. Beers and discussions regarding measurement artifacts with Dr. Brian A. Collins, Professor Harald Ade, and Dr. Anthony Young. Experimental measurements were made under a General User Proposal at beamlines 11.0.1.2 and 8.0.1 at the Advanced Light Source, LBNL. The research and the ALS were supported by the US Department of Energy, Office of Science, Materials Sciences and Engineering Division under Contract No. DE-AC02-05CH1123. NR 70 TC 6 Z9 6 U1 3 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 4 PY 2014 VL 90 IS 10 AR 104201 DI 10.1103/PhysRevB.90.104201 PG 12 WC Physics, Condensed Matter SC Physics GA AO3UQ UT WOS:000341262200004 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Almond, J Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Baker, S Balek, P Balli, F Banas, E Banerjee, S Bangert, A Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batkova, L Batley, JR Battistin, M Bauer, F Bawa, HS Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belloni, A Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertolucci, F Bertsche, D Besana, MI Besjes, GJ Bessidskaia, O Bessner, MF Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, G Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, K Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Bucher, D Bucher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cuciuc, CM Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darlea, GL Darmora, S Dassoulas, JA Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Durssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gandrajula, RP Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godfrey, J Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Gonalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gosling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Grybel, K Guan, L Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Heisterkamp, S Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Ivarsson, J Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Karnevskiy, M Karpov, SN Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-Zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le, BT Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leonhardt, K Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A Andrade, LMD Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matsushita, T Mattig, P Mattig, S Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldric, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Meade, A Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Moeller, V Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moraes, A Morange, N Morel, J Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petteni, M Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Synchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spighi, R Spigo, G Spousta, M Spreitzer, T Spurlock, B Denis, RDS Staerz, S Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steele, G Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramania, H Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Der Deijl, PC van der Geer, R van der Graaf, H Van Der Leeuw, R van der Ster, D Van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigell, P Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A Nedden, MZ Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Almond, J. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Alvarez Gonzalez, B. Alviggi, M. G. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Baker, S. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bangert, A. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. Barreiro Guimaraes da Costa, J. Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battistin, M. Bauer, F. Bawa, H. S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belloni, A. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertolucci, F. Bertsche, D. Besana, M. I. Besjes, G. J. Bessidskaia, O. Bessner, M. F. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, G. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buecher, D. Buecher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cuciuc, C. -M. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darlea, G. L. Darmora, S. Dassoulas, J. A. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Vivie De Regie, J. B. De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Micco, B. Di Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duerssen, M. Dunford, M. Yildiz, H. Duran Duren, M. Durglishvili, A. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gandrajula, R. P. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godfrey, J. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Gonalo, R. Goncalves Pinto Firmino Da Costa, J. Gonella, L. Gonzalez de la Hoz, S. Parra, G. Gonzalez Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goesling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstrom, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Groth-Jensen, J. Grout, Z. J. Grybel, K. Guan, L. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Gunther, J. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Heisterkamp, S. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Ivarsson, J. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Rozas, A. Juste Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalderon, C. W. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Karnevskiy, M. Karpov, S. N. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-Zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Koenig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le, B. T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leonhardt, K. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaesc, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matsushita, T. Maettig, P. Maettig, S. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldric, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjoernmark, J. U. Moa, T. Mochizuki, K. Moeller, V. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Moraes, A. Morange, N. Morel, J. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petteni, M. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospelov, G. E. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Adam, E. Romero Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Synchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spighi, R. Spigo, G. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Staerz, S. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steele, G. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramania, Hs. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Valls Ferrer, J. A. Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. Van Der Leeuw, R. van der Ster, D. Van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigell, P. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zevi della Porta, G. Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. Nedden, M. zur Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for supersymmetry in events with four or more leptons in root s=8 TeV pp collisions with the ATLAS detector SO PHYSICAL REVIEW D LA English DT Article ID PARITY VIOLATING DECAYS; MISSING TRANSVERSE-MOMENTUM; E(+)E(-) COLLISIONS; HADRON COLLIDERS; SUPERGAUGE TRANSFORMATIONS; PAIR PRODUCTION; MODEL; PARTICLES; ENERGY; BREAKING AB Results from a search for supersymmetry in events with four or more leptons including electrons, muons and taus are presented. The analysis uses a data sample corresponding to 20.3 fb(-1) of proton proton collisions delivered by the Large Hadron Collider at root s = 8 TeV and recorded by the ATLAS detector. Signal regions are designed to target supersymmetric scenarios that can be either enriched in or depleted of events involving the production of a Z boson. No significant deviations are observed in data from standard model predictions and results are used to set upper limits on the event yields from processes beyond the standard model. Exclusion limits at the 95% confidence level on the masses of relevant supersymmetric particles are obtained. In R-parity-violating simplified models with decays of the lightest supersymmetric particle to electrons and muons, limits of 1350 and 750 GeV are placed on gluino and chargino masses, respectively. In R-parity-conserving simplified models with heavy neutralinos decaying to a massless lightest supersymmetric particle, heavy neutralino masses up to 620 GeV are excluded. Limits are also placed on other supersymmetric scenarios. C1 [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Chan, K.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Subramania, Hs.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Wingerter-Seez, I.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France. [Auerbach, B.; Feng, E. J.; Goshaw, A. T.; Love, J.; Malon, D.; Nguyen, D. H.; Paramonov, A.; Proudfoot, J.; Ferrando, B. M. Salvachua; Vaniachine, A.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-Zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Fracchia, S.; Fraternali, M.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Marcisovsky, M.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Negri, A.; Nemecek, S.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Fracchia, S.; Fraternali, M.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Negri, A.; Nemecek, S.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rubbo, F.; Succurro, A.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Patricelli, S.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Cirkovic, P.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Kocian, M.; Liebig, W.; Lipniacka, A.; Latour, B. Martin Dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Cerutti, F.; Ciocio, A.; Copic, K.; Einsweiler, K.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Leggett, C.; Ovcharova, A.; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Sood, A.; Virzi, J.; Wang, H.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Cerutti, F.; Ciocio, A.; Copic, K.; Einsweiler, K.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Leggett, C.; Ovcharova, A.; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Sood, A.; Virzi, J.; Wang, H.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Wendland, D.; Nedden, M. zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Murray, W. J.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Murray, W. J.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Phys, Gaziantep, Turkey. [Alberghi, G. L.; Boscherini, D.; Bruni, A.; Bruni, G.; Caforio, D.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Mengarelli, A.; Polini, A.; Sbarra, C.; Serfon, C.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Milan, Italy. [Alberghi, G. L.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Fraternali, M.; Gabrielli, A.; Grafstrom, P.; Massa, I.; Mengarelli, A.; Piccinini, M.; Romano, M.; Serfon, C.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Deigaard, I.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Cerqueira, A. S.; Maidantchik, C.; Manhaes de Andrade Filho, L.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Federal Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexander, G.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.; Turra, R.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res, Dept Phys, Cluj Napoca, Romania. [Popeneciu, G. A.] Dev Isotop & Mol Technol, Cluj Napoca, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. [Chitan, A.] West Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Romeo, G.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Mueller, T.; Parker, M. A.; Robinson, D.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Degenhardt, J.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dopke, J.; Dudarev, A.; Duerssen, M.; Ellis, N.; Elsing, M.; Facini, G.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Silva, M. L. Gonzalez; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, J.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schmieden, K.; Serin, L.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; Van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Fiascaris, M.; Gardner, R. W.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Feder Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Lu, F.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Jin, S.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Ge, P.; Ma, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Mehlhase, S.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Lab Nazl Frascati, Milan, Italy. [Capua, M.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Adamczyk, L.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Selbach, K. E.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Goesling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Clark, P. J.; Debenedetti, C.; Edwards, N. C.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Seliverstov, D. M.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] INFN Lab Nazl Frascati, Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buecher, D.; Consorti, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Ungaro, F. C.; Venturi, M.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Dechenaux, B.; Delitzsch, C. M.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Picazio, A.; Pohl, M.; Rosbach, K.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] INFN Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Buzatu, A.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Giessen, SUPA Sch Phys & Astron, D-35390 Giessen, Germany. [Belloni, A.; Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Morel, J.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, Lab Phys Subatom & Cosmol, IN2P3, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Barreiro Guimaraes da Costa, J.; Belloni, A.; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Yen, A. L.; Zevi della Porta, G.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Dattagupta, A.; Evans, H.; Franz, S.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Cinca, D.; Gandrajula, R. P.; Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Inamaru, Y.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Kurumida, R.; Matsushita, T.; Ochi, A.; Shimizu, S.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Schnellbach, Y. J.; Semprini-Cesari, N.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dedovich, D. V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Dedovich, D. V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Salamanna, G.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Cantrill, R.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.; Tamsett, M. C.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaesc, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaesc, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaesc, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Arnaez, O.; Blum, W.; Buecher, V.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Ji, W.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Petersen, B. A.; Rados, P.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Levin, D.; Liu, L.; Long, J. D.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Xu, L.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Alvarez Gonzalez, B.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.] INFN Sez Milano, Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Asbah, N.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Del Prete, T.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Rossi, E.; Sanchez, A.; Sekula, S. J.; Zurzolo, G.] INFN Sez Napoli, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; Dao, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Koenig, A. C.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Gkialas, I.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Vivie De Regie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serkin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Vivie De Regie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serkin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Beck, H. P.; Endo, M.; Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, K.; Cameron, D.; Catmore, J. R.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Gaudio, G.; Livan, M.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] INFN Sez Pavia, Pavia, Italy. [Conta, C.; Dondero, P.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Ospanov, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Sellers, G.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Peso, J.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Gomes, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Coimbra, Ctr Fis Nucl, Coimbra, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Do Valle Wemans, A.] Univ Nova Lisboa, Dep Fis, Fac Ciencias Tecnol, Caparica, Portugal. [Do Valle Wemans, A.] Univ Nova Lisboa, CEFITEC, Fac Ciencias Tecnol, Caparica, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vanadia, M.; Vari, R.; Veneziano, S.; Zanello, L.] INFN Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Camillocci, E. Solfaroli; Vanadia, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Micco, B. Di; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.; Trovatelli, M.] INFN Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Micco, B. Di; Orestano, D.; Pastore, F.; Petrucci, F.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco. [El Moursli, R. Cherkaoui; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Oujda, Morocco. [Abreu, H.; Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Goncalves Pinto Firmino Da Costa, J.; Grabas, H. M. X.; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Mijovic, L.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, Commissariat Energie Atom & Energies Alternat, DSM IRFU Inst Rech Lois Fondament Univers, F-91191 Gif Sur Yvette, France. [Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Takeshita, T.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; Godfrey, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Batkova, L.; Blazek, T.; Federic, P.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dep Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Chen, X.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Dept Phys, ZA-2050 Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Bohm, C.; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; della Volpe, D.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bee, C. P.; Campoverde, A.; Chen, K.; della Volpe, D.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexa, C.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Nomidis, I.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldric, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Thompson, P. D.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Stelzer-Chilton, O.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Farrell, S.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] INFN Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Cobal, M.; De Sanctis, U.; Quayle, W. B.; Shaw, K.; Soualah, R.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Giordani, M. P.; Pinamonti, M.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Higon-Rodriguez, E.; Quiles, A. Irles; Lacasta, C.; March, L.; Garcia, E. Oliver; Adam, E. Romero; Ros, E.; Salt, J.; Synchez, J.; Torro Pastor, E.; Valero, A.; Gallego, E. Valladolid; Valls Ferrer, J. A.] Univ Valencia, IFIC, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Synchez, J.; Martinez, V. Sanchez; Soldevila, U.; Torro Pastor, E.; Valero, A.; Gallego, E. Valladolid; Valls Ferrer, J. A.; Perez, M. Villaplana; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Synchez, J.; Martinez, V. Sanchez; Soldevila, U.; Torro Pastor, E.; Valero, A.; Gallego, E. Valladolid; Valls Ferrer, J. A.; Perez, M. Villaplana; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Synchez, J.; Martinez, V. Sanchez; Soldevila, U.; Torro Pastor, E.; Valero, A.; Gallego, E. Valladolid; Valls Ferrer, J. A.; Perez, M. Villaplana; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Synchez, J.; Martinez, V. Sanchez; Soldevila, U.; Torro Pastor, E.; Valero, A.; Gallego, E. Valladolid; Valls Ferrer, J. A.; Perez, M. Villaplana; Vos, M.] CSIC, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Loh, C. W.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Castillo, L. R. Flores; Hard, A. S.; Hellman, S.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Martin, T. A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Redelbach, A.; Schreyer, M.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Trischuk, W.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Apolle, R.; Davies, E.; Feng, C.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Conventi, F.; Del Prete, T.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Sobie, R.; Teuscher, R. J.] IPP, Toronto, ON, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Castillo, L. R. Flores] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. [Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Jenni, P.] CERN, Geneva, Switzerland. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Korol, A. A.; Maximov, D. A.; Rezanova, O. L.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Liu, K.] Acad Sinica, Inst Phys, Lab Phys Nucl, Taipei, Taiwan. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tamsett, M. C.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; messina, andrea/C-2753-2013; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Gauzzi, Paolo/D-2615-2009; Fabbri, Laura/H-3442-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Li, Liang/O-1107-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Solfaroli Camillocci, Elena/J-1596-2012; BESSON, NATHALIE/L-6250-2015; Vanadia, Marco/K-5870-2016; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Andreazza, Attilio/E-5642-2011; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Bosman, Martine/J-9917-2014; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Mir, Lluisa-Maria/G-7212-2015; Marti-Garcia, Salvador/F-3085-2011; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Ciubancan, Liviu Mihai/L-2412-2015; Brooks, William/C-8636-2013; Lei, Xiaowen/O-4348-2014; Di Domenico, Antonio/G-6301-2011; de Groot, Nicolo/A-2675-2009; Wemans, Andre/A-6738-2012; Nemecek, Stanislav/G-5931-2014; Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; De, Kaushik/N-1953-2013; Mitsou, Vasiliki/D-1967-2009; Smirnova, Oxana/A-4401-2013; White, Ryan/E-2979-2015; Lokajicek, Milos/G-7800-2014; Villa, Mauro/C-9883-2009; Alexa, Calin/F-6345-2010; Turra, Ruggero/N-2374-2014; Castro, Nuno/D-5260-2011; Moraes, Arthur/F-6478-2010; Staroba, Pavel/G-8850-2014; Warburton, Andreas/N-8028-2013; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Nepomuceno, Andre/M-9190-2014; Gabrielli, Alessandro/H-4931-2012; Korol, Aleksandr/A-6244-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Fassi, Farida/F-3571-2016; la rotonda, laura/B-4028-2016; OI Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Gauzzi, Paolo/0000-0003-4841-5822; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Monzani, Simone/0000-0002-0479-2207; Li, Liang/0000-0001-6411-6107; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Vanadia, Marco/0000-0003-2684-276X; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Andreazza, Attilio/0000-0001-5161-5759; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Bosman, Martine/0000-0002-7290-643X; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Brooks, William/0000-0001-6161-3570; Lei, Xiaowen/0000-0002-2564-8351; Di Domenico, Antonio/0000-0001-8078-2759; Wemans, Andre/0000-0002-9669-9500; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; De, Kaushik/0000-0002-5647-4489; Mitsou, Vasiliki/0000-0002-1533-8886; Smirnova, Oxana/0000-0003-2517-531X; White, Ryan/0000-0003-3589-5900; Villa, Mauro/0000-0002-9181-8048; Castro, Nuno/0000-0001-8491-4376; Moraes, Arthur/0000-0002-5157-5686; Warburton, Andreas/0000-0002-2298-7315; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Gabrielli, Alessandro/0000-0001-5346-7841; Salamanna, Giuseppe/0000-0002-0861-0052; Veneziano, Stefano/0000-0002-2598-2659; Price, Darren/0000-0003-2750-9977; Korol, Aleksandr/0000-0001-8448-218X; Giordani, Mario/0000-0002-0792-6039; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Fassi, Farida/0000-0002-6423-7213; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Giorgi, Filippo Maria/0000-0003-1589-2163; Coccaro, Andrea/0000-0003-2368-4559 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia; ROSATOM, Russian Federation; JINR; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, USA; NSF, USA FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; and DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway and Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), and in the Tier-2 facilities NR 112 TC 12 Z9 12 U1 7 U2 103 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD SEP 4 PY 2014 VL 90 IS 5 AR 052001 DI 10.1103/PhysRevD.90.052001 PG 33 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AO3VO UT WOS:000341264900001 ER PT J AU Eldred, J Zwaska, R AF Eldred, Jeffrey Zwaska, Robert TI Dynamical stability of slip-stacking particles SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID PARAMETRIC PENDULUM; RESONANCE; ATOMS AB We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other. C1 [Eldred, Jeffrey] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Eldred, Jeffrey; Zwaska, Robert] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Eldred, J (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. OI Eldred, Jeffrey/0000-0003-4432-072X FU U.S. Department of Energy [DE-FG02-12ER41800]; National Science Foundation [NSF PHY-1205431] FX This work is supported in part by grants from the U.S. Department of Energy under Contract No. DE-FG02-12ER41800 and the National Science Foundation NSF PHY-1205431. Special thanks to S. Y, Lee for providing a crucial mentoring role immediately prior to the beginning of this research. NR 32 TC 0 Z9 0 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD SEP 4 PY 2014 VL 17 IS 9 AR 094001 DI 10.1103/PhysRevSTAB.17.094001 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AO3WQ UT WOS:000341268200001 ER PT J AU Calvin, K Edmonds, J Bakken, B Wise, M Kim, S Luckow, P Patel, P Graabak, I AF Calvin, Katherine Edmonds, Jae Bakken, Bjorn Wise, Marshall Kim, Sonny Luckow, Patrick Patel, Pralit Graabak, Ingeborg TI EU 20-20-20 energy policy as a model for global climate mitigation SO CLIMATE POLICY LA English DT Article DE climate policy; energy policy; emissions mitigation; climate stabilization AB The EU has established an aggressive portfolio with explicit near-term targets for 2020 - to reduce GHG emissions by 20%, rising to 30% if the conditions are right, to increase the share of renewable energy to 20%, and to make a 20% improvement in energy efficiency - intended to be the first step in a long-term strategy to limit climate forcing. The effectiveness and cost of extending these measures in time are considered along with the ambition and propagation to the rest of the world. Numerical results are reported and analysed for the contribution of the portfolio's various elements through a set of sensitivity experiments. It is found that the hypothetical programme leads to very substantial reductions in GHG emissions, dramatic increases in use of electricity, and substantial changes in land-use including reduced deforestation, but at the expense of higher food prices. The GHG emissions reductions are driven primarily by the direct limits. Although the carbon price is lower under the hypothetical protocol than it would be under the emissions cap alone, the economic cost of the portfolio is higher, between 13% and 22%. C1 [Calvin, Katherine; Edmonds, Jae; Wise, Marshall; Kim, Sonny; Patel, Pralit] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Bakken, Bjorn; Graabak, Ingeborg] SINTEF, Div Energy, N-7465 Trondheim, Norway. [Luckow, Patrick] Synapse Energy Econ Inc, Cambridge, MA 02139 USA. RP Edmonds, J (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. EM jae@pnnl.gov OI Calvin, Katherine/0000-0003-2191-4189 NR 14 TC 1 Z9 1 U1 0 U2 13 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1469-3062 EI 1752-7457 J9 CLIM POLICY JI Clim. Policy PD SEP 3 PY 2014 VL 14 IS 5 BP 581 EP 598 DI 10.1080/14693062.2013.879794 PG 18 WC Environmental Studies; Public Administration SC Environmental Sciences & Ecology; Public Administration GA AS3FC UT WOS:000344161100003 ER PT J AU Chinh, NH Kim, N Nguyen-Phan, TD Yoo, IK Shin, E AF Chinh Nguyen-Huy Kim, Nayoung Thuy-Duong Nguyen-Phan Yoo, Ik-Keun Shin, Eun Woo TI Adsorptive interaction of bisphenol A with mesoporous titanosilicate/reduced graphene oxide nanocomposite materials: FT-IR and Raman analyses SO NANOSCALE RESEARCH LETTERS LA English DT Article DE Bisphenol A; Graphene oxide; Mesoporous titanosilicate; Adsorption sites; Interaction ID AQUEOUS-SOLUTION; SILICATE MCM-41; WASTE-WATER; PHOTOCATALYSIS; REMOVAL; NANOMATERIALS; EXPOSURE; ZEOLITE; DYES AB Nanocomposite materials containing graphene oxide have attracted tremendous interest as catalysts and adsorbents for water purification. In this study, mesoporous titanosilicate/reduced graphene oxide composite materials with different Ti contents were employed as adsorbents for removing bisphenol A (BPA) from water systems. The adsorptive interaction between BPA and adsorption sites on the composite materials was investigated by Fourier transform infrared (FT-IR) and Raman spectroscopy. Adsorption capacities of BPA at equilibrium, q (e) (mg/g), decreased with increasing Ti contents, proportional to the surface area of the composite materials. FT-IR observations for fresh and spent adsorbents indicated that BPA adsorbed onto the composite materials by the electrostatic interaction between OH functional groups contained in BPA and on the adsorbents. The electrostatic adsorption sites on the adsorbents were categorized into three hydroxyl groups: Si-OH, Ti-OH, and graphene-OH. In Raman spectra, the intensity ratios of D to G band were decreased after the adsorption of BPA, implying adsorptive interaction of benzene rings of BPA with the sp(2) hybrid structure of the reduced graphene oxide. C1 [Chinh Nguyen-Huy; Kim, Nayoung; Yoo, Ik-Keun; Shin, Eun Woo] Univ Ulsan, Sch Chem Engn, Ulsan 680749, South Korea. [Thuy-Duong Nguyen-Phan] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Shin, E (reprint author), Univ Ulsan, Sch Chem Engn, Daehakro 93, Ulsan 680749, South Korea. EM ewshin@ulsan.ac.kr RI Nguyen Phan, Thuy Duong/C-8751-2014 FU Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology [2010-0008810]; Business for Cooperative R&D between Industry, Academy, and Research Institute - Korea Small and Medium Business Administration [C0113499] FX This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010-0008810) and by Business for Cooperative R&D between Industry, Academy, and Research Institute funded by the Korea Small and Medium Business Administration in 2013 (Grant No. C0113499). NR 33 TC 0 Z9 0 U1 6 U2 79 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1556-276X J9 NANOSCALE RES LETT JI Nanoscale Res. Lett. PD SEP 3 PY 2014 VL 9 AR 462 DI 10.1186/1556-276X-9-462 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AP6ZB UT WOS:000342226100001 ER PT J AU Polak, MP Scharoch, P Kudrawiec, R Kopaczek, J Winiarski, MJ Linhart, WM Rajpalke, MK Yu, KM Jones, TS Ashwin, MJ Veal, TD AF Polak, M. P. Scharoch, P. Kudrawiec, R. Kopaczek, J. Winiarski, M. J. Linhart, W. M. Rajpalke, M. K. Yu, K. M. Jones, T. S. Ashwin, M. J. Veal, T. D. TI Theoretical and experimental studies of electronic band structure for GaSb1-xBix in the dilute Bi regime SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article DE GaSbBi; electronic structure; ab initio ID AUGMENTED-WAVE METHOD; SPECTROSCOPY; GAAS1-XBIX; ALLOYS; PSEUDOPOTENTIALS; GAP AB Photoreflectance (PR) spectroscopy was applied to study the band gap in GaSb1-xBix alloys with Bi < 5%. Obtained results have been interpreted in the context of ab initio electronic band structure calculations in which the supercell (SC) based calculations are joined with the alchemical mixing (AM) approximation applied to a single atom in the cell. This approach, which we call SC-AM, allows on the one hand to study alloys with a very small Bi content, and on the other hand to avoid limitations characteristic of a pure AM approximation. It has been shown that the pure AM does not reproduce the GaSb1-xBix band gap determined from PR while the agreement between experimental data and the ab initio calculations of the band gap obtained within the SC-AM approach is excellent. These calculations show that the incorporation of Bi atoms into the GaSb host modifies both the conduction and the valence band. The shift rates found in this work are respectively -26.0 meV per % Bi for the conduction band and 9.6 meV per % Bi for the valence band that consequently leads to a reduction in the band gap by 35.6 meV per % Bi. The shifts found for the conduction and valence band give a similar to 27% (73%) valence (conduction) band offset between GaSb1-xBix and GaSb. The rate of the Bi-related shift for the split-off band is -7.0 meV per % Bi and the respective increase in the spin-orbit split-off is 16.6 meV per % Bi. C1 [Polak, M. P.; Scharoch, P.; Kudrawiec, R.; Kopaczek, J.] Wroclaw Univ Technol, Inst Phys, PL-50370 Wroclaw, Poland. [Winiarski, M. J.] Polish Acad Sci, Inst Low Temp & Struct Res, PL-50422 Wroclaw, Poland. [Linhart, W. M.; Rajpalke, M. K.; Veal, T. D.] Univ Liverpool, Sch Phys Sci, Stephenson Inst Renewable Energy, Liverpool, Merseyside, England. [Linhart, W. M.; Rajpalke, M. K.; Veal, T. D.] Univ Liverpool, Sch Phys Sci, Dept Phys, Liverpool, Merseyside, England. [Yu, K. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Jones, T. S.; Ashwin, M. J.] Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England. RP Polak, MP (reprint author), Wroclaw Univ Technol, Inst Phys, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland. EM pawel.scharoch@pwr.edu.pl RI Veal, Tim/A-3872-2010; ashwin, mark/A-2426-2014; OI Veal, Tim/0000-0002-0610-5626; Polak, Maciej/0000-0001-7198-7779; ashwin, mark/0000-0001-8657-8097; Yu, Kin Man/0000-0003-1350-9642 FU NCN the University of Liverpool [2012/07/E/ST3/01742]; Engineering and Physical Sciences Research Council [EP/G004447/2, EP/H021388/1]; MNiSzW FX The authors acknowledge financial support from the NCN (grant no. 2012/07/E/ST3/01742) the University of Liverpool and the Engineering and Physical Sciences Research Council under grants EP/G004447/2 and EP/H021388/1. The ab initio calculations were performed in the Wroclaw Centre for Networking and Supercomputing. In addition, JK acknowledges the support within the 'Diamond grant' from the MNiSzW. NR 48 TC 15 Z9 15 U1 3 U2 35 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 EI 1361-6463 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD SEP 3 PY 2014 VL 47 IS 35 AR 355107 DI 10.1088/0022-3727/47/35/355107 PG 7 WC Physics, Applied SC Physics GA AO5AX UT WOS:000341353800012 ER PT J AU Stenfeldt, C Pacheco, JM Rodriguez, LL Arzt, J AF Stenfeldt, Carolina Pacheco, Juan M. Rodriguez, Luis L. Arzt, Jonathan TI Early Events in the Pathogenesis of Foot-and-Mouth Disease in Pigs; Identification of Oropharyngeal Tonsils as Sites of Primary and Sustained Viral Replication SO PLOS ONE LA English DT Article ID KIDNEY-CELL LINE; NATURAL AEROSOLS; HOST-RANGE; VIRUS; SWINE; CATTLE; TRANSMISSION; INFECTION; ANTIBODY; CONTACT AB A time-course study was performed to elucidate the early events of foot-and-mouth disease virus (FMDV) infection in pigs subsequent to simulated natural, intra-oropharyngeal, inoculation. The earliest detectable event was primary infection in the lingual and paraepiglottic tonsils at 6 hours post inoculation (hpi) characterized by regional localization of viral RNA, viral antigen, and infectious virus. At this time FMDV antigen was localized in cytokeratin-positive epithelial cells and CD172a-expressing leukocytes of the crypt epithelium of the paraepiglottic tonsils. De novo replication of FMDV was first detected in oropharyngeal swab samples at 12 hpi and viremia occurred at 18-24 hpi, approximately 24 hours prior to the appearance of vesicular lesions. From 12 through 78 hpi, microscopic detection of FMDV was consistently localized to cytokeratin-positive cells within morphologically characteristic segments of oropharyngeal tonsil crypt epithelium. During this period, leukocyte populations expressing CD172a, SLA-DQ class II and/or CD8 were found in close proximity to infected epithelial cells, but with little or no co-localization with viral proteins. Similarly, M-cells expressing cytokeratin-18 did not co-localize with FMDV proteins. Intra-epithelial micro-vesicles composed of acantholytic epithelial cells expressing large amounts of structural and non-structural FMDV proteins were present within crypts of the tonsil of the soft palate during peak clinical infection. These findings inculpate the paraepiglottic tonsils as the primary site of FMDV infection in pigs exposed via the gastrointestinal tract. Furthermore, the continuing replication of FMDV in the oropharyngeal tonsils during viremia and peak clinical infection with no concurrent amplification of virus occurring in the lower respiratory tract indicates that these sites are the major source of shedding of FMDV from pigs. C1 [Stenfeldt, Carolina; Pacheco, Juan M.; Rodriguez, Luis L.; Arzt, Jonathan] ARS, Plum Isl Anim Dis Ctr, Foreign Anim Dis Res Unit, USDA, Greenport, NY 11944 USA. [Stenfeldt, Carolina] Oak Ridge Inst Sci & Educ, PIADC Res Participat Program, Oak Ridge, TN USA. RP Arzt, J (reprint author), ARS, Plum Isl Anim Dis Ctr, Foreign Anim Dis Res Unit, USDA, Greenport, NY 11944 USA. EM Jonathan.Arzt@ars.usda.gov OI Pacheco, Juan/0000-0001-5477-0201; Stenfeldt, Carolina/0000-0002-2074-3886; Arzt, Jonathan/0000-0002-7517-7893 FU ARS-CRIS Project [1940-32000-057-00D]; Science and Technology Directorate of the U.S. Department of Homeland Security [HSHQDC-11-X-00189]; Plum Island Animal Disease Center Research Participation Program fellowship; National Pork Board (NPB project) [11-174]; NPB FX This research was funded in part by ARS-CRIS Project 1940-32000-057-00D and an interagency agreement with the Science and Technology Directorate of the U.S. Department of Homeland Security (award number HSHQDC-11-X-00189). CS is a recipient of a Plum Island Animal Disease Center Research Participation Program fellowship, administered by the Oak Ridge Institute for Science and Education (ORISE; www.orau.org) through an interagency agreement with the US Department of Energy. Additional funding was received from the National Pork Board (NPB project identification number: 11-174; www.pork.org), a government-owned corporation that administers a competitive peer-reviewed grants process with the objective to select and fund projects researching areas of importance to the pork industry. None of the contributing authors are employed by NPB, nor professionally evaluated by this entity. The funding received from NPB does not alter our adherence to PLOS ONE policies on sharing data and materials. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 40 TC 4 Z9 4 U1 2 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 3 PY 2014 VL 9 IS 9 AR e106859 DI 10.1371/journal.pone.0106859 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO3TB UT WOS:000341257700125 PM 25184288 ER PT J AU Zemojtel, T Kohler, S Mackenroth, L Jager, M Hecht, J Krawitz, P Graul-Neumann, L Doelken, S Ehmke, N Spielmann, M Oien, NC Schweiger, MR Kruger, U Frommer, G Fischer, B Kornak, U Flottmann, R Ardeshirdavani, A Moreau, Y Lewis, SE Haendel, M Smedley, D Horn, D Mundlos, S Robinson, PN AF Zemojtel, Tomasz koehler, Sebastian Mackenroth, Luisa Jaeger, Marten Hecht, Jochen Krawitz, Peter Graul-Neumann, Luitgard Doelken, Sandra Ehmke, Nadja Spielmann, Malte Oien, Nancy Christine Schweiger, Michal R. Krueger, Ulrike Frommer, Goetz Fischer, Bjoern Kornak, Uwe Floettmann, Ricarda Ardeshirdavani, Amin Moreau, Yves Lewis, Suzanna E. Haendel, Melissa Smedley, Damian Horn, Denise Mundlos, Stefan Robinson, Peter N. TI Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome SO SCIENCE TRANSLATIONAL MEDICINE LA English DT Article ID MUCOLIPIDOSIS TYPE-IV; INTELLECTUAL DISABILITY; MISSENSE MUTATIONS; ALKALINE-PHOSPHATASE; MENTAL-RETARDATION; DATABASE; HYPOPHOSPHATASIA; DISORDERS; VARIANTS; ONTOLOGY AB Less than half of patients with suspected genetic disease receive a molecular diagnosis. We have therefore integrated next-generation sequencing (NGS), bioinformatics, and clinical data into an effective diagnostic work-flow. We used variants in the 2741 established Mendelian disease genes [the disease-associated genome (DAG)] to develop a targeted enrichment DAG panel (7.1 Mb), which achieves a coverage of 20-fold or better for 98% of bases. Furthermore, we established a computational method [Phenotypic Interpretation of eXomes (PhenIX)] that evaluated and ranked variants based on pathogenicity and semantic similarity of patients' phenotype described by Human Phenotype Ontology (HPO) terms to those of 3991 Mendelian diseases. In computer simulations, ranking genes based on the variant score put the true gene in first place less than 5% of the time; PhenIX placed the correct gene in first place more than 86% of the time. In a retrospective test of PhenIX on 52 patients with previously identified mutations and known diagnoses, the correct gene achieved a mean rank of 2.1. In a prospective study on 40 individuals without a diagnosis, PhenIX analysis enabled a diagnosis in 11 cases (28%, at a mean rank of 2.4). Thus, the NGS of the DAG followed by phenotype-driven bioinformatic analysis allows quick and effective differential diagnostics in medical genetics. C1 [Zemojtel, Tomasz; koehler, Sebastian; Mackenroth, Luisa; Jaeger, Marten; Krawitz, Peter; Graul-Neumann, Luitgard; Doelken, Sandra; Ehmke, Nadja; Spielmann, Malte; Oien, Nancy Christine; Schweiger, Michal R.; Krueger, Ulrike; Fischer, Bjoern; Kornak, Uwe; Floettmann, Ricarda; Horn, Denise; Mundlos, Stefan; Robinson, Peter N.] Charite, Inst Med Genet & Human Genet, D-13353 Berlin, Germany. [Zemojtel, Tomasz] Polish Acad Sci, Inst Bioorgan Chem, PL-61704 Poznan, Poland. [Zemojtel, Tomasz] Lab Berlin Charite Vivantes GmbH, Humangenet, D-13353 Berlin, Germany. [Hecht, Jochen; Krawitz, Peter; Spielmann, Malte; Schweiger, Michal R.; Fischer, Bjoern; Kornak, Uwe; Mundlos, Stefan; Robinson, Peter N.] Max Planck Inst Mol Genet, D-14195 Berlin, Germany. [Hecht, Jochen; Mundlos, Stefan; Robinson, Peter N.] Charite, Berlin Brandenburg Ctr Regenerat Therapies, D-13353 Berlin, Germany. [Oien, Nancy Christine] Max Delbruck Ctr Mol Med, D-13125 Berlin, Germany. [Schweiger, Michal R.] Univ Cologne, Cologne Ctr Genom, D-50931 Cologne, Germany. [Frommer, Goetz] Agilent Technol, D-76337 Waldbronn, Germany. [Ardeshirdavani, Amin; Moreau, Yves] Katholieke Univ Leuven, Dept Elect Engn, STADIUS Ctr Dynam Syst Signal Proc & Data Analyt, B-3001 Leuven, Belgium. [Lewis, Suzanna E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. [Haendel, Melissa] Oregon Hlth & Sci Univ, Univ Lib, Portland, OR 97327 USA. [Haendel, Melissa] Oregon Hlth & Sci Univ, Dept Med Informat & Clin Epidemiol, Portland, OR 97327 USA. [Smedley, Damian] Wellcome Trust Sanger Inst, Mouse Informat Grp, Hinxton CB10 1SA, Cambs, England. [Robinson, Peter N.] Free Univ Berlin, Dept Math & Comp Sci, Inst Bioinformat, D-14195 Berlin, Germany. RP Robinson, PN (reprint author), Charite, Inst Med Genet & Human Genet, Augustenburger Pl 1, D-13353 Berlin, Germany. EM peter.robinson@charite.de RI Fischer-Zirnsak, Bjorn/D-7487-2013; Schweiger, Michal/H-5270-2015; OI Schweiger, Michal/0000-0002-4672-0623; Lewis, Suzanna/0000-0002-8343-612X; Kohler, Sebastian/0000-0002-5316-1399 FU Bundesministerium fur Bildung und Forschung (BMBF) [0313911, 0316065E, 0316190A]; Wellcome Trust; NIH [1R24OD011883-02]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Volkswagenstiftung; Max Planck Foundation FX Funding: The study was supported by grants from the Bundesministerium fur Bildung und Forschung (BMBF project numbers 0313911, 0316065E, and 0316190A), core infrastructure funding from the Wellcome Trust, NIH 1R24OD011883-02, and by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231, the Volkswagenstiftung (Lichtenberg Program to M. R. S.), and a grant to S. M. by the Max Planck Foundation. Agilent supplied the SureSelect kits at no charge. NR 70 TC 53 Z9 54 U1 2 U2 17 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 1946-6234 EI 1946-6242 J9 SCI TRANSL MED JI Sci. Transl. Med. PD SEP 3 PY 2014 VL 6 IS 252 AR 252ra123 DI 10.1126/scitranslmed.3009262 PG 9 WC Cell Biology; Medicine, Research & Experimental SC Cell Biology; Research & Experimental Medicine GA AO4KD UT WOS:000341305400007 PM 25186178 ER PT J AU Zhao, YX Zhu, K AF Zhao, Yixin Zhu, Kai TI Efficient Planar Perovskite Solar Cells Based on 1.8 eV Band Gap CH3NH3PbI2Br Nanosheets via Thermal Decomposition SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ORGANOMETAL HALIDE PEROVSKITES; LEAD BROMIDE PEROVSKITE; TEMPERATURE; DEPOSITION; TRANSPORT; IODIDE AB Hybrid organometallic halide perovskite CH3NH3PbI2Br (or MAPbI(2)Br) nanosheets with a 1.8 eV band gap were prepared via a thermal decomposition process from a precursor containing PbI2, MABr, and MACI. The planar solar cell based on the compact layer of MAPbI(2)Br nanosheets exhibited 10% efficiency and a single-wavelength conversion efficiency of up to 86%. The crystal phase, optical absorption, film morphology, and thermogravimetric analysis studies indicate that the thermal decomposition process strongly depends on the composition of precursors. We find that MACl functions as a glue or soft template to control the initial formation of a solid solution with the main MAPbI(2)Br precursor components (i.e., PbI2 and MABr). The subsequent thermal decomposition process controls the morphology/surface coverage of perovskite films on the planar substrate and strongly affects the device characteristics. C1 [Zhao, Yixin] Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, Shanghai 200240, Peoples R China. [Zhu, Kai] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. RP Zhao, YX (reprint author), Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China. EM yixin.zhao@sjtu.edu.cn; Kai.Zhu@nrel.gov RI Zhao, Yixin/D-2949-2012 FU NSFC [51372151]; U.S. Department of Energy/National Renewable Energy Laboratory's Laboratory Directed Research and Development (LDRD) program [DE-AC36-08GO28308] FX Y.Z. acknowledges the support of the NSFC (Grant 51372151). K.Z. acknowledges the support by the U.S. Department of Energy/National Renewable Energy Laboratory's Laboratory Directed Research and Development (LDRD) program under Contract No. DE-AC36-08GO28308. NR 29 TC 92 Z9 94 U1 20 U2 386 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 3 PY 2014 VL 136 IS 35 BP 12241 EP 12244 DI 10.1021/ja5071398 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA AO3JR UT WOS:000341226000012 PM 25118565 ER PT J AU Liu, J Meier, KK Tian, SL Zhang, JL Guo, HC Schulz, CE Robinson, H Nilges, MJ Munck, E Lu, Y AF Liu, Jing Meier, Katlyn K. Tian, Shiliang Zhang, Jun-long Guo, Hongchao Schulz, Charles E. Robinson, Howard Nilges, Mark J. Muenck, Eckard Lu, Yi TI Redesigning the Blue Copper Azurin into a Redox-Active Mononuclear Nonheme Iron Protein: Preparation and Study of Fe(II)-M121E Azurin SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ELECTRON-PARAMAGNETIC-RESONANCE; PSEUDOMONAS-AERUGINOSA AZURIN; METAL-BINDING SITES; DE-NOVO DESIGN; SUPEROXIDE REDUCTASE; DESULFOARCULUS-BAARSII; CRYSTAL-STRUCTURE; COMPLEXES; METALLOPROTEINS; ENZYMES AB Much progress has been made in designing heme and dinuclear nonheme iron enzymes. In contrast, engineering mononuclear nonheme iron enzymes is lagging, even though these enzymes belong to a large class that catalyzes quite diverse reactions. Herein we report spectroscopic and X-ray crystallographic studies of Fe(II)-M121E azurin (Az), by replacing the axial Met121 and Cu(II) in wildtype azurin (wtAz) with Glu and Fe(II), respectively. In contrast to the redox inactive Fe(II)-wtAz, the Fe(II)-M121EAz mutant can be readily oxidized by Na2IrCl6, and interestingly, the protein exhibits superoxide scavenging activity. Mossbauer and EPR spectroscopies, along with Xray structural comparisons, revealed similarities and differences between Fe(H)-M121EAz, Fe(II)-wtAz, and superoxide reductase (SOR) and allowed design of the second generation mutant, Fe(II)-M121EM44KAz, that exhibits increased superoxide scavenging activity by 2 orders of magnitude. This finding demonstrates the importance of noncovalent secondary coordination sphere interactions in fine-tuning enzymatic activity. C1 [Liu, Jing; Tian, Shiliang; Zhang, Jun-long; Guo, Hongchao; Nilges, Mark J.; Lu, Yi] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Meier, Katlyn K.; Muenck, Eckard] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA. [Schulz, Charles E.] Knox Coll, Dept Phys, Galesburg, IL 61401 USA. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Munck, E (reprint author), Carnegie Mellon Univ, Dept Chem, 4400 5th Ave, Pittsburgh, PA 15213 USA. EM emunck@cmu.edu; yi-lu@illinois.edu RI Lu, Yi/B-5461-2010; Meier, Katlyn/C-4478-2015; Tian, Shiliang/L-2290-2014; Zhang, Jun-Long/E-9906-2013 OI Lu, Yi/0000-0003-1221-6709; Meier, Katlyn/0000-0002-8316-9199; Tian, Shiliang/0000-0002-9830-5480; FU National Science Foundation [CHE1413328, CHE 1305111] FX We wish to thank Ms. Rebecca L. Keller, Professor Carsten Krebs, Professor J. Martin Bollinger, Jr. from The Pennsylvania State University for initial investigations of the protein using Mossbauer spectroscopy, Mr. Yi-Gui Gao from University of Illinois at Urbana-Champaign for initial investigations of the protein crystal structure, and Ms. Parisa Hosseinzadeh from University of Illinois at Urbana-Champaign for help with the CV data collection and analysis. This work was supported by the National Science Foundation under awards CHE1413328 (YL) and CHE 1305111(EM). NR 68 TC 7 Z9 7 U1 9 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 3 PY 2014 VL 136 IS 35 BP 12337 EP 12344 DI 10.1021/ja505410u PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA AO3JR UT WOS:000341226000025 PM 25082811 ER PT J AU Chen, B Hrovat, DA West, R Deng, SHM Wang, XB Borden, WT AF Chen, Bo Hrovat, David A. West, Robert Deng, Shihu H. M. Wang, Xue-Bin Borden, Weston Thatcher TI The Negative Ion Photoelectron Spectrum of Cyclopropane-1,2,3-Trione Radical Anion, (CO)(3)(center dot-) - A Joint Experimental and Computational Study SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TRIPLET GROUND-STATE; MONOXIDE CYCLIC OLIGOMERS; AB-INITIO; CARBON-MONOXIDE; TRANSITION-STATE; POLYATOMIC-MOLECULES; OXOCARBON DIANIONS; RELATIVE ENERGIES; ELECTRONIC STATES; LOWEST SINGLET AB Negative ion photoelectron (NIPE) spectra of the radical anion of cyclopropane-1,2,3-trione, (CO)(3)(center dot-), have been obtained at 20 K, using both 355 and 266 nm lasers for electron photodetachment. The spectra show broadened bands, due to the short lifetimes of both the singlet and triplet states of neutral (CO)(3) and, to a lesser extent, to the vibrational progressions that accompany the photodetaclunent process. The smaller intensity of the band with the lower electron binding energy suggests that the singlet is the ground state of (CO)(3). From the NIPE spectra, the electron affinity (EA) and the singlet-triplet energy gap of (CO)(3) are estimated to be, respectively, EA = 3.1 +/- 0.1 eV and Delta E-ST = -14 +/- 3 kcal/mol. High-level, (U)CCSD(T)/aug-cc-pVQZ// (U)CCSD(T)/aug-cc-pVTZ, calculations give EA = 3.04 eV for the (1)A(1)' ground state of (CO)(3) and Delta E-ST = -13.8 kcal/mol for the energy gap between the (1)A(1)' and (3)A(2) states, in excellent agreement with values from the NIPE spectra. In addition, simulations of the vibrational structures for formation of these states of (CO)(3) from the (2)A(2)" state of (CO)(3)(center dot-) provide a good fit to the shapes of broad bands in the 266 nm NIPE spectrum. The NIPE spectrum of (CO)(3)(center dot-) and the analysis of the spectrum by high-quality electronic structure calculations demonstrate that NIPES can not only access and provide information about transition structures but NIPES can also access and provide information about hilltops on potential energy surfaces. C1 [Chen, Bo; Hrovat, David A.; Borden, Weston Thatcher] Univ N Texas, Dept Chem, Denton, TX 76203 USA. [Chen, Bo; Hrovat, David A.; Borden, Weston Thatcher] Univ N Texas, Ctr Adv Sci Comp & Modeling, Denton, TX 76203 USA. [West, Robert] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Deng, Shihu H. M.; Wang, Xue-Bin] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Wang, XB (reprint author), Pacific NW Natl Lab, Div Phys Sci, POB 999,MS K8-88, Richland, WA 99352 USA. EM xuebin.wang@pnnl.gov; weston.borden@unt.edu FU National Science Foundation [CHE-0910527]; Robert A. Welch Foundation [B0027]; U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; DOE's Office of Biological and Environmental Research FX The calculations at UNT were supported by grant CHE-0910527 from the National Science Foundation and grant B0027 from the Robert A. Welch Foundation. The NIPES research at PNNL was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences (X.-B.W.) and was performed at the EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 73 TC 6 Z9 6 U1 5 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 3 PY 2014 VL 136 IS 35 BP 12345 EP 12354 DI 10.1021/ja505582k PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA AO3JR UT WOS:000341226000026 PM 25148567 ER PT J AU Kriel, JN Karrasch, C Kehrein, S AF Kriel, J. N. Karrasch, C. Kehrein, S. TI Dynamical quantum phase transitions in the axial next-nearest-neighbor Ising chain SO PHYSICAL REVIEW B LA English DT Article AB We investigate sudden quenches across the critical point in the transverse field Ising chain with a perturbing nonintegrable next-nearest-neighbor interaction. Expressions for the return (Loschmidt) amplitude and associated rate function are derived to linear order in the next-nearest-neighbor coupling. In the thermodynamic limit these quantities exhibit nonanalytic behavior at a set of critical times, a phenomenon referred to as a dynamical quantum phase transition. We quantify the effect of the integrability breaking perturbation on the location and shape of these nonanalyticities. Our results agree with those of earlier numerical studies and offer further support for the assertion that the dynamical quantum phase transitions exhibited by this model are a generic feature of its postquench dynamics and are robust with respect to the inclusion of nonintegrable perturbations. C1 [Kriel, J. N.] Univ Stellenbosch, Inst Theoret Phys, ZA-7600 Stellenbosch, South Africa. [Karrasch, C.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 95720 USA. [Karrasch, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kehrein, S.] Univ Gottingen, Inst Theoret Phys, D-37077 Gottingen, Germany. RP Kriel, JN (reprint author), Univ Stellenbosch, Inst Theoret Phys, ZA-7600 Stellenbosch, South Africa. RI Karrasch, Christoph/S-5716-2016 OI Karrasch, Christoph/0000-0002-6475-3584 FU HB MJ Thom trust; Nanostructured Thermoelectrics program of LBNL; Deutsche Forschungsgemeinschaft (DFG) [1073] FX J. N. K. gratefully acknowledges the hospitality of the Institute for Theoretical Physics at the University of Gottingen and the financial support of the HB & MJ Thom trust. C. K. acknowledges the support of the Nanostructured Thermoelectrics program of LBNL. S. K. acknowledges support through SFB Grant No. 1073 of the Deutsche Forschungsgemeinschaft (DFG). NR 29 TC 23 Z9 23 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 3 PY 2014 VL 90 IS 12 AR 125106 DI 10.1103/PhysRevB.90.125106 PG 9 WC Physics, Condensed Matter SC Physics GA AO3VR UT WOS:000341265300003 ER PT J AU Stroberg, SR Gade, A Tostevin, JA Bader, VM Baugher, T Bazin, D Berryman, JS Brown, BA Campbell, CM Kemper, KW Langer, C Lunderberg, E Lemasson, A Noji, S Recchia, F Walz, C Weisshaar, D Williams, SJ AF Stroberg, S. R. Gade, A. Tostevin, J. A. Bader, V. M. Baugher, T. Bazin, D. Berryman, J. S. Brown, B. A. Campbell, C. M. Kemper, K. W. Langer, C. Lunderberg, E. Lemasson, A. Noji, S. Recchia, F. Walz, C. Weisshaar, D. Williams, S. J. TI Single-particle structure of silicon isotopes approaching Si-42 SO PHYSICAL REVIEW C LA English DT Article ID GAMMA-RAY-SPECTROSCOPY; KNOCKOUT REACTIONS; NUCLEON-TRANSFER; EXOTIC NUCLEI; SHELL CLOSURE; COLLECTIVITY; MOTION; BEAMS; ARRAY AB The structure of the neutron-rich silicon isotopes Si-36,Si-38,Si-40 was studied by one-neutron and one-proton knockout reactions at intermediate beam energies. We construct level schemes for the knockout residues Si-35,Si-37,Si-39 and Al-35,Al-37,Al-39 and compare knockout cross sections to the predictions of an eikonal model in conjunction with large-scale shell-model calculations. The agreement of these calculations with the present experiment lends support to the microscopic explanation of the enhanced collectivity in the region of Si-42. We also present an empirical method for reproducing the observed low-momentum tails in the parallel momentum distributions of knockout residues. C1 [Stroberg, S. R.; Gade, A.; Bader, V. M.; Baugher, T.; Bazin, D.; Berryman, J. S.; Brown, B. A.; Langer, C.; Lunderberg, E.; Lemasson, A.; Noji, S.; Recchia, F.; Walz, C.; Weisshaar, D.; Williams, S. J.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Stroberg, S. R.; Gade, A.; Bader, V. M.; Baugher, T.; Bazin, D.; Brown, B. A.; Lunderberg, E.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Tostevin, J. A.] Univ Surrey, Fac Engn & Phys Sci, Guildford GU2 7XH, Surrey, England. [Campbell, C. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kemper, K. W.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Langer, C.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. RP Stroberg, SR (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. RI Gade, Alexandra/A-6850-2008; Langer, Christoph/L-3422-2016 OI Gade, Alexandra/0000-0001-8825-0976; FU Department of Energy National Nuclear Security Administration [DE-NA0000979]; National Science Foundation [PHY-1068217]; U.S. DOE, Office of Science; NSF [PHY-1102511(NSCL)]; DOE [DE-AC02-05CH11231(LBNL)]; Science and Technology Facilities Council (UK) [ST/J000051] FX We thank the staff of the Coupled Cyclotron Facility for the delivery of high-quality beams and Professor L. Riley for the developing and providing the GRETINA simulation code. S.R.S. also thanks Professors F. Nunes and C. Bertulani for helpful discussions of reaction theory and J.K. Smith for discussions concerning neutron-unbound states. This material is based on work supported by the Department of Energy National Nuclear Security Administration under Grant No. DE-NA0000979. This work was also supported by the National Science Foundation under Grant No. PHY-1068217. GRETINA was funded by the U.S. DOE, Office of Science. Operation of the array at NSCL is supported by NSF under Cooperative Agreement No. PHY-1102511(NSCL) and DOE under Grant No. DE-AC02-05CH11231(LBNL). J.A.T. acknowledges support of the Science and Technology Facilities Council (UK) Grant No. ST/J000051. NR 53 TC 13 Z9 13 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD SEP 3 PY 2014 VL 90 IS 3 AR 034301 DI 10.1103/PhysRevC.90.034301 PG 16 WC Physics, Nuclear SC Physics GA AO3WE UT WOS:000341266700002 ER PT J AU Graziani, FR Bauer, JD Murillo, MS AF Graziani, F. R. Bauer, J. D. Murillo, M. S. TI Kinetic theory molecular dynamics and hot dense matter: Theoretical foundations SO PHYSICAL REVIEW E LA English DT Article ID COUPLED HYDROGEN PLASMA; TRANSPORT-COEFFICIENTS; CLASSICAL DYNAMICS; COULOMB-SYSTEMS; LIQUID-METALS; ELECTRON-GAS; SIMULATIONS; EQUILIBRIUM; RELAXATION; VISCOSITY AB Electrons are weakly coupled in hot, dense matter that is created in high-energy-density experiments. They are also mildly quantum mechanical and the ions associated with them are classical and may be strongly coupled. In addition, the dynamical evolution of plasmas under these hot, dense matter conditions involve a variety of transport and energy exchange processes. Quantum kinetic theory is an ideal tool for treating the electrons but it is not adequate for treating the ions. Molecular dynamics is perfectly suited to describe the classical, strongly coupled ions but not the electrons. We develop a method that combines a Wigner kinetic treatment of the electrons with classical molecular dynamics for the ions. We refer to this hybrid method as "kinetic theory molecular dynamics," or KTMD. The purpose of this paper is to derive KTMD from first principles and place it on a firm theoretical foundation. The framework that KTMD provides for simulating plasmas in the hot, dense regime is particularly useful since current computational methods are generally limited by their inability to treat the dynamical quantum evolution of the electronic component. Using the N-body von Neumann equation for the electron-proton plasma, three variations of KTMD are obtained. Each variant is determined by the physical state of the plasma (e.g., collisional versus collisionless). The first variant of KTMD yields a closed set of equations consisting of a mean-field quantum kinetic equation for the electron one-particle distribution function coupled to a classical Liouville equation for the protons. The latter equation includes both proton-proton Coulombic interactions and an effective electron-proton interaction that involves the convolution of the electron density with the electron-proton Coulomb potential. The mean-field approach is then extended to incorporate equilibrium electron-proton correlations through the Singwi-Tosi-Land-Sjolander (STLS) ansatz. This is the second variant of KTMD. The STLS contribution produces an effective electron-proton interaction that involves the electron-proton structure factor, thereby extending the usual mean-field theory to correlated but near equilibrium systems. Finally, a third variant of KTMD is derived. It includes dynamical electrons and their correlations coupled to a MD description for the ions. A set of coupled equations for the one-particle electron Wigner function and the electron-electron and electron-proton correlation functions are coupled to a classical Liouville equation for the protons. This latter variation has both time and momentum dependent correlations. C1 [Graziani, F. R.; Bauer, J. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Murillo, M. S.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Graziani, FR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM graziani1@llnl.gov FU U.S. Department of Energy [DE-AC52-07NA27344, DE-AC52-06NA25396]; Laboratory Directed Research and Development Program at LLNL [09-SI-011] FX F. R. G. wishes to thank M. Bontiz, J. Daligault, J. Dufty, M. Desjarlais, and S. Trickey for many useful and enlightening conversations. F. R. G. and M. S. M. also wish to thank R. Caflisch and C. Ratsch for their warm hospitality during the Institute for Pure and Applied Mathematics (UCLA) Long Program on high-energy-density physics, where portions of this work were discussed and completed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and Los Alamos National Security, LLC. (LANS), operator of the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 with the U.S. Department of Energy. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 09-SI-011. NR 74 TC 4 Z9 4 U1 5 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD SEP 3 PY 2014 VL 90 IS 3 AR 033104 DI 10.1103/PhysRevE.90.033104 PG 13 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA AO3XF UT WOS:000341269900009 PM 25314544 ER PT J AU Chen, YF Qin, N Guo, J Qian, GR Fang, DQ Shi, D Xu, M Yang, FL He, ZL Van Nostrand, JD Yuan, T Deng, Y Zhou, JZ Li, LJ AF Chen, Yanfei Qin, Nan Guo, Jing Qian, Guirong Fang, Daiqiong Shi, Ding Xu, Min Yang, Fengling He, Zhili Van Nostrand, Joy D. Yuan, Tong Deng, Ye Zhou, Jizhong Li, Lanjuan TI Functional gene arrays-based analysis of fecal microbiomes in patients with liver cirrhosis SO BMC GENOMICS LA English DT Article DE End-stage liver disease; Intestines; Microbial communities; Alcohol; Microarray ID HUMAN GUT MICROBIOME; HEPATIC-ENCEPHALOPATHY; BACTERIAL TRANSLOCATION; METAGENOMIC ANALYSIS; COMMUNITY ANALYSIS; COLONIC FUNCTION; MICROARRAYS; ETHANOL; COGNITION; ALCOHOL AB Background: Human gut microbiota plays an important role in the pathogenesis of cirrhosis complications. Although the phylogenetic diversity of intestinal microbiota in patients with liver cirrhosis has been examined in several studies, little is known about their functional composition and structure. Results: To characterize the functional gene diversity of the gut microbiome in cirrhotic patients, we recruited a total of 42 individuals, 12 alcoholic cirrhosis patients, 18 hepatitis B virus (HBV)-related cirrhosis patients, and 12 normal controls. We determined the functional structure of these samples using a specific functional gene array, which is a combination of GeoChip for monitoring biogeochemical processes and HuMiChip specifically designed for analyzing human microbiomes. Our experimental data showed that the microbial community functional composition and structure were dramatically distinctive in the alcoholic cirrhosis. Various microbial functional genes involved in organic remediation, stress response, antibiotic resistance, metal resistance, and virulence were highly enriched in the alcoholic cirrhosis group compared to the control group and HBV-related cirrhosis group. Cirrhosis may have distinct influences on metabolic potential of fecal microbial communities. The abundance of functional genes relevant to nutrient metabolism, including amino acid metabolism, lipid metabolism, nucleotide metabolism, and isoprenoid biosynthesis, were significantly decreased in both alcoholic cirrhosis group and HBV-related cirrhosis group. Significant correlations were observed between functional gene abundances and Child-Pugh scores, such as those encoding aspartate-ammonia ligase, transaldolase, adenylosuccinate synthetase and IMP dehydrogenase. Conclusions: Functional gene array was utilized to study the gut microbiome in alcoholic and HBV-related cirrhosis patients and controls in this study. Our array data indicated that the functional composition of fecal microbiomes was heavily influenced by cirrhosis, especially by alcoholic cirrhosis. This study provides new insights into the functional potentials and activity of gut microbiota in cirrhotic patients with different etiologies. C1 [Chen, Yanfei; Qin, Nan; Guo, Jing; Qian, Guirong; Fang, Daiqiong; Shi, Ding; Xu, Min; Yang, Fengling; Li, Lanjuan] Zhejiang Univ, Affiliated Hosp 1, Collaborat Innovat Ctr Diag & Treatment Infect Di, State Key Lab Diag & Treatment Infect Dis, Hangzhou 310003, Zhejiang, Peoples R China. [He, Zhili; Van Nostrand, Joy D.; Yuan, Tong; Deng, Ye; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Inst Environm Genom, Norman, OK 73019 USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Earth Sci Div, Berkeley, CA 94720 USA. RP Zhou, JZ (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, Inst Environm Genom, Norman, OK 73019 USA. EM jzhou@ou.edu; ljli@zju.edu.cn RI Van Nostrand, Joy/F-1740-2016; OI Van Nostrand, Joy/0000-0001-9548-6450; ?, ?/0000-0002-7584-0632 FU National Program on Key Basic Research Project (973 Program) [2013CB531404]; Major National S & T Project for Infectious Disease [2008ZX10002-007]; Science Fund for Creative Research Groups of the National Natural Science Foundation of China [81121002]; Oklahoma Applied Research Support (OARS); Oklahoma Center for the Advancement of Science and Technology (OCAST); State of Oklahoma [AR11-035]; ENIGMA (Ecosystems and Networks Integrated with Genes and Molecular Assemblies) through the Office of Science, Office of Biological and Environmental Research; U. S. Department of Energy [DE-AC02-05CH11231]; OBER Biological Systems Research on the Role of Microbial Communities in Carbon Cycling Program [DE-SC0004601]; U.S. National Science Foundation MacroSystems Biology program [NSF EF-1065844] FX We thank Prof. Baoli Zhu in CAS Key Laboratory of Pathogenic Microbiology & Immunology at Chinese Academy of Sciences for his contribution in study design and data interpretation. This work was supported by the National Program on Key Basic Research Project (973 Program) 2013CB531404, the Major National S & T Project for Infectious Disease (11th Five Year) 2008ZX10002-007, the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (NO. 81121002), and the Oklahoma Applied Research Support (OARS), Oklahoma Center for the Advancement of Science and Technology (OCAST), the State of Oklahoma through the Project AR11-035. The development of the GeoChips and associated computational pipelines used in this study were supported by ENIGMA (Ecosystems and Networks Integrated with Genes and Molecular Assemblies) through the Office of Science, Office of Biological and Environmental Research, the U. S. Department of Energy under Contract No. DE-AC02-05CH11231, by the OBER Biological Systems Research on the Role of Microbial Communities in Carbon Cycling Program (DE-SC0004601) and by the U.S. National Science Foundation MacroSystems Biology program under the contract (NSF EF-1065844). NR 49 TC 4 Z9 4 U1 5 U2 43 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD SEP 2 PY 2014 VL 15 AR 753 DI 10.1186/1471-2164-15-753 PG 13 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA AP0XQ UT WOS:000341790200001 PM 25179593 ER PT J AU Kronewitter, SR Marginean, I Cox, JT Zhao, R Hagler, CD Shukla, AK Carlson, TS Adkins, JN Camp, DG Moore, RJ Rodland, KD Smith, RD AF Kronewitter, Scott R. Marginean, Ioan Cox, Jonathan T. Zhao, Rui Hagler, Clay D. Shukla, Anil K. Carlson, Timothy S. Adkins, Joshua N. Camp, David G., II Moore, Ronald J. Rodland, Karin D. Smith, Richard D. TI Polysialylated N-Glycans Identified in Human Serum Through Combined Developments in Sample Preparation, Separations, and Electrospray Ionization-Mass Spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID CELL-ADHESION MOLECULE; SUBAMBIENT PRESSURE IONIZATION; OVARIAN-CANCER; SUPRACHIASMATIC NUCLEUS; BIOMARKER DISCOVERY; LINKED GLYCANS; SIALIC-ACID; PSA-NCAM; CHROMATOGRAPHY; GLYCOSYLATION AB The N-glycan diversity of human serum glycoproteins, i.e., the human blood serum N-glycome, is both complex and constrained by the range of glycan structures potentially synthesizable by human glycosylation enzymes. The known glycome, however, has been further limited by methods of sample preparation, available analytical platforms, e.g., based upon electrospray ionization-mass spectrometry (ESI-MS), and software tools for data analysis. In this report several improvements have been implemented in sample preparation and analysis to extend ESI-MS glycan characterization and to include polysialylated N-glycans. Sample preparation improvements included acidified, microwave-accelerated, PNGase F N-glycan release to promote lactonization, and sodium borohydride reduction, that were both optimized to improve quantitative yields and conserve the number of glycoforms detected. Two-stage desalting (during solid phase extraction and on the analytical column) increased sensitivity by reducing analyte signal division between multiple reducing-end-forms or cation adducts. Online separations were improved by using extended length graphitized carbon columns and adding TFA as an acid modifier to a formic acid/reversed phase gradient, providing additional resolving power and significantly improved desorption of both large and heavily sialylated glycans. To improve MS sensitivity and provide gentler ionization conditions at the source-MS interface, subambient pressure ionization with nanoelectrospray (SPIN) was utilized. When these improved methods are combined together with the Glycomics Quintavariate Informed Quantification (GlyQ-IQ) recently described (Kronewitter et al. Anal. Chem. 2014, 86, 6268-6276), we are able to significantly extend glycan detection sensitivity and provide expanded glycan coverage. We demonstrated the application of these advances in the context of the human serum glycome, and for which our initial observations included the detection of a new class of heavily sialylated N-glycans, including polysialylated N-glycans. C1 [Kronewitter, Scott R.; Marginean, Ioan; Cox, Jonathan T.; Zhao, Rui; Hagler, Clay D.; Shukla, Anil K.; Carlson, Timothy S.; Adkins, Joshua N.; Camp, David G., II; Moore, Ronald J.; Rodland, Karin D.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM rds@pnnl.gov RI Marginean, Ioan/A-4183-2008; Smith, Richard/J-3664-2012 OI Marginean, Ioan/0000-0002-6693-0361; Smith, Richard/0000-0002-2381-2349 FU Genome Science Program of the U.S. DOE Office of Biological and Environmental Research; NIH [P41 GM103493-11]; DOE [DE-AC05-76RLO 1830] FX Portions of this work were conducted under the Pan-omics project supported by the Genome Science Program of the U.S. DOE Office of Biological and Environmental Research and by NIH Grant P41 GM103493-11 (R.D.S.). Work was performed in the EMSL, a DOE-BER national scientific user facility PNNL. High-performance computing research was performed using PNNL Institutional Computing at Pacific Northwest National Laboratory. PNNL is a multiprogram national laboratory operated by Battelle Memorial Institute for the DOE under Contract DE-AC05-76RLO 1830. NR 62 TC 3 Z9 3 U1 12 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD SEP 2 PY 2014 VL 86 IS 17 BP 8700 EP 8710 DI 10.1021/ac501839b PG 11 WC Chemistry, Analytical SC Chemistry GA AO3KX UT WOS:000341229200029 PM 25118826 ER PT J AU Derbin, AV Gironi, L Nagorny, SS Pattavina, L Beeman, JW Bellini, F Biassoni, M Capelli, S Clemenza, M Drachnev, IS Ferri, E Giachero, A Gotti, C Kayunov, AS Maiano, C Maino, M Muratova, VN Pavan, M Pirro, S Semenov, DA Sisti, M Unzhakov, EV AF Derbin, A. V. Gironi, L. Nagorny, S. S. Pattavina, L. Beeman, J. W. Bellini, F. Biassoni, M. Capelli, S. Clemenza, M. Drachnev, I. S. Ferri, E. Giachero, A. Gotti, C. Kayunov, A. S. Maiano, C. Maino, M. Muratova, V. N. Pavan, M. Pirro, S. Semenov, D. A. Sisti, M. Unzhakov, E. V. TI Search for axioelectric effect of solar axions using BGO scintillating bolometer SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID STRONG CP PROBLEM; BEAM-DUMP; PARTICLES; INVARIANCE; DETECTORS; SIGNALS; REDUCTION; NOISE AB A search for axioelectric absorption of solar axions produced in the p + d --> He-3 + gamma (5.5 MeV) reaction has been performed with a BGO detector placed in a low-background setup. A model-independent limit on the combination of axion-nucleon and axion-electron coupling constants has been obtained: vertical bar g(Ae) x g(AN)(3)vertical bar < 1.9 x 10(-10) for 90 % confidence level. The constraint of the axion-electron coupling constant has been obtained for hadronic axion with masses of (0.1-1) MeV: vertical bar g(Ae)vertical bar <= (0.96 - 8.2) x 10(-8). C1 [Derbin, A. V.; Drachnev, I. S.; Kayunov, A. S.; Muratova, V. N.; Semenov, D. A.; Unzhakov, E. V.] St Petersburg Nucl Phys Inst, Gatchina 188350, Russia. [Gironi, L.; Biassoni, M.; Capelli, S.; Clemenza, M.; Ferri, E.; Giachero, A.; Gotti, C.; Maiano, C.; Maino, M.; Pavan, M.; Sisti, M.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. [Gironi, L.; Biassoni, M.; Capelli, S.; Clemenza, M.; Ferri, E.; Giachero, A.; Gotti, C.; Maiano, C.; Maino, M.; Pavan, M.; Sisti, M.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Nagorny, S. S.; Pattavina, L.; Pirro, S.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, I-67100 Laquila, Italy. [Nagorny, S. S.; Drachnev, I. S.] INFN, Gran Sasso Sci Inst, I-67100 Laquila, AQ, Italy. [Beeman, J. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bellini, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Bellini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. RP Derbin, AV (reprint author), St Petersburg Nucl Phys Inst, Gatchina 188350, Russia. EM derbin@pnpi.spb.ru RI Giachero, Andrea/I-1081-2013; Bellini, Fabio/D-1055-2009; Pattavina, Luca/I-7498-2015; Sisti, Monica/B-7550-2013; Ferri, Elena/L-8531-2014; Gironi, Luca/P-2860-2016; capelli, silvia/G-5168-2012; OI Giachero, Andrea/0000-0003-0493-695X; Bellini, Fabio/0000-0002-2936-660X; Drachnev, Ilia/0000-0002-4064-8093; Pattavina, Luca/0000-0003-4192-849X; Sisti, Monica/0000-0003-2517-1909; Ferri, Elena/0000-0003-1425-3669; Gironi, Luca/0000-0003-2019-0967; capelli, silvia/0000-0002-0300-2752; Nahornyi, Serhii/0000-0002-8679-3747; Derbin, Alexander/0000-0002-4351-2255; Unzhakov, Evgeniy/0000-0003-2952-6412; Clemenza, Massimiliano/0000-0002-8064-8936; pavan, maura/0000-0002-9723-7834; Gotti, Claudio/0000-0003-2501-9608 FU RFBR [13-02-01199, 13-02-12140-ofi-m] FX This work was supported by RFBR Grants 13-02-01199 and 13-02-12140-ofi-m. NR 51 TC 1 Z9 1 U1 1 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD SEP 2 PY 2014 VL 74 IS 9 AR 3035 DI 10.1140/epjc/s10052-014-3035-8 PG 6 WC Physics, Particles & Fields SC Physics GA AO8EX UT WOS:000341587300001 ER PT J AU Vogl, US Das, PK Weber, AZ Winter, M Kostecki, R Lux, SF AF Vogl, U. S. Das, P. K. Weber, A. Z. Winter, M. Kostecki, R. Lux, S. F. TI Mechanism of Interactions between CMC Binder and Si Single Crystal Facets SO LANGMUIR LA English DT Article ID LITHIUM-ION-BATTERIES; CARBOXYMETHYL CELLULOSE; HIGH-CAPACITY; ALLOY ANODES; ELECTROCHEMICAL PERFORMANCE; COMPOSITE ELECTRODES; NEGATIVE ELECTRODES; CYCLING STABILITY; SILICON; SURFACE AB Interactions of the active material particles with the binder are crucial in tailoring the properties of composite electrodes used in lithium-ion batteries. The dependency of the protonation degree of the carboxyl group in the carboxymethyl cellulose (CMC) structure on the pH value of the preparation solution was investigated by Fourier transform infrared spectroscopy (FTIR). Three different distinctive chemical states of CMC binder were chosen (protonated, deprotonated, and half-half), and their interactions with different silicon single crystal facets were investigated. The different Si surface orientations display distinct differences of strength of interactions with the CMC binder. The CMC/Si adhesion forces in solution and Si wettability of the silicon are also strongly dependent on the protonation degree of the CMC. This work provides an insight into the nature of these interactions, which determine the electrochemical performance of silicon composite electrodes. C1 [Vogl, U. S.; Winter, M.; Lux, S. F.] Univ Munster, MEET Battery Res Ctr, D-48149 Munster, Germany. [Vogl, U. S.; Das, P. K.; Weber, A. Z.; Kostecki, R.; Lux, S. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Winter, M (reprint author), Univ Munster, MEET Battery Res Ctr, Corrensstr 46, D-48149 Munster, Germany. EM martin.winter@uni-muenster.de; simon.lux@uni-muenster.de OI Das, Prodip/0000-0001-9096-3721 FU Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract DE-AC02-05CH11231. The authors thank Dr. Gao Liu and Dr. Vincent Battaglia for their help with the peel-off force investigations. NR 40 TC 19 Z9 19 U1 7 U2 68 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD SEP 2 PY 2014 VL 30 IS 34 BP 10299 EP 10307 DI 10.1021/la501791q PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AO3LG UT WOS:000341230100020 PM 25109709 ER PT J AU Boughezal, R Focke, C Li, Y Liu, XH AF Boughezal, Radja Focke, Christfried Li, Ye Liu, Xiaohui TI Jet vetoes for Higgs boson production at future hadron colliders SO PHYSICAL REVIEW D LA English DT Article ID TO-LEADING ORDER; LHC; SEARCH; QCD AB We study Higgs boson production in exclusive jet bins at possible future 33 and 100 TeV proton-proton colliders. We compare the cross sections obtained using fixed-order perturbation theory with those obtained by also resumming large logarithms induced by the jet-binning in the gluon-fusion and associated production channels. The central values obtained by the best-available fixed-order predictions differ by 10%-20% from those obtained after including resummation over the majority of phase-space regions considered. Additionally, including the resummation dramatically reduces the residual scale variation in these regions, often by a factor of two or more. We further show that in several new kinematic regimes that can be explored at these high-energy machines, the inclusion of resummation improvement is mandatory. C1 [Boughezal, Radja; Liu, Xiaohui] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Focke, Christfried; Liu, Xiaohui] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Li, Ye] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. RP Boughezal, R (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM rboughezal@anl.gov; christfried.focke@gmail.com; yli@slac.stanford.edu; xiaohui.liu@northwestern.edu FU U.S. Department of Energy, Division of High Energy Physics [DE-AC02-06CH11357, DE-FG02-95ER40896, DE-FG02-08ER4153]; U.S. Department of Energy [DE-AC02-76SF00515]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The work of R. B. was supported by the U.S. Department of Energy, Division of High Energy Physics, under Contract No. DE-AC02-06CH11357. The work of C. F. and X. L. was supported by the U.S. Department of Energy, Division of High Energy Physics, under Contract No. DE-AC02-06CH11357 and Grants No. DE-FG02-95ER40896 and No. DE-FG02-08ER4153. The work of Y. L. was supported by the U.S. Department of Energy under Contract No. DE-AC02-76SF00515. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 51 TC 5 Z9 5 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD SEP 2 PY 2014 VL 90 IS 5 AR 053001 DI 10.1103/PhysRevD.90.053001 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AO3PD UT WOS:000341244100001 ER PT J AU Garbarini, F Boero, R D'Agata, F Bravo, G Mosso, C Cauda, F Duca, S Geminiani, G Sacco, K AF Garbarini, Francesca Boero, Riccardo D'Agata, Federico Bravo, Giangiacomo Mosso, Cristina Cauda, Franco Duca, Sergio Geminiani, Giuliano Sacco, Katiuscia TI Neural Correlates of Gender Differences in Reputation Building SO PLOS ONE LA English DT Article ID SEX-DIFFERENCES; SELF-CONTROL; COOPERATION; SYSTEMS; TRUST; EVOLUTION; STRIATUM; REWARD; MODEL; RISK AB Gender differences in cooperative choices and their neural correlates were investigated in a situation where reputation represented a crucial issue. Males and females were involved in an economic exchange (trust game) where economic and reputational payoffs had to be balanced in order to increase personal welfare. At the behavioral level, females showed a stronger reaction to negative reputation judgments that led to higher cooperation than males, measured by back transfers in the game. The neuroanatomical counterpart of this gender difference was found within the reward network (engaged in producing expectations of positive results) and reputation-related brain networks, such as the self-control network (engaged in strategically resisting the temptation to defect) and the mentalizing network (engaged in thinking about how one is viewed by others), in which the dorsolateral prefrontal cortex (DLPFC) and the medial (M) PFC respectively play a crucial role. Furthermore, both DLPFC and MPFC activity correlated with the amount of back transfer, as well as with the personality dimensions assessed with the Big-Five Questionnaire (BFQ-2). Males, according to their greater DLPFC recruitment and their higher level of the BFQ-2 subscale of Dominance, were more focused on implementing a profit-maximizing strategy, pursuing this target irrespectively of others' judgments. On the contrary, females, according to their greater MPFC activity and their lower level of Dominance, were more focused on the reputation per se and not on the strategic component of reputation building. These findings shed light on the sexual dimorphism related to cooperative behavior and its neural correlates. C1 [Garbarini, Francesca; D'Agata, Federico; Mosso, Cristina; Cauda, Franco; Geminiani, Giuliano; Sacco, Katiuscia] Univ Turin, Dept Psychol, Turin, Italy. [Boero, Riccardo] Los Alamos Natl Lab, Los Alamos, NM USA. [D'Agata, Federico] Univ Turin, Dept Neurosci, Turin, Italy. [D'Agata, Federico; Cauda, Franco; Duca, Sergio; Geminiani, Giuliano; Sacco, Katiuscia] Koelliker Hosp, CCS FMRI, Turin, Italy. [Bravo, Giangiacomo] Linnaeus Univ, Dept Social Studies, Vaxjo, Sweden. [Cauda, Franco; Geminiani, Giuliano; Sacco, Katiuscia] Univ Turin, NIT, Turin, Italy. RP Garbarini, F (reprint author), Univ Turin, Dept Psychol, Turin, Italy. EM fra.garbarini@gmail.com RI Cauda, Franco /G-5021-2010; Mosso, Cristina /J-1422-2016; OI Cauda, Franco /0000-0003-1526-8475; Bravo, Giangiacomo/0000-0003-2837-0137; D'Agata, Federico/0000-0001-9432-0248; Garbarini, Francesca/0000-0003-1210-0175; Boero, Riccardo/0000-0002-7468-9096 FU Regione Piemonte, Human and Social Science "IIINBEMA - INstitutions, BEhaviour and MArkets in Local and Global Settings'' [229/DB1300]; GIRS - The invisible grammar of social relationships FX This study was funded by Regione Piemonte, Human and Social Science 2008 (D.D. n. 229/DB1300), project "IIINBEMA - INstitutions, BEhaviour and MArkets in Local and Global Settings'' and project "GIRS - The invisible grammar of social relationships''. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 43 TC 3 Z9 3 U1 3 U2 19 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 2 PY 2014 VL 9 IS 9 AR e106285 DI 10.1371/journal.pone.0106285 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO3LR UT WOS:000341231500069 PM 25180581 ER PT J AU Seal, K Sharoni, A Messman, JM Lokitz, BS Shaw, RW Schuller, IK Snijders, PC Ward, TZ AF Seal, Katyayani Sharoni, Amos Messman, Jamie M. Lokitz, Bradley S. Shaw, Robert W. Schuller, Ivan K. Snijders, Paul C. Ward, Thomas Z. TI Resolving transitions in the mesoscale domain configuration in VO2 using laser speckle pattern analysis SO SCIENTIFIC REPORTS LA English DT Article ID SURFACE-ROUGHNESS; LIGHT-SCATTERING; SPECTROSCOPY; STATISTICS; MAGNETISM; ORDER AB The configuration and evolution of coexisting mesoscopic domains with contrasting material properties are critical in creating novel functionality through emergent physical properties. However, current approaches that map the domain structure involve either spatially resolved but protracted scanning probe experiments without real time information on the domain evolution, or time resolved spectroscopic experiments lacking domain-scale spatial resolution. We demonstrate an elegant experimental technique that bridges these local and global methods, giving access to mesoscale information on domain formation and evolution at time scales orders of magnitude faster than current spatially resolved approaches. Our straightforward analysis of laser speckle patterns across the first order phase transition of VO2 can be generalized to other systems with large scale phase separation and has potential as a powerful method with both spatial and temporal resolution to study phase separation in complex materials. C1 [Seal, Katyayani; Snijders, Paul C.; Ward, Thomas Z.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Seal, Katyayani; Snijders, Paul C.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Sharoni, Amos] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. [Sharoni, Amos] Bar Ilan Univ, Inst Nanotechnol, IL-52900 Ramat Gan, Israel. [Sharoni, Amos; Schuller, Ivan K.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Sharoni, Amos; Schuller, Ivan K.] Univ Calif San Diego, Ctr Adv Nanosci, La Jolla, CA 92093 USA. [Messman, Jamie M.; Lokitz, Bradley S.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Shaw, Robert W.] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA. RP Snijders, PC (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM snijderspc@ornl.gov; wardtz@ornl.gov RI Lokitz, Bradley/Q-2430-2015; Ward, Thomas/I-6636-2016 OI Lokitz, Bradley/0000-0002-1229-6078; Ward, Thomas/0000-0002-1027-9186 FU US Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division, and Chemical Sciences, Geosciences, and Biosciences Division; Scientific User Facilities Division, Office of BES, US DOE; LDRD Program at ORNL; U.S. Department of Energy; Department of Energy's Office of Basic Energy Science [DE FG03 87ER-45332]; Israel Science Foundation [727/11] FX Research supported by the US Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division, (PCS, TZW) and Chemical Sciences, Geosciences, and Biosciences Division (RWS). Ellipsometry measurements (JMM, BSL) were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of BES, US DOE. Partial support was also given by LDRD Program at ORNL (KS). Partial support was also given by, U.S. Department of Energy, BES-DMS funded by the Department of Energy's Office of Basic Energy Science, under grant DE FG03 87ER-45332 (IKS). Partial support also given by Israel Science Foundation grant No. 727/11 (AS). NR 25 TC 3 Z9 3 U1 2 U2 31 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD SEP 2 PY 2014 VL 4 AR 6259 DI 10.1038/srep06259 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO6EO UT WOS:000341442600001 PM 25178929 ER PT J AU Langan, P Sangha, AK Wymore, T Parks, JM Yang, ZMK Hanson, BL Fisher, Z Mason, SA Blakeley, MP Forsyth, VT Glusker, JP Carrell, HL Smith, JC Keen, DA Graham, DE Kovalevsky, A AF Langan, Paul Sangha, Amandeep K. Wymore, Troy Parks, Jerry M. Yang, Zamin Koo Hanson, B. Leif Fisher, Zoe Mason, Sax A. Blakeley, Matthew P. Forsyth, V. Trevor Glusker, Jenny P. Carrell, Horace L. Smith, Jeremy C. Keen, David A. Graham, David E. Kovalevsky, Andrey TI L-Arabinose Binding, Isomerization, and Epimerization by D-Xylose Isomerase: X-Ray/Neutron Crystallographic and Molecular Simulation Study SO STRUCTURE LA English DT Article ID MEDIATED HYDRIDE SHIFT; D-GLUCOSE ISOMERASE; SACCHAROMYCES-CEREVISIAE; L-RIBOSE; STREPTOMYCES-RUBIGINOSUS; NEUTRON-DIFFRACTION; ACTINOPLANES-MISSOURIENSIS; ANOMERIC SPECIFICITY; DIRECTED EVOLUTION; HEXOSE SUGARS AB D-xylose isomerase (XI) is capable of sugar isomerization and slow conversion of some monosaccharides into their C2-epimers. We present X-ray and neutron crystallographic studies to locate H and D atoms during the respective isomerization and epimerization of L-arabinose to L-ribulose and L-ribose, respectively. Neutron structures in complex with cyclic and linear L-arabinose have demonstrated that the mechanism of ring-opening is the same as for the reaction with D-xylose. Structural evidence and QM/MM calculations show that in the reactive Michaelis complex L-arabinose is distorted to the high-energy S-5(1) conformation; this may explain the apparent high Km for this sugar. MD-FEP simulations indicate that amino acid substitutions in a hydrophobic pocket near C5 of L-arabinose can enhance sugar binding. L-ribulose and L-ribose were found in furanose forms when bound to XI. We propose that these complexes containing Ni2+ cofactors are Michaelis-like and the isomerization between these two sugars proceeds via a cis-ene-diol mechanism. C1 [Langan, Paul; Kovalevsky, Andrey] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Sangha, Amandeep K.; Wymore, Troy; Parks, Jerry M.; Smith, Jeremy C.] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Biosci Div, Oak Ridge, TN 37831 USA. [Yang, Zamin Koo; Graham, David E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Hanson, B. Leif] Univ Toledo, Dept Chem, Toledo, OH 43606 USA. [Fisher, Zoe] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Mason, Sax A.; Blakeley, Matthew P.; Forsyth, V. Trevor] Inst Max Von Laue Paul Langevin, F-38000 Grenoble, France. [Forsyth, V. Trevor] Keele Univ, EPSAM ISTM, Keele ST5 5BG, Staffs, England. [Glusker, Jenny P.; Carrell, Horace L.] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. [Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Keen, David A.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. RP Kovalevsky, A (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. EM kovalevskyay@ornl.gov RI Forsyth, V. Trevor/A-9129-2010; Parks, Jerry/B-7488-2009; mason, sax /E-6738-2011; Graham, David/F-8578-2010; Blakeley, Matthew/G-7984-2015; Langan, Paul/N-5237-2015; smith, jeremy/B-7287-2012; Hanson, Bryant Leif/F-8007-2010; OI Forsyth, V. Trevor/0000-0003-0380-3477; Parks, Jerry/0000-0002-3103-9333; Graham, David/0000-0001-8968-7344; Blakeley, Matthew/0000-0002-6412-4358; Langan, Paul/0000-0002-0247-3122; smith, jeremy/0000-0002-2978-3227; Hanson, Bryant Leif/0000-0003-0345-3702; Kovalevsky, Andrey/0000-0003-4459-9142 FU Office of Biological and Environmental Research of the Department of Energy; DOE Office of Basic Energy Sciences; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; Durham University; Keele University; Bath University; ILL (EPSRC grant) [GR/R47950/01]; DOE Office of Biological and Environmental Research; NIH-NIGMS; ORNL; LBNL FX The PCS is funded by the Office of Biological and Environmental Research of the Department of Energy. The PCS is located at the Lujan Center at Los Alamos Neutron Science Center, funded by the DOE Office of Basic Energy Sciences. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231. The D19 diffractometer was built as part of a collaboration between Durham University, Keele University, Bath University, and ILL (EPSRC grant GR/R47950/01). We gratefully acknowledge the help of John Archer, John Allibon, and the efforts of the ILL detector group. P.L., A.K.S., T.W., J.M.P., Z.K.Y., D.E.G., and A.K. were partly supported by the DOE Office of Biological and Environmental Research. P.L. was partly supported by an NIH-NIGMS funded consortium between ORNL and LBNL to develop computational tools for neutron protein crystallography. NR 57 TC 9 Z9 9 U1 2 U2 45 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 EI 1878-4186 J9 STRUCTURE JI Structure PD SEP 2 PY 2014 VL 22 IS 9 BP 1287 EP 1300 DI 10.1016/j.str.2014.07.002 PG 14 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA AO5NW UT WOS:000341392800010 PM 25132082 ER PT J AU Jing, XM Serpersu, EH AF Jing, Xiaomin Serpersu, Engin H. TI Solvent Reorganization Plays a Temperature-Dependent Role in Antibiotic Selection by a Thermostable Aminoglycoside Nucleotidyltransferase-4 ' SO BIOCHEMISTRY LA English DT Article ID AMINO-ACID-RESIDUES; HEAT-CAPACITY; LIGAND-BINDING; KANAMYCIN NUCLEOTIDYLTRANSFERASE; THERMODYNAMIC PARAMETERS; RESISTANCE ENZYME; AQUEOUS-SOLUTION; PROTEIN; HYDRATION; ENTHALPY AB The aminoglycoside nucleotidyltransferase-4' (ANT) is an enzyme that causes resistance to a large number of aminoglycoside antibiotics by nucleotidylation of the 4'-site on these antibiotics. The effect of solvent reorganization on enzyme-ligand interactions was investigated using a thermophilic variant of the enzyme resulting from a single-site mutation (T130K). Data showed that the binding of aminoglycosides to ANT causes exposure of polar groups to solvent. However, solvent reorganization becomes the major contributor to the enthalpy of the formation of enzyme-aminoglycoside complexes only above 20 degrees C. The change in heat capacity (Delta C-p) shows an aminoglycoside-dependent pattern such that it correlates with the affinity of the ligand for the enzyme. Differences in Delta C-p values determined in H2O and D2O also correlated with the ligand affinity. The temperature-dependent increase in the offset temperature (T-off), the temperature difference required to observe equal enthalpies in both solvents, is also dependent on the binding affinity of the ligand, and the steepest increase was observed with the tightest binding aminoglycoside, neomycin. Overall, these data, together with earlier observations with a different enzyme, the aminoglycoside N3-acetyltransferase-IIIb [Norris, A. L., and Serpersu, E. H. (2011) Biochemistry SO, 9309], show that solvent reorganization or changes in soft vibrational modes of the protein are interchangeable with respect to the role of being the major contributor to complex formation depending on temperature. These data suggest that such effects may more generally apply to enzyme ligand interactions, and studies at a single temperature may provide only a part of the whole picture of thermodynamics of enzyme-ligand interactions. C1 [Jing, Xiaomin; Serpersu, Engin H.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Serpersu, Engin H.] Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN 37996 USA. [Serpersu, Engin H.] Oak Ridge Natl Lab, Knoxville, TN 37996 USA. RP Serpersu, EH (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Walters Life Sci Bldg,M 407, Knoxville, TN 37996 USA. EM serpersu@utk.edu FU National Science Foundation [MCB-0842743]; Dr. Donald L. Akers, Jr., Faculty Enrichment Award FX This work is supported by a grant from the National Science Foundation (MCB-0842743 to E.H.S.) and in part by the Dr. Donald L. Akers, Jr., Faculty Enrichment Award (to E.H.S.). NR 31 TC 0 Z9 0 U1 2 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD SEP 2 PY 2014 VL 53 IS 34 BP 5544 EP 5550 DI 10.1021/bi5006283 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AO3LD UT WOS:000341229800009 PM 25093604 ER PT J AU Watkins, EB Gao, HF Dennison, AJC Chopin, N Struth, B Arnold, T Florent, JC Johannes, L AF Watkins, Erik B. Gao, Haifei Dennison, Andrew J. C. Chopin, Nathalie Struth, Bernd Arnold, Thomas Florent, Jean-Claude Johannes, Ludger TI Carbohydrate Conformation and Lipid Condensation in Mono layers Containing Glycosphingolipid Gb3: Influence of Acyl Chain Structure SO BIOPHYSICAL JOURNAL LA English DT Article ID GRAZING-INCIDENCE DIFFRACTION; GLYCOLIPID RECEPTOR FUNCTION; X-RAY; PHOSPHOLIPID MONOLAYERS; MEMBRANE-SURFACE; CERAMIDE; BILAYER; BINDING; RAFTS; MODEL AB Globotriaosylceramide (Gb3), a glycosphingolipid found in the plasma membrane of animal cells, is the endocytic receptor of the bacterial Shiga toxin. Using x-ray reflectivity (XR) and grazing incidence x-ray diffraction (GIXD), lipid monolayers containing Gb3 were investigated at the air-water interface. XR probed Gb3 carbohydrate conformation normal to the interface, whereas GIXD precisely characterized Gb3's influence on acyl chain in-plane packing and area per molecule (APM). Two phospholipids, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), were used to study Gb3 packing in different lipid environments. Furthermore, the impact on monolayer structure of a naturally extracted Gb3 mixture was compared to synthetic Gb3 species with uniquely defined acyl chain structures. XR results showed that lipid environment and Gb3 acyl chain structure impact carbohydrate conformation with greater solvent accessibility observed for smaller phospholipid headgroups and long Gb3 acyl chains. In general, GIXD showed that Gb3 condensed phospholipid packing resulting in smaller APM than predicted by ideal mixing. Gb3's capacity to condense APM was larger for DSPC monolayers and exhibited different dependencies on acyl chain structure depending on the lipid environment. The interplay between Gb3-induced changes in lipid packing and the lipid environment's impact on carbohydrate conformation has broad implications for glycosphingolipid macromolecule recognition and ligand binding. C1 [Watkins, Erik B.; Dennison, Andrew J. C.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Gao, Haifei; Chopin, Nathalie; Florent, Jean-Claude; Johannes, Ludger] Inst Curie, Ctr Rech, F-75248 Paris 5, France. [Gao, Haifei; Chopin, Nathalie; Florent, Jean-Claude; Johannes, Ludger] CNRS, UMR3666, F-75005 Paris, France. [Gao, Haifei; Chopin, Nathalie; Florent, Jean-Claude; Johannes, Ludger] INSERM, U1143, F-75005 Paris, France. [Dennison, Andrew J. C.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Struth, Bernd] DESY, HASYLAB, D-22603 Hamburg, Germany. [Arnold, Thomas] Diamond Light Source, Chilton, England. RP Watkins, EB (reprint author), Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, POB 1663, Los Alamos, NM 87545 USA. EM erik.b.watkins@gmail.com OI Dennison, Ashley/0000-0003-0090-503X; Arnold, Thomas/0000-0001-8295-3822 FU Agence Nationale pour la Recherche [ANR-09-BLAN-283, ANR-11 BSV2 014 03]; Marie Curie Actions-Networks for Initial Training; European Research Council [340485]; Swedish Research Council (VR) FX This work was supported by grants from the Agence Nationale pour la Recherche (ANR-09-BLAN-283 and ANR-11 BSV2 014 03), Marie Curie Actions-Networks for Initial Training (FP7-PEOPLE-2010-ITN), and European Research Council advanced grant (project 340485). A.J.C.D. was funded by the Swedish Research Council (VR). NR 34 TC 5 Z9 5 U1 2 U2 19 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD SEP 2 PY 2014 VL 107 IS 5 BP 1146 EP 1155 DI 10.1016/j.bpj.2014.07.023 PG 10 WC Biophysics SC Biophysics GA AO3ZD UT WOS:000341275100015 PM 25185550 ER PT J AU Sekharan, S Ertem, MZ Zhuang, HY Block, E Matsunami, H Zhang, RN Wei, JN Pan, Y Batista, VS AF Sekharan, Sivakumar Ertem, Mehmed Z. Zhuang, Hanyi Block, Eric Matsunami, Hiroaki Zhang, Ruina Wei, Jennifer N. Pan, Yi Batista, Victor S. TI QM/MM Model of the Mouse Olfactory Receptor MOR244-3 Validated by Site-Directed Mutagenesis Experiments SO BIOPHYSICAL JOURNAL LA English DT Article ID OPTIMIZATION; ODORANTS; KINETICS AB Understanding structure/function relationships of olfactory receptors is challenging due to the lack of x-ray structural models. Here, we introduce a QM/MM model of the mouse olfactory receptor MOR244-3, responsive to organosulfur odorants such as (methylthio)methanethiol. The binding site consists of a copper ion bound to the heteroatoms of amino-acid residues H105, C109, and N202. The model is consistent with site-directed mutagenesis experiments and biochemical measurements of the receptor activation, and thus provides a valuable framework for further studies of the sense of smell at the molecular level. C1 [Sekharan, Sivakumar; Ertem, Mehmed Z.; Wei, Jennifer N.; Batista, Victor S.] Yale Univ, Dept Chem, New Haven, CT 06520 USA. [Ertem, Mehmed Z.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Zhuang, Hanyi; Zhang, Ruina; Pan, Yi] Shanghai Jiao Tong Univ, Sch Med, Chinese Minist Educ, Dept Pathophysiol,Key Lab Cell Differentiat & Apo, Shanghai 200030, Peoples R China. [Zhuang, Hanyi] Chinese Acad Sci, Shanghai Inst Biol Sci, Shanghai Jiao Tong Univ, Inst Hlth Sci,Sch Med, Shanghai, Peoples R China. [Block, Eric] SUNY Albany, Dept Chem, Albany, NY 12222 USA. [Matsunami, Hiroaki] Duke Univ, Dept Mol Genet & Microbiol, Med Ctr, Durham, NC USA. [Matsunami, Hiroaki] Duke Univ, Med Ctr, Dept Neurobiol, Durham, NC 27710 USA. RP Sekharan, S (reprint author), Yale Univ, Dept Chem, New Haven, CT 06520 USA. EM sivakumar.sekharan@yale.edu; nnzertem@bnl.gov; hanyizhuang@sjtu.edu.cn; victor.batista@yale.edu FU National Science Foundation [CHE-0911520, CHE-1265679, CHE-31070972]; 973 Program of China [2012CB910401]; Shanghai Jiao Tong University School of Medicine Doctoral Innovation Grant; Program for Innovative Research Team of Shanghai Municipal Education Commission; Eastern Scholar Program at Shanghai Institutions of Higher Learning [J50201]; National Institutes of Health [DC005782]; Computational Materials and Chemical Sciences project at Brookhaven National Laboratory [DE-AC02-98CH10886]; U.S. Department of Energy FX We acknowledge support from the National Science Foundation (grants No. CHE-0911520, CHE-1265679, and CHE-31070972), the 973 Program of China (grant No. 2012CB910401), the Shanghai Jiao Tong University School of Medicine Doctoral Innovation Grant, the Program for Innovative Research Team of Shanghai Municipal Education Commission, the Eastern Scholar Program at Shanghai Institutions of Higher Learning (grant No. J50201), and the National Institutes of Health grant No. DC005782. M.Z.E. was funded by a Computational Materials and Chemical Sciences project at Brookhaven National Laboratory under contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. NR 18 TC 9 Z9 9 U1 0 U2 12 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD SEP 2 PY 2014 VL 107 IS 5 BP L05 EP L08 DI 10.1016/j.bpj.2014.07.031 PG 4 WC Biophysics SC Biophysics GA AO3ZD UT WOS:000341275100001 PM 25185561 ER PT J AU Bao, C Wu, HF Li, L Newcomer, D Long, PE Williams, KH AF Bao, Chen Wu, Hongfei Li, Li Newcomer, Darrell Long, Philip E. Williams, Kenneth H. TI Uranium Bioreduction Rates across Scales: Biogeochemical Hot Moments and Hot Spots during a Biostimulation Experiment at Rifle, Colorado SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SULFATE-REDUCING BACTERIA; CRYSTALLINE IRON(III) OXIDES; EMULSIFIED VEGETABLE-OIL; IN-SITU BIOSTIMULATION; MICROBIAL REDUCTION; CONTAMINATED AQUIFER; U(VI) REDUCTION; GEOBACTER-SULFURREDUCENS; MAGNESITE DISSOLUTION; HYDROTHERMAL SYSTEMS AB We aim to understand the scale-dependent evolution of uranium bioreduction during a field experiment at a former uranium mill site near Rifle, Colorado. Acetate was injected to stimulate Fe-reducing bacteria (FeRB) and to immobilize aqueous U(VI) to insoluble U(IV). Bicarbonate was coinjected in half of the domain to mobilize sorbed U(VI). We used reactive transport modeling to integrate hydraulic and geochemical data and to quantify rates at the grid block (0.25 m) and experimental field scale (tens of meters). Although local rates varied by orders of magnitude in conjunction with biostimulation fronts propagating downstream, field-scale rates were dominated by those orders of magnitude higher rates at a few selected hot spots where Fe(III), U(VI), and FeRB were at their maxima in the vicinity of the injection wells. At particular locations, the hot moments with maximum rates negatively corresponded to their distance from the injection wells. Although bicarbonate injection enhanced local rates near the injection wells by a maximum of 39.4%, its effect at the field scale was limited to a maximum of 10.0%. We propose a rate-versus-measurement-length relationship (log R' = -0.63 log L - 2.20, with R' in mu mol/mg cell protein/day and L in meters) for orders-of-magnitude estimation of uranium bioreduction rates across scales. C1 [Bao, Chen; Wu, Hongfei; Li, Li] Penn State Univ, John & Willie Leone Dept Energy & Mineral Engn, University Pk, PA 16802 USA. [Li, Li] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA. [Li, Li] Penn State Univ, EESI, University Pk, PA 16802 USA. [Newcomer, Darrell] Pacific NW Natl Lab, Richland, WA 99352 USA. [Long, Philip E.; Williams, Kenneth H.] Lawrence Berkeley Natl Lab, Berkeley, CA 94701 USA. RP Li, L (reprint author), Penn State Univ, John & Willie Leone Dept Energy & Mineral Engn, University Pk, PA 16802 USA. EM lili@eme.psu.edu RI Williams, Kenneth/O-5181-2014; Long, Philip/F-5728-2013; Li, Li/A-6077-2008 OI Williams, Kenneth/0000-0002-3568-1155; Long, Philip/0000-0003-4152-5682; Li, Li/0000-0002-1641-3710 FU U.S. Department of Energy, Office of Sciences, Biological and Environmental Research [DE-AC02-05CH1123] FX Funding was provided by the U.S. Department of Energy, Office of Sciences, Biological and Environmental Research to the LBNL Sustainable Systems Scientific Focus Area under Award Number DE-AC02-05CH1123 and through a subcontract to Penn State University. We acknowledge the Rifle IFRC research team for facilitating collaboration and access to Rifle data. We acknowledge the associate editor Dr. Jorge Gardea-Torresdey for handling this paper and two anonymous reviewers for their diligent and constructive reviews that have significantly improved the paper. NR 83 TC 14 Z9 14 U1 5 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 2 PY 2014 VL 48 IS 17 BP 10116 EP 10127 DI 10.1021/es501060d PG 12 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AO3KY UT WOS:000341229300023 PM 25079237 ER PT J AU Lee, HJ Aiona, PK Laskin, A Laskin, J Nizkorodov, SA AF Lee, Hyun Ji (Julie) Aiona, Paige Kuuipo Laskin, Alexander Laskin, Julia Nizkorodov, Sergey A. TI Effect of Solar Radiation on the Optical Properties and Molecular Composition of Laboratory Proxies of Atmospheric Brown Carbon SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SECONDARY ORGANIC AEROSOL; IONIZATION MASS-SPECTROMETRY; RADICAL-INITIATED REACTIONS; LIGHT-ABSORPTION; GAS-PHASE; PHOTOCHEMICAL REDUCTION; AROMATIC-HYDROCARBONS; CLOUD-WATER; NAPHTHALENE; OXIDATION AB Sources, optical properties, and chemical composition of atmospheric brown carbon (BrC) aerosol are uncertain, making it challenging to estimate its contribution to radiative forcing. Furthermore, optical properties of BrC may change significantly during its atmospheric aging. We examined the effect of photolysis on the molecular composition, mass absorption coefficient, and fluorescence of secondary organic aerosol (SOA) prepared by high-NOx photooxidation of naphthalene (NAP SOA). Our experiments were designed to model photolysis processes of NAP SOA compounds dissolved in cloud or fog droplets. Aqueous solutions of NAP SOA were observed to photobleach (i.e., lose their ability to absorb visible radiation) with an effective half-life of similar to 15 h (with sun in its zenith) for the loss of near-UV (300-400 nm) absorbance. The molecular composition of NAP SOA was significantly modified by photolysis, with the average SOA formula changing from C14.1H14.5O5.1N0.085 to C11.8H14.9O4.5N0.023 after 4 h of irradiation. However, the average O/C ratio did not change significantly, suggesting that it is not a good metric for assessing the extent of photolysis-driven aging in NAP SOA (and in BrC in general). In contrast to NAP SOA, the photobleaching of BrC material produced by the reaction of limonene + ozone SOA with ammonia vapor (aged LIM/O-3 SOA) was much faster, but it did not result in a significant change in average molecular composition. The characteristic absorbance of the aged LIM/O-3 SOA in the 450-600 nm range decayed with an effective half-life of <0.5 h. These results emphasize the highly variable and dynamic nature of different types of atmospheric BrC. C1 [Lee, Hyun Ji (Julie); Aiona, Paige Kuuipo; Nizkorodov, Sergey A.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Laskin, Alexander] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Laskin, Julia] Pacific NW Natl Lab, Phys Sci Div, Richland, WA 99352 USA. RP Nizkorodov, SA (reprint author), Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. EM nizkorod@uci.edu RI Laskin, Julia/H-9974-2012; Laskin, Alexander/I-2574-2012; Nizkorodov, Sergey/I-4120-2014 OI Laskin, Julia/0000-0002-4533-9644; Laskin, Alexander/0000-0002-7836-8417; Nizkorodov, Sergey/0000-0003-0891-0052 FU U.S. Department of Commerce, National Oceanic and Atmospheric Administration through Climate Program Office's AC4 program [NA13OAR4310066, NA13OAR4310062]; NSF [AGS-1227579]; Office of Biological and Environmental Research of the U.S.; US DOE [DE-AC06-76RL0 1830] FX We acknowledge support by the U.S. Department of Commerce, National Oceanic and Atmospheric Administration through Climate Program Office's AC4 program, awards NA13OAR4310066 (PNNL) and NA13OAR4310062 (UCI). H.J.L. acknowledges support by the NSF grant AGS-1227579. The ESI/HR-MS analysis was performed at the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a national scientific user facility located at PNNL - and sponsored by the Office of Biological and Environmental Research of the U.S. PNNL is operated for US DOE by Battelle Memorial Institute under Contract No. DE-AC06-76RL0 1830. NR 69 TC 33 Z9 33 U1 10 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 2 PY 2014 VL 48 IS 17 BP 10217 EP 10226 DI 10.1021/es502515r PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AO3KY UT WOS:000341229300034 PM 25102050 ER PT J AU Horowitz, HM Jacob, DJ Amos, HM Streets, DG Sunderland, EM AF Horowitz, Hannah M. Jacob, Daniel J. Amos, Helen M. Streets, David G. Sunderland, Elsie M. TI Historical Mercury Releases from Commercial Products: Global Environmental Implications SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID MUNICIPAL SOLID-WASTE; ATMOSPHERIC MERCURY; METHYLMERCURY EXPOSURE; EMISSIONS; DEPOSITION; LANDFILLS; FLUXES; CORES; LAKES; BAY AB The intentional use of mercury (Hg) in products and processes ("commercial Hg") has contributed a large and previously unquantified anthropogenic source of Hg to the global environment over the industrial era, with major implications for Hg accumulation in environmental reservoirs. We present a global inventory of commercial Hg uses and releases to the atmosphere, water, soil, and landfills from 1850 to 2010. Previous inventories of anthropogenic Hg releases have focused almost exclusively on atmospheric emissions from "byproduct" sectors (e.g., fossil fuel combustion). Cumulative anthropogenic atmospheric Hg emissions since 1850 have recently been estimated at 215 Gg (only including commercial Hg releases from chlor-alkali production, waste incineration, and mining). We find that other commercial Hg uses and nonatmospheric releases from chlor-alkali and mining result in an additional 540 Gg of Hg released to the global environment since 1850 (air: 20%; water: 30%; soil: 30%; landfills: 20%). Some of this release has been sequestered in landfills and benthic sediments, but 310 Gg actively cycles among geochemical reservoirs and contributes to elevated present-day environmental Hg concentrations. Commercial Hg use peaked in 1970 and has declined sharply since. We use our inventory of historical environmental releases to force a global biogeochemical model that includes new estimates of the global burial in ocean margin sediments. Accounting for commercial Hg releases improves model consistency with observed atmospheric concentrations and associated historical trends. C1 [Horowitz, Hannah M.; Jacob, Daniel J.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Jacob, Daniel J.; Sunderland, Elsie M.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Streets, David G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Amos, Helen M.; Sunderland, Elsie M.] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02115 USA. RP Horowitz, HM (reprint author), Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA. EM hmhorow@fas.harvard.edu RI Sunderland, Elsie/D-5511-2014 OI Sunderland, Elsie/0000-0003-0386-9548 FU Harvard School of Engineering and Applied Sciences TomKat Fund; Atmospheric Chemistry Program of the National Science Foundation; NSF GRFP FX We acknowledge financial support for this work from the Harvard School of Engineering and Applied Sciences Tom KatFund and the Atmospheric Chemistry Program of the National Science Foundation. H.M.H. acknowledges support from NSF GRFP. We thank the editor and three anonymous reviewers for their thoughtful suggestions. NR 75 TC 39 Z9 41 U1 16 U2 102 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 2 PY 2014 VL 48 IS 17 BP 10242 EP 10250 DI 10.1021/es501337j PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AO3KY UT WOS:000341229300037 PM 25127072 ER PT J AU Hase, TPA Brewer, MS Arnalds, UB Ahlberg, M Kapaklis, V Bjoerck, M Bouchenoire, L Thompson, P Haskel, D Choi, Y Lang, J Sanchez-Hanke, C Hjorvarsson, B AF Hase, Thomas P. A. Brewer, Matthew S. Arnalds, Unnar B. Ahlberg, Martina Kapaklis, Vassilios Bjoerck, Matts Bouchenoire, Laurence Thompson, Paul Haskel, Daniel Choi, Yongseong Lang, Jonathan Sanchez-Hanke, Cecilia Hjoervarsson, Bjoergvin TI Proximity effects on dimensionality and magnetic ordering in Pd/Fe/Pd trialyers SO PHYSICAL REVIEW B LA English DT Article ID ULTRATHIN FILMS; FE/PD(100); ALLOYS; PHOTOEMISSION; TRANSITION; MORPHOLOGY; PALLADIUM; BEHAVIOR; CU(111); IRON AB The element-specific magnetization and ordering in trilayers consisting of 0.3-1.4 monolayer (ML) thick Fe layers embedded in Pd(001) has been determined using x-ray resonant magnetic scattering. The proximity to Fe induces a large moment in the Pd which extends similar to 2 nm from the interfaces. The magnetization as a function of temperature is found to differ significantly for the Fe and Pd sublattices: The Pd signal resembles the results obtained by magneto-optical techniques with an apparent three-dimensional (3D) to two-dimensional (2D) transition in spatial dimensionality for Fe thickness below similar to 1 ML. In stark contrast, the Fe data exhibits a 2D behavior. No ferromagnetic signal is obtained from Fe below the 2D percolation limit in Fe coverage (similar to 0.7 ML), while Pd shows a ferromagnetic response for all samples. The results are attributed to the temperature dependence of the susceptibility of Pd and a profound local anisotropy of submonolayered Fe. C1 [Hase, Thomas P. A.; Brewer, Matthew S.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Arnalds, Unnar B.; Ahlberg, Martina; Kapaklis, Vassilios; Bjoerck, Matts; Hjoervarsson, Bjoergvin] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Bouchenoire, Laurence; Thompson, Paul] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Bouchenoire, Laurence; Thompson, Paul] European Synchrotron Radiat Facil, XMaS Beamline, F-38043 Grenoble, France. [Haskel, Daniel; Choi, Yongseong; Lang, Jonathan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Sanchez-Hanke, Cecilia] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Hase, TPA (reprint author), Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. RI Arnalds, Unnar/L-9315-2015; OI Arnalds, Unnar/0000-0002-5988-917X; Hjorvarsson, Bjorgvin/0000-0003-1803-9467 FU UK-EPSRC; Swedish Research Council (VR); Knut and Alice Wallenberg Foundation (KAW); Swedish Foundation for International Cooperation in Research and Higher Education (STINT); U.S. DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886, DE-AC02-06CH11357]; EPSRC FX The authors acknowledge the financial support of the UK-EPSRC and the Swedish Research Council (VR) as well as the Knut and Alice Wallenberg Foundation (KAW), the Swedish Foundation for International Cooperation in Research and Higher Education (STINT). Work undertaken at the NSLS and the APS were supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contracts No. DE-AC02-98CH10886 and No. DE-AC02-06CH11357. XMaS is a midrange facility supported by EPSRC. We are indebted to Simon Brown, Oier Bikondoa, Didier Wermeille, Phil Ryan, David Kearney, and Mike McDowell for invaluable support during beamtime. NR 34 TC 5 Z9 5 U1 1 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 2 PY 2014 VL 90 IS 10 AR 104403 DI 10.1103/PhysRevB.90.104403 PG 6 WC Physics, Condensed Matter SC Physics GA AO3NU UT WOS:000341239100007 ER PT J AU Kennes, DM Meden, V Vasseur, R AF Kennes, D. M. Meden, V. Vasseur, R. TI Universal quench dynamics of interacting quantum impurity systems SO PHYSICAL REVIEW B LA English DT Article ID DIMENSIONAL ELECTRON-GAS; LUTTINGER LIQUID; ORTHOGONALITY CATASTROPHE; RENORMALIZATION-GROUP; INTERFACE DEFECTS; KONDO PROBLEM; ENTANGLEMENT; MODEL; CHAINS; STATES AB The equilibrium physics of quantum impurities frequently involves a universal crossover from weak to strong reservoir-impurity coupling, characterized by single-parameter scaling and an energy scale T-K (Kondo temperature) that breaks scale invariance. For the noninteracting resonant level model, the nonequilibrium time evolution of the Loschmidt echo after a local quantum quench was recently computed explicitly [R. Vasseur, K. Trinh, S. Haas, and H. Saleur, Phys. Rev. Lett. 110, 240601 (2013)]. It shows single-parameter scaling with variable T(K)t. Here, we scrutinize whether similar universal dynamics can be observed in various interacting quantum impurity systems. Using density matrix and functional renormalization group approaches, we analyze the time evolution resulting from abruptly coupling two noninteracting Fermi or interacting Luttinger liquid leads via a quantum dot or a direct link. We also consider the case of a single Luttinger liquid lead suddenly coupled to a quantum dot. We investigate whether the field-theory predictions for the universal scaling as well as for the large-time behavior successfully describe the time evolution of the Loschmidt echo and the entanglement entropy of microscopic models. Our study shows that for the considered local quench protocols the above quantum impurity models fall into a class of problems for which the nonequilibrium dynamics can largely be understood based on the knowledge of the corresponding equilibrium physics. C1 [Kennes, D. M.; Meden, V.] Rhein Westfal TH Aachen, Inst Theorie Stat Phys, D-52056 Aachen, Germany. [Kennes, D. M.; Meden, V.] JARA Fundamentals Future Informat Technol, D-52056 Aachen, Germany. [Vasseur, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Vasseur, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Kennes, DM (reprint author), Rhein Westfal TH Aachen, Inst Theorie Stat Phys, D-52056 Aachen, Germany. FU Quantum Materials program of LBNL; Forschergruppe 723 of the DFG; US Department of Energy [DE-FG03-01ER45908] FX We are grateful to the MPIPKS Dresden for hosting the workshop "Quantum Many Body Systems out of Equilibrium" where this work was initiated. This work was supported by the Quantum Materials program of LBNL (RV) and the Forschergruppe 723 of the DFG (DMK and VM). DMK thanks the University of California, Berkeley for hospitality during his visit in summer 2013. RV also wishes to thank H. Saleur and J.E. Moore for discussions, and the University of Southern California for hospitality and support through the US Department of Energy (Grant No. DE-FG03-01ER45908). NR 70 TC 10 Z9 10 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 2 PY 2014 VL 90 IS 11 AR 115101 DI 10.1103/PhysRevB.90.115101 PG 13 WC Physics, Condensed Matter SC Physics GA AO3NW UT WOS:000341239300001 ER PT J AU Leiner, J Thampy, V Christianson, AD Abernathy, DL Stone, MB Lumsden, MD Sefat, AS Sales, BC Hu, J Mao, ZQ Bao, W Broholm, C AF Leiner, J. Thampy, V. Christianson, A. D. Abernathy, D. L. Stone, M. B. Lumsden, M. D. Sefat, A. S. Sales, B. C. Hu, Jin Mao, Zhiqiang Bao, Wei Broholm, C. TI Modified magnetism within the coherence volume of superconducting Fe1+delta SexTe1-x SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; SPIN EXCITATIONS; PAIRING MECHANISM; CONDENSATION; RESONANCE; ENERGY AB Neutron scattering is used to probe magnetic interactions as superconductivity develops in optimally doped Fe1+delta SexTe1-x. Applying the first moment sum rule to comprehensive neutron scattering data, we extract the change in magnetic exchange energy Delta[J(R-R')< S-R . S-R'>] in the superconducting state referenced to the normal state. Oscillatory changes are observed for Fe-Fe displacements |Delta R| < xi where xi = 1.3(1) nm is the superconducting coherence length. Dominated by a large reduction in the second nearest neighbor exchange energy [-1.2(2) meV/Fe], the overall reduction in magnetic interaction energy is Delta < H-mag > = -0.31(9) meV/Fe. Comparison to the superconducting condensation energy Delta E-SC = -0.013(1) meV/Fe, which we extract from specific heat data, suggests the modified magnetism we probe drives superconductivity in Fe1+delta SexTe1-x. C1 [Leiner, J.; Christianson, A. D.; Abernathy, D. L.; Stone, M. B.; Lumsden, M. D.; Broholm, C.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Thampy, V.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Thampy, V.; Broholm, C.] Johns Hopkins Univ, Inst Quantum Matter, Baltimore, MD 21218 USA. [Thampy, V.; Broholm, C.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Sefat, A. S.; Sales, B. C.] Oak Ridge Natl Lab, Correlated Electron Mat Grp, Oak Ridge, TN 37831 USA. [Hu, Jin; Mao, Zhiqiang] Tulane Univ, Dept Phys, New Orleans, LA 70118 USA. [Bao, Wei] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. [Broholm, C.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Leiner, J (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. EM leinerjc@ornl.gov RI Stone, Matthew/G-3275-2011; Hu, Jin/C-4141-2014; Bao, Wei/E-9988-2011; Abernathy, Douglas/A-3038-2012; christianson, andrew/A-3277-2016; BL18, ARCS/A-3000-2012; Sefat, Athena/R-5457-2016; Lumsden, Mark/F-5366-2012 OI Stone, Matthew/0000-0001-7884-9715; Hu, Jin/0000-0003-0080-4239; Bao, Wei/0000-0002-2105-461X; Abernathy, Douglas/0000-0002-3533-003X; christianson, andrew/0000-0003-3369-5884; Sefat, Athena/0000-0002-5596-3504; Lumsden, Mark/0000-0002-5472-9660 FU UT-Battelle LDRD [3211-2440]; National Science Foundation [DMR-0944772]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy; NSF [DMR-1205469]; National Basic Research Program of China [2012CB921700, 2011CBA00112]; National Science Foundation of China [11034012, 11190024] FX This project was supported by UT-Battelle LDRD No. 3211-2440. Facilities utilized at NIST were supported in part by the National Science Foundation under Agreement No. DMR-0944772. Research conducted at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. A.S. and B.C.S. were supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy. The work at Tulane is supported by the NSF under Grant No. DMR-1205469. The work at RUC was supported by the National Basic Research Program of China Grants No. 2012CB921700 and No. 2011CBA00112, and by the National Science Foundation of China Grants No. 11034012 and No. 11190024. NR 34 TC 2 Z9 2 U1 1 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 2 PY 2014 VL 90 IS 10 AR 100501 DI 10.1103/PhysRevB.90.100501 PG 5 WC Physics, Condensed Matter SC Physics GA AO3NU UT WOS:000341239100002 ER PT J AU Ma, J Deng, HX Luo, JW Wei, SH AF Ma, Jie Deng, Hui-Xiong Luo, Jun-Wei Wei, Su-Huai TI Origin of the failed ensemble average rule for the band gaps of disordered nonisovalent semiconductor alloys SO PHYSICAL REVIEW B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; QUASI-RANDOM STRUCTURES; 1ST-PRINCIPLES CALCULATION; METALS; TRANSITION AB Recent calculations show that the band gaps of the nonisovalent random alloys such as Zn0.5Sn0.5P are much smaller than those of their ordered phases; that is, the band gap of the random alloy is not the ensemble averaged value of the ordered structures, in contrast to the trend observed in most isovalent semiconductor alloys and predicted by the cluster expansion theory. We show that this abnormal behavior is caused by the strong wave-function localization of the band-edge states in the nonisovalent alloys. Moreover, we show that although the disordered phase of the isovalent alloys is similar to the random phase, for the nonisovalent alloy, the disordered phase deviates significantly from the random phase and the fully random phase is not achievable under the equilibrium growth conditions. C1 [Ma, Jie; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Deng, Hui-Xiong; Luo, Jun-Wei] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China. RP Ma, J (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM hxdeng@semi.ac.cn; swei@nrel.gov RI LUO, JUNWEI/B-6545-2013 FU U.S. DOE [DE-AC36-08GO28308]; NERSC [DE-AC02-05CH11231]; National Basic Research Program of China (973 Program) [G2009CB929300]; National Natural Science Foundation of China [61121491, 11104264] FX This work was funded by the U.S. DOE (Contract No. DE-AC36-08GO28308), and some of the calculations were carried out using the NERSC supercomputers (Contract No. DE-AC02-05CH11231). The work at IS, CAS was supported by the National Basic Research Program of China (973 Program) Grant No. G2009CB929300 and the National Natural Science Foundation of China under Grants Nos. 61121491 and 11104264. NR 30 TC 3 Z9 3 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 2 PY 2014 VL 90 IS 11 AR 115201 DI 10.1103/PhysRevB.90.115201 PG 5 WC Physics, Condensed Matter SC Physics GA AO3NW UT WOS:000341239300007 ER PT J AU O'Neal, KR Liu, Z Miller, JS Fishman, RS Musfeldt, JL AF O'Neal, K. R. Liu, Z. Miller, Joel S. Fishman, R. S. Musfeldt, J. L. TI Pressure-driven high-to-low spin transition in the bimetallic quantum magnet [Ru-2(O2CMe)(4)](3)[Cr(CN)(6)] SO PHYSICAL REVIEW B LA English DT Article ID MOLECULE-BASED MAGNETS; PHASE-DIAGRAM; AXIAL LIGANDS; GROUND-STATE; COMPLEXES; SPECTRA; CHEMISTRY; FIELD; SPECTROSCOPY; ELECTRONS AB Synchrotron-based infrared and Raman spectroscopies were brought together with diamond anvil cell techniques and an analysis of the magnetic properties to investigate the pressure-induced high -> low spin transition in [Ru-2(O2CMe)(4)](3)[Cr(CN)(6)]. The extended nature of the diruthenium wave function combined with coupling to chromium-related local lattice distortions changes the relative energies of the pi* and delta* orbitals and drives the high -> low spin transition on the mixed-valence diruthenium complex. This is a rare example of an externally controlled metamagnetic transition in which both spin-orbit and spin-lattice interactions contribute to the mechanism. C1 [O'Neal, K. R.; Musfeldt, J. L.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Liu, Z.] Carnegie Inst Sci, Geophys Lab, Washington, DC USA. [Miller, Joel S.] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. [Fishman, R. S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP O'Neal, KR (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. FU National Science Foundation [DMR-1063880, DMR-11063630]; US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; US Department of Energy [DE-AC98-06CH10886]; COMPRES under NSF [EAR 11-57758]; CDAC [DE-FC03-03N00144] FX This research was funded by the National Science Foundation under Grants No. DMR-1063880 (J.L.M.) and No. DMR-11063630 (J.S.M.) as well as by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (R.S.F.). Work at the National Synchrotron Light Source at Brookhaven National Laboratory was supported by the US Department of Energy under Contract No. DE-AC98-06CH10886. The use of U2A beamline was supported by COMPRES under NSF Cooperative Agreement EAR 11-57758 and CDAC (DE-FC03-03N00144). NR 63 TC 3 Z9 3 U1 3 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 2 PY 2014 VL 90 IS 10 AR 104301 DI 10.1103/PhysRevB.90.104301 PG 6 WC Physics, Condensed Matter SC Physics GA AO3NU UT WOS:000341239100004 ER PT J AU Casperson, RJ Burke, JT Scielzo, ND Escher, JE McCleskey, E McCleskey, M Saastamoinen, A Spiridon, A Ratkiewicz, A Blanc, A Kurokawa, M Pizzone, RG AF Casperson, R. J. Burke, J. T. Scielzo, N. D. Escher, J. E. McCleskey, E. McCleskey, M. Saastamoinen, A. Spiridon, A. Ratkiewicz, A. Blanc, A. Kurokawa, M. Pizzone, R. G. TI Measurement of the Am-240(n, f) cross section using the surrogate-ratio method SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA LIBRARY; ACTINIDE NUCLEI; FISSION; SCIENCE; TECHNOLOGY AB The Am-240(n, f) cross section has been measured for the first time above 4 MeV, using the surrogate-ratio method over the neutron energy range of 200 keV to 14 MeV. The reactions Am-243(p, tf) and U-238(p, tf), which proceed through the fissioning excited nuclei Am-241* and U-236*, were used as surrogates for the desired Am-240(n, f) and U-235(n, f) reactions. The experiment was fielded using the STARLiTeR detector system with a recently commissioned VME-based data acquisition system. The 38.4-MeV proton beam used in these measurements was provided by the K150 cyclotron at the Texas A&M Cyclotron Institute. The measured Am-240(n, f) cross section disagrees with many of the most recent evaluations, and a reevaluation is recommended. C1 [Casperson, R. J.; Burke, J. T.; Scielzo, N. D.; Escher, J. E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [McCleskey, E.; McCleskey, M.; Saastamoinen, A.; Spiridon, A.] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. [Ratkiewicz, A.] Rutgers State Univ, Dept Phys & Astron, New Brunswick, NJ 08903 USA. [Blanc, A.] Inst Laue Langevin, F-38042 Grenoble 9, France. [Kurokawa, M.] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan. [Pizzone, R. G.] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95123 Catania, Italy. RP Casperson, RJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM casperson1@llnl.gov RI Burke, Jason/I-4580-2012; Pizzone, Rosario/I-4527-2015 OI Pizzone, Rosario/0000-0003-2436-6640 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Department of Energy's NNSA Office of Defense Nuclear Nonproliferation Research Development; Texas A&M Cyclotron Institute from NNSA [DE-FG52-09NA29467]; Texas A&M Cyclotron Institute from DOE Office of Nuclear Physics [DE-FG02-93ER40773] FX We wish to acknowledge the efforts of the Texas A&M Cyclotron Institute's staff for their outstanding efforts on this first STARLiTeR experiment. In particular, we thank George Kim, Fred Abegglen, Erik Yendrey, Henry Clark, and Leigh Gathings. We would also like to thank Frank S. Dietrich (LLNL) for useful discussions. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, the Department of Energy's NNSA Office of Defense Nuclear Nonproliferation Research & Development, and the Texas A&M Cyclotron Institute under Grants No. DE-FG52-09NA29467 from NNSA and No. DE-FG02-93ER40773 from the DOE Office of Nuclear Physics. NR 32 TC 3 Z9 3 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD SEP 2 PY 2014 VL 90 IS 3 AR 034601 DI 10.1103/PhysRevC.90.034601 PG 9 WC Physics, Nuclear SC Physics GA AO3OH UT WOS:000341240800002 ER PT J AU St-Onge, DA Sydora, RD AF St-Onge, D. A. Sydora, R. D. TI Kubo conductivity tensor for two- and three-dimensional magnetic nulls SO PHYSICAL REVIEW E LA English DT Article ID PARTICLE-ACCELERATION; GEOMAGNETIC TAIL; COLLISIONLESS CONDUCTIVITY; NEUTRAL POINT; PLASMA SHEET; RECONNECTION; FIELDS; TRANSPORT; MODELS AB The complete Kubo conductivity tensor is computed in two-and three-dimensional linear magnetic null systems using collisionless single-particle simulations. Regions of chaotic charged-particle dynamics are constructed for each case. It is found that stochastic frequency mixing of particle bounce motion, as well as gyromotion, contribute significantly to the conductivity. The conductivity curves are well approximated by power laws over a certain frequency range and the ac conductivity is found to be an order of magnitude smaller than the dc value, leading to enhanced resistivity, particularly near the cyclotron frequency. The ac conductivities must be accounted for in computation of the total dissipation. C1 [St-Onge, D. A.; Sydora, R. D.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. RP St-Onge, DA (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM dstonge@pppl.gov; rsydora@ualberta.ca FU Natural Science and Engineering Research Council (NSERC) of Canada; NSERC FX This work was supported by the Natural Science and Engineering Research Council (NSERC) of Canada and D.St.O. thanks NSERC for a Postgraduate Research Scholarship. We also thank Westgrid Canada for providing computational resources for this research. NR 33 TC 0 Z9 0 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD SEP 2 PY 2014 VL 90 IS 3 AR 033103 DI 10.1103/PhysRevE.90.033103 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA AO3QA UT WOS:000341247200013 PM 25314543 ER PT J AU Aartsen, MG Ackermann, M Adams, J Aguilar, JA Ahlers, M Ahrens, M Altmann, D Anderson, T Arguelles, C Arlen, TC Auffenberg, J Bai, X Barwick, SW Baum, V Beatty, JJ Tjus, JB Becker, KH BenZvi, S Berghaus, P Berley, D Bernardini, E Bernhard, A Besson, DZ Binder, G Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Bose, D Boser, S Botner, O Brayeur, L Bretz, HP Brown, AM Casey, J Casier, M Chirkin, D Christov, A Christy, B Clark, K Classen, L Clevermann, F Coenders, S Cowen, DF Silva, AHC Danninger, M Daughhetee, J Davis, JC Day, M de Andre, JPAM De Clercq, C De Ridder, S Desiati, P de Vries, KD de With, M DeYoung, T Diaz-Velez, JC Dunkman, M Eagan, R Eberhardt, B Eichmann, B Eisch, J Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feintzeig, J Felde, J Feusels, T Filimonov, K Finley, C Fischer-Wasels, T Flis, S Franckowiak, A Frantzen, K Fuchs, T Gaisser, TK Gallagher, J Gerhardt, L Gier, D Gladstone, L Glusenkamp, T Goldschmidt, A Golup, G Gonzalez, JG Goodman, JA Gora, D Grandmont, DT Grant, D Gretskov, P Groh, JC Gross, A Ha, C Haack, C Ismail, AH Hallen, P Hallgren, A Halzen, F Hanson, K Hebecker, D Heereman, D Heinen, D Helbing, K Hellauer, R Hellwig, D Hickford, S Hill, GC Hoffman, KD Hoffmann, R Homeier, A Hoshina, K Huang, F Huelsnitz, W Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobi, E Jacobsen, J Jagielski, K Japaridze, GS Jero, K Jlelati, O Jurkovic, M Kaminsky, B Kappes, A Karg, T Karle, A Kauer, M Kelley, JL Kheirandish, A Kiryluk, J Klas, J Klein, SR Kohne, JH Kohnen, G Kolanoski, H Koob, A Koepke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Kriesten, A Krings, K Kroll, G Kunnen, J Kurahashi, N Kuwabara, T Labare, M Larsen, DT Larson, MJ Lesiak-Bzdak, M Leuermann, M Leute, J Luenemann, J Macias, O Madsen, J Maggi, G Maruyama, R Mase, K Matis, HS McNally, F Meagher, K Meli, A Meures, T Miarecki, S Middell, E Middlemas, E Milke, N Miller, J Mohrmann, L Montaruli, T Morse, R Nahnhauer, R Naumann, U Niederhausen, H Nowicki, SC Nygren, DR Obertacke, A Odrowski, S Olivas, A Omairat, A O'Murchadha, A Palczewski, T Paul, L Penek, O Pepper, JA Heros, CPDL Pfendner, C Pieloth, D Pinat, E Posselt, J Price, PB Przybylski, GT Putz, J Quinnan, M Radel, L Rameez, M Rawlins, K Redl, P Rees, I Reimann, R Resconi, E Rhode, W Richman, M Riedel, B Robertson, S Rodrigues, JP Rongen, M Rott, C Ruhe, T Ruzybayev, B Ryckbosch, D Saba, SM Sander, HG Santander, M Sarkar, S Schatto, K Scheriau, F Schmidt, T Schmitz, M Schoenen, S Schoneberg, S Schonwald, A Schukraft, A Schulte, L Schulz, O Seckel, D Sestayo, Y Seunarine, S Shanidze, R Sheremata, C Smith, MWE Soldin, D Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stanisha, NA Stasik, A Stezelberger, T Stokstad, RG Stossl, A Strahler, EA Strom, R Strotjohann, NL Sullivan, GW Taavola, H Taboada, I Tamburro, A Tepe, A Ter-Antonyan, S Terliuk, A Tesic, G Tilav, S Toale, PA Tobin, MN Tosi, D Tselengidou, M Unger, E Usner, M Vallecorsa, S van Eijndhoven, N Vandenbroucke, J van Santen, J Vehring, M Voge, M Vraeghe, M Walck, C Wallraff, M Weaver, C Wellons, M Wendt, C Westerhoff, S Whelan, BJ Whitehorn, N Wichary, C Wiebe, K Wiebusch, CH Williams, DR Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, DL Xu, XW Yanez, JP Yodh, G Yoshida, S Zarzhitsky, P Ziemann, J Zierke, S Zoll, M AF Aartsen, M. G. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Ahrens, M. Altmann, D. Anderson, T. Arguelles, C. Arlen, T. C. Auffenberg, J. Bai, X. Barwick, S. W. Baum, V. Beatty, J. J. Tjus, J. Becker Becker, K. -H. BenZvi, S. Berghaus, P. Berley, D. Bernardini, E. Bernhard, A. Besson, D. Z. Binder, G. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Bose, D. Boeser, S. Botner, O. Brayeur, L. Bretz, H. -P. Brown, A. M. Casey, J. Casier, M. Chirkin, D. Christov, A. Christy, B. Clark, K. Classen, L. Clevermann, F. Coenders, S. Cowen, D. F. Silva, A. H. Cruz Danninger, M. Daughhetee, J. Davis, J. C. Day, M. de Andre, J. P. A. M. De Clercq, C. De Ridder, S. Desiati, P. de Vries, K. D. de With, M. DeYoung, T. Diaz-Velez, J. C. Dunkman, M. Eagan, R. Eberhardt, B. Eichmann, B. Eisch, J. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feintzeig, J. Felde, J. Feusels, T. Filimonov, K. Finley, C. Fischer-Wasels, T. Flis, S. Franckowiak, A. Frantzen, K. Fuchs, T. Gaisser, T. K. Gallagher, J. Gerhardt, L. Gier, D. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Golup, G. Gonzalez, J. G. Goodman, J. A. Gora, D. Grandmont, D. T. Grant, D. Gretskov, P. Groh, J. C. Gross, A. Ha, C. Haack, C. Ismail, A. Haj Hallen, P. Hallgren, A. Halzen, F. Hanson, K. Hebecker, D. Heereman, D. Heinen, D. Helbing, K. Hellauer, R. Hellwig, D. Hickford, S. Hill, G. C. Hoffman, K. D. Hoffmann, R. Homeier, A. Hoshina, K. Huang, F. Huelsnitz, W. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobi, E. Jacobsen, J. Jagielski, K. Japaridze, G. S. Jero, K. Jlelati, O. Jurkovic, M. Kaminsky, B. Kappes, A. Karg, T. Karle, A. Kauer, M. Kelley, J. L. Kheirandish, A. Kiryluk, J. Klaes, J. Klein, S. R. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koob, A. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Kriesten, A. Krings, K. Kroll, G. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Larsen, D. T. Larson, M. J. Lesiak-Bzdak, M. Leuermann, M. Leute, J. Luenemann, J. Macias, O. Madsen, J. Maggi, G. Maruyama, R. Mase, K. Matis, H. S. McNally, F. Meagher, K. Meli, A. Meures, T. Miarecki, S. Middell, E. Middlemas, E. Milke, N. Miller, J. Mohrmann, L. Montaruli, T. Morse, R. Nahnhauer, R. Naumann, U. Niederhausen, H. Nowicki, S. C. Nygren, D. R. Obertacke, A. Odrowski, S. Olivas, A. Omairat, A. O'Murchadha, A. Palczewski, T. Paul, L. Penek, O. Pepper, J. A. Heros, C. Perez de los Pfendner, C. Pieloth, D. Pinat, E. Posselt, J. Price, P. B. Przybylski, G. T. Puetz, J. Quinnan, M. Raedel, L. Rameez, M. Rawlins, K. Redl, P. Rees, I. Reimann, R. Resconi, E. Rhode, W. Richman, M. Riedel, B. Robertson, S. Rodrigues, J. P. Rongen, M. Rott, C. Ruhe, T. Ruzybayev, B. Ryckbosch, D. Saba, S. M. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Scheriau, F. Schmidt, T. Schmitz, M. Schoenen, S. Schoeneberg, S. Schoenwald, A. Schukraft, A. Schulte, L. Schulz, O. Seckel, D. Sestayo, Y. Seunarine, S. Shanidze, R. Sheremata, C. Smith, M. W. E. Soldin, D. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stanisha, N. A. Stasik, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Strahler, E. A. Strom, R. Strotjohann, N. L. Sullivan, G. W. Taavola, H. Taboada, I. Tamburro, A. Tepe, A. Ter-Antonyan, S. Terliuk, A. Tesic, G. Tilav, S. Toale, P. A. Tobin, M. N. Tosi, D. Tselengidou, M. Unger, E. Usner, M. Vallecorsa, S. van Eijndhoven, N. Vandenbroucke, J. van Santen, J. Vehring, M. Voge, M. Vraeghe, M. Walck, C. Wallraff, M. Weaver, Ch. Wellons, M. Wendt, C. Westerhoff, S. Whelan, B. J. Whitehorn, N. Wichary, C. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, D. L. Xu, X. W. Yanez, J. P. Yodh, G. Yoshida, S. Zarzhitsky, P. Ziemann, J. Zierke, S. Zoll, M. CA IceCube Collaboration TI Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data SO PHYSICAL REVIEW LETTERS LA English DT Article ID GAMMA-RAY BURSTS; ACTIVE GALACTIC NUCLEI; FLUX; SEARCH; TELESCOPE; ASTRONOMY; EMISSION; BLAZARS; LEPTONS; JETS AB A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV-PeV range at the level of 10(-8) GeV cm(-2) s(-1) sr(-1) per flavor and reject a purely atmospheric explanation for the combined three-year data at 5.7 sigma. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotropic arrival directions, suggesting either numerous or spatially extended sources. The three-year data set, with a live time of 988 days, contains a total of 37 neutrino candidate events with deposited energies ranging from 30 to 2000 TeV. The 2000-TeV event is the highest-energy neutrino interaction ever observed. C1 [Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Gretskov, P.; Haack, C.; Hallen, P.; Hellwig, D.; Koob, A.; Kriesten, A.; Krings, K.; Leuermann, M.; Paul, L.; Penek, O.; Raedel, L.; Reimann, R.; Rongen, M.; Schoenen, S.; Schukraft, A.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Aartsen, M. G.; Hill, G. C.; Robertson, S.; Whelan, B. J.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Japaridze, G. S.; Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Gerhardt, L.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Binder, G.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; Whitehorn, N.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Binder, G.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [de With, M.; Kolanoski, H.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Tjus, J. Becker; Eichmann, B.; Fedynitch, A.; Saba, S. M.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Boeser, S.; Franckowiak, A.; Hebecker, D.; Homeier, A.; Kowalski, M.; Schulte, L.; Stasik, A.; Strotjohann, N. L.; Usner, M.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [de Vries, K. D.; Hanson, K.; Heereman, D.; Meures, T.; O'Murchadha, A.; Pinat, E.] Univ Libre Brussels, Fac Sci, B-1050 Brussels, Belgium. [Brayeur, L.; Casier, M.; De Clercq, C.; Golup, G.; Kunnen, J.; Maggi, G.; Miller, J.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Ishihara, A.; Mase, K.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Brown, A. M.; Hickford, S.; Macias, O.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Felde, J.; Goodman, J. A.; Hellauer, R.; Hoffmann, R.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Pfendner, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astro Particle Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Koskinen, D. J.; Larson, M. J.; Sarkar, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Clevermann, F.; Frantzen, K.; Fuchs, T.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Ruhe, T.; Scheriau, F.; Schmitz, M.; Ziemann, J.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Grandmont, D. T.; Grant, D.; Nowicki, S. C.; Odrowski, S.; Sheremata, C.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Aguilar, J. A.; Ahlers, M.; Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [De Ridder, S.; Feusels, T.; Ismail, A. Haj; Jlelati, O.; Labare, M.; Meli, A.; Ryckbosch, D.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Ahlers, M.; Arguelles, C.; BenZvi, S.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; Kopper, C.; Kurahashi, N.; Larsen, D. T.; Luenemann, J.; Maruyama, R.; McNally, F.; Middlemas, E.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Santen, J.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Ahlers, M.; Arguelles, C.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; Kroll, G.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Santen, J.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Baum, V.; Koepke, L.; Luenemann, J.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Bernhard, A.; Coenders, S.; Gross, A.; Jurkovic, M.; Leute, J.; Resconi, E.; Sestayo, Y.] Tech Univ Munich, D-85748 Garching, Germany. [Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Hussain, S.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Bai, X.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Ahrens, M.; Danninger, M.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Ahrens, M.; Danninger, M.; Hultqvist, K.; Walck, C.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bose, D.; Rott, C.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Clark, K.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Palczewski, T.; Pepper, J. A.; Toale, P. A.; Williams, D. R.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Anderson, T.; Arlen, T. C.; Cowen, D. F.; DeYoung, T.; Dunkman, M.; Eagan, R.; Groh, J. C.; Huang, F.; Quinnan, M.; Smith, M. W. E.; Stanisha, N. A.; Tesic, G.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Boersma, D. J.; Botner, O.; Euler, S.; Hallgren, A.; Heros, C. Perez de los; Strom, R.; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.; Tepe, A.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H. -P.; Silva, A. H. Cruz; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stoessl, A.; Terliuk, A.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. RP Feintzeig, J (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. RI Aguilar Sanchez, Juan Antonio/H-4467-2015; Tjus, Julia/G-8145-2012; Sarkar, Subir/G-5978-2011; Koskinen, David/G-3236-2014; Auffenberg, Jan/D-3954-2014; Beatty, James/D-9310-2011; Wiebusch, Christopher/G-6490-2012; Taavola, Henric/B-4497-2011; Maruyama, Reina/A-1064-2013 OI Groh, John/0000-0001-9880-3634; Larsen, Dag Toppe/0000-0002-9898-2174; Perez de los Heros, Carlos/0000-0002-2084-5866; Strotjohann, Nora Linn/0000-0002-4667-6730; Arguelles Delgado, Carlos/0000-0003-4186-4182; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Sarkar, Subir/0000-0002-3542-858X; Koskinen, David/0000-0002-0514-5917; Auffenberg, Jan/0000-0002-1185-9094; Beatty, James/0000-0003-0481-4952; Wiebusch, Christopher/0000-0002-6418-3008; Rott, Carsten/0000-0002-6958-6033; Taavola, Henric/0000-0002-2604-2810; Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479; Maruyama, Reina/0000-0003-2794-512X FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory of Wisconsin (GLOW) grid infrastructure at the University ofWisconsin-Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy and National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada; WestGrid and Compute/Calcul Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Helmholtz Alliance for Astroparticle Physics (HAP); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to Encourage Scientific and Technological Research in Industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF) FX We acknowledge support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory of Wisconsin (GLOW) grid infrastructure at the University ofWisconsin-Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to Encourage Scientific and Technological Research in Industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF). Some of the results in this paper have been derived using the HEALPix [75] package. We thank R. Laha, J. Beacom, K. Murase, S. Razzaque, and N. Harrington for helpful discussions. NR 74 TC 283 Z9 286 U1 4 U2 40 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 2 PY 2014 VL 113 IS 10 AR 101101 DI 10.1103/PhysRevLett.113.101101 PG 8 WC Physics, Multidisciplinary SC Physics GA AO3QH UT WOS:000341248100003 PM 25238345 ER PT J AU Schenke, B Venugopalan, R AF Schenke, Bjoern Venugopalan, Raju TI Eccentric Protons? Sensitivity of Flow to System Size and Shape in p plus p, p plus Pb, and Pb plus Pb Collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID ANGULAR-CORRELATIONS; PPB COLLISIONS; LONG-RANGE; MULTIPLICITY; SIDE AB We determine the transverse system size of the initial nonequilibrium Glasma state and of the hydrodynamically evolving fireball as a function of produced charged particles in p + p, p + Pb, and Pb + Pb collisions at the Large Hadron Collider. Our results show features similar to those of recent measurements of Hanbury Brown-Twiss (HBT) radii by the ALICE Collaboration. Azimuthal anisotropy coefficients v(n) generated by combining the early time Glasma dynamics with viscous fluid dynamics in Pb + Pb collisions are in excellent agreement with experimental data for a wide range of centralities. In particular, event-by-event distributions of the vn values agree with the experimental data out to fairly peripheral centrality bins. In striking contrast, our results for p + Pb collisions significantly underestimate the magnitude and do not reproduce the centrality dependence of data for v 2 and v 3 coefficients. We argue that the measured vn data and HBT radii strongly constrain the shapes of initial parton distributions across system sizes that would be compatible with a flow interpretation in p + Pb collisions. Alternately, additional sources of correlations may be required to describe the systematics of long-range rapidity correlations in p + p and p + Pb collisions. C1 [Schenke, Bjoern; Venugopalan, Raju] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Schenke, B (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; DOE [DE-AC02-98CH10886] FX This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. B.P.S. and R. V. are supported under DOE Contract No. DE-AC02-98CH10886. NR 42 TC 39 Z9 39 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 2 PY 2014 VL 113 IS 10 AR 102301 DI 10.1103/PhysRevLett.113.102301 PG 5 WC Physics, Multidisciplinary SC Physics GA AO3QH UT WOS:000341248100004 PM 25238350 ER PT J AU Zhang, J Myatt, JF Short, RW Maximov, AV Vu, HX DuBois, DF Russell, DA AF Zhang, J. Myatt, J. F. Short, R. W. Maximov, A. V. Vu, H. X. DuBois, D. F. Russell, D. A. TI Multiple Beam Two-Plasmon Decay: Linear Threshold to Nonlinear Saturation in Three Dimensions SO PHYSICAL REVIEW LETTERS LA English DT Article ID NATIONAL IGNITION FACILITY; PARAMETRIC-INSTABILITIES; INHOMOGENEOUS-PLASMA; TURBULENCE; SPECTRA AB The linear stability of multiple coherent laser beams with respect to two-plasmon-decay instability in an inhomogeneous plasma in three dimensions has been determined. Cooperation between beams leads to absolute instability of long-wavelength decays, while shorter-wavelength shared waves are shown to saturate convectively. The multibeam, in its absolutely unstable form, has the lowest threshold for most cases considered. Nonlinear calculations using a three-dimensional extended Zakharov model show that Langmuir turbulence created by the absolute instability modifies the convective saturation of the shorter-wavelength modes, which are seen to dominate at late times. C1 [Zhang, J.; Myatt, J. F.; Short, R. W.; Maximov, A. V.