FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Wang, B
Alhassan, SM
Pantelides, ST
AF Wang, Bin
Alhassan, Saeed M.
Pantelides, Sokrates T.
TI Formation of Large Polysulfide Complexes during the Lithium-Sulfur
Battery Discharge
SO PHYSICAL REVIEW APPLIED
LA English
DT Article
ID RECHARGEABLE BATTERIES; LIQUID ELECTROLYTE; GRAPHENE; PERFORMANCE;
CATHODE; COMPOSITE; MOLECULES; MECHANISM; CAPACITY; HYBRID
AB Sulfur cathodes have much larger capacities than transition-metal-oxide cathodes used in commercial lithium-ion batteries but suffer from unsatisfactory capacity retention and long-term cyclability. Capacity degradation originates from soluble lithium polysulfides gradually diffusing into the electrolyte. Understanding of the formation and dynamics of soluble polysulfides during the discharging process at the atomic level remains elusive, which limits further development of lithium-sulfur (Li-S) batteries. Here we report first-principles molecular dynamics simulations and density functional calculations, through which the discharging products of Li-S batteries are studied. We find that, in addition to simple Li2Sn (1 <= n <= 8) clusters generated from single cyclooctasulfur (S-8) rings, large Li-S clusters form by collectively coupling several different rings to minimize the total energy. At high lithium concentration, a Li-S network forms at the sulfur surfaces. The results can explain the formation of the soluble Li-S complex, such as Li2S8, Li2S6, and Li2S4, and the insoluble Li2S2 and Li2S structures. In addition, we show that the presence of oxygen impurities in graphene, particularly oxygen atoms bonded to vacancies and edges, may stabilize the lithium polysulfides that may otherwise diffuse into the electrolyte.
C1 [Wang, Bin; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
[Alhassan, Saeed M.] Petr Inst, Dept Chem Engn, Abu Dhabi, U Arab Emirates.
[Pantelides, Sokrates T.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA.
[Pantelides, Sokrates T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Wang, B (reprint author), Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA.
EM bin.wang@vanderbilt.edu
RI Wang, Bin/E-8301-2011;
OI Wang, Bin/0000-0001-8246-1422; Alhassan, Saeed/0000-0002-5148-3255
FU Gas Subcommittee Research and Development under Abu Dhabi National Oil
Company (ADNOC); Department of Energy Basic Energy Sciences, Materials
Science and Engineering; McMinn Endowment at Vanderbilt University
FX This work was supported in part by the Gas Subcommittee Research and
Development under Abu Dhabi National Oil Company (ADNOC), by the
Department of Energy Basic Energy Sciences, Materials Science and
Engineering, and by the McMinn Endowment at Vanderbilt University.
NR 53
TC 25
Z9 25
U1 15
U2 111
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2331-7019
J9 PHYS REV APPL
JI Phys. Rev. Appl.
PD SEP 4
PY 2014
VL 2
IS 3
AR 034004
DI 10.1103/PhysRevApplied.2.034004
PG 7
WC Physics, Applied
SC Physics
GA AS5WT
UT WOS:000344338100001
ER
PT J
AU Chang, TM
Dang, LX
AF Chang, Tsun-Mei
Dang, Liem X.
TI Computational Studies of [bmim][PF6]/n-Alcohol Interfaces with Many-Body
Potentials
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID TEMPERATURE IONIC LIQUIDS; SUM-FREQUENCY SPECTROSCOPY;
MOLECULAR-DYNAMICS; PHYSICAL-CHEMISTRY; X-RAY; SURFACE; WATER; CO2;
SEPARATIONS; SIMULATION
AB In this paper, we present the results from molecular dynamics simulations of the equilibrium properties of liquid/liquid interfaces of room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmirn][PF6]) and simple alcohols (i.e., methanol, 1-butanol, and 1-hexanol) at room temperature. Polarizable potential models are employed to describe the interactions among species. Results from our simulations show stable interfaces between the ionic liquid and n-alcohols, and we found that the interfacial widths decrease from methanol to 1-butanol systems and then increase for 1-hexanol interfaces. Angular distribution analysis reveals that the interface induces a strong orientational order of [bmim] and n-alcohol molecules near the interface, with [bmim] extending its butyl group into the alcohol phase, whereas the alcohol has the OH group pointing into the ionic liquid region, which is consistent with the recent sum-frequency-generation experiments. We found the interface to have a significant influence on the dynamics of ionic liquids and n-alcohols. The orientational autocorrelation functions illustrate that [bmirn] rotates more freely near the interface than in the bulk, whereas the rotation of n-alcohol is hindered at the interface. Additionally, the time scale associated with the diffusion along the interfacial direction is found to be faster for [bmim] but slowed down for n-alcohols approaching the interface. We also calculate the dipole moment of n-alcohols as a function of the distance normal to the interface. We found that, even though methanol and 1-butanol have different dipole moments in bulk phase, they reach a similar value at the interface.
C1 [Chang, Tsun-Mei] Univ Wisconsin, Dept Chem, Parkside, WI 53141 USA.
[Dang, Liem X.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA.
RP Chang, TM (reprint author), Univ Wisconsin, Dept Chem, Parkside, WI 53141 USA.
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Chemical Sciences, Geosciences, and Biosciences
FX This work was supported by the U.S. Department of Energy, Office of
Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and
Biosciences. Pacific Northwest National Laboratory is a multiprogram
national laboratory operated for the Department of Energy by Battelle.
The calculations were carried out using computer resources provided by
the Office of Basic Energy Sciences.
NR 57
TC 2
Z9 2
U1 3
U2 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 4
PY 2014
VL 118
IS 35
BP 7186
EP 7193
DI 10.1021/jp405910k
PG 8
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AO4UV
UT WOS:000341337800002
PM 24063438
ER
PT J
AU Cave, RJ
Newton, MD
AF Cave, Robert J.
Newton, Marshall D.
TI Multistate Treatments of the Electronic Coupling in
Donor-Bridge-Acceptor Systems: Insights and Caveats from a Simple Model
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID INTRAMOLECULAR CHARGE-TRANSFER; GENERALIZED MULLIKEN-HUSH;
PROTON-TRANSFER REACTIONS; AB-INITIO CALCULATIONS; DNA PI-STACKS;
DIABATIC STATES; BLOCK DIAGONALIZATION; TUNNELING CURRENTS;
MATRIX-ELEMENTS; CONFIGURATIONAL UNIFORMITY
AB We use a simple one-dimensional delta function electronic structure model (dfm) to investigate the results of a pair of multistate diabatization techniques (i.e., based on n states, with n >= 2) for linear DBA and DBBA (donor-bridge-acceptor) electron-transfer systems. In particular, we focus on the physical meaning of the couplings obtained from multistate methods and their relationship to two-state (n = 2) coupling elements. On the basis of the simple dfm approach, which allows exact as well as finite basis set treatment and has no many-electron effects, we conclude that for orthogonal diabatic states, it is difficult to assign clear physical significance to multistate matrix elements for coupling beyond nearest-neighbor contacts. The implications of these results for more complex multistate many-electron treatments are discussed. It is emphasized that physically meaningful coupling elements must involve states that are orthogonal, either explicitly or implicitly.
C1 [Cave, Robert J.] Harvey Mudd Coll, Dept Chem, Claremont, CA 91711 USA.
[Newton, Marshall D.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
RP Cave, RJ (reprint author), Harvey Mudd Coll, Dept Chem, Claremont, CA 91711 USA.
EM Robert_Cave@hmc.edu; Newton@bnl.gov
FU National Science Foundation [CHE-0353199]; Harvey Mudd College; The
Division of Chemical Sciences, Geosciences, and Biosciences, Office of
Basic Energy Sciences of the U.S. Department of Energy
[DE-AC02-98CH10886]
FX R.J.C. gratefully acknowledges financial support from the National
Science Foundation (CHE-0353199) and from Harvey Mudd College. The
Division of Chemical Sciences, Geosciences, and Biosciences, Office of
Basic Energy Sciences of the U.S. Department of Energy is gratefully
acknowledged for funding the research carried out by M.D.N. through
Grant DE-AC02-98CH10886. We are also grateful to the reviewers for
careful reading and helpful suggestions that both clarified the
manuscript and suggested new avenues for investigation.
NR 89
TC 7
Z9 7
U1 0
U2 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 4
PY 2014
VL 118
IS 35
BP 7221
EP 7234
DI 10.1021/jp408913k
PG 14
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AO4UV
UT WOS:000341337800006
PM 24266545
ER
PT J
AU Alfonso, DR
AF Alfonso, Dominic R.
TI Kinetic Monte Carlo Simulation of CO Adsorption on Sulfur-Covered
Pd(100)
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID SINGLE-CRYSTAL; CARBON-MONOXIDE; ADSORBATE INTERACTIONS; HYDROGEN;
SURFACE; DISSOCIATION; PALLADIUM; FUEL; LEED; H-2
AB The use of atomistic Kinetic Monte Carlo method was explored to examine the influence of sulfur poisoning on CO adsorption on Pd(100) surface. The model explicitly incorporates key elementary processes such as CO adsorption and CO desorption including diffusion of surface CO and S species. Relevant energetic and kinetic parameters were derived using information calculated from density functional theory as a starting point. Kinetic Monte Carlo simulation was performed to determine relevant observables such as CO saturation coverage as a function of amount of preadsorbed sulfur and to predict temperature programmed desorption spectra.
C1 US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
RP Alfonso, DR (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
EM alfonso@netl.doe.gov
FU United States Government
FX Valuable advice by D. Liu and K. Reuter on KMC simulations is strongly
acknowledged. This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of the
author(s) expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof.
NR 45
TC 1
Z9 1
U1 1
U2 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 4
PY 2014
VL 118
IS 35
BP 7306
EP 7313
DI 10.1021/jp4115817
PG 8
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AO4UV
UT WOS:000341337800017
PM 24494801
ER
PT J
AU Myshakin, EM
Makaremi, M
Romanov, VN
Jordan, KD
Guthrie, GD
AF Myshakin, Evgeniy M.
Makaremi, Meysam
Romanov, Vyacheslav N.
Jordan, Kenneth D.
Guthrie, George D.
TI Molecular Dynamics Simulations of Turbostratic Dry and Hydrated
Montmorillonite with Intercalated Carbon Dioxide
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID X-RAY-DIFFRACTION; DENSITY-FUNCTIONAL THEORY; FORCE-FIELD; DIOCTAHEDRAL
SMECTITES; ELECTRON-DIFFRACTION; NA-MONTMORILLONITE; CA-MONTMORILLONITE;
CO2 SEQUESTRATION; ILLITE SMECTITE; PART I
AB Molecular dynamics simulations using classical force fields were carried out to study energetic and structural properties of rotationally disordered clay mineral water CO, systems at pressure and temperature relevant to geological carbon storage. The simulations show that turbostratic stacking of hydrated Na- and Ca-montmorillonite and hydrated montmorillonite with intercalated carbon dioxide is an energetically demanding process accompanied by an increase in the interlayer spacing. On the other hand, rotational disordering of dry or nearly dry smectite systems can be energetically favorable. The distributions of interlayer species are calculated as a function of the rotational angle between adjacent day layers.
C1 [Myshakin, Evgeniy M.; Makaremi, Meysam; Romanov, Vyacheslav N.; Jordan, Kenneth D.; Guthrie, George D.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
[Myshakin, Evgeniy M.] URS Corp, South Pk, PA 15129 USA.
[Makaremi, Meysam; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA.
RP Myshakin, EM (reprint author), Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA.
EM Evgeniy.Myshakin@netl.doe.gov
RI Romanov, Vyacheslav/C-6467-2008
OI Romanov, Vyacheslav/0000-0002-8850-3539
FU National Energy Technology Laboratory under the RES
[4000.4.641.061.002.254, DE-FE0004000]; Department of Energy, National
Energy Technology Laboratory, an agency of the United States Government,
through URS Energy and Construction, Inc.
FX This technical effort was performed in support of the National Energy
Technology Laboratory's ongoing research in Subtask
4000.4.641.061.002.254 under the RES Contract DE-FE0004000. The
simulations were carried put on the NETL High-Performance Computer for
Energy and the Environment (HPCEE) and on the computer clusters in the
University of Pittsburgh's Center for Simulation and Modeling. This
project was funded by the Department of Energy, National Energy
Technology Laboratory, an agency of the United States Government,
through a support contract with URS Energy and Construction, Inc.
Neither the United States Government nor any agency thereof, nor any of
their employees, nor URS Energy & Construction, Inc., nor any of their
employees, makes any warranty, expressed or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof.
NR 68
TC 7
Z9 7
U1 1
U2 34
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 4
PY 2014
VL 118
IS 35
BP 7454
EP 7468
DI 10.1021/jp500221w
PG 15
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AO4UV
UT WOS:000341337800034
PM 24745358
ER
PT J
AU Chaka, AM
Felmy, AR
AF Chaka, Anne M.
Felmy, Andrew R.
TI Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; WET SUPERCRITICAL CO2; JANAF THERMOCHEMICAL
TABLES; EMPIRICAL DISPERSION TERM; PERIODIC HARTREE-FOCK; RATE
THERMAL-ANALYSIS; X-RAY-DIFFRACTION; CRYSTAL-STRUCTURE; INTERACTION
ENERGIES; MINERAL CARBONATION
AB An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Emzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O-2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.
C1 [Chaka, Anne M.; Felmy, Andrew R.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Chaka, AM (reprint author), Pacific NW Natl Lab, POB 999,MS K8-96, Richland, WA 99352 USA.
FU Geosciences Research Program in the U.S. Department of Energy, Office of
Basic Energy Sciences, Division of Chemical Sciences, Geosciences
Biosciences; U.S. Department of Energy's Office of Biological and
Environmental Research
FX This work was supported by the Geosciences Research Program in the U.S.
Department of Energy, Office of Basic Energy Sciences, Division of
Chemical Sciences, Geosciences & Biosciences. A portion of this research
was performed using the computational resources of EMSL, a national
scientific user facility sponsored by the U.S. Department of Energy's
Office of Biological and Environmental Research and located at Pacific
Northwest National Laboratory.
NR 133
TC 8
Z9 8
U1 6
U2 70
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 4
PY 2014
VL 118
IS 35
BP 7469
EP 7488
DI 10.1021/jp500271n
PG 20
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AO4UV
UT WOS:000341337800035
PM 24679248
ER
PT J
AU Miliordos, E
Apra, E
Xantheas, SS
AF Miliordos, Evangelos
Apra, Edoardo
Xantheas, Sotiris S.
TI Benchmark Theoretical Study of the pi-pi Binding Energy in the Benzene
Dimer
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID INTERMOLECULAR INTERACTION ENERGIES; CORRELATED MOLECULAR CALCULATIONS;
PLESSET PERTURBATION-THEORY; GAUSSIAN-BASIS SETS; SUPRAMOLECULAR
CHEMISTRY; CCSD(T) CALCULATIONS; COUPLED-CLUSTER; WAVE-FUNCTIONS;
RECOGNITION; SURFACE
AB We establish a new estimate for the binding energy between two benzene molecules in the parallel-displaced (PD) conformation by systematically converging (i) the intra- and intermolecular geometry at the minimum, (ii) the expansion of the orbital basis set, and (iii) the level of electron correlation. The calculations were performed at the second-order Moller-Plesset perturbation (MP2) and the coupled cluster including singles, doubles, and a perturbative estimate of triples replacement [CCSD(T)] levels of electronic structure theory. At both levels of theory, by including results corrected for basis set superposition error (BSSE), we have estimated the complete basis set (CBS) limit by employing the family of Dunning's correlation-consistent polarized valence basis sets. The largest MP2 calculation was performed with the cc-pV6Z basis set (2772 basis functions), whereas the largest CCSD(T) calculation was with the cc-pV5Z basis set (1752 basis functions). The cluster geometries were optimized with basis sets up to quadruple-zeta quality, observing that both its intra- and intermolecular parts have practically converged with the triple-C quality sets. The use of converged geometries was found to play an important role for obtaining accurate estimates for the CBS limits. Our results demonstrate that the binding energies with the families of the plain (cc-pVnZ) and augmented (aug-cc-pVnZ) sets converge [within <0.01 kcal/mol for MP2 and <0.15 kcal/mol for CCSD(T)] to the same CBS limit. In addition, the average of the uncorrected and BSSE-corrected binding energies was found to converge to the same CBS limit much faster than either of the two constituents (uncorrected or BSSE-corrected binding energies). Due to the fact that the family of augmented basis sets (especially for the larger sets) causes serious linear dependency problems, the plain basis sets (for which no linear dependencies were found) are deemed as a more efficient and straightforward path for obtaining an accurate CBS limit. We considered extrapolations of the uncorrected (Delta E) and BSSE-corrected (Delta E-cp) binding energies, their average value (Delta E-ave), as well as the average of the latter over the plain and augmented sets (Delta(E) over tilde (ave)) with the cardinal number of the basis set n. Our best estimate of the CCSD(T)/CBS limit for the pi-pi binding energy in the PD benzene dimer is D-e = -2.65 +/- 0.02 kcal/mol. The best CCSD(T)/cc-pV5Z calculated value is -2.62 kcal/mol, just 0.03 kcal/mol away from the CBS limit. For comparison, the MP2/CBS limit estimate is -5.00 +/- 0.01 kcal/mol, demonstrating a 90% overbinding with respect to CCSD(T). The spin-component-scaled (SCS) MP2 variant was found to closely reproduce the CCSD(T) results for each basis set, while scaled opposite spin (SOS) MP2 yielded results that are too low when compared to CCSD(T).
C1 [Miliordos, Evangelos; Xantheas, Sotiris S.] Pacific NW Natl Lab, Phys Sci Div, Richland, WA 99352 USA.
[Apra, Edoardo] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Xantheas, SS (reprint author), Pacific NW Natl Lab, Phys Sci Div, 902 Battelle Blvd,POB 999,MS K1-83, Richland, WA 99352 USA.
EM sotiris.xantheas@pnnl.gov
RI Apra, Edoardo/F-2135-2010; Xantheas, Sotiris/L-1239-2015
OI Apra, Edoardo/0000-0001-5955-0734;
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Chemical Sciences, Geosciences and Biosciences; Department of Energy's
Office of Biological and Environmental Research; Office of Science of
the U.S. Department of Energy [DE-AC02-05CH11231]
FX We thank Dr. Karol Kowalski of PNNL for many helpful discussions and a
critical review of the manuscript. This work was supported by the U.S.
Department of Energy, Office of Basic Energy Sciences, Division of
Chemical Sciences, Geosciences and Biosciences (E.M. and S.S.X.).
Pacific Northwest National Laboratory (PNNL) is a multiprogram national
laboratory operated for DOE by Battelle. A portion of this research was
performed using the Molecular Science Computing Facility (MSCF) in EMSL,
a national scientific user facility sponsored by the Department of
Energy's Office of Biological and Environmental Research and located at
PNNL. This research also used resources of the National Energy Research
Scientific Computing Center, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
NR 61
TC 24
Z9 24
U1 3
U2 42
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 4
PY 2014
VL 118
IS 35
BP 7568
EP 7578
DI 10.1021/jp5024235
PG 11
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AO4UV
UT WOS:000341337800044
PM 24761749
ER
PT J
AU Heine, N
Yacovitch, TI
Schubert, F
Brieger, C
Neumark, DM
Asmis, KR
AF Heine, Nadja
Yacovitch, Tara I.
Schubert, Franziska
Brieger, Claudia
Neumark, Daniel M.
Asmis, Knut R.
TI Infrared Photodissociation Spectroscopy of Microhydrated Nitrate-Nitric
Acid Clusters NO3-(HNO3)(m)(H2O)(n)
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID HYDROGEN DINITRATE ION; VIBRATIONAL-SPECTRA; HARTREE-FOCK; COMPLEXES;
DENSITY; PROTON; HNO3; CONFIGURATION; DECOMPOSITION; DISSOCIATION
AB Infrared multiple photon dissociation (IRMPD) spectra of NO3-(HNO3)(m)(H2O) (H-2)(z) with m = 1-3, up to n = 8 and z >= 1, are measured in the fingerprint region (550-1880 cm(-1)), directly probing the NO-stretching modes, as well as bending and other lower frequency modes. The assignment of the spectra is aided by electronic structure calculations. The IRMPD spectrum of the m = 1, n = 0 cluster is distinctly different from all the other measured spectra as a result of strong hydrogen bonding, leading to an equally shared proton in between two nitrate moieties (O2NO-center dot center dot center dot H+center dot center dot center dot ONO2-). It exhibits a strong absorption at 877 cm(-1) and lacks the characteristic NO2-antisymmetric stretching/NOH-bending mode absorption close to 1650 cm(-1). Addition of at least one more nitric acid molecule or two more water molecules weakens the hydrogen bond network, breaking the symmetry of this arrangement and leading to localization of the proton near one of the nitrate cores, effectively forming HNO3 hydrogen-bonded to NO3-. Not all IR active modes are observed in the IRMPD spectra of the bare nitrate-nitric acid clusters. Addition of a water or a hydrogen molecule lowers the dissociation limit of the complexes and relaxes (H2O) or lifts (H-2) this IRMPD transparency.
C1 [Heine, Nadja; Schubert, Franziska; Brieger, Claudia; Asmis, Knut R.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany.
[Yacovitch, Tara I.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Asmis, Knut R.] Univ Leipzig, Wilhelm Ostwald Inst Phys & Theoret Chem, D-04103 Leipzig, Germany.
[Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA.
RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM dneumark@berkeley.edu; knut.asmis@uni-leipzig.de
RI Asmis, Knut/N-5408-2014; Heine, Nadja/G-8839-2013; Neumark,
Daniel/B-9551-2009;
OI Asmis, Knut/0000-0001-6297-5856; Neumark, Daniel/0000-0002-3762-9473;
Lentz, Claudia/0000-0002-1876-9331
FU European Community [226716]; Air Force Office of Scientific Research
[FA9550-12-1-1060]; National Science and Engineering Research Council of
Canada (NSERC)
FX We thank the Stichting voor Fundamenteel Onderzoek der Materie (FOM) for
granting the required beam time and greatly appreciate the skill and
assistance of the FELIX staff. This research is funded by the European
Community's Seventh Framework Program (FP7/2007-2013, Grant 226716) and
the Air Force Office of Scientific Research (FA9550-12-1-1060). T.I.Y.
thanks the National Science and Engineering Research Council of Canada
(NSERC) for a postgraduate scholarship.
NR 62
TC 10
Z9 10
U1 3
U2 40
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 4
PY 2014
VL 118
IS 35
BP 7613
EP 7622
DI 10.1021/jp412222q
PG 10
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA AO4UV
UT WOS:000341337800048
PM 24666321
ER
PT J
AU Sassi, M
Carter, DJ
Uberuaga, BP
Stanek, CR
Mancera, RL
Marks, NA
AF Sassi, Michel
Carter, Damien J.
Uberuaga, Blas P.
Stanek, Christopher R.
Mancera, Ricardo L.
Marks, Nigel A.
TI Hydrogen Bond Disruption in DNA Base Pairs from C-14 Transmutation
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ELECTRON-DENSITIES;
SOLID-STATE; REPLICATION; DECAY
AB Recent ab initio molecular dynamics simulations have shown that radioactive carbon does not normally fragment DNA bases when it decays. Motivated by this finding, density functional theory and Bader analysis have been used to quantify the effect of C --> N transmutation on hydrogen bonding in DNA base pairs. We find that C-14 decay has the potential to significantly alter hydrogen bonds in a variety of ways including direct proton shuttling (thymine and cytosine), thermally activated proton shuttling (guanine), and hydrogen bond breaking (cytosine). Transmutation substantially modifies both the absolute and relative strengths of the hydrogen bonding pattern, and in two instances (adenine and cytosine), the density at the critical point indicates development of mild covalent character. Since hydrogen bonding is an important component of Watson-Crick pairing, these C-14-induced modifications, while infrequent, may trigger errors in DNA transcription and replication.
C1 [Sassi, Michel; Carter, Damien J.] Curtin Univ, Nanochem Res Inst, Perth, WA 6845, Australia.
[Sassi, Michel; Carter, Damien J.] Curtin Univ, Dept Chem, Perth, WA 6845, Australia.
[Sassi, Michel] Pacific NW Natl Lab, Div Phys Sci, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA.
[Uberuaga, Blas P.; Stanek, Christopher R.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
[Mancera, Ricardo L.] Curtin Univ, CHIRI Biosci, Sch Biomed Sci, Perth, WA 6845, Australia.
[Marks, Nigel A.] Curtin Univ, Discipline Phys & Astron, Perth, WA 6845, Australia.
RP Marks, NA (reprint author), Curtin Univ, Discipline Phys & Astron, GPO Box U1987, Perth, WA 6845, Australia.
EM N.Marks@curtin.edu.au
RI Marks, Nigel/F-6084-2010; Sassi, Michel/A-6080-2011; Carter,
Damien/H-9768-2012
OI Marks, Nigel/0000-0003-2372-1284; Sassi, Michel/0000-0003-2582-3735;
FU Australian Research Council (ARC) [DP1097076]; ARC [FT120100924]
FX The project used advanced computational resources provided by the iVEC
facility at Murdoch University. The authors thank the Australian
Research Council (ARC) for support under Discovery Project DP1097076,
and N.A.M. thanks the ARC for a fellowship (FT120100924).
NR 38
TC 0
Z9 0
U1 0
U2 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD SEP 4
PY 2014
VL 118
IS 35
BP 10430
EP 10435
DI 10.1021/jp508118f
PG 6
WC Chemistry, Physical
SC Chemistry
GA AO4US
UT WOS:000341337500013
PM 25127298
ER
PT J
AU Shkrob, IA
Marin, TW
Wishart, JF
Grills, DC
AF Shkrob, Ilya A.
Marin, Timothy W.
Wishart, James F.
Grills, David C.
TI Radiation Stability of Cations in Ionic Liquids. 5. Task-Specific Ionic
Liquids Consisting of Biocompatible Cations and the Puzzle of Radiation
Hypersensitivity
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID ELECTRON-SPIN-RESONANCE; CRYSTALLINE CHOLINE CHLORIDE; IRRADIATED
SINGLE-CRYSTALS; SOLUBILIZING METAL-OXIDES; DEEP EUTECTIC SOLVENTS;
GLYCYL RADICAL ENZYMES; PULSE-RADIOLYSIS; SOLVATION DYNAMICS;
IONIZING-RADIATION; 2-PHOTON IONIZATION
AB In 1953, an accidental discovery by Melvin Calvin and co-workers provided the first example of a solid (the a-polymorph of choline chloride) showing hypersensitivity to ionizing radiation: under certain conditions, the radiolytic yield of decomposition approached 5 x 10(4) per 100 eV (which is 4 orders of magnitude greater than usual values), suggesting an uncommonly efficient radiation-induced chain reaction. Twenty years later, the still-accepted mechanism for this rare condition was suggested by Martyn Symons, but no validation for this mechanism has been supplied. Meanwhile, ionic liquids and deep eutectic mixtures that are based on choline, betainium, and other derivitized natural amino compounds are presently finding an increasing number of applications as diluents in nuclear separations, where the constituent ions are exposed to ionizing radiation that is emitted by decaying radionuclides. Thus, the systems that are compositionally similar to radiation hypersensitive solids are being considered for use in high radiation fields, where this property is particularly undesirable! In Part 5 of this series on organic cations, we revisit the phenomenon of radiation hypersensitivity and explore mechanistic aspects of radiation-induced reactions involving this class of task-specific, biocompatible, functionalized cations, both in ionic liquids and in reference crystalline compounds. We demonstrate that Symons' mechanism needs certain revisions and rethinking, and suggest its modification. Our reconsideration suggests that there cannot be conditions leading to hypersensitivity in ionic liquids.
C1 [Shkrob, Ilya A.; Marin, Timothy W.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Marin, Timothy W.] Benedictine Univ, Dept Chem, Lisle, IL 60532 USA.
[Wishart, James F.; Grills, David C.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
RP Shkrob, IA (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM shkrob@anl.gov
RI Wishart, James/L-6303-2013; Grills, David/F-7196-2016
OI Wishart, James/0000-0002-0488-7636; Grills, David/0000-0001-8349-9158
FU U.S. Department of Energy Office of Science, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences, and Biosciences
[DE-AC02-06CH11357, DE-AC02-98CH10886]; DOE SISGR grant; U.S. Department
of Energy Office of Science laboratory [DE-AC02-06CH11357]
FX We thank D. Quigley, S. Chemerisov, Y. Portilla, B. Layne and S. Ramati
for technical support. This material is based upon work supported by the
U.S. Department of Energy Office of Science, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences, and Biosciences
under Award Numbers DE-AC02-06CH11357 (Argonne) and DE-AC02-98CH10886
(Brookhaven). This research used resources of the LEAF Facility of the
Brookhaven Accelerator Center for Energy Research, which is a DOE Office
of Science User Facility. Programmatic support via a DOE SISGR grant "An
Integrated Basic Research Program for Advanced Nuclear Energy
Separations Systems Based on Ionic Liquids" is gratefully acknowledged.
The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.
NR 121
TC 3
Z9 3
U1 6
U2 47
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD SEP 4
PY 2014
VL 118
IS 35
BP 10477
EP 10492
DI 10.1021/jp5049716
PG 16
WC Chemistry, Physical
SC Chemistry
GA AO4US
UT WOS:000341337500018
PM 25127187
ER
PT J
AU al-Wahish, A
Jalarvo, N
Bi, ZH
Herwig, KW
Bridges, C
Paranthaman, MP
Mandrus, D
AF al-Wahish, Amal
Jalarvo, Niina
Bi, Zhonghe
Herwig, K. W.
Bridges, Craig
Paranthaman, M. P.
Mandrus, D.