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Zhang, J.; Myatt, J. F.; Maximov, A. V.] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA. [Vu, H. X.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [DuBois, D. F.; Russell, D. A.] Lodestar Res Corp, Boulder, CO 80301 USA. [DuBois, D. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Zhang, J (reprint author), Univ Rochester, Laser Energet Lab, 250 East River Rd, Rochester, NY 14623 USA. EM jzha@lle.rochester.edu FU U.S. Department of Energy Office of Inertial Confinement Fusion [DE-FC52-08NA28302]; University of Rochester; New York State Energy Research and Development Authority FX This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this Letter. NR 34 TC 12 Z9 12 U1 6 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 2 PY 2014 VL 113 IS 10 AR 105001 DI 10.1103/PhysRevLett.113.105001 PG 5 WC Physics, Multidisciplinary SC Physics GA AO3QH UT WOS:000341248100006 PM 25238364 ER PT J AU Parameswaran, SA Grover, T Abanin, DA Pesin, DA Vishwanath, A AF Parameswaran, S. A. Grover, T. Abanin, D. A. Pesin, D. A. Vishwanath, A. TI Probing the Chiral Anomaly with Nonlocal Transport in Three-Dimensional Topological Semimetals SO PHYSICAL REVIEW X LA English DT Article ID GRAPHENE; MODEL AB Weyl semimetals are three-dimensional crystalline systems where pairs of bands touch at points in momentum space, termed Weyl nodes, that are characterized by a definite topological charge: the chirality. Consequently, they exhibit the Adler-Bell-Jackiw anomaly, which in this condensed-matter realization implies that the application of parallel electric (E) and magnetic (B) fields pumps electrons between nodes of opposite chirality at a rate proportional to E . B. We argue that this pumping is measurable via nonlocal transport experiments, in the limit of weak internode scattering. Specifically, we show that as a consequence of the anomaly, applying a local magnetic field parallel to an injected current induces a valley imbalance that diffuses over long distances. A probe magnetic field can then convert this imbalance into a measurable voltage drop far from source and drain. Such nonlocal transport vanishes when the injected current and magnetic field are orthogonal and therefore serves as a test of the chiral anomaly. We further demonstrate that a similar effect should also characterize Dirac semimetals-recently reported to have been observed in experiments-where the coexistence of a pair of Weyl nodes at a single point in the Brillouin zone is protected by a crystal symmetry. Since the nodes are analogous to valley degrees of freedom in semiconductors, the existence of the anomaly suggests that valley currents in three-dimensional topological semimetals can be controlled using electric fields, which has potential practical "valleytronic" applications. C1 [Parameswaran, S. A.; Vishwanath, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Parameswaran, S. A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Grover, T.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Abanin, D. A.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Abanin, D. A.] Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada. [Pesin, D. A.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Pesin, D. A.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Vishwanath, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Parameswaran, SA (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. FU Simons Foundation; NSF [PHYS-1066293]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Institute for Quantum Information and Matter, a NSF Physics Frontiers Center; Gordon and Betty Moore Foundation [GBMF1250] FX We thank L. Balents, J. H. Bardarson, A. Burkov, Y.-B. Kim, R. Ilan, N. P. Ong, and B. Z. Spivak for useful discussions on transport; F. de Juan, I. Kimchi, P. Dumitrescu, N. P. Ong, and especially A. Potter for conversations on Dirac semimetals; and an anonymous referee for comments on an earlier version of this manuscript. This work was supported in part by the Simons Foundation (S. A. P.); the NSF under Grant No. PHYS-1066293 and the hospitality of the Aspen Center for Physics (S. A. P. and D. A. P.); the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (A. V.); and the Institute for Quantum Information and Matter, a NSF Physics Frontiers Center, with support of the Gordon and Betty Moore Foundation through Grant No. GBMF1250 (D. A. P.). NR 39 TC 120 Z9 120 U1 12 U2 79 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2160-3308 J9 PHYS REV X JI Phys. Rev. X PD SEP 2 PY 2014 VL 4 IS 3 AR 031035 DI 10.1103/PhysRevX.4.031035 PG 12 WC Physics, Multidisciplinary SC Physics GA AO3QO UT WOS:000341249000001 ER PT J AU Macintosh, B Graham, JR Ingraham, P Konopacky, Q Marois, C Perrin, M Poyneer, L Bauman, B Barman, T Burrows, AS Cardwell, A Chilcote, J De Rosa, RJ Dillon, D Doyon, R Dunn, J Erikson, D Fitzgerald, MP Gavel, D Goodsell, S Hartung, M Hibon, P Kalas, P Larkin, J Maire, J Marchis, F Marley, MS McBride, J Millar-Blanchaer, M Morzinski, K Norton, A Oppenheimer, BR Palmer, D Patience, J Pueyo, L Rantakyro, F Sadakuni, N Saddlemyer, L Savransky, D Serio, A Soummer, R Sivaramakrishnan, A Song, I Thomas, S Wallace, JK Wiktorowicz, S Wolff, S AF Macintosh, Bruce Graham, James R. Ingraham, Patrick Konopacky, Quinn Marois, Christian Perrin, Marshall Poyneer, Lisa Bauman, Brian Barman, Travis Burrows, Adam S. Cardwell, Andrew Chilcote, Jeffrey De Rosa, Robert J. Dillon, Daren Doyon, Rene Dunn, Jennifer Erikson, Darren Fitzgerald, Michael P. Gavel, Donald Goodsell, Stephen Hartung, Markus Hibon, Pascale Kalas, Paul Larkin, James Maire, Jerome Marchis, Franck Marley, Mark S. McBride, James Millar-Blanchaer, Max Morzinski, Katie Norton, Andrew Oppenheimer, B. R. Palmer, David Patience, Jennifer Pueyo, Laurent Rantakyro, Fredrik Sadakuni, Naru Saddlemyer, Leslie Savransky, Dmitry Serio, Andrew Soummer, Remi Sivaramakrishnan, Anand Song, Inseok Thomas, Sandrine Wallace, J. Kent Wiktorowicz, Sloane Wolff, Schuyler TI First light of the Gemini Planet Imager SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE high-contrast imaging; extreme adaptive optics; debris disks ID ADAPTIVE-OPTICS SYSTEM; POINT-SPREAD FUNCTIONS; BETA-PICTORIS; FINDING CAMPAIGN; FOURIER-TRANSFORM; GIANT PLANETS; DEBRIS DISK; HR 8799; FREQUENCY; EXOPLANET AB The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-sigma contrast of 10(6) at 0.75 arcseconds and 10(5) at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 +/- 6 milliarcseconds (mas) and position angle 211.8 +/- 0.5 degrees. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of 9.0(-0.4)(+0.8) AU near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017. C1 [Macintosh, Bruce; Poyneer, Lisa; Bauman, Brian; Palmer, David] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Macintosh, Bruce; Ingraham, Patrick] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Graham, James R.; Kalas, Paul; McBride, James] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Konopacky, Quinn; Maire, Jerome; Millar-Blanchaer, Max] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Marois, Christian; Dunn, Jennifer; Erikson, Darren; Saddlemyer, Leslie] Natl Res Council Canada Herzberg, Victoria, BC V9E 2E7, Canada. [Perrin, Marshall; Pueyo, Laurent; Soummer, Remi; Sivaramakrishnan, Anand] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Barman, Travis] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Burrows, Adam S.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Cardwell, Andrew; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Rantakyro, Fredrik; Sadakuni, Naru; Serio, Andrew] Gemini Observ, Hilo, HI 96720 USA. [Chilcote, Jeffrey; Fitzgerald, Michael P.; Larkin, James] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [De Rosa, Robert J.; Patience, Jennifer] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Dillon, Daren; Gavel, Donald; Norton, Andrew; Wiktorowicz, Sloane] Univ Calif Santa Cruz, Univ Calif Observ Lick Observ, Santa Cruz, CA 95064 USA. [Doyon, Rene] Univ Montreal, Observ Mt Megant, Montreal, PQ H3T 1J4, Canada. [Doyon, Rene] Univ Montreal, Dept Phys, Montreal, PQ H3T 1J4, Canada. [Marchis, Franck] Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA. [Marley, Mark S.; Thomas, Sandrine] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Morzinski, Katie] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Oppenheimer, B. R.; Sivaramakrishnan, Anand] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Savransky, Dmitry] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA. [Song, Inseok] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Wallace, J. Kent] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Wolff, Schuyler] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RP Macintosh, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM bmacintosh@stanford.edu RI Marley, Mark/I-4704-2013; Savransky, Dmitry/M-1298-2014; OI Savransky, Dmitry/0000-0002-8711-7206; Marley, Mark/0000-0002-5251-2943; Morzinski, Katie/0000-0002-1384-0063; Fitzgerald, Michael/0000-0002-0176-8973 FU Gemini Observatory; National Science Foundation (NSF) Center for Adaptive Optics at University of California, Santa Cruz; NSF [AST-0909188, AST-1211562]; NASA Origins [NNX11AD21G, NNX10AH31G]; University of California Office of the President [LFRP-118057]; Dunlap Institute, University of Toronto; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; California Institute of Technology Jet Propulsion Laboratory - NASA through the Sagan Fellowship Program FX We thank the international team of engineers and scientists who worked to make GPI a reality. We especially recognize the unique contributions of Gary Sommargren, Steven Varlese, Christopher Lockwood, Russell Makidon, Murray Fletcher, and Vincent Fesquet, who passed away during the course of this project. We acknowledge financial support of the Gemini Observatory, the National Science Foundation (NSF) Center for Adaptive Optics at University of California, Santa Cruz, the NSF (AST-0909188; AST-1211562), NASA Origins (NNX11AD21G and NNX10AH31G), the University of California Office of the President (LFRP-118057), and the Dunlap Institute, University of Toronto. Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and under contract with the California Institute of Technology Jet Propulsion Laboratory funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. NR 51 TC 121 Z9 121 U1 1 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 2 PY 2014 VL 111 IS 35 BP 12661 EP 12666 DI 10.1073/pnas.1304215111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO3LN UT WOS:000341230800041 PM 24821792 ER PT J AU Frauenfelder, H Fenimore, PW Young, RD AF Frauenfelder, Hans Fenimore, Paul W. Young, Robert D. TI A wave-mechanical model of incoherent quasielastic scattering in complex systems SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE quasielastic neutron scattering; neutron wave packet; protein free-energy landscape ID INELASTIC NEUTRON-SCATTERING; PROTEIN DYNAMICS; MOSSBAUER-SPECTROSCOPY; FLUCTUATIONS; ENERGY; TRANSITION; LANDSCAPES; MYOGLOBIN; RESONANCE; HYDRATION AB Quasielastic incoherent neutron scattering (QENS) is an important tool for the exploration of the dynamics of complex systems such as biomolecules, liquids, and glasses. The dynamics is reflected in the energy spectra of the scattered neutrons. Conventionally these spectra are decomposed into a narrow elastic line and a broad quasielastic band. The band is interpreted as being caused by Doppler broadening due to spatial motion of the target molecules. We propose a quantum-mechanical model in which there is no separate elastic line. The quasielastic band is composed of sharp lines with twice the natural line width, shifted from the center by a random walk of the protein in the free-energy landscape of the target molecule. The walk is driven by vibrations and by external fluctuations. We first explore the model with the Mossbauer effect. In the subsequent application to QENS we treat the incoming neutron as a de Broglie wave packet. While the wave packet passes the protons in the protein and the hydration shell it exchanges energy with the protein during the passage time of about 100 ns. The energy exchange broadens the ensemble spectrum. Because the exchange involves the free-energy landscape of the protein, the QENS not only provides insight into the protein dynamics, but it may also illuminate the free-energy landscape of the protein-solvent system. C1 [Frauenfelder, Hans; Fenimore, Paul W.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Young, Robert D.] Arizona State Univ, Ctr Biol Phys, Tempe, AZ 85287 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, POB 1663, Los Alamos, NM 87545 USA. EM hansfrauenfelder@me.com FU Los Alamos National Laboratory's Directed Research and Development Program under Department of Energy [DE-AC52-06NA25396] FX We have received useful criticism and input from Salvatore Magazu, Benjamin McMahon, Federica Migliardo, Fritz Parak, David Pines, Timothy Sage, Jeremy Smith, and Peter Wolynes. The work has been supported by Los Alamos National Laboratory's Directed Research and Development Program under Department of Energy Contract DE-AC52-06NA25396. NR 46 TC 4 Z9 4 U1 3 U2 30 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 2 PY 2014 VL 111 IS 35 BP 12764 EP 12768 DI 10.1073/pnas.1411781111 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO3LN UT WOS:000341230800059 PM 25136125 ER PT J AU Sawaya, MR Cascio, D Gingery, M Rodriguez, J Goldschmidt, L Colletier, JP Messerschmidt, MM Boutet, S Koglin, JE Williams, GJ Brewster, AS Nass, K Hattne, J Botha, S Doak, RB Shoeman, RL DePonte, DP Park, HW Federici, BA Sauter, NK Schlichting, I Eisenberg, DS AF Sawaya, Michael R. Cascio, Duilio Gingery, Mari Rodriguez, Jose Goldschmidt, Lukasz Colletier, Jacques-Philippe Messerschmidt, Marc M. Boutet, Sebastien Koglin, Jason E. Williams, Garth J. Brewster, Aaron S. Nass, Karol Hattne, Johan Botha, Sabine Doak, R. Bruce Shoeman, Robert L. DePonte, Daniel P. Park, Hyun-Woo Federici, Brian A. Sauter, Nicholas K. Schlichting, Ilme Eisenberg, David S. TI Protein crystal structure obtained at 2.9 angstrom resolution from injecting bacterial cells into an X-ray free-electron laser beam SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE XFEL; Cry3A insecticidal toxin; serial femtosecond crystallography ID SERIAL FEMTOSECOND CRYSTALLOGRAPHY; THURINGIENSIS VAR TENEBRIONIS; BACILLUS-THURINGIENSIS; ROOM-TEMPERATURE; DELTA-ENDOTOXIN; PHOTOSYSTEM-II; IN-VIVO; NANOCRYSTALLOGRAPHY; DIFFRACTION; REFINEMENT AB It has long been known that toxins produced by Bacillus thuringiensis (Bt) are stored in the bacterial cells in crystalline form. Here we describe the structure determination of the Cry3A toxin found naturally crystallized within Bt cells. When whole Bt cells were streamed into an X-ray free-electron laser beam we found that scattering from other cell components did not obscure diffraction from the crystals. The resolution limits of the best diffraction images collected from cells were the same as from isolated crystals. The integrity of the cells at the moment of diffraction is unclear; however, given the short time (similar to 5 mu s) between exiting the injector to intersecting with the X-ray beam, our result is a 2.9-angstrom-resolution structure of a crystalline protein as it exists in a living cell. The study suggests that authentic in vivo diffraction studies can produce atomic-level structural information. C1 [Sawaya, Michael R.; Cascio, Duilio; Gingery, Mari; Rodriguez, Jose; Goldschmidt, Lukasz; Eisenberg, David S.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Sawaya, Michael R.; Cascio, Duilio; Gingery, Mari; Rodriguez, Jose; Goldschmidt, Lukasz; Eisenberg, David S.] Univ Calif Los Angeles, Dept Biol Chem, Los Angeles, CA 90095 USA. [Eisenberg, David S.] Univ Calif Los Angeles, Howard Hughes Med Inst, Los Angeles, CA 90095 USA. [Colletier, Jacques-Philippe] Univ Grenoble Alpes, F-38044 Grenoble, France. [Colletier, Jacques-Philippe] CNRS, F-38044 Grenoble, France. [Colletier, Jacques-Philippe] Inst Biol Struct, Commissariat Energie Atom, F-38044 Grenoble, France. [Messerschmidt, Marc M.; Boutet, Sebastien; Koglin, Jason E.; Williams, Garth J.] Natl Accelerator Lab, SLAC, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Brewster, Aaron S.; Hattne, Johan; Sauter, Nicholas K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Nass, Karol; Doak, R. Bruce; Shoeman, Robert L.; Schlichting, Ilme] Max Planck Inst Med Res, D-69120 Heidelberg, Germany. [Doak, R. Bruce] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Park, Hyun-Woo; Federici, Brian A.] Univ Calif Riverside, Dept Entomol, Riverside, CA 92521 USA. [Federici, Brian A.] Univ Calif Riverside, Grad Program Cell Mol & Dev Biol, Riverside, CA 92521 USA. RP Eisenberg, DS (reprint author), Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. EM david@mbi.ucla.edu RI Messerschmidt, Marc/F-3796-2010; Schlichting, Ilme/I-1339-2013; Sauter, Nicholas/K-3430-2012 OI Messerschmidt, Marc/0000-0002-8641-3302; FU National Center for Research Resources from the National Institutes of Health (NIH) [5P41RR015301-10]; National Institute of General Medical Sciences from the National Institutes of Health (NIH) [8 P41 GM103403-10]; US Department of Energy (DOE) [DE-AC02-06CH11357]; DOE [DE-FC02-02ER63421]; DOE Office of Basic Energy Sciences; Linac Coherent Light Source Ultrafast Science Instruments project; Keck Foundation [2843398]; NIH [AG-029430, GM095887, GM102520, AI45817]; National Science Foundation [MCB 0958111]; Howard Hughes Medical Institute; Max Planck Society FX We thank M. Capel, K. Rajashankar, N. Sukumar, J. Schuermann, I. Kourinov, and F. Murphy [Northeastern Collaborative Access Team Beamline 24-ID at the Advanced Photon Source, which is supported by National Center for Research Resources Grant 5P41RR015301-10 and National Institute of General Medical Sciences Grant 8 P41 GM103403-10 from the National Institutes of Health (NIH)]. Use of the Advanced Photon Source is supported by the US Department of Energy (DOE) under Contract DE-AC02-06CH11357. We also thank Harold Aschmann and the University of California, Los Angeles (UCLA)-DOE X-ray Crystallography Core Facility, which is supported by DOE Grant DE-FC02-02ER63421; and Heather McFarlane and Daniel Anderson at UCLA for help with cell preparation and filtration. Portions of this research were carried out at the Linac Coherent Light Source, a National User Facility operated by Stanford University on behalf of the DOE Office of Basic Energy Sciences. The CXI instrument was funded by the Linac Coherent Light Source Ultrafast Science Instruments project funded by the DOE Office of Basic Energy Sciences. This work was supported by Keck Foundation Grant 2843398, NIH Grant AG-029430, National Science Foundation Grant MCB 0958111, DOE Grant DE-FC02-02ER63421, NIH Grants GM095887 and GM102520 for data-processing methods (to N. K. S.), NIH Grant AI45817 (to B. A. F.), Howard Hughes Medical Institute, and the Max Planck Society. NR 35 TC 37 Z9 38 U1 4 U2 47 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 2 PY 2014 VL 111 IS 35 BP 12769 EP 12774 DI 10.1073/pnas.1413456111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO3LN UT WOS:000341230800060 PM 25136092 ER PT J AU Pirbadian, S Barchinger, SE Leung, KM Byun, HS Jangir, Y Bouhenni, RA Reed, SB Romine, MF Saffarini, DA Shi, L Gorby, YA Golbeck, JH El-Naggar, MY AF Pirbadian, Sahand Barchinger, Sarah E. Leung, Kar Man Byun, Hye Suk Jangir, Yamini Bouhenni, Rachida A. Reed, Samantha B. Romine, Margaret F. Saffarini, Daad A. Shi, Liang Gorby, Yuri A. Golbeck, John H. El-Naggar, Mohamed Y. TI Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE extracellular electron transfer; bioelectronics; respiration; membrane cytochromes ID BACTERIAL NANOWIRES; MICROBIAL NANOWIRES; STRAIN MR-1; PLANT-CELLS; CONDUCTIVITY; ENDOCYTOSIS; REDUCTION; PROTEINS; VESICLES; BIOFILMS AB Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic-abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report, to our knowledge, the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella oneidensis MR-1. Live fluorescence measurements, immunolabeling, and quantitative gene expression analysis point to S. oneidensis MR-1 nanowires as extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures as previously thought. These membrane extensions are associated with outer membrane vesicles, structures ubiquitous in Gram-negative bacteria, and are consistent with bacterial nanowires that mediate long-range EET by the previously proposed multistep redox hopping mechanism. Redox-functionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution. C1 [Pirbadian, Sahand; Leung, Kar Man; Byun, Hye Suk; Jangir, Yamini; El-Naggar, Mohamed Y.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Barchinger, Sarah E.; Golbeck, John H.] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA. [Bouhenni, Rachida A.; Saffarini, Daad A.] Univ Wisconsin, Dept Biol Sci, Milwaukee, WI 53211 USA. [Reed, Samantha B.; Romine, Margaret F.; Shi, Liang] Pacific NW Natl Lab, Richland, WA 99354 USA. [Gorby, Yuri A.] Rensselaer Polytech Inst, Dept Civil & Environm Engn, Troy, NY 12180 USA. [Golbeck, John H.] Penn State Univ, Dept Chem, University Pk, PA 16802 USA. [El-Naggar, Mohamed Y.] Univ So Calif, Mol & Computat Biol Sect, Dept Biol Sci, Los Angeles, CA 90089 USA. RP El-Naggar, MY (reprint author), Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. EM mnaggar@usc.edu OI Romine, Margaret/0000-0002-0968-7641 FU Air Force Office of Scientific Research Young Investigator Research Program Grant [FA9550-10-1-0144]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy Grant [EF-1104831]; Shewanella Federation consortium - Genomics: Genomes to Life program of the US Department of Energy Office of Biological and Environmental Research FX The pHGE-PtacTorAGFP plasmid was generously provided by Prof. H. Gao (Zhejiang University), and pProbeNT was kindly provided by Dr. Steven Lindow (University of California, Berkeley). Atomic Force and Electron Microscopy were performed at the University of Southern California Centers of Excellence in NanoBioPhysics and Electron Microscopy and Microanalysis. The development of the in vivo imaging platform and chemostat cultivation was funded by Air Force Office of Scientific Research Young Investigator Research Program Grant FA9550-10-1-0144 (to M.Y.E.-N.). Redox sensing measurements, compositional analysis, and the localization of multiheme cytochromes were funded by Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy Grant DE-FG02-13ER16415 (to M.Y.E.-N.). RT-PCR experiments and genetic analyses were funded by National Science Foundation Grant EF-1104831 (to J.H.G.). M.F.R., S.B.R., R.A.B., and D.A.S. were supported under the Shewanella Federation consortium funded by the Genomics: Genomes to Life program of the US Department of Energy Office of Biological and Environmental Research. NR 43 TC 92 Z9 94 U1 22 U2 194 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 2 PY 2014 VL 111 IS 35 BP 12883 EP 12888 DI 10.1073/pnas.1410551111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO3LN UT WOS:000341230800079 PM 25143589 ER PT J AU Socha, AM Parthasarathi, R Shi, J Pattathil, S Whyte, D Bergeron, M George, A Tran, K Stavila, V Venkatachalam, S Hahn, MG Simmons, BA Singh, S AF Socha, Aaron M. Parthasarathi, Ramakrishnan Shi, Jian Pattathil, Sivakumar Whyte, Dorian Bergeron, Maxime George, Anthe Tran, Kim Stavila, Vitalie Venkatachalam, Sivasankari Hahn, Michael G. Simmons, Blake A. Singh, Seema TI Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE renewable chemicals; bioenergy; lignocellulose conversion; saccharification; green chemistry ID LIGNOCELLULOSIC BIOMASS; REDUCTIVE AMINATION; WOOD PROPERTIES; CELLULOSE; SWITCHGRASS; ELECTROLYTES; SOLVENT; RECALCITRANCE; REGENERATION; TECHNOLOGIES AB Ionic liquids (ILs), solvents composed entirely of paired ions, have been used in a variety of process chemistry and renewable energy applications. Imidazolium-based ILs effectively dissolve biomass and represent a remarkable platform for biomass pretreatment. Although efficient, imidazolium cations are expensive and thus limited in their large-scale industrial deployment. To replace imidazolium-based ILs with those derived from renewable sources, we synthesized a series of tertiary amine-based ILs from aromatic aldehydes derived from lignin and hemicellulose, the major by-products of lignocellulosic biofuel production. Compositional analysis of switchgrass pretreated with ILs derived from vanillin, p-anisaldehyde, and furfural confirmed their efficacy. Enzymatic hydrolysis of pretreated switchgrass allowed for direct comparison of sugar yields and lignin removal between biomass-derived ILs and 1-ethyl-3-methylimidazolium acetate. Although the rate of cellulose hydrolysis for switchgrass pretreated with biomass-derived ILs was slightly slower than that of 1-ethyl-3-methylimidazolium acetate, 90-95% glucose and 70-75% xylose yields were obtained for these samples after 72-h incubation. Molecular modeling was used to compare IL solvent parameters with experimentally obtained compositional analysis data. Effective pretreatment of lignocellulose was further investigated by powder X-ray diffraction and glycome profiling of switchgrass cell walls. These studies showed different cellulose structural changes and differences in hemicellulose epitopes between switchgrass pretreatments with the aforementioned ILs. Our concept of deriving ILs from lignocellulosic biomass shows significant potential for the realization of a "closed-loop" process for future lignocellulosic biorefineries and has far-reaching economic impacts for other IL-based process technology currently using ILs synthesized from petroleum sources. C1 [Socha, Aaron M.; Parthasarathi, Ramakrishnan; Shi, Jian; Whyte, Dorian; Bergeron, Maxime; George, Anthe; Tran, Kim; Simmons, Blake A.; Singh, Seema] Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA 94608 USA. [Socha, Aaron M.; Whyte, Dorian] CUNY, Bronx Community Coll, Ctr Sustainable Energy, Bronx, NY 10453 USA. [Socha, Aaron M.; Whyte, Dorian] CUNY, Bronx Community Coll, Dept Chem & Chem Technol, Bronx, NY 10453 USA. [Parthasarathi, Ramakrishnan; Shi, Jian; George, Anthe; Tran, Kim; Stavila, Vitalie; Simmons, Blake A.; Singh, Seema] Sandia Natl Labs, Biol & Mat Sci Ctr, Livermore, CA 94551 USA. [Pattathil, Sivakumar; Venkatachalam, Sivasankari; Hahn, Michael G.] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Pattathil, Sivakumar; Hahn, Michael G.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Singh, S (reprint author), Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA 94608 USA. EM seesing@sandia.gov RI Parthasarathi, Ramakrishnan/C-2093-2008; OI Parthasarathi, Ramakrishnan/0000-0001-5417-5867; Hahn, Michael/0000-0003-2136-5191; , Sivakumar Pattathil/0000-0003-3870-4137 FU Office of Science, Office of Biological and Environmental Research, US Department of Energy [DE-AC02-05CH11231]; Research Foundation, City University of New York [65102-00 43]; Office of Biological and Environmental Research, Office of Science, US Department of Energy [DE-AC05-00OR22725]; National Science Foundation Plant Genome Program [DBI-0421683, IOS-0923992] FX We thank Novozymes for their generous donation of Ctec2 and Htec2 enzymes, and Christian Rodriguez [Bronx Community College (BCC)] for his kind assistance with NMR measurements. This work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, US Department of Energy, under Contract DE-AC02-05CH11231. Additional funding was provided by Research Foundation, City University of New York (65102-00 43). This research used resources of the National Energy Research Scientific Computing Center and BCC. The glycome profiling was supported by the BioEnergy Science Center administered by Oak Ridge National Laboratory and funded by Grant DE-AC05-00OR22725 from the Office of Biological and Environmental Research, Office of Science, US Department of Energy. The generation of the CCRC series of plant cell wall glycan-directed monoclonal antibodies used in this work was supported by the National Science Foundation Plant Genome Program (DBI-0421683 and IOS-0923992). NR 63 TC 39 Z9 40 U1 14 U2 135 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 2 PY 2014 VL 111 IS 35 BP E3587 EP E3595 DI 10.1073/pnas.1405685111 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO3LN UT WOS:000341230800005 PM 25136131 ER PT J AU Ning, PQ Wang, F Zhang, D AF Ning, Puqi Wang, Fei Zhang, Di TI A High Density 250 degrees C Junction Temperature SiC Power Module Development SO IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS LA English DT Article DE High-temperature techniques; semiconductor device packaging; silicon carbide ID FIN HEAT SINKS; HARMONIC CANCELLATION; GATE DRIVER; DESIGN; CONVERTERS; METHODOLOGY; VOLTAGE; PWM AB A high temperature wirebond-packaged phase-leg power module was designed, developed, and tested. Details of the layout, gate drive, and cooling system designs are described. Continuous power tests confirmed that the designed high-density power module can be successfully operated with 250 degrees C junction temperature. The power module was further utilized in an all-SiC rectifier system that achieves a 2.78 kW/lb power density. C1 [Ning, Puqi] Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China. [Wang, Fei] Oak Ridge Natl Lab, Knoxville, TN 37831 USA. [Wang, Fei] Univ Tennessee, Knoxville, TN 37916 USA. [Zhang, Di] GE Co, Global Res Ctr, Power Convers Syst Lab, Niskayuna, NY 12309 USA. RP Ning, PQ (reprint author), Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China. EM ning06@vt.edu; fred.wang@utk.edu; zhang@ge.com NR 48 TC 5 Z9 5 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6777 J9 IEEE J EM SEL TOP P JI IEEE J. Emerg. Sel. Top. Power Electron. PD SEP PY 2014 VL 2 IS 3 BP 415 EP 424 DI 10.1109/JESTPE.2013.2290054 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA CN7II UT WOS:000358607400007 ER PT J AU Glover, MD Shepherd, P Francis, AM Mudholkar, M Mantooth, HA Ericson, MN Frank, SS Britton, CL Marlino, LD McNutt, TR Barkley, A Whitaker, B Lostetter, AB AF Glover, Michael D. Shepherd, Paul Francis, A. Matt Mudholkar, Mihir Mantooth, Homer Alan Ericson, Milton Nance Frank, S. Shane Britton, Charles L. Marlino, Laura D. McNutt, Ty R. Barkley, Adam Whitaker, Bret Lostetter, Alexander B. TI A UVLO Circuit in SiC Compatible With Power MOSFET Integration SO IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS LA English DT Article DE MOSFET circuits; power MOSFET; silicon carbide (SiC); temperature ID GATE DRIVER; SILICON AB The design and test of the first undervoltage lock-out circuit implemented in a low-voltage 4H silicon carbide process capable of single-chip integration with power MOSFETs is presented. The lock-out circuit, a block of the protection circuitry of a single-chip gate driver topology designed for use in a plug-in hybrid vehicle charger, was demonstrated to have rise/fall times compatible with a MOSFET switching speed of 250 kHz while operating over the targeted operating temperature range between 0 degrees C and 200 degrees C. Captured data show the circuit to be functional over a temperature range from -55 degrees C to 300 degrees C. The design of the circuit and test results is presented. C1 [Glover, Michael D.; Shepherd, Paul; Francis, A. Matt; Mudholkar, Mihir; Mantooth, Homer Alan] Univ Arkansas, Fayetteville, AR 72701 USA. [Ericson, Milton Nance; Frank, S. Shane; Britton, Charles L.; Marlino, Laura D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [McNutt, Ty R.; Barkley, Adam; Whitaker, Bret; Lostetter, Alexander B.] Arkansas Power Elect Int Inc, Fayetteville, AR 72701 USA. RP Glover, MD (reprint author), Univ Arkansas, Fayetteville, AR 72701 USA. EM mglover@uark.edu; pshepher@uark.edu; amfranci@uark.edu; mihir.mudholkar@gmail.com; mantooth@uark.edu; ericsonmn@ornl.gov; frankss@ornl.gov; brittoncl@ornl.gov; marlinold@ornl.gov; tmcnutt@apei.net; abarkle@apei.net; bwhitak@apei.net; alostet@apei.net FU agency of the United States Government FX The authors wish to acknowledge the contributions made by S.-H. Ryu and D. Grider at Cree in fabricating the SiC circuitry tested. The information, data, or work presented herein was funded in part by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 17 TC 5 Z9 5 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6777 J9 IEEE J EM SEL TOP P JI IEEE J. Emerg. Sel. Top. Power Electron. PD SEP PY 2014 VL 2 IS 3 BP 425 EP 433 DI 10.1109/JESTPE.2014.2313119 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA CN7II UT WOS:000358607400008 ER PT J AU Liang, ZX Ning, PQ Wang, F Marlino, L AF Liang, Zhenxian Ning, Puqi Wang, Fred Marlino, Laura TI A Phase-Leg Power Module Packaged With Optimized Planar Interconnections and Integrated Double-Sided Cooling SO IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS LA English DT Article DE Automotive power converter; integrated cooling; power electronics packaging; power module ID SEMICONDUCTOR-DEVICES; VEHICLES; SYSTEM AB A multilayer planar interconnection structure was used for the packaging of liquid-cooled automotive power modules. The power semiconductor switch dies are sandwiched between two symmetric substrates, providing planar electrical interconnections and insulation. Two minicoolers are directly bonded to the outside of these substrates, allowing doublesided, integrated cooling. The power switch dies are orientated in a face-up/face-down 3-D interconnection configuration to form a phase leg. The bonding areas between the dies and substrates, and the substrates and coolers are designed to use identical materials and are formed in one heating process. A special packaging process has been developed so that high-efficiency production can be implemented. Incorporating high-efficiency cooling and low-loss electrical interconnections allows dramatic improvements in systems' cost, and electrical conversion efficiency. These features are demonstrated in a planar bond-packaged prototype of a 200 A/1200 V phase-leg power module made of silicon (Si) insulated gate bipolar transistor and PiN diodes. C1 [Liang, Zhenxian; Ning, Puqi; Marlino, Laura] Oak Ridge Natl Lab, Power Elect & Elect Machinery Grp, Knoxville, TN 37932 USA. [Wang, Fred] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. RP Liang, ZX (reprint author), Oak Ridge Natl Lab, Power Elect & Elect Machinery Grp, Knoxville, TN 37932 USA. EM liangz@ornl.gov; npq@mail.iee.ac.cn; fred.wang@utk.edu; marlinold@ornl.gov FU Advanced Power Electronics and Electric Motors Program; DOE Vehicle Technologies Office through UT Battelle, LLC [DE-AC05-00OR22725] FX This work was supported in part by the Advanced Power Electronics and Electric Motors Program and in part by DOE Vehicle Technologies Office under Contract DE-AC05-00OR22725 through UT Battelle, LLC. Recommended for publication by Associate Editor Alan H. Mantooth. NR 23 TC 2 Z9 2 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6777 J9 IEEE J EM SEL TOP P JI IEEE J. Emerg. Sel. Top. Power Electron. PD SEP PY 2014 VL 2 IS 3 BP 443 EP 450 DI 10.1109/JESTPE.2014.2312292 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA CN7II UT WOS:000358607400010 ER PT J AU Ning, PQ Liang, ZX Wang, F AF Ning, Puqi Liang, Zhenxian Wang, Fred TI Power Module and Cooling System Thermal Performance Evaluation for HEV Application SO IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS LA English DT Article DE Electric vehicles; semiconductor device packaging ID IMPEDANCE; IGBTS; MODEL AB To further reduce system costs and package volumes of hybrid electric vehicles, it is important to optimize the power module and associated cooling system. This paper reports the thermal performance evaluation and analysis of three commercial power modules and a proposed planar module with different cooling system. Results show that power electronics can be better merged with the mechanical environment. Experiments and simulations were conducted to help further optimization. C1 [Ning, Puqi; Liang, Zhenxian] Oak Ridge Natl Lab, Power Elect & Elect Machinery Grp, Oak Ridge, TN 37831 USA. [Wang, Fred] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. RP Ning, PQ (reprint author), Chinese Acad Sci, Inst Elect Engn, Lab Power Elect & Power Convers, Beijing 100190, Peoples R China. EM npq@mail.iee.ac.cn; liangz@ornl.gov; fred.wang@utk.edu FU Advanced Power Electronics; Electric Motors Program, DOE Office of Vehicle Technologies, UT Battelle, LLC [DE-AC05-00OR22725] FX This work was supported in part by the Advanced Power Electronics and in part by the Electric Motors Program, DOE Office of Vehicle Technologies, UT Battelle, LLC, under Contract DE-AC05-00OR22725. NR 21 TC 3 Z9 3 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6777 J9 IEEE J EM SEL TOP P JI IEEE J. Emerg. Sel. Top. Power Electron. PD SEP PY 2014 VL 2 IS 3 BP 487 EP 495 DI 10.1109/JESTPE.2014.2303143 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA CN7II UT WOS:000358607400016 ER PT J AU Hoke, A Brissette, A Smith, K Pratt, A Maksimovic, D AF Hoke, Anderson Brissette, Alexander Smith, Kandler Pratt, Annabelle Maksimovic, Dragan TI Accounting for Lithium-Ion Battery Degradation in Electric Vehicle Charging Optimization SO IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS LA English DT Article DE Battery chargers; battery degradation; charge optimization; electric vehicles (EVs); lithium-ion (Li-ion) ID ENERGY-STORAGE SYSTEMS; AUTOMOTIVE APPLICATIONS; AGING MECHANISMS; MODEL; PERSPECTIVE; COST; WEAR; CELL AB This paper presents a method for minimizing the cost of vehicle battery charging given variable electricity costs while also accounting for estimated costs of battery degradation using a simplified lithium-ion battery lifetime model. The simple battery lifetime model, also developed and presented here, estimates both energy capacity fade and power fade and includes effects due to temperature, state of charge profile, and daily depth of discharge. This model has been validated by comparison with a detailed model developed at National Renewable Energy Laboratory, which in turn has been validated through comparison with experimental data. The simple model runs quickly, allowing for iterative numerical minimization of charge cost, implemented on the charger controller. Resulting electric vehicle (EV) charge profiles show a compromise among four trends: 1) charging during low-electricity cost intervals; 2) charging slowly; 3) charging toward the end of the available charge time; and 4) suppression of vehicle-to-grid power exportation. Simulations based on experimental Prius plug-in hybrid EV usage data predict that batteries charged using optimized charging last significantly longer than those charged using typical charging methods, potentially allowing smaller batteries to meet vehicle lifetime requirements. These trends are shown to hold across a wide range of battery sizes and hence are applicable to both EVs and plug-in hybrid EVs. C1 [Hoke, Anderson; Brissette, Alexander; Maksimovic, Dragan] Univ Colorado, Boulder, CO 80309 USA. [Smith, Kandler; Pratt, Annabelle] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Pratt, Annabelle] Intel Labs, Hillsboro, OR 97124 USA. RP Hoke, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM anderson.hoke@colorado.edu; alexander.brissette@colorado.edu; kandler.smith@nrel.gov; annabelle.pratt@nrel.gov; maksimov@colorado.edu FU Intel Labs; U.S. DOE Office of Vehicle Technologies Energy Storage Program through the National Renewable Energy Laboratory Battery Life Model FX This work was supported in part by Intel Labs and in part by the U.S. DOE Office of Vehicle Technologies Energy Storage Program through the National Renewable Energy Laboratory Battery Life Model. NR 50 TC 18 Z9 18 U1 3 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6777 J9 IEEE J EM SEL TOP P JI IEEE J. Emerg. Sel. Top. Power Electron. PD SEP PY 2014 VL 2 IS 3 BP 691 EP 700 DI 10.1109/JESTPE.2014.2315961 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA CN7II UT WOS:000358607400034 ER PT J AU Jorgensen, MRV Hathwar, VR Bindzus, N Wahlberg, N Chen, YS Overgaard, J Iversen, BB AF Jorgensen, Mads R. V. Hathwar, Venkatesha R. Bindzus, Niels Wahlberg, Nanna Chen, Yu-Sheng Overgaard, Jacob Iversen, Bo B. TI Contemporary X-ray electron-density studies using synchrotron radiation SO IUCRJ LA English DT Article DE electron-density studies; synchrotron radiation; X-ray diffraction ID EXPERIMENTAL CHARGE-DENSITY; MAXIMUM-ENTROPY-METHOD; WEAK INTERMOLECULAR INTERACTIONS; CRITICAL-POINT PROPERTIES; NEUTRON-DIFFRACTION DATA; HUMAN ALDOSE REDUCTASE; POWDER DIFFRACTION; COORDINATION POLYMER; TOPOLOGICAL ANALYSIS; DATA SETS AB Synchrotron radiation has many compelling advantages over conventional radiation sources in the measurement of accurate Bragg diffraction data. The variable photon energy and much higher flux may help to minimize critical systematic effects such as absorption, extinction and anomalous scattering. Based on a survey of selected published results from the last decade, the benefits of using synchrotron radiation in the determination of X-ray electron densities are discussed, and possible future directions of this field are examined. C1 [Jorgensen, Mads R. V.; Hathwar, Venkatesha R.; Bindzus, Niels; Wahlberg, Nanna; Overgaard, Jacob; Iversen, Bo B.] Aarhus Univ, Dept Chem & iNANO, Ctr Mat Crystallog, DK-8000 Aarhus C, Denmark. [Chen, Yu-Sheng] Univ Chicago, Adv Photon Source, ChemMatCARS, Chicago, IL 60637 USA. RP Iversen, BB (reprint author), Aarhus Univ, Dept Chem & iNANO, Ctr Mat Crystallog, Langelandsgade 140, DK-8000 Aarhus C, Denmark. EM bo@chem.au.dk RI Jorgensen, Mads Ry Vogel/C-6109-2017; OI Jorgensen, Mads Ry Vogel/0000-0001-5507-9615; Overgaard, Jacob/0000-0001-6492-7962 FU Danish National Research Foundation [DNRF93]; Danish Council for Nature and Universe (DanScatt) FX This work was supported by the Danish National Research Foundation (DNRF93) and the Danish Council for Nature and Universe (DanScatt). NR 135 TC 8 Z9 8 U1 5 U2 21 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2052-2525 J9 IUCRJ JI IUCrJ PD SEP PY 2014 VL 1 BP 267 EP 280 DI 10.1107/S2052252514018570 PN 5 PG 14 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA CL3QI UT WOS:000356864900004 PM 25295169 ER PT J AU Camilli, L Sutter, E Sutter, P AF Camilli, L. Sutter, E. Sutter, P. TI Growth of two-dimensional materials on non-catalytic substrates: h-BN/Au(111) SO 2D Materials LA English DT Article DE boron nitride; growth; gold; 2D materials; magnetron sputtering ID HEXAGONAL BORON-NITRIDE; B-TRICHLOROBORAZINE (CLBNH)(3); CORRUGATED MONOLAYER; GRAPHENE; NANOMESH; NI(111); HETEROSTRUCTURES; COPPER; FILM AB The growth of two-dimensional (2D) materials is a topic of very high scientific and technological interest. While chemical vapour deposition on catalytic metals has become a well developed approach for the growth of graphene and hexagonal boron nitride (BN), very few alternative approaches for synthesis on non-reactive supports have been explored so far. Here we report the growth of BN on gold, using magnetron sputtering of B in N-2/Ar atmosphere, a scalable method using only non-toxic reagents. Scanning tunnelling microscopy at low coverage shows primarily triangular monolayer BN islands exhibiting two 'magic' orientations on the Au(111) surface. Such rotational alignment of BN on Au (111) is surprising, given the expected weak binding and the high lattice mismatch (similar to 14%) between BN and Au. Our observations are consistent with a strong coupling between the edges of BN flakes and the substrate, which leads to the selection of BN orientations that maximize the orbital overlap between edge atoms and Au surface atoms. Diverse flake morphologies resembling the shape of butterflies, six-apex stars and diamonds, implying alternating B- and N-terminated edges, are observed as well. Our results provide insight into the growth mechanisms of 2D materials on weakly interacting and chemically inert substrates, and provide the basis for integrating other 2D materials with atomically precise graphene nanostructures synthesized from molecular precursors on Au. C1 [Camilli, L.; Sutter, E.; Sutter, P.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, P (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM psutter@bnl.gov RI Camilli, Luca/C-4785-2016 OI Camilli, Luca/0000-0003-2498-0210 FU US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Research carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. NR 29 TC 6 Z9 6 U1 13 U2 65 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2053-1583 J9 2D MATER JI 2D Mater. PD SEP PY 2014 VL 1 IS 2 AR 025003 DI 10.1088/2053-1583/1/2/025003 PG 11 WC Materials Science, Multidisciplinary SC Materials Science GA CG9PZ UT WOS:000353650400008 ER PT J AU Takacs, Z Imredy, JP Bingham, JP Zhorov, BS Moczydlowski, EG AF Takacs, Zoltan Imredy, John P. Bingham, Jon-Paul Zhorov, Boris S. Moczydlowski, Edward G. TI Interaction of the BKCa channel gating ring with dendrotoxins SO CHANNELS LA English DT Article DE Ca2+-activated K+ channel; dendrotoxin; gating; ion channels; K+ channel; subconductance ID PANCREATIC TRYPSIN-INHIBITOR; ACTIVATED POTASSIUM CHANNELS; CA2+-ACTIVATED K+ CHANNELS; SODIUM-CHANNEL; NUCLEIC-ACIDS; FORCE-FIELD; CALCIUM; VOLTAGE; PEPTIDE; INACTIVATION AB Two classes of small homologous basic proteins, mamba snake dendrotoxins (DTX) and bovine pancreatic trypsin inhibitor (BPTI), block the large conductance Ca2+-activated K+ channel (BKCa, KCa1.1) by production of discrete subconductance events when added to the intracellular side of the membrane. This toxin-channel interaction is unlikely to be pharmacologically relevant to the action of mamba venom, but as a fortuitous ligand-protein interaction, it has certain biophysical implications for the mechanism of BKCa channel gating. In this work we examined the subconductance behavior of 9 natural dendrotoxin homologs and 6 charge neutralization mutants of -dendrotoxin in the context of current structural information on the intracellular gating ring domain of the BKCa channel. Calculation of an electrostatic surface map of the BKCa gating ring based on the Poisson-Boltzmann equation reveals a predominantly electronegative surface due to an abundance of solvent-accessible side chains of negatively charged amino acids. Available structure-activity information suggests that cationic DTX/BPTI molecules bind by electrostatic attraction to site(s) on the gating ring located in or near the cytoplasmic side portals where the inactivation ball peptide of the 2 subunit enters to block the channel. Such an interaction may decrease the apparent unitary conductance by altering the dynamic balance of open versus closed states of BKCa channel activation gating. C1 [Takacs, Zoltan] ToxinTech, New York, NY USA. [Imredy, John P.] Merck Res Lab, West Point, PA USA. [Bingham, Jon-Paul] Univ Hawaii, Dept Mol Biosci & Bioengn, Honolulu, HI 96822 USA. [Zhorov, Boris S.] McMaster Univ, Hamilton, ON, Canada. [Zhorov, Boris S.] Russian Acad Med Sci, IM Sechenov Evolutionary Physiol & Biochem Inst, St Petersburg, Russia. [Moczydlowski, Edward G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Moczydlowski, Edward G.] Univ New Mexico, Sch Med, Dept Biochem & Mol Biol, Albuquerque, NM 87131 USA. RP Moczydlowski, EG (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM egmoczy@sandia.gov FU NIH [P01 NS42202]; Sandia National Laboratories; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Natural Sciences and Engineering Research Council of Canada [GRPIN/238773-2009] FX Experimental work was funded by NIH Grant P01 NS42202. EGM was supported by an Early Career LDRD award from Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Electrostatic computations were made possible by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET:www.sharcnet.ca). This part of the work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada to BSZ [Grant GRPIN/238773-2009]. NR 58 TC 1 Z9 1 U1 0 U2 3 PU LANDES BIOSCIENCE PI AUSTIN PA 1806 RIO GRANDE ST, AUSTIN, TX 78702 USA SN 1933-6950 EI 1933-6969 J9 CHANNELS JI Channels PD SEP-OCT PY 2014 VL 8 IS 5 BP 421 EP 432 DI 10.4161/19336950.2014.949186 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AZ7ER UT WOS:000348382300009 PM 25483585 ER PT J AU Thom, R Southard, S Borde, A AF Thom, Ronald Southard, Susan Borde, Amy TI Climate-linked Mechanisms Driving Spatial and Temporal Variation in Eelgrass (Zostera marina L.) Growth and Assemblage Structure in Pacific Northwest Estuaries, USA SO JOURNAL OF COASTAL RESEARCH LA English DT Article DE Zostera marina; eelgrass growth; estuary climate impacts; Oceanic Nino Index; El Nino-Southern Oscillation ID SEA-LEVEL RISE; COASTAL ECOSYSTEMS; THERMAL-STRESS; STANDING-STOCK; PUGET-SOUND; OPEN-OCEAN; IMPACTS; CARBON; SEAGRASSES; BAY AB Using laboratory experiments on temperature and leaf metabolism, and field data sets from Washington, between 1991 and 2013, we developed lines of evidence showing that variations in water temperature, mean sea level, and desiccation stress appear to drive spatial and temporal variations in eelgrass (Zostera marina). Variations in the Oceanic Nino Index (ONI) and mean sea level (MSL), especially during the strong 1997-2001 El Nino-La Nina event, corresponded with variations in leaf growth rate of an intertidal population. Field studies suggested that this variation was associated with both desiccation period and temperature. Subtidal eelgrass shoot density recorded annually over a 10-year period was lowest during the warm and cool extremes of sea surface temperature. These periods corresponded to the extremes in the ONI. Variations in density of a very low intertidal population in a turbid estuary were explained by both variations in temperature and light reaching the plants during periods of higher MSL. These results show complex interactions between water-level variation, temperature and light as mechanisms regulating variation in eelgrass, which complicates the ability to predict the effects of climate variation and change on this important resource. Because of the extensive wide geographic distribution of eelgrass, its tractability for study, and its responsiveness to climate, this and other seagrass species should be considered useful indicators of the effects of climate variation and change on marine and estuarine ecosystems. C1 [Thom, Ronald; Southard, Susan; Borde, Amy] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA. RP Thom, R (reprint author), Pacific NW Natl Lab, Marine Sci Lab, 1529 West Sequim Bay Rd, Sequim, WA 98382 USA. EM ron.thom@pnnl.gov FU Washington State Department of Transportation (WSDOT); NOAA's Coastal Ocean Program FX We sincerely appreciate the invitation by DrsWenrui Huang and Scott Hagen to participate in this special issue. Research at Clinton was partially funded by the Washington State Department of Transportation (WSDOT). NOAA's Coastal Ocean Program funded the Willapa Bay research. The U.S. Department of Energy education programs provided support for a number of outstanding students and interns who measured growth rates and assisted in experiments including A. Simpson, K. Rust, K. Steenworthy, B. Van Cleve, R. Moffitt, M. Prinzen, J. Lipfert, E. Fagergren, A. Mullin, Y. Duarte, L. Ward, D. Kennedy, S. Gobert, and W. Pratt. The valued assistance in field data collection by J. Southard, G. Williams, D. Woodruff, H. Diefenderfer, M. Blanton, L. Antrim, W. Gardiner, J. Vavrinec, and S. Rumrill is sincerely appreciated. Based on his observations in San Diego Bay, K. Merkel recommended we consider sea level anomalies. Finally, we thank S. Ennor for editing the manuscript, L. Aston for internal review comments, and two anonymous peer reviewers for their comments. The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy. Report number PNNL-SA-102122. NR 72 TC 3 Z9 3 U1 4 U2 43 PU COASTAL EDUCATION & RESEARCH FOUNDATION PI LAWRENCE PA 810 EAST 10TH STREET, LAWRENCE, KS 66044 USA SN 0749-0208 EI 1551-5036 J9 J COASTAL RES JI J. Coast. Res. PD FAL PY 2014 SI 68 BP 1 EP 11 DI 10.2112/SI68-001.1 PG 11 WC Environmental Sciences; Geography, Physical; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Physical Geography; Geology GA AX8FM UT WOS:000347145600002 ER PT J AU Larrick, JW Parren, PWHI Huston, JS Pluckthun, A Bradbury, A Tomlinson, IM Chester, KA Burton, DR Adams, GP Weiner, LM Scott, JK Alfenito, MR Veldman, T Reichert, JM AF Larrick, James W. Parren, Paul W. H. I. Huston, James S. Plueckthun, Andreas Bradbury, Andrew Tomlinson, Ian M. Chester, Kerry A. Burton, Dennis R. Adams, Gregory P. Weiner, Louis M. Scott, Jamie K. Alfenito, Mark R. Veldman, Trudi Reichert, Janice M. TI Antibody engineering and therapeutics conference The annual meeting of the antibody society, Huntington Beach, CA, December 7-11, 2014 SO MABS LA English DT Article DE antibody-drug conjugate; antibody engineering; bispecific antibody; effector functions; immunocytokine AB The 25th anniversary of the Antibody Engineering & Therapeutics Conference, the Annual Meeting of The Antibody Society, will be held in Huntington Beach, CA, December 7-11, 2014. Organized by IBC Life Sciences, the event will celebrate past successes, educate participants on current activities and offer a vision of future progress in the field. Keynote addresses will be given by academic and industry experts Douglas Lauffenburger (Massachusetts Institute of Technology), Ira Pastan (National Cancer Institute), James Wells (University of California, San Francisco), Ian Tomlinson (GlaxoSmithKline) and Anthony Rees (Rees Consulting AB and Emeritus Professor, University of Bath). These speakers will provide updates of their work, placed in the context of the substantial growth of the industry over the past 25 years. C1 [Larrick, James W.] Panorama Res Inst, San Francisco, CA USA. [Larrick, James W.] Veloc Pharmaceut Dev, San Francisco, CA USA. [Parren, Paul W. H. I.] Genmab, Utrecht, Netherlands. [Huston, James S.] Huston BioConsulting LLC, Boston, MA USA. [Plueckthun, Andreas] Univ Zurich, Inst Biochem, CH-8057 Zurich, Switzerland. [Bradbury, Andrew] Los Alamos Natl Lab, Los Alamos, NM USA. [Tomlinson, Ian M.] GlaxoSmithKline, Stevenage, Herts, England. [Chester, Kerry A.] UCL, London, England. [Burton, Dennis R.] Scripps Res Inst, La Jolla, CA 92037 USA. [Adams, Gregory P.] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. [Weiner, Louis M.] Georgetown Univ, Med Ctr, Washington, DC 20007 USA. [Scott, Jamie K.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Alfenito, Mark R.] EnGen Bio Inc, San Mateo, CA USA. [Veldman, Trudi] AbbVie, Worcester, MA USA. [Reichert, Janice M.] Reichert Biotechnol Consulting LLC, Framingham, MA 01701 USA. RP Reichert, JM (reprint author), Reichert Biotechnol Consulting LLC, Framingham, MA 01701 USA. EM reichert.biotechconsulting@gmail.com OI Bradbury, Andrew/0000-0002-5567-8172 NR 0 TC 0 Z9 0 U1 0 U2 1 PU LANDES BIOSCIENCE PI AUSTIN PA 1806 RIO GRANDE ST, AUSTIN, TX 78702 USA SN 1942-0862 EI 1942-0870 J9 MABS-AUSTIN JI mAbs PD SEP-OCT PY 2014 VL 6 IS 5 BP 1115 EP 1123 DI 10.4161/19420862.2014.971627 PG 9 WC Medicine, Research & Experimental SC Research & Experimental Medicine GA AX4BG UT WOS:000346878500001 PM 25517297 ER PT J AU Bingert, SR AF Bingert, Sherri R. TI SHERRI R. BINGERT SO INTERNATIONAL JOURNAL OF POWDER METALLURGY LA English DT Editorial Material C1 [Bingert, Sherri R.] Los Alamos Natl Lab, Off RDT&E DOE NNSA, Los Alamos, NM 87545 USA. EM sherri@lanl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER POWDER METALLURGY INST PI PRINCETON PA 105 COLLEGE ROAD EAST, PRINCETON, NJ 08540 USA SN 0888-7462 J9 INT J POWDER METALL JI Int. J. Powder Metall. PD FAL PY 2014 VL 50 IS 4 BP 6 EP 8 PG 3 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA AX4DC UT WOS:000346883100003 ER PT J AU Peisert, S Margulies, J Nicol, DM Khurana, H Sawall, C AF Peisert, Sean Margulies, Jonathan Nicol, David M. Khurana, Himanshu Sawall, Chris TI Designed-in Security for Cyber-Physical Systems SO IEEE SECURITY & PRIVACY LA English DT Editorial Material C1 [Peisert, Sean] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Peisert, Sean] Univ Calif Davis, Davis, CA 95616 USA. [Margulies, Jonathan] Qmulos, Chantilly, VA USA. [Nicol, David M.] Univ Illinois, Chicago, IL 60680 USA. [Khurana, Himanshu] Honeywell, Morristown, NJ USA. [Sawall, Chris] Ameren, St Louis, MO USA. RP Peisert, S (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM sppeisert@lbl.gov; margulies@gmail.com; dmnicol@illinois.edu; himanshu.khurana@honeywell.com; sawall@gmail.com NR 0 TC 0 Z9 0 U1 1 U2 17 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1540-7993 EI 1558-4046 J9 IEEE SECUR PRIV JI IEEE Secur. Priv. PD SEP-OCT PY 2014 VL 12 IS 5 BP 9 EP 12 PG 4 WC Computer Science, Information Systems; Computer Science, Software Engineering SC Computer Science GA AW5MS UT WOS:000346319800003 ER PT J AU Dwyer, DA AF Dwyer, Daniel A. TI The neutrino mixing angle theta(13): Reactor and accelerator experiments SO PHYSICS OF THE DARK UNIVERSE LA English DT Article DE Neutrino oscillation; Neutrino mixing; Neutrino mass hierarchy; Reactor; Accelerator AB Recent measurements of the neutrino mixing angle theta(13) cap a decade of observations which have clearly established the oscillation of neutrino flavor. Measurements of reactor (nu) over bar (e) disappearance over similar to km distances have provided a precise value for this mixing angle. Detection of nu(e) in beams of nu(mu) from particle accelerators also support a non-zero value of theta(13), and comparisons between these two techniques are sensitive to the remaining unknowns of neutrino oscillation. The unexpectedly large value for theta(13) allows for future tests of the neutrino mass hierarchy and CP-violation in neutrino oscillation. Measurement of the energy dependence of reactor (nu) over bar (e) disappearance has been used to determine the larger neutrino mass-squared difference, vertical bar Lambda m(31)(2)vertical bar approximate to vertical bar Lambda m(32)(2)vertical bar. Consistency with observations of accelerator nu(mu) disappearance supports the three-flavor model of neutrino flavor oscillation. (C) 2014 The Author. Published by Elsevier B.V. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Dwyer, DA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM dadwyer@lbl.gov FU DOE OHEP [DE-AC02-05CH11231] FX The author would like to thank the organizers of the 13th International Conference on Topics in Astroparticle and Underground Physics for the opportunity to present this material. This work was supported under DOE OHEP DE-AC02-05CH11231. NR 34 TC 0 Z9 0 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2212-6864 J9 PHYS DARK UNIVERSE JI Phys. Dark Universe PD SEP PY 2014 VL 4 BP 31 EP 35 DI 10.1016/j.dark.2014.05.001 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AW3UJ UT WOS:000346211200008 ER PT J AU Tan, SR Huang, LJ AF Tan, Sirui Huang, Lianjie TI Reducing the computer memory requirement for 3D reverse-time migration with a boundary-wavefield extrapolation method SO GEOPHYSICS LA English DT Article ID INDEPENDENT STABILITY-CRITERIA; DIFFERENCE APPROXIMATIONS; CONSERVATION-LAWS; IMPLEMENTATION; PROPAGATION; INVERSION AB Reverse-time migration (RTM) using the crosscorrelation imaging condition requires that the forward-propagated source wavefield and the backward-propagated receiver wavefield be accessible within the imaging domain at the same time step. There are two categories of methods to balance the computer memory requirement and the computational complexity of RTM: checkpointing methods and source-wavefield reconstruction methods. We have developed a new source-wavefield reconstruction method to improve the balance between the computer memory requirement and the computational complexity of RTM. During the forward simulation of the source wavefield, we stored boundary wavefields only at one or two layers of spatial grid points and reconstructed the back-propagated source wavefield at the same time step as that of the back-propagated receiver wavefield, using a high-order wave-equation extrapolation scheme. One conventional RTM method uses boundary wavefields stored at multiple layers of spatial grid points and a high-order finite-difference (FD) scheme to reconstruct the back-propagated source wavefield. For an FD scheme with the eighth or sixteenth order of accuracy in space, our new method used only 37.5% of the computer memory required by this conventional method to store the boundary wavefields. This reduction of computer memory usage is significant because storing the boundary wavefields consumes most of the computer memory required for 3D migration using reconstructed source wavefields. Moreover, our method maintained the spatial order of accuracy of the FD scheme for the entire imaging domain, whereas some conventional methods reduce the spatial-order accuracy of the FD scheme near the boundaries to back-propagate the source wavefield to decrease the computer memory requirement. We validated our method using synthetic seismic data. Our method produced 2D and 3D migration images of complex subsurface structures as accurate as those yielded using an RTM method without reducing the spatial order of accuracy near the boundaries. C1 [Tan, Sirui; Huang, Lianjie] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM USA. RP Tan, SR (reprint author), ExxonMobil Upstream Res Co, Houston, TX 77098 USA. EM siruitan@hotmail.com; ljh@lanl.gov RI Tan, Sirui/H-9565-2015 OI Tan, Sirui/0000-0002-8150-3261 FU U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by U.S. Department of Energy through contract DE-AC52-06NA25396 to Los Alamos National Laboratory (LANL). The computation was performed using supercomputers of LANL's Institutional Computing Program. We thank the associate editor F. Liu and three anonymous reviewers for their valuable comments. We also thank M. Intrator for her careful review of this paper. NR 31 TC 7 Z9 7 U1 1 U2 6 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 EI 1942-2156 J9 GEOPHYSICS JI Geophysics PD SEP-OCT PY 2014 VL 79 IS 5 BP S185 EP S194 DI 10.1190/GEO2014-0075.1 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AU9JA UT WOS:000345907100033 ER PT J AU Tan, SR Huang, LJ AF Tan, Sirui Huang, Lianjie TI Least-squares reverse-time migration with a wavefield-separation imaging condition and updated source wavefields SO GEOPHYSICS LA English DT Article ID REFLECTION DATA; INVERSION AB Directly imaging steeply dipping fault zones is difficult for conventional migration, including reverse-time migration (RTM). We developed a new least-squares RTM (LSRTM) method to directly image steeply dipping fault zones. The method uses a wavefield-separation imaging condition and updated source wavefields during each iteration. Our new imaging method produces horizontal-looking images that show mostly steeply dipping fault zones. Conventional least-squares RTM does not update source wavefields and cannot directly image vertical fault zones. We numerically determined that it is crucial to update source wavefields to image steeply dipping fault zones. Using synthetic seismic data, we proved that our new LSRTM method can directly image steeply dipping fault zones with dipping angles up to 90 degrees. Compared with conventional LSRTM, our LSRTM method was less sensitive to the smoothness and the velocity error of the initial migration velocity model. C1 [Tan, Sirui; Huang, Lianjie] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM USA. RP Tan, SR (reprint author), ExxonMobil Upstream Res Co, Houston, TX 77098 USA. EM siruitan@hotmail.com; ljh@lanl.gov RI Tan, Sirui/H-9565-2015 OI Tan, Sirui/0000-0002-8150-3261 FU United States Department of Energy [DE-AC52-06NA25396] FX This work was supported by United States Department of Energy through contract no. DE-AC52-06NA25396 to Los Alamos National Laboratory (LANL). The computation was performed using supercomputers at LANL's Institutional Computing Program. We thank J. Queen of Hi-Q Geophysical Inc. for providing the velocity model from Brady's geothermal field containing four steeply dipping fault zones. We thank associate editor F. Liu, reviewer M. Wong, and two anonymous reviewers for their valuable comments. NR 16 TC 9 Z9 10 U1 0 U2 4 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 EI 1942-2156 J9 GEOPHYSICS JI Geophysics PD SEP-OCT PY 2014 VL 79 IS 5 BP S195 EP S205 DI 10.1190/GEO2014-0020.1 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AU9JA UT WOS:000345907100034 ER PT J AU Trainor-Guitton, WJ Hoversten, GM Ramirez, A Roberts, J Juliusson, E Key, K Mellors, R AF Trainor-Guitton, Whitney J. Hoversten, G. Michael Ramirez, Abelardo Roberts, Jeffery Juliusson, Egill Key, Kerry Mellors, Robert TI The value of spatial information for determining well placement: A geothermal example SO GEOPHYSICS LA English DT Article ID ELECTRICAL-RESISTIVITY; SEISMIC AMPLITUDE; METHODOLOGY; RESERVOIRS; FIELD AB We have developed a spatial, value of information (VOI) methodology that is designed specifically to include the inaccuracies of multidimensional geophysical inversions. VOI assesses the worth of information in terms of how it can improve the decision maker's likelihood of a higher valued outcome. VOI can be applied to spatial data using an exploration example for hidden geothermal resources. This methodology is applicable for spatial decisions for other exploration decisions (e.g., oil, mining, etc.). This example evaluates how well the magnetotelluric (MT) technique is able to delineate the lateral position of electrically conductive materials that are indicative of a hidden geothermal resource. The conductive structure (referred to as the clay cap) represented where the geothermal alteration occurred. The prior uncertainty of the position of the clay cap (drilling target) is represented with multiple earth models. These prior models are used to numerically simulate the data collection, noise, inversion, and interpretation of the MT technique. MT's ability to delineate the correct lateral location can be quantified by comparing the true location in each prior model to the location that is interpreted from each respective inverted model. Additional complexity in the earth models is included by adding more electrical conductors (not associated with the clay cap) and deeper targets. Both degrade the ability of the MT technique (the signal and inversion) to locate the clay cap thereby decreasing the VOI. The results indicate the ability of the prior uncertainty to increase and decrease the final VOI assessment. The results also demonstrate how VOI depends on whether or not a resource still exists below the clay cap because the clay cap is only a potential indicator of economic temperatures. C1 [Trainor-Guitton, Whitney J.; Ramirez, Abelardo; Roberts, Jeffery; Mellors, Robert] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ramirez, Abelardo] ChevronTexaco, San Ramon, CA USA. [Juliusson, Egill] Landsvirkjun, Reykjavik, Iceland. [Key, Kerry] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. RP Trainor-Guitton, WJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM trainorguitton@llnl.gov; hovg@chevron.com; ramirez3@llnl.gov; roberts17@llnl.gov; egill.juliusson@landsvirkjun.is; kkey@ucsd.edu; mellors1@llnl.gov RI Mellors, Robert/K-7479-2014; Key, Kerry/B-1092-2008 OI Mellors, Robert/0000-0002-2723-5163; FU Geothermal Program of the Department of Energy; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank J. Ziagos for his early contributions to this work, the Geothermal Program of the Department of Energy for funding this research, and for the reviewers who greatly improved the quality of this manuscript, especially the reviewer who offered the notation for the posterior calculation. This research was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract no. DE-AC52-07NA27344. NR 28 TC 2 Z9 2 U1 2 U2 8 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 EI 1942-2156 J9 GEOPHYSICS JI Geophysics PD SEP-OCT PY 2014 VL 79 IS 5 BP W27 EP W41 DI 10.1190/GEO2013-0337.1 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AU9JA UT WOS:000345907100047 ER PT J AU Davidovich, RL Tkachev, VV Logvinova, VB Kostin, VI Stavila, V AF Davidovich, R. L. Tkachev, V. V. Logvinova, V. B. Kostin, V. I. Stavila, V. TI Crystal structure of tetramethylammonium fluoridotitanate(IV) with dimeric complex anions of different compositions SO JOURNAL OF STRUCTURAL CHEMISTRY LA English DT Article DE thermodynamics crystal structure; fluoridotitanate(IV); tetramethylammonium; dimeric complex anion; octahedron; tetrahedron ID SALTS AB To the best of our knowledge, this is the first report of the synthesis and characterization of tetramethylammonium fluoridotitanate(IV) [N(CH3)(4)](4)[Ti2F11][Ti2F9(H2O)(2)] with two dimeric complex anions of different compositions. The disordered crystal structure of [N(CH3)(4)](4)[Ti2F11][Ti2F9(H2O)(2)] is formed by dimeric complex anions [Ti2F11](3-) and [Ti2F9(H2O)(2)](-) in a 1:1 ratio and tetramethylammonium cations N(CH3) (4) (+) , each with an occupancy factor of 0.5. The dimeric complex anions, which structurally alternate with an occupancy factor of 0.5, form a pseudodimeric anion {(Ti2F11)(0,5)(Ti2F9(H2O)(2))(0,5)}(2-) whose charge is compensated by the disordered cations N(CH3) (4) (+) . The hydrogen bonds O-Ha <-F link the dimeric complex anions [Ti2F11](3-) and [Ti2F9(H2O)(2)](-) into polymeric ribbons, with the N(CH3) (4) (+) cations being located between the ribbons. C1 [Davidovich, R. L.; Logvinova, V. B.; Kostin, V. I.] Russian Acad Sci, Inst Chem, Far Eastern Branch, Vladivostok 690022, Russia. [Tkachev, V. V.] Russian Acad Sci, Inst Problems Chem Phys, Chernogolovka 142432, Russia. [Stavila, V.] Sandia Natl Labs, Livermore, CA USA. RP Davidovich, RL (reprint author), Russian Acad Sci, Inst Chem, Far Eastern Branch, Vladivostok 690022, Russia. EM davidovich@ich.dvo.ru; vatka@icp.ac.ru; vstavila@gmail.com NR 12 TC 1 Z9 1 U1 0 U2 1 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0022-4766 EI 1573-8779 J9 J STRUCT CHEM+ JI J. Struct. Chem. PD SEP PY 2014 VL 55 IS 5 BP 923 EP 926 DI 10.1134/S0022476614050199 PG 4 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA AW0GL UT WOS:000345969100019 ER PT J AU Niculaes, C Morreel, K Kim, H Lu, FC Mckee, LS Ivens, B Haustraete, J Vanholme, B De Rycke, R Hertzberg, M Fromm, J Bulone, V Polle, A Ralph, J Boerjan, W AF Niculaes, Claudiu Morreel, Kris Kim, Hoon Lu, Fachuang Mckee, Lauren S. Ivens, Bart Haustraete, Jurgen Vanholme, Bartel De Rycke, Riet Hertzberg, Magnus Fromm, Jorg Bulone, Vincent Polle, Andrea Ralph, John Boerjan, Wout TI Phenylcoumaran Benzylic Ether Reductase Prevents Accumulation of Compounds Formed under Oxidative Conditions in Poplar Xylem SO PLANT CELL LA English DT Article ID TRACHEARY ELEMENT DIFFERENTIATION; PULSED-FIELD GRADIENTS; ZINNIA MESOPHYLL-CELLS; MASS-SPECTROMETRY; STRUCTURAL-CHARACTERIZATION; PINORESINOL-LARICIRESINOL; ISOFLAVONE REDUCTASES; PHENOLIC-COMPOUNDS; LIGNIFICATION; LIGNIN AB Phenylcoumaran benzylic ether reductase (PCBER) is one of the most abundant proteins in poplar (Populus spp) xylem, but its biological role has remained obscure. In this work, metabolite profiling of transgenic poplar trees downregulated in PCBER revealed both the in vivo substrate and product of PCBER. Based on mass spectrometry and NMR data, the substrate was identified as a hexosylated 8-5-coupling product between sinapyl alcohol and guaiacylglycerol, and the product was identified as its benzyl-reduced form. This activity was confirmed in vitro using a purified recombinant PCBER expressed in Escherichia coli. Assays performed on 20 synthetic substrate analogs revealed the enzyme specificity. In addition, the xylem of PCBER-downregulated trees accumulated over 2000-fold higher levels of cysteine adducts of monolignol dimers. These compounds could be generated in vitro by simple oxidative coupling assays involving monolignols and cysteine. Altogether, our data suggest that the function of PCBER is to reduce phenylpropanoid dimers in planta to form antioxidants that protect the plant against oxidative damage. In addition to describing the catalytic activity of one of the most abundant enzymes in wood, we provide experimental evidence for the antioxidant role of a phenylpropanoid coupling product in planta. C1 [Niculaes, Claudiu; Morreel, Kris; Ivens, Bart; Vanholme, Bartel; De Rycke, Riet; Boerjan, Wout] VIB Inst, Dept Plant Syst Biol, B-9052 Ghent, Belgium. [Niculaes, Claudiu; Morreel, Kris; Ivens, Bart; Vanholme, Bartel; De Rycke, Riet; Boerjan, Wout] Univ Ghent, Dept Plant Biotechnol & Bioinformat, B-9052 Ghent, Belgium. [Kim, Hoon; Lu, Fachuang; Ralph, John] Univ Wisconsin, Wisconsin Energy Inst, Dept Biochem, Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. [Kim, Hoon; Lu, Fachuang; Ralph, John] Univ Wisconsin, Wisconsin Energy Inst, Great Lakes Bioenergy Res Ctr, US Dept Energy, Madison, WI 53726 USA. [Mckee, Lauren S.; Bulone, Vincent] AlbaNova Univ Ctr, Royal Inst Technol, KTH, Div Glycosci,Sch Biotechnol, S-10691 Stockholm, Sweden. [Haustraete, Jurgen] Univ Ghent VIB, Dept Mol Biomed Res, Prot Serv Facil, B-9052 Ghent, Belgium. [Hertzberg, Magnus] SweTree Technol, SE-90403 Umea, Sweden. [Fromm, Jorg] Univ Hamburg, Zentrum Holzwirtschaft, D-21031 Hamburg, Germany. [Polle, Andrea] Univ Gottingen, Busgen Inst, D-37077 Gottingen, Germany. RP Boerjan, W (reprint author), VIB Inst, Dept Plant Syst Biol, B-9052 Ghent, Belgium. EM woboe@psb.vib-ugent.be OI /0000-0002-3372-8773; Boerjan, Wout/0000-0003-1495-510X FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; Hercules program of Ghent University [AUGE/014]; Flanders Research Foundation (FWO) [G.0637.07N]; European collaborative project ENERGYPOPLAR [FP7-211917] FX NMR experiments on the 600-MHz Bruker microcryoprobe NMR instrument made use of the National Magnetic Resonance Facility at the University of Wisconsin-Madison (http://www.nmrfam.wisc.edu); we thank Mark Anderson for his help with this instrument and Milo Westler for aid with the water suppression experiments. We thank Kristine Vander Mijnsbrugge, Catherine Lapierre, and Brigitte Pollet for various analyses on an earlier set of poplar lines that were less stably downregulated for PCBER and that were generated by antisense technology; Andras Gorzsas for Fourier transform infrared analysis of wood samples and Frederic Leroux for electron microscopy analysis; Frank Van Breusegem and Pavel Kerchev for critical reading of the article; and Eric Messens for helpful discussions. J.R., F.L., and H.K. were funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). We also thank the Hercules program of Ghent University for the Synapt Q-Tof (Grant AUGE/014); the Bijzonder Onderzoeksfonds-Zware Apparatuur of Ghent University for the Fourier transform ion cyclotron resonance mass spectrometer (174PZA05); and the Multidisciplinary Research Partnership Biotechnology for a Sustainable Economy (01MRB510W) of Ghent University. C.N. was funded by Flanders Research Foundation (FWO) Grant G.0637.07N and by the European collaborative project ENERGYPOPLAR (FP7-211917). NR 58 TC 5 Z9 6 U1 1 U2 29 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 EI 1532-298X J9 PLANT CELL JI Plant Cell PD SEP PY 2014 VL 26 IS 9 BP 3775 EP 3791 DI 10.1105/tpc.114.125260 PG 17 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA AU9NF UT WOS:000345919700023 PM 25238751 ER PT J AU Zaborin, A Smith, D Garfield, K Quensen, J Shakhsheer, B Kade, M Tirrell, M Tiedje, J Gilbert, JA Zaborina, O Alverdy, JC AF Zaborin, Alexander Smith, Daniel Garfield, Kevin Quensen, John Shakhsheer, Baddr Kade, Matthew Tirrell, Matthew Tiedje, James Gilbert, Jack A. Zaborina, Olga Alverdy, John C. TI Membership and Behavior of Ultra-Low-Diversity Pathogen Communities Present in the Gut of Humans during Prolonged Critical Illness SO MBIO LA English DT Article ID BACTERIA-HOST COMMUNICATION; BLOOD-STREAM INFECTIONS; GASTROINTESTINAL-TRACT; PSEUDOMONAS-AERUGINOSA; CANDIDA-ALBICANS; ANTIBIOTIC SUSCEPTIBILITY; VIRULENCE EXPRESSION; NEONATAL SEPSIS; GENES; MORPHINE AB We analyzed the 16S rRNA amplicon composition in fecal samples of selected patients during their prolonged stay in an intensive care unit (ICU) and observed the emergence of ultra-low-diversity communities (1 to 4 bacterial taxa) in 30% of the patients. Bacteria associated with the genera Enterococcus and Staphylococcus and the family Enterobacteriaceae comprised the majority of these communities. The composition of cultured species from stool samples correlated to the 16S rRNA analysis and additionally revealed the emergence of Candida albicans and Candida glabrata in similar to 75% of cases. Four of 14 ICU patients harbored 2-member pathogen communities consisting of one Candida taxon and one bacterial taxon. Bacterial members displayed a high degree of resistance to multiple antibiotics. The virulence potential of the 2-member communities was examined in C. elegans during nutrient deprivation and exposure to opioids in order to mimic local conditions in the gut during critical illness. Under conditions of nutrient deprivation, the bacterial members attenuated the virulence of fungal members, leading to a "commensal lifestyle." However, exposure to opioids led to a breakdown in this commensalism in 2 of the ultra-low-diversity communities. Application of a novel antivirulence agent (phosphate-polyethylene glycol [Pi-PEG]) that creates local phosphate abundance prevented opioid-induced virulence among these pathogen communities, thus rescuing the commensal lifestyle. To conclude, the gut microflora in critically ill patients can consist of ultra-low-diversity communities of multidrug-resistant pathogenic microbes. Local environmental conditions in gut may direct pathogen communities to adapt to either a commensal style or a pathogenic style. IMPORTANCE During critical illness, the normal gut microbiota becomes disrupted in response to host physiologic stress and antibiotic treatment. Here we demonstrate that the community structure of the gut microbiota during prolonged critical illness is dramatically changed such that in many cases only two-member pathogen communities remain. Most of these ultra-low-membership communities display low virulence when grouped together (i.e., a commensal lifestyle); individually, however, they can express highly harmful behaviors (i.e., a pathogenic lifestyle). The commensal lifestyle of the whole community can be shifted to a pathogenic one in response to host factors such as opioids that are released during physiologic stress and critical illness. This shift can be prevented by using compounds such as Pi-PEG15-20 that interrupt bacterial virulence expression. Taking the data together, this report characterizes the plasticity seen with respect to the choice between a commensal lifestyle and a pathogenic lifestyle among ultra-low-diversity pathogen communities that predominate in the gut during critical illness and offers novel strategies for prevention of sepsis. C1 [Zaborin, Alexander; Shakhsheer, Baddr; Kade, Matthew; Tirrell, Matthew; Gilbert, Jack A.; Zaborina, Olga; Alverdy, John C.] Univ Chicago, Chicago, IL 60637 USA. [Smith, Daniel; Gilbert, Jack A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Garfield, Kevin; Quensen, John; Tiedje, James] Michigan State Univ, E Lansing, MI 48824 USA. RP Alverdy, JC (reprint author), Univ Chicago, Chicago, IL 60637 USA. EM ozaborin@surgery.bsd.uchicago.edu; jalverdy@surgery.bsd.uchicago.edu FU NIH [RO1 2R01GM062344-13A1]; U.S. Dept. of Energy [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences, and an Engineering Division FX This study was funded by NIH grant RO1 2R01GM062344-13A1 (J.C.A.). This work was supported in part by the U.S. Dept. of Energy under contract DE-AC02-06CH11357 (J.G.) and by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences, and an Engineering Division (M.K. and M.T.). NR 42 TC 36 Z9 36 U1 2 U2 21 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD SEP-OCT PY 2014 VL 5 IS 5 AR e01361-14 DI 10.1128/mBio.01361-14 PG 14 WC Microbiology SC Microbiology GA AU2OY UT WOS:000345459000007 PM 25249279 ER PT J AU Funk, C Hoell, A Stone, D AF Funk, Chris Hoell, Andrew Stone, Daithi TI EXAMINING THE CONTRIBUTION OF THE OBSERVED GLOBAL WARMING TREND TO THE CALIFORNIA DROUGHTS OF 2012/13 AND 2013/14 SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article AB Long-term SST warming trends did not contribute substantially to the 2012/13 and 2013/14 California droughts. North Pacific SSTs were exceptionally warm, however; and coupled models indicate more frequent extreme precipitation. C1 [Funk, Chris] US Geol Survey, Santa Barbara, CA USA. [Funk, Chris; Hoell, Andrew] Univ Calif Santa Barbara, Climate Hazard Grp, Santa Barbara, CA 93106 USA. [Stone, Daithi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Funk, C (reprint author), US Geol Survey, Santa Barbara, CA USA. NR 0 TC 23 Z9 24 U1 3 U2 37 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD SEP PY 2014 VL 95 IS 9 SU S BP S11 EP S15 PG 5 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AT3FD UT WOS:000344820500004 ER PT J AU Singh, D Horton, DE Tsiang, M Haugen, M Ashfaq, M Mei, R Rastogi, D Johnson, NC Charland, A Rajaratnam, B Diffenbaugh, NS AF Singh, Deepti Horton, Daniel E. Tsiang, Michael Haugen, Matz Ashfaq, Moetasim Mei, Rui Rastogi, Deeksha Johnson, Nathaniel C. Charland, Allison Rajaratnam, Bala Diffenbaugh, Noah S. TI SEVERE PRECIPITATION IN NORTHERN INDIA IN JUNE 2013: CAUSES, HISTORICAL CONTEXT, AND CHANGES IN PROBABILITY SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article AB Cumulative precipitation in northern India in June 2013 was a century-scale event, and evidence for increased probability in the present climate compared to the preindustrial climate is equivocal. C1 [Singh, Deepti; Horton, Daniel E.; Tsiang, Michael; Haugen, Matz; Charland, Allison; Rajaratnam, Bala; Diffenbaugh, Noah S.] Stanford Univ, Dept Environm Earth Syst Sci, Stanford, CA 94305 USA. [Singh, Deepti; Horton, Daniel E.; Tsiang, Michael; Haugen, Matz; Charland, Allison; Rajaratnam, Bala; Diffenbaugh, Noah S.] Stanford Univ, Woods Inst Environm, Stanford, CA 94305 USA. [Tsiang, Michael; Haugen, Matz; Rajaratnam, Bala] Stanford Univ, Dept Stat, Stanford, CA 94305 USA. [Ashfaq, Moetasim; Mei, Rui; Rastogi, Deeksha] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. [Johnson, Nathaniel C.] Univ Hawaii Manoa, Int Pacific Res Ctr, Honolulu, HI 96822 USA. [Johnson, Nathaniel C.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. RP Singh, D (reprint author), Stanford Univ, Dept Environm Earth Syst Sci, Stanford, CA 94305 USA. RI Johnson, Nathaniel/L-8045-2015 OI Johnson, Nathaniel/0000-0003-4906-178X NR 0 TC 9 Z9 10 U1 0 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD SEP PY 2014 VL 95 IS 9 SU S BP S58 EP S61 PG 4 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AT3FD UT WOS:000344820500017 ER PT J AU Giorgi, EE Stram, DO Taverna, D Turner, SD Schumacher, F Haiman, CA Lum-Jones, A Tirikainen, M Caberto, C Duggan, D Henderson, BE Le Marchand, L Cheng, I AF Giorgi, Elena E. Stram, Daniel O. Taverna, Darin Turner, Stephen D. Schumacher, Fredrick Haiman, Christopher A. Lum-Jones, Annette Tirikainen, Maarit Caberto, Christian Duggan, David Henderson, Brian E. Le Marchand, Loic Cheng, Iona TI Fine-Mapping IGF1 and Prostate Cancer Risk in African Americans: The Multiethnic Cohort Study SO CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION LA English DT Article ID GENOME-WIDE ASSOCIATION; GENETIC-VARIATION; CIRCULATING LEVELS; BREAST-CANCER; IGFBP3 AB Genetic variation at insulin-like growth factor 1 (IGF1) has been linked to prostate cancer risk. However, the specific predisposing variants have not been identified. In this study, we fine-mapped the IGF1 locus for prostate cancer risk in African Americans. We conducted targeted Roche GS-Junior 454 resequencing of a 156-kb region of IGF1 in 80 African American aggressive prostate cancer cases. Three hundred and thirty-four IGF1 SNPs were examined for their association with prostate cancer risk in 1,000 African American prostate cancer cases and 991 controls. The top associated SNP in African Americans, rs148371593, was examined in an additional 3,465 prostate cancer cases and 3,425 controls of non-African American ancestry-European Americans, Japanese Americans, Latinos, and Native Hawaiians. The overall association of 334 IGF1 SNPs and prostate cancer risk was assessed using logistic kernel-machine methods. The association between each SNP and prostate cancer risk was evaluated through unconditional logistic regression. A false discovery rate threshold of q < 0.1 was used to determine statistical significance of associations. We identified 8 novel IGF1 SNPs. The cumulative effect of the 334 IGF1 SNPs was not associated with prostate cancer risk (P = 0.13) in African Americans. Twenty SNPs were nominally associated with prostate cancer at P < 0.05. The top associated SNP among African Americans, rs148371593 [minor allele frequency (MAF) = 0.03; P = 0.0014; q > 0.1], did not reach our criterion of statistical significance. This polymorphism was rare in non-African Americans (MAF < 0.003) and was not associated with prostate cancer risk (P = 0.98). Our findings do not support the role of IGF1 variants and prostate cancer risk among African Americans. (C) 2014 AACR. C1 [Giorgi, Elena E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA. [Stram, Daniel O.; Schumacher, Fredrick; Haiman, Christopher A.; Henderson, Brian E.] Univ So Calif, Keck Sch Med, Norris Comprehens Canc Ctr, Dept Prevent Med, Los Angeles, CA 90033 USA. [Taverna, Darin; Duggan, David] Translat Genom Res Inst, Div Genet Basis Human Dis, Phoenix, AZ USA. [Turner, Stephen D.] Univ Virginia, Sch Med, Charlottesville, VA 22908 USA. [Lum-Jones, Annette; Tirikainen, Maarit; Caberto, Christian; Le Marchand, Loic] Univ Hawaii, Ctr Canc, Program Epidemiol, Honolulu, HI 96822 USA. [Cheng, Iona] Canc Prevent Inst Calif, Fremont, CA USA. [Taverna, Darin] Syst Imaginat Inc, Phoenix, AZ USA. RP Giorgi, EE (reprint author), Los Alamos Natl Lab, MS K710, Los Alamos, NM 87544 USA. EM egiorgi@lanl.gov FU Jim Valvano Foundation for Cancer Research; Center for Nonlinear Studies, LANL, through Laboratory Directed Research and Development (LDRD) funds [201110434DR] FX This work was supported by the V Scholar Award (I. Cheng) from the Jim Valvano Foundation for Cancer Research. E.E. Giorgi is supported by the Center for Nonlinear Studies, LANL, through Laboratory Directed Research and Development (LDRD) funds, number 201110434DR. NR 18 TC 2 Z9 2 U1 0 U2 2 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1055-9965 EI 1538-7755 J9 CANCER EPIDEM BIOMAR JI Cancer Epidemiol. Biomarkers Prev. PD SEP PY 2014 VL 23 IS 9 BP 1928 EP 1932 DI 10.1158/1055-9965.EPI-14-0333 PG 5 WC Oncology; Public, Environmental & Occupational Health SC Oncology; Public, Environmental & Occupational Health GA AT9XC UT WOS:000345276100022 PM 24904019 ER PT J AU Williams, IN Torn, MS Riley, WJ Wehner, MF AF Williams, I. N. Torn, M. S. Riley, W. J. Wehner, M. F. TI Impacts of climate extremes on gross primary production under global warming SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE ecosystem carbon; water stress; climate impacts; climate extremes; soil moisture ID CARBON-CYCLE; DROUGHT; TEMPERATURE; VARIABILITY; REDUCTION; CMIP5; RAIN; PROJECTIONS; ENSEMBLE; FORESTS AB The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at the warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate projections, and the time taken to return to locally optimal climates for GPP following climate extremes increases by more than 25% over many land regions. C1 [Williams, I. N.; Torn, M. S.; Riley, W. J.] Natl Lab, Climate Sci Dept, Div Earth Sci, Berkeley, CA 94720 USA. [Wehner, M. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Williams, IN (reprint author), Natl Lab, Climate Sci Dept, Div Earth Sci, Berkeley, CA 94720 USA. EM inwilliams@lbl.gov RI Williams, Ian/G-3256-2015; Riley, William/D-3345-2015; Torn, Margaret/D-2305-2015 OI Williams, Ian/0000-0003-0355-1310; Riley, William/0000-0002-4615-2304; FU Office of Science, Office of Biological and Environmental Research of the US Department of Energy, Atmospheric System Research and Regional and Global Climate Modeling (RGCM) Programs [DE-AC02-05CH11231] FX This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy under Contract No. DE-AC02-05CH11231 as part of the Atmospheric System Research and Regional and Global Climate Modeling (RGCM) Programs. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in table S1 of this paper) for producing and making available their model output. For CMIP the US Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. NR 39 TC 7 Z9 7 U1 5 U2 40 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD SEP PY 2014 VL 9 IS 9 AR 094011 DI 10.1088/1748-9326/9/9/094011 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA AT5DK UT WOS:000344963500016 ER PT J AU Goldstein, J De Pascuale, S Kletzing, C Kurth, W Genestreti, KJ Skoug, RM Larsen, BA Kistler, LM Mouikis, C Spence, H AF Goldstein, J. De Pascuale, S. Kletzing, C. Kurth, W. Genestreti, K. J. Skoug, R. M. Larsen, B. A. Kistler, L. M. Mouikis, C. Spence, H. TI Simulation of Van Allen Probes plasmapause encounters SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID MAGNETOSPHERIC ELECTRIC-FIELDS; PLASMASPHERIC DRAINAGE PLUMES; EXTREME-ULTRAVIOLET IMAGER; RELATIVISTIC ELECTRONS; ART.; DYNAMICS; BELT; STORM; EVOLUTION; CLUSTER AB We use an E x B-driven plasmapause test particle (PTP) simulation to provide global contextual information for in situ measurements by the Van Allen Probes (Radiation Belt Storm Probes (RBSP)) during 15-20 January 2013. During 120 h of simulation time beginning on 15 January, geomagnetic activity produced three plumes. The third and largest simulated plume formed during enhanced convection on 17 January, and survived as a rotating, wrapped, residual plume for tens of hours. To validate the simulation, we compare its output with RBSP data. Virtual RBSP satellites recorded 28 virtual plasmapause encounters during 15-19 January. For 26 of 28 (92%) virtual crossings, there were corresponding actual RBSP encounters with plasmapause density gradients. The mean difference in encounter time between model and data is 36 min. The mean model-data difference in radial location is 0.40 +/- 0.05 R-E. The model-data agreement is better for strong convection than for quiet or weakly disturbed conditions. On 18 January, both RBSP spacecraft crossed a tenuous, detached plasma feature at approximately the same time and nightside location as a wrapped residual plume, predicted by the model to have formed 32 h earlier on 17 January. The agreement between simulation and data indicates that the model-provided global information is adequate to correctly interpret the RBSP density observations. C1 [Goldstein, J.; Genestreti, K. J.] SW Res Inst, Space Sci & Engn Div, San Antonio, TX 78284 USA. [Goldstein, J.; Genestreti, K. J.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA. [De Pascuale, S.; Kletzing, C.; Kurth, W.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Skoug, R. M.; Larsen, B. A.] Los Alamos Natl Lab, Los Alamos, NM USA. [Kistler, L. M.; Mouikis, C.; Spence, H.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. RP Goldstein, J (reprint author), SW Res Inst, Space Sci & Engn Div, San Antonio, TX 78284 USA. EM jgoldstein@swri.edu RI Larsen, Brian/A-7822-2011; OI Larsen, Brian/0000-0003-4515-0208; De Pascuale, Sebastian/0000-0001-7142-0246; Kletzing, Craig/0000-0002-4136-3348; Kurth, William/0000-0002-5471-6202 FU NASA Van Allen Probes mission's RBSP-ECT project; NASA Heliophysics Guest Investigator program [NNX07AG48G]; NSF Geospace Environment Modeling program [ATM0902591] FX This work was supported by the NASA Van Allen Probes mission's RBSP-ECT project, the NASA Heliophysics Guest Investigator program under NNX07AG48G, and the NSF Geospace Environment Modeling program under ATM0902591. OMNI 5 min data, provided by J.H. King, N. Patatashvilli at AdnetSystems, NASA GSFC, and CDAWeb, were derived from ACE data provided by N. Ness at Bartol Research Institute and D.J. McComas at Southwest Research Institute. NR 65 TC 16 Z9 16 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP PY 2014 VL 119 IS 9 DI 10.1002/2014JA020252 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AT3BN UT WOS:000344810200031 ER PT J AU Simms, LE Pilipenko, V Engebretson, MJ Reeves, GD Smith, AJ Clilverd, M AF Simms, Laura E. Pilipenko, Viacheslav Engebretson, Mark J. Reeves, Geoffrey D. Smith, A. J. Clilverd, Mark TI Prediction of relativistic electron flux at geostationary orbit following storms: Multiple regression analysis SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID RADIATION-BELT ELECTRONS; VAN ALLEN PROBES; SOLAR-WIND; GEOSYNCHRONOUS ORBIT; MAGNETIC STORMS; ULF WAVES; ENERGETIC ELECTRONS; GEOMAGNETIC STORMS; CHORUS WAVES; ACCELERATION AB Many solar wind and magnetosphere parameters correlate with relativistic electron flux following storms. These include relativistic electron flux before the storm; seed electron flux; solar wind velocity and number density (and their variation); interplanetary magnetic field B-z, AE and Kp indices; and ultra low frequency (ULF) and very low frequency (VLF) wave power. However, as all these variables are intercorrelated, we use multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Using 219 storms (1992-2002), we obtained hourly averaged electron fluxes for outer radiation belt relativistic electrons (>1.5 MeV) and seed electrons (100 keV) from Los Alamos National Laboratory spacecraft (geosynchronous orbit). For each storm, we found the log(10) maximum relativistic electron flux 48-120 h after the end of the main phase of each storm. Each predictor variable was averaged over the 12 h before the storm, the main phase, and the 48 h following minimum Dst. High levels of flux following storms are best modeled by a set of variables. In decreasing influence, ULF, seed electron flux, Vsw and its variation, and after-storm B-z were the most significant explanatory variables. Kp can be added to the model, but it adds no further explanatory power. Although we included ground-based VLF power from Halley, Antarctica, it shows little predictive ability. We produced predictive models using the coefficients from the regression models and assessed their effectiveness in predicting novel observations. The correlation between observed values and those predicted by these empirical models ranged from 0.645 to 0.795. C1 [Simms, Laura E.; Engebretson, Mark J.] Augsburg Coll, Dept Phys, Minneapolis, MN 55454 USA. [Pilipenko, Viacheslav] Russian Acad Sci, Inst Phys Earth, Moscow, Russia. [Reeves, Geoffrey D.] Los Alamos Natl Lab, Los Alamos, NM USA. [Smith, A. J.] VLF ELF Radio Res Inst, Bradwell, England. [Clilverd, Mark] British Antarctic Survey, Cambridge CB3 0ET, England. RP Simms, LE (reprint author), Augsburg Coll, Dept Phys, Minneapolis, MN 55454 USA. EM simmsl@augsburg.edu RI Reeves, Geoffrey/E-8101-2011 OI Reeves, Geoffrey/0000-0002-7985-8098 FU National Science Foundation [ATM-0827903] FX Relativistic electron and seed electron flux data were obtained from Los Alamos National Laboratory (LANL) geosynchronous energetic particle instruments (contact G.D. Reeves). Satellite and ground-based ULF indices are available at http://virbo.org/Augsburg/ULF and Halley VLF VELOX data at http://bsauasc.nerc-bas.ac.uk:8080/similar to pdata/velox_summary/. Bz, V, N, P, sigma V, sigma N, and Kp, Dst, and AE indices are available from Goddard Space Flight Center Space Physics Data Facility at the OMNIWeb data website (httpi/omniweb.gsfc.nasa.gov/html/ow_data.html). We thank the referees for their helpful comments. This work was supported by National Science Foundation grant ATM-0827903 to Augsburg College. NR 63 TC 5 Z9 5 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP PY 2014 VL 119 IS 9 DI 10.1002/2014JA019955 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AT3BN UT WOS:000344810200021 ER PT J AU Zheng, LH Chan, AA Albert, JM Elkington, SR Koller, J Horne, RB Glauert, SA Meredith, NP AF Zheng, Liheng Chan, Anthony A. Albert, Jay M. Elkington, Scot R. Koller, Josef Horne, Richard B. Glauert, Sarah A. Meredith, Nigel P. TI Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PART I IMPLICIT; NUMERICAL-SIMULATION; RELATIVISTIC ELECTRONS; SEMIIMPLICIT SCHEMES; DIFFUSION TENSOR; PITCH-ANGLE; RESONANT INTERACTION; GEOMAGNETIC STORMS; DYNAMICS; MAGNETOSPHERE AB A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of Ito stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch angle alpha(0) = 90 degrees is also derived. The model is applied to a simulation of the October 2002 storm event. At alpha(0) near 90 degrees, our results are quantitatively consistent with GPS observations of phase space density (PSD) increases, suggesting dominance of radial diffusion; at smaller alpha(0), the observed PSD increases are overestimated by the model, possibly due to the alpha(0)-independent radial diffusion coefficients, or to insufficient electron loss in the model, or both. Statistical analysis of the stochastic processes provides further insights into the diffusion processes, showing distinctive electron source distributions with and without local acceleration. C1 [Zheng, Liheng; Chan, Anthony A.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Albert, Jay M.] Air Force Res Lab, Space Vehicles Directorate, Albuquerque, NM USA. [Elkington, Scot R.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Koller, Josef] Los Alamos Natl Lab, Los Alamos, NM USA. [Horne, Richard B.; Glauert, Sarah A.; Meredith, Nigel P.] British Antarctic Survey, Nat Environm Res Council, Cambridge CB3 0ET, England. RP Zheng, LH (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. EM zhengliheng@rice.edu OI Albert, Jay/0000-0001-9494-7630; Horne, Richard/0000-0002-0412-6407; Meredith, Nigel/0000-0001-5032-3463 FU National Aeronautics and Space Administration through the Science Mission Directorate [NNX11AJ38G, NNX10AL02G] FX This material is based upon work supported by the National Aeronautics and Space Administration under grants NNX11AJ38G and NNX10AL02G issued through the Science Mission Directorate. We gratefully acknowledge Los Alamos National Lab for providing phase space density data and Air Force Research Lab and British Antarctic Survey for supplying chorus wave diffusion coefficients. Liheng Zheng wishes to thank Xin Tao for valuable discussions about the SDE method. NR 64 TC 7 Z9 7 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP PY 2014 VL 119 IS 9 DI 10.1002/2014JA020127 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AT3BN UT WOS:000344810200041 ER PT J AU Calafiore, G Koshelev, A Dhuey, S Goltsov, A Sasorov, P Babin, S Yankov, V Cabrini, S Peroz, C AF Calafiore, Giuseppe Koshelev, Alexander Dhuey, Scott Goltsov, Alexander Sasorov, Pavel Babin, Sergey Yankov, Vladimir Cabrini, Stefano Peroz, Christophe TI Holographic planar lightwave circuit for on-chip spectroscopy SO LIGHT-SCIENCE & APPLICATIONS LA English DT Article DE digital planar holograms; integrated optics; nanofabrication; nanophotonics; spectrometer ID WAVE-GUIDES; OPTICAL SPECTROMETER; MICROSPECTROMETER; RESONATORS; DEVICES AB Computer-generated planar holograms are a powerful approach for designing planar lightwave circuits with unique properties. Digital planar holograms in particular can encode any optical transfer function with high customizability and is compatible with semiconductor lithography techniques and nanoimprint lithography. Here, we demonstrate that the integration of multiple holograms on a single device increases the overall spectral range of the spectrometer and offsets any performance decrement resulting from miniaturization. The validation of a high-resolution spectrometer-on-chip based on digital planar holograms shows performance comparable with that of a macrospectrometer. While maintaining the total device footprint below 2 cm(2), the newly developed spectrometer achieved a spectral resolution of 0.15 nm in the red and near infrared range, over a 148 nm spectral range and 926 channels. This approach lays the groundwork for future on-chip spectroscopy and lab-on-chip sensing. C1 [Calafiore, Giuseppe; Babin, Sergey; Peroz, Christophe] aBeam Technol, Hayward, CA 94541 USA. [Calafiore, Giuseppe] Polytech Univ Turin, I-10129 Turin, Italy. [Koshelev, Alexander; Goltsov, Alexander; Sasorov, Pavel; Yankov, Vladimir] Nanoopt Devices, Santa Clara, CA 95054 USA. [Koshelev, Alexander] Moscow Inst Phys & Technol, Moscow 141700, Russia. [Dhuey, Scott; Cabrini, Stefano] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Peroz, C (reprint author), aBeam Technol, Castro Valley, CA 94546 USA. EM cp@abeamtech.com RI Foundry, Molecular/G-9968-2014 FU Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy [DEAC02-05CH11231]; Air Force Office of Scientific Research, Air Force Material Command, USAF [FA9550-12-C-0077] FX The authors would like to thank Professor J Bokor, Professor FC Pirri, Dr A Schwartzberg, Dr B Brough, Dr D Olynick and Dr I Ivonin for their useful discussions. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under contract DEAC02-05CH11231. This study is supported by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant/contract FA9550-12-C-0077. NR 40 TC 10 Z9 10 U1 2 U2 15 PU CHINESE ACAD SCIENCES, CHANGCHUN INST OPTICS FINE MECHANICS AND PHYSICS PI CHANGCHUN PA 3888, DONGNANHU ROAD, CHANGCHUN, 130033, PEOPLES R CHINA SN 2047-7538 J9 LIGHT-SCI APPL JI Light-Sci. Appl. PD SEP PY 2014 VL 3 AR e203 DI 10.1038/lsa.2014.84 PG 7 WC Optics SC Optics GA AT8MO UT WOS:000345187500001 ER PT J AU Kring, D Boslough, M AF Kring, David Boslough, Mark TI Chelyabinsk: Portrait of an asteroid airburst SO PHYSICS TODAY LA English DT Article ID IMPACT EVENT; HAZARD; EARTH C1 [Kring, David] Lunar & Planetary Inst, Houston, TX 77058 USA. [Kring, David] LPI, Ctr Lunar Sci & Explorat, Houston, TX USA. [Boslough, Mark] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kring, D (reprint author), Lunar & Planetary Inst, 3303 NASA Rd 1, Houston, TX 77058 USA. NR 15 TC 0 Z9 0 U1 4 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD SEP PY 2014 VL 67 IS 9 BP 32 EP 37 DI 10.1063/PT.3.2515 PG 6 WC Physics, Multidisciplinary SC Physics GA AT5BL UT WOS:000344958600017 ER PT J AU Li, H Wheeler, JC AF Li, Hui Wheeler, J. Craig TI Stirling Auchincloss Colgate obituary SO PHYSICS TODAY LA English DT Biographical-Item C1 [Li, Hui] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Wheeler, J. Craig] Univ Texas Austin, Austin, TX 78712 USA. RP Li, H (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD SEP PY 2014 VL 67 IS 9 BP 54 EP 54 DI 10.1063/PT.3.2523 PG 1 WC Physics, Multidisciplinary SC Physics GA AT5BL UT WOS:000344958600019 ER PT J AU Cheng, BL Castor, J Stone, J AF Cheng, Baolian Castor, John Stone, James TI Dimitri Manuel Mihalas Obituary SO PHYSICS TODAY LA English DT Biographical-Item C1 [Cheng, Baolian] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Castor, John] Lawrence Livermore Natl Lab, Livermore, CA USA. [Stone, James] Princeton Univ, Princeton, NJ 08544 USA. RP Cheng, BL (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. NR 3 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD SEP PY 2014 VL 67 IS 9 BP 55 EP 55 DI 10.1063/PT.3.2524 PG 1 WC Physics, Multidisciplinary SC Physics GA AT5BL UT WOS:000344958600020 ER PT J AU Hack, JJ Papka, ME AF Hack, James J. Papka, Michael E. TI Advances in Leadership Computing INTRODUCTION SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Editorial Material C1 [Hack, James J.] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Papka, Michael E.] No Illinois Univ, Argonne Natl Lab, De Kalb, IL 60115 USA. RP Hack, JJ (reprint author), Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. EM jhack@ornl.gov; papka@anl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 EI 1558-366X J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD SEP-OCT PY 2014 VL 16 IS 5 BP 10 EP 12 PG 3 WC Computer Science, Interdisciplinary Applications SC Computer Science GA AP7ST UT WOS:000342277700002 ER PT J AU Teixeira, J Waliser, D Ferraro, R Gleckler, P Lee, T Potter, G AF Teixeira, Joao Waliser, Duane Ferraro, Robert Gleckler, Peter Lee, Tsengdar Potter, Gerald TI Satellite Observations for CMIP5 The Genesis of Obs4MIPs SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Editorial Material C1 [Teixeira, Joao; Waliser, Duane; Ferraro, Robert] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gleckler, Peter] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA. [Lee, Tsengdar] NASA HQ, Washington, DC USA. [Potter, Gerald] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Teixeira, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM joao.teixeira@jpl.nasa.gov NR 8 TC 17 Z9 17 U1 0 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD SEP PY 2014 VL 95 IS 9 BP 1329 EP 1334 DI 10.1175/BAMS-D-12-00204.1 PG 6 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AS7MY UT WOS:000344441200007 ER PT J AU Olive, KA Agashe, K Amsler, C Antonelli, M Arguin, JF Asner, DM Baer, H Band, HR Barnett, RM Basaglia, T Bauer, CW Beatty, JJ Belousov, VI Beringer, J Bernardi, G Bethke, S Bichsel, H Biebel, O Blucher, E Blusk, S Brooijmans, G Buchmueller, O Burkert, V Bychkov, MA Cahn, RN Carena, M Ceccucci, A Cerri, A Chakraborty, D Chen, MC Chivukula, RS Copic, K Cowan, G Dahl, O D'Ambrosio, G Damour, T de Florian, D de Gouvea, A DeGrand, T de Jong, P Dissertori, G Dobrescu, BA Doser, M Drees, M Dreiner, HK Edwards, DA Eidelman, S Erler, J Ezhela, VV Fetscher, W Fields, BD Foster, B Freitas, A Gaisser, TK Gallagher, H Garren, L Gerber, HJ Gerbier, G Gershon, T Gherghetta, T Golwala, S Goodman, M Grab, C Gritsan, AV Grojean, C Groom, DE Grunewald, M Gurtu, A Gutsche, T Haber, HE Hagiwara, K Hanhart, C Hashimoto, S Hayato, Y Hayes, KG Heffner, M Heltsley, B Hernandez-Rey, JJ Hikasa, K Hocker, A Holder, J Holtkamp, A Huston, J Jackson, JD Johnson, KF Junk, T Kado, M Karlen, D Katz, UF Klein, SR Klempt, E Kowalewski, RV Krauss, F Kreps, M Krusche, B Kuyanov, YV Kwon, Y Lahav, O Laiho, J Langacker, P Liddle, A Ligeti, Z Lin, CJ Liss, TM Littenberg, L Lugovsky, KS Lugovsky, SB Maltoni, F Mannel, T Manohar, AV Marciano, WJ Martin, AD Masoni, A Matthews, J Milstead, D Molaro, P Monig, K Moortgat, F Mortonson, MJ Murayama, H Nakamura, K Narain, M Nason, P Navas, S Neubert, M Nevski, P Nir, Y Pape, L Parsons, J Patrignani, C Peacock, JA Pennington, M Petcov, ST Piepke, A Pomarol, A Quadt, A Raby, S Rademacker, J Raffelt, G Ratcliff, BN Richardson, P Ringwald, A Roesler, S Rolli, S Romaniouk, A Rosenberg, LJ Rosner, JL Rybka, G Achrajda, CT Sakai, Y Salam, GP Sarkar, S Sauli, F Schneider, O Scholberg, K Scott, D Sharma, V Sharpe, SR Silari, M Sjostrand, T Skands, P Smith, JG Smoot, GF Spanier, S Spieler, H Spiering, C Stah, A Stanev, T Stone, SL Sumiyoshi, T Sphers, MJ Takahashi, F Tanabashi, M Terning, J Tiator, L Titov, M Tkachenko, NP Tornqvist, NA Tovey, D Valencia, G Venanzoni, G Vincter, MG Vogel, P Vogt, A Wakely, SP Walkowiak, W Walter, CW Ward, DR Weiglein, G Weinberg, DH Weinberg, EJ White, M Wiencke, LR Woh, CC Wofenstein, L Womersley, J Woody, CL Workman, RL Yamamoto, A Yao, WM Zeller, GP Zenin, OV Zhang, J Zhu, RY Zimmermann, F Zyla, PA Harper, G Lugovsky, VS Schaffner, P AF Olive, K. A. Agashe, K. Amsler, C. Antonelli, M. Arguin, J. -F. Asner, D. M. Baer, H. Band, H. R. Barnett, R. M. Basaglia, T. Bauer, C. W. Beatty, J. J. Belousov, V. I. Beringer, J. Bernardi, G. Bethke, S. Bichsel, H. Biebel, O. Blucher, E. Blusk, S. Brooijmans, G. Buchmueller, O. Burkert, V. Bychkov, M. A. Cahn, R. N. Carena, M. Ceccucci, A. Cerri, A. Chakraborty, D. Chen, M. -C. Chivukula, R. S. Copic, K. Cowan, G. Dahl, O. D'Ambrosio, G. Damour, T. de Florian, D. de Gouvea, A. DeGrand, T. de Jong, P. Dissertori, G. Dobrescu, B. A. Doser, M. Drees, M. Dreiner, H. K. Edwards, D. A. Eidelman, S. Erler, J. Ezhela, V. V. Fetscher, W. Fields, B. D. Foster, B. Freitas, A. Gaisser, T. K. Gallagher, H. Garren, L. Gerber, H. -J. Gerbier, G. Gershon, T. Gherghetta, T. Golwala, S. Goodman, M. Grab, C. Gritsan, A. V. Grojean, C. Groom, D. E. Grunewald, M. Gurtu, A. Gutsche, T. Haber, H. E. Hagiwara, K. Hanhart, C. Hashimoto, S. Hayato, Y. Hayes, K. G. Heffner, M. Heltsley, B. Hernandez-Rey, J. J. Hikasa, K. Hoecker, A. Holder, J. Holtkamp, A. Huston, J. Jackson, J. D. Johnson, K. F. Junk, T. Kado, M. Karlen, D. Katz, U. F. Klein, S. R. Klempt, E. Kowalewski, R. V. Krauss, F. Kreps, M. Krusche, B. Kuyanov, Yu. V. Kwon, Y. Lahav, O. Laiho, J. Langacker, P. Liddle, A. Ligeti, Z. Lin, C. -J. Liss, T. M. Littenberg, L. Lugovsky, K. S. Lugovsky, S. B. Maltoni, F. Mannel, T. Manohar, A. V. Marciano, W. J. Martin, A. D. Masoni, A. Matthews, J. Milstead, D. Molaro, P. Moenig, K. Moortgat, F. Mortonson, M. J. Murayama, H. Nakamura, K. Narain, M. Nason, P. Navas, S. Neubert, M. Nevski, P. Nir, Y. Pape, L. Parsons, J. Patrignani, C. Peacock, J. A. Pennington, M. Petcov, S. T. Piepke, A. Pomarol, A. Quadt, A. Raby, S. Rademacker, J. Raffelt, G. Ratcliff, B. N. Richardson, P. Ringwald, A. Roesler, S. Rolli, S. Romaniouk, A. Rosenberg, L. J. Rosner, J. L. Rybka, G. Achrajda, C. T. Sakai, Y. Salam, G. P. Sarkar, S. Sauli, F. Schneider, O. Scholberg, K. Scott, D. Sharma, V. Sharpe, S. R. Silari, M. Sjostrand, T. Skands, P. Smith, J. G. Smoot, G. F. Spanier, S. Spieler, H. Spiering, C. Stah, A. Stanev, T. Stone, S. L. Sumiyoshi, T. Sphers, M. J. Takahashi, F. Tanabashi, M. Terning, J. Tiator, L. Titov, M. Tkachenko, N. P. Tornqvist, N. A. Tovey, D. Valencia, G. Venanzoni, G. Vincter, M. G. Vogel, P. Vogt, A. Wakely, S. P. Walkowiak, W. Walter, C. W. Ward, D. R. Weiglein, G. Weinberg, D. H. Weinberg, E. J. White, M. Wiencke, L. R. Woh, C. C. Wofenstein, L. Womersley, J. Woody, C. L. Workman, R. L. Yamamoto, A. Yao, W. -M. Zeller, G. P. Zenin, O. V. Zhang, J. Zhu, R. -Y. Zimmermann, F. Zyla, P. A. Harper, G. Lugovsky, V. S. Schaffner, P. CA Particle Data Grp TI REVIEW OF PARTICLE PHYSICS Particle Data Group SO CHINESE PHYSICS C LA English DT Review ID DEEP-INELASTIC-SCATTERING; SUPERSYMMETRIC STANDARD MODEL; HIGGS-BOSON PRODUCTION; TO-LEADING-ORDER; GRAND UNIFIED THEORIES; HADRONIC-Z-DECAYS; ELECTROWEAK SYMMETRY-BREAKING; ANOMALOUS MAGNETIC-MOMENT; DOUBLE-BETA-DECAY; CHIRAL PERTURBATION-THEORY AB The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 Japers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters. C1 [Olive, K. A.; Gherghetta, T.] Univ Minnesota, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA. [Agashe, K.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Amsler, C.] Univ Bern, Albert Einstein Ctr Fundamental Phys, CH-3012 Bern, Switzerland. [Antonelli, M.; Venanzoni, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Rome, Italy. [Arguin, J. -F.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Asner, D. M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Baer, H.] Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA. [Band, H. R.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Barnett, R. M.; Bauer, C. W.; Beringer, J.; Cahn, R. N.; Copic, K.; Dahl, O.; Groom, D. E.; Haber, H. E.; Jackson, J. D.; Ligeti, Z.; Lin, C. -J.; Mortonson, M. J.; Murayama, H.; Smoot, G. F.; Spieler, H.; White, M.; Woh, C. C.; Yao, W. -M.; Zyla, P. A.; Harper, G.; Schaffner, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Phys, Berkeley, CA 94720 USA. [Basaglia, T.; Ceccucci, A.; Doser, M.; Gurtu, A.; Hoecker, A.; Holtkamp, A.; Kado, M.; Moortgat, F.; Roesler, S.; Salam, G. P.; Sauli, F.; Silari, M.; Skands, P.; Zimmermann, F.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. [Beatty, J. J.; Raby, S.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Belousov, V. I.; Ezhela, V. V.; Kuyanov, Yu. V.; Lugovsky, K. S.; Lugovsky, S. B.; Tkachenko, N. P.; Zenin, O. V.; Lugovsky, V. S.] Inst High Energy Phys, COMPAS Grp, RU-142284 Protvino, Russia. [Bernardi, G.] CNRS, IN2P3, LPNHE, F-75252 Paris, France. [Bernardi, G.] Univ Paris 06, F-75252 Paris, France. [Bernardi, G.] Univ Paris 07, F-75252 Paris, France. [Bethke, S.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Bichsel, H.; Rosenberg, L. J.; Rybka, G.; Sharpe, S. R.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Biebel, O.] Univ Munich, Fak Phys, D-80799 Munich, Germany. [Blucher, E.; Carena, M.; Rosner, J. L.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Blucher, E.; Carena, M.; Rosner, J. L.; Wakely, S. P.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Blusk, S.; Laiho, J.; Stone, S. L.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. [Brooijmans, G.; Parsons, J.; Weinberg, E. J.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Buchmueller, O.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, High Energy Phys Grp, London SW7 2AZ, England. [Burkert, V.; Pennington, M.] Jefferson Lab, Newport News, VA 23606 USA. [Bychkov, M. A.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Carena, M.; Ceccucci, A.; Cerri, A.; Dobrescu, B. A.; Garren, L.; Junk, T.; Zeller, G. P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carena, M.; Wakely, S. P.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Cerri, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Chakraborty, D.] Univ Illinois, Dept Phys, De Kalb, IL 60115 USA. [Chen, M. -C.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Chivukula, R. S.; Huston, J.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Cowan, G.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [D'Ambrosio, G.] Complesso Univ Monte St Angelo, INFN Sez Napoli, I-80126 Naples, Italy. [Damour, T.] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France. [de Florian, D.] Univ Buenos Aires, Dept Fis, FCEyN, RA-1428 Buenos Aires, DF, Argentina. [de Gouvea, A.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [DeGrand, T.; Smith, J. G.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [de Jong, P.; Dissertori, G.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Fetscher, W.; Gerber, H. -J.; Grab, C.; Pape, L.] ETH, Inst Particle Phys, CH-8093 Zurich, Switzerland. [Drees, M.; Dreiner, H. K.] Univ Bonn, Phys Inst, D-53115 Bonn, Germany. [Edwards, D. A.; Foster, B.; Ringwald, A.; Weiglein, G.] Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany. [Eidelman, S.] SB RAS, Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Eidelman, S.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Erler, J.] Univ Nacl Autonoma Mexico, Inst Fis, Dept Fis Teor, Mexico City 04510, DF, Mexico. [Erler, J.; Tiator, L.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Fields, B. D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Fields, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Foster, B.] Univ Hamburg, D-22607 Hamburg, Germany. [Foster, B.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Freitas, A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Gaisser, T. K.; Holder, J.; Stanev, T.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Gallagher, H.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Gerbier, G.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Gershon, T.; Kreps, M.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Golwala, S.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Goodman, M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Grojean, C.] Inst Fis Altes Energies, Inst Catalana Recerca & Estudis Avancats, E-08193 Bellaterra, Barcelona, Spain. [Grunewald, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Grunewald, M.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Gurtu, A.] TIFR, Bombay, Maharashtra, India. [Gutsche, T.] Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany. [Haber, H. E.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Hagiwara, K.; Hashimoto, S.; Nakamura, K.; Sakai, Y.; Yamamoto, A.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Hanhart, C.] Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany. [Hayato, Y.] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany. [Hayato, Y.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Hayes, K. G.] Hillsdale Coll, Dept Phys, Hillsdale, MI 49242 USA. [Heffner, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Heltsley, B.] Cornell Univ, Elementary Particle Sci Lab, Ithaca, NY 14853 USA. [Hernandez-Rey, J. J.] Univ Valencia CSIC, IFIC Inst Fis Corpuscular, E-46071 Valencia, Spain. [Hikasa, K.; Takahashi, F.] Tohoku Univ, Dept Phys, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Johnson, K. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kado, M.] CNRS, IN2P3, LAL, F-91898 Orsay, France. [Kado, M.] Univ Paris 11, F-91898 Orsay, France. [Karlen, D.; Kowalewski, R. V.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Katz, U. F.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Klein, S. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Klempt, E.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, Bonn, Germany. [Krauss, F.; Martin, A. D.; Richardson, P.] Univ Durham, Inst Particle Phys Phenomenol, Dept Phys, Durham DH1 3LE, England. [Krusche, B.] Univ Basel, Inst Phys, CH-4056 Basel, Switzerland. [Kwon, Y.] Yonsei Univ, Dept Phys, Seoul 120749, South Korea. [Lahav, O.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Langacker, P.] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. [Liddle, A.; Peacock, J. A.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Liss, T. M.] CUNY City Coll, Div Sci, New York, NY 10031 USA. [Littenberg, L.; Marciano, W. J.; Nevski, P.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Maltoni, F.] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol CP3, B-1348 Louvain, Belgium. [Mannel, T.; Walkowiak, W.] Univ Siegen, Dept Phys, D-57068 Siegen, Germany. [Manohar, A. V.; Sharma, V.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Masoni, A.] INFN Sez Cagliari, I-09042 Monserrato, CA, Italy. [Matthews, J.] Louisana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. Stockholms Univ, AlbaNova Univ Ctr, Fysikum, SE-10691 Stockholm, Sweden. [Molaro, P.] INAF OATS, I-34143 Trieste, Italy. [Moenig, K.; Spiering, C.] DESY, D-15735 Zeuthen, Germany. [Mortonson, M. J.] Univ Calif Berkeley, SSL, Berkeley, CA 94720 USA. [Murayama, H.; Nakamura, K.; Petcov, S. T.] Univ Tokyo, Todai Inst Adv Study, Kavli IPMU WPI, Kashiwa, Chiba 2778583, Japan. [Murayama, H.; Smoot, G. F.; White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Narain, M.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Nason, P.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. [Navas, S.] Univ Granada, Dpto Fis Teor & Cosmos, E-18071 Granada, Spain. [Navas, S.] Univ Granada, CAFPE, E-18071 Granada, Spain. [Neubert, M.] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55099 Mainz, Germany. [Neubert, M.] Johannes Gutenberg Univ Mainz, Mainz Inst Theoret Phys, D-55099 Mainz, Germany. [Nir, Y.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-7610001 Rehovot, Israel. [Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Patrignani, C.] Univ Genoa, Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Petcov, S. T.] SISSA INFN, I-34136 Trieste Ts, Italy. [Petcov, S. T.] Bulgarian Acad Sci, INRNE, BU-1784 Sofia, Bulgaria. [Piepke, A.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Pomarol, A.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Quadt, A.] Univ Gottingen, Phys Inst 2, D-37077 Gottingen, Germany. [Rademacker, J.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Raffelt, G.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Ratcliff, B. N.] SLAG Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Rolli, S.] US DOE, Washington, DC 20585 USA. [Romaniouk, A.] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, Moscow 115409, Russia. [Achrajda, C. T.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Sarkar, S.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. [Sarkar, S.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Scholberg, K.; Walter, C. W.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Sjostrand, T.] Lund Univ, Dept Astron & Theoret Phys, S-22362 Lund, Sweden. [Skands, P.] Monash Univ, Sch Phys, Melbourne, Vic 3800, Australia. [Smoot, G. F.] Univ Paris Diderot, Univ Sorbonne Paris Cite, APC CNRS, Paris Ctr Cosmol Phys, F-75013 Paris, France. [Spanier, S.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Stah, A.] Rhein Westfal TH Aachen, Phys Inst 3, Phys Zentrum, D-52056 Aachen, Germany. [Sumiyoshi, T.] Tokyo Metropolitan Univ, High Energy Phys Lab, Tokyo 1920397, Japan. [Sphers, M. J.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Tanabashi, M.] Nagoya Univ, Kobayashi Maskawa Inst, Chikusa Ku, Nagoya, Aichi 4640028, Japan. [Terning, J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Titov, M.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Tornqvist, N. A.] Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland. [Tovey, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Valencia, G.] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. [Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Vogel, P.] CALTECH, Kellogg Radiat Lab 106 38, Pasadena, CA 91125 USA. [Vogt, A.] Univ Liverpool, Div Theoret Phys, Dept Math Sci, Liverpool L69 3BX, Merseyside, England. [Ward, D. R.] Cavendish Lab, Cambridge CB3 OHE, England. [Weinberg, D. H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Weinberg, D. H.] Ohio State Univ, CCAPP, Columbus, OH 43210 USA. [Wiencke, L. R.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Wofenstein, L.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Womersley, J.] STFC Rutherfprd Appleton Lab, Didcot OX11 0QX, Oxon, England. [Workman, R. L.] George Washington Univ, Dept Phys, Ashburn, VA 20147 USA. [Zhang, J.] Chinese Acad Sci, IHEP, Beijing 100049, Peoples R China. [Zhu, R. -Y.] CALTECH, Pasadena, CA 91125 USA. RP Olive, KA (reprint author), Univ Minnesota, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA. RI Patrignani, Claudia/C-5223-2009; Chivukula, R. Sekhar/C-3367-2012; Waxler, Bob/E-3414-2015; Katz, Uli/E-1925-2013; White, Martin/I-3880-2015; de Florian, Daniel/B-6902-2011; Hernandez-Rey, Juan Jose/N-5955-2014; Navas, Sergio/N-4649-2014; Beatty, James/D-9310-2011; EPFL, Physics/O-6514-2016; Sarkar, Subir/G-5978-2011 OI Patrignani, Claudia/0000-0002-5882-1747; Chivukula, R. Sekhar/0000-0002-4142-1077; Katz, Uli/0000-0002-7063-4418; White, Martin/0000-0001-9912-5070; de Florian, Daniel/0000-0002-3724-0695; Hernandez-Rey, Juan Jose/0000-0002-1527-7200; Navas, Sergio/0000-0003-1688-5758; Beatty, James/0000-0003-0481-4952; Sarkar, Subir/0000-0002-3542-858X FU Office of Science, Office of High Energy Physics of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. National Science Foundation [PHY-0652989]; European Laboratory for Particle Physics (CERN); government of Japan (MEXT: Ministry of Education, Culture, Sports, Science and Technology); government of Japan United States (DOE) on cooperative research and development; Italian National Institute of Nuclear Physics (INFN) FX The publication of the Review of Particle Physics is supported by the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231; by the U.S. National Science Foundation under Agreement No. PHY-0652989; by the European Laboratory for Particle Physics (CERN); by an implementing arrangement between the governments of Japan (MEXT: Ministry of Education, Culture, Sports, Science and Technology) and the United States (DOE) on cooperative research and development; and by the Italian National Institute of Nuclear Physics (INFN). NR 7176 TC 3812 Z9 3854 U1 110 U2 527 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD SEP PY 2014 VL 38 IS 9 AR UNSP 090001 DI 10.1088/1674-1137/38/9/090001 PG 1658 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AS2UY UT WOS:000344135900001 ER PT J AU Gerhardt, L Velez, JCD Klein, SR AF Gerhardt, Lisa Diaz Velez, Juan Carlos Klein, Spencer R. TI Adventures in Antarctic Computing, or How I Learned to Stop Worrying and Love the Neutrino SO COMPUTER LA English DT Article ID ICECUBE AB IceCube-a neutrino telescope that encompasses a cubic kilometer of Antarctic ice at the South Pole, collecting and processing data from 5,160 optical sensors buried a mile deep in the icecap-presents considerable challenges, from overcoming power and bandwidth limitations to simulating the complexities of Antarctic ice, which continue to stretch computing technology. C1 [Gerhardt, Lisa] Lawrence Berkeley Natl Lab, Natl Energy Res Sci Comp Ctr NERSC, Berkeley, CA 94720 USA. [Diaz Velez, Juan Carlos] Univ Wisconsin Madison, Wisconsin IceCube Particle & Astrophys Ctr, Madison, WI USA. [Klein, Spencer R.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Klein, Spencer R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Gerhardt, L (reprint author), Lawrence Berkeley Natl Lab, Natl Energy Res Sci Comp Ctr NERSC, Berkeley, CA 94720 USA. EM lgerhardt@lbl.gov; juancarlos.diazvelez@icecube.wisc.edu; srklein@lbl.gov FU National Science Foundation [1307472]; Department of Energy [DE-AC-76SF00098] FX This work was supported in part by the National Science Foundation under grant 1307472 and the Department of Energy under contract number DE-AC-76SF00098. NR 7 TC 0 Z9 0 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 EI 1558-0814 J9 COMPUTER JI Computer PD SEP PY 2014 VL 47 IS 9 BP 56 EP 61 PG 6 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA AS8CO UT WOS:000344478100022 ER PT J AU Bielicki, JK Hafiane, A Azhar, S Johansson, J Bittner, S Tabassum, J Genest, J AF Bielicki, J. K. Hafiane, A. Azhar, S. Johansson, J. Bittner, S. Tabassum, J. Genest, J. TI The ABCA1 agonist CS-6253 generates functional nascent HDL particles resulting in efficient cholesterol SR-BI delivery to hepatic cells and shows macrophage specific cholesterol mobilization and ather SO EUROPEAN HEART JOURNAL LA English DT Meeting Abstract CT Congress of the European-Society-of-Cardiology (ESC) CY AUG 30-SEP 03, 2014 CL Barcelona, SPAIN SP European Soc Cardiol C1 [Bielicki, J. K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Donner Lab, Berkeley, CA 94720 USA. [Hafiane, A.; Genest, J.] McGill Univ, Div Cardiol, Cardiovasc Genet Lab, Montreal, PQ, Canada. [Azhar, S.; Bittner, S.; Tabassum, J.] Stanford Univ, VA PAIRE, Geriatr Res Educ & Clin Ctr, Palo Alto, CA 94304 USA. [Johansson, J.] ARTERY Therapeut Inc, San Ramon, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0195-668X EI 1522-9645 J9 EUR HEART J JI Eur. Heart J. PD SEP 1 PY 2014 VL 35 SU 1 MA P2106 BP 371 EP 371 PG 1 WC Cardiac & Cardiovascular Systems SC Cardiovascular System & Cardiology GA AQ7MG UT WOS:000343001302170 ER PT J AU Micheletti, R Pezzuto, I Sheta, R Nemir, M Gonzales, C Blow, M May, D Pennacchio, L Ounzain, S Pedrazzini, T AF Micheletti, R. Pezzuto, I. Sheta, R. Nemir, M. Gonzales, C. Blow, M. May, D. Pennacchio, L. Ounzain, S. Pedrazzini, T. TI Functional importance of cardiac enhancer-associated noncoding RNAs during cardiac development and disease SO EUROPEAN HEART JOURNAL LA English DT Meeting Abstract CT Congress of the European-Society-of-Cardiology (ESC) CY AUG 30-SEP 03, 2014 CL Barcelona, SPAIN SP European Soc Cardiol C1 [Micheletti, R.; Pezzuto, I.; Sheta, R.; Nemir, M.; Gonzales, C.; Ounzain, S.; Pedrazzini, T.] Univ Hosp Ctr Vaudois CHUV, Dept Med, Lausanne, Switzerland. [Blow, M.; May, D.; Pennacchio, L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0195-668X EI 1522-9645 J9 EUR HEART J JI Eur. Heart J. PD SEP 1 PY 2014 VL 35 SU 1 MA 4083 BP 716 EP 716 PG 1 WC Cardiac & Cardiovascular Systems SC Cardiovascular System & Cardiology GA AQ7MG UT WOS:000343001304248 ER PT J AU Zhang, W Krishnan, KM AF Zhang, Wei Krishnan, Kannan M. TI Epitaxial patterning of thin-films: conventional lithographies and beyond SO JOURNAL OF MICROMECHANICS AND MICROENGINEERING LA English DT Review DE epitaxial patterning; magnetic thin films; nanoimprint lithography; nanomagnetism ID ATOMIC-FORCE MICROSCOPY; ELECTRON-BEAM LITHOGRAPHY; PULSED-LASER DEPOSITION; SCANNING PROBE LITHOGRAPHY; SELF-ASSEMBLED MONOLAYERS; UV-NANOIMPRINT LITHOGRAPHY; TIP-INDUCED ANODIZATION; MOLYBDENUM LIFT-OFF; LOCAL-OXIDATION; NANODOT ARRAYS AB Thin-film based novel magnetic and electronic devices have entered a new era in which the film crystallography, structural coherence, and epitaxy play important roles in determining their functional properties. The capabilities of controlling such structural and functional properties are being continuously developed by various physical deposition technologies. Epitaxial patterning strategies further allow the miniaturization of such novel devices, which incorporates thin-film components into nanoscale architectures while keeping their functional properties unmodified from their ideal single-crystal values. In the past decade, epitaxial patterning methods on the laboratory scale have been reported to meet distinct scientific inquires, in which the techniques and processes used differ from one to the other. In this review we summarize many of these pioneering endeavors in epitaxial patterning of thin-film devices that use both conventional and novel lithography techniques. These methods demonstrate epitaxial patterning for a broad range of materials (metals, oxides, and semiconductors) and cover common device length scales from micrometer to sub-hundred nanometer. Whilst we have been motivated by magnetic materials and devices, we present our outlook on developing systematic-strategies for epitaxial patterning of functional materials which will pave the road for the design, discovery and industrialization of next-generation advanced magnetic and electronic nano-devices. C1 [Zhang, Wei; Krishnan, Kannan M.] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. RP Zhang, W (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zwei@anl.gov; kannanmk@uw.edu RI Zhang, Wei/G-1523-2012; Foundry, Molecular/G-9968-2014 OI Zhang, Wei/0000-0002-5878-3090; FU NSF-DMR [1063489] FX WZ is very grateful for the early mentorship on lithography from Dr Dirk Weiss. WZ would like to thank Dr Weilun Chao and Dr Deirdre Olynick for their hospitality during his stay at the Molecular Foundry, Berkeley. We thank Professor Karl Bohringer, Dr Yufeng Hou and Zheng Li for insightful discussions. This work was supported by NSF-DMR under grant #1063489. We also acknowledge use of the UW Microfabrication Facility, a member of the National Nanotechnology Infrastructure Network. NR 140 TC 9 Z9 9 U1 2 U2 38 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0960-1317 EI 1361-6439 J9 J MICROMECH MICROENG JI J. Micromech. Microeng. PD SEP PY 2014 VL 24 IS 9 AR 093001 DI 10.1088/0960-1317/24/9/093001 PG 23 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA AS8TT UT WOS:000344521600001 ER PT J AU Tsao, JY Crawford, MH Coltrin, ME Fischer, AJ Koleske, DD Subramania, GS Wang, GT Wierer, JJ Karlicek, RF AF Tsao, Jeffrey Y. Crawford, Mary H. Coltrin, Michael E. Fischer, Arthur J. Koleske, Daniel D. Subramania, Ganapathi S. Wang, G. T. Wierer, Jonathan J. Karlicek, Robert F., Jr. TI Toward Smart and Ultra-efficient Solid-State Lighting SO ADVANCED OPTICAL MATERIALS LA English DT Article ID VAPOR-PHASE EPITAXY; INGAN QUANTUM-WELLS; EMITTING-DIODES; NANOWIRE HETEROSTRUCTURES; CRYSTALLINE-QUALITY; PHOTONIC CRYSTALS; THERMAL-STABILITY; GAN LAYERS; COLOR; TEMPERATURE AB Solid-state lighting has made tremendous progress this past decade, with the potential to make much more progress over the coming decade. In this article, the current status of solid-state lighting relative to its ultimate potential to be "smart" and ultra-efficient is reviewed. Smart, ultra-efficient solid-state lighting would enable both very high "effective" efficiencies and potentially large increases in human performance. To achieve ultra-efficiency, phosphors must give way to multi-color semiconductor electroluminescence: some of the technological challenges associated with such electroluminescence at the semiconductor level are reviewed. To achieve smartness, additional characteristics such as control of light flux and spectra in time and space will be important: some of the technological challenges associated with achieving these characteristics at the lamp level are also reviewed. It is important to emphasise that smart and ultra-efficient are not either/or, and few compromises need to be made between them. The ultimate route to ultra-efficiency brings with it the potential for smartness, the ultimate route to smartness brings with it the potential for ultra-efficiency, and the long-term ultimate route to both might well be color-mixed RYGB lasers. C1 [Tsao, Jeffrey Y.; Crawford, Mary H.; Coltrin, Michael E.; Fischer, Arthur J.; Koleske, Daniel D.; Subramania, Ganapathi S.; Wang, G. T.; Wierer, Jonathan J.] Sandia Natl Labs, Energy Frontier Res Ctr Solid State Lighting Sci, POB 5800, Albuquerque, NM 87185 USA. [Karlicek, Robert F., Jr.] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Smart Lighting Engn Res Ctr, Troy, NY 12181 USA. RP Tsao, JY (reprint author), Sandia Natl Labs, Energy Frontier Res Ctr Solid State Lighting Sci, POB 5800, Albuquerque, NM 87185 USA. EM jytsao@sandia.gov RI Wierer, Jonathan/G-1594-2013 OI Wierer, Jonathan/0000-0001-6971-4835 FU Sandia's Solid-State-Lighting Science Energy Frontier Research Center - U.S. Department of Energy, Office of Basic Energy Sciences; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; National Science Foundation [EEC-0812056]; New York State under NYSTAR [C090145] FX Work at Sandia National Laboratories was supported by Sandia's Solid-State-Lighting Science Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Basic Energy Sciences. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Work at Rensselaer Polytechnic Institute was performed at the Smart Lighting Engineering Research Center and was supported by the National Science Foundation under cooperative agreement EEC-0812056 and by New York State under NYSTAR contract C090145. NR 173 TC 58 Z9 58 U1 8 U2 66 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2195-1071 J9 ADV OPT MATER JI Adv. Opt. Mater. PD SEP PY 2014 VL 2 IS 9 BP 809 EP 836 DI 10.1002/adom.201400131 PG 28 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA AS3IX UT WOS:000344171800001 ER PT J AU Rosado, PJ Faulkner, D Sullivan, DP Levinson, R AF Rosado, Pablo J. Faulkner, David Sullivan, Douglas P. Levinson, Ronnen TI Measured temperature reductions and energy savings from a cool tile roof on a central California home SO ENERGY AND BUILDINGS LA English DT Article DE Cool roof; Energy savings; Solar reflectance; Thermal mass; Above-sheathing ventilation; Residential building; Temperature reduction; Ceiling heat flow; Asphalt shingle; Concrete tile ID SOLAR REFLECTANCE; HEAT-ISLAND; MITIGATION; BUILDINGS; COMFORT AB To assess cool-roof benefits, the temperatures, heat flows, and energy uses in two similar single-family, single-story homes built side by side in Fresno, California were measured for a year. The "cool" house had a reflective cool concrete tile roof (initial albedo 0.51) with above-sheathing ventilation, and nearly twice the thermal capacitance of the standard dark asphalt shingle roof (initial albedo 0.07) on the "standard" house. Cool-roof energy savings in the cooling and heating seasons were computed two ways. Method A divides by HVAC efficiency the difference (standard cool) in ceiling + duct heat gain. Method B measures the difference in HVAC energy use, corrected for differences in plug and window heat gains. Based on the more conservative Method B, annual cooling (compressor + fan), heating fuel, and heating fan site energy savings per unit ceiling area were 2.82 kWh/m(2) (26%), 1.13 kWh/m(2) (4%), and 0.0294 kWh/m(2) (3%), respectively. Annual space conditioning (heating + cooling) source energy savings were 10.7 kWh/m(2) (15%); annual energy cost savings were $0.886/m(2) (20%). Annual conditioning CO2, NOx, and SO2 emission reductions were 1.63 kg/m(2) (15%), 0.621 g/m(2) (10%), and 0.0462 g/m(2) (22%). Peak-hour cooling power demand reduction was 0.88 W/m(2) (37%). (C) 2014 Elsevier B.V. All rights reserved. C1 [Rosado, Pablo J.; Faulkner, David; Sullivan, Douglas P.; Levinson, Ronnen] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Levinson, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM RML27@cornell.edu FU California Energy Commission (CEC) through its Public Interest Energy Research Program (PIER); Office of Building Technology, State, and Community Programs, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the California Energy Commission (CEC) through its Public Interest Energy Research Program (PIER). It was also supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State, and Community Programs, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We wish to thank Michael Spears, Woody Delp, and Charlie Curcija (Lawrence Berkeley National Laboratory); Victor Gonzalez, Tony Seaton, Terry Anderson, Darius Assemi, Mike Bergeron, and Karl Gosswiller (Granville Homes Inc.); Ming Shiao and Richard Snyder (CertainTeed Corp.); Annette Sindar and Greg Peterson (Eagle Roofing Products); Danny Parker (Florida Solar Energy Center); and Hashem Akbari (Concordia University). NR 47 TC 10 Z9 11 U1 1 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD SEP PY 2014 VL 80 BP 57 EP 71 DI 10.1016/j.enbuild.2014.04.024 PG 15 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA AS0DU UT WOS:000343949400007 ER PT J AU Mills, E Bourassa, NJ Rainer, LI Homan, G Merket, N Parker, D Dickey, G Glickman, J AF Mills, Evan Bourassa, Norman J. Rainer, Leo I. Homan, Gregory Merket, Noel Parker, Danny Dickey, Glenn Glickman, Joan TI Asset rating with the home energy scoring tool SO ENERGY AND BUILDINGS LA English DT Article DE Residential; Home rating; Validation AB In 2010, as one of many energy initiatives within a broader economic stimulus program, the U.S. Department of Energy (DOE) and Lawrence Berkeley National Laboratory (LBNL) initiated development of a new web-based computer tool and method for providing an energy rating of existing single-family homes. The resulting Home Energy Scoring Tool is a key component of the DOE's Home Energy Score Program for residential building energy labeling, a voluntary national asset rating method that employs a simplified and standardized energy assessment process. The tool-development component of the program has been designed to support the energy audit marketplace by providing a substantially lower-cost, entry-level assessment method analogous to the fuel-economy ratings associated with vehicles. Averaged over a well-characterized sample of homes, the Home Energy Scoring tool is accurate to within 1% of mean weather-normalized energy bills (with 82% of homes having an absolute error of 25% or less), significantly better than two other popular methods known as SIMPLE and REM/Rate. This article presents technical details of the Home Energy Scoring Tool, and how it has evolved over time, including the calculation methodology, accuracy validation, and the web services feature that allows any qualified third-party software developer to integrate the methodology into their own web-based applications and market delivery strategy. As of April 2014, approximately 200 individuals had been qualified to deliver the assessments and had rated 10,600 homes in cooperation with 23 partner organizations across the United States. (C) 2014 Elsevier B.V. All rights reserved. C1 [Mills, Evan; Bourassa, Norman J.; Rainer, Leo I.; Homan, Gregory] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Merket, Noel] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Parker, Danny] Florida Solar Energy Ctr, Cocoa, FL 32922 USA. [Dickey, Glenn] SRA Int, Rockville, MD 20852 USA. [Glickman, Joan] US DOE, Washington, DC 20585 USA. RP Mills, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM EMills@lbl.gov; NJbourassa@lbl.gov; LIRainer@lbl.gov; GKHoman@lbl.gov; Noel.Merket@nrel.gov; dparker@fsec.ucf.edu; Glenn_Dickey@sra.com; Joan.Glickman@ee.doe.gov FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy and the Building Technologies Program, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The Home Energy Saver and Home Energy Scoring Tool core team also includes software engineers from Bighead Technologies. Helpful comments were provided by Lain Walker and two anonymous reviewers. NR 25 TC 5 Z9 5 U1 2 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD SEP PY 2014 VL 80 BP 441 EP 450 DI 10.1016/j.enbuild.2014.05.044 PG 10 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA AS0DU UT WOS:000343949400042 ER PT J AU Goldstein, K Blasnik, M Heaney, M Polly, B Christensen, C Norford, L AF Goldstein, Kate Blasnik, Michael Heaney, Michael Polly, Ben Christensen, Craig Norford, Les TI Developing a pre-retrofit energy consumption metric to model post-retrofit energy savings: Phase one of a three-phase research initiative SO ENERGY AND BUILDINGS LA English DT Article DE Single family residential; Energy efficiency; Data; Retrofit; Utility programs ID PRISM AB This paper details the process and results from the first step of a three-step research process. This first step looks to identify the most predictive pre-retrofit metric of energy consumption to utilize in a model to predict the energy savings post retrofit. The ultimate goal of this research is to predict candidacy for retrofit using only a combination of demographic and home-characteristics data that is available for the entirety of the U.S. residential housing stock. This is important, as utility data is almost always protected for privacy and thus unavailable to assist in targeting where energy efficiency retrofits will be successful. It is found that the best metric is the simplest, total energy consumption divided by total floor area. In addition to evaluating which pre-use metric is most indicative of post retrofit savings, the paper evaluates the endogenous component of pre-use to post use and a potential method to alleviate this endogeneity. The research finds that by removing the year that is used to calculate the savings as the baseline pre-use year removes a portion of the endogeneity. It is also found that one year before the savings base year is the best year to utilize as the base. (C) 2014 Elsevier B.V. All rights reserved. C1 [Goldstein, Kate; Norford, Les] MIT, Cambridge, MA 02139 USA. [Blasnik, Michael] Michael Blasnik & Associates, Roslindale, MA 02131 USA. [Heaney, Michael; Polly, Ben; Christensen, Craig] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Heaney, M (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Michael.Heaney@nrel.gov NR 6 TC 2 Z9 2 U1 1 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD SEP PY 2014 VL 80 BP 556 EP 561 DI 10.1016/j.enbuild.2014.03.068 PG 6 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA AS0DU UT WOS:000343949400052 ER PT J AU Johnston, S Zaunbrecher, K Ahrenkiel, R Kuciauskas, D Albin, D Metzger, W AF Johnston, Steve Zaunbrecher, Katherine Ahrenkiel, Richard Kuciauskas, Darius Albin, David Metzger, Wyatt TI Simultaneous Measurement of Minority-Carrier Lifetime in Single-Crystal CdTe Using Three Transient Decay Techniques SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Cadmium compounds; charge carrier lifetime; infrared detectors; microwave bands; photoconductivity; photoluminescence; photovoltaic cells; tellurium ID SEMICONDUCTORS; DEPENDENCE; ABSORPTION AB Minority-carrier lifetimes have simultaneously been measured on a single-crystal CdTe sample using three transient decay techniques. These measurements are microwave-reflection photoconductive decay (mu-PCD), time-resolved photoluminescence (TRPL), and transient free-carrier absorption (TFCA). The sample is a 0.8-mm-thick single-crystal CdTe sample from JX Nippon Mining & Metals USA, Inc., which is nominally undoped but has a hole concentration of about 2 - 3 x 10(14) cm(-3). Excess carriers are generated using a Nd:YAG laser with similar to 5-ns pulses, and lifetimes are measured at room temperature. Using 532-nm excitation, the decay curves show an initial short-lifetime component, as carriers are generated near the unpassivated front surface. While TRPL shows a short lifetime of similar to 7 ns, both mu-PCD and TFCA have relatively long single-exponential decays after the initial 100 ns response. These decay times, which are more dominated by the bulk lifetime after the initial surface recombination, are similar to 190 ns for both mu-PCD and TFCA. Simultaneous measurements using two-photon (1064 nm) excitation show bulk-dominated recombination for all three techniques. Lifetimes for both mu-PCD and TFCA are 270 ns, while the TRPL lifetime, which still shows some surface-limited initial decay, is 160 ns. C1 [Johnston, Steve; Zaunbrecher, Katherine; Ahrenkiel, Richard; Kuciauskas, Darius; Albin, David; Metzger, Wyatt] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Zaunbrecher, Katherine] Colorado State Univ, Ft Collins, CO 80523 USA. [Ahrenkiel, Richard] Lakewood Semicond, Lakewood, CO 80232 USA. RP Johnston, S (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM steve.johnston@nrel.gov; katherine.zaunbrecher@nrel.gov; colodick@me.com; darius.kuciauskas@nrel.gov; David.albin@nrel.gov; wyatt.metzger@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory, in part by the Non-Proprietary Partnering Program; American Recovery and Reinvestment Act FX This work was supported by the U.S. Department of Energy under Contract DE-AC36-08-GO28308 with the National Renewable Energy Laboratory, in part by the Non-Proprietary Partnering Program, and by the American Recovery and Reinvestment Act. NR 19 TC 6 Z9 6 U1 2 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD SEP PY 2014 VL 4 IS 5 BP 1295 EP 1300 DI 10.1109/JPHOTOV.2014.2339491 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA AS9DD UT WOS:000344542500017 ER PT J AU Lei, HM Huang, MY Leung, LR Yang, DW Shi, XY Mao, JF Hayes, DJ Schwalm, CR Wei, YX Liu, SS AF Lei, Huimin Huang, Maoyi Leung, L. Ruby Yang, Dawen Shi, Xiaoying Mao, Jiafu Hayes, Daniel J. Schwalm, Christopher R. Wei, Yaxing Liu, Shishi TI Sensitivity of global terrestrial gross primary production to hydrologic states simulated by the Community Land Model using two runoff parameterizations SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article ID GENERAL-CIRCULATION MODELS; SURFACE SCHEME; CLIMATE MODELS; PART I; CARBON; WATER; TRANSFERABILITY; PROJECT; BASINS; FLOW AB Soil moisture plays an important role in the coupled water, energy, and carbon cycles. In addition to surface processes such as evapotranspiration, the boundary fluxes that influence soil moisture are closely related to surface or subsurface runoff. To elucidate how uncertainties in representing surface and subsurface hydrology may influence simulations of the carbon cycle, numerical experiments were performed using version 4 of the Community Land Model with two widely adopted runoff generation parameterizations from the TOPMODEL and Variable Infiltration Capacity (VIC) model under the same protocol. The results showed that differences in the runoff generation schemes caused a relative difference of 36% and 34% in global mean total runoff and soil moisture, respectively, with substantial differences in their spatial distribution and seasonal variability. Changes in the simulated gross primary production (GPP) were found to correlate well with changes in soil moisture through its effects on leaf photosynthesis (A(n)) and leaf area index (LAI), which are the two dominant components determining GPP. Soil temperature, which is influenced by soil moisture, also affects LAI and GPP for the seasonal-deciduous and stress-deciduous plant functional types that dominate in cold regions. Consequently, the simulated global mean GPP differs by 20.4% as a result of differences in soil moisture and soil temperature simulated between the two models. Our study highlights the significant interactions among the water, energy, and carbon cycles and the need for reducing uncertainty in the hydrologic parameterization of land surface models to better constrain carbon cycle modeling. C1 [Lei, Huimin; Yang, Dawen] Tsinghua Univ, Dept Hydraul Engn, Beijing 100084, Peoples R China. [Lei, Huimin; Huang, Maoyi; Leung, L. Ruby] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Shi, Xiaoying; Mao, Jiafu; Hayes, Daniel J.; Wei, Yaxing; Liu, Shishi] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. [Shi, Xiaoying; Mao, Jiafu; Hayes, Daniel J.; Wei, Yaxing; Liu, Shishi] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Schwalm, Christopher R.] No Arizona Univ, Sch Earth Sci & Environm Sustainabil, Flagstaff, AZ 86011 USA. RP Huang, MY (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. EM maoyi.huang@pnnl.gov RI Huang, Maoyi/I-8599-2012; Lei, Huimin/H-9596-2015; Mao, Jiafu/B-9689-2012 OI Huang, Maoyi/0000-0001-9154-9485; Lei, Huimin/0000-0002-1175-2334; Mao, Jiafu/0000-0002-2050-7373 FU Office of Science of the U.S. Department of Energy; National Aeronautics and Space Administration (NASA) [NNX11AO08A, NNH10AN68I]; DOE's Office of Biological and Environmental Research; BATTELLE Memorial Institute [DE-AC05-76RLO1830]; UT-BATTELLE for DOE [DE-AC05-00OR22725]; National Natural Science Funds for Distinguished Young Scholar [51025931]; National Natural Science Foundation of China [51209117, 51139002] FX This study was supported by the Office of Science of the U.S. Department of Energy through the Earth System Modeling program, and in part by National Aeronautics and Space Administration (NASA) under grants NNX11AO08A and NNH10AN68I as a contribution to the North American Carbon Program. CLM4VIC simulations were performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. PNNL is operated for the US DOE by BATTELLE Memorial Institute under contract DE-AC05-76RLO1830. The MsTMIP CLM4 simulations were supported by the US Department of Energy (DOE), Office of Science, Biological, and Environmental Research. Oak Ridge National Laboratory is managed by UT-BATTELLE for DOE under contract DE-AC05-00OR22725. Huimin Lei was funded by the National Natural Science Funds for Distinguished Young Scholar (Project 51025931) and the National Natural Science Foundation of China (Projects 51209117 and 51139002) during his visit at PNNL. We thank Hongyi Li and Nathalie Voisin for their suggestions and comments. NR 80 TC 8 Z9 8 U1 6 U2 26 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD SEP PY 2014 VL 6 IS 3 BP 658 EP 679 DI 10.1002/2013MS000252 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AS6QP UT WOS:000344387900011 ER PT J AU Wang, MH Liu, XH Zhang, K Comstock, JM AF Wang, Minghuai Liu, Xiaohong Zhang, Kai Comstock, Jennifer M. TI Aerosol effects on cirrus through ice nucleation in the Community Atmosphere Model CAM5 with a statistical cirrus scheme SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article ID TROPICAL TROPOPAUSE LAYER; MESOSCALE TEMPERATURE-FLUCTUATIONS; STRATIFORM CLOUD MICROPHYSICS; GLOBAL CLIMATE MODEL; RELATIVE-HUMIDITY; UPPER TROPOSPHERE; VERSION-3 CAM3; PART I; NUCLEI; PARAMETERIZATION AB A statistical cirrus scheme that tracks ice saturation ratio in the clear-sky and cloudy portion of a grid box separately has been implemented into the Community Atmosphere Model CAM5 to provide a consistent treatment of ice nucleation and cloud formation. Simulated ice supersaturation and ice crystal number concentrations strongly depend on the number concentrations of heterogeneous ice nuclei (IN), subgrid temperature formulas, and the number concentration of sulfate particles participating in homogeneous freezing, while simulated ice water content is insensitive to these perturbations. Allowing 1-10% of dust particles to serve as heterogeneous IN is found to produce ice supersaturation in better agreement with observations. Introducing a subgrid temperature perturbation based on long-term aircraft observations produces a better hemispheric contrast in ice supersaturation compared to observations. Heterogeneous IN from dust particles alter the net radiative fluxes at the top of atmosphere (TOA) (-0.24 to -1.59 W m(-2)) with a significant clear-sky longwave component (0.01 to -0.55 W m(-2)). Different cirrus treatments significantly perturb the net TOA anthropogenic aerosol forcing from -1.21 W m(-2) to -1.54 W m(-2), with a standard deviation of 0.10 W m(-2). Aerosol effects on cirrus exert an even larger impact on the atmospheric component of the radiative fluxes (2 or 3 times the changes in the TOA radiative fluxes) and therefore through the fast atmosphere response on the hydrological cycle. This points to the urgent need to quantify aerosol effects on cirrus through ice nucleation and how these further affect the hydrological cycle. C1 [Wang, Minghuai; Liu, Xiaohong; Zhang, Kai; Comstock, Jennifer M.