TI Quasi-Elastic Neutron Scattering Reveals Fast Proton Diffusion in
Ca-Doped LaPO4
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID SR-SUBSTITUTED LAPO4; LANTHANUM ORTHOPHOSPHATE; CONDUCTION;
SRCE0.95YB0.05H0.02O2.985; VISUALIZATION; PRINCIPLES; MECHANISM;
PROSPECTS; DYNAMICS; CRYSTAL
AB We have investigated the diffusion dynamics of protons in hydrated 4.2% Ca-doped LaPO4, a candidate electrolyte for proton-conducting intermediate temperature fuel cells. The macroscopic and microscopic dynamics have been studied using electrochemical impedance spectroscopy (EIS) and quasi-elastic neutron scattering (QENS), respectively. The conductivity of the bulk hydrated sample was determined in the temperature range of 500-850 degrees C by EIS and showed a clear signature of proton conductivity with an activation energy of about 1.0 eV. The QENS experiment revealed a fast dynamical process below 500 degrees C that was not observed by EIS. The activation energy of the fast proton diffusion is 0.09 eV in the temperature range from 150 degrees C to 500 degrees C.
C1 [al-Wahish, Amal; Mandrus, D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Jalarvo, Niina] Oak Ridge Natl Lab, Forschungszentrum Julich, JCNS, Outstn Spallat Neutron Source SNS, Oak Ridge, TN 37831 USA.
[Bi, Zhonghe; Bridges, Craig; Paranthaman, M. P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Herwig, K. W.] Oak Ridge Natl Lab, Instrument & Source Design Div, Oak Ridge, TN 37861 USA.
[Mandrus, D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Mandrus, D.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Mandrus, D (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
EM dmandrus@utk.edu
RI Paranthaman, Mariappan/N-3866-2015; Jalarvo, Niina/Q-1320-2015
OI Paranthaman, Mariappan/0000-0003-3009-8531; Jalarvo,
Niina/0000-0003-0644-6866
FU U.S. Department of Energy (DOE), Basic Energy Sciences (BES) Materials
Sciences and Engineering Division; U.S. Department of Energy, Basic
Energy Sciences (B.E.S.) Scientific User Facilities Division; Research
Centre of Julich; Division of Scientific User Facilities, Office of
Basic Energy Sciences, U.S. Department of Energy
FX This work was supported by the U.S. Department of Energy (DOE), Basic
Energy Sciences (BES) Materials Sciences and Engineering Division
(A.A.W., Z.B., C.B., M.P.P., and D.M.), by the U.S. Department of
Energy, Basic Energy Sciences (B.E.S.) Scientific User Facilities
Division (K.W.H.), and by the Research Centre of Julich (N.J.). We would
like to thank T. Norby for suggesting that LaPO4 would make a
good system for QENS studies. We thank L. Tetard and S. Tang for
assistance with the SEM measurements. The SEM work of this research was
conducted at the Center for Nanophase Materials Sciences, which is
sponsored by the Division of Scientific User Facilities, Office of Basic
Energy Sciences, U.S. Department of Energy.
NR 33
TC 5
Z9 5
U1 2
U2 23
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD SEP 4
PY 2014
VL 118
IS 35
BP 20112
EP 20121
DI 10.1021/jp5048425
PG 10
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AO4UU
UT WOS:000341337700008
ER
PT J
AU Sambasivarao, SV
Liu, Y
Horan, JL
Seifert, S
Herring, AM
Maupin, CM
AF Sambasivarao, Somisetti V.
Liu, Yuan
Horan, James L.
Seifert, Soenke
Herring, Andrew M.
Maupin, C. Mark
TI Enhancing Proton Transport and Membrane Lifetimes in Perfluorosulfonic
Acid Proton Exchange Membranes: A Combined Computational and
Experimental Evaluation of the Structure and Morphology Changes Due to
H3PW12O40 Doping
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; PERFLUORINATED IONOMER MEMBRANES;
POLYMER ELECTROLYTE MEMBRANES; FUEL-CELL APPLICATIONS; X-RAY-SCATTERING;
COMPOSITE MEMBRANES; HETEROPOLY ACIDS; HYDRATED MORPHOLOGIES;
LOW-TEMPERATURE; NAFION
AB The impact of loading the heteropoly acid, 12-phosphotungstic acid (HPW), on a perfluorosulfonic acid (PFSA) proton exchange membrane's morphology was evaluated by means of molecular dynamics (MD) simulations and small-angle X-ray scattering (SAXS) experiments. It is found that the addition of HPW significantly modifies the solvent structure and dynamics in the PFSA membrane, which favors the formation of interconnected proton conducting networks. It is hypothesized that these HPW induced solvent modifications account for the enhanced proton conducting characteristics of these doped membranes. Radial distribution functions and water cluster analysis indicate that the HPW organizes the local solvent water and attracts the nearby excess protons thereby creating localized "nodes" of ordered water and hydronium ions. The "nodes" are found to connect surrounding water wires/channels resulting in a more efficient proton conducting network. This redistribution of solvent and hydronium ions upon addition of HPW creates a shift in the hydrophilic cluster size distribution and the overall membrane morphology. Hydrophilic cluster size analysis indicates that a high percentage of small clusters (d < 15 angstrom) exist in low HPW doped systems (i.e., 1%), while larger clusters (d > 15 angstrom) exist for the high HPW doped systems (i.e., 596). At low hydration levels, the water domains are found to be spheroidal inverted micelles embedded in an ionomer matrix, while at high hydration levels the solvent morphology shifts to a parallel spheroidal elongated cylinder. It is also observed that for the high HPW doping levels the SAXS pattern changes intensity at the low q region and Bragg peaks become present, which indicates the presence of crystalline HPW. These morphological changes create a more interconnected pathway through which the hydrated excess protons may transverse thereby enhancing the PFSA membrane's conductivity
C1 [Sambasivarao, Somisetti V.; Liu, Yuan; Horan, James L.; Herring, Andrew M.; Maupin, C. Mark] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA.
[Seifert, Soenke] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
RP Herring, AM (reprint author), Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA.
EM aherring@mines.edu; cmmaupin@mines.edu
OI Herring, Andrew/0000-0001-7318-5999
FU Renewable energy MRSEC - NSF [DMR-0820518]; DOE Office of Science
[DE-AC02-06CH11357]
FX This research was supported by by the Renewable energy MRSEC funded by
the NSF under Grant DMR-0820518. We want to thank 3M for supplying
ionomer samples and technical support in addition to the Colorado School
of Mines Campus Computing, Communications, and Information Technologies
for the computational resources. This research used resources of the
Advanced Photon Source, a U.S. Department of Energy (DOE) Office of
Science User Facility operated for the DOE Office of Science by Argonne
National Laboratory under Contract No. DE-AC02-06CH11357.
NR 52
TC 6
Z9 6
U1 3
U2 42
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD SEP 4
PY 2014
VL 118
IS 35
BP 20193
EP 20202
DI 10.1021/jp5059325
PG 10
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AO4UU
UT WOS:000341337700016
ER
PT J
AU Zhou, XW
Foster, ME
van Swol, FB
Martin, JE
Wong, BM
AF Zhou, X. W.
Foster, M. E.
van Swol, F. B.
Martin, J. E.
Wong, Bryan M.
TI Analytical Bond-Order Potential for the Cd-Te-Se Ternary System
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID EPITAXIAL-GROWTH; GAAS; OPTIMIZATION; SIMULATION; CRYSTALS; SILICON;
SURFACE; ZN
AB CdTe/CdSe core/shell structured quantum dots do not suffer from the defects typically seen in lattice-mismatched films and can therefore lead to improved solid-state lighting devices as compared to the multilayered structures (e.g., InxGa1-x,N/GaN). To achieve these devices, however, the quantum dots must be optimized with respect to the structural details at an atomistic level. Molecular dynamics simulations are effective for exploring nano structures at a resolution unattainable by experimental techniques. To enable accurate molecular dynamics simulations of CdTe/CdSe core/shell structures, we have developed a full Cd-Te-Se ternary bond-order potential based on the analytical formalisms derived from quantum mechanical theories by Pettifor et al. A variety of elemental and compound configurations (with coordination varying from 1 to 12) including small dusters, bulk lattices, defects, and surfaces are explicitly considered during potential parametrization. More importantly, enormous iterations are performed to strictly ensure that our potential can simulate the correct crystalline growth of the ground-state structures for Cd, Te, and Se elements as well as CdTe, CdSe, and CdTe1-xSex compounds during molecular dynamics vapor deposition simulations. Extensive test simulation results clearly indicate that our new Cd-Te-Se potential has unique advantages over the existing literature potential involving Cd, Te, and Se elements.
C1 [Zhou, X. W.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA.
[Foster, M. E.] Sandia Natl Labs, Mat Chem Dept, Livermore, CA 94550 USA.
[van Swol, F. B.] Sandia Natl Labs, Computat Mat & Data Sci Dept, Albuquerque, NM 87185 USA.
[Martin, J. E.] Sandia Natl Labs, Nanoscale Sci Dept, Albuquerque, NM 87185 USA.
[Wong, Bryan M.] Univ Calif Riverside, Dept Chem & Environm Engn & Mat Sci, Riverside, CA 92521 USA.
RP Zhou, XW (reprint author), Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA.
EM xzhou@sandia.gov
RI Wong, Bryan/B-1663-2009
OI Wong, Bryan/0000-0002-3477-8043
FU U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX Sandia National Laboratories is a multiprogram laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000. This work was
performed under a Laboratory Directed Research and Development (LDRD)
project.
NR 46
TC 2
Z9 2
U1 2
U2 23
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD SEP 4
PY 2014
VL 118
IS 35
BP 20661
EP 20679
DI 10.1021/jp505915u
PG 19
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA AO4UU
UT WOS:000341337700069
ER
PT J
AU Nguyen, SC
Lomont, JP
Caplins, BW
Harris, CB
AF Nguyen, Son C.
Lomont, Justin P.
Caplins, Benjamin W.
Harris, Charles B.
TI Studying the Dynamics of Photochemical Reactions via Ultrafast
Time-Resolved Infrared Spectroscopy of the Local Solvent
SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS
LA English
DT Article
ID VIBRATIONAL-ENERGY REDISTRIBUTION; IR-RAMAN SPECTROSCOPY; CIS-STILBENE;
POLYATOMIC LIQUIDS; ACETONITRILE; SOLVATION; NANOPARTICLES; RELAXATION;
HEXANE; ABSORPTION
AB Conventional ultrafast spectroscopic studies on the dynamics of chemical reactions in solution directly probe the solute undergoing the reaction. We provide an alternative method for probing reaction dynamics via monitoring of the surrounding solvent. When the reaction exchanges the energy (in form of heat) with the solvent, the absorption cross sections of the solvent's infrared bands are sensitive to the heat transfer, allowing spectral tracking of the reaction dynamics. This spectroscopic technique was demonstrated to be able to distinguish the differing photoisomerization dynamics of the trans and cis isomers of stilbene in acetonitrile solution. We highlight the potential of this spectroscopic approach for studying the dynamics of chemical reactions or other heat transfer processes when probing the solvent is more experimentally feasible than probing the solute directly.
C1 [Harris, Charles B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Harris, CB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM cbharris@berkeley.edu
FU NSF [CHE-1213135]; VIED; NSF
FX This work was supported by NSF Grant CHE-1213135. S.C.N. acknowledges
support through a VIED fellowship. J.P.L. acknowledges support through
an NSF graduate research fellowship.
NR 37
TC 2
Z9 2
U1 3
U2 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1948-7185
J9 J PHYS CHEM LETT
JI J. Phys. Chem. Lett.
PD SEP 4
PY 2014
VL 5
IS 17
BP 2974
EP 2978
DI 10.1021/jz501400t
PG 5
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Atomic, Molecular & Chemical
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA AO4UR
UT WOS:000341337400009
PM 26278245
ER
PT J
AU Suich, DE
Caplins, BW
Shearer, AJ
Harris, CB
AF Suich, David E.
Caplins, Benjamin W.
Shearer, Alex J.
Harris, Charles B.
TI Femtosecond Trapping of Free Electrons in Ultrathin Films of NaCl on
Ag(100)
SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS
LA English
DT Article
ID ALKALI-HALIDES; THIN-FILMS; DYNAMICS; INTERFACES; LOCALIZATION;
SURFACES; DEFECTS; STATES; CELLS
AB We report the excited-state electron dynamics for ultrathin films of NaCl on Ag(100). The first three image potential states (IPSs) were initially observed following excitation. The electrons in the spatially delocalized n = 1 IPS decayed on the ultrafast time scale into multiple spatially localized states lower in energy. The localized electronic states are proposed to correspond to electrons trapped at defects in the NaCl islands. Coverage and temperature dependence of the localized states support the assignment to surface trap states existing at the NaCl/vacuum interface. These results highlight the importance of electron trapping in ultrathin insulating layers.
C1 [Harris, Charles B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Harris, CB (reprint author), Univ Calif Berkeley, Dept Chem, 419 Latimer Hall, Berkeley, CA 94720 USA.
EM cbharris@berkeley.edu
FU Office of Science, Office of Basic Energy Sciences, Chemical Sciences
Division of the U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, Chemical Sciences Division of the U.S. Department
of Energy, under contract no. DE-AC02-05CH11231.
NR 32
TC 7
Z9 7
U1 2
U2 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1948-7185
J9 J PHYS CHEM LETT
JI J. Phys. Chem. Lett.
PD SEP 4
PY 2014
VL 5
IS 17
BP 3073
EP 3077
DI 10.1021/jz501572z
PG 5
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Atomic, Molecular & Chemical
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA AO4UR
UT WOS:000341337400028
PM 26278263
ER
PT J
AU Fiksel, G
Fox, W
Bhattacharjee, A
Barnak, DH
Chang, PY
Germaschewski, K
Hu, SX
Nilson, PM
AF Fiksel, G.
Fox, W.
Bhattacharjee, A.
Barnak, D. H.
Chang, P. -Y.
Germaschewski, K.
Hu, S. X.
Nilson, P. M.
TI Magnetic Reconnection between Colliding Magnetized Laser-Produced Plasma
Plumes
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID OMEGA
AB Observations of magnetic reconnection between colliding plumes of magnetized laser-produced plasma are presented. Two counterpropagating plasma flows are created by irradiating oppositely placed plastic ( CH) targets with 1.8-kJ, 2-ns laser beams on the Omega EP Laser System. The interaction region between the plumes is prefilled with a low-density background plasma and magnetized by an externally applied magnetic field, imposed perpendicular to the plasma flow, and initialized with an X-type null point geometry with B = 0 at the midplane and B = 8 T at the targets. The counterflowing plumes sweep up and compress the background plasma and the magnetic field into a pair of magnetized ribbons, which collide, stagnate, and reconnect at the midplane, allowing the first detailed observations of a stretched current sheet in laser-driven reconnection experiments. The dynamics of current sheet formation are in good agreement with first-principles particle-in-cell simulations that model the experiments.
C1 [Fiksel, G.; Barnak, D. H.; Chang, P. -Y.; Hu, S. X.; Nilson, P. M.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA.
[Fiksel, G.; Barnak, D. H.; Chang, P. -Y.; Nilson, P. M.] Univ Rochester, Fus Sci Ctr Extreme States Matter, Rochester, NY 14623 USA.
[Fox, W.; Bhattacharjee, A.] Dept Astrophys Sci, Princeton, NJ 08543 USA.
[Fox, W.; Bhattacharjee, A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Germaschewski, K.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
RP Fiksel, G (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA.
EM gfik@lle.rochester.edu
RI Hu, Suxing/A-1265-2007; Chang, Po-Yu/L-5745-2016
OI Hu, Suxing/0000-0003-2465-3818;
FU U.S. Department of Energy [DE-SC0007168, DE-SC0008655, DE-SC0006670];
National Laser User Facility program; Office of Science of the U.S.
Department of Energy [DE-AC05-00OR22725]
FX This work is supported by the U.S. Department of Energy under Contracts
No. DE-SC0007168, No. DE-SC0008655, and No. DE-SC0006670, and the
National Laser User Facility program. The particle-in-cell simulations
were conducted on the Jaguar and Titan supercomputers through the
Innovative and Novel Computational Impact on Theory and Experiment
(INCITE) program. This research used resources of the Oak Ridge
Leadership Computing Facility located in the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.
NR 21
TC 18
Z9 18
U1 4
U2 40
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD SEP 4
PY 2014
VL 113
IS 10
AR 105003
DI 10.1103/PhysRevLett.113.105003
PG 5
WC Physics, Multidisciplinary
SC Physics
GA AO3WN
UT WOS:000341267800011
PM 25238366
ER
PT J
AU Takhistov, V
Abe, K
Haga, Y
Hayato, Y
Ikeda, M
Iyogi, K
Kameda, J
Kishimoto, Y
Miura, M
Moriyama, S
Nakahata, M
Nakano, Y
Nakayama, S
Sekiya, H
Shiozawa, M
Suzuki, Y
Takeda, A
Tanaka, H
Tomura, T
Ueno, K
Wendell, RA
Yokozawa, T
Irvine, T
Kajita, T
Kametani, I
Kaneyuki, K
Lee, KP
McLachlan, T
Nishimura, Y
Richard, E
Okumura, K
Labarga, L
Fernandez, P
Berkman, S
Tanaka, HA
Tobayama, S
Gustafson, J
Kearns, E
Raaf, JL
Stone, JL
Sulak, LR
Goldhaber, M
Carminati, G
Kropp, WR
Mine, S
Weatherly, P
Renshaw, A
Smy, MB
Sobel, HW
Ganezer, KS
Hartfiel, BL
Hill, J
Keig, WE
Hong, N
Kim, JY
Lim, IT
Akiri, T
Himmel, A
Scholberg, K
Walter, CW
Wongjirad, T
Ishizuka, T
Tasaka, S
Jang, JS
Learned, JG
Matsuno, S
Smith, SN
Hasegawa, T
Ishida, T
Ishii, T
Kobayashi, T
Nakadaira, T
Nakamura, K
Oyama, Y
Sakashita, K
Sekiguchi, T
Tsukamoto, T
Suzuki, AT
Takeuchi, Y
Bronner, C
Hirota, S
Huang, K
Ieki, K
Kikawa, T
Minamino, A
Murakami, A
Nakaya, T
Suzuki, K
Takahashi, S
Tateishi, K
Fukuda, Y
Choi, K
Itow, Y
Mitsuka, G
Mijakowski, P
Hignight, J
Imber, J
Jung, CK
Yanagisawa, C
Ishino, H
Kibayashi, A
Koshio, Y
Mori, T
Sakuda, M
Yamaguchi, R
Yano, T
Kuno, Y
Tacik, R
Kim, SB
Okazawa, H
Choi, Y
Nishijima, K
Koshiba, M
Suda, Y
Totsuka, Y
Yokoyama, M
Martens, K
Marti, L
Vagins, MR
Martin, JF
de Perio, P
Konaka, A
Wilking, MJ
Chen, S
Zhang, Y
Connolly, K
Wilkes, RJ
AF Takhistov, V.
Abe, K.
Haga, Y.
Hayato, Y.
Ikeda, M.
Iyogi, K.
Kameda, J.
Kishimoto, Y.
Miura, M.
Moriyama, S.
Nakahata, M.
Nakano, Y.
Nakayama, S.
Sekiya, H.
Shiozawa, M.
Suzuki, Y.
Takeda, A.
Tanaka, H.
Tomura, T.
Ueno, K.
Wendell, R. A.
Yokozawa, T.
Irvine, T.
Kajita, T.
Kametani, I.
Kaneyuki, K.
Lee, K. P.
McLachlan, T.
Nishimura, Y.
Richard, E.
Okumura, K.
Labarga, L.
Fernandez, P.
Berkman, S.
Tanaka, H. A.
Tobayama, S.
Gustafson, J.
Kearns, E.
Raaf, J. L.
Stone, J. L.
Sulak, L. R.
Goldhaber, M.
Carminati, G.
Kropp, W. R.
Mine, S.
Weatherly, P.
Renshaw, A.
Smy, M. B.
Sobel, H. W.
Ganezer, K. S.
Hartfiel, B. L.
Hill, J.
Keig, W. E.
Hong, N.
Kim, J. Y.
Lim, I. T.
Akiri, T.
Himmel, A.
Scholberg, K.
Walter, C. W.
Wongjirad, T.
Ishizuka, T.
Tasaka, S.
Jang, J. S.
Learned, J. G.
Matsuno, S.
Smith, S. N.
Hasegawa, T.
Ishida, T.
Ishii, T.
Kobayashi, T.
Nakadaira, T.
Nakamura, K.
Oyama, Y.
Sakashita, K.
Sekiguchi, T.
Tsukamoto, T.
Suzuki, A. T.
Takeuchi, Y.
Bronner, C.
Hirota, S.
Huang, K.
Ieki, K.
Kikawa, T.
Minamino, A.
Murakami, A.
Nakaya, T.
Suzuki, K.
Takahashi, S.
Tateishi, K.
Fukuda, Y.
Choi, K.
Itow, Y.
Mitsuka, G.
Mijakowski, P.
Hignight, J.
Imber, J.
Jung, C. K.
Yanagisawa, C.
Ishino, H.
Kibayashi, A.
Koshio, Y.
Mori, T.
Sakuda, M.
Yamaguchi, R.
Yano, T.
Kuno, Y.
Tacik, R.
Kim, S. B.
Okazawa, H.
Choi, Y.
Nishijima, K.
Koshiba, M.
Suda, Y.
Totsuka, Y.
Yokoyama, M.
Martens, K.
Marti, Ll.
Vagins, M. R.
Martin, J. F.
de Perio, P.
Konaka, A.
Wilking, M. J.
Chen, S.
Zhang, Y.
Connolly, K.
Wilkes, R. J.
TI Search for Trilepton Nucleon Decay via p -> e(+)vv and p -> mu(+)vv in
the Super-Kamiokande Experiment
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID WATER CHERENKOV DETECTOR; ATMOSPHERIC FLUX; PROTON-DECAY; MODES;
LIFETIME; LIMITS; COLOR
AB The trilepton nucleon decay modes p -> e(+)nu nu and p -> mu(+)nu nu violate vertical bar Delta(B - L)vertical bar by two units. Using data from a 273.4 kt yr exposure of Super-Kamiokande a search for these decays yields a fit consistent with no signal. Accordingly, lower limits on the partial lifetimes of tau(p -> e+nu nu) > 1.7 x 10(32) years and tau(p ->mu+nu nu) > 2.2 x 10(32) years at a 90% confidence level are obtained. These limits can constrain Grand Unified Theories which allow for such processes.
C1 [Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakano, Y.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Tanaka, H.; Tomura, T.; Ueno, K.; Wendell, R. A.; Yokozawa, T.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Kamioka, Gifu 5061205, Japan.
[Irvine, T.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Lee, K. P.; McLachlan, T.; Nishimura, Y.; Richard, E.; Okumura, K.] Univ Tokyo, Res Ctr Cosm Neutrinos, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan.
[Labarga, L.; Fernandez, P.] Univ Autonoma Madrid, Dept Theoret Phys, E-28049 Madrid, Spain.
[Gustafson, J.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.] Boston Univ, Dept Phys, Boston, MA 02215 USA.
[Berkman, S.; Tanaka, H. A.; Tobayama, S.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6TIZ4, Canada.
[Goldhaber, M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Takhistov, V.; Carminati, G.; Kropp, W. R.; Mine, S.; Weatherly, P.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Vagins, M. R.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Keig, W. E.] Calif State Univ Dominguez Hills, Dept Phys, Carson, CA 90747 USA.
[Hong, N.; Kim, J. Y.; Lim, I. T.] Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea.
[Akiri, T.; Himmel, A.; Scholberg, K.; Walter, C. W.; Wongjirad, T.] Duke Univ, Dept Phys, Durham, NC 27708 USA.
Fukuoka Inst Technol, Jr Coll, Fukuoka 8110295, Japan.
[Tasaka, S.] Gifu Univ, Dept Phys, Gifu 5011193, Japan.
[Jang, J. S.] Gwangju Inst Sci & Technol, GIST Coll, Kwangju 500712, South Korea.
[Learned, J. G.; Matsuno, S.; Smith, S. N.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA.
[Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan.
[Suzuki, A. T.; Takeuchi, Y.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan.
[Bronner, C.; Hirota, S.; Huang, K.; Ieki, K.; Kikawa, T.; Minamino, A.; Murakami, A.; Nakaya, T.; Suzuki, K.; Takahashi, S.; Tateishi, K.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan.
[Fukuda, Y.] Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 9800845, Japan.
[Choi, K.; Itow, Y.; Mitsuka, G.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648602, Japan.
[Hignight, J.; Imber, J.; Jung, C. K.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Ishino, H.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Yamaguchi, R.; Yano, T.; Kuno, Y.] Okayama Univ, Dept Phys, Okayama 7008530, Japan.
Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan.
[Tacik, R.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada.
[Kim, S. B.] Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea.
[Okazawa, H.] Shizuoka Univ Welf, Dept Informat Social Welf, Shizuoka 4258611, Japan.
[Choi, Y.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea.
[Nishijima, K.] Tokai Univ, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan.
[Koshiba, M.; Suda, Y.; Totsuka, Y.; Yokoyama, M.] Univ Tokyo, Tokyo 1130033, Japan.
[Abe, K.; Hayato, Y.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Tomura, T.; Wendell, R. A.; Kajita, T.; Kaneyuki, K.; Okumura, K.; Kearns, E.; Stone, J. L.; Smy, M. B.; Sobel, H. W.; Scholberg, K.; Walter, C. W.; Nakamura, K.; Nakaya, T.; Yokoyama, M.; Martens, K.; Marti, Ll.; Vagins, M. R.] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, Todai Inst Adv Study, Kashiwa, Chiba 2778582, Japan.
[Martin, J. F.; de Perio, P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada.
[Konaka, A.; Wilking, M. J.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Chen, S.; Zhang, Y.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China.
[Connolly, K.; Wilkes, R. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Mijakowski, P.] Nat Ctr Nucl Res, PL-00681 Warsaw, Poland.
RP Takhistov, V (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
RI Suzuki, Yoichiro/F-7542-2010; Ishino, Hirokazu/C-1994-2015; Koshio,
Yusuke/C-2847-2015; Yokoyama, Masashi/A-4458-2011; Kibayashi,
Atsuko/K-7327-2015; Nakano, Yuuki/S-2684-2016
OI Ishino, Hirokazu/0000-0002-8623-4080; Koshio,
Yusuke/0000-0003-0437-8505; Yokoyama, Masashi/0000-0003-2742-0251;
FU Japanese Ministry of Education, Culture, Sports, Science and Technology;
United States Department of Energy; U.S. National Science Foundation;
Korean Research Foundation (BK21); National Research Foundation of Korea
[NRF-20110024009]; State Committee for Scientific Research in Poland
[1757/B/H03/2008/35]; Japan Society for Promotion of Science; National
Natural Science Foundation of China [10575056]
FX We gratefully acknowledge cooperation of the Kamioka Mining and Smelting
Company. The Super-Kamiokande experiment was built and has been operated
with funding from the Japanese Ministry of Education, Culture, Sports,
Science and Technology, the United States Department of Energy, and the
U.S. National Science Foundation. Some of us have been supported by
funds from the Korean Research Foundation (BK21), the National Research
Foundation of Korea (NRF-20110024009), the State Committee for
Scientific Research in Poland (Grant No. 1757/B/H03/2008/35), the Japan
Society for Promotion of Science, and the National Natural Science
Foundation of China under Grant No. 10575056.
NR 30
TC 5
Z9 5
U1 0
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD SEP 4
PY 2014
VL 113
IS 10
AR 101801
DI 10.1103/PhysRevLett.113.101801
PG 6
WC Physics, Multidisciplinary
SC Physics
GA AO3WN
UT WOS:000341267800005
PM 25238348
ER
PT J
AU Lin, JF
Wu, JJ
Zhu, J
Mao, Z
Said, AH
Leu, BM
Cheng, JG
Uwatoko, Y
Jin, CQ
Zhou, JS
AF Lin, Jung-Fu
Wu, Junjie
Zhu, Jie
Mao, Zhu
Said, Ayman H.
Leu, Bogdan M.
Cheng, Jinguang
Uwatoko, Yoshiya
Jin, Changqing
Zhou, Jianshi
TI Abnormal Elastic and Vibrational Behaviors of Magnetite at High
Pressures
SO SCIENTIFIC REPORTS
LA English
DT Article
ID RAY-EMISSION SPECTROSCOPY; VERWEY TRANSITION; FE3O4; PHASE; CRYSTAL;
SPIN
AB Magnetite exhibits unique electronic, magnetic, and structural properties in extreme conditions that are of great research interest. Previous studies have suggested a number of transitional models, although the nature of magnetite at high pressure remains elusive. We have studied a highly stoichiometric magnetite using inelastic X-ray scattering, X-ray diffraction and emission, and Raman spectroscopies in diamond anvil cells up to, similar to 20 GPa, while complementary electrical conductivity measurements were conducted in a cubic anvil cell up to 8.5 GPa. We have observed an elastic softening in the diagonal elastic constants (C-11 and C-44) and a hardening in the off-diagonal constant (C-12) at similar to 8 GPa where significant elastic anisotropies in longitudinal and transverse acoustic waves occur, especially along the [110] direction. An additional vibrational Raman band between the A(1g) and T-2g modes was also detected at the transition pressure. These abnormal elastic and vibrational behaviors of magnetite are attributed to the occurrence of the octahedrally-coordinated Fe2+-Fe3+-Fe2+ ions charge-ordering along the [110] direction in the inverse spinel structure. We propose a new phase diagram of magnetite in which the temperature for the metal-insulator and distorted structural transitions decreases with increasing pressure while the charge-ordering transition occurs at similar to 8 GPa and room temperature.
C1 [Lin, Jung-Fu; Mao, Zhu] Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78712 USA.
[Lin, Jung-Fu; Cheng, Jinguang; Zhou, Jianshi] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA.
[Lin, Jung-Fu; Wu, Junjie] Ctr High Pressure Sci & Technol Adv Res HPSTAR, Shanghai, Peoples R China.
[Wu, Junjie; Zhu, Jie; Jin, Changqing] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China.
[Mao, Zhu] Univ Sci & Technol China, Sch Earth & Planetary Sci, Lab Seismol & Phys Earths Interior, Hefei 230026, Anhui, Peoples R China.
[Said, Ayman H.; Leu, Bogdan M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Cheng, Jinguang; Zhou, Jianshi] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA.
[Cheng, Jinguang; Uwatoko, Yoshiya] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan.
RP Lin, JF (reprint author), Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78712 USA.
EM afu@jsg.utexas.edu
RI Lin, Jung-Fu/B-4917-2011; Mao, Zhu/A-9015-2015
FU DOE-BES [DE-AC02-06CH11357]; U.S. Department of Energy (DOE), Office of
Science, Basic Energy Sciences (BES) [DE-AC02-06CH11357]; National
Science Foundation [EAR-0622171]; Department of Energy
[DE-AC02-06CH11357, DE-FG02-94ER14466]; DOE-NNSA; DOE-BES; NSF; Energy
Frontier Research in Extreme Environments (EFree) Center, HPSTAR; NSF
Earth Sciences [EAR-0838221]; NSF [DMR 1122603]; JSPS fellowship for
foreign researchers [12F02023]; National Natural Science Foundation of
China (NSFC); Ministry of Science and Technology (MOST); Collaborative
Innovation Center of Quantum Matter in Beijing, China
FX We thank J.B. Goodenough, E. E. Alp, H. K. Mao, and M. Pasternak for
fruitful discussions, J. Liu and J. Yang for helping to prepare samples
and figures, and Y. Xiang, P. Chow, and V. Prakapenka for their
assistance with synchrotron experiments. We acknowledge XOR-30, XOR-3,
HPCAT, and GSECARS of the APS, ANL for the use of the synchrotron and
laser facilities. APS is supported by DOE-BES, under Contract No.
DE-AC02-06CH11357. Use of the Advanced Photon Source was supported by
U.S. Department of Energy (DOE), Office of Science, Basic Energy
Sciences (BES), under contract No. DE-AC02-06CH11357. GSECARS was
supported by the National Science Foundation (EAR-0622171) and
Department of Energy (DE-FG02-94ER14466) under Contract No.
DE-AC02-06CH11357. HPCAT is supported by DOE-NNSA, DOE-BES and NSF. J.
F. L. acknowledges financial support from Energy Frontier Research in
Extreme Environments (EFree) Center, HPSTAR, and NSF Earth Sciences
(EAR-0838221), J.S.Z. acknowledges the financial support from NSF (DMR
1122603), and JGC acknowledges the financial support of the JSPS
fellowship for foreign researchers (Grant No. 12F02023). Research at the
Chinese Academy of Sciences was supported by National Natural Science
Foundation of China (NSFC), Ministry of Science and Technology (MOST),
and Collaborative Innovation Center of Quantum Matter in Beijing, China
through research projects.
NR 34
TC 8
Z9 9
U1 5
U2 62
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD SEP 4
PY 2014
VL 4
AR 6282
DI 10.1038/srep06282
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AO6FE
UT WOS:000341444400001
PM 25186916
ER
PT J
AU Cheng, YW
Shao, YY
Zhang, JG
Sprenkle, VL
Liu, J
Li, GS
AF Cheng, Yingwen
Shao, Yuyan
Ji-Guang Zhang
Sprenkle, Vincent L.
Liu, Jun
Li, Guosheng
TI High performance batteries based on hybrid magnesium and lithium
chemistry
SO CHEMICAL COMMUNICATIONS
LA English
DT Article
ID RECHARGEABLE MG BATTERIES; ELECTROLYTE-SOLUTIONS; ENERGY-STORAGE;
CHALLENGE
AB This work studied hybrid batteries assembled with a Mg metal anode, a Li+ ion intercalation cathode and a dual-salt electrolyte containing Mg2+ and Li+ ions. We show that such hybrid batteries were able to combine the advantages of Li and Mg electrochemistry. They delivered outstanding rate performance (83% capacity retention at 15 C) with superior safety and stability (similar to 5% fade for 3000 cycles).
C1 [Cheng, Yingwen; Shao, Yuyan; Ji-Guang Zhang; Sprenkle, Vincent L.; Liu, Jun; Li, Guosheng] Pacific NW Natl Lab, Energy Proc & Mat Div, Richland, WA 99354 USA.
RP Liu, J (reprint author), Pacific NW Natl Lab, Energy Proc & Mat Div, Richland, WA 99354 USA.
EM jun.liu@pnnl.gov; guosheng.li@pnnl.gov
RI Shao, Yuyan/A-9911-2008; Cheng, Yingwen/B-2202-2012
OI Shao, Yuyan/0000-0001-5735-2670; Cheng, Yingwen/0000-0002-0778-5504
FU U.S. Department of Energy (DOE); PNNL Laboratory Directed Research and
Development program; U.S. Department of Energy (DOE) Office of
Electricity Delivery and Energy Reliability [57558]; Office of Basic
Energy Science; Division of Materials Sciences and Engineering
[KC020105-FWP12152]; DOE's Office of Biological and Environmental
Research and located at PNNL
FX The development and understanding of hybrid batteries are supported by
the U.S. Department of Energy (DOE), Office of Basic Energy Sciences,
Division of Materials Sciences and Engineering, under Award
KC020105-FWP12152. The electro-chemistry and battery performance works
are supported by PNNL Laboratory Directed Research and Development
program and the U.S. Department of Energy (DOE) Office of Electricity
Delivery and Energy Reliability under Contract No. 57558. TEM and SEM
characterization was conducted at the Environmental and Molecular
Sciences Laboratory, a national scientific user facility sponsored by
the DOE's Office of Biological and Environmental Research and located at
PNNL. PNNL is a multiprogramme national laboratory operated for DOE by
Battelle under contract DE AC05-76RL01830.
NR 20
TC 34
Z9 34
U1 13
U2 141
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1359-7345
EI 1364-548X
J9 CHEM COMMUN
JI Chem. Commun.
PD SEP 4
PY 2014
VL 50
IS 68
BP 9644
EP 9646
DI 10.1039/c4cc03620d
PG 3
WC Chemistry, Multidisciplinary
SC Chemistry
GA AN6KI
UT WOS:000340703000004
PM 24964330
ER
PT J
AU Stone, KH
Kortright, JB
AF Stone, Kevin H.
Kortright, Jeffrey B.
TI Molecular anisotropy effects in carbon K-edge scattering: Depolarized
diffuse scattering and optical anisotropy
SO PHYSICAL REVIEW B
LA English
DT Article
ID X-RAY-SCATTERING; SHELL EXCITATION-SPECTRA; SHORT-RANGE ORDER; ATACTIC
POLYSTYRENE; THIN-FILMS; DYNAMICS SIMULATION; ORIENTATION FLUCTUATIONS;
NEXAFS SPECTRA; GAS-PHASE; SURFACE
AB Some polymer properties, such as conductivity, are very sensitive to short-and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylenelike backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter.
C1 [Stone, Kevin H.; Kortright, Jeffrey B.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Kortright, JB (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM jbkortright@lbl.gov
RI Stone, Kevin/N-9311-2016
OI Stone, Kevin/0000-0003-1387-1510
FU US Department of Energy, Office of Science, Materials Sciences and
Engineering Division [DE-AC02-05CH1123]
FX We acknowledge samples provided by Dr. Chen Zhang and Dr. Keith M. Beers
and discussions regarding measurement artifacts with Dr. Brian A.
Collins, Professor Harald Ade, and Dr. Anthony Young. Experimental
measurements were made under a General User Proposal at beamlines
11.0.1.2 and 8.0.1 at the Advanced Light Source, LBNL. The research and
the ALS were supported by the US Department of Energy, Office of
Science, Materials Sciences and Engineering Division under Contract No.
DE-AC02-05CH1123.
NR 70
TC 6
Z9 6
U1 3
U2 14
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD SEP 4
PY 2014
VL 90
IS 10
AR 104201
DI 10.1103/PhysRevB.90.104201
PG 12
WC Physics, Condensed Matter
SC Physics
GA AO3UQ
UT WOS:000341262200004
ER
PT J
AU Aad, G
Abbott, B
Abdallah, J
Khalek, SA
Abdinov, O
Aben, R
Abi, B
Abolins, M
AbouZeid, OS
Abramowicz, H
Abreu, H
Abreu, R
Abulaiti, Y
Acharya, BS
Adamczyk, L
Adams, DL
Adelman, J
Adomeit, S
Adye, T
Agatonovic-Jovin, T
Aguilar-Saavedra, JA
Agustoni, M
Ahlen, SP
Ahmadov, F
Aielli, G
Akerstedt, H
Akesson, TPA
Akimoto, G
Akimov, AV
Alberghi, GL
Albert, J
Albrand, S
Verzini, MJA
Aleksa, M
Aleksandrov, IN
Alexa, C
Alexander, G
Alexandre, G
Alexopoulos, T
Alhroob, M
Alimonti, G
Alio, L
Alison, J
Allbrooke, BMM
Allison, LJ
Allport, PP
Almond, J
Aloisio, A
Alonso, A
Alonso, F
Alpigiani, C
Altheimer, A
Gonzalez, BA
Alviggi, MG
Amako, K
Coutinho, YA
Amelung, C
Amidei, D
Dos Santos, SPA
Amorim, A
Amoroso, S
Amram, N
Amundsen, G
Anastopoulos, C
Ancu, LS
Andari, N
Andeen, T
Anders, CF
Anders, G
Anderson, KJ
Andreazza, A
Andrei, V
Anduaga, XS
Angelidakis, S
Angelozzi, I
Anger, P
Angerami, A
Anghinolfi, F
Anisenkov, AV
Anjos, N
Annovi, A
Antonaki, A
Antonelli, M
Antonov, A
Antos, J
Anulli, F
Aoki, M
Bella, LA
Apolle, R
Arabidze, G
Aracena, I
Arai, Y
Araque, JP
Arce, ATH
Arguin, JF
Argyropoulos, S
Arik, M
Armbruster, AJ
Arnaez, O
Arnal, V
Arnold, H
Arslan, O
Artamonov, A
Artoni, G
Asai, S
Asbah, N
Ashkenazi, A
Asman, B
Asquith, L
Assamagan, K
Astalos, R
Atkinson, M
Atlay, NB
Auerbach, B
Augsten, K
Aurousseau, M
Avolio, G
Azuelos, G
Azuma, Y
Baak, MA
Bacci, C
Bachacou, H
Bachas, K
Backes, M
Backhaus, M
Mayes, JB
Badescu, E
Bagiacchi, P
Bagnaia, P
Bai, Y
Bain, T
Baines, JT
Baker, OK
Baker, S
Balek, P
Balli, F
Banas, E
Banerjee, S
Bangert, A
Bannoura, AAE
Bansal, V
Bansil, HS
Barak, L
Baranov, SP
Barberio, EL
Barberis, D
Barbero, M
Barillari, T
Barisonzi, M
Barklow, T
Barlow, N
Barnett, BM
Barnett, RM
Barnovska, Z
Baroncelli, A
Barone, G
Barr, AJ
Barreiro, F
da Costa, JBG
Bartoldus, R
Barton, AE
Bartos, P
Bartsch, V
Bassalat, A
Basye, A
Bates, RL
Batkova, L
Batley, JR
Battistin, M
Bauer, F
Bawa, HS
Beau, T
Beauchemin, PH
Beccherle, R
Bechtle, P
Beck, HP
Becker, K
Becker, S
Beckingham, M
Becot, C
Beddall, AJ
Beddall, A
Bedikian, S
Bednyakov, VA
Bee, CP
Beemster, LJ
Beermann, TA
Begel, M
Behr, K
Belanger-Champagne, C
Bell, PJ
Bell, WH
Bella, G
Bellagamba, L
Bellerive, A
Bellomo, M
Belloni, A
Belotskiy, K
Beltramello, O
Benary, O
Benchekroun, D
Bendtz, K
Benekos, N
Benhammou, Y
Noccioli, EB
Garcia, JAB
Benjamin, DP
Bensinger, JR
Benslama, K
Bentvelsen, S
Berge, D
Kuutmann, EB
Berger, N
Berghaus, F
Berglund, E
Beringer, J
Bernard, C
Bernat, P
Bernius, C
Bernlochner, FU
Berry, T
Berta, P
Bertella, C
Bertolucci, F
Bertsche, D
Besana, MI
Besjes, GJ
Bessidskaia, O
Bessner, MF
Besson, N
Betancourt, C
Bethke, S
Bhimji, W
Bianchi, RM
Bianchini, L
Bianco, M
Biebel, O
Bieniek, SP
Bierwagen, K
Biesiada, J
Biglietti, M
De Mendizabal, JB
Bilokon, H
Bindi, M
Binet, S
Bingul, A
Bini, C
Black, CW
Black, JE
Black, KM
Blackburn, D
Blair, RE
Blanchard, JB
Blazek, T
Bloch, I
Blocker, C
Blum, W
Blumenschein, U
Bobbink, GJ
Bobrovnikov, VS
Bocchetta, SS
Bocci, A
Boddy, CR
Boehler, M
Boek, J
Boek, TT
Bogaerts, JA
Bogdanchikov, AG
Bogouch, A
Bohm, C
Bohm, J
Boisvert, V
Bold, T
Boldea, V
Boldyrev, AS
Bomben, M
Bona, M
Boonekamp, M
Borisov, A
Borissov, G
Borri, M
Borroni, S
Bortfeldt, J
Bortolotto, V
Bos, K
Boscherini, D
Bosman, M
Boterenbrood, H
Boudreau, J
Bouffard, J
Bouhova-Thacker, EV
Boumediene, D
Bourdarios, C
Bousson, N
Boutouil, S
Boveia, A
Boyd, J
Boyko, IR
Bozovic-Jelisavcic, I
Bracinik, J
Branchini, P
Brandt, A
Brandt, G
Brandt, O
Bratzler, U
Brau, B
Brau, JE
Braun, HM
Brazzale, SF
Brelier, B
Brendlinger, K
Brennan, AJ
Brenner, R
Bressler, S
Bristow, K
Bristow, TM
Britton, D
Brochu, FM
Brock, I
Brock, R
Bromberg, C
Bronner, J
Brooijmans, G
Brooks, T
Brooks, WK
Brosamer, J
Brost, E
Brown, G
Brown, J
de Renstrom, PAB
Bruncko, D
Bruneliere, R
Brunet, S
Bruni, A
Bruni, G
Bruschi, M
Bryngemark, L
Buanes, T
Buat, Q
Bucci, F
Buchholz, P
Buckingham, RM
Buckley, AG
Buda, SI
Budagov, IA
Buehrer, F
Bugge, L
Bugge, K
Bulekov, O
Bundock, AC
Burckhart, H
Burdin, S
Burghgrave, B
Burke, S
Burmeister, I
Busato, E
Bucher, D
Bucher, V
Bussey, P
Buszello, CP
Butler, B
Butler, JM
Butt, AI
Buttar, CM
Butterworth, JM
Butti, P
Buttinger, W
Buzatu, A
Byszewski, M
Urban, SC
Caforio, D
Cakir, O
Calafiura, P
Calandri, A
Calderini, G
Calfayan, P
Calkins, R
Caloba, LP
Calvet, D
Calvet, S
Toro, RC
Camarda, S
Cameron, D
Caminada, LM
Armadans, RC
Campana, S
Campanelli, M
Campoverde, A
Canale, V
Canepa, A
Bret, MC
Cantero, J
Cantrill, R
Cao, T
Garrido, MDMC
Caprini, I
Caprini, M
Capua, M
Caputo, R
Cardarelli, R
Carli, T
Carlino, G
Carminati, L
Caron, S
Carquin, E
Carrillo-Montoya, GD
Carter, JR
Carvalho, J
Casadei, D
Casado, MP
Casolino, M
Castaneda-Miranda, E
Castelli, A
Gimenez, VC
Castro, NF
Catastini, P
Catinaccio, A
Catmore, JR
Cattai, A
Cattani, G
Caughron, S
Cavaliere, V
Cavalli, D
Cavalli-Sforza, M
Cavasinni, V
Ceradini, F
Cerio, B
Cerny, K
Cerqueira, AS
Cerri, A
Cerrito, L
Cerutti, F
Cerv, M
Cervelli, A
Cetin, SA
Chafaq, A
Chakraborty, D
Chalupkova, I
Chan, K
Chang, P
Chapleau, B
Chapman, JD
Charfeddine, D
Charlton, DG
Chau, CC
Barajas, CAC
Cheatham, S
Chegwidden, A
Chekanov, S
Chekulaev, SV
Chelkov, GA
Chelstowska, MA
Chen, C
Chen, H
Chen, K
Chen, L
Chen, S
Chen, X
Chen, Y
Cheng, HC
Cheng, Y
Cheplakov, A
El Moursli, RC
Chernyatin, V
Cheu, E
Chevalier, L
Chiarella, V
Chiefari, G
Childers, JT
Chilingarov, A
Chiodini, G
Chisholm, AS
Chislett, RT
Chitan, A
Chizhov, MV
Chouridou, S
Chow, BKB
Chromek-Burckhart, D
Chu, ML
Chudoba, J
Chwastowski, JJ
Chytka, L
Ciapetti, G
Ciftci, AK
Ciftci, R
Cinca, D
Cindro, V
Ciocio, A
Cirkovic, P
Citron, ZH
Citterio, M
Ciubancan, M
Clark, A
Clark, PJ
Clarke, RN
Cleland, W
Clemens, JC
Clement, C
Coadou, Y
Cobal, M
Coccaro, A
Cochran, J
Coffey, L
Cogan, JG
Coggeshall, J
Cole, B
Cole, S
Colijn, AP
Collot, J
Colombo, T
Colon, G
Compostella, G
Muino, PC
Coniavitis, E
Conidi, MC
Connell, SH
Connelly, IA
Consonni, SM
Consorti, V
Constantinescu, S
Conta, C
Conti, G
Conventi, F
Cooke, M
Cooper, BD
Cooper-Sarkar, AM
Cooper-Smith, NJ
Copic, K
Cornelissen, T
Corradi, M
Corriveau, F
Corso-Radu, A
Cortes-Gonzalez, A
Cortiana, G
Costa, G
Costa, MJ
Costanzo, D
Cote, D
Cottin, G
Cowan, G
Cox, BE
Cranmer, K
Cree, G
Crepe-Renaudin, S
Crescioli, F
Cribbs, WA
Ortuzar, MC
Cristinziani, M
Croft, V
Crosetti, G
Cuciuc, CM
Donszelmann, TC
Cummings, J
Curatolo, M
Cuthbert, C
Czirr, H
Czodrowski, P
Czyczula, Z
D'Auria, S
D'Onofrio, M
De Sousa, MJDS
Da Via, C
Dabrowski, W
Dafinca, A
Dai, T
Dale, O
Dallaire, F
Dallapiccola, C
Dam, M
Daniells, AC
Hoffmann, MD
Dao, V
Darbo, G
Darlea, GL
Darmora, S
Dassoulas, JA
Dattagupta, A
Davey, W
David, C
Davidek, T
Davies, E
Davies, M
Davignon, O
Davison, AR
Davison, P
Davygora, Y
Dawe, E
Dawson, I
Daya-Ishmukhametova, RK
De, K
de Asmundis, R
De Castro, S
De Cecco, S
De Groot, N
de Jong, P
De la Torre, H
De Lorenzi, F
De Nooij, L
De Pedis, D
De Salvo, A
De Sanctis, U
De Santo, A
De Regie, JBD
De Zorzi, G
Dearnaley, WJ
Debbe, R
Debenedetti, C
Dechenaux, B
Dedovich, DV
Degenhardt, J
Deigaard, I
Del Peso, J
Del Prete, T
Deliot, F
Delitzsch, CM
Deliyergiyev, M
Dell'Acqua, A
Dell'Asta, L
Dell'Orso, M
Della Pietra, M
della Volpe, D
Delmastro, M
Delsart, PA
Deluca, C
Demers, S
Demichev, M
Demilly, A
Denisov, SP
Derendarz, D
Derkaoui, JE
Derue, F
Dervan, P
Desch, K
Deterre, C
Deviveiros, PO
Dewhurst, A
Dhaliwal, S
Di Ciaccio, A
Di Ciaccio, L
Di Domenico, A
Di Donato, C
Di Girolamo, A
Di Girolamo, B
Di Mattia, A
Di Micco, B
Di Nardo, R
Di Simone, A
Di Sipio, R
Di Valentino, D
Diaz, MA
Diehl, EB
Dietrich, J
Dietzsch, TA
Diglio, S
Dimitrievska, A
Dingfelder, J
Dionisi, C
Dita, P
Dita, S
Dittus, F
Djama, F
Djobava, T
do Vale, MAB
Wemans, AD
Doan, TKO
Dobos, D
Doglioni, C
Doherty, T
Dohmae, T
Dolejsi, J
Dolezal, Z
Dolgoshein, BA
Donadelli, M
Donati, S
Dondero, P
Donini, J
Dopke, J
Doria, A
Dova, MT
Doyle, AT
Dris, M
Dubbert, J
Dube, S
Dubreuil, E
Duchovni, E
Duckeck, G
Ducu, OA
Duda, D
Dudarev, A
Dudziak, F
Duflot, L
Duguid, L
Durssen, M
Dunford, M
Yildiz, HD
Duren, M
Durglishvili, A
Dwuznik, M
Dyndal, M
Ebke, J
Edson, W
Edwards, NC
Ehrenfeld, W
Eifert, T
Eigen, G
Einsweiler, K
Ekelof, T
El Kacimi, M
Ellert, M
Elles, S
Ellinghaus, F
Ellis, N
Elmsheuser, J
Elsing, M
Emeliyanov, D
Enari, Y
Endner, OC
Endo, M
Engelmann, R
Erdmann, J
Ereditato, A
Eriksson, D
Ernis, G
Ernst, J
Ernst, M
Ernwein, J
Errede, D
Errede, S
Ertel, E
Escalier, M
Esch, H
Escobar, C
Esposito, B
Etienvre, AI
Etzion, E
Evans, H
Fabbri, L
Facini, G
Fakhrutdinov, RM
Falciano, S
Falla, RJ
Faltova, J
Fang, Y
Fanti, M
Farbin, A
Farilla, A
Farooque, T
Farrell, S
Farrington, SM
Farthouat, P
Fassi, F
Fassnacht, P
Fassouliotis, D
Favareto, A
Fayard, L
Federic, P
Fedin, OL
Fedorko, W
Fehling-Kaschek, M
Feigl, S
Feligioni, L
Feng, C
Feng, EJ
Feng, H
Fenyuk, AB
Perez, SF
Ferrag, S
Ferrando, J
Ferrari, A
Ferrari, P
Ferrari, R
de Lima, DEF
Ferrer, A
Ferrere, D
Ferretti, C
Parodi, AF
Fiascaris, M
Fiedler, F
Filipcic, A
Filipuzzi, M
Filthaut, F
Fincke-Keeler, M
Finelli, KD
Fiolhais, MCN
Fiorini, L
Firan, A
Fischer, J
Fisher, WC
Fitzgerald, EA
Flechl, M
Fleck, I
Fleischmann, P
Fleischmann, S
Fletcher, GT
Fletcher, G
Flick, T
Floderus, A
Castillo, LRF
Bustos, ACF
Flowerdew, MJ
Formica, A
Forti, A
Fortin, D
Fournier, D
Fox, H
Fracchia, S
Francavilla, P
Franchini, M
Franchino, S
Francis, D
Franklin, M
Franz, S
Fraternali, M
French, ST
Friedrich, C
Friedrich, F
Froidevaux, D
Frost, JA
Fukunaga, C
Torregrosa, EF
Fulsom, BG
Fuster, J
Gabaldon, C
Gabizon, O
Gabrielli, A
Gabrielli, A
Gadatsch, S
Gadomski, S
Gagliardi, G
Gagnon, P
Galea, C
Galhardo, B
Gallas, EJ
Gallo, V
Gallop, BJ
Gallus, P
Galster, G
Gan, KK
Gandrajula, RP
Gao, J
Gao, YS
Walls, FMG
Garberson, F
Garcia, C
Navarro, JEG
Garcia-Sciveres, M
Gardner, RW
Garelli, N
Garonne, V
Gatti, C
Gaudio, G
Gaur, B
Gauthier, L
Gauzzi, P
Gavrilenko, IL
Gay, C
Gaycken, G
Gazis, EN
Ge, P
Gecse, Z
Gee, CNP
Geerts, DAA
Geich-Gimbel, C
Gellerstedt, K
Gemme, C
Gemmell, A
Genest, MH
Gentile, S
George, M
George, S
Gerbaudo, D
Gershon, A
Ghazlane, H
Ghodbane, N
Giacobbe, B
Giagu, S
Giangiobbe, V
Giannetti, P
Gianotti, F
Gibbard, B
Gibson, SM
Gilchriese, M
Gillam, TPS
Gillberg, D
Gilles, G
Gingrich, DM
Giokaris, N
Giordani, MP
Giordano, R
Giorgi, FM
Giorgi, FM
Giraud, PF
Giugni, D
Giuliani, C
Giulini, M
Gjelsten, BK
Gkialas, I
Gladilin, LK
Glasman, C
Glatzer, J
Glaysher, PCF
Glazov, A
Glonti, GL
Goblirsch-Kolb, M
Goddard, JR
Godfrey, J
Godlewski, J
Goeringer, C
Goldfarb, S
Golling, T
Golubkov, D
Gomes, A
Fajardo, LSG
Gonalo, R
Da Costa, JGPF
Gonella, L
de la Hoz, SG
Parra, GG
Silva, MLG
Gonzalez-Sevilla, S
Goossens, L
Gorbounov, PA
Gordon, HA
Gorelov, I
Gorini, B
Gorini, E
Gorisek, A
Gornicki, E
Goshaw, AT
Gosling, C
Gostkin, MI
Gouighri, M
Goujdami, D
Goulette, MP
Goussiou, AG
Goy, C
Gozpinar, S
Grabas, HMX
Graber, L
Grabowska-Bold, I
Grafstrom, P
Grahn, KJ
Gramling, J
Gramstad, E
Grancagnolo, S
Grassi, V
Gratchev, V
Gray, HM
Graziani, E
Grebenyuk, OG
Greenwood, ZD
Gregersen, K
Gregor, IM
Grenier, P
Griffiths, J
Grillo, AA
Grimm, K
Grinstein, S
Gris, P
Grishkevich, YV
Grivaz, JF
Grohs, JP
Grohsjean, A
Gross, E
Grosse-Knetter, J
Grossi, GC
Groth-Jensen, J
Grout, ZJ
Grybel, K
Guan, L
Guescini, F
Guest, D
Gueta, O
Guicheney, C
Guido, E
Guillemin, T
Guindon, S
Gul, U
Gumpert, C
Gunther, J
Guo, J
Gupta, S
Gutierrez, P
Ortiz, NGG
Gutschow, C
Guttman, N
Guyot, C
Gwenlan, C
Gwilliam, CB
Haas, A
Haber, C
Hadavand, HK
Haddad, N
Haefner, P
Hagebock, S
Hajduk, Z
Hakobyan, H
Haleem, M
Hall, D
Halladjian, G
Hamacher, K
Hamal, P
Hamano, K
Hamer, M
Hamilton, A
Hamilton, S
Hamnett, PG
Han, L
Hanagaki, K
Hanawa, K
Hance, M
Hanke, P
Hanna, R
Hansen, JB
Hansen, JD
Hansen, PH
Hara, K
Hard, AS
Harenberg, T
Hariri, F
Harkusha, S
Harper, D
Harrington, RD
Harris, OM
Harrison, PF
Hartjes, F
Hasegawa, S
Hasegawa, Y
Hasib, A
Hassani, S
Haug, S
Hauschild, M
Hauser, R
Havranek, M
Hawkes, CM
Hawkings, RJ
Hawkins, AD
Hayashi, T
Hayden, D
Hays, CP
Hayward, HS
Haywood, SJ
Head, SJ
Heck, T
Hedberg, V
Heelan, L
Heim, S
Heim, T
Heinemann, B
Heinrich, L
Heisterkamp, S
Hejbal, J
Helary, L
Heller, C
Heller, M
Hellman, S
Hellmich, D
Helsens, C
Henderson, J
Henderson, RCW
Hengler, C
Henrichs, A
Correia, AMH
Henrot-Versille, S
Hensel, C
Herbert, GH
Jimenez, YH
Herrberg-Schubert, R
Herten, G
Hertenberger, R
Hervas, L
Hesketh, GG
Hessey, NP
Hickling, R
Higon-Rodriguez, E
Hill, E
Hill, JC
Hiller, KH
Hillert, S
Hillier, SJ
Hinchliffe, I
Hines, E
Hirose, M
Hirschbuehl, D
Hobbs, J
Hod, N
Hodgkinson, MC
Hodgson, P
Hoecker, A
Hoeferkamp, MR
Hoffman, J
Hoffmann, D
Hofmann, JI
Hohlfeld, M
Holmes, TR
Hong, TM
van Huysduynen, LH
Hostachy, JY