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Liu, Xiaohong] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. RP Wang, MH (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. EM Minghuai.Wang@pnnl.gov RI Wang, Minghuai/E-5390-2011; Liu, Xiaohong/E-9304-2011; Zhang, Kai/F-8415-2010 OI Wang, Minghuai/0000-0002-9179-228X; Liu, Xiaohong/0000-0002-3994-5955; Zhang, Kai/0000-0003-0457-6368 FU DOE Atmospheric System Research (ASR) Program; Battelle Memorial Institute [DE-AC06-76RLO 1830] FX This study was supported by the DOE Atmospheric System Research (ASR) Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. We are grateful to Anna Luebke for providing IWC observational data used in Figures 6 and 7. We are also grateful to Larry Berg and Heng Xiao for their constructive comments. All model output is stored on a local linux cluster at the Pacific Northwest National Laboratory and is available upon request. NR 74 TC 10 Z9 10 U1 2 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD SEP PY 2014 VL 6 IS 3 BP 756 EP 776 DI 10.1002/2014MS000339 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AS6QP UT WOS:000344387900016 ER PT J AU Guo, Z Wang, MH Qian, Y Larson, VE Ghan, S Ovchinnikov, M Bogenschutz, PA Zhao, C Lin, G Zhou, TJ AF Guo, Zhun Wang, Minghuai Qian, Yun Larson, Vincent E. Ghan, Steven Ovchinnikov, Mikhail Bogenschutz, Peter A. Zhao, Chun Lin, Guang Zhou, Tianjun TI A sensitivity analysis of cloud properties to CLUBB parameters in the single-column Community Atmosphere Model (SCAM5) SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article ID PROBABILITY DENSITY-FUNCTIONS; BOUNDARY-LAYER CLOUDS; PDF-BASED MODEL; UNCERTAINTY QUANTIFICATION; CLIMATE SIMULATIONS; SHALLOW CUMULUS; PART II; CONVECTION; MICROPHYSICS; IMPACT AB In this study, we investigate the sensitivity of simulated shallow cumulus and stratocumulus to selected tunable parameters of Cloud Layers Unified by Binormals (CLUBB) in the single-column version of Community Atmosphere Model version 5 (SCAM5). A quasi-Monte Carlo (QMC) sampling approach is adopted to effectively explore the high-dimensional parameter space and a generalized linear model is adopted to study the responses of simulated cloud fields to tunable parameters. One stratocumulus and two shallow cumulus cases are configured at both coarse and fine vertical resolutions in this study. Our results show that most of the variance in simulated cloud fields can be explained by a small number of tunable parameters. The parameters related to Newtonian and buoyancy-damping terms of total water flux are found to be the most influential parameters for stratocumulus. For shallow cumulus, the most influential parameters are those related to skewness of vertical velocity, reflecting the strong coupling between cloud properties and dynamics in this regime. The influential parameters in the stratocumulus case are sensitive to the vertical resolution while little sensitivity is found for the shallow cumulus cases, as eddy mixing length (or dissipation time scale) plays a more important role and depends more strongly on the vertical resolution in stratocumulus than in shallow convections. The influential parameters remain almost unchanged when the number of tunable parameters increases from 16 to 35. This study improves understanding of the CLUBB behavior associated with parameter uncertainties and provides valuable insights for other high-order turbulence closure schemes. C1 [Guo, Zhun; Wang, Minghuai; Qian, Yun; Ghan, Steven; Ovchinnikov, Mikhail; Zhao, Chun; Lin, Guang] Pacific NW Natl Lab, Atmosphere Sci & Global Change Div, Richland, WA 99352 USA. [Guo, Zhun; Zhou, Tianjun] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing, Peoples R China. [Guo, Zhun; Zhou, Tianjun] Chinese Acad Sci, Climate Change Res Ctr, Beijing, Peoples R China. [Larson, Vincent E.] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA. [Bogenschutz, Peter A.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. RP Wang, MH (reprint author), Pacific NW Natl Lab, Atmosphere Sci & Global Change Div, Richland, WA 99352 USA. EM Zhun.Guo@pnnl.gov; Minghuai.Wang@pnnl.gov RI qian, yun/E-1845-2011; Wang, Minghuai/E-5390-2011; Zhao, Chun/A-2581-2012; Ghan, Steven/H-4301-2011; ZHOU, Tianjun/C-3195-2012 OI Wang, Minghuai/0000-0002-9179-228X; Zhao, Chun/0000-0003-4693-7213; Ghan, Steven/0000-0001-8355-8699; ZHOU, Tianjun/0000-0002-5829-7279 FU U.S. Department of Energy's Office of Science through Advanced Computing Program; Battelle Memorial Institute [DE-AC05-76RL01830]; Office of Science (BER), U.S. Department of Energy [DE-SC0008323]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This study was supported by the U.S. Department of Energy's Office of Science as part of the Scientific Discoveries through Advanced Computing Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. V. Larson gratefully acknowledges support from the Office of Science (BER), U.S. Department of Energy, Grant DE-SC0008323. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. All SCAM5 results are stored on a local PNNL cluster and are available upon request. NR 37 TC 10 Z9 10 U1 1 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD SEP PY 2014 VL 6 IS 3 BP 829 EP 858 DI 10.1002/2014MS000315 PG 30 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AS6QP UT WOS:000344387900019 ER PT J AU Evans, KJ Mahajan, S Branstetter, M McClean, JL Caron, J Maltrud, ME Hack, JJ Bader, DC Neale, R Leifeld, JK AF Evans, Katherine J. Mahajan, Salil Branstetter, Marcia McClean, Julie L. Caron, Julie Maltrud, Matthew E. Hack, James J. Bader, David C. Neale, Richard Leifeld, Juliann K. TI A spectral transform dynamical core option within the Community Atmosphere Model (CAM4) SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article ID GLOBAL PRECIPITATION; CLIMATE MODEL; SYSTEM MODEL; REANALYSIS; RESOLUTION; CCSM3; UNCERTAINTY; PERFORMANCE; SIMULATION; RADIATION AB An ensemble of simulations covering the present day observational period using forced sea surface temperatures and prescribed sea-ice extent is configured with an 85 truncation resolution spectral transform dynamical core (T85) within the Community Atmosphere Model (CAM), version 4 and is evaluated relative to observed and model derived data sets and the one degree finite volume (FV) dynamical core. The spectral option provides a well-known base within the climate model community to assess climate behavior and statistics, and its relative computational efficiency for smaller computing platforms allows it to be extended to perform high-resolution climate length simulations. Overall, the quality of the T85 ensemble is similar to FV. Analyzing specific features of the T85 simulations show notable improvements to the representation of wintertime Arctic sea level pressure and summer precipitation over the Western Indian subcontinent. The mean and spatial patterns of the land surface temperature trends over the AMIP period are generally well simulated with the T85 ensemble relative to observations, however the model is not able to capture the extent nor magnitude of changes in temperature extremes over the boreal summer, where the changes are most dramatic. Biases in the wintertime Arctic surface temperature and annual mean surface stress fields persist with T85 as with the CAM3 version of T85, as compared to FV. An experiment to identify the source of differences between dycores has revealed that the longwave cloud forcing is sensitive to the choice of dycore, which has implications for tuning strategies of the physics parameter settings. C1 [Evans, Katherine J.; Mahajan, Salil; Branstetter, Marcia; Hack, James J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [McClean, Julie L.] Scripps Inst Oceanog, San Diego, CA USA. [Caron, Julie; Neale, Richard] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Maltrud, Matthew E.] Los Alamos Natl Lab, Los Alamos, NM USA. [Bader, David C.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Leifeld, Juliann K.] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA. RP Evans, KJ (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM evanskj@ornl.gov RI Bader, David/H-6189-2011; OI Bader, David/0000-0003-3210-339X; Mahajan, Salil/0000-0001-5767-8590; Evans, Katherine/0000-0001-8174-6450 FU Office of Science of the U.S. Department of Energy; National Science Foundation; U.S. Department of Energy Office of Biological and Environmental Research (BER) project; U.S. Department of Energy [DE-AC05-00OR22725] FX We would like to thank J. Truesdale and M. Vertenstein for help configuring the spectral option with CESM/CAM, Rick Archibald for verifying the sensitivity of the physics parameters, and the thoughtful comments from two anonymous reviewers. The CESM project is supported by the Office of Science of the U.S. Department of Energy and the National Science Foundation. NCAR is supported by the National Science Foundation. Evans, Mahajan, Branstetter, McClean, Maltrud, Hack, and Bader were funded through the U.S. Department of Energy Office of Biological and Environmental Research (BER) project, "Ultra High Resolution Global Climate Simulation to Explore and Quantify Predictive Skill for Climate Means, Variability and Extremes." The simulation data used for the analysis are available upon request. This research used the NCAR Command Language software [NCL, 2012] for some the plots and used the resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 53 TC 2 Z9 2 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD SEP PY 2014 VL 6 IS 3 BP 902 EP 922 DI 10.1002/2014MS000329 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AS6QP UT WOS:000344387900022 ER PT J AU Hagos, S Feng, Z Landu, K Long, CN AF Hagos, Samson Feng, Zhe Landu, Kiranmayi Long, Charles N. TI Advection, moistening, and shallow-to-deep convection transitions during the initiation and propagation of Madden-Julian Oscillation SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article ID TROPICAL CONVECTION; CLOUD; RADAR; MODEL; SIMULATION; CONGESTUS; RAINFALL AB Using observations from the 2011 AMIE/DYNAMO field campaign over the Indian Ocean and a high-resolution regional model simulation, the processes that lead to the rapid shallow-to-deep convection transitions associated with the initiation and eastward propagation of the Madden-Julian Oscillation (MJO) are examined. By tracking the evolution of the depth of several thousand individual model simulated precipitation features, the role of and the processes that control the observed midtropospheric moisture buildup ahead of the detection of deep convection are quantified at large and convection scales. The frequency of shallow-to-deep convection transitions is found to be sensitive to this midlevel moisture and large-scale uplift. This uplift along with the decline of large-scale drying by equator-ward advection causes the moisture buildup leading to the initiation of the MJO. Convection scale moisture variability and uplift, and large-scale zonal advection play secondary roles. C1 [Hagos, Samson; Feng, Zhe; Long, Charles N.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Landu, Kiranmayi] Indian Inst Technol, Bhubaneswar, Orissa, India. RP Hagos, S (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM samson.hagos@pnnl.gov RI Feng, Zhe/E-1877-2015 OI Feng, Zhe/0000-0002-7540-9017 FU U.S. Department of Energy, Office of Science, Biological and Environmental Research under the Atmospheric System Research Program; Regional and Global Climate Modeling Program; U.S. Department of Energy [DE-AC06-76RLO1830] FX The authors thank two anonymous reviewers for their constructive comments that improved the quality of the paper. This research is based on work supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research under the Atmospheric System Research Program, and the Regional and Global Climate Modeling Program. Computing resources for the simulations are provided by the Oak Ridge Leadership Computing Facility (OLCF) through the INCITE Climate End Station project and National Energy Research Scientific Computing Center (NERSC). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under contract DE-AC06-76RLO1830. Data collected on Gan Island during the AMIE field campaign, including radar, lidar, surface MET, and sounding data, are obtained from the U.S. Department of Energy as part of the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The DYNAMO field campaign data used in this paper is available at NCAR's Earth Observing Laboratory's DYNAMO Data Catalogue https://www.eol.ucar.edu/field_projects/dynamo. NR 29 TC 18 Z9 18 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD SEP PY 2014 VL 6 IS 3 BP 938 EP 949 DI 10.1002/2014MS000335 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AS6QP UT WOS:000344387900024 ER PT J AU Basunia, MS AF Basunia, M. Shamsuzzoha TI Nuclear Data Sheets for A=210 SO NUCLEAR DATA SHEETS LA English DT Article ID HIGH-SPIN STATES; ALPHA-DECAY PROPERTIES; ATOMIC MASS EVALUATION; CORE-EXCITED-STATES; 2-NUCLEON TRANSFER-REACTIONS; NEUTRON-DEFICIENT FRANCIUM; FILLED RECOIL SEPARATOR; L-SUBSHELL FLUORESCENCE; GAMMA-RAY SPECTROSCOPY; SQUARE CHARGE RADII AB Evaluated spectroscopic data for Au-210, Hg-210, Tl-210, Pb-210, Bi-210, Po-210., At-210, Rn-210, Fr-210, Ra-210, Ac-210, and Th-210 and corresponding level schemes from radioactive decay and reaction studies are presented. This evaluation supersedes the previous evaluation by E. Browne (2003Br13). Highlights of this publication are the identification of new us isomers of Hg-210 by 2013Go10 and measurement of an excited level energy at 1709 keV 30 of Rn-210 from Rn-214 alpha decay: : 68.6 mu s by 2006Ku26 denoted as x+1664.6 in the Adopted Levels. Earlier experimental limits for x <= 50 keV was proposed in 1979Po19 and 1982Po03 - (Hl,xn gamma). C1 Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Basunia, MS (reprint author), Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. FU Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05CH11231]; Office of Energy Research, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the US Department of Energy [DE-AC03-76SF00098] FX Research sponsored by Office of Basic Energy Sciences, US Department of Energy, under contract DE-AC02-05CH11231.; This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the US Department of Energy under contract DE-AC03-76SF00098. NR 410 TC 8 Z9 8 U1 2 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD SEP-OCT PY 2014 VL 121 BP 561 EP 693 DI 10.1016/j.nds.2014.09.004 PG 133 WC Physics, Nuclear SC Physics GA AS0KR UT WOS:000343966600004 ER PT J AU Nesaraja, CD McCutchan, EA AF Nesaraja, C. D. McCutchan, E. A. TI Nuclear Data Sheets for A=243 SO NUCLEAR DATA SHEETS LA English DT Article ID SPONTANEOUSLY FISSIONING ISOMERS; NEUTRON-INDUCED FISSION; ALPHA-DECAY PROPERTIES; ODD-MASS NUCLEI; CAPTURE CROSS-SECTION; QUASI-PARTICLE STATES; PARTIAL HALF-LIVES; N-GAMMA-F; ACTINIDE NUCLEI; GROUND-STATE AB Available information pertaining to the nuclear structure of all nuclei with mass numbers A=243 is presented. Various decay and reaction data are evaluated and compared. Adopted data, levels, spin, parity and configuration assignments are given. When there are insufficient data, expected values from systematics of nuclear properties or/and theoretical calculations are quoted. Unexpected or discrepant experimental results are also noted. A summary and compilation of the discovery of various isotopes in this mass region is given in 2013Fr02 (Np-243, Pu-243, Am-243, Cm-243, Bk-243, and Cf-243, 2011Me01 (Es-243), and 2013Th02 (Fm-243). C1 [Nesaraja, C. D.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [McCutchan, E. A.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Nesaraja, CD (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. OI Nesaraja, Caroline/0000-0001-5571-8341 FU Office of Nuclear Physics, Office of Science, US Department of Energy [DE-AC02-98CH10946, DE-AC05-000R22725] FX Research sponsored by Office of Nuclear Physics, Office of Science, US Department of Energy, under contract DE-AC02-98CH10946 (EM.), DE-AC05-000R22725 (C.N.). NR 235 TC 3 Z9 3 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD SEP-OCT PY 2014 VL 121 BP 695 EP 748 DI 10.1016/j.nds.2014.09.005 PG 54 WC Physics, Nuclear SC Physics GA AS0KR UT WOS:000343966600005 ER PT J AU Blom, DA Vogt, T Allard, LF Buttrey, DJ AF Blom, Douglas A. Vogt, Thomas Allard, Larry F. Buttrey, Douglas J. TI Observation of Sublattice Disordering of the Catalytic Sites in a Complex Mo-V-Nb-Te-O Oxidation Catalyst Using High Temperature STEM Imaging SO TOPICS IN CATALYSIS LA English DT Article DE MoVNbTeO catalyst; M1 phase; Selective oxidation; Ammoxidation; Sublattice disorder; Active site; STEM imaging ID M1 PHASE; SELECTIVE OXIDATION; OXIDE CATALYSTS; ACTIVE-CENTERS; PROPANE; SURFACE; AMMOXIDATION; M2; (AMM)OXIDATION; MULTIFUNCTIONALITY AB A Mo-V-Nb-Te-O oxidation catalyst has been imaged using scanning transmission electron microscopy at 780 K, which is slightly above its operating temperature. We observe a sublattice disordering of the corner-sharing octahedra forming the catalytic sites containing V5+ while the edge-sharing pentagonal bipyramidal {Nb(Mo-5)} sublattice remains structurally more rigid and thereby maintains the overall structural integrity of the catalyst. Imaging the termination of the edges of the [001] basal zones at room temperature reveal a preference for presence of a closed network of secondary structural {Nb(Mo)(5)} units providing further evidence of the stability of this sublattice structure. We propose that sublattice disordering of catalytic sites enables structural flexibility to accommodate different oxidation states during multistep chemical reactions within a more rigid superstructure and presents a new paradigm for compositionally and structurally complex catalysts. C1 [Blom, Douglas A.; Vogt, Thomas] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Blom, Douglas A.; Vogt, Thomas] Univ S Carolina, Nano Ctr, Columbia, SC 29208 USA. [Allard, Larry F.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Buttrey, Douglas J.] Univ Delaware, Dept Chem & Biomol Engn, Ctr Catalyt Sci & Technol, Newark, DE 19716 USA. RP Buttrey, DJ (reprint author), Univ Delaware, Dept Chem & Biomol Engn, Ctr Catalyt Sci & Technol, Newark, DE 19716 USA. EM dbuttrey@udel.edu FU USC NanoCenter; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, Propulsion Materials Program FX We thank the USC NanoCenter for financial support for beam time on the JEOL 2100 F and travel support to ORNL. We also thank A. F. Volpe Jr., C. G. Lugmair, and R. K. Grasselli for providing the M1 specimen used in this study. Microscopy research at the Oak Ridge National Laboratory was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, as part of the Propulsion Materials Program. NR 24 TC 7 Z9 7 U1 1 U2 21 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD SEP PY 2014 VL 57 IS 14-16 BP 1138 EP 1144 DI 10.1007/s11244-014-0278-4 PG 7 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA AS3DY UT WOS:000344157900004 ER PT J AU Alexandrov, BS Vesselinov, VV AF Alexandrov, Boian S. Vesselinov, Velimir V. TI Blind source separation for groundwater pressure analysis based on nonnegative matrix factorization SO WATER RESOURCES RESEARCH LA English DT Article DE inversion; source identification; blind source separation; k-means analysis; non-negative matrix factorization ID INDEPENDENT COMPONENT ANALYSIS; CROSS-HOLE TESTS; 3-DIMENSIONAL NUMERICAL INVERSION; HYDRAULIC TOMOGRAPHY; MUTATIONAL PROCESSES; HUMAN CANCER; WATER; FLUCTUATIONS; SIGNATURES; ALGORITHM AB The identification of the physical sources causing spatial and temporal fluctuations of aquifer water levels is a challenging, yet a very important hydrogeological task. The fluctuations can be caused by variations in natural and anthropogenic sources such as pumping, recharge, barometric pressures, etc. The source identification can be crucial for conceptualization of the hydrogeological conditions and characterization of aquifer properties. We propose a new computational framework for model-free inverse analysis of pressure transients based on Nonnegative Matrix Factorization (NMF) method for Blind Source Separation (BSS) coupled with k-means clustering algorithm, which we call NMFk. NMFk is capable of identifying a set of unique sources from a set of experimentally measured mixed signals, without any information about the sources, their transients, and the physical mechanisms and properties controlling the signal propagation through the subsurface flow medium. Our analysis only requires information about pressure transients at a number of observation points, m, where mr, and r is the number of unknown unique sources causing the observed fluctuations. We apply this new analysis on a data set from the Los Alamos National Laboratory site. We demonstrate that the sources identified by NMFk have real physical origins: barometric pressure and water-supply pumping effects. We also estimate the barometric pressure efficiency of the monitoring wells. The possible applications of the NMFk algorithm are not limited to hydrogeology problems; NMFk can be applied to any problem where temporal system behavior is observed at multiple locations and an unknown number of physical sources are causing these fluctuations. C1 [Alexandrov, Boian S.] Los Alamos Natl Lab, Div Theoret, Phys & Chem Mat Grp, Los Alamos, NM USA. [Vesselinov, Velimir V.] Los Alamos Natl Lab, Div Earth & Environm Sci, Computat Earth Sci Grp, Los Alamos, NM 87545 USA. RP Vesselinov, VV (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Computat Earth Sci Grp, Los Alamos, NM 87545 USA. EM vvv@lanl.gov RI Vesselinov, Velimir/P-4724-2016; OI Vesselinov, Velimir/0000-0002-6222-0530; Alexandrov, Boian/0000-0001-8636-4603 FU Environmental Programs Directorate of the Los Alamos National Laboratory FX The authors wish to thank the associated editor and three anonymous reviewers for comments that substantially improved the manuscript. This research was funded by the Environmental Programs Directorate of the Los Alamos National Laboratory. NR 48 TC 1 Z9 1 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD SEP PY 2014 VL 50 IS 9 BP 7332 EP 7347 DI 10.1002/2013WR015037 PG 16 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA AR9YK UT WOS:000343933400016 ER PT J AU Niu, J Shen, CP Li, SG Phanikumar, MS AF Niu, Jie Shen, Chaopeng Li, Shu-Guang Phanikumar, Mantha S. TI Quantifying storage changes in regional Great Lakes watersheds using a coupled subsurface-land surface process model and GRACE, MODIS products SO WATER RESOURCES RESEARCH LA English DT Article DE water budgets; storage; Great Lakes; watershed ID EVAPOTRANSPIRATION ALGORITHM; DATA ASSIMILATION; HYDROLOGIC-CYCLE; BUDGET; CLASSIFICATION; COMPUTATIONS; GROUNDWATER; BASINS; SYSTEM AB As a direct measure of watershed resilience, watershed storage is important for understanding climate change impacts on water resources. In this paper we quantify water budget components and storage changes for two of the largest watersheds in the State of Michigan, USA (the Grand River and the Saginaw Bay watersheds) using remotely sensed data and a process-based hydrologic model (PAWS) that includes detailed representations of subsurface and land surface processes. Model performance is evaluated using ground-based observations (streamflows, groundwater heads, soil moisture, and soil temperature) as well as satellite-based estimates of evapotranspiration (Moderate-resolution Imaging Spectroradiometer, MODIS) and watershed storage changes (Gravity Recovery and Climate Experiment, GRACE). We use the model to compute annual-average fluxes due to evapotranspiration, surface runoff, recharge and groundwater contribution to streams and analyze the impacts of land use and land cover (LULC) and soil types on annual hydrologic budgets using correlation analysis. Watershed storage changes based on GRACE data and model results showed similar patterns. Storage was dominated by subsurface components and showed an increasing trend over the past decade. This work provides new estimates of water budgets and storage changes in Great Lakes watersheds and the results are expected to aid in the analysis and interpretation of the current trend of declining lake levels, in understanding projected future impacts of climate change as well as in identifying appropriate climate adaptation strategies. C1 [Niu, Jie; Li, Shu-Guang; Phanikumar, Mantha S.] Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA. [Niu, Jie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Shen, Chaopeng] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA. RP Niu, J (reprint author), Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA. EM jniu@lbl.gov OI Shen, Chaopeng/0000-0002-0685-1901 FU NOAA [3002283555] FX This research was funded by a NOAA grant to the last author (award 3002283555). We thank Han Qiu for his assistance with data compilation, model runs, and postprocessing. Data sets used as model inputs or for model testing are owned by several agencies including the USGS, USDA, NOAA, NASA/JPL, the Michigan Department of Natural Resources (MDNR) and MAWN (Michigan Automated Weather Network or Enviro-Weather) and details of these sources (with web links where available) are provided in the paper. We acknowledge AGU's data policy; however, we are not in a position to share these publicly available data sets, as we do not have ownership of the data. NR 66 TC 14 Z9 14 U1 5 U2 46 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD SEP PY 2014 VL 50 IS 9 BP 7359 EP 7377 DI 10.1002/2014WR015589 PG 19 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA AR9YK UT WOS:000343933400018 ER PT J AU Riding, R Liang, L Braga, JC AF Riding, R. Liang, L. Braga, J. C. TI Millennial-scale ocean acidification and late Quaternary decline of cryptic bacterial crusts in tropical reefs SO GEOBIOLOGY LA English DT Article ID SULFATE-REDUCING BACTERIA; GREAT-BARRIER-REEF; ATMOSPHERIC CARBON-DIOXIDE; LAST GLACIAL MAXIMUM; MODERN MARINE STROMATOLITES; LITHIFIED MICRITIC LAMINAE; PERMIAN MASS EXTINCTION; SOLAR LAKE SINAI; FOSSIL-FUEL CO2; SEA-LEVEL RISE AB Ocean acidification by atmospheric carbon dioxide has increased almost continuously since the last glacial maximum (LGM), 21 000 years ago. It is expected to impair tropical reef development, but effects on reefs at the present day and in the recent past have proved difficult to evaluate. We present evidence that acidification has already significantly reduced the formation of calcified bacterial crusts in tropical reefs. Unlike major reef builders such as coralline algae and corals that more closely control their calcification, bacterial calcification is very sensitive to ambient changes in carbonate chemistry. Bacterial crusts in reef cavities have declined in thickness over the past 14 000 years with largest reduction occurring 12 00010 000 years ago. We interpret this as an early effect of deglacial ocean acidification on reef calcification and infer that similar crusts were likely to have been thicker when seawater carbonate saturation was increased during earlier glacial intervals, and thinner during interglacials. These changes in crust thickness could have substantially affected reef development over glacial cycles, as rigid crusts significantly strengthen framework and their reduction would have increased the susceptibility of reefs to biological and physical erosion. Bacterial crust decline reveals previously unrecognized millennial-scale acidification effects on tropical reefs. This directs attention to the role of crusts in reef formation and the ability of bioinduced calcification to reflect changes in seawater chemistry. It also provides a long-term context for assessing anticipated anthropogenic effects. C1 [Riding, R.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Liang, L.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Braga, J. C.] Univ Granada, Dept Estratigrafia & Paleontol, Granada, Spain. RP Riding, R (reprint author), Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. EM rriding@utk.edu RI Liang, Liyuan/O-7213-2014 OI Liang, Liyuan/0000-0003-1338-0324 FU NSF; Japan's Ministry of Education, Culture, Sports, Science and Technology; European Consortium for Ocean Drilling Research; People's Republic of China, Ministry of Science and Technology; U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research to Oak Ridge National Laboratory (ORNL); UT Battelle, LLC, for the U. S. Department of Energy [DE-AC05-00OR22725] FX This research used samples provided by the Integrated Ocean Drilling Program (IODP). IODP is supported by NSF; Japan's Ministry of Education, Culture, Sports, Science and Technology; the European Consortium for Ocean Drilling Research; and the People's Republic of China, Ministry of Science and Technology. LL acknowledges scientific support by the U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research to Oak Ridge National Laboratory (ORNL). ORNL is managed by UT Battelle, LLC, for the U. S. Department of Energy under contract DE-AC05-00OR22725. We thank anonymous reviewers, including four for Geobiology, whose very helpful suggestions improved this work. We are grateful to Mariia del Mar Rueda for statistical help, Fabio Tosti for assistance with figure drafting, and Kurt Konhauser for editorial guidance. NR 226 TC 12 Z9 12 U1 2 U2 31 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1472-4677 EI 1472-4669 J9 GEOBIOLOGY JI Geobiology PD SEP PY 2014 VL 12 IS 5 BP 387 EP 405 DI 10.1111/gbi.12097 PG 19 WC Biology; Environmental Sciences; Geosciences, Multidisciplinary SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Geology GA AR9BO UT WOS:000343866300002 PM 25040070 ER PT J AU Bolin, TB AF Bolin, Trudy B. TI S-XANES analysis of thermal iron sulfide transformations in a suite of Argonne Premium Coals: A study of particle size effects during pyrolysis SO INTERNATIONAL JOURNAL OF COAL GEOLOGY LA English DT Article DE Pyrite; Marcasite; Argonne Premium Coals; Pyrrhotite; Troilite; Shrinking core model ID X-RAY; ABSORPTION-SPECTROSCOPY; PETROLEUM ASPHALTENES; SAMPLE PROGRAM; SULFUR FORMS; PYRITE; MARCASITE; DECOMPOSITION; TEMPERATURE; REDUCTION AB A suite of four bituminous Argonne Premium Coal Samples, namely Pittsburgh#8 (P8), Blind Canyon (BC), Upper Freeport (UF), and Illinois #6 (IL6), were pyrolyzed according to the Easy R-o kinetic model (Burnham and Sweeney, 1989) to R-o = 4.3 and iron sulfide thermal transformations were tracked by the use of S-XANES (Sulfur X-ray Absorption Near Edge Structure.) It was shown that the pyrite transformed first to pyrrhotite by R-o = 1.5, and then started to transform to troilite by R-o = 2.4. Some Argonne Coals displayed evidence of structural instability. In addition, particle size effects were examined. Pyrolysis was performed on not-ground (large-particled) coal samples, which were subsequently ground to micron-size particles before data collection. S-XANES was also collected for the not-ground post-pyrolysis IL6 coal to show the effect of the extent of reaction on the surface of the particles as opposed to the bulk. It was found that the pyrite-to-pyrrhotite transformation in large particles of IL6 coal proceeded from the surface of the particle and progress inward, consistent with the shrinking core model. A scheme for determining particle size based on organic sulfur content was also developed for a coal model consisting of a 50/50 mol% mixture of pyrite and Maya petroleum vacuum resid asphaltene for a range of known particle sizes. Lastly, the behavior of both marcasite (a polymorph of pyrite) and pyrite in a coal model was investigated for large (similar to 100 mu m) and small (similar to 5 mu m) particles. The marcasite proved to be less structurally stable than pyrite for the large particles, with an abrupt transformation to a mixture of pyrrhotite and troilite, and an abrupt drop in aliphatic sulfur content, indicating consequent H2S generation at R-o = 2.4. This transformation is much less pronounced for pyrite at the same point in pyrolysis. (C) 2014 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Bolin, TB (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U.S. DOE [DE-AC02-06CH11357] FX The author would like to heartily thank Simon Kelemen, Clifford Walters, and Michael Sansone for their very helpful guidance, and also Matthew Suchomel and Lynn Ribaud for their assistance with powder diffraction at 11-BM. The author would also like to thank Darren Locke for assistance with SEM. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 38 TC 2 Z9 2 U1 7 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-5162 EI 1872-7840 J9 INT J COAL GEOL JI Int. J. Coal Geol. PD SEP 1 PY 2014 VL 131 BP 200 EP 213 DI 10.1016/j.coal.2014.06.015 PG 14 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA AR8RS UT WOS:000343842800018 ER PT J AU Perego, M Price, S Stadler, G AF Perego, Mauro Price, Stephen Stadler, Georg TI Optimal initial conditions for coupling ice sheet models to Earth system models SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article DE ice sheet modeling; ice sheet model optimization; coupled ice sheet and climate modeling ID FUTURE SEA-LEVEL; SURFACE MASS-BALANCE; HIGHER-ORDER; DATA ASSIMILATION; GREENLAND; RISE; FLOW; IMPLEMENTATION; SENSITIVITY; PROJECTIONS AB We address complications in the coupling of a dynamic ice sheet model (ISM) and forcing from an Earth system model (ESM), which arise because of the unknown ISM initial conditions. Unless explicitly accounted for during ISM initialization, the ice sheet is far from thermomechanical equilibrium with the surface mass balance forcing from the ESM. Upon coupling to ESM forcing, the result is a shock and unphysical and undesirable transients in ice geometry and other state variables. Under the assumption of thermomechanical equilibrium, we present an approach for finding ISM initial conditionscharacterized by optimization of the basal sliding coefficient and basal topography fieldsthat balance a best fit to surface velocity and basal topography observations against the minimization of unphysical transients when coupling to surface mass balance forcing. A quasi-Newton method is used to solve the resulting large-scale, partial differential equation-constrained optimization problem, where the cost function gradients with respect to the parameter fields are computed using adjoints. After studying properties of our approach on a synthetic test problem, we apply the method toward obtaining optimal initial conditions for a model of the Greenland ice sheet. Our results show that, in the presence of uncertainties in the basal topography, ice thickness should also be treated as an optimization variable. While the focus here is on the coupling between an ISM and ESM-derived surface mass balance, the method is easily extended to include optimal coupling to forcing from an ocean model through submarine melt rates. C1 [Perego, Mauro] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Price, Stephen] Los Alamos Natl Lab, Fluid Dynam & Solid Mech Grp, Los Alamos, NM USA. [Stadler, Georg] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA. RP Perego, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mperego@sandia.gov RI Price, Stephen /E-1568-2013 OI Price, Stephen /0000-0001-6878-2553 FU Scientific Discovery through Advanced Computing (SciDAC) program - U.S. Department of Energy (DOE), Office of Science, Advanced Scientific Computing Research, and Biological and Environmental Research; U.S. Department of Energy Office of Science, Advanced Scientific Computing Research, and Biological and Environmental Research programs [DE-SC0009286, DE-SC000665, DE-11018096]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank M. Gunzburger, A. Salinger, O. Ghattas, N. Petra, and T. Isaac for helpful discussions, and D. Kouri and D. Ridzal for help with coupling ROL and LifeV and setting the options for the optimization solver. Support for M.P. and S.P. was provided through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy (DOE), Office of Science, Advanced Scientific Computing Research, and Biological and Environmental Research. Support for G.S. was provided by the U.S. Department of Energy Office of Science, Advanced Scientific Computing Research, and Biological and Environmental Research programs under grants DE-SC0009286, DE-SC000665, and DE-11018096. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Data will be made available upon request to the authors. NR 55 TC 10 Z9 10 U1 2 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9003 EI 2169-9011 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD SEP PY 2014 VL 119 IS 9 BP 1894 EP 1917 DI 10.1002/2014JF003181 PG 24 WC Geosciences, Multidisciplinary SC Geology GA AR9EY UT WOS:000343876500007 ER PT J AU Jeffery, N Hunke, EC AF Jeffery, N. Hunke, E. C. TI Modeling the winter-spring transition of first-year ice in the western Weddell Sea SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article DE sea ice; halodynamics; numerical modeling; Weddell Sea; desalination; salinity ID POROUS-MEDIA; SALINITY PROFILE; GRAVITY DRAINAGE; THICKNESS; SUMMER; ISPOL; SIMULATIONS; DISPERSION; DYNAMICS; SYSTEM AB A new halodynamic scheme is coupled with the Los Alamos sea ice model to simulate western Weddell Sea ice during the winter-spring transition. One-dimensional temperature and salinity profiles are consistent with the warming and melt stages exhibited in first-year ice cores from the 2004 Ice Station POLarstern (ISPOL) expedition. Results are highly sensitive to snowfall. Simulations which use reanalysis precipitation data do not retain a snow cover beyond mid-December, and the warming transition occurs too rapidly. Model performance is greatly improved by prescribing a snowfall rate based on reported snow thicknesses. During ice growth prior to ISPOL, simulations indicate a period of thick snow and upper ice salinity enrichment. Gravity drainage model parameters impact the simulation immediately, while effects from the flushing parameter (snow porosity at the ice top) appear as the freeboard becomes negative. Simulations using a snow porosity of 0.3, consistent with that of wet snow, agree with salinity observations. The model does not include lateral sources of sea-water flooding, but vertical transport processes account for the high upper-ice salinities observed in ice cores at the start of the expedition. As the ice warms, a fresh upper-ice layer forms, and the high salinity layer migrates downward. This pattern is consistent with the early spring development stages of high-porosity layers observed in Antarctic sea ice that are associated with rich biological production. Future extensions of the model may be valuable in Antarctic ice-biogeochemical applications. C1 [Jeffery, N.] Los Alamos Natl Lab, Dept Comp & Computat Sci, Los Alamos, NM 87545 USA. [Hunke, E. C.] Los Alamos Natl Lab, Dept Fluid Dynam & Solid Mech, Los Alamos, NM USA. RP Jeffery, N (reprint author), Los Alamos Natl Lab, Dept Comp & Computat Sci, POB 1663, Los Alamos, NM 87545 USA. EM njeffery@lanl.gov FU U.S. Department of Energy Cloud-Cryosphere Project; U.S. Department of Energy Biological and Environmental Research (BER) Climate Change Prediction Program FX The authors thank two anonymous reviewers, whose thoughtful critiques led to a substantially improved manuscript. We also thank Mathew Maltrud, Cecilia Bitz, Scott Elliott, Adrian Turner, Chris Jeffery, and Jean-Francois Lamarque for many helpful and insightful discussions. The data used in this paper are available upon request. This research was supported by the U.S. Department of Energy Cloud-Cryosphere Project and the U.S. Department of Energy Biological and Environmental Research (BER) Climate Change Prediction Program. NR 58 TC 1 Z9 1 U1 2 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD SEP PY 2014 VL 119 IS 9 BP 5891 EP 5920 DI 10.1002/2013JC009634 PG 30 WC Oceanography SC Oceanography GA AR9FW UT WOS:000343879200018 ER PT J AU Renaud, G Riviere, J Larmat, C Rutledge, JT Lee, RC Guyer, RA Stokoe, K Johnson, PA AF Renaud, G. Riviere, J. Larmat, C. Rutledge, J. T. Lee, R. C. Guyer, R. A. Stokoe, K. Johnson, P. A. TI In situ characterization of shallow elastic nonlinear parameters with Dynamic Acoustoelastic Testing SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE nonlinear elasticity; in situ measurement; acoustoelasticity; soil; nonlinear wave interaction; nonlinear site response ID 1994 NORTHRIDGE EARTHQUAKE; OKI-EARTHQUAKE; GROUND-MOTION; PROPAGATION; RESONANCE; SEDIMENTS; SIGNALS; SOLIDS; ROCK AB In situ measurement of the elastic nonlinear site response is advantageous to provide optimal information for prediction of strong ground motion at a site. We report the first implementation of a technique known as Dynamic Acoustoelastic Testing (DAET) in situ with the ultimate goal of developing a new approach for site characterization. DAET has shown promising results at the laboratory scale for the study of nonlinear elasticity of Earth materials, detailing the full nonlinear elastic properties of the studied sample. We demonstrate the feasibility of DAET in situ and compare it to other methods (nonlinear resonance spectroscopy, wave amplitude dependence of propagation velocity, and wave distortion). Nonlinear elastic properties are characterized by DAET with the advantage of providing a local assessment compared to other methods, here at a depth of 4 m to 5 m. A vertical dynamic strain amplitude of 5 x10(-5) produces a relative change in compressional wave modulus of 6%. We measure an effective parameter of quadratic elastic nonlinearity of order -10(3), the same order of magnitude measured at the laboratory scale in rocks and in packs of unconsolidated glass beads. Hysteresis is observed in the variation in soil elasticity as a function of the instantaneous dynamic strain that evolves as the dynamic strain amplitude is increased from 9 x10(-7) to 5 x10(-5). C1 [Renaud, G.] Erasmus MC, Dept Biomed Engn, Rotterdam, Netherlands. [Renaud, G.] Univ Paris 06, Lab Imagerie Biomed, Sorbonne Univ, Paris, France. [Riviere, J.; Larmat, C.; Lee, R. C.; Guyer, R. A.; Johnson, P. A.] Los Alamos Natl Lab, Los Alamos, NM USA. [Rutledge, J. T.] Schlumberger, Houston, TX USA. [Guyer, R. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Stokoe, K.] Univ Texas Austin, Dept Civil Engn, Austin, TX 78712 USA. RP Renaud, G (reprint author), Erasmus MC, Dept Biomed Engn, Rotterdam, Netherlands. EM renaud_gu@yahoo.fr OI Larmat, Carene S/0000-0002-3607-7558 FU U.S. Department of Energy, Office of Basic Energy Research; Terry Rust and Larry Goen of Los Alamos National Laboratory FX We gratefully acknowledge the support of the U.S. Department of Energy, Office of Basic Energy Research and the funding for the experiment by Terry Rust and Larry Goen of Los Alamos National Laboratory. We thank Farn-Yuh Menq (University of Texas) for data acquisition support. Thanks to Bruce Redpath for the design and installation of the high-frequency sources and receivers. We also thank Major Matthew LeBlanc and Captain Allen Branco (University of Texas) for assistance on installation of sensors and their field support during the course of the experiment. Finally, we thank Didier Cassereau for his help with SimSonic simulations. NR 49 TC 6 Z9 6 U1 0 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD SEP PY 2014 VL 119 IS 9 BP 6907 EP 6923 DI 10.1002/2013JB010625 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AR9EI UT WOS:000343874600011 ER PT J AU Walker, A Mehta, P Koller, J AF Walker, Andrew Mehta, Piyush Koller, Josef TI Different Implementations of Diffuse Reflection with Incomplete Accommodation for Drag Coefficient Modeling SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article ID GAS-SURFACE INTERACTIONS AB Diffuse reflection with incomplete accommodation is the favored gas-surface interaction model for calculating the drag coefficient of satellites in low Earth orbit, where drag is the largest source of uncertainty in the orbital trajectory of satellites. Closed-form solutions have incorporated the variation of the energy accommodation coefficient through equating the total energy of the incident and reflected flows; however, this leads to an incorrect reflected velocity distribution for incomplete accommodation. The problem is highlighted by investigating the velocity distribution functions for a gas reflected from a flat plate at zero accommodation. A physically accurate implementation for diffuse reflection with incomplete accommodation based on the Cercignani-Lampis-Lord gas-surface interaction model is compared with the closed-form solutions that equate the incident and reflected energy of the flow. The Cercignani-Lampis-Lord gas-surface interaction model shows the conservation of energy on a molecule-by-molecule basis for zero accommodation, as expected, whereas the closed-form method only conserves energy on average. The macroscopic effect of the different velocity distributions manifests in differences of similar to 1.8-2.5% in the drag coefficient of a flat plate, sphere, and the GRACE satellite at zero accommodation and differences larger than 1% for energy accommodation coefficients less than 0.90. C1 [Walker, Andrew; Mehta, Piyush] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Koller, Josef] Los Alamos Natl Lab, IMPACT Project, Los Alamos, NM 87545 USA. RP Walker, A (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Walker, Andrew/0000-0002-7890-1779 FU U.S. Department of Energy through the Los Alamos National Laboratory/Laboratory Directed Research and Development program as part of the Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking project FX Funding for this work was provided by the U.S. Department of Energy through the Los Alamos National Laboratory/Laboratory Directed Research and Development program as part of the Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking project. NR 19 TC 1 Z9 1 U1 0 U2 6 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD SEP-OCT PY 2014 VL 51 IS 5 BP 1522 EP 1532 DI 10.2514/1.A32668 PG 11 WC Engineering, Aerospace SC Engineering GA AR8AH UT WOS:000343797500012 ER PT J AU Walker, A Mehta, P Koller, J AF Walker, Andrew Mehta, Piyush Koller, Josef TI Drag Coefficient Model Using the Cercignani-Lampis-Lord Gas-Surface Interaction Model SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article ID ENERGY-ACCOMMODATION COEFFICIENTS; MONTE-CARLO METHOD; ATMOSPHERIC DENSITY; BOLTZMANN-EQUATION; SATELLITE; SCATTERING; ADSORPTION; SPHERE; WINDS AB Drag coefficient calculations using the Cercignani-Lampis-Lord quasi-specular gas-surface interaction model have been used to derive modified closed-form solutions for several simple geometries. The key component of the modified closed-form solutions is a relation between the normal energy and normal momentum accommodation coefficients, which is valid within similar to 0.5% over the global parameter space. The modified closed-form solutions are made self-consistent by relating the effective energy accommodation to the partial pressure of atomic oxygen through a Langmuir isotherm. The modified closed-form solutions are compared to fitted drag coefficients and drag coefficients computed using two other gas-surface interaction models: diffuse reflection with incomplete accommodation and Maxwell's model. Comparison during solar maximum conditions shows that both the diffuse reflection with incomplete accommodation and Cercignani-Lampis-Lord models agree with fitted drag coefficients within similar to 2% below similar to 500 km altitude. Further comparison shows that solar minimum drag coefficients are up to similar to 24% higher than those at solar maximum based on global ionosphere-thermosphere model atmospheric properties. Drag coefficients computed with atmospheric properties from the Naval Research Laboratory mass spectrometer incoherent scatter extended model and the global ionosphere-thermosphere model agree within similar to 2% at solar maximum but disagree by up to similar to 11% at solar minimum. C1 [Walker, Andrew; Mehta, Piyush] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Koller, Josef] Los Alamos Natl Lab, IMPACT Project, Los Alamos, NM 87544 USA. RP Walker, A (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. OI Walker, Andrew/0000-0002-7890-1779 FU U.S. Department of Energy through the Los Alamos National Laboratory/Laboratory Directed Research and Development program as part of the Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking project FX Funding for this work was provided by the U.S. Department of Energy through the Los Alamos National Laboratory/Laboratory Directed Research and Development program as part of the Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking project. Computations were performed with Los Alamos National Laboratory high-performance computing systems. NR 54 TC 3 Z9 3 U1 1 U2 10 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD SEP-OCT PY 2014 VL 51 IS 5 BP 1544 EP 1563 DI 10.2514/1.A32677 PG 20 WC Engineering, Aerospace SC Engineering GA AR8AH UT WOS:000343797500014 ER PT J AU Kohler, M Habart, E Arab, H Bernard-Salas, J Ayasso, H Abergel, A Zavagno, A Polehampton, E van der Wiel, MHD Naylor, DA Makiwa, G Dassas, K Joblin, C Pilleri, P Berne, O Fuente, A Gerin, M Goicoechea, JR Teyssier, D AF Koehler, M. Habart, E. Arab, H. Bernard-Salas, J. Ayasso, H. Abergel, A. Zavagno, A. Polehampton, E. van der Wiel, M. H. D. Naylor, D. A. Makiwa, G. Dassas, K. Joblin, C. Pilleri, P. Berne, O. Fuente, A. Gerin, M. Goicoechea, J. R. Teyssier, D. TI Physical structure of the photodissociation regions in NGC 7023 Observations of gas and dust emission with Herschel SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE infrared: ISM; submillimeter: ISM; ISM: lines and bands; ISM: molecules; ISM: clouds; dust, extinction ID FOURIER-TRANSFORM SPECTROMETER; H-II REGIONS; POLYCYCLIC AROMATIC-HYDROCARBONS; EXTENDED RED EMISSION; INTERSTELLAR-MEDIUM; STAR HD-200775; SPIRE INSTRUMENT; MASSIVE STAR; SMALL GRAINS; EVOLUTION AB Context. The determination of the physical conditions in molecular clouds is a key step towards our understanding of their formation and evolution of associated star formation. We investigate the density, temperature, and column density of both dust and gas in the photodissociation regions (PDRs) located at the interface between the atomic and cold molecular gas of the NGC 7023 reflection nebula. We study how young stars affect the gas and dust in their environment. Aims. Several Herschel Space Telescope programs provide a wealth of spatial and spectral information of dust and gas in the heart of PDRs. We focus our study on Spectral and Photometric Image Receiver (SPIRE) Fourier-Transform Spectrometer (FTS) fully sampled maps that allow us for the first time to study the bulk of cool/warm dust and warm molecular gas (CO) together. In particular, we investigate if these populations spatially coincide, if and how the medium is structured, and if strong density and temperature gradients occur, within the limits of the spatial resolution obtained with Herschel. Methods. The SPIRE FTS fully sampled maps at different wavelengths are analysed towards the northwest (NW) and the east (E) PDRs in NGC 7023. We study the spatial and spectral energy distribution of a wealth of intermediate rotational (CO)-C-12 4 <= J(u) <= 13 and (CO)-C-13 5 <= J(u) <= 10 lines. A radiative transfer code is used to assess the gas kinetic temperature, density, and column density at different positions in the cloud. The dust continuum emission including Spitzer, the Photoconductor Array Camera and Spectrometer (PACS), and SPIRE photometric and the Institute for Radio Astronomy in the Millimeter Range (IRAM) telescope data is also analysed. Using a single modified black body and a radiative transfer model, we derive the dust temperature, density, and column density. Results. The cloud is highly inhomogeneous, containing several irradiated dense structures. Excited (CO)-C-12 and (CO)-C-13 lines and warm dust grains localised at the edge of the dense structures reveal high column densities of warm/cool dense matter. Both tracers give a good agreement in the local density, column density, and physical extent, leading to the conclusion that they trace the same regions. The derived density profiles show a steep gradient at the cloud edge reaching a maximum gas density of 10(5) -10(6) cm(-3) in the PDR NGC 7023 NW and 10(4)-10(5) cm(-3) in the PDR NGC 7023 E and a subsequent decrease inside the cloud. Close to the PDR edges, the dust temperature (30 K and 20 K for the NW and E PDRs, respectively) is lower than the gas temperature derived from CO lines (65-130 K and 45-55 K, respectively). Further inside the cloud, the dust and gas temperatures are similar. The derived thermal pressure is about 10 times higher in NGC 7023 NW than in NGC 7023 E. Comparing the physical conditions to the positions of known young stellar object candidates in NGC 7023 NW, we find that protostars seem to be spatially correlated with the dense structures. Conclusions. Our approach combining both dust and gas delivers strong constraints on the physical conditions of the PDRs. We find dense and warm molecular gas of high column density in the PDRs. C1 [Koehler, M.; Habart, E.; Arab, H.; Bernard-Salas, J.; Ayasso, H.; Abergel, A.; Dassas, K.] Univ Paris 11, IAS, F-91405 Orsay, France. [Koehler, M.; Habart, E.; Arab, H.; Bernard-Salas, J.; Ayasso, H.; Abergel, A.; Dassas, K.] CNRS, F-91405 Orsay, France. [Bernard-Salas, J.] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England. [Zavagno, A.] CNRS, Lab Astrophys Marseille, UMR 6110, F-13388 Marseille 13, France. [Zavagno, A.] Univ Aix Marseille 1, F-13388 Marseille 13, France. [Polehampton, E.] Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England. [Polehampton, E.; van der Wiel, M. H. D.; Naylor, D. A.; Makiwa, G.] Univ Lethbridge, Dept Phys & Astron, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Joblin, C.; Berne, O.] Univ Toulouse, UPS OMP, IRAP, F-31400 Toulouse, France. [Joblin, C.; Berne, O.] CNRS, IRAP, F-31028 Toulouse 4, France. [Pilleri, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fuente, A.] OAN, IGN, Alcala De Henares 28803, Spain. [Gerin, M.] Observ Paris, LERMA, F-75014 Paris, France. [Goicoechea, J. R.] CSIC INTA, Ctr Astrobiol, Dept Astrofis, Madrid 28850, Spain. [Teyssier, D.] ESAC, Madrid 28691, Spain. RP Kohler, M (reprint author), Univ Paris 11, IAS, Bat 121, F-91405 Orsay, France. EM mkoehler@ias.u-psud.fr RI van der Wiel, Matthijs/M-4531-2014; Fuente, Asuncion/G-1468-2016 OI van der Wiel, Matthijs/0000-0002-4325-3011; Fuente, Asuncion/0000-0001-6317-6343 FU Herschel SPIRE Guaranteed Time Key project Evolution of Interstellar Dust; CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA); Spanish MINECO [CSD2009-00038, AYA2012-32032] FX We thank the anonymous referee for very helpful suggestions and comments. This research acknowledges the support of the Herschel SPIRE Guaranteed Time Key project Evolution of Interstellar Dust. SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); and NASA (USA). AF and JRG thanks the Spanish MINECO for funding support from grants CSD2009-00038 and AYA2012-32032. NR 64 TC 5 Z9 5 U1 0 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2014 VL 569 AR A109 DI 10.1051/0004-6361/201322711 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AQ8PZ UT WOS:000343092100016 ER PT J AU Trevino-Morales, SP Pilleri, P Fuente, A Kramer, C Roueff, E Gonzalez-Garcia, M Cernicharo, J Gerin, M Goicoechea, JR Pety, J Berne, O Ossenkopf, V Ginard, D Garcia-Burillo, S Rizzo, JR Viti, S AF Trevino-Morales, S. P. Pilleri, P. Fuente, A. Kramer, C. Roueff, E. Gonzalez-Garcia, M. Cernicharo, J. Gerin, M. Goicoechea, J. R. Pety, J. Berne, O. Ossenkopf, V. Ginard, D. Garcia-Burillo, S. Rizzo, J. R. Viti, S. TI Deuteration around the ultracompact HII region Monoceros R2 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; HII regions; photon-dominated region (PDR); radio lines: ISM ID DENSE INTERSTELLAR CLOUDS; GRAIN SURFACE-CHEMISTRY; DEUTERIUM FRACTIONATION; LOW-TEMPERATURE; DARK CLOUDS; PHOTODISSOCIATION REGIONS; MOLECULAR-SPECTROSCOPY; EVOLUTIONARY TRACER; PHYSICAL CONDITIONS; SMALL HYDROCARBONS AB Context. The massive star-forming region Monoceros R2 (Mon R2) hosts the closest ultra-compact HII region, where the photon-dominated region (PDR) between the ionized and molecular gas can be spatially resolved with current single-dish telescopes. Aims. We aim at studying the chemistry of deuterated molecules toward Mon R2 to determine the deuterium fractions around a high-UV irradiated PDR and investigate the chemistry of these species. Methods. We used the IRAM-30 m telescope to carry out an unbiased spectral survey toward two important positions (namely IF and MP2) in Mon R2 at 1, 2, and 3 mm. This spectral survey is the observational basis of our study of the deuteration in this massive star-forming region. Our high spectral resolution observations (similar to 0.25-0.65 km s(-1)) allowed us to resolve the line profiles of the different species detected. Results. We found a rich chemistry of deuterated species at both positions of Mon R2, with detections of C2D, DCN, DNC, DCO+, D2CO, HDCO, NH2D, and N2D+ and their corresponding hydrogenated species and rarer isotopologs. The high spectral resolution of our observations allowed us to resolve three velocity components: the component at 10 km s(-1) is detected at both positions and seems associated with the layer most exposed to the UV radiation from IRS 1; the component at 12 km s(-1) is found toward the IF position and seems related to the foreground molecular gas; finally, a component at 8.5 km s(-1) is only detected toward the MP2 position, most likely related to a low-UV irradiated PDR. We derived the column density of the deuterated species (together with their hydrogenated counterparts), and determined the deuterium fractions as D-frac = [XD]/[XH]. The values of Dfrac are around 0.01 for all the observed species, except for HCO+ and N2H+, which have values 10 times lower. The values found in Mon R2 are similar to those measured in the Orion Bar, and are well explained with a pseudo-time-dependent gas-phase model in which deuteration occurs mainly via ion-molecule reactions with H2D+, CH2D+ and C2HD+. Finally, the [(HCN)-C-13]/[(HNC)-C-13] ratio is very high (similar to 11) for the 10 km s(-1) component, which also agree with our model predictions for an age of similar to 0.01 to a few 0.1 Myr. Conclusions. The deuterium chemistry is a good tool for studying the low-mass and high-mass star-forming regions. However, while low-mass star-forming regions seem well characterized with D-frac(N2H+) or D-frac(HCO+), a more complete chemical modeling is required to date massive star-forming regions. This is due to the higher gas temperature together with the rapid evolution of massive protostars. C1 [Trevino-Morales, S. P.; Kramer, C.; Gonzalez-Garcia, M.] Inst Radioastron Milimetr IRAM Spain, Granada 18012 20, Spain. [Pilleri, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Pilleri, P.; Fuente, A.; Ginard, D.; Garcia-Burillo, S.] Observ Astron Nacl, Madrid 28803, Spain. [Pilleri, P.; Cernicharo, J.; Goicoechea, J. R.; Rizzo, J. R.] Ctr Astrobiol INTA CSIC, Dept Astrofis, Torrejon De Ardoz 28850, Spain. [Roueff, E.] CNRS, LUTH UMR 8102, F-92195 Meudon, France. [Roueff, E.] Observ Paris, F-92195 Meudon, France. [Gerin, M.] CNRS, UMR 8112, LERMA, F-75014 Paris, France. [Gerin, M.] Observ Paris, F-75014 Paris, France. [Pety, J.] IRAM, F-38406 St Martin Dheres, France. [Pety, J.] Observ Paris, UMR 8112, LERMA LRA, F-75231 Paris, France. [Pety, J.] Ecole Normale Super, F-75231 Paris, France. [Berne, O.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse, France. [Berne, O.] CNRS, IRAP, F-31028 Toulouse 4, France. [Ossenkopf, V.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Viti, S.] UCL, Dept Phys & Astron, London, England. RP Trevino-Morales, SP (reprint author), Inst Radioastron Milimetr IRAM Spain, Ave Div Pastora 7, Granada 18012 20, Spain. EM trevino@iram.es RI Rizzo, J. Ricardo/N-5879-2014; Fuente, Asuncion/G-1468-2016; OI Rizzo, J. Ricardo/0000-0002-8443-6631; Fuente, Asuncion/0000-0001-6317-6343; PETY, Jerome/0000-0003-3061-6546; Garcia-Burillo, Santiago/0000-0003-0444-6897; Ginard Pariente, David/0000-0003-0471-0926 FU Spanish MINECO [CSD2009-00038, AYA2009-07304, AYA2012-32032] FX We acknowledge A. Sanchez-Monge for useful comments and suggestions. We also thank J. A. Toala for a critical reading of the manuscript. We thank the anonymous referee for his/her comments. We thank the Spanish MINECO for funding support from grants CSD2009-00038, AYA2009-07304, and AYA2012-32032. NR 74 TC 3 Z9 3 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2014 VL 569 AR A19 DI 10.1051/0004-6361/201423407 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AQ8PZ UT WOS:000343092100040 ER PT J AU Winter, W Tjus, JB Klein, SR AF Winter, W. Tjus, J. Becker Klein, S. R. TI Impact of secondary acceleration on the neutrino spectra in gamma-ray bursts SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE acceleration of particles; neutrinos; astroparticle physics; gamma-ray burst: general ID HIGH-ENERGY NEUTRINOS; COSMIC NEUTRINOS; MUON NEUTRINOS; EMISSION; ICECUBE; DETECTOR; SEARCH; MODELS; SIMULATIONS; VARIABILITY AB Context. The observation of charged cosmic rays with energies up to 10(20) eV shows that particle acceleration must occur in astrophysical sources. Acceleration of secondary particles like muons and pions, produced in cosmic ray interactions, are usually neglected, however, when calculating the flux of neutrinos from cosmic ray interactions. Aims. Here, we discuss the acceleration of secondary muons, pions, and kaons in gamma-ray bursts (GRBs) within the internal shock scenario, and their impact on the neutrino fluxes. Methods. We introduce a two-zone model consisting of an acceleration zone (the shocks) and a radiation zone (the plasma downstream the shocks). The acceleration in the shocks, which is an unavoidable consequence of efficient proton acceleration, requires efficient transport from the radiation back to the acceleration zone. On the other hand, stochastic acceleration in the radiation zone can enhance the secondary spectra of muons and kaons significantly if there is a sufficiently large turbulent region. Results. Overall, it is plausible that neutrino spectra can be enhanced by up to a factor of two at the peak by stochastic acceleration, that an additional spectral peak appears from shock acceleration of the secondary muons and pions, and that the neutrino production from kaon decays is enhanced. Conclusions. Depending on the GRB parameters, the general conclusions concerning the limits to the internal shock scenario obtained by recent IceCube and ANTARES analyses may be affected by up to a factor of two by secondary acceleration. Most of the changes occur at energies above 10(7) GeV, so the effects for next-generation radio-detection experiments will be more pronounced. In the future, however, if GRBs are detected as high-energy neutrino sources, the detection of one or several pronounced peaks around 10(6) GeV or higher energies could help to derive the basic properties of the magnetic field strength in the GRB. C1 [Winter, W.] DESY, D-15738 Zeuthen, Germany. [Tjus, J. Becker] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Klein, S. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Klein, S. R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Winter, W (reprint author), DESY, Platanenallee 6, D-15738 Zeuthen, Germany. EM walter.winter@desy.de; julia.tjus@rub.de; srklein@lbl.gov RI Tjus, Julia/G-8145-2012 FU DFG [WI 2639/3-1, WI 2639/4-1]; FP7 Invisibles network (Marie Curie Actions) [PITN-GA-2011-289442]; "Helmholtz Alliance for Astroparticle Physics HAP" - Initiative and Networking fund of the Helmholtz association; Research Department of Plasmas with Complex Interactions (Bochum); MERCUR Project [Pr-2012-0008]; US National Science Foundation [PHY-1307472]; US Department of Energy [DE-AC-76SF00098] FX W.W. acknowledges support from DFG grants WI 2639/3-1 and WI 2639/4-1, the FP7 Invisibles network (Marie Curie Actions, PITN-GA-2011-289442), and the "Helmholtz Alliance for Astroparticle Physics HAP", funded by the Initiative and Networking fund of the Helmholtz association. J.B.T. acknowledges support from the Research Department of Plasmas with Complex Interactions (Bochum) and from the MERCUR Project Pr-2012-0008. The work of S.K. was supported in part by US National Science Foundation under grant PHY-1307472 and the US Department of Energy under contract number DE-AC-76SF00098. We are grateful to P. Baerwald, M. Reynoso, R. Tarkeshian, and E. Waxman for useful discussions. We thank members of the IceCube collaboration for useful discussions. NR 54 TC 8 Z9 8 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2014 VL 569 AR A58 DI 10.1051/0004-6361/201423745 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AQ8PZ UT WOS:000343092100059 ER PT J AU Iyer, G Hultman, N Fetter, S Kim, SH AF Iyer, Gokul Hultman, Nathan Fetter, Steve Kim, Son H. TI Implications of small modular reactors for climate change mitigation SO ENERGY ECONOMICS LA English DT Article DE Small modular reactor; Climate change; Nuclear Integrated assessment model ID NUCLEAR-POWER; TECHNOLOGICAL-CHANGE; ENERGY TECHNOLOGIES; INTEGRATED ASSESSMENT; ENVIRONMENTAL-POLICY; SAFETY FEATURES; PUBLIC-OPINION; PERCEIVED RISK; LOCK-IN; FUTURE AB Achieving climate policy targets will require large-scale deployment of low-carbon energy technologies, including nuclear power. The small modular reactor (SMR) is viewed as a possible solution to the problems of energy security as well as climate change. In this paper, we use an integrated assessment model (IAM) to investigate the evolution of a global energy portfolio with SMRs under a stringent climate policy. Technology selection in the model is based on costs; we use results from previous expert elicitation studies of SMR costs. We find that the costs of achieving a 2 C target are lower with SMRs than without. The costs are higher when large reactors do not compete for market share compared to a world in which they can compete freely. When both SMRs and large reactors compete for market share, reduction in mitigation cost is achieved only under advanced assumptions about SMR technology costs and future cost improvements. While the availability of SMRs could lower mitigation costs by a moderate amount, actual realization of these benefits would depend on the rapid up-scaling of SMRs in the near term. Such rapid deployment could be limited by several social, institutional and behavioral obstacles. (C)2014 Elsevier B.V. All rights reserved. C1 [Iyer, Gokul; Hultman, Nathan; Fetter, Steve] Univ Maryland, Sch Publ Policy, College Pk, MD 20742 USA. [Iyer, Gokul; Hultman, Nathan; Kim, Son H.] Joint Global Change Res Inst, Pacific NW Natl Lab, College Pk, MD 20740 USA. [Iyer, Gokul; Hultman, Nathan; Kim, Son H.] Univ Maryland, College Pk, MD 20740 USA. RP Iyer, G (reprint author), Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. NR 91 TC 3 Z9 3 U1 4 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 EI 1873-6181 J9 ENERG ECON JI Energy Econ. PD SEP PY 2014 VL 45 BP 144 EP 154 DI 10.1016/j.eneco2014.06.023 PG 11 WC Economics SC Business & Economics GA AR5GQ UT WOS:000343613500012 ER PT J AU Harvey, W Park, IH Rubel, O Pascucci, V Bremer, PT Li, CL Wang, YS AF Harvey, William Park, In-Hee Ruebel, Oliver Pascucci, Valerio Bremer, Peer-Timo Li, Chenglong Wang, Yusu TI A collaborative visual analytics suite for protein folding research SO JOURNAL OF MOLECULAR GRAPHICS & MODELLING LA English DT Article DE Molecular simulation data; Visualization tool ID NONLINEAR DIMENSIONALITY REDUCTION; POTENTIAL-ENERGY SURFACES; LANDSCAPE; CRYSTALLINS; TOPOLOGY; PEPTIDE; VISUALIZATION; SIMULATIONS; EIGENMAPS; DYNAMICS AB Molecular dynamics (MD) simulation is a crucial tool for understanding principles behind important biochemical processes such as protein folding and molecular interaction. With the rapidly increasing power of modern computers, large-scale MD simulation experiments can be performed regularly, generating huge amounts of MD data. An important question is how to analyze and interpret such massive and complex data. One of the (many) challenges involved in analyzing MD simulation data computationally is the high-dimensionality of such data. Given a massive collection of molecular conformations, researchers typically need to rely on their expertise and prior domain knowledge in order to retrieve certain conformations of interest. It is not easy to make and test hypotheses as the data set as a whole is somewhat "invisible" due to its high dimensionality. In other words, it is hard to directly access and examine individual conformations from a sea of molecular structures, and to further explore the entire data set. There is also no easy and convenient way to obtain a global view of the data or its various modalities of biochemical information. To this end, we present an interactive, collaborative visual analytics tool for exploring massive, high-dimensional molecular dynamics simulation data sets. The most important utility of our tool is to provide a platform where researchers can easily and effectively navigate through the otherwise "invisible" simulation data sets, exploring and examining molecular conformations both as a whole and at individual levels. The visualization is based on the concept of a topological landscape, which is a 2D terrain metaphor preserving certain topological and geometric properties of the high dimensional protein energy landscape. In addition to facilitating easy exploration of conformations, this 2D terrain metaphor also provides a platform where researchers can visualize and analyze various properties (such as contact density) overlayed on the top of the 20 terrain. Finally, the software provides a collaborative environment where multiple researchers can assemble observations and biochemical events into storyboards and share them in real time over the Internet via a client-server architecture. The software is written in Scala and runs on the cross-platform Java Virtual Machine. Binaries and source code are available at http://www.aylasoftware.org and have been released under the GNU General Public License. (C) 2014 Elsevier Inc. All rights reserved. C1 [Harvey, William; Wang, Yusu] Ohio State Univ, Dept Comp Sci & Engn, Columbus, OH 43210 USA. [Park, In-Hee; Li, Chenglong] Ohio State Univ, Chem Phys Program, Columbus, OH 43210 USA. [Ruebel, Oliver] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Visualizat Grp, Berkeley, CA 94720 USA. [Pascucci, Valerio] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT USA. [Bremer, Peer-Timo] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA. [Li, Chenglong] Ohio State Univ, Coll Pharm, Columbus, OH 43210 USA. RP Harvey, W (reprint author), Ohio State Univ, Dept Comp Sci & Engn, Columbus, OH 43210 USA. EM harveywi@cse.ohio-state.edu; yusu@cse.ohio-state.edu RI Li, Chenglong/E-7182-2010 OI Li, Chenglong/0000-0003-3174-8719 FU National Science Foundation [DBI-0750891, CCF-1319406] FX We would like to thank anonymous reviewers for helpful comments. And we thank the Ohio Supercomputer Center for generous computing resources. This work is partially supported by National Science Foundation under projects DBI-0750891 and CCF-1319406. NR 52 TC 0 Z9 0 U1 1 U2 11 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1093-3263 EI 1873-4243 J9 J MOL GRAPH MODEL JI J. Mol. Graph. PD SEP PY 2014 VL 53 BP 59 EP 71 DI 10.1016/j.jmgm.2014.06.003 PG 13 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Computer Science, Interdisciplinary Applications; Crystallography; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Computer Science; Crystallography; Mathematical & Computational Biology GA AR5NS UT WOS:000343631800006 PM 25068440 ER PT J AU Romero-Severson, E Skar, H Bulla, I Albert, J Leitner, T AF Romero-Severson, Ethan Skar, Helena Bulla, Ingo Albert, Jan Leitner, Thomas TI Timing and Order of Transmission Events Is Not Directly Reflected in a Pathogen Phylogeny SO MOLECULAR BIOLOGY AND EVOLUTION LA English DT Article DE HIV; within-host dynamics; molecular epidemiology; phylodynamics; transmission reconstruction; coalescent ID IMMUNODEFICIENCY-VIRUS TYPE-1; LIKELY GENE TREES; SPECIES TREES; PRIMARY INFECTION; GENERATION TIME; DRUG-USERS; IN-VIVO; HIV-1; EVOLUTION; POPULATION AB Pathogen phylogenies are often used to infer spread among hosts. There is, however, not an exact match between the pathogen phylogeny and the host transmission history. Here, we examine in detail the limitations of this relationship. First, all splits in a pathogen phylogeny of more than 1 host occur within hosts, not at the moment of transmission, predating the transmission events as described by the pretransmission interval. Second, the order in which nodes in a phylogeny occur may be reflective of the within-host dynamics rather than epidemiologic relationships. To investigate these phenomena, motivated by within-host diversity patterns, we developed a two-phase coalescent model that includes a transmission bottleneck followed by linear outgrowth to a maximum population size followed by either stabilization or decline of the population. The model predicts that the pretransmission interval shrinks compared with predictions based on constant population size or a simple transmission bottleneck. Because lineages coalesce faster in a small population, the probability of a pathogen phylogeny to resemble the transmission history depends on when after infection a donor transmits to a new host. We also show that the probability of inferring the incorrect order of multiple transmissions from the same host is high. Finally, we compare time of HIV-1 infection informed by genetic distances in phylogenies to independent biomarker data, and show that, indeed, the pretransmission interval biases phylogeny-based estimates of when transmissions occurred. We describe situations where caution is needed not to misinterpret which parts of a phylogeny that may indicate outbreaks and tight transmission clusters. C1 [Romero-Severson, Ethan; Skar, Helena; Bulla, Ingo; Leitner, Thomas] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Albert, Jan] Karolinska Inst, Dept Microbiol Tumor & Cell Biol, Stockholm, Sweden. [Albert, Jan] Karolinska Univ Hosp, Dept Clin Microbiol, Stockholm, Sweden. RP Leitner, T (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. EM tkl@lanl.gov FU National Institutes of Health [R01AI087520]; Vetenskapsradet [623-2011-1100, K2008-56X-09935-17-3]; Deutsche Forschungsgemeinschaft [BU 2685/4-1]; EU project SPREAD [QLK2-CT-2001-01344]; EU project CHAIN FX This work was supported by National Institutes of Health (grant number R01AI087520), Vetenskapsradet (fellowship 623-2011-1100), Deutsche Forschungsgemeinschaft (fellowship BU 2685/4-1), Vetenskapsradet (grant number K2008-56X-09935-17-3), and EU projects SPREAD (QLK2-CT-2001-01344), and CHAIN (FP7/2007-2013). NR 56 TC 19 Z9 19 U1 1 U2 11 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0737-4038 EI 1537-1719 J9 MOL BIOL EVOL JI Mol. Biol. Evol. PD SEP PY 2014 VL 31 IS 9 BP 2472 EP 2482 DI 10.1093/molbev/msu179 PG 11 WC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity GA AR2GF UT WOS:000343401100018 PM 24874208 ER PT J AU Pierson, FB Williams, CJ Kormos, PR Al-Hamdan, OZ AF Pierson, Frederick B. Williams, C. Jason Kormos, Patrick R. Al-Hamdan, Osama Z. TI Short-Term Effects of Tree Removal on Infiltration, Runoff, and Erosion in Woodland-Encroached Sagebrush Steppe SO RANGELAND ECOLOGY & MANAGEMENT LA English DT Article DE aggregate stability; hydrophobicity; juniper; pinon; prescribed fire; rangeland; restoration; soil water repellency; tree mastication ID SOIL-WATER REPELLENCY; PINYON-JUNIPER WOODLAND; WESTERN JUNIPER; PRESCRIBED-FIRE; BROMUS-TECTORUM; AGGREGATE STABILITY; RANGELAND HYDROLOGY; TRANSITION MODELS; SEMIARID WOODLAND; CENTRAL OREGON AB Land owners and managers across the western United States are increasingly searching for methods to evaluate and mitigate the effects of woodland encroachment on sagebrush steppe ecosystems. We used small-plot scale (0.5 m(2)) rainfall simulations and measures of vegetation, ground cover, and soils to investigate woodland response to tree removal (prescribed fire and mastication) at two late-succession woodlands. We also evaluated the effects of burning on soil water repellency and effectiveness of aggregate stability indices to detect changes in erosion potential. Plots were located in interspaces between tree and shrub canopies and on undercanopy tree and shrub microsites. Erosion from untreated interspaces in the two woodlands differed more than 6-fold, and erosion responses to prescribed burning differed by woodland site. High-intensity rainfall (102 mm . h(-1)) on the less erodible woodland generated amplified runoff and erosion from tree microsites postfire, but erosion (45-75 g . m(-2)) was minor relative to the 3-13-fold fire-induced increase in erosion on tree microsites at the highly erodible site (240 295 g . m(-2)). Burning the highly erodible woodland also generated a 7-fold increase in erosion from shrub microsites (220-230 g .m(-2)) and 280-350 g . m(-2) erosion from interspaces. High levels of runoff (40-45 mm) and soil erosion (230-275 g . m(-2)) on unburned interspaces at the more erodible site were reduced 4-5-fold (10 mm and 50 g . m(-2)) by masticated tree material. The results demonstrate that similarly degraded conditions at woodland-encroached sites may elicit differing hydrologic and erosion responses to treatment and that treatment decisions should consider inherent site-specific erodibility when evaluating tree-removal alternatives. Strong soil water repellency was detected from 0 cm to 3 cm soil depth underneath unburned tree canopies at both woodlands and its strength was not altered by burning. However, fire removal of litter exacerbated repellency effects on infiltration, runoff generation, and erosion. The aggregate stability index method detected differences in relative soil stability between areas underneath trees and in the intercanopy at both sites, but failed to provide any indication of between-site differences in erodibility or the effects of burning on soil erosion potential. C1 [Pierson, Frederick B.; Williams, C. Jason; Al-Hamdan, Osama Z.] ARS, Northwest Watershed Res Ctr, USDA, Boise, ID 83712 USA. [Kormos, Patrick R.] US Forest Serv, Rocky Mt Res Stn, USDA, Boise, ID 83702 USA. [Kormos, Patrick R.