Hou, S
Hoummada, A
Howard, J
Howarth, J
Hrabovsky, M
Hristova, I
Hrivnac, J
Hryn'ova, T
Hsu, PJ
Hsu, SC
Hu, D
Hu, X
Huang, Y
Hubacek, Z
Hubaut, F
Huegging, F
Huffman, TB
Hughes, EW
Hughes, G
Huhtinen, M
Hulsing, TA
Hurwitz, M
Huseynov, N
Huston, J
Huth, J
Iacobucci, G
Iakovidis, G
Ibragimov, I
Iconomidou-Fayard, L
Ideal, E
Iengo, P
Igonkina, O
Iizawa, T
Ikegami, Y
Ikematsu, K
Ikeno, M
Iliadis, D
Ilic, N
Inamaru, Y
Ince, T
Ioannou, P
Iodice, M
Iordanidou, K
Ippolito, V
Quiles, AI
Isaksson, C
Ishino, M
Ishitsuka, M
Ishmukhametov, R
Issever, C
Istin, S
Ponce, JMI
Ivarsson, J
Ivashin, AV
Iwanski, W
Iwasaki, H
Izen, JM
Izzo, V
Jackson, B
Jackson, M
Jackson, P
Jaekel, MR
Jain, V
Jakobs, K
Jakobsen, S
Jakoubek, T
Jakubek, J
Jamin, DO
Jana, DK
Jansen, E
Jansen, H
Janssen, J
Janus, M
Jarlskog, G
Javadov, N
Javurek, T
Jeanty, L
Jeng, GY
Jennens, D
Jenni, P
Jentzsch, J
Jeske, C
Jezequel, S
Ji, H
Ji, W
Jia, J
Jiang, Y
Belenguer, MJ
Jin, S
Jinaru, A
Jinnouchi, O
Joergensen, MD
Johansson, KE
Johansson, P
Johns, KA
Jon-And, K
Jones, G
Jones, RWL
Jones, TJ
Jongmanns, J
Jorge, PM
Joshi, KD
Jovicevic, J
Ju, X
Jung, CA
Jungst, RM
Jussel, P
Rozas, AJ
Kaci, M
Kaczmarska, A
Kado, M
Kagan, H
Kagan, M
Kajomovitz, E
Kalderon, CW
Kama, S
Kanaya, N
Kaneda, M
Kaneti, S
Kanno, T
Kantserov, VA
Kanzaki, J
Kaplan, B
Kapliy, A
Kar, D
Karakostas, K
Karastathis, N
Karnevskiy, M
Karpov, SN
Karthik, K
Kartvelishvili, V
Karyukhin, AN
Kashif, L
Kasieczka, G
Kass, RD
Kastanas, A
Kataoka, Y
Katre, A
Katzy, J
Kaushik, V
Kawagoe, K
Kawamoto, T
Kawamura, G
Kazama, S
Kazanin, VF
Kazarinov, MY
Keeler, R
Kehoe, R
Keil, M
Keller, JS
Kempster, JJ
Keoshkerian, H
Kepka, O
Kersevan, BP
Kersten, S
Kessoku, K
Keung, J
Khalil-Zada, F
Khandanyan, H
Khanov, A
Khodinov, A
Khomich, A
Khoo, TJ
Khoriauli, G
Khoroshilov, A
Khovanskiy, V
Khramov, E
Khubua, J
Kim, HY
Kim, H
Kim, SH
Kimura, N
Kind, O
King, BT
King, M
King, RSB
King, SB
Kirk, J
Kiryunin, AE
Kishimoto, T
Kisielewska, D
Kiss, F
Kitamura, T
Kittelmann, T
Kiuchi, K
Kladiva, E
Klein, M
Klein, U
Kleinknecht, K
Klimek, P
Klimentov, A
Klingenberg, R
Klinger, JA
Klioutchnikova, T
Klok, PF
Kluge, EE
Kluit, P
Kluth, S
Kneringer, E
Knoops, EBFG
Knue, A
Kobayashi, T
Kobel, M
Kocian, M
Kodys, P
Koevesarki, P
Koffas, T
Koffeman, E
Kogan, LA
Kohlmann, S
Kohout, Z
Kohriki, T
Koi, T
Kolanoski, H
Koletsou, I
Koll, J
Komar, AA
Komori, Y
Kondo, T
Kondrashova, N
Koneke, K
Konig, AC
Konig, S
Kono, T
Konoplich, R
Konstantinidis, N
Kopeliansky, R
Koperny, S
Kopke, L
Kopp, AK
Korcyl, K
Kordas, K
Korn, A
Korol, AA
Korolkov, I
Korolkova, EV
Korotkov, VA
Kortner, O
Kortner, S
Kostyukhin, VV
Kotov, VM
Kotwal, A
Kourkoumelis, C
Kouskoura, V
Koutsman, A
Kowalewski, R
Kowalski, TZ
Kozanecki, W
Kozhin, AS
Kral, V
Kramarenko, VA
Kramberger, G
Krasnopevtsev, D
Krasny, MW
Krasznahorkay, A
Kraus, JK
Kravchenko, A
Kreiss, S
Kretz, M
Kretzschmar, J
Kreutzfeldt, K
Krieger, P
Kroeninger, K
Kroha, H
Kroll, J
Kroseberg, J
Krstic, J
Kruchonak, U
Kruger, H
Kruker, T
Krumnack, N
Krumshteyn, ZV
Kruse, A
Kruse, MC
Kruskal, M
Kubota, T
Kuday, S
Kuehn, S
Kugel, A
Kuhl, A
Kuhl, T
Kukhtin, V
Kulchitsky, Y
Kuleshov, S
Kuna, M
Kunkle, J
Kupco, A
Kurashige, H
Kurochkin, YA
Kurumida, R
Kus, V
Kuwertz, ES
Kuze, M
Kvita, J
La Rosa, A
La Rotonda, L
Lacasta, C
Lacava, F
Lacey, J
Lacker, H
Lacour, D
Lacuesta, VR
Ladygin, E
Lafaye, R
Laforge, B
Lagouri, T
Lai, S
Laier, H
Lambourne, L
Lammers, S
Lampen, CL
Lampl, W
Lancon, E
Landgraf, U
Landon, MPJ
Lang, VS
Lange, C
Lankford, AJ
Lanni, F
Lantzsch, K
Laplace, S
Lapoire, C
Laporte, JF
Lari, T
Lassnig, M
Laurelli, P
Lavrijsen, W
Law, AT
Laycock, P
Le, BT
Le Dortz, O
Le Guirriec, E
Le Menedeu, E
LeCompte, T
Ledroit-Guillon, F
Lee, CA
Lee, H
Lee, JSH
Lee, SC
Lee, L
Lefebvre, G
Lefebvre, M
Legger, F
Leggett, C
Lehan, A
Lehmacher, M
Miotto, GL
Lei, X
Leight, WA
Leisos, A
Leister, AG
Leite, MAL
Leitner, R
Lellouch, D
Lemmer, B
Leney, KJC
Lenz, T
Lenzen, G
Lenzi, B
Leone, R
Leonhardt, K
Leontsinis, S
Leroy, C
Lester, CG
Lester, CM
Levchenko, M
Leveque, J
Levin, D
Levinson, LJ
Levy, M
Lewis, A
Lewis, GH
Leyko, AM
Leyton, M
Li, B
Li, B
Li, H
Li, HL
Li, L
Li, L
Li, S
Li, Y
Liang, Z
Liao, H
Liberti, B
Lichard, P
Lie, K
Liebal, J
Liebig, W
Limbach, C
Limosani, A
Lin, SC
Linde, F
Lindquist, BE
Linnemann, JT
Lipeles, E
Lipniacka, A
Lisovyi, M
Liss, TM
Lissauer, D
Lister, A
Litke, AM
Liu, B
Liu, D
Liu, JB
Liu, K
Liu, L
Liu, M
Liu, M
Liu, Y
Livan, M
Livermore, SSA
Lleres, A
Merino, JL
Lloyd, SL
Lo Sterzo, F
Lobodzinska, E
Loch, P
Lockman, WS
Loddenkoetter, T
Loebinger, FK
Loevschall-Jensen, AE
Loginov, A
Loh, CW
Lohse, T
Lohwasser, K
Lokajicek, M
Lombardo, VP
Long, BA
Long, JD
Long, RE
Lopes, L
Mateos, DL
Paredes, BL
Paz, IL
Lorenz, J
Martinez, NL
Losada, M
Loscutoff, P
Lou, X
Lounis, A
Love, J
Love, PA
Lowe, AJ
Lu, F
Lubatti, HJ
Luci, C
Lucotte, A
Luehring, F
Lukas, W
Luminari, L
Lundberg, O
Lund-Jensen, B
Lungwitz, M
Lynn, D
Lysak, R
Lytken, E
Ma, H
Ma, LL
Maccarrone, G
Macchiolo, A
Miguens, JM
Macina, D
Madaffari, D
Madar, R
Maddocks, HJ
Mader, WF
Madsen, A
Maeno, M
Maeno, T
Magradze, E
Mahboubi, K
Mahlstedt, J
Mahmoud, S
Maiani, C
Maidantchik, C
Maio, A
Majewski, S
Makida, Y
Makovec, N
Mal, P
Malaescu, B
Malecki, P
Maleev, VP
Malek, F
Mallik, U
Malon, D
Malone, C
Maltezos, S
Malyshev, VM
Malyukov, S
Mamuzic, J
Mandelli, B
Mandelli, L
Mandic, I
Mandrysch, R
Maneira, J
Manfredini, A
Andrade, LMD
Ramos, JAM
Mann, A
Manning, PM
Manousakis-Katsikakis, A
Mansoulie, B
Mantifel, R
Mapelli, L
March, L
Marchand, JF
Marchiori, G
Marcisovsky, M
Marino, CP
Marjanovic, M
Marques, CN
Marroquim, F
Marsden, SP
Marshall, Z
Marti, LF
Marti-Garcia, S
Martin, B
Martin, B
Martin, TA
Martin, VJ
Latour, BMD
Martinez, H
Martinez, M
Martin-Haugh, S
Martyniuk, AC
Marx, M
Marzano, F
Marzin, A
Masetti, L
Mashimo, T
Mashinistov, R
Masik, J
Maslennikov, AL
Massa, I
Massol, N
Mastrandrea, P
Mastroberardino, A
Masubuchi, T
Matsushita, T
Mattig, P
Mattig, S
Mattmann, J
Maurer, J
Maxfield, SJ
Maximov, DA
Mazini, R
Mazzaferro, L
Mc Goldric, G
Mc Kee, SP
McCarn, A
McCarthy, RL
McCarthy, TG
McCubbin, NA
McFarlane, KW
Mcfayden, JA
Mchedlidze, G
McMahon, SJ
McPherson, RA
Meade, A
Mechnich, J
Medinnis, M
Meehan, S
Mehlhase, S
Mehta, A
Meier, K
Meineck, C
Meirose, B
Melachrinos, C
Garcia, BRM
Meloni, F
Mengarelli, A
Menke, S
Meoni, E
Mercurio, KM
Mergelmeyer, S
Meric, N
Mermod, P
Merola, L
Meroni, C
Merritt, FS
Merritt, H
Messina, A
Metcalfe, J
Mete, AS
Meyer, C
Meyer, C
Meyer, JP
Meyer, J
Middleton, RP
Migas, S
Mijovic, L
Mikenberg, G
Mikestikova, M
Mikuz, M
Miller, DW
Mills, C
Milov, A
Milstead, DA
Milstein, D
Minaenko, AA
Minashvili, IA
Mincer, AI
Mindur, B
Mineev, M
Ming, Y
Mir, LM
Mirabelli, G
Mitani, T
Mitrevski, J
Mitsou, VA
Mitsui, S
Miucci, A
Miyagawa, PS
Mjornmark, JU
Moa, T
Mochizuki, K
Moeller, V
Mohapatra, S
Mohr, W
Molander, S
Moles-Valls, R
Monig, K
Monini, C
Monk, J
Monnier, E
Berlingen, JM
Monticelli, F
Monzani, S
Moore, RW
Moraes, A
Morange, N
Morel, J
Moreno, D
Llacer, MM
Morettini, P
Morgenstern, M
Morii, M
Moritz, S
Morley, AK
Mornacchi, G
Morris, JD
Morvaj, L
Moser, HG
Mosidze, M
Moss, J
Mount, R
Mountricha, E
Mouraviev, SV
Moyse, EJW
Muanza, S
Mudd, RD
Mueller, F
Mueller, J
Mueller, K
Mueller, T
Mueller, T
Muenstermann, D
Munwes, Y
Quijada, JAM
Murray, WJ
Musheghyan, H
Musto, E
Myagkov, AG
Myska, M
Nackenhorst, O
Nadal, J
Nagai, K
Nagai, R
Nagai, Y
Nagano, K
Nagarkar, A
Nagasaka, Y
Nagel, M
Nairz, AM
Nakahama, Y
Nakamura, K
Nakamura, T
Nakano, I
Namasivayam, H
Nanava, G
Narayan, R
Nattermann, T
Naumann, T
Navarro, G
Nayyar, R
Neal, HA
Nechaeva, PY
Neep, TJ
Negri, A
Negri, G
Negrini, M
Nektarijevic, S
Nelson, A
Nelson, TK
Nemecek, S
Nemethy, P
Nepomuceno, AA
Nessi, M
Neubauer, MS
Neumann, M
Neves, RM
Nevski, P
Newman, PR
Nguyen, DH
Nickerson, RB
Nicolaidou, R
Nicquevert, B
Nielsen, J
Nikiforou, N
Nikiforov, A
Nikolaenko, V
Nikolic-Audit, I
Nikolics, K
Nikolopoulos, K
Nilsson, P
Ninomiya, Y
Nisati, A
Nisius, R
Nobe, T
Nodulman, L
Nomachi, M
Nomidis, I
Norberg, S
Nordberg, M
Nowak, S
Nozaki, M
Nozka, L
Ntekas, K
Hanninger, GN
Nunnemann, T
Nurse, E
Nuti, F
O'Brien, BJ
O'grady, F
O'Neil, DC
O'Shea, V
Oakham, FG
Oberlack, H
Obermann, T
Ocariz, J
Ochi, A
Ochoa, MI
Oda, S
Odaka, S
Ogren, H
Oh, A
Oh, SH
Ohm, CC
Ohman, H
Ohshima, T
Okamura, W
Okawa, H
Okumura, Y
Okuyama, T
Olariu, A
Olchevski, AG
Pino, SAO
Damazio, DO
Garcia, EO
Olszewski, A
Olszowska, J
Onofre, A
Onyisi, PUE
Oram, CJ
Oreglia, MJ
Oren, Y
Orestano, D
Orlando, N
Barrera, CO
Orr, RS
Osculati, B
Ospanov, R
Garzon, GOY
Otono, H
Ouchrif, M
Ouellette, EA
Ould-Saada, F
Ouraou, A
Oussoren, KP
Ouyang, Q
Ovcharova, A
Owen, M
Ozcan, VE
Ozturk, N
Pachal, K
Pages, AP
Aranda, CP
Pagacova, M
Griso, SP
Paganis, E
Pahl, C
Paige, F
Pais, P
Pajchel, K
Palacino, G
Palestini, S
Pallin, D
Palma, A
Palmer, JD
Pan, YB
Panagiotopoulou, E
Vazquez, JGP
Pani, P
Panikashvili, N
Panitkin, S
Pantea, D
Paolozzi, L
Papadopoulou, TD
Papageorgiou, K
Paramonov, A
Hernandez, DP
Parker, MA
Parodi, F
Parsons, JA
Parzefall, U
Pasqualucci, E
Passaggio, S
Passeri, A
Pastore, F
Pastore, F
Pasztor, G
Pataraia, S
Patel, ND
Pater, JR
Patricelli, S
Pauly, T
Pearce, J
Pedersen, M
Lopez, SP
Pedro, R
Peleganchuk, SV
Pelikan, D
Peng, H
Penning, B
Penwell, J
Perepelitsa, DV
Codina, EP
Garcia-Estan, MTP
Reale, VP
Perini, L
Pernegger, H
Perrino, R
Peschke, R
Peshekhonov, VD
Peters, K
Peters, RFY
Petersen, BA
Petersen, J
Petersen, TC
Petit, E
Petridis, A
Petridou, C
Petrolo, E
Petrucci, F
Petteni, M
Pettersson, NE
Pezoa, R
Phillips, PW
Piacquadio, G
Pianori, E
Picazio, A
Piccaro, E
Piccinini, M
Piegaia, R
Pignotti, DT
Pilcher, JE
Pilkington, AD
Pina, J
Pinamonti, M
Pinder, A
Pinfold, JL
Pingel, A
Pinto, B
Pires, S
Pitt, M
Pizio, C
Pleier, MA
Pleskot, V
Plotnikova, E
Plucinski, P
Poddar, S
Podlyski, F
Poettgen, R
Poggioli, L
Pohl, D
Pohl, M
Polesello, G
Policicchio, A
Polifka, R
Polini, A
Pollard, CS
Polychronakos, V
Pommes, K
Pontecorvo, L
Pope, BG
Popeneciu, GA
Popovic, DS
Poppleton, A
Bueso, XP
Pospelov, GE
Pospisil, S
Potamianos, K
Potrap, IN
Potter, CJ
Potter, CT
Poulard, G
Poveda, J
Pozdnyakov, V
Pralavorio, P
Pranko, A
Prasad, S
Pravahan, R
Prell, S
Price, D
Price, J
Price, LE
Prieur, D
Primavera, M
Proissl, M
Prokofiev, K
Prokoshin, F
Protopapadaki, E
Protopopescu, S
Proudfoot, J
Przybycien, M
Przysiezniak, H
Ptacek, E
Pueschel, E
Puldon, D
Purohit, M
Puzo, P
Qian, J
Qin, G
Qin, Y
Quadt, A
Quarrie, DR
Quayle, WB
Queitsch-Maitland, M
Quilty, D
Qureshi, A
Radeka, V
Radescu, V
Radhakrishnan, SK
Radloff, P
Rados, P
Ragusa, F
Rahal, G
Rajagopalan, S
Rammensee, M
Randle-Conde, AS
Rangel-Smith, C
Rao, K
Rauscher, F
Rave, TC
Ravenscroft, T
Raymond, M
Read, AL
Rebuzzi, DM
Redelbach, A
Redlinger, G
Reece, R
Reeves, K
Rehnisch, L
Reisin, H
Relich, M
Rembser, C
Ren, H
Ren, ZL
Renaud, A
Rescigno, M
Resconi, S
Rezanova, OL
Reznicek, P
Rezvani, R
Richter, R
Ridel, M
Rieck, P
Rieger, J
Rijssenbeek, M
Rimoldi, A
Rinaldi, L
Ritsch, E
Riu, I
Rizatdinova, F
Rizvi, E
Robertson, SH
Robichaud-Veronneau, A
Robinson, D
Robinson, JEM
Robson, A
Roda, C
Rodrigues, L
Roe, S
Rohne, O
Rolli, S
Romaniouk, A
Romano, M
Romeo, G
Adam, ER
Rompotis, N
Roos, L
Ros, E
Rosati, S
Rosbach, K
Rose, M
Rosendahl, PL
Rosenthal, O
Rossetti, V
Rossi, E
Rossi, LP
Rosten, R
Rotaru, M
Roth, I
Rothberg, J
Rousseau, D
Royon, CR
Rozanov, A
Rozen, Y
Ruan, X
Rubbo, F
Rubinskiy, I
Rud, VI
Rudolph, C
Rudolph, MS
Ruhr, F
Ruiz-Martinez, A
Rurikova, Z
Rusakovich, NA
Ruschke, A
Rutherfoord, JP
Ruthmann, N
Ryabov, YF
Rybar, M
Rybkin, G
Ryder, NC
Saavedra, AF
Sacerdoti, S
Saddique, A
Sadeh, I
Sadrozinski, HFW
Sadykov, R
Tehrani, FS
Sakamoto, H
Sakurai, Y
Salamanna, G
Salamon, A
Saleem, M
Salek, D
De Bruin, PHS
Salihagic, D
Salnikov, A
Salt, J
Ferrando, BMS
Salvatore, D
Salvatore, F
Salvucci, A
Salzburger, A
Sampsonidis, D
Sanchez, A
Synchez, J
Martinez, VS
Sandaker, H
Sandbach, RL
Sander, HG
Sanders, MP
Sandhoff, M
Sandoval, T
Sandoval, C
Sandstroem, R
Sankey, DPC
Sansoni, A
Santoni, C
Santonico, R
Santos, H
Castillo, IS
Sapp, K
Sapronov, A
Saraiva, JG
Sarrazin, B
Sartisohn, G
Sasaki, O
Sasaki, Y
Sauvage, G
Sauvan, E
Savard, P
Savu, DO
Sawyer, C
Sawyer, L
Saxon, DH
Saxon, J
Sbarra, C
Sbrizzi, A
Scanlon, T
Scannicchio, DA
Scarcella, M
Schaarschmidt, J
Schacht, P
Schaefer, D
Schaefer, R
Schaepe, S
Schaetzel, S
Schafer, U
Schaffer, AC
Schaile, D
Schamberger, RD
Scharf, V
Schegelsky, VA
Scheirich, D
Schernau, M
Scherzer, MI
Schiavi, C
Schieck, J
Schillo, C
Schioppa, M
Schlenker, S
Schmidt, E
Schmieden, K
Schmitt, C
Schmitt, C
Schmitt, S
Schneider, B
Schnellbach, YJ
Schnoor, U
Schoeffel, L
Schoening, A
Schoenrock, BD
Schorlemmer, ALS
Schott, M
Schouten, D
Schovancova, J
Schramm, S
Schreyer, M
Schroeder, C
Schuh, N
Schultens, MJ
Schultz-Coulon, HC
Schulz, H
Schumacher, M
Schumm, BA
Schune, P
Schwanenberger, C
Schwartzman, A
Schwegler, P
Schwemling, P
Schwienhorst, R
Schwindling, J
Schwindt, T
Schwoerer, M
Sciacca, FG
Scifo, E
Sciolla, G
Scott, WG
Scuri, F
Scutti, F
Searcy, J
Sedov, G
Sedykh, E
Seidel, SC
Seiden, A
Seifert, F
Seixas, JM
Sekhniaidze, G
Sekula, SJ
Selbach, KE
Seliverstov, DM
Sellers, G
Semprini-Cesari, N
Serfon, C
Serin, L
Serkin, L
Serre, T
Seuster, R
Severini, H
Sforza, F
Sfyrla, A
Shabalina, E
Shamim, M
Shan, LY
Shang, R
Shank, JT
Shao, QT
Shapiro, M
Shatalov, PB
Shaw, K
Sherwood, P
Shi, L
Shimizu, S
Shimmin, CO
Shimojima, M
Shiyakova, M
Shmeleva, A
Shochet, MJ
Short, D
Shrestha, S
Shulga, E
Shupe, MA
Shushkevich, S
Sicho, P
Sidorov, D
Sidoti, A
Siegert, F
Sijacki, D
Silva, J
Silver, Y
Silverstein, D
Silverstein, SB
Simak, V
Simard, O
Simic, L
Simion, S
Simioni, E
Simmons, B
Simoniello, R
Simonyan, M
Sinervo, P
Sinev, NB
Sipica, V
Siragusa, G
Sircar, A
Sisakyan, AN
Sivoklokov, SY
Sjolin, J
Sjursen, TB
Skottowe, HP
Skovpen, KY
Skubic, P
Slater, M
Slavicek, T
Sliwa, K
Smakhtin, V
Smart, BH
Smestad, L
Smirnov, SY
Smirnov, Y
Smirnova, LN
Smirnova, O
Smith, KM
Smizanska, M
Smolek, K
Snesarev, AA
Snidero, G
Snyder, S
Sobie, R
Socher, F
Soffer, A
Soh, DA
Solans, CA
Solar, M
Solc, J
Soldatov, EY
Soldevila, U
Camillocci, ES
Solodkov, AA
Solovyanov, OV
Solovyev, V
Sommer, P
Song, HY
Soni, N
Sood, A
Sopczak, A
Sopko, B
Sopko, V
Sorin, V
Sosebee, M
Soualah, R
Soueid, P
Soukharev, AM
South, D
Spagnolo, S
Spano, F
Spearman, WR
Spighi, R
Spigo, G
Spousta, M
Spreitzer, T
Spurlock, B
Denis, RDS
Staerz, S
Stahlman, J
Stamen, R
Stanecka, E
Stanek, RW
Stanescu, C
Stanescu-Bellu, M
Stanitzki, MM
Stapnes, S
Starchenko, EA
Stark, J
Staroba, P
Starovoitov, P
Staszewski, R
Stavina, P
Steele, G
Steinberg, P
Stelzer, B
Stelzer, HJ
Stelzer-Chilton, O
Stenzel, H
Stern, S
Stewart, GA
Stillings, JA
Stockton, MC
Stoebe, M
Stoicea, G
Stolte, P
Stonjek, S
Stradling, AR
Straessner, A
Stramaglia, ME
Strandberg, J
Strandberg, S
Strandlie, A
Strauss, E
Strauss, M
Strizenec, P
Strohmer, R
Strom, DM
Stroynowski, R
Stucci, SA
Stugu, B
Styles, NA
Su, D
Su, J
Subramania, H
Subramaniam, R
Succurro, A
Sugaya, Y
Suhr, C
Suk, M
Sulin, VV
Sultansoy, S
Sumida, T
Sun, X
Sundermann, JE
Suruliz, K
Susinno, G
Sutton, MR
Suzuki, Y
Svatos, M
Swedish, S
Swiatlowski, M
Sykora, I
Sykora, T
Ta, D
Tackmann, K
Taenzer, J
Taffard, A
Tafirout, R
Taiblum, N
Takahashi, Y
Takai, H
Takashima, R
Takeda, H
Takeshita, T
Takubo, Y
Talby, M
Talyshev, AA
Tam, JYC
Tamsett, MC
Tan, KG
Tanaka, J
Tanaka, R
Tanaka, S
Tanaka, S
Tanasijczuk, AJ
Tani, K
Tannoury, N
Tapprogge, S
Tarem, S
Tarrade, F
Tartarelli, GF
Tas, P
Tasevsky, M
Tashiro, T
Tassi, E
Delgado, AT
Tayalati, Y
Taylor, FE
Taylor, GN
Taylor, W
Teischinger, FA
Castanheira, MTD
Teixeira-Dias, P
Temming, KK
Ten Kate, H
Teng, PK
Teoh, JJ
Terada, S
Terashi, K
Terron, J
Terzo, S
Testa, M
Teuscher, RJ
Therhaag, J
Theveneaux-Pelzer, T
Thoma, S
Thomas, JP
Thomas-Wilsker, J
Thompson, EN
Thompson, PD
Thompson, PD
Thompson, AS
Thomsen, LA
Thomson, E
Thomson, M
Thong, WM
Thun, RP
Tian, F
Tibbetts, MJ
Tikhomirov, VO
Tikhonov, YA
Timoshenko, S
Tiouchichine, E
Tipton, P
Tisserant, S
Todorov, T
Todorova-Nova, S
Toggerson, B
Tojo, J
Tokar, S
Tokushuku, K
Tollefson, K
Tomlinson, L
Tomoto, M
Tompkins, L
Toms, K
Topilin, ND
Torrence, E
Torres, H
Pastor, ET
Toth, J
Touchard, F
Tovey, DR
Tran, HL
Trefzger, T
Tremblet, L
Tricoli, A
Trigger, IM
Trincaz-Duvoid, S
Tripiana, MF
Triplett, N
Trischuk, W
Trocme, B
Troncon, C
Trottier-McDonald, M
Trovatelli, M
True, P
Trzebinski, M
Trzupek, A
Tsarouchas, C
Tseng, JCL
Tsiareshka, PV
Tsionou, D
Tsipolitis, G
Tsirintanis, N
Tsiskaridze, S
Tsiskaridze, V
Tskhadadze, EG
Tsukerman, II
Tsulaia, V
Tsuno, S
Tsybychev, D
Tudorache, A
Tudorache, V
Tuna, AN
Tupputi, SA
Turchikhin, S
Turecek, D
Cakir, IT
Turra, R
Tuts, PM
Tykhonov, A
Tylmad, M
Tyndel, M
Uchida, K
Ueda, I
Ueno, R
Ughetto, M
Ugland, M
Uhlenbrock, M
Ukegawa, F
Unal, G
Undrus, A
Unel, G
Ungaro, FC
Unno, Y
Urbaniec, D
Urquijo, P
Usai, G
Usanova, A
Vacavant, L
Vacek, V
Vachon, B
Valencic, N
Valentinetti, S
Valero, A
Valery, L
Valkar, S
Gallego, EV
Vallecorsa, S
Ferrer, JAV
Van Der Deijl, PC
van der Geer, R
van der Graaf, H
Van Der Leeuw, R
van der Ster, D
Van Eldik, N
van Gemmeren, P
Van Nieuwkoop, J
van Vulpen, I
van Woerden, MC
Vanadia, M
Vandelli, W
Vanguri, R
Vaniachine, A
Vankov, P
Vannucci, F
Vardanyan, G
Vari, R
Varnes, EW
Varol, T
Varouchas, D
Vartapetian, A
Varvell, KE
Vazeille, F
Schroeder, TV
Veatch, J
Veloso, F
Veneziano, S
Ventura, A
Ventura, D
Venturi, M
Venturi, N
Venturini, A
Vercesi, V
Verducci, M
Verkerke, W
Vermeulen, JC
Vest, A
Vetterli, MC
Viazlo, O
Vichou, I
Vickey, T
Boeriu, OEV
Viehhauser, GHA
Viel, S
Vigne, R
Villa, M
Perez, MV
Vilucchi, E
Vincter, MG
Vinogradov, VB
Virzi, J
Vivarelli, I
Vaque, FV
Vlachos, S
Vladoiu, D
Vlasak, M
Vogel, A
Vogel, M
Vokac, P
Volpi, G
Volpi, M
von der Schmitt, H
von Radziewski, H
von Toerne, E
Vorobel, V
Vorobev, K
Vos, M
Voss, R
Vossebeld, JH
Vranjes, N
Milosavljevic, MV
Vrba, V
Vreeswijk, M
Anh, TV
Vuillermet, R
Vukotic, I
Vykydal, Z
Wagner, P
Wagner, W
Wahrmund, S
Wakabayashi, J
Walder, J
Walker, R
Walkowiak, W
Wall, R
Waller, P
Walsh, B
Wang, C
Wang, C
Wang, F
Wang, H
Wang, H
Wang, J
Wang, J
Wang, K
Wang, R
Wang, SM
Wang, T
Wang, X
Wanotayaroj, C
Warburton, A
Ward, CP
Wardrope, DR
Warsinsky, M
Washbrook, A
Wasicki, C
Watanabe, I
Watkins, PM
Watson, AT
Watson, IJ
Watson, MF
Watts, G
Watts, S
Waugh, BM
Webb, S
Weber, MS
Weber, SW
Webster, JS
Weidberg, AR
Weigell, P
Weinert, B
Weingarten, J
Weiser, C
Weits, H
Wells, PS
Wenaus, T
Wendland, D
Weng, Z
Wengler, T
Wenig, S
Wermes, N
Werner, M
Werner, P
Wessels, M
Wetter, J
Whalen, K
White, A
White, MJ
White, R
White, S
Whiteson, D
Wicke, D
Wickens, FJ
Wiedenmann, W
Wielers, M
Wienemann, P
Wiglesworth, C
Wiik-Fuchs, LAM
Wijeratne, PA
Wildauer, A
Wildt, MA
Wilkens, HG
Will, JZ
Williams, HH
Williams, S
Willis, C
Willocq, S
Wilson, A
Wilson, JA
Wingerter-Seez, I
Winklmeier, F
Winter, BT
Wittgen, M
Wittig, T
Wittkowski, J
Wollstadt, SJ
Wolter, MW
Wolters, H
Wosiek, BK
Wotschack, J
Woudstra, MJ
Wozniak, KW
Wright, M
Wu, M
Wu, SL
Wu, X
Wu, Y
Wulf, E
Wyatt, TR
Wynne, BM
Xella, S
Xiao, M
Xu, D
Xu, L
Yabsley, B
Yacoob, S
Yamada, M
Yamaguchi, H
Yamaguchi, Y
Yamamoto, A
Yamamoto, K
Yamamoto, S
Yamamura, T
Yamanaka, T
Yamauchi, K
Yamazaki, Y
Yan, Z
Yang, H
Yang, H
Yang, UK
Yang, Y
Yanush, S
Yao, L
Yao, WM
Yasu, Y
Yatsenko, E
Wong, KHY
Ye, J
Ye, S
Yen, AL
Yildirim, E
Yilmaz, M
Yoosoofmiya, R
Yorita, K
Yoshida, R
Yoshihara, K
Young, C
Young, CJS
Youssef, S
Yu, DR
Yu, J
Yu, JM
Yu, J
Yuan, L
Yurkewicz, A
Zabinski, B
Zaidan, R
Zaitsev, AM
Zaman, A
Zambito, S
Zanello, L
Zanzi, D
Zaytsev, A
Zeitnitz, C
Zeman, M
Zemla, A
Zengel, K
Zenin, O
Zenis, T
Zerwas, D
della Porta, GZ
Zhang, D
Zhang, F
Zhang, H
Zhang, J
Zhang, L
Zhang, X
Zhang, Z
Zhao, Z
Zhemchugov, A
Zhong, J
Zhou, B
Zhou, L
Zhou, N
Zhu, CG
Zhu, H
Zhu, J
Zhu, Y
Zhuang, X
Zibell, A
Zieminska, D
Zimine, NI
Zimmermann, C
Zimmermann, R
Zimmermann, S
Zimmermann, S
Zinonos, Z
Ziolkowski, M
Zobernig, G
Zoccoli, A
Nedden, MZ
Zurzolo, G
Zutshi, V
Zwalinski, L
AF Aad, G.
Abbott, B.
Abdallah, J.
Khalek, S. Abdel
Abdinov, O.
Aben, R.
Abi, B.
Abolins, M.
AbouZeid, O. S.
Abramowicz, H.
Abreu, H.
Abreu, R.
Abulaiti, Y.
Acharya, B. S.
Adamczyk, L.
Adams, D. L.
Adelman, J.
Adomeit, S.
Adye, T.
Agatonovic-Jovin, T.
Aguilar-Saavedra, J. A.
Agustoni, M.
Ahlen, S. P.
Ahmadov, F.
Aielli, G.
Akerstedt, H.
Akesson, T. P. A.
Akimoto, G.
Akimov, A. V.
Alberghi, G. L.
Albert, J.
Albrand, S.
Verzini, M. J. Alconada
Aleksa, M.
Aleksandrov, I. N.
Alexa, C.
Alexander, G.
Alexandre, G.
Alexopoulos, T.
Alhroob, M.
Alimonti, G.
Alio, L.
Alison, J.
Allbrooke, B. M. M.
Allison, L. J.
Allport, P. P.
Almond, J.
Aloisio, A.
Alonso, A.
Alonso, F.
Alpigiani, C.
Altheimer, A.
Alvarez Gonzalez, B.
Alviggi, M. G.
Amako, K.
Coutinho, Y. Amaral
Amelung, C.
Amidei, D.
Amor Dos Santos, S. P.
Amorim, A.
Amoroso, S.
Amram, N.
Amundsen, G.
Anastopoulos, C.
Ancu, L. S.
Andari, N.
Andeen, T.
Anders, C. F.
Anders, G.
Anderson, K. J.
Andreazza, A.
Andrei, V.
Anduaga, X. S.
Angelidakis, S.
Angelozzi, I.
Anger, P.
Angerami, A.
Anghinolfi, F.
Anisenkov, A. V.
Anjos, N.
Annovi, A.
Antonaki, A.
Antonelli, M.
Antonov, A.
Antos, J.
Anulli, F.
Aoki, M.
Bella, L. Aperio
Apolle, R.
Arabidze, G.
Aracena, I.
Arai, Y.
Araque, J. P.
Arce, A. T. H.
Arguin, J-F.
Argyropoulos, S.
Arik, M.
Armbruster, A. J.
Arnaez, O.
Arnal, V.
Arnold, H.
Arslan, O.
Artamonov, A.
Artoni, G.
Asai, S.
Asbah, N.
Ashkenazi, A.
Asman, B.
Asquith, L.
Assamagan, K.
Astalos, R.
Atkinson, M.
Atlay, N. B.
Auerbach, B.
Augsten, K.
Aurousseau, M.
Avolio, G.
Azuelos, G.
Azuma, Y.
Baak, M. A.
Bacci, C.
Bachacou, H.
Bachas, K.
Backes, M.
Backhaus, M.
Mayes, J. Backus
Badescu, E.
Bagiacchi, P.
Bagnaia, P.
Bai, Y.
Bain, T.
Baines, J. T.
Baker, O. K.
Baker, S.
Balek, P.
Balli, F.
Banas, E.
Banerjee, Sw.
Bangert, A.
Bannoura, A. A. E.
Bansal, V.
Bansil, H. S.
Barak, L.
Baranov, S. P.
Barberio, E. L.
Barberis, D.
Barbero, M.
Barillari, T.
Barisonzi, M.
Barklow, T.
Barlow, N.
Barnett, B. M.
Barnett, R. M.
Barnovska, Z.
Baroncelli, A.
Barone, G.
Barr, A. J.
Barreiro, F.
Barreiro Guimaraes da Costa, J.
Bartoldus, R.
Barton, A. E.
Bartos, P.
Bartsch, V.
Bassalat, A.
Basye, A.
Bates, R. L.
Batkova, L.
Batley, J. R.
Battistin, M.
Bauer, F.
Bawa, H. S.
Beau, T.
Beauchemin, P. H.
Beccherle, R.
Bechtle, P.
Beck, H. P.
Becker, K.
Becker, S.
Beckingham, M.
Becot, C.
Beddall, A. J.
Beddall, A.
Bedikian, S.
Bednyakov, V. A.
Bee, C. P.
Beemster, L. J.
Beermann, T. A.
Begel, M.
Behr, K.
Belanger-Champagne, C.
Bell, P. J.
Bell, W. H.
Bella, G.
Bellagamba, L.
Bellerive, A.
Bellomo, M.
Belloni, A.
Belotskiy, K.
Beltramello, O.
Benary, O.
Benchekroun, D.
Bendtz, K.
Benekos, N.
Benhammou, Y.
Noccioli, E. Benhar
Garcia, J. A. Benitez
Benjamin, D. P.
Bensinger, J. R.
Benslama, K.
Bentvelsen, S.
Berge, D.
Kuutmann, E. Bergeaas
Berger, N.
Berghaus, F.
Berglund, E.
Beringer, J.
Bernard, C.
Bernat, P.
Bernius, C.
Bernlochner, F. U.
Berry, T.
Berta, P.
Bertella, C.
Bertolucci, F.
Bertsche, D.
Besana, M. I.
Besjes, G. J.
Bessidskaia, O.
Bessner, M. F.
Besson, N.
Betancourt, C.
Bethke, S.
Bhimji, W.
Bianchi, R. M.
Bianchini, L.
Bianco, M.
Biebel, O.
Bieniek, S. P.
Bierwagen, K.
Biesiada, J.
Biglietti, M.
De Mendizabal, J. Bilbao
Bilokon, H.
Bindi, M.
Binet, S.
Bingul, A.
Bini, C.
Black, C. W.
Black, J. E.
Black, K. M.
Blackburn, D.
Blair, R. E.
Blanchard, J. -B.
Blazek, T.
Bloch, I.
Blocker, C.
Blum, W.
Blumenschein, U.
Bobbink, G. J.
Bobrovnikov, V. S.
Bocchetta, S. S.
Bocci, A.
Boddy, C. R.
Boehler, M.
Boek, J.
Boek, T. T.
Bogaerts, J. A.
Bogdanchikov, A. G.
Bogouch, A.
Bohm, C.
Bohm, J.
Boisvert, V.
Bold, T.
Boldea, V.
Boldyrev, A. S.
Bomben, M.
Bona, M.
Boonekamp, M.
Borisov, A.
Borissov, G.
Borri, M.
Borroni, S.
Bortfeldt, J.
Bortolotto, V.
Bos, K.
Boscherini, D.
Bosman, M.
Boterenbrood, H.
Boudreau, J.
Bouffard, J.
Bouhova-Thacker, E. V.
Boumediene, D.
Bourdarios, C.
Bousson, N.
Boutouil, S.
Boveia, A.
Boyd, J.
Boyko, I. R.
Bozovic-Jelisavcic, I.
Bracinik, J.
Branchini, P.
Brandt, A.
Brandt, G.
Brandt, O.
Bratzler, U.
Brau, B.
Brau, J. E.
Braun, H. M.
Brazzale, S. F.
Brelier, B.
Brendlinger, K.
Brennan, A. J.
Brenner, R.
Bressler, S.
Bristow, K.
Bristow, T. M.
Britton, D.
Brochu, F. M.
Brock, I.
Brock, R.
Bromberg, C.
Bronner, J.
Brooijmans, G.
Brooks, T.
Brooks, W. K.
Brosamer, J.
Brost, E.
Brown, G.
Brown, J.
de Renstrom, P. A. Bruckman
Bruncko, D.
Bruneliere, R.
Brunet, S.
Bruni, A.
Bruni, G.
Bruschi, M.
Bryngemark, L.
Buanes, T.
Buat, Q.
Bucci, F.
Buchholz, P.
Buckingham, R. M.
Buckley, A. G.
Buda, S. I.
Budagov, I. A.
Buehrer, F.
Bugge, L.
Bugge, K.
Bulekov, O.
Bundock, A. C.
Burckhart, H.
Burdin, S.
Burghgrave, B.
Burke, S.
Burmeister, I.
Busato, E.
Buecher, D.
Buecher, V.
Bussey, P.
Buszello, C. P.
Butler, B.
Butler, J. M.
Butt, A. I.
Buttar, C. M.
Butterworth, J. M.
Butti, P.
Buttinger, W.
Buzatu, A.
Byszewski, M.
Urban, S. Cabrera
Caforio, D.
Cakir, O.
Calafiura, P.
Calandri, A.
Calderini, G.
Calfayan, P.
Calkins, R.
Caloba, L. P.
Calvet, D.
Calvet, S.
Toro, R. Camacho
Camarda, S.
Cameron, D.
Caminada, L. M.
Armadans, R. Caminal
Campana, S.
Campanelli, M.
Campoverde, A.
Canale, V.
Canepa, A.
Bret, M. Cano
Cantero, J.
Cantrill, R.
Cao, T.
Garrido, M. D. M. Capeans
Caprini, I.
Caprini, M.
Capua, M.
Caputo, R.
Cardarelli, R.
Carli, T.
Carlino, G.
Carminati, L.
Caron, S.
Carquin, E.
Carrillo-Montoya, G. D.
Carter, J. R.
Carvalho, J.
Casadei, D.
Casado, M. P.
Casolino, M.
Castaneda-Miranda, E.
Castelli, A.
Gimenez, V. Castillo
Castro, N. F.
Catastini, P.
Catinaccio, A.
Catmore, J. R.
Cattai, A.
Cattani, G.
Caughron, S.
Cavaliere, V.
Cavalli, D.
Cavalli-Sforza, M.
Cavasinni, V.
Ceradini, F.
Cerio, B.
Cerny, K.
Cerqueira, A. S.
Cerri, A.
Cerrito, L.
Cerutti, F.
Cerv, M.
Cervelli, A.
Cetin, S. A.
Chafaq, A.
Chakraborty, D.
Chalupkova, I.
Chan, K.
Chang, P.
Chapleau, B.
Chapman, J. D.
Charfeddine, D.
Charlton, D. G.
Chau, C. C.
Barajas, C. A. Chavez
Cheatham, S.
Chegwidden, A.
Chekanov, S.
Chekulaev, S. V.
Chelkov, G. A.
Chelstowska, M. A.
Chen, C.
Chen, H.
Chen, K.
Chen, L.
Chen, S.
Chen, X.
Chen, Y.
Cheng, H. C.
Cheng, Y.
Cheplakov, A.
El Moursli, R. Cherkaoui
Chernyatin, V.
Cheu, E.
Chevalier, L.
Chiarella, V.
Chiefari, G.
Childers, J. T.
Chilingarov, A.
Chiodini, G.
Chisholm, A. S.
Chislett, R. T.
Chitan, A.
Chizhov, M. V.
Chouridou, S.
Chow, B. K. B.
Chromek-Burckhart, D.
Chu, M. L.
Chudoba, J.
Chwastowski, J. J.
Chytka, L.
Ciapetti, G.
Ciftci, A. K.
Ciftci, R.
Cinca, D.
Cindro, V.
Ciocio, A.
Cirkovic, P.
Citron, Z. H.
Citterio, M.
Ciubancan, M.
Clark, A.
Clark, P. J.
Clarke, R. N.
Cleland, W.
Clemens, J. C.
Clement, C.
Coadou, Y.
Cobal, M.
Coccaro, A.
Cochran, J.
Coffey, L.
Cogan, J. G.
Coggeshall, J.
Cole, B.
Cole, S.
Colijn, A. P.
Collot, J.
Colombo, T.
Colon, G.
Compostella, G.
Conde Muino, P.
Coniavitis, E.
Conidi, M. C.
Connell, S. H.
Connelly, I. A.
Consonni, S. M.
Consorti, V.
Constantinescu, S.
Conta, C.
Conti, G.
Conventi, F.
Cooke, M.
Cooper, B. D.
Cooper-Sarkar, A. M.
Cooper-Smith, N. J.
Copic, K.
Cornelissen, T.
Corradi, M.
Corriveau, F.
Corso-Radu, A.
Cortes-Gonzalez, A.
Cortiana, G.
Costa, G.
Costa, M. J.
Costanzo, D.
Cote, D.
Cottin, G.
Cowan, G.
Cox, B. E.
Cranmer, K.
Cree, G.
Crepe-Renaudin, S.
Crescioli, F.
Cribbs, W. A.
Ortuzar, M. Crispin
Cristinziani, M.
Croft, V.
Crosetti, G.
Cuciuc, C. -M.
Donszelmann, T. Cuhadar
Cummings, J.
Curatolo, M.
Cuthbert, C.
Czirr, H.
Czodrowski, P.
Czyczula, Z.
D'Auria, S.
D'Onofrio, M.
Da Cunha Sargedas De Sousa, M. J.
Da Via, C.
Dabrowski, W.
Dafinca, A.
Dai, T.
Dale, O.
Dallaire, F.
Dallapiccola, C.
Dam, M.
Daniells, A. C.
Hoffmann, M. Dano
Dao, V.
Darbo, G.
Darlea, G. L.
Darmora, S.
Dassoulas, J. A.
Dattagupta, A.
Davey, W.
David, C.
Davidek, T.
Davies, E.
Davies, M.
Davignon, O.
Davison, A. R.
Davison, P.
Davygora, Y.
Dawe, E.
Dawson, I.
Daya-Ishmukhametova, R. K.
De, K.
de Asmundis, R.
De Castro, S.
De Cecco, S.
De Groot, N.
de Jong, P.
De la Torre, H.
De Lorenzi, F.
De Nooij, L.
De Pedis, D.
De Salvo, A.
De Sanctis, U.
De Santo, A.
De Vivie De Regie, J. B.
De Zorzi, G.
Dearnaley, W. J.
Debbe, R.
Debenedetti, C.
Dechenaux, B.
Dedovich, D. V.
Degenhardt, J.
Deigaard, I.
Del Peso, J.
Del Prete, T.
Deliot, F.
Delitzsch, C. M.
Deliyergiyev, M.
Dell'Acqua, A.
Dell'Asta, L.
Dell'Orso, M.
Della Pietra, M.
della Volpe, D.
Delmastro, M.
Delsart, P. A.
Deluca, C.
Demers, S.
Demichev, M.
Demilly, A.
Denisov, S. P.
Derendarz, D.
Derkaoui, J. E.
Derue, F.
Dervan, P.
Desch, K.
Deterre, C.
Deviveiros, P. O.
Dewhurst, A.
Dhaliwal, S.
Di Ciaccio, A.
Di Ciaccio, L.
Di Domenico, A.
Di Donato, C.
Di Girolamo, A.
Di Girolamo, B.
Di Mattia, A.
Micco, B. Di
Di Nardo, R.
Di Simone, A.
Di Sipio, R.
Di Valentino, D.
Diaz, M. A.
Diehl, E. B.
Dietrich, J.
Dietzsch, T. A.
Diglio, S.
Dimitrievska, A.
Dingfelder, J.
Dionisi, C.
Dita, P.
Dita, S.
Dittus, F.
Djama, F.
Djobava, T.
do Vale, M. A. B.
Do Valle Wemans, A.
Doan, T. K. O.
Dobos, D.
Doglioni, C.
Doherty, T.
Dohmae, T.
Dolejsi, J.
Dolezal, Z.
Dolgoshein, B. A.
Donadelli, M.
Donati, S.
Dondero, P.
Donini, J.
Dopke, J.
Doria, A.
Dova, M. T.
Doyle, A. T.
Dris, M.
Dubbert, J.
Dube, S.
Dubreuil, E.
Duchovni, E.
Duckeck, G.
Ducu, O. A.
Duda, D.
Dudarev, A.
Dudziak, F.
Duflot, L.
Duguid, L.
Duerssen, M.
Dunford, M.
Yildiz, H. Duran
Duren, M.
Durglishvili, A.
Dwuznik, M.
Dyndal, M.
Ebke, J.
Edson, W.
Edwards, N. C.
Ehrenfeld, W.
Eifert, T.
Eigen, G.
Einsweiler, K.
Ekelof, T.
El Kacimi, M.
Ellert, M.
Elles, S.
Ellinghaus, F.
Ellis, N.
Elmsheuser, J.
Elsing, M.
Emeliyanov, D.
Enari, Y.
Endner, O. C.
Endo, M.
Engelmann, R.
Erdmann, J.
Ereditato, A.
Eriksson, D.
Ernis, G.
Ernst, J.
Ernst, M.
Ernwein, J.
Errede, D.
Errede, S.
Ertel, E.
Escalier, M.
Esch, H.
Escobar, C.
Esposito, B.
Etienvre, A. I.
Etzion, E.
Evans, H.
Fabbri, L.
Facini, G.
Fakhrutdinov, R. M.
Falciano, S.
Falla, R. J.
Faltova, J.
Fang, Y.
Fanti, M.
Farbin, A.
Farilla, A.
Farooque, T.
Farrell, S.
Farrington, S. M.
Farthouat, P.
Fassi, F.
Fassnacht, P.
Fassouliotis, D.
Favareto, A.
Fayard, L.
Federic, P.
Fedin, O. L.
Fedorko, W.
Fehling-Kaschek, M.
Feigl, S.
Feligioni, L.
Feng, C.
Feng, E. J.
Feng, H.
Fenyuk, A. B.
Perez, S. Fernandez
Ferrag, S.
Ferrando, J.
Ferrari, A.
Ferrari, P.
Ferrari, R.
de Lima, D. E. Ferreira
Ferrer, A.
Ferrere, D.
Ferretti, C.
Parodi, A. Ferretto
Fiascaris, M.
Fiedler, F.
Filipcic, A.
Filipuzzi, M.
Filthaut, F.
Fincke-Keeler, M.
Finelli, K. D.
Fiolhais, M. C. N.
Fiorini, L.
Firan, A.
Fischer, J.
Fisher, W. C.
Fitzgerald, E. A.
Flechl, M.
Fleck, I.
Fleischmann, P.
Fleischmann, S.
Fletcher, G. T.
Fletcher, G.
Flick, T.
Floderus, A.
Castillo, L. R. Flores
Bustos, A. C. Florez
Flowerdew, M. J.
Formica, A.
Forti, A.
Fortin, D.
Fournier, D.
Fox, H.
Fracchia, S.
Francavilla, P.
Franchini, M.
Franchino, S.
Francis, D.
Franklin, M.
Franz, S.
Fraternali, M.
French, S. T.
Friedrich, C.
Friedrich, F.
Froidevaux, D.
Frost, J. A.
Fukunaga, C.
Torregrosa, E. Fullana
Fulsom, B. G.
Fuster, J.
Gabaldon, C.
Gabizon, O.
Gabrielli, A.
Gabrielli, A.
Gadatsch, S.
Gadomski, S.
Gagliardi, G.
Gagnon, P.
Galea, C.
Galhardo, B.
Gallas, E. J.
Gallo, V.
Gallop, B. J.
Gallus, P.
Galster, G.
Gan, K. K.
Gandrajula, R. P.
Gao, J.
Gao, Y. S.
Walls, F. M. Garay
Garberson, F.
Garcia, C.
Navarro, J. E. Garcia
Garcia-Sciveres, M.
Gardner, R. W.
Garelli, N.
Garonne, V.
Gatti, C.
Gaudio, G.
Gaur, B.
Gauthier, L.
Gauzzi, P.
Gavrilenko, I. L.
Gay, C.
Gaycken, G.
Gazis, E. N.
Ge, P.
Gecse, Z.
Gee, C. N. P.
Geerts, D. A. A.
Geich-Gimbel, Ch.
Gellerstedt, K.
Gemme, C.
Gemmell, A.
Genest, M. H.
Gentile, S.
George, M.
George, S.
Gerbaudo, D.
Gershon, A.
Ghazlane, H.
Ghodbane, N.
Giacobbe, B.
Giagu, S.
Giangiobbe, V.
Giannetti, P.
Gianotti, F.
Gibbard, B.
Gibson, S. M.
Gilchriese, M.
Gillam, T. P. S.
Gillberg, D.
Gilles, G.
Gingrich, D. M.
Giokaris, N.
Giordani, M. P.
Giordano, R.
Giorgi, F. M.
Giorgi, F. M.
Giraud, P. F.
Giugni, D.
Giuliani, C.
Giulini, M.
Gjelsten, B. K.
Gkialas, I.
Gladilin, L. K.
Glasman, C.
Glatzer, J.
Glaysher, P. C. F.
Glazov, A.
Glonti, G. L.
Goblirsch-Kolb, M.
Goddard, J. R.
Godfrey, J.
Godlewski, J.
Goeringer, C.
Goldfarb, S.
Golling, T.
Golubkov, D.
Gomes, A.
Fajardo, L. S. Gomez
Gonalo, R.
Goncalves Pinto Firmino Da Costa, J.
Gonella, L.
Gonzalez de la Hoz, S.
Parra, G. Gonzalez
Silva, M. L. Gonzalez
Gonzalez-Sevilla, S.
Goossens, L.
Gorbounov, P. A.
Gordon, H. A.
Gorelov, I.
Gorini, B.
Gorini, E.
Gorisek, A.
Gornicki, E.
Goshaw, A. T.
Goesling, C.
Gostkin, M. I.
Gouighri, M.
Goujdami, D.
Goulette, M. P.
Goussiou, A. G.
Goy, C.
Gozpinar, S.
Grabas, H. M. X.
Graber, L.
Grabowska-Bold, I.
Grafstrom, P.
Grahn, K-J.
Gramling, J.
Gramstad, E.
Grancagnolo, S.
Grassi, V.
Gratchev, V.
Gray, H. M.
Graziani, E.
Grebenyuk, O. G.
Greenwood, Z. D.
Gregersen, K.
Gregor, I. M.
Grenier, P.
Griffiths, J.
Grillo, A. A.
Grimm, K.
Grinstein, S.
Gris, Ph.
Grishkevich, Y. V.
Grivaz, J. -F.
Grohs, J. P.
Grohsjean, A.
Gross, E.
Grosse-Knetter, J.
Grossi, G. C.
Groth-Jensen, J.
Grout, Z. J.
Grybel, K.
Guan, L.
Guescini, F.
Guest, D.
Gueta, O.
Guicheney, C.
Guido, E.
Guillemin, T.
Guindon, S.
Gul, U.
Gumpert, C.
Gunther, J.
Guo, J.
Gupta, S.
Gutierrez, P.
Ortiz, N. G. Gutierrez
Gutschow, C.
Guttman, N.
Guyot, C.
Gwenlan, C.
Gwilliam, C. B.
Haas, A.
Haber, C.
Hadavand, H. K.
Haddad, N.
Haefner, P.
Hageboeck, S.
Hajduk, Z.
Hakobyan, H.
Haleem, M.
Hall, D.
Halladjian, G.
Hamacher, K.
Hamal, P.
Hamano, K.
Hamer, M.
Hamilton, A.
Hamilton, S.
Hamnett, P. G.
Han, L.
Hanagaki, K.
Hanawa, K.
Hance, M.
Hanke, P.
Hanna, R.
Hansen, J. B.
Hansen, J. D.
Hansen, P. H.
Hara, K.
Hard, A. S.
Harenberg, T.
Hariri, F.
Harkusha, S.
Harper, D.
Harrington, R. D.
Harris, O. M.
Harrison, P. F.
Hartjes, F.
Hasegawa, S.
Hasegawa, Y.
Hasib, A.
Hassani, S.
Haug, S.
Hauschild, M.
Hauser, R.
Havranek, M.
Hawkes, C. M.
Hawkings, R. J.
Hawkins, A. D.
Hayashi, T.
Hayden, D.
Hays, C. P.
Hayward, H. S.
Haywood, S. J.
Head, S. J.
Heck, T.
Hedberg, V.
Heelan, L.
Heim, S.
Heim, T.
Heinemann, B.
Heinrich, L.
Heisterkamp, S.
Hejbal, J.
Helary, L.
Heller, C.
Heller, M.
Hellman, S.
Hellmich, D.
Helsens, C.
Henderson, J.
Henderson, R. C. W.
Hengler, C.
Henrichs, A.
Correia, A. M. Henriques
Henrot-Versille, S.
Hensel, C.
Herbert, G. H.
Hernandez Jimenez, Y.
Herrberg-Schubert, R.
Herten, G.
Hertenberger, R.
Hervas, L.
Hesketh, G. G.
Hessey, N. P.
Hickling, R.
Higon-Rodriguez, E.
Hill, E.
Hill, J. C.
Hiller, K. H.
Hillert, S.
Hillier, S. J.
Hinchliffe, I.
Hines, E.
Hirose, M.
Hirschbuehl, D.
Hobbs, J.
Hod, N.
Hodgkinson, M. C.
Hodgson, P.
Hoecker, A.
Hoeferkamp, M. R.
Hoffman, J.
Hoffmann, D.
Hofmann, J. I.
Hohlfeld, M.
Holmes, T. R.
Hong, T. M.
van Huysduynen, L. Hooft
Hostachy, J-Y.
Hou, S.
Hoummada, A.
Howard, J.
Howarth, J.
Hrabovsky, M.
Hristova, I.
Hrivnac, J.
Hryn'ova, T.
Hsu, P. J.
Hsu, S. -C.
Hu, D.
Hu, X.
Huang, Y.
Hubacek, Z.
Hubaut, F.
Huegging, F.
Huffman, T. B.
Hughes, E. W.
Hughes, G.
Huhtinen, M.
Huelsing, T. A.
Hurwitz, M.
Huseynov, N.
Huston, J.
Huth, J.
Iacobucci, G.
Iakovidis, G.
Ibragimov, I.
Iconomidou-Fayard, L.
Ideal, E.
Iengo, P.
Igonkina, O.
Iizawa, T.
Ikegami, Y.
Ikematsu, K.
Ikeno, M.
Iliadis, D.
Ilic, N.
Inamaru, Y.
Ince, T.
Ioannou, P.
Iodice, M.
Iordanidou, K.
Ippolito, V.
Quiles, A. Irles
Isaksson, C.
Ishino, M.
Ishitsuka, M.
Ishmukhametov, R.
Issever, C.
Istin, S.
Ponce, J. M. Iturbe
Ivarsson, J.
Ivashin, A. V.
Iwanski, W.
Iwasaki, H.
Izen, J. M.
Izzo, V.
Jackson, B.
Jackson, M.
Jackson, P.
Jaekel, M. R.
Jain, V.
Jakobs, K.
Jakobsen, S.
Jakoubek, T.
Jakubek, J.
Jamin, D. O.
Jana, D. K.
Jansen, E.
Jansen, H.
Janssen, J.
Janus, M.
Jarlskog, G.
Javadov, N.
Javurek, T.
Jeanty, L.
Jeng, G. -Y.
Jennens, D.
Jenni, P.
Jentzsch, J.
Jeske, C.
Jezequel, S.
Ji, H.
Ji, W.
Jia, J.
Jiang, Y.
Belenguer, M. Jimenez
Jin, S.