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Al-Hamdan, Osama Z.] Univ Idaho, Dept Biol & Agr Engn, Moscow, ID 83844 USA. RP Pierson, FB (reprint author), ARS, Northwest Watershed Res Ctr, USDA, 800 Pk Blvd,Suite 105, Boise, ID 83712 USA. EM fred.pierson@ars.usda.gov OI Kormos, Patrick/0000-0003-1874-9215; Williams, Jason/0000-0002-6289-4789 FU US Joint Fire Science Program; National Interagency Fire Center; Great Northern Landscape Conservation Cooperative; Bureau of Land Management FX The authors thank Jaime Calderon and Mathew Frisby for assistance with data collection. We also thank two anonymous reviewers whose comments and suggestions improved the manuscript. This is Contribution Number 89 of the Sagebrush Steppe Treatment Evaluation Project (SageSTEP), funded by the US Joint Fire Science Program, the Bureau of Land Management, the National Interagency Fire Center, and the Great Northern Landscape Conservation Cooperative. NR 99 TC 11 Z9 12 U1 3 U2 37 PU SOC RANGE MANAGEMENT PI LAKEWOOD PA 445 UNION BLVD, STE 230, LAKEWOOD, CO 80228-1259 USA SN 1550-7424 EI 1551-5028 J9 RANGELAND ECOL MANAG JI Rangel. Ecol. Manag. PD SEP PY 2014 VL 67 IS 5 BP 522 EP 538 DI 10.2111/REM-D-13-00033.1 PG 17 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA AR3ZY UT WOS:000343529000008 ER PT J AU Wagle, P Xiao, XM Torn, MS Cook, DR Matamala, R Fischer, ML Jin, C Dong, JW Biradar, C AF Wagle, Pradeep Xiao, Xiangming Torn, Margaret S. Cook, David R. Matamala, Roser Fischer, Marc L. Jin, Cui Dong, Jinwei Biradar, Chandrashekhar TI Sensitivity of vegetation indices and gross primary production of tallgrass prairie to severe drought SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Drought; Gross primary production; Light use efficiency; MODIS; Vegetation Photosynthesis Model (VPM) ID NET PRIMARY PRODUCTIVITY; EVERGREEN NEEDLELEAF FOREST; LIGHT-USE EFFICIENCY; CARBON-DIOXIDE; CLIMATE DATA; ECOSYSTEM EXCHANGE; WATER-VAPOR; NORTHEASTERN CHINA; PROCESS MODEL; MODIS DATA AB Drought affects vegetation photosynthesis and growth. Many studies have used the normalized difference vegetation index (NDVI), which is calculated as the normalized ratio between near infrared and red spectral bands in satellite images, to evaluate the response of vegetation to drought. In this study, we examined the impacts of drought on three vegetation indices (NDVI, enhanced vegetation index, EVI, and land surface water index, LSWI) and CO2 flux from three tallgrass prairie eddy flux tower sites in the U.S. Gross primary production (GPP) was also modeled using a satellite-based Vegetation Photosynthesis Model (VPM), and the modeled GPP (GPP(VPM)) was compared with the GPP (GPP(EC)) derived from eddy covariance measurements. Precipitation at two sites in Oklahoma was 30% below the historical mean in both years of the study period (2005-2006), while the site in Illinois did not experience drought in the 2005-2007 study period. The EVI explained the seasonal dynamics of GPP better than did NDVI. The LSWI dropped below zero during severe droughts in the growing season, showing its potential to track drought. The result shows that GPP was more sensitive to drought than were vegetation indices, and EVI and LSWI were more sensitive than NDVI. We developed a modified function (Wsailar), calculated as a function of LSWI, to account for the effect of severe droughts on GPP in VPM. The GPP(VPM) from the modified VPM accounted for the rapid reduction in GPP during severe droughts and the seasonal dynamics of GPPvpm agreed reasonably well with GPP(EC). Our analysis shows that 8-day averaged values (temperature, vapor-pressure deficit) do not reflect the short-term extreme climate events well, suggesting that satellitebased models may need to be run at daily or hourly scales, especially under unfavorable climatic conditions. (C) 2014 Elsevier Inc. All rights reserved. C1 [Wagle, Pradeep; Xiao, Xiangming; Jin, Cui; Dong, Jinwei] Univ Oklahoma, Ctr Spatial Anal, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Torn, Margaret S.; Fischer, Marc L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Atmospher Sci, Berkeley, CA 94720 USA. [Cook, David R.; Matamala, Roser] Argonne Natl Lab, Argonne, IL 60439 USA. [Biradar, Chandrashekhar] ICARDA, Amman, Jordan. RP Xiao, XM (reprint author), Univ Oklahoma, Ctr Spatial Anal, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. EM xiangming.xiao@ou.edu RI Dong, Jinwei/C-4949-2009; Torn, Margaret/D-2305-2015; OI Dong, Jinwei/0000-0001-5687-803X; Wagle, Pradeep/0000-0001-7444-0461 FU USDA National Institute for Food and Agriculture (NIFA)'s Agriculture and Food Research Initiative (AFRI), Regional Approaches for Adaptation to and Mitigation of Climate Variability and Change [2012-02355]; National Science Foundation EPSCoR [IIA-1301789] FX This study was supported in part by a research grant (Project No. 2012-02355) through the USDA National Institute for Food and Agriculture (NIFA)'s Agriculture and Food Research Initiative (AFRI), Regional Approaches for Adaptation to and Mitigation of Climate Variability and Change, and a research grant from the National Science Foundation EPSCoR (IIA-1301789). We would also like to thank Melissa L. Scott and Dan Hawkes for the English correction and manuscript editing. We thank two reviewers for their critiques and suggestions on the earlier version of the manuscript. NR 59 TC 22 Z9 23 U1 9 U2 60 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD SEP PY 2014 VL 152 BP 1 EP 14 DI 10.1016/j.rse.2014.05.010 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA AR2CW UT WOS:000343392200001 ER PT J AU Joiner, J Yoshida, Y Vasilkov, A Schaefer, K Jung, M Guanter, L Zhang, Y Garrity, S Middleton, EM Huemmrich, KF Gu, L Marchesini, LB AF Joiner, J. Yoshida, Y. Vasilkov, Ap. Schaefer, K. Jung, M. Guanter, L. Zhang, Y. Garrity, S. Middleton, E. M. Huemmrich, K. F. Gu, L. Marchesini, L. Belelli TI The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Fluorescence; Vegetation; Fluorescence; Chlorophyll; GOME-2; Gross primary productivity; Light-use efficiency; Flux tower; Growing season; Carbon uptake period; Phenology ID GROSS PRIMARY PRODUCTION; LIGHT-USE EFFICIENCY; DECIDUOUS BROADLEAF FOREST; EDDY-COVARIANCE; UNITED-STATES; MODIS DATA; PHOTOSYNTHETIC EFFICIENCY; RESPONSE PARAMETERS; TOWER MEASUREMENTS; FLUX MEASUREMENTS AB Mapping of terrestrial chlorophyll fluorescence from space has shown potential for providing global measurements related to gross primary productivity (GPP). In particular, space-based fluorescence may provide information on the length of the carbon uptake period. Here, for the first time we test the ability of satellite fluorescence retrievals to track seasonal cycle of photosynthesis as estimated from a diverse set of tower gas exchange measurements from around the world. The satellite fluorescence retrievals are obtained using new observations near the 740 nm emission feature from the Global Ozone Monitoring Experiment 2 (GOME-2) instrument offering the highest temporal and spatial resolution of available global measurements. Because GOME-2 has a large ground footprint (similar to 40 x 80 km(2)) as compared with that of the flux towers and the GOME-2 data require averaging to reduce random errors, we additionally compare with seasonal cycles of upscaled GPP estimated from a machine learning approach averaged over the same temporal and spatial domain as the satellite data surrounding the tower locations. We also examine the seasonality of absorbed photosynthetically-active radiation (AFAR) estimated from satellite measurements. Finally, to assess whether global vegetation models may benefit from the satellite fluorescence retrievals through validation or additional constraints, we examine seasonal cycles of GPP as produced from an ensemble of vegetation models. Several of the data-driven models rely on satellite reflectance-based vegetation parameters to derive estimates of APAR that are used to compute GPP. For forested (especially deciduous broadleaf and mixed forests) and cropland sites, the GOME-2 fluorescence data track the spring onset and autumn shutoff of photosynthesis as delineated by the upscaled GPP estimates. In contrast the reflectance-based indicators and many of the models, particularly those driven by data, tend to overestimate the length of the photosynthetically-active period for these biomes. Satellite fluorescence measurements therefore show potential for improving the seasonal dependence of photosynthesis simulated by global models at similar spatial scales. (C) 2014 Elsevier Inc All rights reserved. C1 [Joiner, J.; Middleton, E. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yoshida, Y.; Vasilkov, Ap.] Sci Syst & Applicat Inc, Lanham, MD USA. [Schaefer, K.] Univ Colorado, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA. [Jung, M.] Max Planck Inst Biogeochem, D-07745 Jena, Germany. [Guanter, L.; Zhang, Y.] Free Univ Berlin, Berlin, Germany. [Garrity, S.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Huemmrich, K. F.] Univ Maryland Baltimore Cty, JCET, Baltimore, MD 21228 USA. [Gu, L.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Marchesini, L. Belelli] Vrije Univ Amsterdam, Amsterdam, Netherlands. RP Garrity, S (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. EM Joanna.joiner@nasa.gov RI Guanter, Luis/I-1588-2015; Belelli Marchesini, Luca/M-3554-2014; Gu, Lianhong/H-8241-2014; OI Guanter, Luis/0000-0002-8389-5764; Belelli Marchesini, Luca/0000-0001-8408-4675; Gu, Lianhong/0000-0001-5756-8738; Zhang, Yongguang/0000-0001-8286-300X FU NASA Carbon Cycle Science program [NNH1ODA001N]; U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program [DEFG0204ER63917, DEFG0204ER63911]; CFCAS; NSERC; BIOCAP; Environment Canada; NRCan; CarboEuropeIP; FAOGTOSTCO; iLEAPS; Max Planck Institute for Biogeochemistry; National Science Foundation; University of Tuscia; Wageningen University CALM Group; Universit Laval; U.S. Department of Energy; National Science Foundation (NSF); U.S. Department of Agriculture (USDA); U.S. Department of Energy (DOE); Biological and Environmental Research Program (BER); U.S. DOE, through the Midwestern Center of the National Institute for Global Environmental Change (NIGEC) [DE-FC03-90ER61010]; BER [DE FG02-03ER63624, DE-FG03-01ER63278]; NOAA [NA09OAR4310063]; NASA [NNX10AR63G, NNX11A008A]; NASA Terrestrial Ecology Program [NNX08AI77G]; NSF Biocomplexity Program [EAR-0120630]; Australian Research Council FT [FT1110602]; [DP130101566] FX Funding for this work was provided in part by the NASA Carbon Cycle Science program (NNH1ODA001N). The authors gratefully acknowledge EUMETSAT and the MODIS data processing team for making available the GOME-2 and MODIS data sets, respectively, used here as well as the algorithm development teams. We also thank James Collatz, Randy Kawa, William Cook, Yen-Ben Cheng, Larry Corp, Petya Campbell, Qingyuan Zhang, and Arlindo da Silva for helpful discussions. We are indebted to Philip Durbin for assistance with the GOME-2 satellite data set. We also thank Joshua Fisher and an anonymous reviewer for helpful comments that helped to improve the paper.; This study uses eddy covariance data acquired by the FLUXNET community and in particular by the following networks: AmeriFlux (U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program (DEFG0204ER63917 and DEFG0204ER63911)) AfriFlux, CarboAfrica, CarboEuropelP, CarboItaly, CarboMont, FluxnetCanada (supported by the CFCAS, NSERC, BIOCAP, Environment Canada, and NRCan), GreenGrass, KoFlux, LBA, NECC, OzFlux, and USCCC. We acknowledge the financial support to the eddy covariance data harmonization provided by the CarboEuropeIP, FAOGTOSTCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Wageningen University CALM Group (Climate change and Adaptive Land and Water Management), Universit Laval and Environment Canada and U.S. Department of Energy and the database development and technical support from the Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California Berkeley, University of Virginia, and South Dakota State University. Sites in the U.S. also acknowledge support from the National Science Foundation (NSF), U.S. Department of Agriculture (USDA), and the U.S. Department of Energy (DOE). Funding for this research was also provided by the Biological and Environmental Research Program (BER), U.S. DOE, through the Midwestern Center of the National Institute for Global Environmental Change (NIGEC) under Cooperative Agreements DE-FC03-90ER61010, and from the BER under Cooperative Agreements DE FG02-03ER63624 and DE-FG03-01ER63278, NOAA grant NA09OAR4310063, and NASA grants NNX10AR63G and NNX11A008A. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the DOE. Access to the MMSF AmeriFlux site is provided by the Indiana Department of Natural Resources, Division of Forestry. The ZA-Kru site was supported by the NASA Terrestrial Ecology Program (Grant # NNX08AI77G) and NSF Biocomplexity Program (Grant # EAR-0120630) through grants to NPH. The OzFlux sites (AU-Wac, AU-Fog, AI-How) were provided by Jason Beringer who was funded under an Australian Research Council FT (FT1110602) and project support from DP130101566. Support for collection and archiving was provided through the Australia Terrestrial Ecosystem Research Network (TERN) (http://www.tem.org.au). NR 123 TC 38 Z9 38 U1 14 U2 81 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD SEP PY 2014 VL 152 BP 375 EP 391 DI 10.1016/j.rse.2014.06.022 PG 17 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA AR2CW UT WOS:000343392200030 ER PT J AU Kassianov, E Barnard, J Flynn, C Riihimaki, L Michalsky, J Hodges, G AF Kassianov, Evgueni Barnard, James Flynn, Connor Riihimaki, Laura Michalsky, Joseph Hodges, Gary TI Areal-Averaged Spectral Surface Albedo from Ground-Based Transmission Data Alone: Toward an Operational Retrieval SO ATMOSPHERE LA English DT Article DE Multi-Filter Rotating Shadowband Radiometer (MFRSR); tower-based measurements; Moderate Resolution Imaging Spectroradiometer (MODIS) observations; atmospheric transmission; areal-averaged and local surface albedo; spectral and seasonal variability; ARM Southern Great Plains (SGP) site; NOAA Table Mountain site ID CLOUD OPTICAL-THICKNESS; SGP CENTRAL FACILITY; RADIATIVE PROPERTIES; WATER CLOUDS; IN-SITU; MODIS; REFLECTANCE; MODELS; PARAMETERIZATION; DEPTH AB We present here a simple retrieval of the areal-averaged spectral surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation. The feasibility of our retrieval for routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements: (1) spectral atmospheric transmission from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) at five wavelengths (415, 500, 615, 673, and 870 nm); (2) tower-based measurements of local surface albedo at the same wavelengths; and (3) areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm) from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) observations. These integrated datasets cover both temporally long (2008-2013) and short (April-May 2010) periods at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site and the National Oceanic and Atmospheric Administration (NOAA) Table Mountain site, respectively. The calculated root mean square error (RMSE), defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved areal-averaged albedo, is quite small (RMSE <= 0.015) and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between tower-based measurements of daily-averaged surface albedo for completely overcast and non-overcast conditions is also demonstrated. C1 [Kassianov, Evgueni; Barnard, James; Flynn, Connor; Riihimaki, Laura] Pacific NW Natl Lab, Richland, WA 99352 USA. [Michalsky, Joseph] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Hodges, Gary] Univ Colorado, CIRES, Boulder, CO 80309 USA. RP Kassianov, E (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Evgueni.Kassianov@pnnl.gov; James.Barnard@pnnl.gov; Connor.Flynn@pnnl.gov; Laura.Riihimaki@pnnl.gov; Joseph.Michalsky@noaa.gov; Gary.Hodges@noaa.gov FU Office of Biological and Environmental Research (OBER) of the US Department of Energy (DOE); DOE [DE-A06-76RLO 1830] FX This work has been supported by the Office of Biological and Environmental Research (OBER) of the US Department of Energy (DOE) as part of the Atmospheric Radiation Measurement (ARM) Program. The Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the DOE under contract DE-A06-76RLO 1830. The MODIS surface albedo data, with product designation MCD43B3 (https://lpdaac.usgs.gov/products/modis_products_table/mcd43b3; 1-km resolution), are downloaded from the MODIS Reprojection Tool Web Interface (MRTWeb) site (https://mrtweb.cr.usgs.gov/). We greatly appreciate that these data have been made available to us. The image of the Atmospheric Radiation Measurement (ARM) Southern Great Plains Central Facility 60-meter tower is provided courtesy of the U.S. Department of Energy ARM Climate Research Facility. We are grateful to Allison McComiskey and three anonymous reviewers for thoughtful comments. NR 41 TC 5 Z9 5 U1 0 U2 7 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2073-4433 J9 ATMOSPHERE-BASEL JI Atmosphere PD SEP PY 2014 VL 5 IS 3 BP 597 EP 621 DI 10.3390/atmos5030597 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AQ8UZ UT WOS:000343111900007 ER PT J AU Srinivasan, B Tang, XZ AF Srinivasan, Bhuvana Tang, Xian-Zhu TI Mitigating hydrodynamic mix at the gas-ice interface with a combination of magnetic, ablative, and viscous stabilization SO EPL LA English DT Article ID RAYLEIGH-TAYLOR INSTABILITY; DECELERATION-PHASE; FUSION IMPLOSIONS AB Mix reduction is an important ingredient in yield performance in inertial confinement fusion (ICF). In an ignition-grade target design, shell adiabat shaping can mitigate hydrodynamic mix at the outer ablator surface via a high adiabat like that in the high-foot design, but the high Atwood number at the gas-ice interface associated with a low-adiabat ice, which is desirable for achieving high convergence ratio for a given laser system, still provides a robust drive for hydrodynamic instability during the deceleration phase of the implosion. The results presented here show that combined magnetic, viscous, and ablative stabilization can complement each other for adequate mix mitigation at the gas-ice interface in a range of magnetic-field strengths that are experimentally accessible. Copyright (C) EPLA, 2014 C1 [Srinivasan, Bhuvana; Tang, Xian-Zhu] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Srinivasan, Bhuvana] Virginia Tech, Dept Aerosp & Ocean Engn, Blacksburg, VA 24061 USA. RP Srinivasan, B (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU U.S. Department of Energy at Los Alamos National Laboratory FX This research was supported by the U.S. Department of Energy at Los Alamos National Laboratory. The authors wish to acknowledge the use of the WARPX code which was developed at the University of Washington. All simulations in this paper were performed using the Los Alamos National Laboratory Institutional Computing and Turquoise network clusters. NR 34 TC 2 Z9 2 U1 1 U2 5 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD SEP PY 2014 VL 107 IS 6 AR 65001 DI 10.1209/0295-5075/107/65001 PG 6 WC Physics, Multidisciplinary SC Physics GA AQ8YD UT WOS:000343125400012 ER PT J AU Wohlbach, DJ Rovinskiy, N Lewis, JA Sardi, M Schackwitz, WS Martin, JA Deshpande, S Daum, CG Lipzen, A Sato, TK Gasch, AP AF Wohlbach, Dana J. Rovinskiy, Nikolay Lewis, Jeffrey A. Sardi, Maria Schackwitz, Wendy S. Martin, Joel A. Deshpande, Shweta Daum, Christopher G. Lipzen, Anna Sato, Trey K. Gasch, Audrey P. TI Comparative Genomics of Saccharomyces cerevisiae Natural Isolates for Bioenergy Production SO GENOME BIOLOGY AND EVOLUTION LA English DT Article DE bioenergy; genomics; transcriptomics; environmental stress ID AMMONIA FIBER EXPANSION; POPULATION-STRUCTURE; GENE-EXPRESSION; ETHANOL STRESS; TRADE-OFFS; LABORATORY EVOLUTION; WIDE IDENTIFICATION; MICROARRAY DATA; OPEN SOFTWARE; SAKE YEAST AB Lignocellulosic plant material is a viable source of biomass to produce alternative energy including ethanol and other biofuels. However, several factors-including toxic byproducts from biomass pretreatment and poor fermentation of xylose and other pentose sugars-currently limit the efficiency of microbial biofuel production. To begin to understand the genetic basis of desirable traits, we characterized three strains of Saccharomyces cerevisiae with robust growth in a pretreated lignocellulosic hydrolysate or tolerance to stress conditions relevant to industrial biofuel production, through genome and transcriptome sequencing analysis. All stress resistant strains were highly mosaic, suggesting that genetic admixture may contribute to novel allele combinations underlying these phenotypes. Strain-specific gene sets not found in the lab strain were functionally linked to the tolerances of particular strains. Furthermore, genes with signatures of evolutionary selection were enriched for functional categories important for stress resistance and included stress-responsive signaling factors. Comparison of the strains' transcriptomic responses to heat and ethanol treatment-two stresses relevant to industrial bioethanol production-pointed to physiological processes that were related to particular stress resistance profiles. Many of the genotype-by-environment expression responses occurred at targets of transcription factors with signatures of positive selection, suggesting that these strains have undergone positive selection for stress tolerance. Our results generate new insights into potential mechanisms of tolerance to stresses relevant to biofuel production, including ethanol and heat, present a backdrop for further engineering, and provide glimpses into the natural variation of stress tolerance in wild yeast strains. C1 [Wohlbach, Dana J.; Rovinskiy, Nikolay; Lewis, Jeffrey A.; Sardi, Maria; Gasch, Audrey P.] Univ Wisconsin, Genet Lab, Madison, WI 53706 USA. [Wohlbach, Dana J.; Rovinskiy, Nikolay; Lewis, Jeffrey A.; Sardi, Maria; Sato, Trey K.; Gasch, Audrey P.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Schackwitz, Wendy S.; Martin, Joel A.; Deshpande, Shweta; Daum, Christopher G.; Lipzen, Anna] US DOE, Joint Genome Inst, Walnut Creek, CA USA. RP Gasch, AP (reprint author), Univ Wisconsin, Genet Lab, Madison, WI 53706 USA. EM agasch@wisc.edu FU DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER) [DE-FC02-07ER64494]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF Graduate Research Fellowship FX The authors thank Cletus Kurtzman, Justin Fay, and the Saccharomyces Genome Resequencing Project for yeast strains and sequences; Yaoping Zhang for AFEX hydrolysate; and Christa Pennachio for coordination of sequencing. This work was funded in part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. M.S. is supported by an NSF Graduate Research Fellowship. The authors declare that they have no competing interests. NR 77 TC 17 Z9 17 U1 2 U2 31 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1759-6653 J9 GENOME BIOL EVOL JI Genome Biol. Evol. PD SEP PY 2014 VL 6 IS 9 BP 2557 EP 2566 DI 10.1093/gbe/evu199 PG 10 WC Evolutionary Biology; Genetics & Heredity SC Evolutionary Biology; Genetics & Heredity GA AR0GP UT WOS:000343249300030 PM 25364804 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaitia, Y Acharya, BS Adamczyka, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Almond, J Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduag, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asmana, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Baas, A Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batkova, L Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, A Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, D Besana, MI Besjes, GJ Bessidskaia, O Bessner, MF Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Bingulc, SBA Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cuciuc, CM Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M De Sousaa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, JA Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Dias, FA Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, ADV Doan, TKO Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassie, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Fengd, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franklin, M Franz, S Fraternali, M French, T Friedrich, C Friedrich, F Froidevaux Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gandrajula, RP Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, L Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godfrey, J Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grohsjean, A Gross, E Grosse-Knetter, J Grossia, GC Groth-Jensen, J Grout, ZJ Guan, L Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, B Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, K Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, A Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, TB King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, V Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, Z Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le, BT Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leone, S Leonhardt, K Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, E Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Mad, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Meade, A Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, A Mitsui, S Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moraes, A Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidzeb, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval Sandoval Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, C Schmitt, S Schneider, B Schnellbach, J Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, N Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, M South, D Spagnolo, S Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spousta, M Spreitzer, T Spurlock, B Denis, RDS Staerz, S Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramania, HS Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Den Wollenberg, W Van Der Deijl, PC van der Geer, R van der Graaf, H Van Der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigell, P Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A Nedden, MZ Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaitia, Y. Acharya, B. S. Adamczyka, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Almond, J. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduag, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asmana, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Baas, A. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, M. Battistin, M. Bauer, F. Bawa, H. S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, D. Besana, M. I. Besjes, G. J. Bessidskaia, O. Bessner, M. F. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boddy, C. R. Boehler, M. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buscher, D. Buscher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Colon, G. Compostella, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cuciuc, C. -M. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. A. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duhrssen, M. Dunford, M. Yildiz, H. Duran Duren, M. Durglishvili, A. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassie, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Fengd, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. French, T. Friedrich, C. Friedrich, F. Froidevaux Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gandrajula, R. P. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godfrey, J. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gossling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstrom, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossia, G. C. Groth-Jensen, J. Grout, Z. J. Guan, L. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Gunther, J. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hagebock, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hulsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koneke, K. Konig, A. C. Konig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Kopke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Kruger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le, B. T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leone, S. Leonhardt, K. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Mad, L. L. Maccarrone, G. Macchiolo, A. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maier, A. A. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. de Andrade Filho, L. Manhaes Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mattig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Monig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Moraes, A. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidzeb, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Garzon, G. Otero y Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Adam, E. Romero Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruhr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval Sandoval Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schafer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Staerz, S. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Strohmer, R. Strom, D. M. Stroynowski, R. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramania, H. S. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van Den Wollenberg, W. Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. Van Der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigell, P. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. Nedden, M. zur Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI A neural network clustering algorithm for the ATLAS silicon pixel detector SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Particle tracking detectors; Particle tracking detectors (Solid-state detectors) AB A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution. C1 [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Marshall, Z.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] IN2P3, CNRS, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Marshall, Z.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Facini, G.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Azuelos, G.; Gingrich, D. M.; Khalil-zada, F.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Armadans, R. Caminal; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Cirkovic, P.; Gauzzi, P.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.; Zaman, A.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Javurek, T.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Wilson, J. A.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Javurek, T.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Wilson, J. A.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kuutmann, E. Bergeaas; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Wendland, D.; Nedden, M. zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Rossetti, V.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Bechtle, P.; Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, G.; Bruschi, M.; Caforio, D.; Conta, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Dondero, P.; Fabbri, L.; Ferrari, R.; Franchini, M.; Fraternali, M.; Gabrielli, A.; Gaudio, G.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Livan, M.; Massa, I.; Mengarelli, A.; Negri, A.; Negrini, M.; Piccinini, M.; Polesello, G.; Polini, A.; Rebuzzi, D. M.; Rimoldi, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Vercesi, V.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Alberghi, G. L.; Bruni, A.; Caforio, D.; Conta, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Massa, I.; Mengarelli, A.; Piccinini, M.; Polini, A.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartmento Fis & Astron, Bologna, Italy. [Arslan, O.; Brock, R.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hagebock, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V.; Kraus, J. K.; Kroseberg, J.; Kruger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Physikal Inst, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Univ Fed Juiz de Fora, Juiz De Fora, Brazil. [do Vale, M. A. B.] Univ Fed Sao Joao del Rei, Sao Joao Del Rei, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Okawa, H.; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, 26c, Bucharest, Romania. West Univ Timisoara, 26d, Timisoara, Romania. [Garzon, G. Otero y; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval; Takai, H.; Thomson, M.; Ward, C. P.; Williams, S.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Casolino, M.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Solar, M.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.; White, S.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ren, H.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhu, J.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Fengd, C.; Ge, P.; Mad, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Li, L.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN, Grp Collegato Cosenza, Lab Nazl Frascati, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyka, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, Z.; Kuhl, A.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Miyagawa, P. S.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Dallas, TX 75230 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Monig, K.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Gaur, B.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Monig, K.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Gossling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Friedrich, F.; Gumpert, C.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA, Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chevalier, L.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buscher, D.; Coniavitis, E.; Consorti, V.; Di Simone, A.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Jenni, P.; Kiss, F.; Koneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ruhr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Li, H.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nikolics, K.; Picazio, A.; Pohl, M.; Rosbach, K.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidzeb, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Duren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, SUPA, Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Hofmann, J. I.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Gandrajula, R. P.; Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Shrestha, S.; Tsukerman, I. I.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Mitani, T.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimine, N. I.] Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] Natl Lab High Energy Phys, KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. [Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yamazaki, Y.; Yoshida, R.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Anduag, X. S.; Dova; Monticelli, F.; Wahlberg, H.] Natl Univ La Plata, Inst Fis La Plata, RA-1900 La Plata, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Anduag, X. S.; Dova; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Chouridou, S.; Dearnaley, W. J.; Fox, H.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Greenwood, Z. D.; Jana, K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Aad, G.; Alio, L.; Barbero, M.; Beau, T.; Bertella, C.; Bomben, M.; Calderini, G.; Chen, L.; Clemens, J. C.; Coadou, Y.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Diglio, S.; Djama, F.; Feligioni, L.; Francavilla, P.; Gao, J.; Hoffmann, D.; Hubaut, F.; Hulsing, T. A.; Knoops, E. B. F. G.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Le Guirriec, E.; Lefebvre, G.; Li, B.; Liu, K.; Madaffari, D.; Malaescu, B.; Marchiori, G.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Pralavorio, P.; Ridel, M.; Roos, L.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Trincaz-Duvoid, S.; Ughetto, M.; Vacavant, L.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Smirnova, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Blum, W.; Buscher, V.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Ji, W.; Karnevskiy, M.; Kleinknecht, K.; Konig, S.; Kopke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schafer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Hulsing, T. A.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Levin, D.; Liu, L.; Long, J. D.; Mc Kee, S. P.; McCarn, A.; Palmer, J. D.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, I.; Bromberg, C.; Caughron, S.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Gavrilenko, L.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] PN Lebedev Phys Inst, Acad Sci, Moscow 117924, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Mehlhase, S.; Meineck, C.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Werner Heisenberg Inst Phys, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; Dao, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Konig, A. C.; Nef, P. D.; Salvucci, A.] Radboud Univ Nijmegen, NIKHEF H, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] NIKHEF H, Natl Inst Subat Phys, NL-1009 DB Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] Univ Illinois, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Mitrevski, J.; Nemethy, P.; Nevski, P.] NYU, Dept Phys, New York, NY 10003 USA. [Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Macchiolo, A.; Merritt, H.; Moss, J.; Nagarkar, A.; Nakamura, T.; Pignotti, D. T.; Tannenwald, B. B.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Gauzzi, P.; Khanov, A.; Rizatdinova, F.; Sidorov, D.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Majewski, S.; Nef, P. D.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Ospanov, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Ezhilov, A.; Fedin, O. L.; Fedorko, W.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Anjos, N.; Araque, J. P.; Carvalho, J.; Casado, M. P.; Castro, N. F.; Muino, P. Conde; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIPO, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. Univ Minho, Dept Fis, 125E, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Wemans, A. Do Valle] Univ Nova Lisboa, Dept Fis, Caparica, Portugal. [Wemans, A. Do Valle] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Mirabelli, G.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Giordano, R.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mjornmark, J. U.; Monini, C.; Monzani, S.; Nisati, A.; Ouyang, Q.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monini, C.; Monzani, S.; Camillocci, E. Solfaroli; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Corso-Radu, A.; Di Ciaccio, A.; Grossia, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossia, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA Marrakech, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassie, F.; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Cheu, E.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Grabas, H. M. X.; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Rothberg, J.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Paganis, E.; Suruliz, K.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; Godfrey, J.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nef, P. D.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Batkova, L.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Bristow, K.; Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bronner, J.; Carrillo-Montoya, G. D.; Chen, X.; Hsu, C.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg 2050, South Africa. [Abulaitia, Y.; Akerstedt, H.; Asmana, B.; Bendtz, K.; Bertoli, G.; Bessidskaia, O.; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaitia, Y.; Akerstedt, H.; Asmana, B.; Bendtz, K.; Bertoli, G.; Bessidskaia, O.; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Lindquist, E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys Astron & Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, E.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Nomidis, I.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yang, H.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yang, H.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Brendlinger, K.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Terashi, K.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Sandoval] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Farrell, S.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, L.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] INFN, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.; De Sanctis, U.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Casadei, D.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Cabrera Urban, S.; Casadei, D.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Casadei, D.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn & Elect, Valencia, Spain. [Cabrera Urban, S.; Casadei, D.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, IMB CNM, Valencia, Spain. [Fehling-Kaschek, M.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Loh, C. W.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Redelbach, A.; Siragusa, G.; Strohmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Enari, Y.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Mattig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Schreyer, M.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Bawa, H. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Chelkov, G. A.; Turchikhin, S.] Tomsk State Univ, Tomsk 634050, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys IPP, Toronto, ON, Canada. [Fedin, O. L.; Fedorko, W.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Castillo, L. R. Flores] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. [Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Greenwood, Z. D.; Sawyer, L.; Yacoob, S.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Juste Rozas, A.; Martinez, M.] ICREA, Barcelona, Spain. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Jenni, P.] CERN, Geneva, Switzerland. [Jenni, P.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Korol, A. A.; Maximov, D. A.; Rezanova, O. L.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Pinamonti, M.] SISSA, Int Sch Adv Studies, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Toth, J.] Inst Particle & Nucl Phys, Wigner Res Ctr Phys, Budapest, Hungary. [Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Xu, L.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Ciubancan, Liviu Mihai/L-2412-2015; Zhukov, Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Warburton, Andreas/N-8028-2013; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Smirnova, Oxana/A-4401-2013; Moraes, Arthur/F-6478-2010; Villa, Mauro/C-9883-2009; Bosman, Martine/J-9917-2014; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Marti-Garcia, Salvador/F-3085-2011; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Brooks, William/C-8636-2013; de Groot, Nicolo/A-2675-2009; Wemans, Andre/A-6738-2012; Castro, Nuno/D-5260-2011; Nemecek, Stanislav/G-5931-2014; Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; De, Kaushik/N-1953-2013; Lei, Xiaowen/O-4348-2014; Boyko, Igor/J-3659-2013; Doyle, Anthony/C-5889-2009; Di Domenico, Antonio/G-6301-2011; Fassi, Farida/F-3571-2016; Grinstein, Sebastian/N-3988-2014; la rotonda, laura/B-4028-2016; Juste, Aurelio/I-2531-2015; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Monzani, Simone/D-6328-2017; Li, Liang/O-1107-2015; Fullana Torregrosa, Esteban/A-7305-2016; Korol, Aleksandr/A-6244-2014; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; messina, andrea/C-2753-2013; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Solodkov, Alexander/B-8623-2017; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; OI Haas, Andrew/0000-0002-4832-0455; Galhardo, Bruno/0000-0003-0641-301X; Arratia, Miguel/0000-0001-6877-3315; Della Volpe, Domenico/0000-0001-8530-7447; Pina, Joao /0000-0001-8959-5044; Hays, Chris/0000-0003-2371-9723; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Tikhomirov, Vladimir/0000-0002-9634-0581; Warburton, Andreas/0000-0002-2298-7315; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Smirnova, Oxana/0000-0003-2517-531X; Moraes, Arthur/0000-0002-5157-5686; Villa, Mauro/0000-0002-9181-8048; Bosman, Martine/0000-0002-7290-643X; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Brooks, William/0000-0001-6161-3570; Wemans, Andre/0000-0002-9669-9500; Castro, Nuno/0000-0001-8491-4376; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; De, Kaushik/0000-0002-5647-4489; Lei, Xiaowen/0000-0002-2564-8351; Boyko, Igor/0000-0002-3355-4662; Doyle, Anthony/0000-0001-6322-6195; Di Domenico, Antonio/0000-0001-8078-2759; Fassi, Farida/0000-0002-6423-7213; Grinstein, Sebastian/0000-0002-6460-8694; la rotonda, laura/0000-0002-6780-5829; Leonidopoulos, Christos/0000-0002-7241-2114; Osculati, Bianca Maria/0000-0002-7246-060X; Giorgi, Filippo Maria/0000-0003-1589-2163; Coccaro, Andrea/0000-0003-2368-4559; Cristinziani, Markus/0000-0003-3893-9171; Chromek-Burckhart, Doris/0000-0003-4243-3288; Qian, Jianming/0000-0003-4813-8167; Giordani, Mario/0000-0002-0792-6039; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; Capua, Marcella/0000-0002-2443-6525; Vari, Riccardo/0000-0002-2814-1337; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Nisati, Aleandro/0000-0002-5080-2293; Gray, Heather/0000-0002-5293-4716; Mincer, Allen/0000-0002-6307-1418; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Monzani, Simone/0000-0002-0479-2207; Li, Liang/0000-0001-6411-6107; Troncon, Clara/0000-0002-7997-8524; Fullana Torregrosa, Esteban/0000-0003-3082-621X; Dell'Asta, Lidia/0000-0002-9601-4225; Chen, Hucheng/0000-0002-9936-0115; Sawyer, Lee/0000-0001-8295-0605; Korol, Aleksandr/0000-0001-8448-218X; Olshevskiy, Alexander/0000-0002-8902-1793; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Solodkov, Alexander/0000-0002-2737-8674; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Vazquez Schroeder, Tamara/0000-0002-9780-099X; Chen, Chunhui /0000-0003-1589-9955; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Terzo, Stefano/0000-0003-3388-3906; Smirnov, Sergei/0000-0002-6778-073X; Belanger-Champagne, Camille/0000-0003-2368-2617; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Weber, Michele/0000-0002-2770-9031; Wang, Kuhan/0000-0002-6151-0034; Grohsjean, Alexander/0000-0003-0748-8494; La Rosa, Alessandro/0000-0001-6291-2142; Beck, Hans Peter/0000-0001-7212-1096; Prokofiev, Kirill/0000-0002-2177-6401; Veneziano, Stefano/0000-0002-2598-2659; Lacasta, Carlos/0000-0002-2623-6252 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 17 TC 3 Z9 3 U1 5 U2 68 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2014 VL 9 AR P09009 DI 10.1088/1748-0221/9/09/P09009 PG 34 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AR0SJ UT WOS:000343281300046 ER PT J AU Abba, A Bedeschi, F Citterio, M Caponio, F Cusimano, A Geraci, A Marino, P Morello, MJ Neri, N Punzi, G Piucci, A Ristori, L Spinella, F Stracka, S Tonelli, D AF Abba, A. Bedeschi, F. Citterio, M. Caponio, F. Cusimano, A. Geraci, A. Marino, P. Morello, M. J. Neri, N. Punzi, G. Piucci, A. Ristori, L. Spinella, F. Stracka, S. Tonelli, D. TI A specialized processor for track reconstruction at the LHC crossing rate SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT International Conference on Instrumentation for Colliding Beam Physics CY FEB 24-MAR 01, 2014 CL Budker Inst Nucl Phys, Novosibirsk, RUSSIA HO Budker Inst Nucl Phys DE Trigger concepts and systems (hardware and software); Data acquisition concepts; Digital electronic circuits AB We present the results of an R&D study of a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel detectors at 40 MHz, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired by studies of the processing of visual images by the brain as it happens in nature. We find that high-quality tracking in large detectors is possible with sub-mu s latencies when this algorithm is implemented in modern, highspeed, high-bandwidth FPGA devices. This opens a possibility of making track reconstruction happen transparently as part of the detector readout. C1 [Tonelli, D.] CERN, Geneva, Switzerland. [Abba, A.; Citterio, M.; Caponio, F.; Cusimano, A.; Geraci, A.; Neri, N.] Politecn Milan, I-20133 Milan, Italy. [Abba, A.; Citterio, M.; Caponio, F.; Cusimano, A.; Geraci, A.; Neri, N.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Bedeschi, F.; Marino, P.; Morello, M. J.; Punzi, G.; Piucci, A.; Ristori, L.; Spinella, F.; Stracka, S.] Univ Pisa, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Bedeschi, F.; Marino, P.; Morello, M. J.; Punzi, G.; Piucci, A.; Ristori, L.; Spinella, F.; Stracka, S.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Ristori, L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Punzi, G (reprint author), Univ Pisa, Scuola Normale Super Pisa, Lgo Pontecorvo 3, I-56127 Pisa, Italy. EM giovanni.punzi@pi.infn.it RI Marino, Pietro/N-7030-2015; Stracka, Simone/M-3931-2015 OI Marino, Pietro/0000-0003-0554-3066; Stracka, Simone/0000-0003-0013-4714 NR 7 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2014 VL 9 AR C09001 DI 10.1088/1748-0221/9/09/C09001 PG 12 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AR0SJ UT WOS:000343281300001 ER PT J AU Asaadi, J Conrad, JM Gollapinni, S Jones, BJP Jostlein, H John, JMS Strauss, T Wolbers, S Zennamo, J AF Asaadi, J. Conrad, J. M. Gollapinni, S. Jones, B. J. P. Jostlein, H. John, J. M. St. Strauss, T. Wolbers, S. Zennamo, J. TI Testing of high voltage surge protection devices for use in liquid argon TPC detectors SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Voltage distributions; Noble liquid detectors (scintillation, ionization, double-phase); Cryogenic detectors AB In this paper we demonstrate the capability of high voltage varistors and gas discharge tube arrestors for use as surge protection devices in liquid argon time projection chamber detectors. The insulating and clamping behavior of each type of device is characterized in air (room temperature), and liquid argon (90 K), and their robustness under high voltage and high energy surges in cryogenic conditions is verified. The protection of vulnerable components in liquid argon during a 150 kV high voltage discharge is also demonstrated. Each device is tested for argon contamination and light emission effects, and both are constrained to levels where no significant impact upon liquid argon time projection chamber functionality is expected. Both devices investigated are shown to be suitable for HV surge protection applications in cryogenic detectors. C1 [Asaadi, J.] Syracuse Univ, Syracuse, NY 13244 USA. [Conrad, J. M.; Jones, B. J. P.] MIT, Cambridge, MA 02139 USA. [Gollapinni, S.] Kansas State Univ, Manhattan, KS 66506 USA. [Jostlein, H.; Wolbers, S.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [John, J. M. St.] Univ Cincinnati, Cincinnati, OH 45220 USA. [Strauss, T.] Univ Bern, LHEP, Albert Einstein Ctr, CH-3012 Bern, Switzerland. [Zennamo, J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Jones, BJP (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM bjpjones@mit.edu FU Fermi National Accelerator Laboratory; United States Department of Energy [De-AC02-07CH11359]; National Science Foundation [PHY-1205175, PHY-1068553]; Department of Energy [DE-FG03-99ER41093, DE-SC0011784]; Swiss National Science Foundation; University of Chicago FX This work was supported by the Fermi National Accelerator Laboratory, which is operated by the Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. The surge protection components under test, and the work by BJPJ and JMC, were funded by the National Science Foundation grant PHY-1205175. JA is supported by National Science Foundation grant PHY-1068553. SG is supported by the Department of Energy through grant DE-FG03-99ER41093 and JMSJ through grant DE-SC0011784. TS acknowledges the support of the Swiss National Science Foundation. JZ is supported by the University of Chicago. NR 34 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2014 VL 9 AR P09002 DI 10.1088/1748-0221/9/09/P09002 PG 23 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AR0SJ UT WOS:000343281300039 ER PT J AU Cook, N Tresca, O Lefferts, R AF Cook, N. Tresca, O. Lefferts, R. TI Scintillator diagnostics for the detection of laser accelerated ion beams SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Scintillators and scintillating fibres and light guides; Interaction of radiation with matter; Beam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors) ID ORGANIC SCINTILLATORS; PLASTIC SCINTILLATOR; TECHNOLOGY; PROTONS; SCREEN; CR-39 AB Laser plasma interaction with ultraintense pulses present exciting schemes for accelerating ions. One of the advantages conferred by using a gaseous laser and target is the potential for a fast (several Hz) repetition rate. This requires diagnostics which are not only suited for a single shot configuration, but also for repeated use. We consider several scintillators as candidates for an imaging diagnostic for protons accelerated to MeV energies by a CO2 laser focused on a gas jet target. We have measured the response of chromium-doped alumina (chromox) and polyvinyl toluene (PVT) screens to protons in the 2-8MeV range. We have calibrated the luminescent yield in terms of photons emitted per incident proton for each scintillator. We also discuss how light scattering and material properties affect detector resolution. Furthermore, we consider material damage and the presence of an afterglow under intense exposures. Our analysis reveals a near order of magnitude greater yield from chromox in response to proton beams at >8MeV energies, while scattering effects favor PVT-based scintillators at lower energies. C1 [Cook, N.; Lefferts, R.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Tresca, O.] Brookhaven Natl Lab, Accelerator Test Facil, Upton, NY 11973 USA. RP Cook, N (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM ncook@bnl.gov FU Brookhaven Science Associates, LLC [DE-AC02-98CH10886]; U.S. Department of Energy; BNL/LDRD [12-032] FX Many thanks are due to M. Babzien, M. Polyanskiy, K. Kusche, A. Lipski, J. Green, N. Dover and V. Yakimenko for their contributions to this work. Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and BNL/LDRD No. 12-032. NR 25 TC 1 Z9 1 U1 2 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2014 VL 9 AR P09004 DI 10.1088/1748-0221/9/09/P09004 PG 12 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AR0SJ UT WOS:000343281300041 ER PT J AU Repond, J AF Repond, J. CA CALICE Collaboration TI Resistive Plate Chambers for imaging calorimetry - The DHCAL SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT 12th Workshop on Resistive Plate Chambers and Related Detectors CY FEB 23-28, 2014 CL Tsinghua Univ, Beijing, PEOPLES R CHINA HO Tsinghua Univ DE Resistive-plate chambers; Particle tracking detectors; Calorimeters AB The DHCAL-the Digital Hadron Calorimeter-is a prototype calorimeter based on Resistive Plate Chambers (RPCs). The design emphasizes the imaging capabilities of the detector in an effort to optimize the calorimeter for the application of Particle Flow Algorithms (PFAs) to the reconstruction of hadronic jet energies in a colliding beam environment. The readout of the chambers is segmented into 1 X 1 cm(2) pads, each read out with a 1-bit (single threshold) resolution. The prototype with approximately 500,000 readout channels underwent extensive testing in both the Fermilab and CERN test beams. This talk presents preliminary findings from the analysis of data collected at the test beams. C1 [Repond, J.; CALICE Collaboration] Argonne Natl Lab, Argonne, IL 60439 USA. RP Repond, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM repond@anl.gov NR 5 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2014 VL 9 AR C09034 DI 10.1088/1748-0221/9/09/C09034 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AR0SJ UT WOS:000343281300034 ER PT J AU Zastrau, U Forster, E AF Zastrau, U. Foerster, E. TI Integrated reflectivity measurements of hydrogen phthalate crystals for high-resolution soft x-ray spectroscopy SO JOURNAL OF INSTRUMENTATION LA English DT Article DE X-ray monochromators; Plasma diagnostics - interferometry, spectroscopy and imaging ID PLASMA; LASER; FLAT AB The integrated x-ray reflectivity of Potassium Hydrogen Phthalate (KAP) and Rubidium Hydrogen Phthalate (RAP) crystals is studied at a photon energy of (1740 +/- 14) eV using a double-crystal setup. The absolute measured reflectivities are in < 5% agreement with the values predicted by the dynamic diffraction theory for perfect crystals when absorption is included. Within 4% experimental error margins, specimen that were exposed to ambient conditions over many years show identical reflectivity as specimen that were cleaved just before the measurement. No differences are observed between cleaving off a 10 mu m surface layer and splitting the entire crystal bulk of 2mm thickness. We conclude that at 1.7 keV photon energy the penetration depth of similar to 1 mu m is large compared to a potentially deteriorated surface layer of a few 10 nm. C1 [Zastrau, U.; Foerster, E.] Univ Jena, Ins Opt & Quantenelekt, D-07743 Jena, Germany. [Zastrau, U.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Foerster, E.] Helmholtz Inst Jena, D-07743 Jena, Germany. RP Zastrau, U (reprint author), Univ Jena, Ins Opt & Quantenelekt, Max Wien Pl 1, D-07743 Jena, Germany. EM ulf.zastrau@uni-jena.de FU VolkswagenStiftung; German Helmholtz association via Helmholtz Institute Jena; German Federal Ministry for Education and Research (BMBF) [FSP 302] FX We would like to thank I. Uschmann and O. Wehrhan for fruitful discussions about cleaving crystals, and R. Loetzsch for help with the LabView program. UZ is further grateful to the VolkswagenStiftung for his Peter-Paul-Ewald Fellowship. This work was partially funded by the German Helmholtz association via the Helmholtz Institute Jena, and the German Federal Ministry for Education and Research (BMBF) via priority programme FSP 302. NR 18 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2014 VL 9 AR P09008 DI 10.1088/1748-0221/9/09/P09008 PG 9 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AR0SJ UT WOS:000343281300045 ER PT J AU Liu, F Huang, L Davis, RF Porter, LM Schreiber, DK Kuchibatla, SVNT Shutthanandan, V Thevuthasan, S Preble, EA Paskova, T Evans, KR AF Liu, Fang Huang, Li Davis, Robert F. Porter, Lisa M. Schreiber, Daniel K. Kuchibatla, Satyanarayana V. N. T. Shutthanandan, Vaithiyalingam Thevuthasan, Suntharampillai Preble, Edward A. Paskova, Tania Evans, Keith R. TI Composition and interface analysis of InGaN/GaN multiquantum-wells on GaN substrates using atom probe tomography SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID QUANTUM-WELLS AB In0.20Ga0.80N/GaN multiquantum wells (MQWs) grown on [0001]-oriented GaN substrates with and without an InGaN buffer layer were characterized using three-dimensional atom probe tomography. In all samples, the upper interfaces of the QWs were slightly more diffuse than the lower interfaces. The buffer layers did not affect the roughness of the interfaces within the quantum well structure, a result attributed to planarization of the surface of the first GaN barrier layer, which had an average root-mean-square roughness of 0.18 nm. The In and Ga distributions within the MQWs followed the expected distributions for a random alloy with no indications of In clustering. High resolution Rutherford backscattering characterizations showed the ability to resolve the MQWs, and the resulting compositions and widths corroborated those determined from the atom probe analyses. (C) 2014 American Vacuum Society. C1 [Liu, Fang; Huang, Li; Davis, Robert F.; Porter, Lisa M.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Schreiber, Daniel K.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Kuchibatla, Satyanarayana V. N. T.; Shutthanandan, Vaithiyalingam; Thevuthasan, Suntharampillai] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Preble, Edward A.; Paskova, Tania; Evans, Keith R.] Kyma Technol Inc, Raleigh, NC 27617 USA. RP Liu, F (reprint author), Carnegie Mellon Univ, Dept Mat Sci & Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. EM fangliu009@gmail.com RI Davis, Robert/A-9376-2011 OI Davis, Robert/0000-0002-4437-0885 FU Department of Energy [DOE DEFC2607NT43229]; Department of Energy's Office of Biological and Environmental Research; PNNL FX The authors thank the Department of Energy for financial support under project DOE DEFC2607NT43229. A portion of the research was performed at the Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). An Alternate Sponsored Fellowship at PNNL awarded to one of the authors (F.L.) was particularly helpful in completing this research. The authors also wish to thank Bruce Arey at EMSL for his help with sample preparation. NR 23 TC 5 Z9 5 U1 1 U2 15 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD SEP PY 2014 VL 32 IS 5 AR 051209 DI 10.1116/1.4893976 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA AQ7ND UT WOS:000343003600011 ER PT J AU Liu, L Xi, YY Ahn, S Ren, F Gila, BP Pearton, SJ Kravohenko, II AF Liu, Lu Xi, Yuyin Ahn, Shihyun Ren, Fan Gila, Brent P. Pearton, Stephen J. Kravohenko, Ivan I. TI Characteristics of gate leakage current and breakdown voltage of AlGaN/GaN high electron mobility transistors after postprocess annealing SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID FIELD-EFFECT TRANSISTORS; SURFACE PASSIVATION; HEMTS; GAN; HETEROSTRUCTURES; PERFORMANCE; DISPERSION; GANHEMTS; EPITAXY; IMPACT AB The effects of postprocess annealing on the gate leakage current and breakdown voltage characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) was investigated. The fabricated AlGaN/GaN HEMTs were postannealed at 250, 300, 350, 400, or 450 degrees C under a nitrogen (N-2) atmosphere by using rapid thermal annealing, and both direct current (dc) and pulsed measurements were performed to characterize the changes in device performance. The reverse gate leakage current (I-G) at V-G = -10V was reduced by one order of magnitude and the off-state drain breakdown voltage (V-off) increased by over three-fold after postprocess annealing at 450 degrees C. The reverse gate leakage current was found to be independent of gate-to-drain potential after annealing. The gate pulse measurements revealed the activation of deep traps during the postannealing at elevated temperatures. (C) 2014 American Vacuum Society. C1 [Liu, Lu; Xi, Yuyin; Ahn, Shihyun; Ren, Fan] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. [Gila, Brent P.; Pearton, Stephen J.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Kravohenko, Ivan I.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Liu, L (reprint author), Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. EM fren@che.ufl.edu RI Kravchenko, Ivan/K-3022-2015 OI Kravchenko, Ivan/0000-0003-4999-5822 FU U.S. DOD HDTRA [1-11-1-0020]; Office of Basic Energy Sciences, U.S, Department of Energy FX The work performed at UP was supported by an U.S. DOD HDTRA Grant No. 1-11-1-0020 monitored by James Reed. A portion of this research was conducted at the Center for Nariophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S, Department of Energy. NR 31 TC 5 Z9 5 U1 1 U2 13 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD SEP PY 2014 VL 32 IS 5 AR 052201 DI 10.1116/1.4891168 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA AQ7ND UT WOS:000343003600027 ER PT J AU Liu, KH Zhang, LM Cao, T Jin, CH Qiu, DA Zhou, Q Zettl, A Yang, PD Louie, SG Wang, F AF Liu, Kaihui Zhang, Liming Cao, Ting Jin, Chenhao Qiu, Diana Zhou, Qin Zettl, Alex Yang, Peidong Louie, Steve G. Wang, Feng TI Evolution of interlayer coupling in twisted molybdenum disulfide bilayers SO NATURE COMMUNICATIONS LA English DT Article ID MONOLAYER MOS2; VALLEY POLARIZATION; DIRAC FERMIONS; ATOMIC LAYERS; GRAPHENE; SUPERLATTICES; ELECTRONS; PHASE AB Van der Waals coupling is emerging as a powerful method to engineer physical properties of atomically thin two-dimensional materials. In coupled graphene-graphene and graphene-boron nitride layers, interesting physical phenomena ranging from Fermi velocity renormalization to Hofstadter's butterfly pattern have been demonstrated. Atomically thin transition metal dichalcogenides, another family of two-dimensional-layered semiconductors, can show distinct coupling phenomena. Here we demonstrate the evolution of interlayer coupling with twist angles in as-grown molybdenum disulfide bilayers. We find that the indirect bandgap size varies appreciably with the stacking configuration: it shows the largest redshift for AA- and AB-stacked bilayers, and a significantly smaller but constant redshift for all other twist angles. Our observations, together with ab initio calculations, reveal that this evolution of interlayer coupling originates from the repulsive steric effects that leads to different interlayer separations between the two molybdenum disulfide layers in different stacking configurations. C1 [Liu, Kaihui; Cao, Ting; Jin, Chenhao; Qiu, Diana; Zettl, Alex; Louie, Steve G.; Wang, Feng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Liu, Kaihui] Peking Univ, State Key Lab Mesoscop Phys, Sch Phys, Beijing 100871, Peoples R China. [Liu, Kaihui] Peking Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China. [Zhang, Liming; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cao, Ting; Qiu, Diana; Zhou, Qin; Zettl, Alex; Louie, Steve G.; Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zettl, Alex; Yang, Peidong; Wang, Feng] Univ Calif Berkeley, Kavli Energy NanoSci, Berkeley, CA 94720 USA. [Zettl, Alex; Yang, Peidong; Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Wang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM fengwang76@berkeley.edu RI Liu, Kaihui/A-9938-2014; Zettl, Alex/O-4925-2016; wang, Feng/I-5727-2015 OI Zettl, Alex/0000-0001-6330-136X; FU Office of Basic Energy Sciences, US Department of Energy (DOE) [DE-SC0003949, DE-AC02-05CH11231]; Theory Program at Lawrence Berkeley National Laboratory through Office of Basic Energy Sciences, US DOE [DE-AC02-05CH11231]; National Science Foundation [DMR10-1006184]; Simons Foundation Fellowship in Theoretical Physics; DOE; National Program for Thousand Young Talents; NSFC of China [11474006] FX This study was supported by Office of Basic Energy Sciences, US Department of Energy (DOE) under contract nos. DE-SC0003949 (Early Career Award) and DE-AC02-05CH11231 (Materials Science Division). Research supported in part by the Theory Program at Lawrence Berkeley National Laboratory through the Office of Basic Energy Sciences, US DOE under contract no. DE-AC02-05CH11231 that provided code developments and simulations, and by the National Science Foundation under grant no. DMR10-1006184 that provided structural study and analysis of interlayer coupling. S.G.L. acknowledges support of a Simons Foundation Fellowship in Theoretical Physics. Computation resources at National Energy Research Scientific Computing Center (NERSC) funded by DOE are used. K. L. acknowledges support from National Program for Thousand Young Talents and NSFC (No. 11474006) of China. NR 34 TC 73 Z9 73 U1 32 U2 194 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4966 DI 10.1038/ncomms5966 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ7HZ UT WOS:000342984800022 PM 25233054 ER PT J AU Peterson, EJ Delariva, AT Lin, S Johnson, RS Guo, H Miller, JT Kwak, JH Peden, CHF Kiefer, B Allard, LF Ribeiro, FH Datye, AK AF Peterson, Eric J. Delariva, Andrew T. Lin, Sen Johnson, Ryan S. Guo, Hua Miller, Jeffrey T. Kwak, Ja Hun Peden, Charles H. F. Kiefer, Boris Allard, Lawrence F. Ribeiro, Fabio H. Datye, Abhaya K. TI Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina SO NATURE COMMUNICATIONS LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; GAMMA-ALUMINA; CO OXIDATION; THETA-AL2O3(010) SURFACE; SINGLE; ATOMS; PD; ABSORPTION AB Catalysis by single isolated atoms of precious metals has attracted much recent interest, as it promises the ultimate in atom efficiency. Most previous reports are on reducible oxide supports. Here we show that isolated palladium atoms can be catalytically active on industrially relevant g-alumina supports. The addition of lanthanum oxide to the alumina, long known for its ability to improve alumina stability, is found to also help in the stabilization of isolated palladium atoms. Aberration-corrected scanning transmission electron microscopy and operando X-ray absorption spectroscopy confirm the presence of intermingled palladium and lanthanum on the gamma-alumina surface. Carbon monoxide oxidation reactivity measurements show onset of catalytic activity at 40 degrees C. The catalyst activity can be regenerated by oxidation at 700 degrees C in air. The high-temperature stability and regenerability of these ionic palladium species make this catalyst system of potential interest for low-temperature exhaust treatment catalysts. C1 [Peterson, Eric J.; Delariva, Andrew T.; Datye, Abhaya K.] Univ New Mexico, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA. [Peterson, Eric J.; Delariva, Andrew T.; Datye, Abhaya K.] Univ New Mexico, Ctr Microengineered Mat, Albuquerque, NM 87131 USA. [Lin, Sen] Fuzhou Univ, Res Inst Photocatalysis, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350002, Peoples R China. [Johnson, Ryan S.; Guo, Hua] Univ New Mexico, Dept Chem & Biol Chem, Albuquerque, NM 87131 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Argonne, IL 60439 USA. [Kwak, Ja Hun; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Kiefer, Boris] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. [Allard, Lawrence F.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Ribeiro, Fabio H.