Jinaru, A.
Jinnouchi, O.
Joergensen, M. D.
Johansson, K. E.
Johansson, P.
Johns, K. A.
Jon-And, K.
Jones, G.
Jones, R. W. L.
Jones, T. J.
Jongmanns, J.
Jorge, P. M.
Joshi, K. D.
Jovicevic, J.
Ju, X.
Jung, C. A.
Jungst, R. M.
Jussel, P.
Rozas, A. Juste
Kaci, M.
Kaczmarska, A.
Kado, M.
Kagan, H.
Kagan, M.
Kajomovitz, E.
Kalderon, C. W.
Kama, S.
Kanaya, N.
Kaneda, M.
Kaneti, S.
Kanno, T.
Kantserov, V. A.
Kanzaki, J.
Kaplan, B.
Kapliy, A.
Kar, D.
Karakostas, K.
Karastathis, N.
Karnevskiy, M.
Karpov, S. N.
Karthik, K.
Kartvelishvili, V.
Karyukhin, A. N.
Kashif, L.
Kasieczka, G.
Kass, R. D.
Kastanas, A.
Kataoka, Y.
Katre, A.
Katzy, J.
Kaushik, V.
Kawagoe, K.
Kawamoto, T.
Kawamura, G.
Kazama, S.
Kazanin, V. F.
Kazarinov, M. Y.
Keeler, R.
Kehoe, R.
Keil, M.
Keller, J. S.
Kempster, J. J.
Keoshkerian, H.
Kepka, O.
Kersevan, B. P.
Kersten, S.
Kessoku, K.
Keung, J.
Khalil-Zada, F.
Khandanyan, H.
Khanov, A.
Khodinov, A.
Khomich, A.
Khoo, T. J.
Khoriauli, G.
Khoroshilov, A.
Khovanskiy, V.
Khramov, E.
Khubua, J.
Kim, H. Y.
Kim, H.
Kim, S. H.
Kimura, N.
Kind, O.
King, B. T.
King, M.
King, R. S. B.
King, S. B.
Kirk, J.
Kiryunin, A. E.
Kishimoto, T.
Kisielewska, D.
Kiss, F.
Kitamura, T.
Kittelmann, T.
Kiuchi, K.
Kladiva, E.
Klein, M.
Klein, U.
Kleinknecht, K.
Klimek, P.
Klimentov, A.
Klingenberg, R.
Klinger, J. A.
Klioutchnikova, T.
Klok, P. F.
Kluge, E. -E.
Kluit, P.
Kluth, S.
Kneringer, E.
Knoops, E. B. F. G.
Knue, A.
Kobayashi, T.
Kobel, M.
Kocian, M.
Kodys, P.
Koevesarki, P.
Koffas, T.
Koffeman, E.
Kogan, L. A.
Kohlmann, S.
Kohout, Z.
Kohriki, T.
Koi, T.
Kolanoski, H.
Koletsou, I.
Koll, J.
Komar, A. A.
Komori, Y.
Kondo, T.
Kondrashova, N.
Koeneke, K.
Koenig, A. C.
Koenig, S.
Kono, T.
Konoplich, R.
Konstantinidis, N.
Kopeliansky, R.
Koperny, S.
Koepke, L.
Kopp, A. K.
Korcyl, K.
Kordas, K.
Korn, A.
Korol, A. A.
Korolkov, I.
Korolkova, E. V.
Korotkov, V. A.
Kortner, O.
Kortner, S.
Kostyukhin, V. V.
Kotov, V. M.
Kotwal, A.
Kourkoumelis, C.
Kouskoura, V.
Koutsman, A.
Kowalewski, R.
Kowalski, T. Z.
Kozanecki, W.
Kozhin, A. S.
Kral, V.
Kramarenko, V. A.
Kramberger, G.
Krasnopevtsev, D.
Krasny, M. W.
Krasznahorkay, A.
Kraus, J. K.
Kravchenko, A.
Kreiss, S.
Kretz, M.
Kretzschmar, J.
Kreutzfeldt, K.
Krieger, P.
Kroeninger, K.
Kroha, H.
Kroll, J.
Kroseberg, J.
Krstic, J.
Kruchonak, U.
Krueger, H.
Kruker, T.
Krumnack, N.
Krumshteyn, Z. V.
Kruse, A.
Kruse, M. C.
Kruskal, M.
Kubota, T.
Kuday, S.
Kuehn, S.
Kugel, A.
Kuhl, A.
Kuhl, T.
Kukhtin, V.
Kulchitsky, Y.
Kuleshov, S.
Kuna, M.
Kunkle, J.
Kupco, A.
Kurashige, H.
Kurochkin, Y. A.
Kurumida, R.
Kus, V.
Kuwertz, E. S.
Kuze, M.
Kvita, J.
La Rosa, A.
La Rotonda, L.
Lacasta, C.
Lacava, F.
Lacey, J.
Lacker, H.
Lacour, D.
Lacuesta, V. R.
Ladygin, E.
Lafaye, R.
Laforge, B.
Lagouri, T.
Lai, S.
Laier, H.
Lambourne, L.
Lammers, S.
Lampen, C. L.
Lampl, W.
Lancon, E.
Landgraf, U.
Landon, M. P. J.
Lang, V. S.
Lange, C.
Lankford, A. J.
Lanni, F.
Lantzsch, K.
Laplace, S.
Lapoire, C.
Laporte, J. F.
Lari, T.
Lassnig, M.
Laurelli, P.
Lavrijsen, W.
Law, A. T.
Laycock, P.
Le, B. T.
Le Dortz, O.
Le Guirriec, E.
Le Menedeu, E.
LeCompte, T.
Ledroit-Guillon, F.
Lee, C. A.
Lee, H.
Lee, J. S. H.
Lee, S. C.
Lee, L.
Lefebvre, G.
Lefebvre, M.
Legger, F.
Leggett, C.
Lehan, A.
Lehmacher, M.
Miotto, G. Lehmann
Lei, X.
Leight, W. A.
Leisos, A.
Leister, A. G.
Leite, M. A. L.
Leitner, R.
Lellouch, D.
Lemmer, B.
Leney, K. J. C.
Lenz, T.
Lenzen, G.
Lenzi, B.
Leone, R.
Leonhardt, K.
Leontsinis, S.
Leroy, C.
Lester, C. G.
Lester, C. M.
Levchenko, M.
Leveque, J.
Levin, D.
Levinson, L. J.
Levy, M.
Lewis, A.
Lewis, G. H.
Leyko, A. M.
Leyton, M.
Li, B.
Li, B.
Li, H.
Li, H. L.
Li, L.
Li, L.
Li, S.
Li, Y.
Liang, Z.
Liao, H.
Liberti, B.
Lichard, P.
Lie, K.
Liebal, J.
Liebig, W.
Limbach, C.
Limosani, A.
Lin, S. C.
Linde, F.
Lindquist, B. E.
Linnemann, J. T.
Lipeles, E.
Lipniacka, A.
Lisovyi, M.
Liss, T. M.
Lissauer, D.
Lister, A.
Litke, A. M.
Liu, B.
Liu, D.
Liu, J. B.
Liu, K.
Liu, L.
Liu, M.
Liu, M.
Liu, Y.
Livan, M.
Livermore, S. S. A.
Lleres, A.
Merino, J. Llorente
Lloyd, S. L.
Lo Sterzo, F.
Lobodzinska, E.
Loch, P.
Lockman, W. S.
Loddenkoetter, T.
Loebinger, F. K.
Loevschall-Jensen, A. E.
Loginov, A.
Loh, C. W.
Lohse, T.
Lohwasser, K.
Lokajicek, M.
Lombardo, V. P.
Long, B. A.
Long, J. D.
Long, R. E.
Lopes, L.
Mateos, D. Lopez
Paredes, B. Lopez
Paz, I. Lopez
Lorenz, J.
Martinez, N. Lorenzo
Losada, M.
Loscutoff, P.
Lou, X.
Lounis, A.
Love, J.
Love, P. A.
Lowe, A. J.
Lu, F.
Lubatti, H. J.
Luci, C.
Lucotte, A.
Luehring, F.
Lukas, W.
Luminari, L.
Lundberg, O.
Lund-Jensen, B.
Lungwitz, M.
Lynn, D.
Lysak, R.
Lytken, E.
Ma, H.
Ma, L. L.
Maccarrone, G.
Macchiolo, A.
Miguens, J. Machado
Macina, D.
Madaffari, D.
Madar, R.
Maddocks, H. J.
Mader, W. F.
Madsen, A.
Maeno, M.
Maeno, T.
Magradze, E.
Mahboubi, K.
Mahlstedt, J.
Mahmoud, S.
Maiani, C.
Maidantchik, C.
Maio, A.
Majewski, S.
Makida, Y.
Makovec, N.
Mal, P.
Malaesc, B.
Malecki, Pa.
Maleev, V. P.
Malek, F.
Mallik, U.
Malon, D.
Malone, C.
Maltezos, S.
Malyshev, V. M.
Malyukov, S.
Mamuzic, J.
Mandelli, B.
Mandelli, L.
Mandic, I.
Mandrysch, R.
Maneira, J.
Manfredini, A.
Manhaes de Andrade Filho, L.
Ramos, J. A. Manjarres
Mann, A.
Manning, P. M.
Manousakis-Katsikakis, A.
Mansoulie, B.
Mantifel, R.
Mapelli, L.
March, L.
Marchand, J. F.
Marchiori, G.
Marcisovsky, M.
Marino, C. P.
Marjanovic, M.
Marques, C. N.
Marroquim, F.
Marsden, S. P.
Marshall, Z.
Marti, L. F.
Marti-Garcia, S.
Martin, B.
Martin, B.
Martin, T. A.
Martin, V. J.
Latour, B. Martin Dit
Martinez, H.
Martinez, M.
Martin-Haugh, S.
Martyniuk, A. C.
Marx, M.
Marzano, F.
Marzin, A.
Masetti, L.
Mashimo, T.
Mashinistov, R.
Masik, J.
Maslennikov, A. L.
Massa, I.
Massol, N.
Mastrandrea, P.
Mastroberardino, A.
Masubuchi, T.
Matsushita, T.
Maettig, P.
Maettig, S.
Mattmann, J.
Maurer, J.
Maxfield, S. J.
Maximov, D. A.
Mazini, R.
Mazzaferro, L.
Mc Goldric, G.
Mc Kee, S. P.
McCarn, A.
McCarthy, R. L.
McCarthy, T. G.
McCubbin, N. A.
McFarlane, K. W.
Mcfayden, J. A.
Mchedlidze, G.
McMahon, S. J.
McPherson, R. A.
Meade, A.
Mechnich, J.
Medinnis, M.
Meehan, S.
Mehlhase, S.
Mehta, A.
Meier, K.
Meineck, C.
Meirose, B.
Melachrinos, C.
Garcia, B. R. Mellado
Meloni, F.
Mengarelli, A.
Menke, S.
Meoni, E.
Mercurio, K. M.
Mergelmeyer, S.
Meric, N.
Mermod, P.
Merola, L.
Meroni, C.
Merritt, F. S.
Merritt, H.
Messina, A.
Metcalfe, J.
Mete, A. S.
Meyer, C.
Meyer, C.
Meyer, J-P.
Meyer, J.
Middleton, R. P.
Migas, S.
Mijovic, L.
Mikenberg, G.
Mikestikova, M.
Mikuz, M.
Miller, D. W.
Mills, C.
Milov, A.
Milstead, D. A.
Milstein, D.
Minaenko, A. A.
Minashvili, I. A.
Mincer, A. I.
Mindur, B.
Mineev, M.
Ming, Y.
Mir, L. M.
Mirabelli, G.
Mitani, T.
Mitrevski, J.
Mitsou, V. A.
Mitsui, S.
Miucci, A.
Miyagawa, P. S.
Mjoernmark, J. U.
Moa, T.
Mochizuki, K.
Moeller, V.
Mohapatra, S.
Mohr, W.
Molander, S.
Moles-Valls, R.
Moenig, K.
Monini, C.
Monk, J.
Monnier, E.
Berlingen, J. Montejo
Monticelli, F.
Monzani, S.
Moore, R. W.
Moraes, A.
Morange, N.
Morel, J.
Moreno, D.
Llacer, M. Moreno
Morettini, P.
Morgenstern, M.
Morii, M.
Moritz, S.
Morley, A. K.
Mornacchi, G.
Morris, J. D.
Morvaj, L.
Moser, H. G.
Mosidze, M.
Moss, J.
Mount, R.
Mountricha, E.
Mouraviev, S. V.
Moyse, E. J. W.
Muanza, S.
Mudd, R. D.
Mueller, F.
Mueller, J.
Mueller, K.
Mueller, T.
Mueller, T.
Muenstermann, D.
Munwes, Y.
Quijada, J. A. Murillo
Murray, W. J.
Musheghyan, H.
Musto, E.
Myagkov, A. G.
Myska, M.
Nackenhorst, O.
Nadal, J.
Nagai, K.
Nagai, R.
Nagai, Y.
Nagano, K.
Nagarkar, A.
Nagasaka, Y.
Nagel, M.
Nairz, A. M.
Nakahama, Y.
Nakamura, K.
Nakamura, T.
Nakano, I.
Namasivayam, H.
Nanava, G.
Narayan, R.
Nattermann, T.
Naumann, T.
Navarro, G.
Nayyar, R.
Neal, H. A.
Nechaeva, P. Yu.
Neep, T. J.
Negri, A.
Negri, G.
Negrini, M.
Nektarijevic, S.
Nelson, A.
Nelson, T. K.
Nemecek, S.
Nemethy, P.
Nepomuceno, A. A.
Nessi, M.
Neubauer, M. S.
Neumann, M.
Neves, R. M.
Nevski, P.
Newman, P. R.
Nguyen, D. H.
Nickerson, R. B.
Nicolaidou, R.
Nicquevert, B.
Nielsen, J.
Nikiforou, N.
Nikiforov, A.
Nikolaenko, V.
Nikolic-Audit, I.
Nikolics, K.
Nikolopoulos, K.
Nilsson, P.
Ninomiya, Y.
Nisati, A.
Nisius, R.
Nobe, T.
Nodulman, L.
Nomachi, M.
Nomidis, I.
Norberg, S.
Nordberg, M.
Nowak, S.
Nozaki, M.
Nozka, L.
Ntekas, K.
Hanninger, G. Nunes
Nunnemann, T.
Nurse, E.
Nuti, F.
O'Brien, B. J.
O'grady, F.
O'Neil, D. C.
O'Shea, V.
Oakham, F. G.
Oberlack, H.
Obermann, T.
Ocariz, J.
Ochi, A.
Ochoa, M. I.
Oda, S.
Odaka, S.
Ogren, H.
Oh, A.
Oh, S. H.
Ohm, C. C.
Ohman, H.
Ohshima, T.
Okamura, W.
Okawa, H.
Okumura, Y.
Okuyama, T.
Olariu, A.
Olchevski, A. G.
Pino, S. A. Olivares
Damazio, D. Oliveira
Garcia, E. Oliver
Olszewski, A.
Olszowska, J.
Onofre, A.
Onyisi, P. U. E.
Oram, C. J.
Oreglia, M. J.
Oren, Y.
Orestano, D.
Orlando, N.
Barrera, C. Oropeza
Orr, R. S.
Osculati, B.
Ospanov, R.
Otero y Garzon, G.
Otono, H.
Ouchrif, M.
Ouellette, E. A.
Ould-Saada, F.
Ouraou, A.
Oussoren, K. P.
Ouyang, Q.
Ovcharova, A.
Owen, M.
Ozcan, V. E.
Ozturk, N.
Pachal, K.
Pages, A. Pacheco
Aranda, C. Padilla
Pagacova, M.
Griso, S. Pagan
Paganis, E.
Pahl, C.
Paige, F.
Pais, P.
Pajchel, K.
Palacino, G.
Palestini, S.
Pallin, D.
Palma, A.
Palmer, J. D.
Pan, Y. B.
Panagiotopoulou, E.
Vazquez, J. G. Panduro
Pani, P.
Panikashvili, N.
Panitkin, S.
Pantea, D.
Paolozzi, L.
Papadopoulou, Th. D.
Papageorgiou, K.
Paramonov, A.
Hernandez, D. Paredes
Parker, M. A.
Parodi, F.
Parsons, J. A.
Parzefall, U.
Pasqualucci, E.
Passaggio, S.
Passeri, A.
Pastore, F.
Pastore, Fr.
Pasztor, G.
Pataraia, S.
Patel, N. D.
Pater, J. R.
Patricelli, S.
Pauly, T.
Pearce, J.
Pedersen, M.
Lopez, S. Pedraza
Pedro, R.
Peleganchuk, S. V.
Pelikan, D.
Peng, H.
Penning, B.
Penwell, J.
Perepelitsa, D. V.
Codina, E. Perez
Garcia-Estan, M. T. Perez
Reale, V. Perez
Perini, L.
Pernegger, H.
Perrino, R.
Peschke, R.
Peshekhonov, V. D.
Peters, K.
Peters, R. F. Y.
Petersen, B. A.
Petersen, J.
Petersen, T. C.
Petit, E.
Petridis, A.
Petridou, C.
Petrolo, E.
Petrucci, F.
Petteni, M.
Pettersson, N. E.
Pezoa, R.
Phillips, P. W.
Piacquadio, G.
Pianori, E.
Picazio, A.
Piccaro, E.
Piccinini, M.
Piegaia, R.
Pignotti, D. T.
Pilcher, J. E.
Pilkington, A. D.
Pina, J.
Pinamonti, M.
Pinder, A.
Pinfold, J. L.
Pingel, A.
Pinto, B.
Pires, S.
Pitt, M.
Pizio, C.
Pleier, M. -A.
Pleskot, V.
Plotnikova, E.
Plucinski, P.
Poddar, S.
Podlyski, F.
Poettgen, R.
Poggioli, L.
Pohl, D.
Pohl, M.
Polesello, G.
Policicchio, A.
Polifka, R.
Polini, A.
Pollard, C. S.
Polychronakos, V.
Pommes, K.
Pontecorvo, L.
Pope, B. G.
Popeneciu, G. A.
Popovic, D. S.
Poppleton, A.
Bueso, X. Portell
Pospelov, G. E.
Pospisil, S.
Potamianos, K.
Potrap, I. N.
Potter, C. J.
Potter, C. T.
Poulard, G.
Poveda, J.
Pozdnyakov, V.
Pralavorio, P.
Pranko, A.
Prasad, S.
Pravahan, R.
Prell, S.
Price, D.
Price, J.
Price, L. E.
Prieur, D.
Primavera, M.
Proissl, M.
Prokofiev, K.
Prokoshin, F.
Protopapadaki, E.
Protopopescu, S.
Proudfoot, J.
Przybycien, M.
Przysiezniak, H.
Ptacek, E.
Pueschel, E.
Puldon, D.
Purohit, M.
Puzo, P.
Qian, J.
Qin, G.
Qin, Y.
Quadt, A.
Quarrie, D. R.
Quayle, W. B.
Queitsch-Maitland, M.
Quilty, D.
Qureshi, A.
Radeka, V.
Radescu, V.
Radhakrishnan, S. K.
Radloff, P.
Rados, P.
Ragusa, F.
Rahal, G.
Rajagopalan, S.
Rammensee, M.
Randle-Conde, A. S.
Rangel-Smith, C.
Rao, K.
Rauscher, F.
Rave, T. C.
Ravenscroft, T.
Raymond, M.
Read, A. L.
Rebuzzi, D. M.
Redelbach, A.
Redlinger, G.
Reece, R.
Reeves, K.
Rehnisch, L.
Reisin, H.
Relich, M.
Rembser, C.
Ren, H.
Ren, Z. L.
Renaud, A.
Rescigno, M.
Resconi, S.
Rezanova, O. L.
Reznicek, P.
Rezvani, R.
Richter, R.
Ridel, M.
Rieck, P.
Rieger, J.
Rijssenbeek, M.
Rimoldi, A.
Rinaldi, L.
Ritsch, E.
Riu, I.
Rizatdinova, F.
Rizvi, E.
Robertson, S. H.
Robichaud-Veronneau, A.
Robinson, D.
Robinson, J. E. M.
Robson, A.
Roda, C.
Rodrigues, L.
Roe, S.
Rohne, O.
Rolli, S.
Romaniouk, A.
Romano, M.
Romeo, G.
Adam, E. Romero
Rompotis, N.
Roos, L.
Ros, E.
Rosati, S.
Rosbach, K.
Rose, M.
Rosendahl, P. L.
Rosenthal, O.
Rossetti, V.
Rossi, E.
Rossi, L. P.
Rosten, R.
Rotaru, M.
Roth, I.
Rothberg, J.
Rousseau, D.
Royon, C. R.
Rozanov, A.
Rozen, Y.
Ruan, X.
Rubbo, F.
Rubinskiy, I.
Rud, V. I.
Rudolph, C.
Rudolph, M. S.
Ruehr, F.
Ruiz-Martinez, A.
Rurikova, Z.
Rusakovich, N. A.
Ruschke, A.
Rutherfoord, J. P.
Ruthmann, N.
Ryabov, Y. F.
Rybar, M.
Rybkin, G.
Ryder, N. C.
Saavedra, A. F.
Sacerdoti, S.
Saddique, A.
Sadeh, I.
Sadrozinski, H. F-W.
Sadykov, R.
Tehrani, F. Safai
Sakamoto, H.
Sakurai, Y.
Salamanna, G.
Salamon, A.
Saleem, M.
Salek, D.
De Bruin, P. H. Sales
Salihagic, D.
Salnikov, A.
Salt, J.
Ferrando, B. M. Salvachua
Salvatore, D.
Salvatore, F.
Salvucci, A.
Salzburger, A.
Sampsonidis, D.
Sanchez, A.
Synchez, J.
Martinez, V. Sanchez
Sandaker, H.
Sandbach, R. L.
Sander, H. G.
Sanders, M. P.
Sandhoff, M.
Sandoval, T.
Sandoval, C.
Sandstroem, R.
Sankey, D. P. C.
Sansoni, A.
Santoni, C.
Santonico, R.
Santos, H.
Castillo, I. Santoyo
Sapp, K.
Sapronov, A.
Saraiva, J. G.
Sarrazin, B.
Sartisohn, G.
Sasaki, O.
Sasaki, Y.
Sauvage, G.
Sauvan, E.
Savard, P.
Savu, D. O.
Sawyer, C.
Sawyer, L.
Saxon, D. H.
Saxon, J.
Sbarra, C.
Sbrizzi, A.
Scanlon, T.
Scannicchio, D. A.
Scarcella, M.
Schaarschmidt, J.
Schacht, P.
Schaefer, D.
Schaefer, R.
Schaepe, S.
Schaetzel, S.
Schaefer, U.
Schaffer, A. C.
Schaile, D.
Schamberger, R. D.
Scharf, V.
Schegelsky, V. A.
Scheirich, D.
Schernau, M.
Scherzer, M. I.
Schiavi, C.
Schieck, J.
Schillo, C.
Schioppa, M.
Schlenker, S.
Schmidt, E.
Schmieden, K.
Schmitt, C.
Schmitt, C.
Schmitt, S.
Schneider, B.
Schnellbach, Y. J.
Schnoor, U.
Schoeffel, L.
Schoening, A.
Schoenrock, B. D.
Schorlemmer, A. L. S.
Schott, M.
Schouten, D.
Schovancova, J.
Schramm, S.
Schreyer, M.
Schroeder, C.
Schuh, N.
Schultens, M. J.
Schultz-Coulon, H. -C.
Schulz, H.
Schumacher, M.
Schumm, B. A.
Schune, Ph.
Schwanenberger, C.
Schwartzman, A.
Schwegler, Ph.
Schwemling, Ph.
Schwienhorst, R.
Schwindling, J.
Schwindt, T.
Schwoerer, M.
Sciacca, F. G.
Scifo, E.
Sciolla, G.
Scott, W. G.
Scuri, F.
Scutti, F.
Searcy, J.
Sedov, G.
Sedykh, E.
Seidel, S. C.
Seiden, A.
Seifert, F.
Seixas, J. M.
Sekhniaidze, G.
Sekula, S. J.
Selbach, K. E.
Seliverstov, D. M.
Sellers, G.
Semprini-Cesari, N.
Serfon, C.
Serin, L.
Serkin, L.
Serre, T.
Seuster, R.
Severini, H.
Sforza, F.
Sfyrla, A.
Shabalina, E.
Shamim, M.
Shan, L. Y.
Shang, R.
Shank, J. T.
Shao, Q. T.
Shapiro, M.
Shatalov, P. B.
Shaw, K.
Sherwood, P.
Shi, L.
Shimizu, S.
Shimmin, C. O.
Shimojima, M.
Shiyakova, M.
Shmeleva, A.
Shochet, M. J.
Short, D.
Shrestha, S.
Shulga, E.
Shupe, M. A.
Shushkevich, S.
Sicho, P.
Sidorov, D.
Sidoti, A.
Siegert, F.
Sijacki, Dj.
Silva, J.
Silver, Y.
Silverstein, D.
Silverstein, S. B.
Simak, V.
Simard, O.
Simic, Lj.
Simion, S.
Simioni, E.
Simmons, B.
Simoniello, R.
Simonyan, M.
Sinervo, P.
Sinev, N. B.
Sipica, V.
Siragusa, G.
Sircar, A.
Sisakyan, A. N.
Sivoklokov, S. Yu.
Sjolin, J.
Sjursen, T. B.
Skottowe, H. P.
Skovpen, K. Yu.
Skubic, P.
Slater, M.
Slavicek, T.
Sliwa, K.
Smakhtin, V.
Smart, B. H.
Smestad, L.
Smirnov, S. Yu.
Smirnov, Y.
Smirnova, L. N.
Smirnova, O.
Smith, K. M.
Smizanska, M.
Smolek, K.
Snesarev, A. A.
Snidero, G.
Snyder, S.
Sobie, R.
Socher, F.
Soffer, A.
Soh, D. A.
Solans, C. A.
Solar, M.
Solc, J.
Soldatov, E. Yu.
Soldevila, U.
Camillocci, E. Solfaroli
Solodkov, A. A.
Solovyanov, O. V.
Solovyev, V.
Sommer, P.
Song, H. Y.
Soni, N.
Sood, A.
Sopczak, A.
Sopko, B.
Sopko, V.
Sorin, V.
Sosebee, M.
Soualah, R.
Soueid, P.
Soukharev, A. M.
South, D.
Spagnolo, S.
Spano, F.
Spearman, W. R.
Spighi, R.
Spigo, G.
Spousta, M.
Spreitzer, T.
Spurlock, B.
Denis, R. D. St.
Staerz, S.
Stahlman, J.
Stamen, R.
Stanecka, E.
Stanek, R. W.
Stanescu, C.
Stanescu-Bellu, M.
Stanitzki, M. M.
Stapnes, S.
Starchenko, E. A.
Stark, J.
Staroba, P.
Starovoitov, P.
Staszewski, R.
Stavina, P.
Steele, G.
Steinberg, P.
Stelzer, B.
Stelzer, H. J.
Stelzer-Chilton, O.
Stenzel, H.
Stern, S.
Stewart, G. A.
Stillings, J. A.
Stockton, M. C.
Stoebe, M.
Stoicea, G.
Stolte, P.
Stonjek, S.
Stradling, A. R.
Straessner, A.
Stramaglia, M. E.
Strandberg, J.
Strandberg, S.
Strandlie, A.
Strauss, E.
Strauss, M.
Strizenec, P.
Stroehmer, R.
Strom, D. M.
Stroynowski, R.
Stucci, S. A.
Stugu, B.
Styles, N. A.
Su, D.
Su, J.
Subramania, Hs.
Subramaniam, R.
Succurro, A.
Sugaya, Y.
Suhr, C.
Suk, M.
Sulin, V. V.
Sultansoy, S.
Sumida, T.
Sun, X.
Sundermann, J. E.
Suruliz, K.
Susinno, G.
Sutton, M. R.
Suzuki, Y.
Svatos, M.
Swedish, S.
Swiatlowski, M.
Sykora, I.
Sykora, T.
Ta, D.
Tackmann, K.
Taenzer, J.
Taffard, A.
Tafirout, R.
Taiblum, N.
Takahashi, Y.
Takai, H.
Takashima, R.
Takeda, H.
Takeshita, T.
Takubo, Y.
Talby, M.
Talyshev, A. A.
Tam, J. Y. C.
Tamsett, M. C.
Tan, K. G.
Tanaka, J.
Tanaka, R.
Tanaka, S.
Tanaka, S.
Tanasijczuk, A. J.
Tani, K.
Tannoury, N.
Tapprogge, S.
Tarem, S.
Tarrade, F.
Tartarelli, G. F.
Tas, P.
Tasevsky, M.
Tashiro, T.
Tassi, E.
Tavares Delgado, A.
Tayalati, Y.
Taylor, F. E.
Taylor, G. N.
Taylor, W.
Teischinger, F. A.
Castanheira, M. Teixeira Dias
Teixeira-Dias, P.
Temming, K. K.
Ten Kate, H.
Teng, P. K.
Teoh, J. J.
Terada, S.
Terashi, K.
Terron, J.
Terzo, S.
Testa, M.
Teuscher, R. J.
Therhaag, J.
Theveneaux-Pelzer, T.
Thoma, S.
Thomas, J. P.
Thomas-Wilsker, J.
Thompson, E. N.
Thompson, P. D.
Thompson, P. D.
Thompson, A. S.
Thomsen, L. A.
Thomson, E.
Thomson, M.
Thong, W. M.
Thun, R. P.
Tian, F.
Tibbetts, M. J.
Tikhomirov, V. O.
Tikhonov, Yu. A.
Timoshenko, S.
Tiouchichine, E.
Tipton, P.
Tisserant, S.
Todorov, T.
Todorova-Nova, S.
Toggerson, B.
Tojo, J.
Tokar, S.
Tokushuku, K.
Tollefson, K.
Tomlinson, L.
Tomoto, M.
Tompkins, L.
Toms, K.
Topilin, N. D.
Torrence, E.
Torres, H.
Torro Pastor, E.
Toth, J.
Touchard, F.
Tovey, D. R.
Tran, H. L.
Trefzger, T.
Tremblet, L.
Tricoli, A.
Trigger, I. M.
Trincaz-Duvoid, S.
Tripiana, M. F.
Triplett, N.
Trischuk, W.
Trocme, B.
Troncon, C.
Trottier-McDonald, M.
Trovatelli, M.
True, P.
Trzebinski, M.
Trzupek, A.
Tsarouchas, C.
Tseng, J. C-L.
Tsiareshka, P. V.
Tsionou, D.
Tsipolitis, G.
Tsirintanis, N.
Tsiskaridze, S.
Tsiskaridze, V.
Tskhadadze, E. G.
Tsukerman, I. I.
Tsulaia, V.
Tsuno, S.
Tsybychev, D.
Tudorache, A.
Tudorache, V.
Tuna, A. N.
Tupputi, S. A.
Turchikhin, S.
Turecek, D.
Cakir, I. Turk
Turra, R.
Tuts, P. M.
Tykhonov, A.
Tylmad, M.
Tyndel, M.
Uchida, K.
Ueda, I.
Ueno, R.
Ughetto, M.
Ugland, M.
Uhlenbrock, M.
Ukegawa, F.
Unal, G.
Undrus, A.
Unel, G.
Ungaro, F. C.
Unno, Y.
Urbaniec, D.
Urquijo, P.
Usai, G.
Usanova, A.
Vacavant, L.
Vacek, V.
Vachon, B.
Valencic, N.
Valentinetti, S.
Valero, A.
Valery, L.
Valkar, S.
Gallego, E. Valladolid
Vallecorsa, S.
Valls Ferrer, J. A.
Van Der Deijl, P. C.
van der Geer, R.
van der Graaf, H.
Van Der Leeuw, R.
van der Ster, D.
Van Eldik, N.
van Gemmeren, P.
Van Nieuwkoop, J.
van Vulpen, I.
van Woerden, M. C.
Vanadia, M.
Vandelli, W.
Vanguri, R.
Vaniachine, A.
Vankov, P.
Vannucci, F.
Vardanyan, G.
Vari, R.
Varnes, E. W.
Varol, T.
Varouchas, D.
Vartapetian, A.
Varvell, K. E.
Vazeille, F.
Schroeder, T. Vazquez
Veatch, J.
Veloso, F.
Veneziano, S.
Ventura, A.
Ventura, D.
Venturi, M.
Venturi, N.
Venturini, A.
Vercesi, V.
Verducci, M.
Verkerke, W.
Vermeulen, J. C.
Vest, A.
Vetterli, M. C.
Viazlo, O.
Vichou, I.
Vickey, T.
Boeriu, O. E. Vickey
Viehhauser, G. H. A.
Viel, S.
Vigne, R.
Villa, M.
Perez, M. Villaplana
Vilucchi, E.
Vincter, M. G.
Vinogradov, V. B.
Virzi, J.
Vivarelli, I.
Vaque, F. Vives
Vlachos, S.
Vladoiu, D.
Vlasak, M.
Vogel, A.
Vogel, M.
Vokac, P.
Volpi, G.
Volpi, M.
von der Schmitt, H.
von Radziewski, H.
von Toerne, E.
Vorobel, V.
Vorobev, K.
Vos, M.
Voss, R.
Vossebeld, J. H.
Vranjes, N.
Milosavljevic, M. Vranjes
Vrba, V.
Vreeswijk, M.
Anh, T. Vu
Vuillermet, R.
Vukotic, I.
Vykydal, Z.
Wagner, P.
Wagner, W.
Wahrmund, S.
Wakabayashi, J.
Walder, J.
Walker, R.
Walkowiak, W.
Wall, R.
Waller, P.
Walsh, B.
Wang, C.
Wang, C.
Wang, F.
Wang, H.
Wang, H.
Wang, J.
Wang, J.
Wang, K.
Wang, R.
Wang, S. M.
Wang, T.
Wang, X.
Wanotayaroj, C.
Warburton, A.
Ward, C. P.
Wardrope, D. R.
Warsinsky, M.
Washbrook, A.
Wasicki, C.
Watanabe, I.
Watkins, P. M.
Watson, A. T.
Watson, I. J.
Watson, M. F.
Watts, G.
Watts, S.
Waugh, B. M.
Webb, S.
Weber, M. S.
Weber, S. W.
Webster, J. S.
Weidberg, A. R.
Weigell, P.
Weinert, B.
Weingarten, J.
Weiser, C.
Weits, H.
Wells, P. S.
Wenaus, T.
Wendland, D.
Weng, Z.
Wengler, T.
Wenig, S.
Wermes, N.
Werner, M.
Werner, P.
Wessels, M.
Wetter, J.
Whalen, K.
White, A.
White, M. J.
White, R.
White, S.
Whiteson, D.
Wicke, D.
Wickens, F. J.
Wiedenmann, W.
Wielers, M.
Wienemann, P.
Wiglesworth, C.
Wiik-Fuchs, L. A. M.
Wijeratne, P. A.
Wildauer, A.
Wildt, M. A.
Wilkens, H. G.
Will, J. Z.
Williams, H. H.
Williams, S.
Willis, C.
Willocq, S.
Wilson, A.
Wilson, J. A.
Wingerter-Seez, I.
Winklmeier, F.
Winter, B. T.
Wittgen, M.
Wittig, T.
Wittkowski, J.
Wollstadt, S. J.
Wolter, M. W.
Wolters, H.
Wosiek, B. K.
Wotschack, J.
Woudstra, M. J.
Wozniak, K. W.
Wright, M.
Wu, M.
Wu, S. L.
Wu, X.
Wu, Y.
Wulf, E.
Wyatt, T. R.
Wynne, B. M.
Xella, S.
Xiao, M.
Xu, D.
Xu, L.
Yabsley, B.
Yacoob, S.
Yamada, M.
Yamaguchi, H.
Yamaguchi, Y.
Yamamoto, A.
Yamamoto, K.
Yamamoto, S.
Yamamura, T.
Yamanaka, T.
Yamauchi, K.
Yamazaki, Y.
Yan, Z.
Yang, H.
Yang, H.
Yang, U. K.
Yang, Y.
Yanush, S.
Yao, L.
Yao, W-M.
Yasu, Y.
Yatsenko, E.
Wong, K. H. Yau
Ye, J.
Ye, S.
Yen, A. L.
Yildirim, E.
Yilmaz, M.
Yoosoofmiya, R.
Yorita, K.
Yoshida, R.
Yoshihara, K.
Young, C.
Young, C. J. S.
Youssef, S.
Yu, D. R.
Yu, J.
Yu, J. M.
Yu, J.
Yuan, L.
Yurkewicz, A.
Zabinski, B.
Zaidan, R.
Zaitsev, A. M.
Zaman, A.
Zambito, S.
Zanello, L.
Zanzi, D.
Zaytsev, A.
Zeitnitz, C.
Zeman, M.
Zemla, A.
Zengel, K.
Zenin, O.
Zenis, T.
Zerwas, D.
Zevi della Porta, G.
Zhang, D.
Zhang, F.
Zhang, H.
Zhang, J.
Zhang, L.
Zhang, X.
Zhang, Z.
Zhao, Z.
Zhemchugov, A.
Zhong, J.
Zhou, B.
Zhou, L.
Zhou, N.
Zhu, C. G.
Zhu, H.
Zhu, J.
Zhu, Y.
Zhuang, X.
Zibell, A.
Zieminska, D.
Zimine, N. I.
Zimmermann, C.
Zimmermann, R.
Zimmermann, S.
Zimmermann, S.
Zinonos, Z.
Ziolkowski, M.
Zobernig, G.
Zoccoli, A.
Nedden, M. zur
Zurzolo, G.
Zutshi, V.
Zwalinski, L.
CA ATLAS Collaboration
TI Search for supersymmetry in events with four or more leptons in root s=8
TeV pp collisions with the ATLAS detector
SO PHYSICAL REVIEW D
LA English
DT Article
ID PARITY VIOLATING DECAYS; MISSING TRANSVERSE-MOMENTUM; E(+)E(-)
COLLISIONS; HADRON COLLIDERS; SUPERGAUGE TRANSFORMATIONS; PAIR
PRODUCTION; MODEL; PARTICLES; ENERGY; BREAKING
AB Results from a search for supersymmetry in events with four or more leptons including electrons, muons and taus are presented. The analysis uses a data sample corresponding to 20.3 fb(-1) of proton proton collisions delivered by the Large Hadron Collider at root s = 8 TeV and recorded by the ATLAS detector. Signal regions are designed to target supersymmetric scenarios that can be either enriched in or depleted of events involving the production of a Z boson. No significant deviations are observed in data from standard model predictions and results are used to set upper limits on the event yields from processes beyond the standard model. Exclusion limits at the 95% confidence level on the masses of relevant supersymmetric particles are obtained. In R-parity-violating simplified models with decays of the lightest supersymmetric particle to electrons and muons, limits of 1350 and 750 GeV are placed on gluino and chargino masses, respectively. In R-parity-conserving simplified models with heavy neutralinos decaying to a massless lightest supersymmetric particle, heavy neutralino masses up to 620 GeV are excluded. Limits are also placed on other supersymmetric scenarios.
C1 [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia.
[Bouffard, J.; Edson, W.; Ernst, J.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA.
[Butt, A. I.; Chan, K.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Subramania, Hs.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada.
[Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey.
[Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey.
[Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey.
[Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey.
[Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Wingerter-Seez, I.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France.
[Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France.
[Auerbach, B.; Feng, E. J.; Goshaw, A. T.; Love, J.; Malon, D.; Nguyen, D. H.; Paramonov, A.; Proudfoot, J.; Ferrando, B. M. Salvachua; Vaniachine, A.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
[Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA.
[Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece.
[Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece.
[Abdinov, O.; Khalil-Zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan.
[Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Fracchia, S.; Fraternali, M.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Marcisovsky, M.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Negri, A.; Nemecek, S.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Fracchia, S.; Fraternali, M.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Negri, A.; Nemecek, S.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rubbo, F.; Succurro, A.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain.
[Agatonovic-Jovin, T.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Patricelli, S.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia.
[Bozovic-Jelisavcic, I.; Cirkovic, P.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia.
[Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Kocian, M.; Liebig, W.; Lipniacka, A.; Latour, B. Martin Dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway.
[Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Cerutti, F.; Ciocio, A.; Copic, K.; Einsweiler, K.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Leggett, C.; Ovcharova, A.; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Sood, A.; Virzi, J.; Wang, H.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
[Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Cerutti, F.; Ciocio, A.; Copic, K.; Einsweiler, K.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Leggett, C.; Ovcharova, A.; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Sood, A.; Virzi, J.; Wang, H.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Wendland, D.; Nedden, M. zur] Humboldt Univ, Dept Phys, Berlin, Germany.
[Agustoni, M.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Murray, W. J.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland.
[Agustoni, M.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Murray, W. J.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland.
[Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England.
[Arik, M.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey.
[Cetin, S. A.] Bogazici Univ, Dept Phys, Istanbul, Turkey.
[Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Phys, Gaziantep, Turkey.
[Alberghi, G. L.; Boscherini, D.; Bruni, A.; Bruni, G.; Caforio, D.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Mengarelli, A.; Polini, A.; Sbarra, C.; Serfon, C.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Milan, Italy.
[Alberghi, G. L.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Fraternali, M.; Gabrielli, A.; Grafstrom, P.; Massa, I.; Mengarelli, A.; Piccinini, M.; Romano, M.; Serfon, C.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy.
[Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany.
[Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Deigaard, I.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA.
[Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA.
[Coutinho, Y. Amaral; Caloba, L. P.; Cerqueira, A. S.; Maidantchik, C.; Manhaes de Andrade Filho, L.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil.
[Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Federal Univ Juiz de Fora UFJF, Juiz De Fora, Brazil.
[do Vale, M. A. B.] Fed Univ Sao Joao Rei UFSJ, Sao Joao Del Rei, Brazil.
[Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil.
[Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Alexander, G.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.; Turra, R.] Natl Inst Phys & Nucl Engn, Bucharest, Romania.
[Popeneciu, G. A.] Natl Inst Res, Dept Phys, Cluj Napoca, Romania.
[Popeneciu, G. A.] Dev Isotop & Mol Technol, Cluj Napoca, Romania.
[Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania.
[Chitan, A.] West Univ Timisoara, Timisoara, Romania.
[Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Romeo, G.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina.
[Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Mueller, T.; Parker, M. A.; Robinson, D.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England.
[Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada.
[Abreu, R.; Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Degenhardt, J.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dopke, J.; Dudarev, A.; Duerssen, M.; Ellis, N.; Elsing, M.; Facini, G.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Silva, M. L. Gonzalez; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, J.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schmieden, K.; Serin, L.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; Van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland.
[Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Fiascaris, M.; Gardner, R. W.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile.
[Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Feder Santa Maria, Dept Fis, Valparaiso, Chile.
[Bai, Y.; Fang, Y.; Lu, F.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China.
[Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Jin, S.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China.
[Chen, S.; Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China.
[Chen, L.; Ge, P.; Ma, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China.
[Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France.
[Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA.
[Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Mehlhase, S.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
[Capua, M.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Lab Nazl Frascati, Milan, Italy.
[Capua, M.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy.
[Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland.
[Adamczyk, L.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland.
[Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland.
[Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Selbach, K. E.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA.
[Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA.
[Argyropoulos, S.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany.
[Argyropoulos, S.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany.
[Burmeister, I.; Esch, H.; Goesling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany.
[Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany.
[Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA.
[Bhimji, W.; Clark, P. J.; Debenedetti, C.; Edwards, N. C.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Seliverstov, D. M.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland.
[Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] INFN Lab Nazl Frascati, Frascati, Italy.
[Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buecher, D.; Consorti, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Ungaro, F. C.; Venturi, M.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany.
[Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Dechenaux, B.; Delitzsch, C. M.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Picazio, A.; Pohl, M.; Rosbach, K.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland.
[Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] INFN Sez Genova, Genoa, Italy.
[Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy.
[Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia.
[Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia.
[Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Buzatu, A.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Giessen, SUPA Sch Phys & Astron, D-35390 Giessen, Germany.
[Belloni, A.; Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Morel, J.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, Lab Phys Subatom & Cosmol, IN2P3, Grenoble, France.
[McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA.
[Barreiro Guimaraes da Costa, J.; Belloni, A.; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Yen, A. L.; Zevi della Porta, G.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA.
[Andrei, V.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany.
[Anders, C. F.; Giulini, M.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany.
[Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany.
[Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan.
[Brunet, S.; Dattagupta, A.; Evans, H.; Franz, S.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA.
[Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria.
[Cinca, D.; Gandrajula, R. P.; Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA.
[Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA.
[Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Dubna, Russia.
[Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan.
[Inamaru, Y.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Kurumida, R.; Matsushita, T.; Ochi, A.; Shimizu, S.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan.
[Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan.
[Takashima, R.] Kyoto Univ, Kyoto 612, Japan.
[Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan.
[Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina.
[Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina.
[Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England.
[Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, Lecce, Italy.
[Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy.
[Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Schnellbach, Y. J.; Semprini-Cesari, N.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England.
[Cindro, V.; Dedovich, D. V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia.
[Cindro, V.; Dedovich, D. V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia.
[Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Salamanna, G.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England.
[Cantrill, R.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England.
[Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England.
[Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.; Tamsett, M. C.] Louisiana Tech Univ, Ruston, LA 71270 USA.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaesc, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaesc, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaesc, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France.
[Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden.
[Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain.
[Arnaez, O.; Blum, W.; Buecher, V.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Ji, W.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
[Almond, J.; Borri, M.; Brown, G.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England.
[Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France.
[Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France.
[Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA USA.
[Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada.
[Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Petersen, B. A.; Rados, P.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia.
[Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Levin, D.; Liu, L.; Long, J. D.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Xu, L.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Abolins, M.; Alvarez Gonzalez, B.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.] INFN Sez Milano, Milan, Italy.
[Andreazza, A.; Carminati, L.; Consonni, S. M.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.] Univ Milan, Dipartimento Fis, Milan, Italy.
[Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus.
[Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus.
[Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Arguin, J-F.; Asbah, N.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada.
[Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia.
[Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia.
[Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia.
[Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia.
[Adomeit, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany.
[Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany.
[Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan.
[Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan.
[Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Del Prete, T.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Rossi, E.; Sanchez, A.; Sekula, S. J.; Zurzolo, G.] INFN Sez Napoli, Naples, Italy.
[Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
[Besjes, G. J.; Caron, S.; Croft, V.; Dao, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Koenig, A. C.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands.
[Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands.
[Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA.
[Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia.
[Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA.
[Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan.
[Abbott, B.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA.
[Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA.
[Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic.
[Brau, J. E.; Brost, E.; Gkialas, I.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA.
[Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Vivie De Regie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serkin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France.
[Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Vivie De Regie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serkin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France.
[Beck, H. P.; Endo, M.; Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.] Osaka Univ, Grad Sch Sci, Osaka, Japan.
[Bugge, L.; Bugge, K.; Cameron, D.; Catmore, J. R.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway.
[Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England.
[Conta, C.; Dondero, P.; Ferrari, R.; Gaudio, G.; Livan, M.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] INFN Sez Pavia, Pavia, Italy.
[Conta, C.; Dondero, P.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy.
[Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Ospanov, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA.
[Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Sellers, G.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia.
[Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Peso, J.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy.
[Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal.
[Gomes, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Coimbra, Ctr Fis Nucl, Coimbra, Portugal.
[Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal.
[Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain.
[Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain.
[Do Valle Wemans, A.] Univ Nova Lisboa, Dep Fis, Fac Ciencias Tecnol, Caparica, Portugal.
[Do Valle Wemans, A.] Univ Nova Lisboa, CEFITEC, Fac Ciencias Tecnol, Caparica, Portugal.
[Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic.
[Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic.
[Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia.
[Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England.
[Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada.
[Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan.
[Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vanadia, M.; Vari, R.; Veneziano, S.; Zanello, L.] INFN Sez Roma, Rome, Italy.
[Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Camillocci, E. Solfaroli; Vanadia, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, Rome, Italy.
[Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy.
[Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Micco, B. Di; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.; Trovatelli, M.] INFN Sez Roma Tre, Rome, Italy.
[Bacci, C.; Bortolotto, V.; Ceradini, F.; Micco, B. Di; Orestano, D.; Pastore, F.; Petrucci, F.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy.
[Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco.
[Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco.
[El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco.
[El Moursli, R. Cherkaoui; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Oujda, Morocco.
[Abreu, H.; Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Goncalves Pinto Firmino Da Costa, J.; Grabas, H. M. X.; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Mijovic, L.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, Commissariat Energie Atom & Energies Alternat, DSM IRFU Inst Rech Lois Fondament Univers, F-91191 Gif Sur Yvette, France.
[Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Beckingham, M.; Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Takeshita, T.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England.
[Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan.
[Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany.
[Buat, Q.; Dawe, E.; Godfrey, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada.
[Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA.
[Astalos, R.; Bartos, P.; Batkova, L.; Blazek, T.; Federic, P.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia.
[Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dep Subnucl Phys, Kosice 04353, Slovakia.
[Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa.
[Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa.
[Bristow, K.; Carrillo-Montoya, G. D.; Chen, X.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Dept Phys, ZA-2050 Johannesburg, South Africa.
[Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, Stockholm, Sweden.
[Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Bohm, C.; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden.
[Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden.
[Bee, C. P.; Campoverde, A.; Chen, K.; della Volpe, D.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Bee, C. P.; Campoverde, A.; Chen, K.; della Volpe, D.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England.
[Bangert, A.; Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
[Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan.
[Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel.
[Abramowicz, H.; Alexa, C.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Bachas, K.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Nomidis, I.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece.
[Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan.
[Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan.
[Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan.
[Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan.
[AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldric, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Thompson, P. D.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada.
[Azuelos, G.; Canepa, A.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Stelzer-Chilton, O.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Garcia, J. A. Benitez; Bustos, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada.
[Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan.
[Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA.
[Losada, M.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia.
[Corso-Radu, A.; Farrell, S.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA.
[Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] INFN Grp Collegato Udine, Sez Trieste, Udine, Italy.
[Acharya, B. S.; Cobal, M.; De Sanctis, U.; Quayle, W. B.; Shaw, K.; Soualah, R.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy.
[Alhroob, M.; Brazzale, S. F.; Giordani, M. P.; Pinamonti, M.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy.
[Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.
[Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Higon-Rodriguez, E.; Quiles, A. Irles; Lacasta, C.; March, L.; Garcia, E. Oliver; Adam, E. Romero; Ros, E.; Salt, J.; Synchez, J.; Torro Pastor, E.; Valero, A.; Gallego, E. Valladolid; Valls Ferrer, J. A.] Univ Valencia, IFIC, Valencia, Spain.
[Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Synchez, J.; Martinez, V. Sanchez; Soldevila, U.; Torro Pastor, E.; Valero, A.; Gallego, E. Valladolid; Valls Ferrer, J. A.; Perez, M. Villaplana; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain.
[Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Synchez, J.; Martinez, V. Sanchez; Soldevila, U.; Torro Pastor, E.; Valero, A.; Gallego, E. Valladolid; Valls Ferrer, J. A.; Perez, M. Villaplana; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain.
[Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Synchez, J.; Martinez, V. Sanchez; Soldevila, U.; Torro Pastor, E.; Valero, A.; Gallego, E. Valladolid; Valls Ferrer, J. A.; Perez, M. Villaplana; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain.
[Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Synchez, J.; Martinez, V. Sanchez; Soldevila, U.; Torro Pastor, E.; Valero, A.; Gallego, E. Valladolid; Valls Ferrer, J. A.; Perez, M. Villaplana; Vos, M.] CSIC, Valencia, Spain.
[Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Loh, C. W.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada.
[Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada.
[Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan.
[Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel.
[Banerjee, Sw.; Castillo, L. R. Flores; Hard, A. S.; Hellman, S.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Martin, T. A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Redelbach, A.; Schreyer, M.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Trischuk, W.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany.
[Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany.
[Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA.
[Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France.
[Acharya, B. S.] Kings Coll London, Dept Phys, London, England.
[Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan.
[Apolle, R.; Davies, E.; Feng, C.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England.
[Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA.
[Conventi, F.; Del Prete, T.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy.
[Corriveau, F.; McPherson, R. A.; Sobie, R.; Teuscher, R. J.] IPP, Toronto, ON, Canada.
[Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia.
[Castillo, L. R. Flores] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China.
[Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece.
[Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA.
[Jenni, P.] CERN, Geneva, Switzerland.
[Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan.
[Konoplich, R.] Manhattan Coll, New York, NY USA.
[Korol, A. A.; Maximov, D. A.; Rezanova, O. L.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia.
[Liu, K.] Acad Sinica, Inst Phys, Lab Phys Nucl, Taipei, Taiwan.
[Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India.
[Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia.
[Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland.
[Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA.
[Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy.
[Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA.
[Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China.
[Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia.
[Tamsett, M. C.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany.
[Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa.
RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France.
RI Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; messina,
andrea/C-2753-2013; Prokoshin, Fedor/E-2795-2012; KHODINOV,
ALEKSANDR/D-6269-2015; Gauzzi, Paolo/D-2615-2009; Fabbri,
Laura/H-3442-2012; Solodkov, Alexander/B-8623-2017; Zaitsev,
Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Yang,
Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Li, Liang/O-1107-2015;
Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016;
Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016;
Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva,
Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy,
Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Solfaroli
Camillocci, Elena/J-1596-2012; BESSON, NATHALIE/L-6250-2015; Vanadia,
Marco/K-5870-2016; Shmeleva, Alevtina/M-6199-2015; Gavrilenko,
Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev,
Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin,
Leonid/B-5226-2011; Andreazza, Attilio/E-5642-2011; Carvalho,
Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Buttar,
Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo,
Jun/O-5202-2015; Bosman, Martine/J-9917-2014; Joergensen,
Morten/E-6847-2015; Riu, Imma/L-7385-2014; Mir,
Lluisa-Maria/G-7212-2015; Marti-Garcia, Salvador/F-3085-2011; Della
Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015;
Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer,
Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo,
stefania/A-6359-2012; Ciubancan, Liviu Mihai/L-2412-2015; Brooks,
William/C-8636-2013; Lei, Xiaowen/O-4348-2014; Di Domenico,
Antonio/G-6301-2011; de Groot, Nicolo/A-2675-2009; Wemans,
Andre/A-6738-2012; Nemecek, Stanislav/G-5931-2014; Gutierrez,
Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Livan,
Michele/D-7531-2012; De, Kaushik/N-1953-2013; Mitsou,
Vasiliki/D-1967-2009; Smirnova, Oxana/A-4401-2013; White,
Ryan/E-2979-2015; Lokajicek, Milos/G-7800-2014; Villa,
Mauro/C-9883-2009; Alexa, Calin/F-6345-2010; Turra, Ruggero/N-2374-2014;
Castro, Nuno/D-5260-2011; Moraes, Arthur/F-6478-2010; Staroba,
Pavel/G-8850-2014; Warburton, Andreas/N-8028-2013; Boyko,
Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Nepomuceno,
Andre/M-9190-2014; Gabrielli, Alessandro/H-4931-2012; Korol,
Aleksandr/A-6244-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe
Francesco/A-5629-2016; Fassi, Farida/F-3571-2016; la rotonda,
laura/B-4028-2016;
OI Ippolito, Valerio/0000-0001-5126-1620; Maneira,
Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399;
KHODINOV, ALEKSANDR/0000-0003-3551-5808; Gauzzi,
Paolo/0000-0003-4841-5822; Fabbri, Laura/0000-0002-4002-8353; Solodkov,
Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368;
Peleganchuk, Sergey/0000-0003-0907-7592; Monzani,
Simone/0000-0002-0479-2207; Li, Liang/0000-0001-6411-6107; Aguilar
Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton,
Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes
Milosavljevic, Marija/0000-0003-4477-9733; Perrino,
Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495;
Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy,
Alexander/0000-0002-8902-1793; Solfaroli Camillocci,
Elena/0000-0002-5347-7764; Vanadia, Marco/0000-0003-2684-276X;
Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov,
Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636;
Andreazza, Attilio/0000-0001-5161-5759; Carvalho,
Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676;
Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo,
Jun/0000-0001-8125-9433; Bosman, Martine/0000-0002-7290-643X;
Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582;
Mir, Lluisa-Maria/0000-0002-4276-715X; Della Pietra,
Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206;
Negrini, Matteo/0000-0003-0101-6963; Ferrer,
Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304;
spagnolo, stefania/0000-0001-7482-6348; Ciubancan, Liviu
Mihai/0000-0003-1837-2841; Brooks, William/0000-0001-6161-3570; Lei,
Xiaowen/0000-0002-2564-8351; Di Domenico, Antonio/0000-0001-8078-2759;
Wemans, Andre/0000-0002-9669-9500; Ventura, Andrea/0000-0002-3368-3413;
Livan, Michele/0000-0002-5877-0062; De, Kaushik/0000-0002-5647-4489;
Mitsou, Vasiliki/0000-0002-1533-8886; Smirnova,
Oxana/0000-0003-2517-531X; White, Ryan/0000-0003-3589-5900; Villa,
Mauro/0000-0002-9181-8048; Castro, Nuno/0000-0001-8491-4376; Moraes,
Arthur/0000-0002-5157-5686; Warburton, Andreas/0000-0002-2298-7315;
Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X;
Gabrielli, Alessandro/0000-0001-5346-7841; Salamanna,
Giuseppe/0000-0002-0861-0052; Veneziano, Stefano/0000-0002-2598-2659;
Price, Darren/0000-0003-2750-9977; Korol, Aleksandr/0000-0001-8448-218X;
Giordani, Mario/0000-0002-0792-6039; Capua,
Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592;
Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Fassi,
Farida/0000-0002-6423-7213; la rotonda, laura/0000-0002-6780-5829;
Osculati, Bianca Maria/0000-0002-7246-060X; Amorim,
Antonio/0000-0003-0638-2321; Giorgi, Filippo Maria/0000-0003-1589-2163;
Coccaro, Andrea/0000-0003-2368-4559
FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF,
Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil;
NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS,
China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech
Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark;
DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF,
European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia;
BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation,
Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF,
I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS,
Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway;
RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT,
Portugal; MNE/IFA, Romania; MES of Russia; ROSATOM, Russian Federation;
JINR; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS,
Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg
Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern
and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United
Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United
Kingdom; DOE, USA; NSF, USA
FX We thank CERN for the very successful operation of the LHC, as well as
the support staff from our institutions without whom ATLAS could not be
operated efficiently. We acknowledge the support of ANPCyT, Argentina;
YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS,
Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI,
Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS,
Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and
Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union;
IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and
AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF,
I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan;
CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and
NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia
and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia;
ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and
Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva,
Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and
Leverhulme Trust, United Kingdom; and DOE and NSF, USA. The crucial
computing support from all WLCG partners is acknowledged gratefully, in
particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada),
NDGF (Denmark, Norway and Sweden), CC-IN2P3 (France), KIT/GridKA
(Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC
(Taiwan), RAL (UK) and BNL (USA), and in the Tier-2 facilities
NR 112
TC 12
Z9 12
U1 7
U2 103
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD SEP 4
PY 2014
VL 90
IS 5
AR 052001
DI 10.1103/PhysRevD.90.052001
PG 33
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA AO3VO
UT WOS:000341264900001
ER
PT J
AU Eldred, J
Zwaska, R
AF Eldred, Jeffrey
Zwaska, Robert
TI Dynamical stability of slip-stacking particles
SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS
LA English
DT Article
ID PARAMETRIC PENDULUM; RESONANCE; ATOMS
AB We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.
C1 [Eldred, Jeffrey] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA.
[Eldred, Jeffrey; Zwaska, Robert] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
RP Eldred, J (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47405 USA.