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. RP Datye, AK (reprint author), Univ New Mexico, Dept Chem & Biol Engn, MSC 01-1120, Albuquerque, NM 87131 USA. EM datye@unm.edu RI Guo, Hua/J-2685-2014 OI Guo, Hua/0000-0001-9901-053X FU U.S. DOE, Office of Science [DE-FG02-05ER15712]; National Natural Science Foundation of China [21203026]; US National Science Foundation [CHE-0910828]; Office of Basic Energy Sciences of the U.S. DOE [W-31-109-Eng-38]; DOE, EERE Office of Vehicle Technologies; U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences [DE-AC-02-06CH11357]; Department of Energy, Office of Basic Energy Sciences, Chemical Sciences [DE-FG02-03ER15408]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; U.S. Department of Energy's Office of Biological and Environmental Research FX We gratefully acknowledge funding for this work provided by the U.S. DOE, Office of Science grant DE-FG02-05ER15712. S.L. thanks the National Natural Science Foundation of China (21203026). R.S.J. and H.G. thank the US National Science Foundation (CHE-0910828). Use of the Advanced Photon Source is supported by the Office of Basic Energy Sciences of the U.S. DOE under contract number W-31-109-Eng-38. Materials Research Collaborative Access Team (MRCAT, Sector 10 ID-B) operations are supported by the Department of Energy and the MRCAT member institutions. STEM imaging was performed at the High Temperature Materials Laboratory, operated by Oak Ridge National Laboratory and supported by DOE, EERE Office of Vehicle Technologies. J.T.M. was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences under contract DE-AC-02-06CH11357. F.H.R. acknowledges support from the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, under Grant DE-FG02-03ER15408. C.H.F.P. and J.H.K. were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Their studies were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. E.J.P. thanks Bruce Ravel and Anatoly Frenkel for discussion and guidance with regard to the XAS analysis. NR 37 TC 72 Z9 72 U1 33 U2 250 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4885 DI 10.1038/ncomms5885 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ7HM UT WOS:000342983300012 PM 25222116 ER PT J AU Sutter, E Jungjohann, K Bliznakov, S Courty, A Maisonhaute, E Tenney, S Sutter, P AF Sutter, E. Jungjohann, K. Bliznakov, S. Courty, A. Maisonhaute, E. Tenney, S. Sutter, P. TI In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles SO NATURE COMMUNICATIONS LA English DT Article ID OXYGEN REDUCTION; AQUEOUS-SOLUTION; METAL NANOSTRUCTURES; METHANOL OXIDATION; GOLD NANOCAGES; GLASSY-CARBON; PHOTOACOUSTIC TOMOGRAPHY; CATALYTIC-PROPERTIES; OPTICAL-PROPERTIES; CONTRAST AGENT AB Galvanic replacement reactions provide an elegant way of transforming solid nanoparticles into complex hollow morphologies. Conventionally, galvanic replacement is studied by stopping the reaction at different stages and characterizing the products ex situ. In situ observations by liquid-cell electron microscopy can provide insight into mechanisms, rates and possible modifications of galvanic replacement reactions in the native solution environment. Here we use liquid-cell electron microscopy to investigate galvanic replacement reactions between silver nanoparticle templates and aqueous palladium salt solutions. Our in situ observations follow the transformation of the silver nanoparticles into hollow silver-palladium nanostructures. While the silver-palladium nanocages have morphologies similar to those obtained in ex situ control experiments the reaction rates are much higher, indicating that the electron beam strongly affects the galvanic-type process in the liquid-cell. By using scavengers added to the aqueous solution we identify the role of radicals generated via radiolysis by high-energy electrons in modifying galvanic reactions. C1 [Sutter, E.; Jungjohann, K.; Tenney, S.; Sutter, P.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Bliznakov, S.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Courty, A.] Univ Paris 06, Sorbonne Univ, Lab Monaris, CNRS,UMR 8233, F-75005 Paris, France. [Maisonhaute, E.] Univ Paris 06, Sorbonne Univ, Lab Interfaces & Syst Electrochim, UMR 8235, F-75005 Paris, France. RP Sutter, E (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM esutter@bnl.gov FU US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; LabEx MiChem part of French state funds [ANR-11-IDEX-0004-02] FX This research has been carried out at the Center for Functional Nanomaterials, the Brookhaven National Laboratory, which is supported by the US Department of Energy, the Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. This work was supported in part (AC and EM) by the LabEx MiChem part of French state funds managed by the ANR within the Investissements d'Avenir programme under reference ANR-11-IDEX-0004-02. NR 63 TC 41 Z9 43 U1 14 U2 121 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4946 DI 10.1038/ncomms5946 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ7HZ UT WOS:000342984800002 PM 25208691 ER PT J AU Vasudevan, RK Matsumoto, Y Cheng, X Imai, A Maruyama, S Xin, HL Okatan, MB Jesse, S Kalinin, SV Nagarajan, V AF Vasudevan, R. K. Matsumoto, Y. Cheng, Xuan Imai, A. Maruyama, S. Xin, H. L. Okatan, M. B. Jesse, S. Kalinin, S. V. Nagarajan, V. TI Deterministic arbitrary switching of polarization in a ferroelectric thin film SO NATURE COMMUNICATIONS LA English DT Article ID SOLID-SOLUTIONS; MEMRISTOR; ROTATION; PHASES AB Ferroelectrics have been used as memory storage devices, with an upper bound on the total possible memory levels generally dictated by the number of degenerate states allowed by the symmetry of the ferroelectric phase. Here, we introduce a new concept for storage wherein the polarization can be rotated arbitrarily, effectively decoupling it from the crystallographic symmetry of the ferroelectric phase on the mesoscale. By using a Bi5Ti3FeO15-CoFe2O4 film and via Band-Excitation Piezoresponse Force Microscopy, we show the ability to arbitrarily rotate polarization, create a spectrum of switched states, and suggest the reason for polarization rotation is an abundance of sub-50 nm nanodomains. Transmission electron microscopy-based strain mapping confirms significant local strain undulations imparted on the matrix by the CoFe2O4 inclusions, which causes significant local disorder. These experiments point to controlled tuning of polarization rotation in a standard ferroelectric, and hence the potential to greatly extend the attainable densities for ferroelectric memories. C1 [Vasudevan, R. K.; Okatan, M. B.; Jesse, S.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Matsumoto, Y.; Maruyama, S.] Tohoku Univ, Dept Appl Chem, Sch Engn, Aoba Ku, Sendai, Miyagi 9808579, Japan. [Matsumoto, Y.; Imai, A.] Tokyo Inst Technol, Mat & Struct Lab, Midori Ku, Yokohama, Kanagawa 2268503, Japan. [Cheng, Xuan; Imai, A.; Nagarajan, V.] Univ New S Wales, Sch Mat Sci & Engn, Kensington, NSW 2052, Australia. [Xin, H. L.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Nagarajan, V (reprint author), Univ New S Wales, Sch Mat Sci & Engn, Kensington, NSW 2052, Australia. EM nagarajan@unsw.edu.au RI Matsumoto, Yuji/H-2056-2011; valanoor, nagarajan/B-4159-2012; Vasudevan, Rama/Q-2530-2015; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Okatan, M. Baris/E-1913-2016; Xin, Huolin/E-2747-2010 OI Vasudevan, Rama/0000-0003-4692-8579; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Okatan, M. Baris/0000-0002-9421-7846; Xin, Huolin/0000-0002-6521-868X FU Division of Materials Sciences and Engineering of BES, DOE; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; New Energy and Industrial Technology Development Organization (NEDO) of Japan; Integrated Doctoral Education Program at Tokyo Tech; Sumitomo Foundation; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This research was sponsored by the Division of Materials Sciences and Engineering (R.K.V., S.V.K.) of BES, DOE. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. V.N., X. C. and A. I. thank the Australian Research Council Discovery and LIEF projects. We also acknowledge funding partly by Industrial Technology Research Grant Program in 2007 from New Energy and Industrial Technology Development Organization (NEDO) of Japan, the Integrated Doctoral Education Program at Tokyo Tech, and Sumitomo Foundation. Image processing made use of capabilities at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 31 TC 7 Z9 7 U1 8 U2 96 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4971 DI 10.1038/ncomms5971 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ7HZ UT WOS:000342984800027 PM 25233288 ER PT J AU Zhang, Q Li, GY Liu, XF Qian, F Li, Y Sum, TC Lieber, CM Xiong, QH AF Zhang, Qing Li, Guangyuan Liu, Xinfeng Qian, Fang Li, Yat Sum, Tze Chien Lieber, Charles M. Xiong, Qihua TI A room temperature low-threshold ultraviolet plasmonic nanolaser SO NATURE COMMUNICATIONS LA English DT Article ID NANOWIRE LASERS; WAVE-GUIDES; GAIN AB Constrained by large ohmic and radiation losses, plasmonic nanolasers operated at visible regime are usually achieved either with a high threshold (10(2)-10(4) MW cm(-2)) or at cryogenic temperatures (4-120 K). Particularly, the bending-back effect of surface plasmon (SP) dispersion at high energy makes the SP lasing below 450 nm more challenging. Here we demonstrate the first strong room temperature ultraviolet (similar to 370 nm) SP polariton laser with an extremely low threshold (similar to 3.5 MW cm(-2)). We find that a closed-contact planar semiconductor-insulator-metal interface greatly lessens the scattering loss, and more importantly, efficiently promotes the exciton-SP energy transfer thus furnishes adequate optical gain to compensate the loss. An excitation polarization-dependent lasing action is observed and interpreted with a microscopic energy-transfer process from excitons to SPs. Our work advances the fundamental understanding of hybrid plasmonic waveguide laser and provides a solution of realizing room temperature UV nanolasers for biological applications and information technologies. C1 [Zhang, Qing; Li, Guangyuan; Liu, Xinfeng; Sum, Tze Chien; Xiong, Qihua] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore. [Qian, Fang] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Li, Yat] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Sum, Tze Chien] Singapore Berkeley Res Initiat Sustainable Energy, Singapore 138602, Singapore. [Lieber, Charles M.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Xiong, Qihua] Nanyang Technol Univ, Sch Elect & Elect Engn, NOVITAS, Nanoelect Ctr Excellence, Singapore 639798, Singapore. RP Lieber, CM (reprint author), Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. EM cml@cmliris.harvard.edu; Qihua@ntu.edu.sg RI Xiong, Qihua/A-4979-2011; Liu, Xinfeng/G-2063-2015; Zhang, Qing/N-6703-2014; OI Xiong, Qihua/0000-0002-2555-4363; Liu, Xinfeng/0000-0003-1759-9796; Zhang, Qing/0000-0002-5811-1761; Li, Yat/0000-0002-8058-2084 FU Singapore Ministry of Education [MOE2011-T2-2-051]; Singapore National Research Foundation [NRF-RF2009-06, NRF-CRP-6-2010-2]; Nanyang Technological University [M58110061, M58110100]; National Security Science and Engineering Faculty Fellow (NSSEFF) award, Department of Defense; United States NSF [DMR-0847786]; NTU [M4080514]; SPMS collaborative Research Award [M4080536]; Singapore-Berkeley Research Initiative for Sustainable Energy (Sin-BeRISE) CREATE Programme FX This work was mainly supported by Singapore Ministry of Education via an AcRF Tier2 grant (MOE2011-T2-2-051). In addition, Q. X. thanks the strong support from Singapore National Research Foundation through a Fellowship grant (NRF-RF2009-06) and a Competitive Research Program (NRF-CRP-6-2010-2), and support from Nanyang Technological University via start-up grant (M58110061) and New Initiative Fund (M58110100). Q. X. thanks Nanyang Nanofabrication Center for the help in e-beam evaporation. C. M. L. acknowledges support from a National Security Science and Engineering Faculty Fellow (NSSEFF) award from the Department of Defense. Y.L. thanks the financial support from United States NSF (DMR-0847786). T. C. S. acknowledges the financial support NTU start-up grant M4080514, SPMS collaborative Research Award M4080536 and the Singapore-Berkeley Research Initiative for Sustainable Energy (Sin-BeRISE) CREATE Programme. NR 50 TC 46 Z9 46 U1 22 U2 203 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4953 DI 10.1038/ncomms5953 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ7HZ UT WOS:000342984800009 PM 25247634 ER PT J AU Zhang, WT Hwang, C Smallwood, CL Miller, TL Affeldt, G Kurashima, K Jozwiak, C Eisaki, H Adachi, T Koike, Y Lee, DH Lanzara, A AF Zhang, Wentao Hwang, Choongyu Smallwood, Christopher L. Miller, Tristan L. Affeldt, Gregory Kurashima, Koshi Jozwiak, Chris Eisaki, Hiroshi Adachi, Tadashi Koike, Yoji Lee, Dung-Hai Lanzara, Alessandra TI Ultrafast quenching of electron-boson interaction and superconducting gap in a cuprate superconductor SO NATURE COMMUNICATIONS LA English DT Article ID ANGLE-RESOLVED PHOTOEMISSION; T-C; ENERGY; TRANSITION; SPECTROSCOPY; DISPERSION; DYNAMICS AB Ultrafast spectroscopy is an emerging technique with great promise in the study of quantum materials, as it makes it possible to track similarities and correlations that are not evident near equilibrium. Thus far, however, the way in which these processes modify the electron self-energy-a fundamental quantity describing many-body interactions in a material-has been little discussed. Here we use time-and angle-resolved photoemission to directly measure the ultrafast response of self-energy to near-infrared photoexcitation in high-temperature cuprate superconductor. Below the critical temperature of the superconductor, ultrafast excitations trigger a synchronous decrease of electron self-energy and superconducting gap, culminating in a saturation in the weakening of electron-boson coupling when the superconducting gap is fully quenched. In contrast, electron-boson coupling is unresponsive to ultrafast excitations above the critical temperature of the superconductor and in the metallic state of a related material. These findings open a new pathway for studying transient self-energy and correlation effects in solids. C1 [Zhang, Wentao; Hwang, Choongyu; Smallwood, Christopher L.; Miller, Tristan L.; Affeldt, Gregory; Lanzara, Alessandra] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhang, Wentao; Smallwood, Christopher L.; Miller, Tristan L.; Affeldt, Gregory; Lee, Dung-Hai; Lanzara, Alessandra] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Hwang, Choongyu] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea. [Kurashima, Koshi; Adachi, Tadashi; Koike, Yoji] Tohoku Univ, Dept Appl Phys, Sendai, Miyagi 9808579, Japan. [Jozwiak, Chris] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Eisaki, Hiroshi] Natl Inst Adv Ind Sci & Technol, Elect & Photon Res Inst, Tsukuba, Ibaraki 3058568, Japan. [Adachi, Tadashi] Sophia Univ, Dept Engn & Appl Sci, Tokyo 1028554, Japan. RP Lanzara, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM alanzara@lbl.gov RI ZHANG, Wentao/B-3626-2011; Smallwood, Christopher/D-4925-2011 OI Smallwood, Christopher/0000-0002-4103-8748 FU Berkeley Lab's programs on "Quantum Materials'' and "Ultrafast Materials'' - US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231] FX This work was supported by Berkeley Lab's programs on "Quantum Materials'' and "Ultrafast Materials'' funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under contract no. DE-AC02-05CH11231. NR 48 TC 18 Z9 18 U1 5 U2 34 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4959 DI 10.1038/ncomms5959 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ7HZ UT WOS:000342984800015 PM 25222844 ER PT J AU Shiltsev, V Eseev, M AF Shiltsev, Vladimir Eseev, Marat TI Scientific Arkhangelsk and Pomorie: A Walk Through Centuries and Thousands of Miles SO PHYSICS IN PERSPECTIVE LA English DT Article DE Arkhangelsk; Russian science; Mikhail Lomonosov; Solovetsky Monastery; Kholmogory; North Arctic Federal University; Archbishop Afanasy; Ivan Meshchersky; Boris Rosing; Arkhangelsk Scientific Center ID LOMONOSOV AB Even by Russian standards, the country's northwestern territories contouring the White and Barents seas are vast, remote, and sparsely populated. Yet for seven centuries that faraway province has served as a nursery of religious and intellectual freedom and as a primary entry point for Western civilization and trade, containing several scientific landmarks of interest to the physical tourist. This article is intended as a concise guide to the scientifically relevant attractions in the city of Arkhangelsk and in relatively "nearby" locations that can be reached within reasonable time and with reasonable convenience; these include Mikhail Lomonosov's birthplace on Kholmogory and the Solovetsky islands. We will also briefly mention relevant facts for the somewhat more remote-but still within 1000 km-territories of Kola peninsula and the Novaya Zemlya islands. C1 [Shiltsev, Vladimir] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. [Eseev, Marat] Northern Arctic Fed Univ, Arkhangelsk 163002, Russia. RP Shiltsev, V (reprint author), Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA. EM shiltsev@fnal.gov RI Eseev, Marat/A-3887-2013 OI Eseev, Marat/0000-0003-1101-4689 NR 13 TC 0 Z9 0 U1 1 U2 3 PU SPRINGER BASEL AG PI BASEL PA PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND SN 1422-6944 EI 1422-6960 J9 PHYS PERSPECT JI Phys. Perspect. PD SEP PY 2014 VL 16 IS 3 BP 390 EP 405 DI 10.1007/s00016-014-0140-x PG 16 WC History & Philosophy Of Science SC History & Philosophy of Science GA AQ8DF UT WOS:000343052800005 ER PT J AU Behlow, H Saini, D Oliveira, L Durham, L Simpson, J Serkiz, SM Skove, MJ Rao, AM AF Behlow, H. Saini, D. Oliveira, L. Durham, L. Simpson, J. Serkiz, S. M. Skove, M. J. Rao, A. M. TI Direct measurement of shear properties of microfibers SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID CARBON-FIBER; ENERGY-STORAGE; MODULUS; DEFORMATION; PROSTHESES; STRESS; KEVLAR; STRAIN AB As novel fibers with enhanced mechanical properties continue to be synthesized and developed, the ability to easily and accurately characterize these materials becomes increasingly important. Here we present a design for an inexpensive tabletop instrument to measure shear modulus (G) and other longitudinal shear properties of a micrometer-sized monofilament fiber sample, such as nonlinearities and hysteresis. This automated system applies twist to the sample and measures the resulting torque using a sensitive optical detector that tracks a torsion reference. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers, for which G is well known. Two industrially important fibers, IM7 carbon fiber and Kevlar (R) 119, were also characterized with this system and were found to have G = 16.5 +/- 2.1 and 2.42 +/- 0.32 GPa, respectively. (C) 2014 AIP Publishing LLC. C1 [Behlow, H.; Saini, D.; Durham, L.; Simpson, J.; Serkiz, S. M.; Skove, M. J.; Rao, A. M.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Behlow, H.; Saini, D.; Durham, L.; Simpson, J.; Serkiz, S. M.; Skove, M. J.; Rao, A. M.] Clemson Univ, Clemson Nanomat Ctr, Clemson, SC 29634 USA. [Oliveira, L.] Clemson Univ, Sch Mat Sci & Engn, Clemson, SC 29634 USA. [Serkiz, S. M.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Behlow, H (reprint author), Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. FU Clemson University TIGER grant FX Special thanks to Garold J. Goodale, Jr. for helpful discussion during instrument development. The authors thank the reviewers for their constructive comments and suggestions that helped improve the quality of the paper. The authors are grateful to DuPont for providing samples of Kevlar (R) 119 fiber. The authors acknowledge financial support from the Clemson University TIGER grant. NR 20 TC 4 Z9 4 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2014 VL 85 IS 9 AR 095118 DI 10.1063/1.4895679 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6HE UT WOS:000342910500084 PM 25273783 ER PT J AU Flippo, KA Kline, JL Doss, FW Loomis, EN Emerich, M Devolder, B Murphy, TJ Fournier, KB Kalantar, DH Regan, SP Barrios, MA Merritt, EC Perry, TS Tregillis, IL Welser-Sherrill, L Fincke, JR AF Flippo, K. A. Kline, J. L. Doss, F. W. Loomis, E. N. Emerich, M. Devolder, B. Murphy, T. J. Fournier, K. B. Kalantar, D. H. Regan, S. P. Barrios, M. A. Merritt, E. C. Perry, T. S. Tregillis, I. L. Welser-Sherrill, L. Fincke, J. R. TI Development of a Big Area BackLighter for high energy density experiments SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID NATIONAL-IGNITION-FACILITY; TARGETS; RADIOGRAPHY; RESOLUTION; PLASMAS AB A very large area (7.5 mm(2)) laser-driven x-ray backlighter, termed the Big Area BackLighter (BABL) has been developed for the National Ignition Facility (NIF) to support high energy density experiments. The BABL provides an alternative to Pinhole-Apertured point-projection Backlighting (PABL) for a large field of view. This bypasses the challenges for PABL in the equatorial plane of the NIF target chamber where space is limited because of the unconverted laser light that threatens the diagnostic aperture, the backlighter foil, and the pinhole substrate. A transmission experiment using 132 kJ of NIF laser energy at a maximum intensity of 8.52 x 10(14) W/cm(2) illuminating the BABL demonstrated good conversion efficiency of >3.5% into K-shell emission producing similar to 4.6 kJ of high energy x rays, while yielding high contrast images with a highly uniform background that agree well with 2D simulated spectra and spatial profiles. (c) 2014 AIP Publishing LLC. C1 [Flippo, K. A.; Kline, J. L.; Doss, F. W.; Loomis, E. N.; Devolder, B.; Murphy, T. J.; Merritt, E. C.; Perry, T. S.; Tregillis, I. L.; Welser-Sherrill, L.; Fincke, J. R.] Los Alamos Natl Lab, Los Alamos, NM 87507 USA. [Emerich, M.] Gen Atom Co, San Diego, CA 92121 USA. [Fournier, K. B.; Kalantar, D. H.; Barrios, M. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Regan, S. P.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Flippo, KA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87507 USA. RI Perry, Theodore/K-3333-2014; Flippo, Kirk/C-6872-2009; Murphy, Thomas/F-3101-2014; OI Perry, Theodore/0000-0002-8832-2033; Flippo, Kirk/0000-0002-4752-5141; Murphy, Thomas/0000-0002-6137-9873; Kline, John/0000-0002-2271-9919 FU LANL; U.S. Department of Energy [DE-AC52-06NA25396]; U.S. Department of Energy - Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank the NIF laser crew, diagnostics support and target support, as well as LANL target fabrication: J. Williams, D. Capelli, C. Blada, K. Obrey, and D. W. Schmidt. K. A. F. would like to thank S. A. Gaillard and O. L. Landen for proof-reading and technical comments. This work was supported by LANL, operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NIF facility and experimental data shown or discussed reflect facility development and operations performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 37 TC 6 Z9 6 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2014 VL 85 IS 9 AR 093501 DI 10.1063/1.4893349 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6HE UT WOS:000342910500021 PM 25273720 ER PT J AU Fournier, KB Brown, CG May, MJ Compton, S Walton, OR Shingleton, N Kane, JO Holtmeier, G Loey, H Mirkarimi, PB Dunlop, WH Guyton, RL Huffman, E AF Fournier, K. B. Brown, C. G., Jr. May, M. J. Compton, S. Walton, O. R. Shingleton, N. Kane, J. O. Holtmeier, G. Loey, H. Mirkarimi, P. B. Dunlop, W. H. Guyton, R. L. Huffman, E. TI A geophysical shock and air blast simulator at the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID HALFRAUM TARGETS; EXPLOSIONS; CALIBRATION AB The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismic and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes. (C) 2014 AIP Publishing LLC. C1 [Fournier, K. B.; Brown, C. G., Jr.; May, M. J.; Compton, S.; Walton, O. R.; Shingleton, N.; Kane, J. O.; Holtmeier, G.; Loey, H.; Mirkarimi, P. B.; Dunlop, W. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Guyton, R. L.; Huffman, E.] Natl Secur Technol, Livermore, CA 94551 USA. RP Fournier, KB (reprint author), Lawrence Livermore Natl Lab, POB 808,L-481, Livermore, CA 94550 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Office of Defense Nuclear Nonproliferation Research and Development within the U.S. Department of Energy's National Nuclear Security Administration FX The EPEC team would like to thank Eric Smith, Dan Kalantar, Tom McCarville, Chockalingam Kumar, Jim Emig, Reg Wood, George Zimmerman, and Peter Anninos for excellent technical contributions to this project. This work was done under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. This work was funded by the Office of Defense Nuclear Nonproliferation Research and Development within the U.S. Department of Energy's National Nuclear Security Administration. We thank Tom Kiess at NNSA for his steady support of this project. NR 35 TC 0 Z9 0 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2014 VL 85 IS 9 AR 095119 DI 10.1063/1.4896119 PG 18 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6HE UT WOS:000342910500085 PM 25273784 ER PT J AU Lambert, PK Hustedt, CJ Vecchio, KS Huskins, EL Casem, DT Gruner, SM Tate, MW Philipp, HT Woll, AR Purohit, P Weiss, JT Kannan, V Ramesh, KT Kenesei, P Okasinski, JS Almer, J Zhao, M Ananiadis, AG Hufnagel, TC AF Lambert, P. K. Hustedt, C. J. Vecchio, K. S. Huskins, E. L. Casem, D. T. Gruner, S. M. Tate, M. W. Philipp, H. T. Woll, A. R. Purohit, P. Weiss, J. T. Kannan, V. Ramesh, K. T. Kenesei, P. Okasinski, J. S. Almer, J. Zhao, M. Ananiadis, A. G. Hufnagel, T. C. TI Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DEFORMATION; COMPRESSION; TITANIUM; DETECTOR; STRAINS AB We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of similar to 10(3)-10(4) s(-1) in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10-20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (similar to 40 mu s) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation. (C) 2014 AIP Publishing LLC. C1 [Lambert, P. K.; Hustedt, C. J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C.] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. [Vecchio, K. S.] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA. [Huskins, E. L.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37830 USA. [Huskins, E. L.; Casem, D. T.] US Army Res Lab, Aberdeen, MD 21005 USA. [Gruner, S. M.; Tate, M. W.; Philipp, H. T.; Purohit, P.; Weiss, J. T.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Gruner, S. M.; Woll, A. R.] Cornell Univ, CHESS, Ithaca, NY 14853 USA. [Gruner, S. M.] Cornell Univ, Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA. [Kannan, V.; Ramesh, K. T.] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA. [Kenesei, P.; Okasinski, J. S.; Almer, J.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Lambert, PK (reprint author), Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. RI Hufnagel, Todd/A-3309-2010 OI Hufnagel, Todd/0000-0002-6373-9377 FU Army Research Laboratory; US Navy under MURI Program [ONR MURI N00014-61007-1-0740]; U.S. DOE [DE-AC02-06CH11357]; OSD-T& E (Office of Secretary Defense-Test and Evaluation), Defense-Wide National Defense Education Program (NDEP)/BA-1, Basic Research [PE0601120D8Z]; DOE [DE-FG02-10ER46693]; Keck Foundation; CHESS; NSF; NIH-NIGMS under NSF [DMR-0936384]; [W911NF-12-2-0022] FX The authors would like to acknowledge A. Mashayekhi, L. Zhou, and K. Goetze for their contributions to this work. This work was sponsored in part by the Army Research Laboratory and was accomplished under Cooperative Agreement No. W911NF-12-2-0022. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation herein. Financial support for this work was also provided by the US Navy under the MURI Program (Grant ONR MURI N00014-61007-1-0740). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. P. K. L. would like to acknowledge OSD-T& E (Office of Secretary Defense-Test and Evaluation), Defense-Wide/PE0601120D8Z National Defense Education Program (NDEP)/BA-1, Basic Research, for their support. Detector development at Cornell is supported by the DOE Grant No. DE-FG02-10ER46693, the Keck Foundation, and CHESS. CHESS is supported by the NSF and NIH-NIGMS under NSF Grant No. DMR-0936384. NR 28 TC 6 Z9 6 U1 14 U2 49 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2014 VL 85 IS 9 AR 093901 DI 10.1063/1.4893881 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6HE UT WOS:000342910500034 PM 25273733 ER PT J AU Selby, NS Crawford, M Tracy, L Reno, JL Pan, W AF Selby, N. S. Crawford, M. Tracy, L. Reno, J. L. Pan, W. TI In situ biaxial rotation at low-temperatures in high magnetic fields SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID HIGH LANDAU-LEVELS; TRANSPORT; STATE AB We report the design, construction, and characterization of a biaxial sample rotation stage for use in a cryogenic system for orientation-dependent studies of anisotropic electronic transport phenomena at low temperatures and high magnetic fields. Our apparatus allows for continuous rotation of a sample about two axes, both independently and simultaneously. (C) 2014 AIP Publishing LLC. C1 [Selby, N. S.; Crawford, M.; Tracy, L.; Reno, J. L.; Pan, W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Selby, N. S.] Georgia Inst Technol, Atlanta, GA 30332 USA. [Crawford, M.] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. RP Selby, NS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM nselby3@gatech.edu FU Department of Energy, the Office of Basic Energy Science, Division of Material Science and Technology; Sandia Student Internship Program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Department of Energy, the Office of Basic Energy Science, Division of Material Science and Technology. N.S.S. was supported by Sandia Student Internship Program. The authors would like to thank D. Barton, D. Huang, B. Vaandrager, X. Shi, and T. Coley for their help. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 10 TC 0 Z9 0 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2014 VL 85 IS 9 AR 095116 DI 10.1063/1.4896100 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6HE UT WOS:000342910500082 PM 25273781 ER PT J AU Shavorskiy, A Neppl, S Slaughter, DS Cryan, JP Siefermann, KR Weise, F Lin, MF Bacellar, C Ziemkiewicz, MP Zegkinoglou, I Fraund, MW Khurmi, C Hertlein, MP Wright, TW Huse, N Schoenlein, RW Tyliszczak, T Coslovich, G Robinson, J Kaindl, RA Rude, BS Olsner, A Mahl, S Bluhm, H Gessner, O AF Shavorskiy, Andrey Neppl, Stefan Slaughter, Daniel S. Cryan, James P. Siefermann, Katrin R. Weise, Fabian Lin, Ming-Fu Bacellar, Camila Ziemkiewicz, Michael P. Zegkinoglou, Ioannis Fraund, Matthew W. Khurmi, Champak Hertlein, Marcus P. Wright, Travis W. Huse, Nils Schoenlein, Robert W. Tyliszczak, Tolek Coslovich, Giacomo Robinson, Joseph Kaindl, Robert A. Rude, Bruce S. Oelsner, Andreas Maehl, Sven Bluhm, Hendrik Gessner, Oliver TI Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID FREE-ELECTRON LASER; SURFACE PHOTOVOLTAGE TRANSIENTS; ABSORPTION-SPECTROSCOPY; SYNCHROTRON-RADIATION; PHOTOEMISSION; DYNAMICS; CELL; MICROSCOPY; INTERFACES; OPERATION AB An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with similar to 0.1 mm spatial resolution and similar to 150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pumpprobe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 +/- 20) ps (FWHM) is demonstrated for a hemisphere pass energy E-p = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between similar to 9 ns at a pass energy of 50 eV and similar to 1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with the retarding ratio can be well approximated by applying Liouville's theorem of constant emittance to the electron trajectories inside the lens system. The performance of the setup is demonstrated by characterizing the laser fluence-dependent transient surface photovoltage response of a laser-excited Si(100) sample. (c) 2014 AIP Publishing LLC. C1 [Shavorskiy, Andrey; Slaughter, Daniel S.; Zegkinoglou, Ioannis; Rude, Bruce S.; Bluhm, Hendrik] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Neppl, Stefan; Cryan, James P.; Siefermann, Katrin R.; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P.; Fraund, Matthew W.; Khurmi, Champak; Wright, Travis W.; Huse, Nils; Schoenlein, Robert W.; Gessner, Oliver] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. [Hertlein, Marcus P.; Tyliszczak, Tolek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Huse, Nils] Univ Hamburg, Dept Phys, D-22761 Hamburg, Germany. [Huse, Nils] Max Planck Inst Struct & Dynam Matter, D-22761 Hamburg, Germany. [Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Robinson, Joseph] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Oelsner, Andreas] Surface Concept GmbH, D-55124 Mainz, Germany. [Maehl, Sven] SPECS Surface Nano Anal GmbH, D-13355 Berlin, Germany. RP Gessner, O (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. EM ogessner@lbl.gov RI Zegkinoglou, Ioannis/H-2343-2013; Huse, Nils/A-5712-2017 OI Huse, Nils/0000-0002-3281-7600 FU U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Department of Energy Office of Science Early Career Research Program FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, through Contract No. DE-AC02-05CH11231. G. C., J.R., and R. A. K were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under the same contract. O.G., S.N., and M. W. F. were supported by the Department of Energy Office of Science Early Career Research Program. The authors would like to thank Alan Fry and Wayne Polzin from SLAC National Accelerator Laboratory for their laser support. NR 38 TC 5 Z9 5 U1 6 U2 35 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2014 VL 85 IS 9 AR 093102 DI 10.1063/1.4894208 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6HE UT WOS:000342910500003 PM 25273702 ER PT J AU Stevenson, BA Knowlton, SF Hartwell, GJ Hanson, JD Maurer, DA AF Stevenson, B. A. Knowlton, S. F. Hartwell, G. J. Hanson, J. D. Maurer, D. A. TI Hall probe measurements of the poloidal magnetic field in Compact Toroidal Hybrid plasmas SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID TOKAMAK; STOCHASTICITY; ARRAY AB A linear array of 16 Hall effect sensors has been developed to directly measure the poloidal magnetic field inside the boundary of a non-axisymmetric hybrid torsatron/tokamak plasma. The array consists of miniature gallium arsenide Hall sensor elements mounted 8 mm apart on a narrow, rotatable printed circuit board inserted into a re-entrant stainless steel tube sheathed in boron nitride. The sensors are calibrated on the bench and in situ to provide accurate local measurements of the magnetic field to aid in reconstructing the equilibrium plasma current density profiles in fully three-dimensional plasmas. Calibrations show that the sensor sensitivities agree with the nominal manufacturers specifications of 1.46 V/T. Poloidal fields measured with the Hall sensor array are found to be within 5% of poloidal fields modeled with a Biot-Savart code. (c) 2014 AIP Publishing LLC. C1 [Stevenson, B. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Knowlton, S. F.; Hartwell, G. J.; Hanson, J. D.; Maurer, D. A.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Stevenson, B. A.] Auburn Univ, Auburn, AL 36849 USA. RP Stevenson, BA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM hartwell@physics.auburn.edu OI Stevenson, Benjamin/0000-0001-9918-1240 FU (U.S.) Department of Energy (DOE) [DE-FG02-00ER54610] FX Discussions with M. Bongard of the Pegasus group at the University of Wisconsin are gratefully acknowledged. We also thank John Dawson for his technical assistance with this project. This work is supported by (U.S.) Department of Energy (DOE) Grant No. DE-FG02-00ER54610. NR 13 TC 0 Z9 0 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2014 VL 85 IS 9 AR 093502 DI 10.1063/1.4894209 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6HE UT WOS:000342910500022 PM 25273721 ER PT J AU Twelker, K Kravitz, S Diez, MM Gratta, G Fairbank, W Albert, JB Auty, DJ Barbeau, PS Beck, D Benitez-Medina, C Breidenbach, M Brunner, T Cao, GF Chambers, C Cleveland, B Coon, M Craycraft, A Daniels, T Daugherty, SJ Davis, CG Devoe, R Delaquis, S Didberidze, T Dilling, J Dolinski, MJ Dunford, M Fabris, L Farine, J Feldmeier, W Fierlinger, P Fudenberg, D Giroux, G Gornea, R Graham, K Hall, C Heffner, M Herrin, S Hughes, M Jiang, XS Johnson, TN Johnston, S Karelin, A Kaufman, LJ Killick, R Koffas, T Kruecken, R Kuchenkov, A Kumar, KS Leonard, DS Leonard, F Licciardi, C Lin, YH MacLellan, R Marino, MG Mong, B Moore, D Odian, A Ostrovskiy, I Ouellet, C Piepke, A Pocar, A Retiere, F Rowson, PC Rozo, MP Schubert, A Sinclair, D Smith, E Stekhanov, V Tarka, M Tolba, T Tosi, D Vuilleumier, JL Walton, J Walton, T Weber, M Wen, LJ Wichoski, U Yang, L Yen, YR Zhao, YB AF Twelker, K. Kravitz, S. Montero Diez, M. Gratta, G. Fairbank, W., Jr. Albert, J. B. Auty, D. J. Barbeau, P. S. Beck, D. Benitez-Medina, C. Breidenbach, M. Brunner, T. Cao, G. F. Chambers, C. Cleveland, B. Coon, M. Craycraft, A. Daniels, T. Daugherty, S. J. Davis, C. G. Devoe, R. Delaquis, S. Didberidze, T. Dilling, J. Dolinski, M. J. Dunford, M. Fabris, L. Farine, J. Feldmeier, W. Fierlinger, P. Fudenberg, D. Giroux, G. Gornea, R. Graham, K. Hall, C. Heffner, M. Herrin, S. Hughes, M. Jiang, X. S. Johnson, T. N. Johnston, S. Karelin, A. Kaufman, L. J. Killick, R. Koffas, T. Kruecken, R. Kuchenkov, A. Kumar, K. S. Leonard, D. S. Leonard, F. Licciardi, C. Lin, Y. H. MacLellan, R. Marino, M. G. Mong, B. Moore, D. Odian, A. Ostrovskiy, I. Ouellet, C. Piepke, A. Pocar, A. Retiere, F. Rowson, P. C. Rozo, M. P. Schubert, A. Sinclair, D. Smith, E. Stekhanov, V. Tarka, M. Tolba, T. Tosi, D. Vuilleumier, J. -L. Walton, J. Walton, T. Weber, M. Wen, L. J. Wichoski, U. Yang, L. Yen, Y. -R. Zhao, Y. B. TI An apparatus to manipulate and identify individual Ba ions from bulk liquid Xe SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DOUBLE-BETA DECAY; MAJORANA NEUTRINOS; SPECTROSCOPY; PHASE AB We describe a system to transport and identify barium ions produced in liquid xenon, as part of R&D towards the second phase of a double beta decay experiment, nEXO. The goal is to identify the Ba ion resulting from an extremely rare nuclear decay of the isotope Xe-136, hence providing a confirmation of the occurrence of the decay. This is achieved through Resonance Ionization Spectroscopy (RIS). In the test setup described here, Ba ions can be produced in liquid xenon or vacuum and collected on a clean substrate. This substrate is then removed to an analysis chamber under vacuum, where laser-induced thermal desorption and RIS are used with time-of-flight mass spectroscopy for positive identification of the barium decay product. (C) 2014 AIP Publishing LLC. C1 [Twelker, K.; Kravitz, S.; Montero Diez, M.; Gratta, G.; Brunner, T.; Devoe, R.; Fudenberg, D.; Moore, D.; Ostrovskiy, I.; Schubert, A.; Tosi, D.; Weber, M.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Fairbank, W., Jr.; Benitez-Medina, C.; Chambers, C.; Craycraft, A.; Walton, T.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Albert, J. B.; Daugherty, S. J.; Johnson, T. N.; Kaufman, L. J.] Indiana Univ, Phys Dept, Bloomington, IN 47405 USA. [Albert, J. B.; Daugherty, S. J.; Johnson, T. N.; Kaufman, L. J.] Indiana Univ, CEEM, Bloomington, IN 47405 USA. [Auty, D. J.; Didberidze, T.; Hughes, M.; Piepke, A.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Barbeau, P. S.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Barbeau, P. S.] TUNL, Durham, NC 27708 USA. [Beck, D.; Coon, M.; Tarka, M.; Walton, J.; Yang, L.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Breidenbach, M.; Herrin, S.; MacLellan, R.; Odian, A.; Rowson, P. C.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Cao, G. F.; Jiang, X. S.; Wen, L. J.; Zhao, Y. B.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Cleveland, B.; Farine, J.; Mong, B.; Wichoski, U.] Laurentian Univ, Dept Phys, Sudbury, ON P3E 2C6, Canada. [Daniels, T.; Johnston, S.; Kumar, K. S.; Pocar, A.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Davis, C. G.; Hall, C.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Delaquis, S.; Giroux, G.; Gornea, R.; Tolba, T.; Vuilleumier, J. -L.] Univ Bern, LHEP, Albert Einstein Ctr, Bern, Switzerland. [Dilling, J.; Kruecken, R.; Retiere, F.; Sinclair, D.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Dolinski, M. J.; Lin, Y. H.; Smith, E.; Yen, Y. -R.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Dunford, M.; Graham, K.; Killick, R.; Koffas, T.; Leonard, F.; Licciardi, C.; Ouellet, C.; Rozo, M. P.; Sinclair, D.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Fabris, L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Feldmeier, W.; Fierlinger, P.; Marino, M. G.] Tech Univ Munich, Dept Phys, Garching, Germany. [Feldmeier, W.; Fierlinger, P.; Marino, M. G.] Tech Univ Munich, Excellence Cluster Universe, Garching, Germany. [Heffner, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Karelin, A.; Kuchenkov, A.; Stekhanov, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Leonard, D. S.] Univ Seoul, Dept Phys, Seoul, South Korea. RP Twelker, K (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RI Fabris, Lorenzo/E-4653-2013; Kruecken, Reiner/A-1640-2013; OI Fabris, Lorenzo/0000-0001-5605-5615; Kruecken, Reiner/0000-0002-2755-8042; Ostrovskiy, Igor/0000-0003-4939-0225; Brunner, Thomas/0000-0002-3131-8148 FU National Science Foundation [PHY-1132382-001] FX This work is supported by the National Science Foundation, Award No. PHY-1132382-001. We thank R. Conley (SLAC), K. Merkle, and the Stanford Physics Machine shop for their help in constructing of the apparatus. We thank H. Manoharan (Stanford), J. Schwede (Stanford), and P. Vogel (Caltech) for many useful discussions. NR 22 TC 3 Z9 3 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2014 VL 85 IS 9 AR 095114 DI 10.1063/1.4895646 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6HE UT WOS:000342910500080 PM 25273779 ER PT J AU Yoder, J Malone, MW Espy, MA Sevanto, S AF Yoder, Jacob Malone, Michael W. Espy, Michelle A. Sevanto, Sanna TI Low-field nuclear magnetic resonance for the in vivo study of water content in trees SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID STEM DIAMETER VARIATIONS; SAP FLOW; XYLEM; MRI; PHLOEM; WOOD; DYNAMICS; DROUGHT; TOMATO; PLANTS AB Nuclear magnetic resonance (NMR) and magnetic resonance imaging have long been used to study water content in plants. Approaches have been primarily based on systems using large magnetic fields (similar to 1 T) to obtain NMR signals with good signal-to-noise. This is because the NMR signal scales approximately with the magnetic field strength squared. However, there are also limits to this approach in terms of realistic physiological configuration or those imposed by the size and cost of the magnet. Here we have taken a different approach - keeping the magnetic field low to produce a very light and inexpensive system, suitable for bulk water measurements on trees less than 5 cm in diameter, which could easily be duplicated to measure on many trees or from multiple parts of the same tree. Using this system we have shown sensitivity to water content in trees and their cuttings and observed a diurnal signal variation in tree water content in a greenhouse. We also demonstrate that, with calibration and modeling of the thermal polarization, the system is reliable under significant temperature variation. (C) 2014 AIP Publishing LLC. C1 [Yoder, Jacob; Malone, Michael W.; Espy, Michelle A.; Sevanto, Sanna] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Yoder, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jlyoder@lanl.gov FU LDRD program [20130442ER] FX The authors wish to thank the LDRD program for its generous support via Grant No. 20130442ER, as well as Igor Savukov for the loan of most of the equipment used in the in vivo system, Jesse Resnick for his initial prototyping and investigations, and Nathan McDowell for many beneficial conversations. NR 24 TC 1 Z9 1 U1 3 U2 31 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2014 VL 85 IS 9 AR 095110 DI 10.1063/1.4895648 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6HE UT WOS:000342910500076 PM 25273775 ER PT J AU Kuhn, JH Andersen, KG Bao, YM Bavari, S Becker, S Bennett, RS Bergman, NH Blinkova, O Bradfute, S Brister, JR Bukreyev, A Chandran, K Chepurnov, AA Davey, RA Dietzgen, RG Doggett, NA Dolnik, O Dye, JM Enterlein, S Fenimore, PW Formenty, P Freiberg, AN Garry, RF Garza, NL Gire, SK Gonzalez, JP Griffiths, A Happi, CT Hensley, LE Herbert, AS Hevey, MC Hoenen, T Honko, AN Ignatyev, GM Jahrling, PB Johnson, JC Johnson, KM Kindrachuk, J Klenk, HD Kobinger, G Kochel, TJ Lackemeyer, MG Lackner, DF Leroy, EM Lever, MS Muhlberger, E Netesov, SV Olinger, GG Omilabu, SA Palacios, G Panchal, RG Park, DJ Patterson, JL Paweska, JT Peters, CJ Pettitt, J Pitt, L Radoshitzky, SR Ryabchikova, EI Saphire, EO Sabeti, PC Sealfon, R Shestopalov, AM Smither, SJ Sullivan, NJ Swanepoel, R Takada, A Towner, JS van der Groen, G Volchkov, VE Volchkova, VA Wahl-Jensen, V Warren, TK Warfield, KL Weidmann, M Nichol, ST AF Kuhn, Jens H. Andersen, Kristian G. Bao, Yiming Bavari, Sina Becker, Stephan Bennett, Richard S. Bergman, Nicholas H. Blinkova, Olga Bradfute, Steven Brister, J. Rodney Bukreyev, Alexander Chandran, Kartik Chepurnov, Alexander A. Davey, Robert A. Dietzgen, Ralf G. Doggett, Norman A. Dolnik, Olga Dye, John M. Enterlein, Sven Fenimore, Paul W. Formenty, Pierre Freiberg, Alexander N. Garry, Robert F. Garza, Nicole L. Gire, Stephen K. Gonzalez, Jean-Paul Griffiths, Anthony Happi, Christian T. Hensley, Lisa E. Herbert, Andrew S. Hevey, Michael C. Hoenen, Thomas Honko, Anna N. Ignatyev, Georgy M. Jahrling, Peter B. Johnson, Joshua C. Johnson, Karl M. Kindrachuk, Jason Klenk, Hans-Dieter Kobinger, Gary Kochel, Tadeusz J. Lackemeyer, Matthew G. Lackner, Daniel F. Leroy, Eric M. Lever, Mark S. Muehlberger, Elke Netesov, Sergey V. Olinger, Gene G. Omilabu, Sunday A. Palacios, Gustavo Panchal, Rekha G. Park, Daniel J. Patterson, Jean L. Paweska, Janusz T. Peters, Clarence J. Pettitt, James Pitt, Louise Radoshitzky, Sheli R. Ryabchikova, Elena I. Saphire, Erica Ollmann Sabeti, Pardis C. Sealfon, Rachel Shestopalov, Aleksandr M. Smither, Sophie J. Sullivan, Nancy J. Swanepoel, Robert Takada, Ayato Towner, Jonathan S. van der Groen, Guido Volchkov, Viktor E. Volchkova, Valentina A. Wahl-Jensen, Victoria Warren, Travis K. Warfield, Kelly L. Weidmann, Manfred Nichol, Stuart T. TI Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names SO VIRUSES-BASEL LA English DT Letter DE Bundibugyo virus; cDNA clone; cuevavirus; Ebola; Ebola virus; ebolavirus; filovirid; Filoviridae; filovirus; genome annotation; ICTV; International Committee on Taxonomy of Viruses; Lloviu virus; Marburg virus; marburgvirus; mononegavirad; Mononegavirales; mononegavirus; Ravn virus; RefSeq; Reston virus; reverse genetics; Sudan virus; Tai Forest virus; virus classification; virus isolate; virus nomenclature; virus strain; virus taxonomy; virus variant ID INTERFERON INHIBITORY DOMAIN; DOUBLE-STRANDED-RNA; C-TERMINAL DOMAIN; EBOLA-VIRUS VP35; STANDARDIZED NOMENCLATURE; FAMILY FILOVIRIDAE; SPECIES LEVEL; INTERNATIONAL COMMITTEE; ENVELOPE GLYCOPROTEIN; TAXONOMIC PROPOSALS AB Sequence determination of complete or coding-complete genomes of viruses is becoming common practice for supporting the work of epidemiologists, ecologists, virologists, and taxonomists. Sequencing duration and costs are rapidly decreasing, sequencing hardware is under modification for use by non-experts, and software is constantly being improved to simplify sequence data management and analysis. Thus, analysis of virus disease outbreaks on the molecular level is now feasible, including characterization of the evolution of individual virus populations in single patients over time. The increasing accumulation of sequencing data creates a management problem for the curators of commonly used sequence databases and an entry retrieval problem for end users. Therefore, utilizing the data to their fullest potential will require setting nomenclature and annotation standards for virus isolates and associated genomic sequences. The National Center for Biotechnology Information's (NCBI's) RefSeq is a non-redundant, curated database for reference (or type) nucleotide sequence records that supplies source data to numerous other databases. Building on recently proposed templates for filovirus variant naming [ ()////-], we report consensus decisions from a majority of past and currently active filovirus experts on the eight filovirus type variants and isolates to be represented in RefSeq, their final designations, and their associated sequences. C1 [Kuhn, Jens H.; Hensley, Lisa E.; Honko, Anna N.; Jahrling, Peter B.; Johnson, Joshua C.; Kindrachuk, Jason; Lackemeyer, Matthew G.; Olinger, Gene G.; Pettitt, James] NIAID, Integrated Res Facil Ft Detrick, NIH, Frederick, MD 21702 USA. [Andersen, Kristian G.; Gire, Stephen K.; Sabeti, Pardis C.] Harvard Univ, FAS Ctr Syst Biol, Cambridge, MA 02138 USA. [Bao, Yiming; Blinkova, Olga; Brister, J. Rodney] Natl Lib Med, Informat Engn Branch, Natl Ctr Biotechnol Informat, NIH, Bethesda, MD 20894 USA. [Bavari, Sina; Dye, John M.; Garza, Nicole L.; Herbert, Andrew S.; Palacios, Gustavo; Panchal, Rekha G.; Pitt, Louise; Radoshitzky, Sheli R.; Warren, Travis K.] US Army, Med Res Inst Infect Dis, Frederick, MD 21702 USA. [Becker, Stephan; Dolnik, Olga; Klenk, Hans-Dieter] Univ Marburg, Inst Virol, D-35043 Marburg, Germany. [Bennett, Richard S.; Bergman, Nicholas H.; Hevey, Michael C.; Kochel, Tadeusz J.; Lackner, Daniel F.; Wahl-Jensen, Victoria] Natl Biodef Anal & Countermeasures Ctr, Frederick, MD 21702 USA. [Bradfute, Steven] Univ New Mexico, Albuquerque, NM 87131 USA. [Bukreyev, Alexander; Freiberg, Alexander N.; Peters, Clarence J.] Univ Texas Med Branch, Dept Pathol, Galveston, TX 77555 USA. [Bukreyev, Alexander; Freiberg, Alexander N.; Peters, Clarence J.] Univ Texas Med Branch, Galveston Natl Lab, Galveston, TX 77555 USA. [Chandran, Kartik] Albert Einstein Coll Med, Dept Microbiol & Immunol, Bronx, NY 10461 USA. [Chepurnov, Alexander A.] Russian Acad Sci, Siberian Branch, Inst Clin Immunol, Novosibirsk 630091, Novosibirsk Obl, Russia. [Davey, Robert A.; Griffiths, Anthony; Patterson, Jean L.] Texas Biomed Res Inst, Dept Virol & Immunol, San Antonio, TX 78227 USA. [Dietzgen, Ralf G.] Univ Queensland, Queensland Alliance Agr & Food Innovat, St Lucia, Qld 4072, Australia. [Doggett, Norman A.; Fenimore, Paul W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Enterlein, Sven] Integrated BioTherapeut Inc, Gaithersburg, MD 20878 USA. [Formenty, Pierre] WHO, CH-1211 Geneva, Switzerland. [Gonzalez, Jean-Paul] Metabiota Inc, San Francisco, CA 94104 USA. [Garry, Robert F.] Tulane Univ, Sch Med, Dept Microbiol & Immunol, New Orleans, LA 70112 USA. [Happi, Christian T.] Redeemers Univ, Dept Biol Sci, Coll Nat Sci, Lagos, Ogun State, Nigeria. [Happi, Christian T.] Redeemers Univ, African Ctr Excellence Genom Infect Dis, Lagos, Ogun State, Nigeria. [Hoenen, Thomas] NIAID, Virol Lab, Div Intramural Res, NIH, Hamilton, MT 59840 USA. [Ignatyev, Georgy M.] Minist Hlth Russian Federat, Microgen Sci Ind Co Immunobiol Med, Fed State Unitary Co, Moscow 115088, Russia. [Kobinger, Gary] Publ Hlth Agcy Canada, Natl Microbiol Lab, Special Pathogens Program, Winnipeg, MB R3E 3R2, Canada. [Leroy, Eric M.] Ctr Int Rech Med Franceville, Franceville, Gabon. [Lever, Mark S.; Smither, Sophie J.] Dstl, Dept Biomed Sci, Salisbury SP4 0JQ, Wilts, England. [Muehlberger, Elke] Boston Univ, Sch Med, Dept Microbiol, Boston, MA 02118 USA. [Muehlberger, Elke] Boston Univ, Sch Med, Natl Emerging Infect Dis Lab, Boston, MA 02118 USA. [Netesov, Sergey V.; Shestopalov, Aleksandr M.] Novosibirsk State Univ, Novosibirsk 630090, Novosibirsk Reg, Russia. [Omilabu, Sunday A.] Univ Lagos, Coll Med, Dept Med Microbiol & Parasitol, Lagos, Nigeria. [Park, Daniel J.] Broad Inst, Cambridge, MA 02142 USA. [Paweska, Janusz T.] Natl Hlth Lab Serv, Ctr Emerging & Zoonot Dis, Natl Inst Communicable Dis, ZA-2192 Sandringham Johannesburg, Gauteng, South Africa. [Ryabchikova, Elena I.] Russian Acad Sci, Siberian Branch, Inst Chem Biol & Fundamental Med, Novosibirsk 630090, Novosibirsk Reg, Russia. [Saphire, Erica Ollmann] Scripps Res Inst, Dept Immunol & Microbial Sci, La Jolla, CA 92037 USA. [Saphire, Erica Ollmann] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. [Sealfon, Rachel] MIT, Cambridge, MA 02139 USA. [Sealfon, Rachel] MIT, Artificial Intelligence Lab, Cambridge, MA 02139 USA. [Sullivan, Nancy J.] NIAID, Vaccine Res Ctr, NIH, Bethesda, MD 20892 USA. [Swanepoel, Robert] Univ Pretoria, Zoonoses Res Unit, ZA-0028 Pretoria, South Africa. [Takada, Ayato] Hokkaido Univ, Res Ctr Zoonosis Control, Div Global Epidemiol, Kita Ku, Sapporo, Hokkaido, Japan. [Towner, Jonathan S.; Nichol, Stuart T.] Ctr Dis Control & Prevent, Viral Special Pathogens Branch, Div High Consequence Pathogens Pathol, Natl Ctr Emerging & Zoonot Infect Dis, Atlanta, GA 30333 USA. [van der Groen, Guido] Prins Leopold Inst Trop Geneeskunde, B-2000 Antwerp, Belgium. [Volchkov, Viktor E.; Volchkova, Valentina A.] Univ Lyon 1, INSERM, U1111, Lab Mol Basis Viral Pathogen,CIRI,Ecole Normale S, F-69365 Lyon 07, France. [Warfield, Kelly L.] Unither Virol LLC, Silver Spring, MD 20910 USA. [Weidmann, Manfred] Univ Stirling, Inst Aquaculture, Stirling FK9 4LA, Scotland. RP Kuhn, JH (reprint author), NIAID, Integrated Res Facil Ft Detrick, NIH, Frederick, MD 21702 USA. EM kuhnjens@mail.nih.gov; kandersen@oeb.harvard.edu; bao@ncbi.nlm.nih.gov; sina.bavari.civ@mail.mil; becker@staff.uni-marburg.de; richard.bennett@nbacc.dhs.gov; nicholas.bergman@nbacc.dhs.gov; olga.blinkova@nih.gov; steven_bradfute@yahoo.com; jamesbr@ncbi.nlm.nih.gov; alexander.bukreyev@utmb.edu; kartik.chandran@einstein.yu.edu; alexa.che.purnov@gmail.com; rdavey@txbiomed.org; r.dietzgen@uq.edu.au; doggett@lanl.gov; Dolnik@staff.uni-marburg.de; john.m.dye1.civ@mail.mil; sven.enterlein@gmail.com; paulf@lanl.gov; formentyp@who.int; anfreibe@utmb.edu; rfgarry@tulane.edu; Nicole.l.lackemeyer.ctr@mail.mil; sgire@oeb.harvard.edu; jpgonzalez@metabiota.com; agriffiths@txbiomed.org; chappi@hsph.harvard.edu; lisa.hensley@nih.gov; anderw.s.herbert.ctr@mail.mil; michael.hevey@nbacc.dhs.gov; thomas.hoenen@nih.gov; anna.honko@nih.gov; g.m.ignatyev@microgen.ru; jahrlingp@niaid.nih.gov; joshua.johnson@nih.gov; microcaddis@gmail.com; kindrachuk.kenneth@nih.gov; klenk@mailer.uni-marburg.de; gary.kobinger@phac-aspc.gc.ca; tadeusz.kochel@nbacc.dhs.gov; matthew.lackemeyer@nih.gov; daniel.lackner@nbacc.dhs.gov; eric.leroy@ird.fr; mslever@mail.dstl.gov.uk; muehlber@bu.edu; nauka@nsu.ru; gene.olinger@nih.gov; omilabusa@yahoo.com; gustavo.f.palacios.ctr@us.army.mil; rekha.g.panchal.civ@mail.mil; dpark@broadinstitute.org; jpatters@txbiomed.org; januszp@nicd.ac.za; cjpeters@UTMB.EDU; james.pettitt@nih.gov; louise.pitt@us.army.mil; sheli.r.radoshitzky.ctr@mail.mil; lenryab@yandex.com; erica@scripps.edu; pardis@broadinstitute.org; sealfon@gmail.com; shestopalov2@mail.ru; SJSMITHER@mail.dstl.gov.uk; njsull@mail.nih.gov; bobswanepoel@gmail.com; atakada@czc.hokudai.ac.jp; jit8@cdc.gov; gvdgroen@scarlet.be; viktor.volchkov@inserm.fr; valentina.volchkova@inserm.fr; victoria.jensen@nbacc.dhs.gov; travis.k.warren.ctr@mail.mil; kellylynwarfield@gmail.com; m.w.weidmann@stir.ac.uk; stn1@cdc.gov RI Weidmann, Manfred/G-1817-2015; LEROY, Eric/I-4347-2016; Volchkov, Viktor/M-7846-2014; Kuhn, Jens H./B-7615-2011; Ryabchikova, Elena /G-3089-2013; Netesov, Sergey/A-3751-2013; Becker, Stephan/A-1065-2010; Palacios, Gustavo/I-7773-2015 OI Honko, Anna/0000-0001-9165-148X; Bennett, Richard/0000-0002-7227-4831; Weidmann, Manfred/0000-0002-7063-7491; Johnson, Joshua/0000-0002-5677-3841; LEROY, Eric/0000-0003-0022-0890; Volchkov, Viktor/0000-0001-7896-8706; Kindrachuk, Jason/0000-0002-3305-7084; Hoenen, Thomas/0000-0002-5829-6305; Kuhn, Jens H./0000-0002-7800-6045; Ryabchikova, Elena /0000-0003-4714-1524; Netesov, Sergey/0000-0002-7786-2464; Becker, Stephan/0000-0002-2794-5659; Palacios, Gustavo/0000-0001-5062-1938 FU Intramural NIH HHS; NIAID NIH HHS [U19 AI115589, HHSN272200700016I, R01 AI104621, UC7 AI094660]; World Health Organization [001] NR 49 TC 20 Z9 20 U1 3 U2 33 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1999-4915 J9 VIRUSES-BASEL JI Viruses-Basel PD SEP PY 2014 VL 6 IS 9 BP 3663 EP 3682 DI 10.3390/v6093663 PG 20 WC Virology SC Virology GA AQ8TW UT WOS:000343107100020 PM 25256396 ER PT J AU Nishitani, J Detert, D Beeman, J Yu, KM Walukiewicz, W AF Nishitani, Junichi Detert, Douglas Beeman, Jeffrey Yu, Kin Man Walukiewicz, Wladek TI Surface hole accumulation and Fermi level stabilization energy in SnTe SO APPLIED PHYSICS EXPRESS LA English DT Article ID TOPOLOGICAL CRYSTALLINE INSULATOR; VALENCE-BAND STRUCTURE; ELECTRONIC-PROPERTIES; NATIVE DEFECTS; SEMICONDUCTORS; PBTE; LASERS; GETE AB SnTe films were deposited by RF magnetron sputtering. The thickness dependence of the sheet hole concentration indicated the presence of a high hole density surface accumulation layer. Irradiation of SnTe by Ne+ ions led to the saturation of the hole concentration corresponding to a Fermi energy that is 0.5 eV below the valence band edge. The stabilized Fermi energy on the surface and in the heavily damaged bulk is in agreement with the amphoteric native defect model. These results show that SnTe is a unique semiconductor with an extremely high valence band edge located at 4.4 eV below the vacuum level. (C) 2014 The Japan Society of Applied Physics C1 [Nishitani, Junichi] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. [Nishitani, Junichi; Detert, Douglas; Beeman, Jeffrey; Yu, Kin Man; Walukiewicz, Wladek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Detert, Douglas] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Nishitani, J (reprint author), Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. EM jnishitani@issp.u-tokyo.ac.jp OI Yu, Kin Man/0000-0003-1350-9642 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Murata Science Foundation FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. J. Nishitani acknowledges the support of The Murata Science Foundation. NR 35 TC 4 Z9 4 U1 4 U2 38 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1882-0778 EI 1882-0786 J9 APPL PHYS EXPRESS JI Appl. Phys. Express PD SEP PY 2014 VL 7 IS 9 AR 091201 DI 10.7567/APEX.7.091201 PG 3 WC Physics, Applied SC Physics GA AQ5QK UT WOS:000342863500004 ER PT J AU Tyson, TA Yu, T Croft, M Scofield, ME Bobb-Semple, D Tao, J Jaye, C Fischer, D Wong, SS AF Tyson, Trevor A. Yu, Tian Croft, Mark Scofield, Megan E. Bobb-Semple, Dara Tao, Jing Jaye, Cherno Fischer, Daniel Wong, Stanislaus S. TI Polar state in freestanding strontium titanate nanoparticles SO APPLIED PHYSICS LETTERS LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; SRTIO3 THIN-FILMS; X-RAY; RAMAN-SPECTROSCOPY; PHASE-TRANSITION; FINE-STRUCTURE; PEROVSKITE; FERROELECTRICITY; DISORDER; SILICON AB Monodispersed strontium titanate nanoparticles were prepared and studied in detail. It is found that similar to 10 nm as-prepared stoichiometric nanoparticles are in a polar structural state (possibly with ferroelectric properties) over a broad temperature range. A tetragonal structure, with possible reduction of the electronic hybridization, is found as the particle size is reduced. In the 10 nm particles, no change in the local Ti-off centering is seen between 20 and 300 K. The results indicate that nanoscale motifs of SrTiO3 may be utilized in data storage as assembled nano-particle arrays in applications where chemical stability, temperature stability, and low toxicity are critical issues. (C) 2014 AIP Publishing LLC. C1 [Tyson, Trevor A.; Yu, Tian] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. [Croft, Mark] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Scofield, Megan E.; Bobb-Semple, Dara; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Tao, Jing; Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Jaye, Cherno; Fischer, Daniel] Natl Inst Stand & Technol, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA. RP Tyson, TA (reprint author), New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. EM tyson@njit.edu; sswong@bnl.gov FU U.S. Department of Energy (DOE) [DE-FG02-07ER46402]; DOE, Basic Energy Sciences [DE-AC02-98CH10886]; DOE FX This work is supported in part by U.S. Department of Energy (DOE) Grant DE-FG02-07ER46402 (TAT, TY) and research by MES and SSW was supported by the DOE, Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Synchrotron powder x-ray diffraction and spectroscopy data acquisition was performed at Brookhaven National Laboratory's National Synchrotron Light Source which is funded by DOE. We thank Dr. Yuqin Zhang (NJIT) for conducting the Raman measurements on the samples. NR 56 TC 1 Z9 1 U1 3 U2 37 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 1 PY 2014 VL 105 IS 9 AR 091901 DI 10.1063/1.4894253 PG 5 WC Physics, Applied SC Physics GA AQ4FX UT WOS:000342749800015 ER PT J AU Wu, SM Hoffman, J Pearson, JE Bhattacharya, A AF Wu, Stephen M. Hoffman, Jason Pearson, John E. Bhattacharya, Anand TI Unambiguous separation of the inverse spin Hall and anomalous Nernst effects within a ferromagnetic metal using the spin Seebeck effect SO APPLIED PHYSICS LETTERS LA English DT Article AB The longitudinal spin Seebeck effect is measured on the ferromagnetic insulator Fe3O4 with the ferromagnetic metal Co0.2Fe0.6B0.2 (CoFeB) as the spin detector. By using a non-magnetic spacer material between the two materials (Ti), it is possible to decouple the two ferromagnetic materials and directly observe pure spin flow from Fe3O4 into CoFeB. It is shown that in a single ferromagnetic metal, the inverse spin Hall effect (ISHE) and anomalous Nernst effect (ANE) can occur simultaneously with opposite polarity. Using this and the large difference in the coercive fields between the two magnets, it is possible to unambiguously separate the contributions of the spin Seebeck effect from the ANE and observe the degree to which each effect contributes to the total response. These experiments show conclusively that the ISHE and ANE in CoFeB are separate phenomena with different origins and can coexist in the same material with opposite response to a thermal gradient. (C) 2014 AIP Publishing LLC. C1 [Wu, Stephen M.; Hoffman, Jason; Pearson, John E.; Bhattacharya, Anand] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Wu, SM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM swu@anl.gov RI Bhattacharya, Anand/G-1645-2011 OI Bhattacharya, Anand/0000-0002-6839-6860 FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division; U.S. DOE, BES [DE-AC02-06CH11357] FX All authors acknowledge support of the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division. The use of facilities at the Center for Nanoscale Materials was supported by the U.S. DOE, BES under Contract No. DE-AC02-06CH11357. The authors also thank Axel Hoffmann for valuable discussion and insight. NR 24 TC 13 Z9 13 U1 4 U2 44 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 1 PY 2014 VL 105 IS 9 AR 092409 DI 10.1063/1.4895034 PG 4 WC Physics, Applied SC Physics GA AQ4FX UT WOS:000342749800036 ER PT J AU Oates, CJ Dondelinger, F Bayani, N Korkola, J Gray, JW Mukherjee, S AF Oates, Chris J. Dondelinger, Frank Bayani, Nora Korkola, James Gray, Joe W. Mukherjee, Sach TI Causal network inference using biochemical kinetics SO BIOINFORMATICS LA English DT Article; Proceedings Paper CT 13th European Conference on Computational Biology (ECCB) CY SEP 07-10, 2014 CL Strasbourg, FRANCE SP BioBase, Sbv IMPROVER, Koriscale, Totalinux, Genom, Proteom & Bioinformat ID GENE REGULATORY NETWORKS; BAYESIAN-INFERENCE; GAUSSIAN MODELS; COMPOUND-MODE; DYNAMICS; OUTPUT; TIME AB Motivation: Networks are widely used as structural summaries of biochemical systems. Statistical estimation of networks is usually based on linear or discrete models. However, the dynamics of biochemical systems are generally non-linear, suggesting that suitable non-linear formulations may offer gains with respect to causal network inference and aid in associated prediction problems. Results: We present a general framework for network inference and dynamical prediction using time course data that is rooted in nonlinear biochemical kinetics. This is achieved by considering a dynamical system based on a chemical reaction graph with associated kinetic parameters. Both the graph and kinetic parameters are treated as unknown; inference is carried out within a Bayesian framework. This allows prediction of dynamical behavior even when the underlying reaction graph itself is unknown or uncertain. Results, based on (i) data simulated from a mechanistic model of mitogen-activated protein kinase signaling and (ii) phosphoproteomic data from cancer cell lines, demonstrate that non-linear formulations can yield gains in causal network inference and permit dynamical prediction and uncertainty quantification in the challenging setting where the reaction graph is unknown. C1 [Oates, Chris J.] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England. [Dondelinger, Frank; Mukherjee, Sach] MRC, Biostat Unit, Cambridge CB2 0SR, England. [Bayani, Nora] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94710 USA. [Korkola, James; Gray, Joe W.] Oregon Hlth & Sci Univ, Knight Canc Inst, Dept Biomed Engn, Portland, OR 97239 USA. [Mukherjee, Sach] Univ Cambridge, Sch Clin Med, Cambridge CB2 0SP, England. RP Mukherjee, S (reprint author), MRC, Biostat Unit, Cambridge CB2 0SR, England. FU US Department of Energy [DE-AC02-05CH11231]; US National Institute of Health, National Cancer Institute [U54 CA 112970, P50 CA 58207]; UK Engineering and Physical Sciences Research Council [EP/E501311/1]; Netherlands Organisation for Scientific Research [Cancer Systems Biology Center] FX US Department of Energy (DE-AC02-05CH11231); US National Institute of Health, National Cancer Institute (U54 CA 112970, P50 CA 58207); UK Engineering and Physical Sciences Research Council (EP/E501311/1); and Netherlands Organisation for Scientific Research [Cancer Systems Biology Center]. NR 35 TC 5 Z9 5 U1 0 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 EI 1460-2059 J9 BIOINFORMATICS JI Bioinformatics PD SEP 1 PY 2014 VL 30 IS 17 BP I468 EP I474 DI 10.1093/bioinformatics/btu452 PG 7 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA AQ6HW UT WOS:000342912400018 PM 25161235 ER PT J AU O'Neill, BJ Miller, JT Dietrich, PJ Sollberger, FG Ribeiro, FH Dumesic, JA AF O'Neill, Brandon J. Miller, Jeffrey T. Dietrich, Paul J. Sollberger, Fred G. Ribeiro, Fabio H. Dumesic, James A. TI Operando X-ray Absorption Spectroscopy Studies of Sintering for Supported Copper Catalysts during Liquid-phase Reaction SO CHEMCATCHEM LA English DT Article DE atomic layer deposition; biomass; catalyst stability; copper; operando X-ray absorption spectroscopy ID ATOMIC LAYER DEPOSITION; STABILIZATION; NANOPARTICLES; HYDROGENATION; CHEMICALS; SIZE AB Operando X-ray absorption spectroscopy is used to measure simultaneous changes in catalyst structure and changes in catalytic activity versus time during the liquid phase hydrogenation of furfural over supported copper catalysts. This approach allows the size of the copper nanoparticles to be monitored continuously versus time-on-stream, such that these changes in dispersion can be accounted for in the calculation of turnover frequency. It is shown that sintering of the copper nanoparticles is the predominant mode of catalyst deactivation for a Cu/-Al2O3 catalyst throughout its time-on-stream, leading to irreversible loss of catalytic activity. In contrast, this mode of deactivation is eliminated by atomic layer deposition of an alumina overcoat; however, deposition of carbonaceous deposits in the small pores of the overcoat leads to deactivation that is reversible upon calcination of the catalyst. C1 [O'Neill, Brandon J.; Dumesic, James A.] Univ Wisconsin Madison, Madison, WI 53705 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Argonne, IL 60439 USA. [Dietrich, Paul J.; Sollberger, Fred G.; Ribeiro, Fabio H.] Purdue Univ, W Lafayette, IN 47907 USA. RP Dumesic, JA (reprint author), Univ Wisconsin Madison, Madison, WI 53705 USA. EM dumesic@engr.wisc.edu FU Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center - U.S. DOE, Office of Science, Office of Basic Energy Sciences; U. S. DOE [DE-AC02-06CH11357] FX This material is based upon work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. DOE, Office of Science, Office of Basic Energy Sciences. Use of the Advanced Photon Source was supported by the U. S. DOE under Contract No. DE-AC02-06CH11357. MRCAT operations are supported by U.S. DOE and the MRCAT member institutions. NR 16 TC 7 Z9 7 U1 6 U2 53 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1867-3880 EI 1867-3899 J9 CHEMCATCHEM JI ChemCatChem PD SEP PY 2014 VL 6 IS 9 BP 2493 EP 2496 DI 10.1002/cctc.201402356 PG 4 WC Chemistry, Physical SC Chemistry GA AQ4CR UT WOS:000342740300006 ER PT J AU Chen, WF Schneider, JM Sasaki, K Wang, CH Schneider, J Iyer, S Iyer, S Zhu, YM Muckerman, JT Fujita, E AF Chen, Wei-Fu Schneider, Jonathan M. Sasaki, Kotaro Wang, Chiu-Hui Schneider, Jacob Iyer, Shilpa Iyer, Shweta Zhu, Yimei Muckerman, James T. Fujita, Etsuko TI Tungsten Carbide-Nitride on Graphene Nanoplatelets as a Durable Hydrogen Evolution Electrocatalyst SO CHEMSUSCHEM LA English DT Article DE carbides; electrochemistry; graphene; hydrogen evolution; nitrides ID TRANSITION-METAL CARBIDES; EFFICIENT; NANOPARTICLES; WATER; COCATALYSTS; NANOSHEETS; CATALYSTS; PHOSPHIDE; MOS2; WC AB Alternatives to platinum-based catalysts are required to sustainably produce hydrogen from water at low overpotentials. Progress has been made in utilizing tungsten carbide-based catalysts, however, their performance is currently limited by the density and reactivity of active sites, and insufficient stability in acidic electrolytes. We report highly active graphene nanoplatelet-supported tungsten carbide-nitride nanocomposites prepared via an in situ solid-state approach. This nano-composite catalyzes the hydrogen evolution reaction with very low overpotential and is stable operating for at least 300 h in harsh acidic conditions. The synthetic approach offers a great advantage in terms of structural control and kinetics improvement. C1 [Chen, Wei-Fu; Schneider, Jonathan M.; Sasaki, Kotaro; Wang, Chiu-Hui; Schneider, Jacob; Iyer, Shilpa; Iyer, Shweta; Muckerman, James T.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Chen, WF (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM wfchen@bnl.gov; ksasaki@bnl.gov; fujita@bnl.gov FU U.S. Department of Energy (DOE) [DE-AC02-98CH10886]; Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences; BNL Technology Maturation Funding [TM 12-008]; DOE Science Undergraduate Laboratory Internships Program; Synchrotron Catalysis Consortium, US Department of Energy [DE-FG02-05ER15688] FX This work was carried out at Brookhaven National Laboratory (BNL) with the U.S. Department of Energy (DOE) under contract number DE-AC02-98CH10886 and supported by its Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences. J.M.S., C.H.W., and K.S. acknowledge support by BNL Technology Maturation Funding TM 12-008. J.M.S. acknowledges support by the DOE Science Undergraduate Laboratory Internships Program. Beamline X18B at the NSLS is supported in part by the Synchrotron Catalysis Consortium, US Department of Energy Grant No DE-FG02-05ER15688. NR 37 TC 20 Z9 20 U1 24 U2 165 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD SEP PY 2014 VL 7 IS 9 BP 2414 EP 2418 DI 10.1002/cssc.201402454 PG 5 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AQ5AE UT WOS:000342813300003 PM 25059477 ER PT J AU Cao, RG Walter, ED Xu, W Nasybulin, EN Bhattacharya, P Bowden, ME Engelhard, MH Zhang, JG AF Cao, Ruiguo Walter, Eric D. Xu, Wu Nasybulin, Eduard N. Bhattacharya, Priyanka Bowden, Mark E. Engelhard, Mark H. Zhang, Ji-Guang TI The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries SO CHEMSUSCHEM LA English DT Article DE batteries; electrochemistry; lithium; oxygen; radicals ID METAL-AIR BATTERIES; LI-O-2 BATTERIES; LI-AIR; KINETIC OVERPOTENTIALS; DISCHARGE PRODUCT; ORGANIC-SOLVENTS; X-RAY; ELECTROLYTE; ELECTROCHEMISTRY; CATALYSTS AB A fundamental understanding of the mechanisms of both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in nonaqueous lithium-oxygen (Li-O-2) batteries is essential for the further development of these batteries. In this work, we systematically investigate the mechanisms of the ORR/OER reactions in nonaqueous Li-O-2 batteries by using electron paramagnetic resonance (EPR) spectroscopy, using 5,5-dimethyl-pyrroline N-oxide as a spin trap. The study provides direct verification of the formation of the superoxide radical anion (O-2(center dot-)) as an intermediate in the ORR during the discharge process, while no O2(center dot-) was detected in the OER during the charge process. These findings provide insight into, and an understanding of, the fundamental reaction mechanisms involving oxygen and guide the further development of this field. C1 [Cao, Ruiguo; Xu, Wu; Nasybulin, Eduard N.; Bhattacharya, Priyanka; Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. [Walter, Eric D.; Bowden, Mark E.; Engelhard, Mark H.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. RP Xu, W (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. EM wu.xu@pnnl.gov; jiguang.zhang@pnnl.gov RI Bhattacharya, Priyanka/E-1652-2011; Cao, Ruiguo/O-7354-2016; Walter, Eric/P-9329-2016; OI Bhattacharya, Priyanka/0000-0003-0368-8480; Engelhard, Mark/0000-0002-5543-0812; Xu, Wu/0000-0002-2685-8684 FU Joint Center for Energy Storage Research, an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences; U.S. Department of Energy's Office of Biological and Environmental Research; Linus Pauling Distinguished Postdoctoral Fellowship at PNNL FX This work was supported by the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. The EPR, micro-XRD, XPS, and SEM analyses were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). P.B. is grateful for support from a Linus Pauling Distinguished Postdoctoral Fellowship at PNNL. NR 43 TC 20 Z9 21 U1 12 U2 146 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD SEP PY 2014 VL 7 IS 9 BP 2436 EP 2440 DI 10.1002/cssc.201402315 PG 5 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AQ5AE UT WOS:000342813300008 PM 25045007 ER PT J AU Sreekumar, S Baer, ZC Gross, E Padmanaban, S Goulas, K Gunbas, G Alayoglu, S Blanch, HW Clark, DS Toste, FD AF Sreekumar, Sanil Baer, Zachary C. Gross, Elad Padmanaban, Sasisanker Goulas, Konstantinos Gunbas, Gorkem Alayoglu, Selim Blanch, Harvey W. Clark, Douglas S. Toste, F. Dean TI Chemocatalytic Upgrading of Tailored Fermentation Products Toward Biodiesel SO CHEMSUSCHEM LA English DT Article DE acetone-butanol-ethanol; biodiesel; biomass; Clostridium beijerinckii; hydrotalcite; isopropanol-butanol-ethanol ID CLOSTRIDIUM-ACETOBUTYLICUM; EXTRACTIVE FERMENTATION; ETHANOL FERMENTATION; HIGHER ALCOHOLS; BIOMASS; BUTANOL; CATALYST; HYDROTALCITE; HYDROCARBONS; PATHWAY AB Biological and chemocatalytic processes are tailored in order to maximize the production of sustainable biodiesel from lignocellulosic sugar. Thus, the combination of hydrotalcite-supported copper(II) and palladium(0) catalysts with a modification of the fermentation from acetone-butanol-ethanol to isopropanol-butanol-ethanol predictably produces higher concentrations of diesel-range components in the alkylation reaction. C1 [Sreekumar, Sanil; Gunbas, Gorkem; Toste, F. Dean] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Sreekumar, Sanil; Baer, Zachary C.; Padmanaban, Sasisanker; Goulas, Konstantinos; Blanch, Harvey W.; Clark, Douglas S.; Toste, F. Dean] Univ Calif Berkeley, Energy Biosci Inst, Berkeley, CA 94720 USA. [Baer, Zachary C.; Goulas, Konstantinos; Gunbas, Gorkem; Blanch, Harvey W.; Clark, Douglas S.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Gross, Elad; Alayoglu, Selim] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Div Chem Sci, Berkeley, CA 94720 USA. RP Goulas, K (reprint author), Univ Calif Berkeley, Energy Biosci Inst, Berkeley, CA 94720 USA. EM blanch@berkeley.edu; clark@berkeley.edu; fdtoste@berkeley.edu RI gunbas, gorkem/I-8975-2016; Padmanabhan, Sasisanker/E-8502-2012; OI Padmanabhan, Sasisanker/0000-0003-2292-889X; Goulas, Konstantinos/0000-0001-8306-2888; Toste, F. Dean/0000-0001-8018-2198 FU Energy Biosciences Institute (EBI) FX This work was financially supported by Energy Biosciences Institute (EBI). NR 25 TC 23 Z9 23 U1 5 U2 33 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD SEP PY 2014 VL 7 IS 9 BP 2445 EP 2448 DI 10.1002/cssc.201402244 PG 4 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AQ5AE UT WOS:000342813300010 PM 25044817 ER PT J AU Xu, R Zhang, XF Yu, C Ren, Y Li, JCM Belharouak, I AF Xu, Rui Zhang, Xiaofeng Yu, Cun Ren, Yang Li, James C. M. Belharouak, Ilias TI Paving the Way for Using Li2S Batteries SO CHEMSUSCHEM LA English DT Article DE electrolyte; energy storage; lithium disulfide; lithium polysulfide; lithium sulfur batteries ID RECHARGEABLE LITHIUM BATTERIES; CATHODE MATERIALS; SULFUR BATTERIES; ION BATTERIES; ELECTRODE; PERFORMANCE; ENERGY; COMPOSITES; PARTICLES; CELL AB In this work, a novel lithium-sulfur battery was developed comprising Li2S as the cathode, lithium metal as the anode and polysulfide-based solution as the electrolyte. The electrochemical performances of these Li2S-based cells strongly depended upon the nature of the electrolytes. In the presence of the conventional electrolyte that consisted of lithium bis(trifluoromethanesulfonyl)- imide (LiTFSI) salt dissolved in a solvent combination of dimethoxyethane (DME)/1,3-dioxolane (DOL), the Li/Li2S cells showed sluggish kinetics, which translated into poor cycling and capacity retention. However, when using small amounts of polysulfides in the electrolyte along with a shuttle inhibitor the Li2S cathode was efficiently activated in the cell with the generation of over 1000 mAhg(-1) capacity and good cycle life. C1 [Xu, Rui; Zhang, Xiaofeng; Belharouak, Ilias] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Belharouak, Ilias] Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar. [Xu, Rui; Li, James C. M.] Univ Rochester, Dept Mech Engn, Mat Sci Program, Rochester, NY 14627 USA. [Yu, Cun; Ren, Yang] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Belharouak, I (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ibelharouak@qf.org.qa OI Belharouak, Ilias/0000-0002-3985-0278; Yu, Cun/0000-0003-0084-6746 FU U.S. Department of Energy; Freedom CAR; Vehicle Technologies Office; Electron Microscopy Center for Materials Research at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX This research was funded by the U.S. Department of Energy, Freedom CAR, and Vehicle Technologies Office. The electron microscopy was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. NR 28 TC 11 Z9 11 U1 8 U2 69 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD SEP PY 2014 VL 7 IS 9 BP 2457 EP 2460 DI 10.1002/cssc.201402177 PG 4 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AQ5AE UT WOS:000342813300013 PM 25044568 ER PT J AU Archambault-Leger, V Shao, XJ Lynd, LR AF Archambault-Leger, Veronique Shao, Xiongjun Lynd, Lee R. TI Simulated Performance of Reactor Configurations for Hot-Water Pretreatment of Sugarcane Bagasse SO CHEMSUSCHEM LA English DT Article DE biomass; computational chemistry; energy conversion; kinetics; renewable resources ID DILUTE SULFURIC-ACID; TOTAL MASS REMOVAL; CORN STOVER; HEMICELLULOSE HYDROLYSIS; ENZYMATIC DIGESTIBILITY; LIGNOCELLULOSIC BIOMASS; CANE BAGASSE; WHEAT-STRAW; FLOW-RATE; LIGNIN AB During the pretreatment of cellulosic biomass for subsequent microbial or enzymatic processing, the fiber reactivity typically increases with increasing severity but so does sugar degradation. Experimental results with sugarcane bagasse show that this tradeoff can be mitigated substantially by pretreatment in a flow-through (FT) mode. A model that incorporates both kinetics and mass transfer was developed to simulate the performance of pretreatment in plug flow, counter-current flow, cross flow, discrete counter-current and partial FT configurations. The simulated results compare well to the literature for bagasse pretreated in both batch and FT configurations. A variety of FT configurations result in sugar degradation that is very low (1-5%) and 5-20-fold less than a conventional plug flow configuration. The performance exhibits strong sensitivity to the extent of hemicellulose solubilization, particularly for a conventional plug flow configuration. C1 [Archambault-Leger, Veronique; Shao, Xiongjun; Lynd, Lee R.] Dartmouth Coll, Hanover, NH 03755 USA. [Archambault-Leger, Veronique; Shao, Xiongjun; Lynd, Lee R.] Oak Ridge Natl Lab, DOE BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Lynd, Lee R.] Mascoma Corp, Lebanon, NH 03766 USA. RP Lynd, LR (reprint author), Dartmouth Coll, Hanover, NH 03755 USA. EM Lee.R.Lynd@Dartmouth.edu FU Link Energy Foundation; BioEnergy Science Center (BESC), a U.S. Department of Energy (DOE) Research Center by Office of Biological and Environmental Research in the DOE Office of Science, Oak Ridge National Laboratory; Mascoma Corporation; Department of Energy [DE-AC05-00OR22725] FX The authors are grateful for the support provided by funding grants from the Link Energy Foundation, the BioEnergy Science Center (BESC), a U.S. Department of Energy (DOE) Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science, Oak Ridge National Laboratory, and Mascoma Corporation. Oak Ridge National Laboratory is managed by University of Tennessee UT-Battelle LLC for the Department of Energy under Contract No. DE-AC05-00OR22725. NR 34 TC 1 Z9 1 U1 0 U2 12 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD SEP PY 2014 VL 7 IS 9 BP 2721 EP 2727 DI 10.1002/cssc.201402087 PG 7 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AQ5AE UT WOS:000342813300047 PM 25088298 ER PT J AU Fu, L Zhang, Y Wei, ZH Wang, HF AF Fu, Li Zhang, Yun Wei, Zhe-Hao Wang, Hong-Fei TI Intrinsic Chirality and Prochirality at Air/R-(+)- and S-(-)-Limonene Interfaces: Spectral Signatures With Interference Chiral Sum-Frequency Generation Vibrational Spectroscopy SO CHIRALITY LA English DT Article DE intrinsic chirality; prochirality; limonene interfaces; spectral signatures ID MOLECULAR CHIRALITY; OPTICAL-ACTIVITY; IN-SITU; SFG-VS; SURFACE CHIRALITY; UNIFIED TREATMENT; NONLINEAR OPTICS; PROBE; ORIENTATION; SENSITIVITY AB We report in this work detailed measurements of the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050 cm(-1)) of the air/liquid interfaces of R-(+)-limonene and S-(-)-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the RS racemic mixture (50/50 equal amount mixture), show that the corresponding molecular groups of the R and S enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit a spectral signature from the chiral response of the C alpha-H stretching mode, and a spectral signature from the prochiral response of the CH2 asymmetric stretching mode, respectively. The chiral spectral feature of the C alpha-H stretching mode changes sign from R-(+)-limonene to S-(-)-limonene surfaces, and disappears for the RS racemic mixture surface. While the prochiral spectral feature of the CH2 asymmetric stretching mode is the same for R-(+)-limonene and S-(-)-limonene surfaces, and also surprisingly remains the same for the RS racemic mixture surface. Therefore, the structures of the R-(+)-limonene and the S-(-)-limonene at the liquid interfaces are nevertheless not mirror images to each other, even though the corresponding groups have the same tilt angle from the interfacial normal, i. e., the R-(+)-limonene and the S-(-)-limonene at the surface are diastereomeric instead of enantiomeric. These results provide detailed information in understanding the structure and chirality of molecular interfaces and demonstrate the sensitivity and potential of SFG-VS as a unique spectroscopic tool or chirality characterization and chiral recognition at the molecular interface. (C) 2014 Wiley Periodicals, Inc. C1 [Fu, Li; Zhang, Yun; Wei, Zhe-Hao; Wang, Hong-Fei] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wang, HF (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. EM hongfei.wang@pnnl.gov RI Wang, Hongfei/B-1263-2010; Wei, Zhehao/L-2801-2013 OI Wang, Hongfei/0000-0001-8238-1641; Wei, Zhehao/0000-0002-9670-4752 FU Department of Energy's Office of Biological and Environmental Research (DOE-BER); PNNL FX H.F.W. thanks Garth J. Simpson for invaluable discussion and suggestions, especially in clarifying the theoretical framework of chiral SFG. L. F. thanks Luis Velarde and Patrick El-Khoury for their help with the SFG experiment laser setup and discussion. This work was conducted at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility located at the Pacific Northwest National Laboratory (PNNL) and sponsored by the Department of Energy's Office of Biological and Environmental Research (DOE-BER). Y.Z. is an Alternate Sponsored Fellow at PNNL and a graduate student from Beijing Institute of Technology. Z.H.W. is a graduate intern at EMSL and a graduate student from Washington State University. NR 63 TC 10 Z9 10 U1 11 U2 44 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0899-0042 EI 1520-636X J9 CHIRALITY JI Chirality PD SEP PY 2014 VL 26 IS 9 SI SI BP 509 EP 520 DI 10.1002/chir.22337 PG 12 WC Chemistry, Medicinal; Chemistry, Analytical; Chemistry, Organic; Pharmacology & Pharmacy SC Pharmacology & Pharmacy; Chemistry GA AR0WY UT WOS:000343295600013 PM 24895322 ER PT J AU Wu, YQ Allahar, KN Burns, J Jaques, B Charit, I Butt, DP Cole, JI AF Wu, Y. Q. Allahar, K. N. Burns, J. Jaques, B. Charit, I. Butt, D. P. Cole, J. I. TI Fe-Cr-Mo based ODS alloys via spark plasma sintering: A combinational characterization study by TEM and APT SO CRYSTAL RESEARCH AND TECHNOLOGY LA English DT Article DE ODS; segregation; TEM; APT; SPS ID FERRITIC ALLOYS; STEELS; MICROSTRUCTURE; IRRADIATION; PARTICLES AB Nanoscale oxides play an important role in oxide dispersion strengthened (ODS) alloys for improved high temperature creep resistance and enhanced radiation damage tolerance. In this study, transmission electron microscopy (TEM) and atom probe tomography (APT) were combined to investigate two novel Fe-16Cr-3Mo (wt.%) based ODS alloys. Spark plasma sintering (SPS) was used to consolidate the ODS alloys from powders that were milled with 0.5 wt.% Y2O3 powder only or with Y2O3 powder and 1 wt.% Ti. TEM characterization revealed that both alloys have a bimodal structure of nanometer-size (similar to 100 - 500 nm) and micron-size grains with nanostructured oxide precipitates formed along and close to grain boundaries with diameters ranging from five to tens of nanometers. APT provides further quantitative analyses of the oxide precipitates, and also reveals Mo segregation at grain boundaries next to oxide precipitates. The alloys with and without Ti are compared based on their microstructures. C1 [Wu, Y. Q.; Allahar, K. N.; Burns, J.; Jaques, B.; Butt, D. P.] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. [Wu, Y. Q.; Allahar, K. N.; Burns, J.; Charit, I.; Butt, D. P.; Cole, J. I.] Ctr Adv Energy Studies, Idaho Falls, ID 83401 USA. [Charit, I.] Univ Idaho, Dept Chem & Mat Engn, Moscow, ID 83844 USA. [Cole, J. I.] Idaho Natl Lab, ATR Natl Sci User Facil, Idaho Falls, ID 83415 USA. RP Wu, YQ (reprint author), Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. EM yaqiaowu@boisestate.edu OI Cole, James/0000-0003-1178-5846; Jaques, Brian/0000-0002-5324-555X FU Laboratory Directed Research and Development Office of the Idaho National Laboratory; US Government under DOE [DE-AC07-05ID14517] FX The authors gratefully acknowledge financial support from the Laboratory Directed Research and Development Office of the Idaho National Laboratory. This submitted manuscript was authored by a contractor of the US Government under DOE Contract No. DE-AC07-05ID14517. NR 21 TC 4 Z9 4 U1 2 U2 38 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0232-1300 EI 1521-4079 J9 CRYST RES TECHNOL JI Cryst. Res. Technol. PD SEP PY 2014 VL 49 IS 9 SI SI BP 645 EP 652 DI 10.1002/crat.201300173 PG 8 WC Crystallography SC Crystallography GA AQ4MK UT WOS:000342771300002 ER PT J AU Moeck, P York, BW Browning, ND AF Moeck, Peter York, Bryant W. Browning, Nigel D. TI Symmetries of migration-related segments of all [001] coincidence site lattice tilt boundaries in (001) projection for all holohedral cubic materials SO CRYSTAL RESEARCH AND TECHNOLOGY LA English DT Article DE grain boundaries; frieze symmetries; projected layer symmetries; bicrystallography ID GRAIN-BOUNDARIES; ATOMIC-STRUCTURE; INTERFACES AB Utilizing bicrystallography in two dimensions (2D), the symmetries of migration related segments of Coincidence Site Lattice (CSL) boundaries are predicted for projections along their [001] tilt axis in grain boundaries of crystalline materials that possess the holohedral point symmetry of the cubic system (i.e. m (3) over barm). These kinds of "edge-on" projections are typical for atomic resolution imaging of such tilt boundaries with Transmission Electron Microscopes (TEM). Such images from a recently published aberration-corrected Z-contrast scanning TEM investigation [H. Yang et al., Phil. Mag. 93 (2013) 1219] and other studies facilitate the direct visual confirmation of our frieze symmetry predictions with experimental results. C1 [Moeck, Peter] Portland State Univ, Dept Phys, Nanocrystallog Grp, Portland, OR 97207 USA. [York, Bryant W.] Portland State Univ, Dept Comp Sci, Portland, OR 97207 USA. [Browning, Nigel D.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Moeck, P (reprint author), Portland State Univ, Dept Phys, Nanocrystallog Grp, Portland, OR 97207 USA. EM pmoeck@pdx.edu OI Browning, Nigel/0000-0003-0491-251X FU United States Department of Energy (DOE) [DE-FG02-03ER46057]; DOE [DE-AC05-76RL01830]; Department of Energy's Office of Biological and Environmental Research and located at PNNL FX NDB acknowledges support from the United States Department of Energy (DOE), Grant No. DE-FG02-03ER46057. A portion of this work is part of the Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL) under Contract DE-AC05-76RL01830 operated for DOE by Battelle. It was conducted under the Laboratory Directed Research and Development Program at PNNL. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. NR 38 TC 2 Z9 2 U1 0 U2 9 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0232-1300 EI 1521-4079 J9 CRYST RES TECHNOL JI Cryst. Res. Technol. PD SEP PY 2014 VL 49 IS 9 SI SI BP 708 EP 720 DI 10.1002/crat.201400071 PG 13 WC Crystallography SC Crystallography GA AQ4MK UT WOS:000342771300008 ER PT J AU Ibanez, E Magee, T Clement, M Brinkman, G Milligan, M Zagona, E AF Ibanez, Eduardo Magee, Timothy Clement, Mitch Brinkman, Gregory Milligan, Michael Zagona, Edith TI Enhancing hydropower modeling in variable generation integration studies SO ENERGY LA English DT Article; Proceedings Paper CT 26th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS) CY JUL 16-19, 2013 CL Guilin, PEOPLES R CHINA SP Chinese Soc Engn Thermophys DE Hydroelectric power generation; Optimization; Power system modeling; Renewable energy sources; Reservoirs ID WIND POWER-GENERATION; CONGESTION PROBLEMS; SYSTEM; COORDINATION; SIMULATION; OPERATION; AREAS; SPOT AB The integration of large amounts of variable renewable generation can increase the demand on flexible resources in the power system. Conventional hydropower can be an important asset for managing variability and uncertainty in the power system, but multi-purpose reservoirs are often limited by non-power constraints. Previous large-scale variable generation integration studies have simulated the operation of the electric system under different penetration levels but often with simplified representations of hydropower to avoid complex non-power constraints. This paper illustrates the value of bridging the gap between power system models and detailed hydropower models with a demonstration case. The United States Western Interconnection is modeled with PLEXUS, and ten large reservoirs on the Columbia River are modeled with RiverWare. The results show the effect of detailed hydropower modeling on the power system and its benefits to the power system, such as the decrease in overall production cost and the reduction of variable generation curtailment. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Ibanez, Eduardo; Brinkman, Gregory; Milligan, Michael] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Magee, Timothy; Clement, Mitch; Zagona, Edith] Univ Colorado, Ctr Adv Decis Support Water & Environm Syst, Boulder, CO 80309 USA. RP Ibanez, E (reprint author), Natl Renewable Energy Lab, 16253 Denver West Pkwy, Golden, CO 80401 USA. EM eduardo.ibanez@nrel.gov; magee@colorado.edu; mitch.clement@colorado.edu; gregory.brinkman@nrel.gov; michael.milligan@nrel.gov; zagona@colorado.edu NR 37 TC 5 Z9 5 U1 2 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD SEP 1 PY 2014 VL 74 BP 518 EP 528 DI 10.1016/j.energy.2014.07.017 PG 11 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA AQ5PW UT WOS:000342862100056 ER PT J AU Poineau, F Forster, PM Todorova, TK Johnstone, EV Kerlin, WM Gagliardi, L Czerwinski, KR Sattelberger, AP AF Poineau, Frederic Forster, Paul M. Todorova, Tanya K. Johnstone, Erik V. Kerlin, William M. Gagliardi, Laura Czerwinski, Kenneth R. Sattelberger, Alfred P. TI A Decade of Dinuclear Technetium Complexes with Multiple Metal-Metal Bonds SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Review DE Technetium; Metal-metal interactions; Structure elucidation; Electronic structure ID STRUCTURAL-CHARACTERIZATION; ELECTRONIC-STRUCTURE; TERTIARY PHOSPHINES; TRANSITION-METALS; CHEMISTRY; CLUSTERS; DIMERS; BR; TC; CL AB Transition metal complexes with multiple metal-metal bonds exhibit interesting catalytic and biological properties. One element whose metal-metal bond chemistry has been poorly studied is technetium. Currently, only 25 technetium complexes with multiple metal-metal bonds have been structurally characterized. The nature of metal-metal interactions in these complexes, as well as the influence of ligands on the bonding in the Tc-2(n+) unit (n = 6, 5, 4) are not well understood. In order to better understand the influence of ligands on the Tc-Tc bonding, a study of the solid-state and electronic structure of dinuclear complexes with the Tc-2(n+) unit (n = 6, 5, 4) has been performed. Dinuclear technetium complexes (nBu(4)N)(2)Tc2X8, Tc-2(O2CCH3)(4)X-2, Tc-2(O2CCH3)(2)Cl-4, cesium salts of Tc2X83-, and Tc2X4(PMe3)(4) (X = Cl, Br) were synthesized; their molecular and electronic structures, as well as their electronic absorption spectra, were studied by a number of physical and computational techniques. The structure and bonding in these systems have been investigated by using multiconfigurational quantum calculations. For all these complexes, the calculated geometries are in very good agreement with those determined experimentally. Bond order analysis demonstrates that all these complexes exhibit a total bond order of approximately 3. Analysis of individual effective bond order (EBO) components shows that these complexes have similar s components, while the strength of their p components follows the order Tc2X4(PMe3)(4) > Tc2X83- > Tc-2(O2CCH3)(2)Cl-4 > Tc2X82-. Calculations indicate that the delta components are the weakest bond in Tc2X8n- (n = 2, 3) and Tc-2(O2CCH3)(2)Cl-4. Further analysis of Tc2X83- and Tc2X4(PMe3)(4) (X = Cl, Br) indicates that the electronic structure of the Tc-2(5+) and Tc-2(4+) units is insensitive to the nature of the coordinating ligands. The electronic absorption spectra of Tc2X8n- (n = 2, 3), Tc-2(O2CCH3)(2)Cl-4, and Tc2X4(PMe3)(4) (X = Cl, Br) were studied in solution, and assignment of the transitions was performed by multiconfigurational quantum chemical calculations. For the Tc2X8n-(n = 2, 3; X = Cl, Br) anions and Tc-2(O2CCH3)(2)Cl-4, the lowest-energy band is attributed to the delta ->delta* transition. For Tc2X4(PMe3)(4), the assignment of the transitions follow the following order in energy: delta* -> sigma* < delta* -> pi* < delta -> sigma* < delta -> pi*. C1 [Poineau, Frederic; Forster, Paul M.; Johnstone, Erik V.; Kerlin, William M.; Czerwinski, Kenneth R.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Todorova, Tanya K.] Univ Geneva, Dept Phys Chem, CH-1211 Geneva, Switzerland. [Gagliardi, Laura] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Gagliardi, Laura] Univ Minnesota, Supercomp Inst, Minneapolis, MN 55455 USA. [Sattelberger, Alfred P.] Argonne Natl Lab, Energy Engn & Syst Anal Directorate, Argonne, IL 60439 USA. RP Poineau, F (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. EM poineauf@unlv.nevada.edu RI Todorova, Tanya/M-1849-2013 OI Todorova, Tanya/0000-0002-7731-6498 FU Nuclear Energy University Programs (NEUP) grant from the U.S. Department of Energy, Office of Nuclear Energy, through INL/BEA, LLC [00129169, DE-AC07-05ID14517]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, Heavy Elements Chemistry Program, U.S. Department of Energy [DE-SC002183] FX Funding for this research was provided by an Nuclear Energy University Programs (NEUP) grant from the U.S. Department of Energy, Office of Nuclear Energy, through INL/BEA, LLC, 00129169, agreement No. DE-AC07-05ID14517. Use of the Advanced Photon Source at Argonne was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The computational part of this study was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, Heavy Elements Chemistry Program, U.S. Department of Energy, under grant DE-SC002183. The authors thank Dr. Tom O'Dou, Mr. Trevor Low, and Ms. Julie Bertoia for outstanding health physics support. NR 51 TC 1 Z9 1 U1 5 U2 33 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1434-1948 EI 1099-0682 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD SEP PY 2014 IS 27 SI SI BP 4484 EP 4495 DI 10.1002/ejic.201402340 PG 12 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AQ6HB UT WOS:000342910200006 ER PT J AU Das, P Stolley, RM van der Eide, EF Helm, ML AF Das, Parthapratim Stolley, Ryan M. van der Eide, Edwin F. Helm, Monte L. TI A Ni-II-Bis(diphosphine)-Hydride Complex Containing Proton Relays - Structural Characterization and Electrocatalytic Studies SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Homogeneous catalysis; Hydrogen; Proton transport; Nickel; Diphosphine ID HYDROGEN-PRODUCTION; MOLECULAR ELECTROCATALYSTS; METAL-COMPLEXES; RECENT PROGRESS; PENDANT AMINES; H-2 PRODUCTION; OXIDATION; CATALYSTS; LIGANDS; NI AB The synthesis of the 1,5-diphenyl-3,7-diisopropyl-1,5-diaza3,7- diphosphacyclooctane ligand, (P2N2Ph)-N-iPr, is reported. Two equivalents of the ligand react with [Ni(CH3CN)(6)](BF4)(2) to form the bis(diphosphine)-Ni-II complex [Ni((P2N2Ph)-N-iPr)(2)]-(BF4)(2), which acts as a proton reduction electrocatalyst. In addition to [Ni((P2N2Ph)-N-iPr)(2)](2+), we report the synthesis and structural characterization of the Ni-0 complex Ni((P2N2Ph)-N-iPr)(2) and the Ni-II-hydride complex [HNi((P2N2Ph)-N-iPr)(2)]BF4. The [HNi((P2N2Ph)-N-iPr)(2)]BF4 complex represents the first Ni-II-hydride in the [Ni((P2N2R')-N-R)(2)](2+) family of compounds to be structurally characterized. In addition to the experimental data, the mechanism of electrocatalysis facilitated by [Ni-((P2N2Ph)-N-iPr)(2)](2+) is analyzed by using linear free energy relationships recently established for the [Ni((P2N2R')-N-R)(2)](2+) family. C1 [Das, Parthapratim; Stolley, Ryan M.; van der Eide, Edwin F.; Helm, Monte L.] Pacific NW Natl Lab, Ctr Mol Electrocatalysis, Div Phys Sci, Richland, WA 99352 USA. RP Helm, ML (reprint author), Pacific NW Natl Lab, Ctr Mol Electrocatalysis, Div Phys Sci, POB 999,K2-57, Richland, WA 99352 USA. EM monte.helm@pnnl.com FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Department of Energy's office of Biological and Environmental Research located at Pacific Northwest National Laboratory FX We thank Dr. Aaron Appel, Dr. Simone Raugei and Dr. Eric Wiedner for helpful discussions. This research was supported as part of the work at the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Mass spectrometry was provided at W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's office of Biological and Environmental Research located at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. NR 27 TC 6 Z9 6 U1 1 U2 12 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1434-1948 EI 1099-0682 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD SEP PY 2014 IS 27 SI SI BP 4611 EP 4618 DI 10.1002/ejic.201402250 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AQ6HB UT WOS:000342910200020 ER PT J AU McManamay, RA Utz, RM AF McManamay, Ryan A. Utz, Ryan M. TI Open-Access Databases as Unprecedented Resources and Drivers of Cultural Change in Fisheries Science SO FISHERIES LA English DT Article ID FRESH-WATER FISHES; BIODIVERSITY LOSS; UNITED-STATES; BIG DATA; IMPACT; OCEAN AB Open-access databases with utility in fisheries science have grown exponentially in quantity and scope over the past decade, with profound impacts to our discipline. The management, distillation, and sharing of an exponentially growing stream of open-access data represents several fundamental challenges in fisheries science. Many of the currently available open-access resources may not be universally known among fisheries scientists. We therefore introduce many national- and global-scale open-access databases with applications in fisheries science and provide an example of how they can be harnessed to perform valuable analyses without additional field efforts. We also discuss how the development, maintenance, and utilization of open-access data are likely to pose technical, financial, and educational challenges to fisheries scientists. Such cultural implications that will coincide with the rapidly increasing availability of free data should compel the American Fisheries Society to actively address these problems now to help ease the forthcoming cultural transition. RESUMENen la ultima decada, el numero de bases de datos de acceso abierto con utilidad para la ciencia pesquera ha crecido exponencialmente en cantidad y alcance y su impacto ha sido considerado como muy importante en esta disciplina. El manejo, depuracion e intercambio de datos de acceso abierto representa retos fundamentales en la ciencia pesquera. Muchos de los recursos actualmente disponibles de acceso abierto pueden no ser conocidos por los cientificos pesqueros. Por lo tanto, aqui se presentan varias bases de datos a nivel nacional e internacional de libre acceso con aplicacion en las ciencias pesqueras y se da un ejemplo de como pueden ser aprovechadas para realizar valiosos analisis sin hacer esfuerzos adicionales de trabajo de campo. Tambien se discute como el desarrollo, mantenimiento y uso de las base de datos de libre acceso muy posiblemente representaran retos importantes para los cientificos de la pesca en cuanto a las dimensiones tecnica, financiera y educativa. Tales implicaciones culturales, que coincidiran con la disponibilidad cada vez mayor de datos gratuitos, debieran servir de impulso a la Sociedad Americana de Pesquerias a que volcara activamente su atencion sobre estos problemas con el fin de facilitar la transicion cultural que se avecina. C1 [McManamay, Ryan A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Utz, Ryan M.] Natl Ecol Observ Network, Boulder, CO 80301 USA. RP McManamay, RA (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM utz.ryan@gmail.com FU United States Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Program; U.S. Department of Energy [DE-AC05-00OR22725]; National Science Foundation [EF1138160] FX This research was sponsored by the United States Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Program. This article has been authored by an employee of Oak Ridge National Laboratory, managed by UT Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. R. Utz is supported by National Science Foundation cooperative agreement # EF1138160. NR 50 TC 3 Z9 3 U1 4 U2 18 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0363-2415 EI 1548-8446 J9 FISHERIES JI Fisheries PD SEP PY 2014 VL 39 IS 9 BP 417 EP 425 DI 10.1080/03632415.2014.946128 PG 9 WC Fisheries SC Fisheries GA AQ6GA UT WOS:000342907000008 ER PT J AU Blaschke, DN AF Blaschke, Daniel N. TI Gauge fields on non-commutative spaces and renormalization SO FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS LA English DT Article; Proceedings Paper CT Workshop on Noncommutative Field Theory and Gravity (CORFU) CY SEP 08-15, 2013 CL GREECE DE Non-commutative geometry; gauge field theory ID MODEL AB Constructing renormalizable models on non-commutative spaces constitutes a big challenge. Only few examples of renormalizable theories are known, such as the scalar Grosse-Wulkenhaar model. Gauge fields are even more difficult, since new renormalization techniques are required which are compatible with the inherently non-local setting on the one hand, and also allow to properly treat the gauge symmetry on the other hand. In this proceeding (which is based on my talk given at the "Workshop on Noncommutative Field Theory and Gravity" in Corfu/Greece, September 8-15, 2013), I focus on this last point and present new extensions to existing renormalization schemes (which are known to work for gauge field theories in commutative space) adapted to non-commutative Moyal space. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Blaschke, DN (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. EM dblaschke@lanl.gov NR 26 TC 0 Z9 0 U1 1 U2 1 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0015-8208 EI 1521-3978 J9 FORTSCHR PHYS JI Fortschritte Phys.-Prog. Phys. PD SEP PY 2014 VL 62 IS 9-10 SI SI BP 820 EP 824 DI 10.1002/prop.201400009 PG 5 WC Physics, Multidisciplinary SC Physics GA AQ4XU UT WOS:000342805600015 ER PT J AU Fardad, M Lin, F Jovanovic, MR AF Fardad, Makan Lin, Fu Jovanovic, Mihailo R. TI Design of Optimal Sparse Interconnection Graphs for Synchronization of Oscillator Networks SO IEEE TRANSACTIONS ON AUTOMATIC CONTROL LA English DT Article DE Consensus; convex relaxation; optimization; oscillator synchronization; reweighted l(1) minimization; semidefinite programming; sparse graph ID SPATIALLY INVARIANT-SYSTEMS; DISTRIBUTED CONTROL DESIGN; KURAMOTO; CONTROLLERS; STABILITY AB We study the optimal design of a conductance network as a means for synchronizing a given set of oscillators. Synchronization is achieved when all oscillator voltages reach consensus, and performance is quantified by the mean-square deviation from the consensus value. We formulate optimization problems that address the tradeoff between synchronization performance and the number and strength of oscillator couplings. We promote the sparsity of the coupling network by penalizing the number of interconnection links. For identical oscillators, we establish convexity of the optimization problem and demonstrate that the design problem can be formulated as a semidefinite program. Finally, for special classes of oscillator networks we derive explicit analytical expressions for the optimal conductance values. C1 [Fardad, Makan] Syracuse Univ, Dept Elect Engn & Comp Sci, Syracuse, NY 13244 USA. [Lin, Fu] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Jovanovic, Mihailo R.] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA. RP Fardad, M (reprint author), Syracuse Univ, Dept Elect Engn & Comp Sci, Syracuse, NY 13244 USA. EM makan@syr.edu; fulin@mcs.anl.gov; mi-hailo@umn.edu FU National Science Foundation [CMMI-0927509, CMMI-0927720, CMMI-0644793] FX This work was supported by the National Science Foundation under awards CMMI-0927509 and CMMI-0927720 and under CAREER Award CMMI-0644793. Recommended by Associate Editor S. Zampieri. NR 32 TC 19 Z9 19 U1 1 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9286 EI 1558-2523 J9 IEEE T AUTOMAT CONTR JI IEEE Trans. Autom. Control PD SEP PY 2014 VL 59 IS 9 BP 2457 EP 2462 DI 10.1109/TAC.2014.2301577 PG 6 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA AQ6LO UT WOS:000342924100011 ER PT J AU Sanii, B Martinez-Avila, O Simpliciano, C Zuckermann, RN Habelitz, S AF Sanii, B. Martinez-Avila, O. Simpliciano, C. Zuckermann, R. N. Habelitz, S. TI Matching 4.7-angstrom XRD Spacing in Amelogenin Nanoribbons and Enamel Matrix SO JOURNAL OF DENTAL RESEARCH LA English DT Article DE self-assembly; structure; development; powder diffraction; Fourier transform infrared spectroscopy; secondary protein structure ID X-RAY-DIFFRACTION; BETA-SHEET STRUCTURE; TOOTH ENAMEL; PROTEIN; SPECTROSCOPY; PEPTIDES; FIBRILS; DRIVEN; CD AB The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 angstrom is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of -sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-angstrom XRD spacing confirms the presence of -sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. C1 [Sanii, B.; Zuckermann, R. N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Sanii, B.] Claremont Mckenna Coll, Keck Sci Dept, Claremont, CA 91711 USA. [Sanii, B.] Scripps Coll, Keck Sci Dept, Claremont, CA 91711 USA. [Sanii, B.] Pitzer Coll, Keck Sci Dept, Claremont, CA 91711 USA. [Martinez-Avila, O.; Simpliciano, C.; Habelitz, S.] Univ Calif San Francisco, Dept Prevent & Restorat Dent Sci, San Francisco, CA 94143 USA. RP Habelitz, S (reprint author), Univ Calif San Francisco, Dept Prevent & Restorat Dent Sci, San Francisco, CA 94143 USA. EM stefan.habelitz@ucsf.edu RI Foundry, Molecular/G-9968-2014 FU National Institutes of Health (NIH)/National Institute of Dental and Craniofacial Research (NIDCR) grant [R21-023422]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Drs. Feroz Khan and Wu Li (UCSF) for providing us with amelogenin protein rH174, Dr. Sebnem Inceoglu (UCB) for support of FTIR analysis, and James Holton for support of XRD analysis. This study was funded by National Institutes of Health (NIH)/National Institute of Dental and Craniofacial Research (NIDCR) grant R21-023422. Portions of this work were performed at the Molecular Foundry and the Advanced Light Source, both of which are supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article. NR 30 TC 1 Z9 3 U1 1 U2 6 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0022-0345 EI 1544-0591 J9 J DENT RES JI J. Dent. Res. PD SEP PY 2014 VL 93 IS 9 BP 918 EP 922 DI 10.1177/0022034514544216 PG 5 WC Dentistry, Oral Surgery & Medicine SC Dentistry, Oral Surgery & Medicine GA AQ4MD UT WOS:000342770400013 PM 25048248 ER PT J AU Westphal, AJ Anderson, D Butterworth, AL Frank, DR Lettieri, R Marchant, W Von Korff, J Zevin, D Ardizzone, A Campanile, A Capraro, M Courtney, K Criswell, MN Crumpler, D Cwik, R Gray, FJ Hudson, B Imada, G Karr, J Wah, LLW Mazzucato, M Motta, PG Rigamonti, C Spencer, RC Woodrough, SB Santoni, IC Sperry, G Terry, JN Wordsworth, N Yahnke, T Allen, C Ansari, A Bajt, S Bastien, RK Bassim, N Bechtel, HA Borg, J Brenker, FE Bridges, J Brownlee, DE Burchell, M Burghammer, M Changela, H Cloetens, P Davis, AM Doll, R Floss, C Flynn, G Gainsforth, Z Grun, E Heck, PR Hillier, JK Hoppe, P Huth, J Hvide, B Kearsley, A King, AJ Lai, B Leitner, J Lemelle, L Leroux, H Leonard, A Nittler, LR Ogliore, R Ong, WJ Postberg, F Price, MC Sandford, SA Tresseras, JAS Schmitz, S Schoonjans, T Silversmit, G Simionovici, AS Sole, VA Srama, R Stephan, T Sterken, VJ Stodolna, J Stroud, RM Sutton, S Trieloff, M Tsou, P Tsuchiyama, A Tyliszczak, T Vekemans, B Vincze, L Zolensky, ME AF Westphal, Andrew J. Anderson, David Butterworth, Anna L. Frank, David R. Lettieri, Robert Marchant, William Von Korff, Joshua Zevin, Daniel Ardizzone, Augusto Campanile, Antonella Capraro, Michael Courtney, Kevin Criswell, Mitchell N., III Crumpler, Dixon Cwik, Robert Gray, Fred Jacob Hudson, Bruce Imada, Guy Karr, Joel Wah, Lily Lau Wan Mazzucato, Michele Motta, Pier Giorgio Rigamonti, Carlo Spencer, Ronald C. Woodrough, Stephens B. Santoni, Irene Cimmino Sperry, Gerry Terry, Jean-Noel Wordsworth, Naomi Yahnke, Tom, Sr. Allen, Carlton Ansari, Asna Bajt, Sasa Bastien, Ron K. Bassim, Nabil Bechtel, Hans A. Borg, Janet Brenker, Frank E. Bridges, John Brownlee, Donald E. Burchell, Mark Burghammer, Manfred Changela, Hitesh Cloetens, Peter Davis, Andrew M. Doll, Ryan Floss, Christine Flynn, George Gainsforth, Zack Gruen, Eberhard Heck, Philipp R. Hillier, Jon K. Hoppe, Peter Huth, Joachim Hvide, Brit Kearsley, Anton King, Ashley J. Lai, Barry Leitner, Jan Lemelle, Laurence Leroux, Hugues Leonard, Ariel Nittler, Larry R. Ogliore, Ryan Ong, Wei Ja Postberg, Frank Price, Mark C. Sandford, Scott A. Tresseras, Juan-Angel Sans Schmitz, Sylvia Schoonjans, Tom Silversmit, Geert Simionovici, Alexandre S. Sole, Vicente A. Srama, Ralf Stephan, Thomas Sterken, Veerle J. Stodolna, Julien Stroud, Rhonda M. Sutton, Steven Trieloff, Mario Tsou, Peter Tsuchiyama, Akira Tyliszczak, Tolek Vekemans, Bart Vincze, Laszlo Zolensky, Michael E. TI Stardust Interstellar Preliminary Examination I: Identification of tracks in aerogel SO METEORITICS & PLANETARY SCIENCE LA English DT Article AB Here, we report the identification of 69 tracks in approximately 250 cm(2) of aerogel collectors of the Stardust Interstellar Dust Collector. We identified these tracks through Stardust@home, a distributed internet-based virtual microscope and search engine, in which > 30,000 amateur scientists collectively performed >9 x 10(7) searches on approximately 10(6) fields of view. Using calibration images, we measured individual detection efficiency, and found that the individual detection efficiency for tracks > 2.5 mu m in diameter was >0.6, and was >0.75 for tracks >3 mu m in diameter. Because most fields of view were searched >30 times, these results could be combined to yield a theoretical detection efficiency near unity. The initial expectation was that interstellar dust would be captured at very high speed. The actual tracks discovered in the Stardust collector, however, were due to low-speed impacts, and were morphologically strongly distinct from the calibration images. As a result, the detection efficiency of these tracks was lower than detection efficiency of calibrations presented in training, testing, and ongoing calibration. Nevertheless, as calibration images based on low-speed impacts were added later in the project, detection efficiencies for low-speed tracks rose dramatically. We conclude that a massively distributed, calibrated search, with amateur collaborators, is an effective approach to the challenging problem of identification of tracks of hypervelocity projectiles captured in aerogel. C1 [Westphal, Andrew J.; Anderson, David; Butterworth, Anna L.; Lettieri, Robert; Marchant, William; Von Korff, Joshua; Zevin, Daniel; Gainsforth, Zack; Stodolna, Julien] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Frank, David R.; Bastien, Ron K.] NASA JSC, ESCG, Houston, TX USA. [Ardizzone, Augusto] Red Team, Palermo, Italy. [Campanile, Antonella] Red Team, Reggio Emilia, Italy. [Capraro, Michael] Red Team, Riverview, MI USA. [Courtney, Kevin] Red Team, Ballwin, MO USA. [Criswell, Mitchell N., III] Dog Star Observ, Red Team, Pearce, AZ USA. [Crumpler, Dixon] Red Team, Durham, NC USA. [Cwik, Robert] Red Team, Silver City, NM USA. [Gray, Fred Jacob] Red Team, Hampton, SC USA. [Hudson, Bruce] Red Team, Montreal, PQ, Canada. [Imada, Guy] Red Team, Brookings, OR USA. [Karr, Joel] Red Team, Kansas City, MO USA. [Wah, Lily Lau Wan] Red Team, Singapore, Singapore. [Mazzucato, Michele; Motta, Pier Giorgio] Red Team, Florence, Italy. [Rigamonti, Carlo] Red Team, Moncalieri, Italy. [Spencer, Ronald C.] Red Team, Leominster, MA USA. [Woodrough, Stephens B.] Red Team, St Petersburg, FL USA. [Santoni, Irene Cimmino] Red Team, Upper Saddle River, NJ USA. [Sperry, Gerry] Red Team, Tacoma, WA USA. [Terry, Jean-Noel] Red Team, Tarentaise, France. [Wordsworth, Naomi] Red Team, Wycombe, South Buckingha, England. [Yahnke, Tom, Sr.] Red Team, Louis, MO USA. [Allen, Carlton; Zolensky, Michael E.] NASA JSC, ARES, Houston, TX USA. [Ansari, Asna; Hvide, Brit] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Bajt, Sasa] DESY, Hamburg, Germany. [Bassim, Nabil; Stroud, Rhonda M.] Naval Res Lab, Mat Sci & Technol Div, Washington, DC USA. [Bechtel, Hans A.; Tyliszczak, Tolek] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA USA. [Borg, Janet] IAS Orsay, Orsay, France. [Brenker, Frank E.; Schmitz, Sylvia] Goethe Univ, Geosci Inst, Frankfurt, Germany. [Bridges, John] Univ Leicester, Space Res Ctr, Leicester, Leics, England. [Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Burchell, Mark; Price, Mark C.] Univ Kent, Canterbury, Kent, England. [Burghammer, Manfred; Cloetens, Peter; Tresseras, Juan-Angel Sans; Sole, Vicente A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Changela, Hitesh] George Washington Univ, Washington, DC 20052 USA. [Davis, Andrew M.; Stephan, Thomas] Univ Chicago, Chicago, IL 60637 USA. [Doll, Ryan; Leonard, Ariel; Nittler, Larry R.; Ong, Wei Ja] Washington Univ, St Louis, MO USA. [Flynn, George] SUNY Coll Plattsburgh, Plattsburgh, NY 12901 USA. [Gruen, Eberhard] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Heck, Philipp R.] Field Museum Nat Hist, Chicago, IL 60605 USA. [Hillier, Jon K.; Postberg, Frank; Trieloff, Mario] Heidelberg Univ, Inst Geowissensch, Heidelberg, Germany. [Hoppe, Peter; Huth, Joachim; Leitner, Jan] Max Planck Inst Chem, D-55128 Mainz, Germany. [Kearsley, Anton] Nat Hist Museum, London SW7 5BD, England. [King, Ashley J.] Univ Chicago, Chicago, IL 60637 USA. [King, Ashley J.] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Lai, Barry; Sutton, Steven] Argonne Natl Lab, Adv Photon Source, Chicago, IL USA. [Lemelle, Laurence] Ecole Normale Super Lyon, F-69364 Lyon, France. [Leroux, Hugues] Univ Lyon 1, F-69622 Villeurbanne, France. [Nittler, Larry R.] Carnegie Inst Sci, Washington, DC USA. [Ogliore, Ryan] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Sandford, Scott A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart; Vincze, Laszlo] Univ Ghent, B-9000 Ghent, Belgium. [Simionovici, Alexandre S.] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France. [Srama, Ralf; Sterken, Veerle J.] Univ Stuttgart, IRS, D-70174 Stuttgart, Germany. [Sterken, Veerle J.] TU Braunschweig, IGEP, Braunschweig, Germany. [Sterken, Veerle J.] MPIK, Heidelberg, Germany. [Tsou, Peter] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Tsuchiyama, Akira] Osaka Univ, Osaka, Japan. RP Westphal, AJ (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM westphal@ssl.berkeley.edu RI Leitner, Jan/A-7391-2015; Hoppe, Peter/B-3032-2015; Bajt, Sasa/G-2228-2010; Sans Tresserras, Juan Angel/J-9362-2014; Stroud, Rhonda/C-5503-2008; OI Leitner, Jan/0000-0003-3655-6273; Hoppe, Peter/0000-0003-3681-050X; Sans Tresserras, Juan Angel/0000-0001-9047-3992; Stroud, Rhonda/0000-0001-5242-8015; Burchell, Mark/0000-0002-2680-8943 FU NASA [NNX09AC36G, NNH11AQ61I]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We thank Sean Brennan and Giles Graham for thoughtful comments, and John Bradley for editorial handling. The ISPE consortium gratefully acknowledges the NASA Discovery Program for Stardust, the fourth NASA Discovery mission. AJW, ALB, ZG, RL, DZ, WM, and JVK were supported by NASA grant NNX09AC36G. We thank Steve Boggs for astrophysical soft X-ray spectra. RMS, HCG, and NDB were supported by NASA grant NNH11AQ61I. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 8 TC 12 Z9 12 U1 4 U2 32 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 IS 9 SI SI BP 1509 EP 1521 DI 10.1111/maps.12168 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AQ6HT UT WOS:000342912100001 ER PT J AU Frank, DR Westphal, AJ Zolensky, ME Gainsforth, Z Butterworth, AL Bastien, RK Allen, C Anderson, D Ansari, A Bajt, S Bassim, N Bechtel, HA Borg, J Brenker, FE Bridges, J Brownlee, DE Burchell, M Burghammer, M Changela, H Cloetens, P Davis, AM Doll, R Floss, C Flynn, G Grun, E Heck, PR Hillier, JK Hoppe, P Hudson, B Huth, J Hvide, B Kearsley, A King, AJ Lai, B Leitner, J Lemelle, L Leroux, H Leonard, A Lettieri, R Marchant, W Nittler, LR Ogliore, R Ong, WJ Postberg, F Price, MC Sandford, SA Tresseras, JAS Schmitz, S Schoonjans, T Silversmit, G Simionovici, AS Sole, VA Srama, R Stephan, T Sterken, VJ Stodolna, J Stroud, RM Sutton, S Trieloff, M Tsou, P Tsuchiyama, A Tyliszczak, T Vekemans, B Vincze, L Von Korff, J Wordsworth, N Zevin, D AF Frank, David R. Westphal, Andrew J. Zolensky, Michael E. Gainsforth, Zack Butterworth, Anna L. Bastien, Ronald K. Allen, Carlton Anderson, David Ansari, Asna Bajt, Sasa Bassim, Nabil Bechtel, Hans A. Borg, Janet Brenker, Frank E. Bridges, John Brownlee, Donald E. Burchell, Mark Burghammer, Manfred Changela, Hitesh Cloetens, Peter Davis, Andrew M. Doll, Ryan Floss, Christine Flynn, George Gruen, Eberhard Heck, Philipp R. Hillier, Jon K. Hoppe, Peter Hudson, Bruce Huth, Joachim Hvide, Brit Kearsley, Anton King, Ashley J. Lai, Barry Leitner, Jan Lemelle, Laurence Leroux, Hugues Leonard, Ariel Lettieri, Robert Marchant, William Nittler, Larry R. Ogliore, Ryan Ong, Wei Ja Postberg, Frank Price, Mark C. Sandford, Scott A. Tresseras, Juan-Angel Sans Schmitz, Sylvia Schoonjans, Tom Silversmit, Geert Simionovici, Alexandre S. Sole, Vicente A. Srama, Ralf Stephan, Thomas Sterken, Veerle J. Stodolna, Julien Stroud, Rhonda M. Sutton, Steven Trieloff, Mario Tsou, Peter Tsuchiyama, Akira Tyliszczak, Tolek Vekemans, Bart Vincze, Laszlo Von Korff, Joshua Wordsworth, Naomi Zevin, Daniel TI Stardust Interstellar Preliminary Examination II: Curating the interstellar dust collector, picokeystones, and sources of impact tracks SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID IRON-NICKEL SULFIDES; RADIATION PRESSURE; COMETARY DUST; AEROGEL; PARTICLES; MISSION; FEATURES; GRAINS; DISKS; FOIL AB We discuss the inherent difficulties that arise during "ground truth" characterization of the Stardust interstellar dust collector. The challenge of identifying contemporary interstellar dust impact tracks in aerogel is described within the context of background spacecraft secondaries and possible interplanetary dust particles and beta-meteoroids. In addition, the extraction of microscopic dust embedded in aerogel is technically challenging. Specifically, we provide a detailed description of the sample preparation techniques developed to address the unique goals and restrictions of the Interstellar Preliminary Exam. These sample preparation requirements and the scarcity of candidate interstellar impact tracks exacerbate the difficulties. We also illustrate the role of initial optical imaging with critically important examples, and summarize the overall processing of the collection to date. C1 [Frank, David R.; Bastien, Ronald K.] NASA Johnson Space Ctr, ESCG, Houston, TX 77058 USA. [Westphal, Andrew J.; Gainsforth, Zack; Butterworth, Anna L.; Anderson, David; Lettieri, Robert; Marchant, William; Stodolna, Julien; Von Korff, Joshua; Zevin, Daniel] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA USA. [Zolensky, Michael E.; Allen, Carlton] NASA Johnson Space Ctr, ARES, Houston, TX USA. [Ansari, Asna; Davis, Andrew M.; Heck, Philipp R.; Hvide, Brit] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Bajt, Sasa] DESY, Hamburg, Germany. [Bassim, Nabil; Stroud, Rhonda M.] Naval Res Lab, Mat Sci & Technol Div, Washington, DC USA. [Bechtel, Hans A.; Tyliszczak, Tolek] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA USA. [Borg, Janet] IAS Orsay, Orsay, France. [Brenker, Frank E.; Schmitz, Sylvia] Goethe Univ Frankfurt, Inst Geosci, Frankfurt, Germany. [Bridges, John] Univ Leicester, Space Res Ctr, Leicester, Leics, England. [Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Burchell, Mark; Price, Mark C.] Univ Kent, Canterbury CT2 7NZ, Kent, England. [Burghammer, Manfred; Cloetens, Peter; Tresseras, Juan-Angel Sans; Sole, Vicente A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Changela, Hitesh] George Washington Univ, Washington, DC USA. [Davis, Andrew M.; King, Ashley J.; Stephan, Thomas] Univ Chicago, Chicago, IL 60637 USA. [Doll, Ryan; Floss, Christine; Leonard, Ariel; Ong, Wei Ja] Washington Univ, St Louis, MO USA. [Flynn, George] SUNY Coll Plattsburgh, Plattsburgh, NY 12901 USA. [Gruen, Eberhard; Sterken, Veerle J.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Hillier, Jon K.; Postberg, Frank; Trieloff, Mario] Heidelberg Univ, Inst Geowissensch, Heidelberg, Germany. [Hoppe, Peter; Huth, Joachim; Leitner, Jan] Max Planck Inst Chem, D-55128 Mainz, Germany. [Kearsley, Anton] Nat Hist Museum, London SW7 5BD, England. [Lai, Barry; Sutton, Steven] Argonne Natl Lab, Adv Photon Source, Chicago, IL USA. [Lemelle, Laurence] Ecole Normale Super Lyon, F-69364 Lyon, France. [Leroux, Hugues] Univ Lille 1, Lille, France. [Nittler, Larry R.] Carnegie Inst Sci, Washington, DC USA. [Ogliore, Ryan] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Sandford, Scott A.] NASA Ames Res Ctr, Moffett Field, CA USA. [Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart; Vincze, Laszlo] Univ Ghent, B-9000 Ghent, Belgium. [Simionovici, Alexandre S.] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France. [Srama, Ralf] Univ Stuttgart, IRS, D-70174 Stuttgart, Germany. [Sterken, Veerle J.] TU Braunschweig, IGEP, Braunschweig, Germany. [Tsou, Peter] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Tsuchiyama, Akira] Osaka Univ, Osaka, Japan. RP Frank, DR (reprint author), NASA Johnson Space Ctr, ESCG, Houston, TX 77058 USA. EM david.r.frank@nasa.gov RI Bajt, Sasa/G-2228-2010; Stroud, Rhonda/C-5503-2008; Sans Tresserras, Juan Angel/J-9362-2014; Leitner, Jan/A-7391-2015; Hoppe, Peter/B-3032-2015 OI Stroud, Rhonda/0000-0001-5242-8015; Burchell, Mark/0000-0002-2680-8943; Sans Tresserras, Juan Angel/0000-0001-9047-3992; Leitner, Jan/0000-0003-3655-6273; Hoppe, Peter/0000-0003-3681-050X FU NASA [NNX09AC36G, NNH11AQ61I]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We thank P. Wozniekiewicz and C. Engrand for their thoughtful reviews that greatly improved this manuscript. We also thank the AE John Bradley for his critical input and time and effort spent reviewing the ISPE manuscripts. The ISPE consortium gratefully acknowledges the NASA Discovery Program for Stardust, the fourth NASA Discovery mission. We are thankful for having the privilege of looking after the collection and are gratefully indebted to the 30,000+ dusters who made this possible. AJW, ALB, ZG, RL, DZ, WM and JVK were supported by NASA grant NNX09AC36G. RMS, HCG and NDB were supported by NASA grant NNH11AQ61I. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 40 TC 13 Z9 13 U1 2 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 IS 9 SI SI BP 1522 EP 1547 DI 10.1111/maps.12147 PG 26 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AQ6HT UT WOS:000342912100002 ER PT J AU Bechtel, HA Flynn, GJ Allen, C Anderson, D Ansari, A Bajt, S Bastien, RK Bassim, N Borg, J Brenker, FE Bridges, J Brownlee, DE Burchell, M Burghammer, M Butterworth, AL Changela, H Cloetens, P Davis, AM Doll, R Floss, C Frank, DR Gainsforth, Z Grun, E Heck, PR Hillier, JK Hoppe, P Hudson, B Huth, J Hvide, B Kearsley, A King, AJ Lai, B Leitner, J Lemelle, L Leroux, H Leonard, A Lettieri, R Marchant, W Nittler, LR Ogliore, R Ong, WJ Postberg, F Price, MC Sandford, SA Tresseras, JAS Schmitz, S Schoonjans, T Silversmit, G Simionovici, AS Sole, VA Srama, R Stadermann, FJ Stephan, T Sterken, VJ Stodolna, J Stroud, RM Sutton, S Trieloff, M Tsou, P Tsuchiyama, A Tyliszczak, T Vekemans, B Vincze, L Von Korff, J Westphal, AJ Wordsworth, N Zevin, D Zolensky, ME AF Bechtel, Hans A. Flynn, George J. Allen, Carlton Anderson, David Ansari, Asna Bajt, Sasa Bastien, Ron K. Bassim, Nabil Borg, Janet Brenker, Frank E. Bridges, John Brownlee, Donald E. Burchell, Mark Burghammer, Manfred Butterworth, Anna L. Changela, Hitesh Cloetens, Peter Davis, Andrew M. Doll, Ryan Floss, Christine Frank, David R. Gainsforth, Zack Gruen, Eberhard Heck, Philipp R. Hillier, Jon K. Hoppe, Peter Hudson, Bruce Huth, Joachim Hvide, Brit Kearsley, Anton King, Ashley J. Lai, Barry Leitner, Jan Lemelle, Laurence Leroux, Hugues Leonard, Ariel Lettieri, Robert Marchant, William Nittler, Larry R. Ogliore, Ryan Ong, Wei Ja Postberg, Frank Price, Mark C. Sandford, Scott A. Tresseras, Juan-Angel Sans Schmitz, Sylvia Schoonjans, Tom Silversmit, Geert Simionovici, Alexandre S. Sole, Vicente A. Srama, Ralf Stadermann, Frank J. Stephan, Thomas Sterken, Veerle J. Stodolna, Julien Stroud, Rhonda M. Sutton, Steven Trieloff, Mario Tsou, Peter Tsuchiyama, Akira Tyliszczak, Tolek Vekemans, Bart Vincze, Laszlo Von Korff, Joshua Westphal, Andrew J. Wordsworth, Naomi Zevin, Daniel Zolensky, Michael E. TI Stardust Interstellar Preliminary Examination III: Infrared spectroscopic analysis of interstellar dust candidates SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID COMET 81P/WILD 2; CONSTRAINTS; ORGANICS; RETURN; LIGHT AB Under the auspices of the Stardust Interstellar Preliminary Examination, picokeystones extracted from the Stardust Interstellar Dust Collector were examined with synchrotron Fourier transform infrared (FTIR) microscopy to establish whether they contained extraterrestrial organic material. The picokeystones were found to be contaminated with varying concentrations and speciation of organics in the native aerogel, which hindered the search for organics in the interstellar dust candidates. Furthermore, examination of the picokeystones prior to and post X-ray microprobe analyses yielded evidence of beam damage in the form of organic deposition or modification, particularly with hard X-ray synchrotron X-ray fluorescence. From these results, it is clear that considerable care must be taken to interpret any organics that might be in interstellar dust particles. For the interstellar candidates examined thus far, however, there is no clear evidence of extraterrestrial organics associated with the track and/or terminal particles. However, we detected organic matter associated with the terminal particle in Track 37, likely a secondary impact from the Al-deck of the sample return capsule, demonstrating the ability of synchrotron FTIR to detect organic matter in small particles within picokeystones from the Stardust interstellar dust collector. C1 [Bechtel, Hans A.; Tyliszczak, Tolek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Flynn, George J.] SUNY Coll Plattsburgh, Plattsburgh, NY 12901 USA. [Allen, Carlton; Zolensky, Michael E.] NASA Johnson Space Ctr, ARES, Houston, TX USA. [Anderson, David; Butterworth, Anna L.; Gainsforth, Zack; Lettieri, Robert; Marchant, William; Stodolna, Julien; Von Korff, Joshua; Westphal, Andrew J.; Zevin, Daniel] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA USA. [Ansari, Asna; Heck, Philipp R.; Hvide, Brit; King, Ashley J.] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Bajt, Sasa] DESY, Hamburg, Germany. [Bastien, Ron K.; Frank, David R.] NASA Johnson Space Ctr, ESCG, Houston, TX USA. [Bassim, Nabil; Stroud, Rhonda M.] Naval Res Lab, Mat Sci & Technol Div, Washington, DC USA. [Borg, Janet] IAS Orsay, Orsay, France. [Brenker, Frank E.; Schmitz, Sylvia] Goethe Univ Frankfurt, Inst Geosci, Frankfurt, Germany. [Bridges, John] Univ Leicester, Space Res Ctr, Leicester, Leics, England. [Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Burchell, Mark; Price, Mark C.] Univ Kent, Canterbury, Kent, England. [Burghammer, Manfred; Cloetens, Peter; Tresseras, Juan-Angel Sans; Sole, Vicente A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Changela, Hitesh] George Washington Univ, Washington, DC USA. [Davis, Andrew M.; King, Ashley J.; Stephan, Thomas] Univ Chicago, Chicago, IL 60637 USA. [Doll, Ryan; Floss, Christine; Leonard, Ariel; Ong, Wei Ja; Stadermann, Frank J.] Washington Univ, St Louis, MO USA. [Gruen, Eberhard; Sterken, Veerle J.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Hillier, Jon K.; Postberg, Frank; Trieloff, Mario] Heidelberg Univ, Inst Geowissensch, Heidelberg, Germany. [Hoppe, Peter; Huth, Joachim; Leitner, Jan] Max Planck Inst Chem, D-55128 Mainz, Germany. [Kearsley, Anton] Nat Hist Museum, London SW7 5BD, England. [Lai, Barry; Sutton, Steven] Argonne Natl Lab, Adv Photon Source, Chicago, IL USA. [Lemelle, Laurence] Ecole Normale Super Lyon, F-69364 Lyon, France. [Leroux, Hugues] Univ Lille 1, Lille 1, France. [Nittler, Larry R.] Carnegie Inst Sci, Washington, DC USA. [Ogliore, Ryan] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Postberg, Frank; Srama, Ralf; Sterken, Veerle J.] Univ Stuttgart, Inst Raumfahrtsyst, Stuttgart, Germany. [Sandford, Scott A.] NASA Ames Res Ctr, Moffett Field, CA USA. [Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart; Vincze, Laszlo] Univ Ghent, B-9000 Ghent, Belgium. [Simionovici, Alexandre S.] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France. [Sterken, Veerle J.] TU Braunschweig, Inst Geophys & Extraterrestr Phys, Braunschweig, Germany. [Tsou, Peter] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Tsuchiyama, Akira] Osaka Univ, Osaka, Japan. RP Bechtel, HA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM habechtel@lbl.gov RI Bajt, Sasa/G-2228-2010; Stroud, Rhonda/C-5503-2008; Sans Tresserras, Juan Angel/J-9362-2014; Leitner, Jan/A-7391-2015; Hoppe, Peter/B-3032-2015 OI Stroud, Rhonda/0000-0001-5242-8015; Burchell, Mark/0000-0002-2680-8943; Sans Tresserras, Juan Angel/0000-0001-9047-3992; Leitner, Jan/0000-0003-3655-6273; Hoppe, Peter/0000-0003-3681-050X FU NASA Laboratory Analysis of Returned Samples research grant [NNX11AE15G]; NASA [NNX09AC36G, NNH11AQ61I]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The ISPE consortium gratefully acknowledges the NASA Discovery Program for Stardust, the fourth NASA Discovery mission. GJF was supported by a NASA Laboratory Analysis of Returned Samples research grant NNX11AE15G. AJW, ALB, ZG, RL, DZ, WM, and JVK were supported by NASA grant NNX09AC36G. RMS, HCG, and NDB were supported by NASA grant NNH11AQ61I. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Use of the NSLS, BNL, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 30 TC 6 Z9 6 U1 3 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 IS 9 SI SI BP 1548 EP 1561 DI 10.1111/maps.12125 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AQ6HT UT WOS:000342912100003 ER PT J AU Butterworth, AL Westphal, AJ Tyliszczak, T Gainsforth, Z Stodolna, J Frank, DR Allen, C Anderson, D Ansari, A Bajt, S Bastien, RK Bassim, N Bechtel, HA Borg, J Brenker, FE Bridges, J Brownlee, DE Burchell, M Burghammer, M Changela, H Cloetens, P Davis, AM Doll, R Floss, C Flynn, G Grun, E Heck, PR Hillier, JK Hoppe, P Hudson, B Huth, J Hvide, B Kearsley, A King, AJ Lai, B Leitner, J Lemelle, L Leroux, H Leonard, A Lettieri, R Marchant, W Nittler, LR Ogliore, R Ong, WJ Postberg, F Price, MC Sandford, SA Tresseras, JAS Schmitz, S Schoonjans, T Silversmit, G Simionovici, AS Sole, VA Srama, R Stadermann, FJ Stephan, T Sterken, VJ Stroud, RM Sutton, S Trieloff, M Tsou, P Tsuchiyama, A Vekemans, B Vincze, L Von Korff, J Wordsworth, N Zevin, D Zolensky, ME AF Butterworth, Anna L. Westphal, Andrew J. Tyliszczak, Tolek Gainsforth, Zack Stodolna, Julien Frank, David R. Allen, Carlton Anderson, David Ansari, Asna Bajt, Sasa Bastien, Ron K. Bassim, Nabil Bechtel, Hans A. Borg, Janet Brenker, Frank E. Bridges, John Brownlee, Donald E. Burchell, Mark Burghammer, Manfred Changela, Hitesh Cloetens, Peter Davis, Andrew M. Doll, Ryan Floss, Christine Flynn, George Gruen, Eberhard Heck, Philipp R. Hillier, Jon K. Hoppe, Peter Hudson, Bruce Huth, Joachim Hvide, Brit Kearsley, Anton King, Ashley J. Lai, Barry Leitner, Jan Lemelle, Laurence Leroux, Hugues Leonard, Ariel Lettieri, Robert Marchant, William Nittler, Larry R. Ogliore, Ryan Ong, Wei Ja Postberg, Frank Price, Mark C. Sandford, Scott A. Tresseras, Juan-Angel Sans Schmitz, Sylvia Schoonjans, Tom Silversmit, Geert Simionovici, Alexandre S. Sole, Vicente A. Srama, Ralf Stadermann, Frank J. Stephan, Thomas Sterken, Veerle J. Stroud, Rhonda M. Sutton, Steven Trieloff, Mario Tsou, Peter Tsuchiyama, Akira Vekemans, Bart Vincze, Laszlo Von Korff, Joshua Wordsworth, Naomi Zevin, Daniel Zolensky, Michael E. TI Stardust Interstellar Preliminary Examination IV: Scanning transmission X-ray microscopy analyses of impact features in the Stardust Interstellar Dust Collector SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID NEAR-EDGE STRUCTURE; K-EDGE; ABSORPTION SPECTROSCOPY; MINERALS; AL; XANES; TEMPERATURE; MAGNESIUM; RANGE; MG AB We report the quantitative characterization by synchrotron soft X-ray spectroscopy of 31 potential impact features in the aerogel capture medium of the Stardust Interstellar Dust Collector. Samples were analyzed in aerogel by acquiring high spatial resolution maps and high energy-resolution spectra of major rock-forming elements Mg, Al, Si, Fe, and others. We developed diagnostic screening tests to reject spacecraft secondary ejecta and terrestrial contaminants from further consideration as interstellar dust candidates. The results support an extraterrestrial origin for three interstellar candidates: I1043,1,30 (Orion) is a 3 pg particle with Mg-spinel, forsterite, and an iron-bearing phase. I1047,1,34 (Hylabrook) is a 4 pg particle comprising an olivine core surrounded by low-density, amorphous Mg-silicate and amorphous Fe, Cr, and Mn phases. I1003,1,40 (Sorok) has the track morphology of a high-speed impact, but contains no detectable residue that is convincingly distinguishable from the background aerogel. Twenty-two samples with an anthropogenic origin were rejected, including four secondary ejecta from impacts on the Stardust spacecraft aft solar panels, nine ejecta from secondary impacts on the Stardust Sample Return Capsule, and nine contaminants lacking evidence of an impact. Other samples in the collection included I1029,1,6, which contained surviving solar system impactor material. Four samples remained ambiguous: I1006,2,18, I1044,2,32, and I1092,2,38 were too dense for analysis, and we did not detect an intact projectile in I1044,3,33. We detected no radiation effects from the synchrotron soft X-ray analyses; however, we recorded the effects of synchrotron hard X-ray radiation on I1043,1,30 and I1047,1,34. C1 [Butterworth, Anna L.; Westphal, Andrew J.; Gainsforth, Zack; Stodolna, Julien; Anderson, David; Lettieri, Robert; Marchant, William; Von Korff, Joshua; Zevin, Daniel] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Tyliszczak, Tolek; Bechtel, Hans A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Frank, David R.; Bastien, Ron K.] NASA JSC, ESCG, Houston, TX USA. [Allen, Carlton; Zolensky, Michael E.] NASA JSC, ARES, Houston, TX USA. [Ansari, Asna; Heck, Philipp R.; Hvide, Brit] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Bajt, Sasa] DESY, Hamburg, Germany. [Bassim, Nabil; Stroud, Rhonda M.] Naval Res Lab, Mat Sci & Technol Div, Washington, DC USA. [Borg, Janet] Inst Astrophys Spatiale, Orsay, France. [Brenker, Frank E.; Schmitz, Sylvia] Goethe Univ Frankfurt, Inst Geosci, Frankfurt, Germany. [Bridges, John] Univ Leicester, Space Res Ctr, Leicester, Leics, England. [Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Burchell, Mark; Price, Mark C.] Univ Kent, Canterbury, Kent, England. [Burghammer, Manfred; Cloetens, Peter; Tresseras, Juan-Angel Sans; Sole, Vicente A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Changela, Hitesh] George Washington Univ, Washington, DC USA. [Davis, Andrew M.; King, Ashley J.; Stephan, Thomas] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Doll, Ryan; Floss, Christine; Leonard, Ariel; Ong, Wei Ja; Stadermann, Frank J.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Flynn, George] SUNY Coll Plattsburgh, Dept Phys, Plattsburgh, NY 12901 USA. [Gruen, Eberhard; Sterken, Veerle J.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Hillier, Jon K.; Postberg, Frank; Trieloff, Mario] Heidelberg Univ, Inst Geowissensch, Heidelberg, Germany. [Hoppe, Peter; Huth, Joachim; Leitner, Jan] Max Planck Inst Chem, D-55128 Mainz, Germany. [Kearsley, Anton] Nat Hist Museum, London SW7 5BD, England. [Lai, Barry; Sutton, Steven] Argonne Natl Lab, Adv Photon Source, Chicago, IL USA. [Lemelle, Laurence] Ecole Normale Super Lyon, F-69364 Lyon, France. [Leroux, Hugues] Univ Lille, Lille, France. [Nittler, Larry R.] Carnegie Inst Sci, Washington, DC USA. [Ogliore, Ryan] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Sandford, Scott A.] NASA Ames Res Ctr, Moffett Field, CA USA. [Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart; Vincze, Laszlo] Univ Ghent, B-9000 Ghent, Belgium. [Simionovici, Alexandre S.] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France. [Srama, Ralf; Sterken, Veerle J.] Univ Stuttgart, Inst Raumfahrtsyst, D-70174 Stuttgart, Germany. [Sterken, Veerle J.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterrestr Phys, D-38106 Braunschweig, Germany. [Tsou, Peter] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Tsuchiyama, Akira] Osaka Univ, Osaka, Japan. RP Butterworth, AL (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM annab@ssl.berkeley.edu RI Bajt, Sasa/G-2228-2010; Stroud, Rhonda/C-5503-2008; Sans Tresserras, Juan Angel/J-9362-2014; Leitner, Jan/A-7391-2015; Hoppe, Peter/B-3032-2015 OI Stroud, Rhonda/0000-0001-5242-8015; Burchell, Mark/0000-0002-2680-8943; Sans Tresserras, Juan Angel/0000-0001-9047-3992; Leitner, Jan/0000-0003-3655-6273; Hoppe, Peter/0000-0003-3681-050X FU NASA [NNX09AC36G, NNH11AQ61I]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The ISPE consortium gratefully acknowledges the NASA Discovery Program for Stardust, the fourth NASA Discovery mission. AJW, ALB, ZG, RL, DZ, WM, and JVK were supported by NASA grant NNX09AC36G. RMS, HCG, and NDB were supported by NASA grant NNH11AQ61I. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. We appreciate greatly the thorough reviews by one anonymous reviewer, John Bradley, and associate editor, Christian Koeberl. Their contributions improved the manuscript and helped to clarify key findings. We thank Steve Boggs for helpful discussions regarding X-ray dose estimates in the Interstellar Medium, and for providing diffuse X-ray data. We thank the Natural History Museum, London, for providing most of the standards used for acquiring the XANES spectra library in this work. NR 33 TC 12 Z9 12 U1 0 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 IS 9 SI SI BP 1562 EP 1593 DI 10.1111/maps.12220 PG 32 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AQ6HT UT WOS:000342912100004 ER PT J AU Brenker, FE Westphal, AJ Vincze, L Burghammer, M Schmitz, S Schoonjans, T Silversmit, G Vekemans, B Allen, C Anderson, D Ansari, A Bajt, S Bastien, RK Bassim, N Bechtel, HA Borg, J Bridges, J Brownlee, DE Burchell, M Butterworth, AL Changela, H Cloetens, P Davis, AM Doll, R Floss, C Flynn, G Fougeray, P Frank, DR Gainsforth, Z Grun, E Heck, PR Hillier, JK Hoppe, P Hudson, B Huth, J Hvide, B Kearsley, A King, AJ Lai, B Leitner, J Lemelle, L Leroux, H Leonard, A Lettieri, R Marchant, W Nittler, LR Ogliore, R Ong, WJ Postberg, F Price, MC Sandford, SA Tresseras, JAS Simionovici, AS Sole, VA Srama, R Stadermann, F Stephan, T Sterken, VJ Stodolna, J Stroud, RM Sutton, S Trieloff, M Tsou, P Tsuchiyama, A Tyliszczak, T Von Korff, J Wordsworth, N Zevin, D Zolensky, ME AF Brenker, Frank E. Westphal, Andrew J. Vincze, Laszlo Burghammer, Manfred Schmitz, Sylvia Schoonjans, Tom Silversmit, Geert Vekemans, Bart Allen, Carlton Anderson, David Ansari, Asna Bajt, Sasa Bastien, Ron K. Bassim, Nabil Bechtel, Hans A. Borg, Janet Bridges, John Brownlee, Donald E. Burchell, Mark Butterworth, Anna L. Changela, Hitesh Cloetens, Peter Davis, Andrew M. Doll, Ryan Floss, Christine Flynn, George Fougeray, Patrick Frank, David R. Gainsforth, Zack Gruen, Eberhard Heck, Philipp R. Hillier, Jon K. Hoppe, Peter Hudson, Bruce Huth, Joachim Hvide, Brit Kearsley, Anton King, Ashley J. Lai, Barry Leitner, Jan Lemelle, Laurence Leroux, Hugues Leonard, Ariel Lettieri, Robert Marchant, William Nittler, Larry R. Ogliore, Ryan Ong, Wei Ja Postberg, Frank Price, Mark C. Sandford, Scott A. Tresseras, Juan-Angel Sans Simionovici, Alexandre S. Sole, Vicente A. Srama, Ralf Stadermann, Frank Stephan, Thomas Sterken, Veerle J. Stodolna, Julien Stroud, Rhonda M. Sutton, Steven Trieloff, Mario Tsou, Peter Tsuchiyama, Akira Tyliszczak, Tolek Von Korff, Joshua Wordsworth, Naomi Zevin, Daniel Zolensky, Michael E. TI Stardust Interstellar Preliminary Examination V: XRF analyses of interstellar dust candidates at ESRF ID13 SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID INTERPLANETARY DUST; AEROGEL; OLIVINE AB Here, we report analyses by synchrotron X-ray fluorescence microscopy of the elemental composition of eight candidate impact features extracted from the Stardust Interstellar Dust Collector (SIDC). Six of the features were unambiguous tracks, and two were crater-like features. Five of the tracks are so-called "midnight" tracks-that is, they had trajectories consistent with an origin either in the interstellar dust stream or as secondaries from impacts on the Sample Return Capsule (SRC). In a companion paper reporting synchrotron X-ray diffraction analyses of ISPE candidates, we show that two of these particles contain natural crystalline materials: the terminal particle of track 30 contains olivine and spinel, and the terminal particle of track 34 contains olivine. Here, we show that the terminal particle of track 30, Orion, shows elemental abundances, normalized to Fe, that are close to CI values, and a complex, fine-grained structure. The terminal particle of track 34, Hylabrook, shows abundances that deviate strongly from CI, but shows little fine structure and is nearly homogenous. The terminal particles of other midnight tracks, 29 and 37, had heavy element abundances below detection threshold. A third, track 28, showed a composition inconsistent with an extraterrestrial origin, but also inconsistent with known spacecraft materials. A sixth track, with a trajectory consistent with secondary ejecta from an impact on one of the spacecraft solar panels, contains abundant Ce and Zn. This is consistent with the known composition of the glass covering the solar panel. Neither crater-like feature is likely to be associated with extraterrestrial materials. We also analyzed blank aerogel samples to characterize background and variability between aerogel tiles. We found significant differences in contamination levels and compositions, emphasizing the need for local background subtraction for accurate quantification. C1 [Brenker, Frank E.; Schmitz, Sylvia] Goethe Univ Frankfurt, D-60438 Frankfurt, Germany. [Westphal, Andrew J.; Anderson, David; Butterworth, Anna L.; Gainsforth, Zack; Lettieri, Robert; Marchant, William; Stodolna, Julien; Von Korff, Joshua; Zevin, Daniel] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Vincze, Laszlo; Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart] Univ Ghent, Dept Analyt Chem, B-9000 Ghent, Belgium. [Burghammer, Manfred; Cloetens, Peter; Tresseras, Juan-Angel Sans; Sole, Vicente A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Ansari, Asna; Hvide, Brit; King, Ashley J.] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Bajt, Sasa] DESY, D-22607 Hamburg, Germany. [Bastien, Ron K.; Frank, David R.] NASA, Lyndon B Johnson Space Ctr, ESCG, Houston, TX 77058 USA. [Bassim, Nabil; Stroud, Rhonda M.] Naval Res Lab, Nanoscale Mat Sect, Washington, DC 20375 USA. [Bechtel, Hans A.; Tyliszczak, Tolek] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Borg, Janet] IAS Orsay, Orsay, France. [Bridges, John] Univ Leicester, Space Res Ctr, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Burchell, Mark; Price, Mark C.] Univ Kent, Canterbury CT2 7NR, Kent, England. [Changela, Hitesh] George Washington Univ, Washington, DC 20052 USA. [Davis, Andrew M.; Stephan, Thomas] Univ Chicago, Chicago, IL 60637 USA. [Doll, Ryan; Floss, Christine; Leonard, Ariel; Ong, Wei Ja; Stadermann, Frank] Washington Univ, St Louis, MO 63130 USA. [Flynn, George] SUNY Coll Plattsburgh, Dept Phys, Plattsburgh, NY 12901 USA. [Fougeray, Patrick] Chigy, Burgundy, Chigy, France. [Gruen, Eberhard] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Heck, Philipp R.; Hillier, Jon K.; Postberg, Frank] Inst Geowissensch, D-69120 Heidelberg, Germany. [Hoppe, Peter; Huth, Joachim; Leitner, Jan] Max Planck Inst Chem, D-55128 Mainz, Germany. [Kearsley, Anton] Nat Hist Museum, London SW7 5BD, England. [Lai, Barry; Sutton, Steven] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Lemelle, Laurence] Ecole Normale Super Lyon, F-69364 Lyon, France. [Leroux, Hugues] Univ Lille 1, Unite Mat & Transformat UMR 8207, F-59655 Villeneuve Dascq, France. [Nittler, Larry R.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Ogliore, Ryan] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetary Sci, Honolulu, HI 96822 USA. [Sandford, Scott A.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. [Simionovici, Alexandre S.] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France. [Srama, Ralf; Sterken, Veerle J.] Univ Stuttgart, Inst Raumfahrtsyst, D-70569 Stuttgart, Germany. [Trieloff, Mario] Inst Geowissensch, D-69120 Heidelberg, Germany. [Tsou, Peter] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tsuchiyama, Akira] Osaka Univ, Grad Sch Sci, Dept Earth & Planetary Sci, Osaka, Japan. RP Westphal, AJ (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM westphal@ssl.berkeley.edu RI Bajt, Sasa/G-2228-2010; Stroud, Rhonda/C-5503-2008; Sans Tresserras, Juan Angel/J-9362-2014; Leitner, Jan/A-7391-2015; Hoppe, Peter/B-3032-2015 OI Stroud, Rhonda/0000-0001-5242-8015; Burchell, Mark/0000-0002-2680-8943; Sans Tresserras, Juan Angel/0000-0001-9047-3992; Leitner, Jan/0000-0003-3655-6273; Hoppe, Peter/0000-0003-3681-050X FU NASA [NNX09AC36G, NNH11AQ61I]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; German Science Foundation (DFG) FX This manuscript was improved due to the thoughtful comments of John Bradley. The ISPE consortium gratefully acknowledge the NASA Discovery Program for Stardust, the fourth NASA Discovery mission. AJW, ALB, ZG, RL, DZ, WM, and JVK were supported by NASA grant NNX09AC36G. We thank Steve Boggs for astrophysical soft X-ray spectra. RMS, HCG, and NDB were supported by NASA grant NNH11AQ61I. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-98CH10886. We like to thank the ESRF for the allocated beamtime at ID13, instrumental and technical support. FEB and SS were supported by funding of the German Science Foundation (DFG). NR 28 TC 9 Z9 9 U1 1 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 IS 9 SI SI BP 1594 EP 1611 DI 10.1111/maps.12206 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AQ6HT UT WOS:000342912100005 ER PT J AU Simionovici, AS Lemelle, L Cloetens, P Sole, VA Tresseras, JAS Butterworth, AL Westphal, AJ Gainsforth, Z Stodolna, J Allen, C Anderson, D Ansari, A Bajt, S Bassim, N Bastien, RK Bechtel, HA Borg, J Brenker, FE Bridges, J Brownlee, DE Burchell, M Burghammer, M Changela, H Davis, AM Doll, R Floss, C Flynn, G Frank, DR Grun, E Heck, PR Hillier, JK Hoppe, P Hudson, B Huth, J Hvide, B Kearsley, A King, AJ Lai, B Leitner, J Leonard, A Leroux, H Lettieri, R Marchant, W Nittler, LR Ogliore, R Ong, WJ Postberg, F Price, MC Sandford, SA Schmitz, S Schoonjans, T Silversmit, G Srama, R Stadermann, FJ Stephan, T Sterken, VJ Stroud, RM Sutton, S Trieloff, M Tsou, P Tsuchiyama, A Tyliszczak, T Vekemans, B Vincze, L Von Korff, J Wordsworth, N Zevin, D Zolensky, ME AF Simionovici, Alexandre S. Lemelle, Laurence Cloetens, Peter Sole, Vicente A. Tresseras, Juan-Angel Sans Butterworth, Anna L. Westphal, Andrew J. Gainsforth, Zack Stodolna, Julien Allen, Carlton Anderson, David Ansari, Asna Bajt, Sasa Bassim, Nabil Bastien, Ron K. Bechtel, Hans A. Borg, Janet Brenker, Frank E. Bridges, John Brownlee, Donald E. Burchell, Mark Burghammer, Manfred Changela, Hitesh Davis, Andrew M. Doll, Ryan Floss, Christine Flynn, George Frank, David R. Gruen, Eberhard Heck, Philipp R. Hillier, Jon K. Hoppe, Peter Hudson, Bruce Huth, Joachim Hvide, Brit Kearsley, Anton King, Ashley J. Lai, Barry Leitner, Jan Leonard, Ariel Leroux, Hugues Lettieri, Robert Marchant, William Nittler, Larry R. Ogliore, Ryan Ong, Wei Ja Postberg, Frank Price, Mark C. Sandford, Scott A. Schmitz, Sylvia Schoonjans, Tom Silversmit, Geert Srama, Ralf Stadermann, Frank J. Stephan, Thomas Sterken, Veerle J. Stroud, Rhonda M. Sutton, Steven Trieloff, Mario Tsou, Peter Tsuchiyama, Akira Tyliszczak, Tolek Vekemans, Bart Vincze, Laszlo Von Korff, Joshua Wordsworth, Naomi Zevin, Daniel Zolensky, Michael E. TI Stardust Interstellar Preliminary Examination VI: Quantitative elemental analysis by synchrotron X-ray fluorescence nanoimaging of eight impact features in aerogel SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID COMET 81P/WILD-2; SOLAR-SYSTEM; DUST; GRAINS; CLOUD; GAS AB Hard X-ray, quantitative, fluorescence elemental imaging was performed on the ID22NI nanoprobe and ID22 microprobe beam lines of the European Synchrotron Research facility (ESRF) in Grenoble, France, on eight interstellar candidate impact features in the framework of the NASA Stardust Interstellar Preliminary Examination (ISPE). Three features were unambiguous tracks, and the other five were identified as possible, but not definite, impact features. Overall, we produced an absolute quantification of elemental abundances in the 15 <= Z <= 30 range by m