OI Eldred, Jeffrey/0000-0003-4432-072X
FU U.S. Department of Energy [DE-FG02-12ER41800]; National Science
Foundation [NSF PHY-1205431]
FX This work is supported in part by grants from the U.S. Department of
Energy under Contract No. DE-FG02-12ER41800 and the National Science
Foundation NSF PHY-1205431. Special thanks to S. Y, Lee for providing a
crucial mentoring role immediately prior to the beginning of this
research.
NR 32
TC 0
Z9 0
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-4402
J9 PHYS REV SPEC TOP-AC
JI Phys. Rev. Spec. Top.-Accel. Beams
PD SEP 4
PY 2014
VL 17
IS 9
AR 094001
DI 10.1103/PhysRevSTAB.17.094001
PG 10
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA AO3WQ
UT WOS:000341268200001
ER
PT J
AU Calvin, K
Edmonds, J
Bakken, B
Wise, M
Kim, S
Luckow, P
Patel, P
Graabak, I
AF Calvin, Katherine
Edmonds, Jae
Bakken, Bjorn
Wise, Marshall
Kim, Sonny
Luckow, Patrick
Patel, Pralit
Graabak, Ingeborg
TI EU 20-20-20 energy policy as a model for global climate mitigation
SO CLIMATE POLICY
LA English
DT Article
DE climate policy; energy policy; emissions mitigation; climate
stabilization
AB The EU has established an aggressive portfolio with explicit near-term targets for 2020 - to reduce GHG emissions by 20%, rising to 30% if the conditions are right, to increase the share of renewable energy to 20%, and to make a 20% improvement in energy efficiency - intended to be the first step in a long-term strategy to limit climate forcing. The effectiveness and cost of extending these measures in time are considered along with the ambition and propagation to the rest of the world. Numerical results are reported and analysed for the contribution of the portfolio's various elements through a set of sensitivity experiments. It is found that the hypothetical programme leads to very substantial reductions in GHG emissions, dramatic increases in use of electricity, and substantial changes in land-use including reduced deforestation, but at the expense of higher food prices. The GHG emissions reductions are driven primarily by the direct limits. Although the carbon price is lower under the hypothetical protocol than it would be under the emissions cap alone, the economic cost of the portfolio is higher, between 13% and 22%.
C1 [Calvin, Katherine; Edmonds, Jae; Wise, Marshall; Kim, Sonny; Patel, Pralit] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA.
[Bakken, Bjorn; Graabak, Ingeborg] SINTEF, Div Energy, N-7465 Trondheim, Norway.
[Luckow, Patrick] Synapse Energy Econ Inc, Cambridge, MA 02139 USA.
RP Edmonds, J (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA.
EM jae@pnnl.gov
OI Calvin, Katherine/0000-0003-2191-4189
NR 14
TC 1
Z9 1
U1 0
U2 13
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 1469-3062
EI 1752-7457
J9 CLIM POLICY
JI Clim. Policy
PD SEP 3
PY 2014
VL 14
IS 5
BP 581
EP 598
DI 10.1080/14693062.2013.879794
PG 18
WC Environmental Studies; Public Administration
SC Environmental Sciences & Ecology; Public Administration
GA AS3FC
UT WOS:000344161100003
ER
PT J
AU Chinh, NH
Kim, N
Nguyen-Phan, TD
Yoo, IK
Shin, E
AF Chinh Nguyen-Huy
Kim, Nayoung
Thuy-Duong Nguyen-Phan
Yoo, Ik-Keun
Shin, Eun Woo
TI Adsorptive interaction of bisphenol A with mesoporous
titanosilicate/reduced graphene oxide nanocomposite materials: FT-IR and
Raman analyses
SO NANOSCALE RESEARCH LETTERS
LA English
DT Article
DE Bisphenol A; Graphene oxide; Mesoporous titanosilicate; Adsorption
sites; Interaction
ID AQUEOUS-SOLUTION; SILICATE MCM-41; WASTE-WATER; PHOTOCATALYSIS; REMOVAL;
NANOMATERIALS; EXPOSURE; ZEOLITE; DYES
AB Nanocomposite materials containing graphene oxide have attracted tremendous interest as catalysts and adsorbents for water purification. In this study, mesoporous titanosilicate/reduced graphene oxide composite materials with different Ti contents were employed as adsorbents for removing bisphenol A (BPA) from water systems. The adsorptive interaction between BPA and adsorption sites on the composite materials was investigated by Fourier transform infrared (FT-IR) and Raman spectroscopy. Adsorption capacities of BPA at equilibrium, q (e) (mg/g), decreased with increasing Ti contents, proportional to the surface area of the composite materials. FT-IR observations for fresh and spent adsorbents indicated that BPA adsorbed onto the composite materials by the electrostatic interaction between OH functional groups contained in BPA and on the adsorbents. The electrostatic adsorption sites on the adsorbents were categorized into three hydroxyl groups: Si-OH, Ti-OH, and graphene-OH. In Raman spectra, the intensity ratios of D to G band were decreased after the adsorption of BPA, implying adsorptive interaction of benzene rings of BPA with the sp(2) hybrid structure of the reduced graphene oxide.
C1 [Chinh Nguyen-Huy; Kim, Nayoung; Yoo, Ik-Keun; Shin, Eun Woo] Univ Ulsan, Sch Chem Engn, Ulsan 680749, South Korea.
[Thuy-Duong Nguyen-Phan] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
RP Shin, E (reprint author), Univ Ulsan, Sch Chem Engn, Daehakro 93, Ulsan 680749, South Korea.
EM ewshin@ulsan.ac.kr
RI Nguyen Phan, Thuy Duong/C-8751-2014
FU Basic Science Research Program through the National Research Foundation
of Korea (NRF) - Ministry of Education, Science and Technology
[2010-0008810]; Business for Cooperative R&D between Industry, Academy,
and Research Institute - Korea Small and Medium Business Administration
[C0113499]
FX This research was supported by the Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education, Science and Technology (No. 2010-0008810) and by
Business for Cooperative R&D between Industry, Academy, and Research
Institute funded by the Korea Small and Medium Business Administration
in 2013 (Grant No. C0113499).
NR 33
TC 0
Z9 0
U1 6
U2 79
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1556-276X
J9 NANOSCALE RES LETT
JI Nanoscale Res. Lett.
PD SEP 3
PY 2014
VL 9
AR 462
DI 10.1186/1556-276X-9-462
PG 7
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA AP6ZB
UT WOS:000342226100001
ER
PT J
AU Polak, MP
Scharoch, P
Kudrawiec, R
Kopaczek, J
Winiarski, MJ
Linhart, WM
Rajpalke, MK
Yu, KM
Jones, TS
Ashwin, MJ
Veal, TD
AF Polak, M. P.
Scharoch, P.
Kudrawiec, R.
Kopaczek, J.
Winiarski, M. J.
Linhart, W. M.
Rajpalke, M. K.
Yu, K. M.
Jones, T. S.
Ashwin, M. J.
Veal, T. D.
TI Theoretical and experimental studies of electronic band structure for
GaSb1-xBix in the dilute Bi regime
SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
LA English
DT Article
DE GaSbBi; electronic structure; ab initio
ID AUGMENTED-WAVE METHOD; SPECTROSCOPY; GAAS1-XBIX; ALLOYS;
PSEUDOPOTENTIALS; GAP
AB Photoreflectance (PR) spectroscopy was applied to study the band gap in GaSb1-xBix alloys with Bi < 5%. Obtained results have been interpreted in the context of ab initio electronic band structure calculations in which the supercell (SC) based calculations are joined with the alchemical mixing (AM) approximation applied to a single atom in the cell. This approach, which we call SC-AM, allows on the one hand to study alloys with a very small Bi content, and on the other hand to avoid limitations characteristic of a pure AM approximation. It has been shown that the pure AM does not reproduce the GaSb1-xBix band gap determined from PR while the agreement between experimental data and the ab initio calculations of the band gap obtained within the SC-AM approach is excellent. These calculations show that the incorporation of Bi atoms into the GaSb host modifies both the conduction and the valence band. The shift rates found in this work are respectively -26.0 meV per % Bi for the conduction band and 9.6 meV per % Bi for the valence band that consequently leads to a reduction in the band gap by 35.6 meV per % Bi. The shifts found for the conduction and valence band give a similar to 27% (73%) valence (conduction) band offset between GaSb1-xBix and GaSb. The rate of the Bi-related shift for the split-off band is -7.0 meV per % Bi and the respective increase in the spin-orbit split-off is 16.6 meV per % Bi.
C1 [Polak, M. P.; Scharoch, P.; Kudrawiec, R.; Kopaczek, J.] Wroclaw Univ Technol, Inst Phys, PL-50370 Wroclaw, Poland.
[Winiarski, M. J.] Polish Acad Sci, Inst Low Temp & Struct Res, PL-50422 Wroclaw, Poland.
[Linhart, W. M.; Rajpalke, M. K.; Veal, T. D.] Univ Liverpool, Sch Phys Sci, Stephenson Inst Renewable Energy, Liverpool, Merseyside, England.
[Linhart, W. M.; Rajpalke, M. K.; Veal, T. D.] Univ Liverpool, Sch Phys Sci, Dept Phys, Liverpool, Merseyside, England.
[Yu, K. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Jones, T. S.; Ashwin, M. J.] Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England.
RP Polak, MP (reprint author), Wroclaw Univ Technol, Inst Phys, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland.
EM pawel.scharoch@pwr.edu.pl
RI Veal, Tim/A-3872-2010; ashwin, mark/A-2426-2014;
OI Veal, Tim/0000-0002-0610-5626; Polak, Maciej/0000-0001-7198-7779;
ashwin, mark/0000-0001-8657-8097; Yu, Kin Man/0000-0003-1350-9642
FU NCN the University of Liverpool [2012/07/E/ST3/01742]; Engineering and
Physical Sciences Research Council [EP/G004447/2, EP/H021388/1]; MNiSzW
FX The authors acknowledge financial support from the NCN (grant no.
2012/07/E/ST3/01742) the University of Liverpool and the Engineering and
Physical Sciences Research Council under grants EP/G004447/2 and
EP/H021388/1. The ab initio calculations were performed in the Wroclaw
Centre for Networking and Supercomputing. In addition, JK acknowledges
the support within the 'Diamond grant' from the MNiSzW.
NR 48
TC 15
Z9 15
U1 3
U2 35
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0022-3727
EI 1361-6463
J9 J PHYS D APPL PHYS
JI J. Phys. D-Appl. Phys.
PD SEP 3
PY 2014
VL 47
IS 35
AR 355107
DI 10.1088/0022-3727/47/35/355107
PG 7
WC Physics, Applied
SC Physics
GA AO5AX
UT WOS:000341353800012
ER
PT J
AU Stenfeldt, C
Pacheco, JM
Rodriguez, LL
Arzt, J
AF Stenfeldt, Carolina
Pacheco, Juan M.
Rodriguez, Luis L.
Arzt, Jonathan
TI Early Events in the Pathogenesis of Foot-and-Mouth Disease in Pigs;
Identification of Oropharyngeal Tonsils as Sites of Primary and
Sustained Viral Replication
SO PLOS ONE
LA English
DT Article
ID KIDNEY-CELL LINE; NATURAL AEROSOLS; HOST-RANGE; VIRUS; SWINE; CATTLE;
TRANSMISSION; INFECTION; ANTIBODY; CONTACT
AB A time-course study was performed to elucidate the early events of foot-and-mouth disease virus (FMDV) infection in pigs subsequent to simulated natural, intra-oropharyngeal, inoculation. The earliest detectable event was primary infection in the lingual and paraepiglottic tonsils at 6 hours post inoculation (hpi) characterized by regional localization of viral RNA, viral antigen, and infectious virus. At this time FMDV antigen was localized in cytokeratin-positive epithelial cells and CD172a-expressing leukocytes of the crypt epithelium of the paraepiglottic tonsils. De novo replication of FMDV was first detected in oropharyngeal swab samples at 12 hpi and viremia occurred at 18-24 hpi, approximately 24 hours prior to the appearance of vesicular lesions. From 12 through 78 hpi, microscopic detection of FMDV was consistently localized to cytokeratin-positive cells within morphologically characteristic segments of oropharyngeal tonsil crypt epithelium. During this period, leukocyte populations expressing CD172a, SLA-DQ class II and/or CD8 were found in close proximity to infected epithelial cells, but with little or no co-localization with viral proteins. Similarly, M-cells expressing cytokeratin-18 did not co-localize with FMDV proteins. Intra-epithelial micro-vesicles composed of acantholytic epithelial cells expressing large amounts of structural and non-structural FMDV proteins were present within crypts of the tonsil of the soft palate during peak clinical infection. These findings inculpate the paraepiglottic tonsils as the primary site of FMDV infection in pigs exposed via the gastrointestinal tract. Furthermore, the continuing replication of FMDV in the oropharyngeal tonsils during viremia and peak clinical infection with no concurrent amplification of virus occurring in the lower respiratory tract indicates that these sites are the major source of shedding of FMDV from pigs.
C1 [Stenfeldt, Carolina; Pacheco, Juan M.; Rodriguez, Luis L.; Arzt, Jonathan] ARS, Plum Isl Anim Dis Ctr, Foreign Anim Dis Res Unit, USDA, Greenport, NY 11944 USA.
[Stenfeldt, Carolina] Oak Ridge Inst Sci & Educ, PIADC Res Participat Program, Oak Ridge, TN USA.
RP Arzt, J (reprint author), ARS, Plum Isl Anim Dis Ctr, Foreign Anim Dis Res Unit, USDA, Greenport, NY 11944 USA.
EM Jonathan.Arzt@ars.usda.gov
OI Pacheco, Juan/0000-0001-5477-0201; Stenfeldt,
Carolina/0000-0002-2074-3886; Arzt, Jonathan/0000-0002-7517-7893
FU ARS-CRIS Project [1940-32000-057-00D]; Science and Technology
Directorate of the U.S. Department of Homeland Security
[HSHQDC-11-X-00189]; Plum Island Animal Disease Center Research
Participation Program fellowship; National Pork Board (NPB project)
[11-174]; NPB
FX This research was funded in part by ARS-CRIS Project 1940-32000-057-00D
and an interagency agreement with the Science and Technology Directorate
of the U.S. Department of Homeland Security (award number
HSHQDC-11-X-00189). CS is a recipient of a Plum Island Animal Disease
Center Research Participation Program fellowship, administered by the
Oak Ridge Institute for Science and Education (ORISE; www.orau.org)
through an interagency agreement with the US Department of Energy.
Additional funding was received from the National Pork Board (NPB
project identification number: 11-174; www.pork.org), a government-owned
corporation that administers a competitive peer-reviewed grants process
with the objective to select and fund projects researching areas of
importance to the pork industry. None of the contributing authors are
employed by NPB, nor professionally evaluated by this entity. The
funding received from NPB does not alter our adherence to PLOS ONE
policies on sharing data and materials. The funders had no role in study
design, data collection and analysis, decision to publish, or
preparation of the manuscript.
NR 40
TC 4
Z9 4
U1 2
U2 8
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD SEP 3
PY 2014
VL 9
IS 9
AR e106859
DI 10.1371/journal.pone.0106859
PG 15
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AO3TB
UT WOS:000341257700125
PM 25184288
ER
PT J
AU Zemojtel, T
Kohler, S
Mackenroth, L
Jager, M
Hecht, J
Krawitz, P
Graul-Neumann, L
Doelken, S
Ehmke, N
Spielmann, M
Oien, NC
Schweiger, MR
Kruger, U
Frommer, G
Fischer, B
Kornak, U
Flottmann, R
Ardeshirdavani, A
Moreau, Y
Lewis, SE
Haendel, M
Smedley, D
Horn, D
Mundlos, S
Robinson, PN
AF Zemojtel, Tomasz
koehler, Sebastian
Mackenroth, Luisa
Jaeger, Marten
Hecht, Jochen
Krawitz, Peter
Graul-Neumann, Luitgard
Doelken, Sandra
Ehmke, Nadja
Spielmann, Malte
Oien, Nancy Christine
Schweiger, Michal R.
Krueger, Ulrike
Frommer, Goetz
Fischer, Bjoern
Kornak, Uwe
Floettmann, Ricarda
Ardeshirdavani, Amin
Moreau, Yves
Lewis, Suzanna E.
Haendel, Melissa
Smedley, Damian
Horn, Denise
Mundlos, Stefan
Robinson, Peter N.
TI Effective diagnosis of genetic disease by computational phenotype
analysis of the disease-associated genome
SO SCIENCE TRANSLATIONAL MEDICINE
LA English
DT Article
ID MUCOLIPIDOSIS TYPE-IV; INTELLECTUAL DISABILITY; MISSENSE MUTATIONS;
ALKALINE-PHOSPHATASE; MENTAL-RETARDATION; DATABASE; HYPOPHOSPHATASIA;
DISORDERS; VARIANTS; ONTOLOGY
AB Less than half of patients with suspected genetic disease receive a molecular diagnosis. We have therefore integrated next-generation sequencing (NGS), bioinformatics, and clinical data into an effective diagnostic work-flow. We used variants in the 2741 established Mendelian disease genes [the disease-associated genome (DAG)] to develop a targeted enrichment DAG panel (7.1 Mb), which achieves a coverage of 20-fold or better for 98% of bases. Furthermore, we established a computational method [Phenotypic Interpretation of eXomes (PhenIX)] that evaluated and ranked variants based on pathogenicity and semantic similarity of patients' phenotype described by Human Phenotype Ontology (HPO) terms to those of 3991 Mendelian diseases. In computer simulations, ranking genes based on the variant score put the true gene in first place less than 5% of the time; PhenIX placed the correct gene in first place more than 86% of the time. In a retrospective test of PhenIX on 52 patients with previously identified mutations and known diagnoses, the correct gene achieved a mean rank of 2.1. In a prospective study on 40 individuals without a diagnosis, PhenIX analysis enabled a diagnosis in 11 cases (28%, at a mean rank of 2.4). Thus, the NGS of the DAG followed by phenotype-driven bioinformatic analysis allows quick and effective differential diagnostics in medical genetics.
C1 [Zemojtel, Tomasz; koehler, Sebastian; Mackenroth, Luisa; Jaeger, Marten; Krawitz, Peter; Graul-Neumann, Luitgard; Doelken, Sandra; Ehmke, Nadja; Spielmann, Malte; Oien, Nancy Christine; Schweiger, Michal R.; Krueger, Ulrike; Fischer, Bjoern; Kornak, Uwe; Floettmann, Ricarda; Horn, Denise; Mundlos, Stefan; Robinson, Peter N.] Charite, Inst Med Genet & Human Genet, D-13353 Berlin, Germany.
[Zemojtel, Tomasz] Polish Acad Sci, Inst Bioorgan Chem, PL-61704 Poznan, Poland.
[Zemojtel, Tomasz] Lab Berlin Charite Vivantes GmbH, Humangenet, D-13353 Berlin, Germany.
[Hecht, Jochen; Krawitz, Peter; Spielmann, Malte; Schweiger, Michal R.; Fischer, Bjoern; Kornak, Uwe; Mundlos, Stefan; Robinson, Peter N.] Max Planck Inst Mol Genet, D-14195 Berlin, Germany.
[Hecht, Jochen; Mundlos, Stefan; Robinson, Peter N.] Charite, Berlin Brandenburg Ctr Regenerat Therapies, D-13353 Berlin, Germany.
[Oien, Nancy Christine] Max Delbruck Ctr Mol Med, D-13125 Berlin, Germany.
[Schweiger, Michal R.] Univ Cologne, Cologne Ctr Genom, D-50931 Cologne, Germany.
[Frommer, Goetz] Agilent Technol, D-76337 Waldbronn, Germany.
[Ardeshirdavani, Amin; Moreau, Yves] Katholieke Univ Leuven, Dept Elect Engn, STADIUS Ctr Dynam Syst Signal Proc & Data Analyt, B-3001 Leuven, Belgium.
[Lewis, Suzanna E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA.
[Haendel, Melissa] Oregon Hlth & Sci Univ, Univ Lib, Portland, OR 97327 USA.
[Haendel, Melissa] Oregon Hlth & Sci Univ, Dept Med Informat & Clin Epidemiol, Portland, OR 97327 USA.
[Smedley, Damian] Wellcome Trust Sanger Inst, Mouse Informat Grp, Hinxton CB10 1SA, Cambs, England.
[Robinson, Peter N.] Free Univ Berlin, Dept Math & Comp Sci, Inst Bioinformat, D-14195 Berlin, Germany.
RP Robinson, PN (reprint author), Charite, Inst Med Genet & Human Genet, Augustenburger Pl 1, D-13353 Berlin, Germany.
EM peter.robinson@charite.de
RI Fischer-Zirnsak, Bjorn/D-7487-2013; Schweiger, Michal/H-5270-2015;
OI Schweiger, Michal/0000-0002-4672-0623; Lewis,
Suzanna/0000-0002-8343-612X; Kohler, Sebastian/0000-0002-5316-1399
FU Bundesministerium fur Bildung und Forschung (BMBF) [0313911, 0316065E,
0316190A]; Wellcome Trust; NIH [1R24OD011883-02]; Office of Science of
the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Basic
Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231];
Volkswagenstiftung; Max Planck Foundation
FX Funding: The study was supported by grants from the Bundesministerium
fur Bildung und Forschung (BMBF project numbers 0313911, 0316065E, and
0316190A), core infrastructure funding from the Wellcome Trust, NIH
1R24OD011883-02, and by the Director, Office of Science, Office of Basic
Energy Sciences, of the U.S. Department of Energy under contract no.
DE-AC02-05CH11231, the Volkswagenstiftung (Lichtenberg Program to M. R.
S.), and a grant to S. M. by the Max Planck Foundation. Agilent supplied
the SureSelect kits at no charge.
NR 70
TC 53
Z9 54
U1 2
U2 17
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 1946-6234
EI 1946-6242
J9 SCI TRANSL MED
JI Sci. Transl. Med.
PD SEP 3
PY 2014
VL 6
IS 252
AR 252ra123
DI 10.1126/scitranslmed.3009262
PG 9
WC Cell Biology; Medicine, Research & Experimental
SC Cell Biology; Research & Experimental Medicine
GA AO4KD
UT WOS:000341305400007
PM 25186178
ER
PT J
AU Zhao, YX
Zhu, K
AF Zhao, Yixin
Zhu, Kai
TI Efficient Planar Perovskite Solar Cells Based on 1.8 eV Band Gap
CH3NH3PbI2Br Nanosheets via Thermal Decomposition
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID ORGANOMETAL HALIDE PEROVSKITES; LEAD BROMIDE PEROVSKITE; TEMPERATURE;
DEPOSITION; TRANSPORT; IODIDE
AB Hybrid organometallic halide perovskite CH3NH3PbI2Br (or MAPbI(2)Br) nanosheets with a 1.8 eV band gap were prepared via a thermal decomposition process from a precursor containing PbI2, MABr, and MACI. The planar solar cell based on the compact layer of MAPbI(2)Br nanosheets exhibited 10% efficiency and a single-wavelength conversion efficiency of up to 86%. The crystal phase, optical absorption, film morphology, and thermogravimetric analysis studies indicate that the thermal decomposition process strongly depends on the composition of precursors. We find that MACl functions as a glue or soft template to control the initial formation of a solid solution with the main MAPbI(2)Br precursor components (i.e., PbI2 and MABr). The subsequent thermal decomposition process controls the morphology/surface coverage of perovskite films on the planar substrate and strongly affects the device characteristics.
C1 [Zhao, Yixin] Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, Shanghai 200240, Peoples R China.
[Zhu, Kai] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA.
RP Zhao, YX (reprint author), Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China.
EM yixin.zhao@sjtu.edu.cn; Kai.Zhu@nrel.gov
RI Zhao, Yixin/D-2949-2012
FU NSFC [51372151]; U.S. Department of Energy/National Renewable Energy
Laboratory's Laboratory Directed Research and Development (LDRD) program
[DE-AC36-08GO28308]
FX Y.Z. acknowledges the support of the NSFC (Grant 51372151). K.Z.
acknowledges the support by the U.S. Department of Energy/National
Renewable Energy Laboratory's Laboratory Directed Research and
Development (LDRD) program under Contract No. DE-AC36-08GO28308.
NR 29
TC 92
Z9 94
U1 20
U2 386
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD SEP 3
PY 2014
VL 136
IS 35
BP 12241
EP 12244
DI 10.1021/ja5071398
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA AO3JR
UT WOS:000341226000012
PM 25118565
ER
PT J
AU Liu, J
Meier, KK
Tian, SL
Zhang, JL
Guo, HC
Schulz, CE
Robinson, H
Nilges, MJ
Munck, E
Lu, Y
AF Liu, Jing
Meier, Katlyn K.
Tian, Shiliang
Zhang, Jun-long
Guo, Hongchao
Schulz, Charles E.
Robinson, Howard
Nilges, Mark J.
Muenck, Eckard
Lu, Yi
TI Redesigning the Blue Copper Azurin into a Redox-Active Mononuclear
Nonheme Iron Protein: Preparation and Study of Fe(II)-M121E Azurin
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID ELECTRON-PARAMAGNETIC-RESONANCE; PSEUDOMONAS-AERUGINOSA AZURIN;
METAL-BINDING SITES; DE-NOVO DESIGN; SUPEROXIDE REDUCTASE;
DESULFOARCULUS-BAARSII; CRYSTAL-STRUCTURE; COMPLEXES; METALLOPROTEINS;
ENZYMES
AB Much progress has been made in designing heme and dinuclear nonheme iron enzymes. In contrast, engineering mononuclear nonheme iron enzymes is lagging, even though these enzymes belong to a large class that catalyzes quite diverse reactions. Herein we report spectroscopic and X-ray crystallographic studies of Fe(II)-M121E azurin (Az), by replacing the axial Met121 and Cu(II) in wildtype azurin (wtAz) with Glu and Fe(II), respectively. In contrast to the redox inactive Fe(II)-wtAz, the Fe(II)-M121EAz mutant can be readily oxidized by Na2IrCl6, and interestingly, the protein exhibits superoxide scavenging activity. Mossbauer and EPR spectroscopies, along with Xray structural comparisons, revealed similarities and differences between Fe(H)-M121EAz, Fe(II)-wtAz, and superoxide reductase (SOR) and allowed design of the second generation mutant, Fe(II)-M121EM44KAz, that exhibits increased superoxide scavenging activity by 2 orders of magnitude. This finding demonstrates the importance of noncovalent secondary coordination sphere interactions in fine-tuning enzymatic activity.
C1 [Liu, Jing; Tian, Shiliang; Zhang, Jun-long; Guo, Hongchao; Nilges, Mark J.; Lu, Yi] Univ Illinois, Dept Chem, Urbana, IL 61801 USA.
[Meier, Katlyn K.; Muenck, Eckard] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA.
[Schulz, Charles E.] Knox Coll, Dept Phys, Galesburg, IL 61401 USA.
[Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
RP Munck, E (reprint author), Carnegie Mellon Univ, Dept Chem, 4400 5th Ave, Pittsburgh, PA 15213 USA.
EM emunck@cmu.edu; yi-lu@illinois.edu
RI Lu, Yi/B-5461-2010; Meier, Katlyn/C-4478-2015; Tian,
Shiliang/L-2290-2014; Zhang, Jun-Long/E-9906-2013
OI Lu, Yi/0000-0003-1221-6709; Meier, Katlyn/0000-0002-8316-9199; Tian,
Shiliang/0000-0002-9830-5480;
FU National Science Foundation [CHE1413328, CHE 1305111]
FX We wish to thank Ms. Rebecca L. Keller, Professor Carsten Krebs,
Professor J. Martin Bollinger, Jr. from The Pennsylvania State
University for initial investigations of the protein using Mossbauer
spectroscopy, Mr. Yi-Gui Gao from University of Illinois at
Urbana-Champaign for initial investigations of the protein crystal
structure, and Ms. Parisa Hosseinzadeh from University of Illinois at
Urbana-Champaign for help with the CV data collection and analysis. This
work was supported by the National Science Foundation under awards
CHE1413328 (YL) and CHE 1305111(EM).
NR 68
TC 7
Z9 7
U1 9
U2 51
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD SEP 3
PY 2014
VL 136
IS 35
BP 12337
EP 12344
DI 10.1021/ja505410u
PG 8
WC Chemistry, Multidisciplinary
SC Chemistry
GA AO3JR
UT WOS:000341226000025
PM 25082811
ER
PT J
AU Chen, B
Hrovat, DA
West, R
Deng, SHM
Wang, XB
Borden, WT
AF Chen, Bo
Hrovat, David A.
West, Robert
Deng, Shihu H. M.
Wang, Xue-Bin
Borden, Weston Thatcher
TI The Negative Ion Photoelectron Spectrum of Cyclopropane-1,2,3-Trione
Radical Anion, (CO)(3)(center dot-) - A Joint Experimental and
Computational Study
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID TRIPLET GROUND-STATE; MONOXIDE CYCLIC OLIGOMERS; AB-INITIO;
CARBON-MONOXIDE; TRANSITION-STATE; POLYATOMIC-MOLECULES; OXOCARBON
DIANIONS; RELATIVE ENERGIES; ELECTRONIC STATES; LOWEST SINGLET
AB Negative ion photoelectron (NIPE) spectra of the radical anion of cyclopropane-1,2,3-trione, (CO)(3)(center dot-), have been obtained at 20 K, using both 355 and 266 nm lasers for electron photodetachment. The spectra show broadened bands, due to the short lifetimes of both the singlet and triplet states of neutral (CO)(3) and, to a lesser extent, to the vibrational progressions that accompany the photodetaclunent process. The smaller intensity of the band with the lower electron binding energy suggests that the singlet is the ground state of (CO)(3). From the NIPE spectra, the electron affinity (EA) and the singlet-triplet energy gap of (CO)(3) are estimated to be, respectively, EA = 3.1 +/- 0.1 eV and Delta E-ST = -14 +/- 3 kcal/mol. High-level, (U)CCSD(T)/aug-cc-pVQZ// (U)CCSD(T)/aug-cc-pVTZ, calculations give EA = 3.04 eV for the (1)A(1)' ground state of (CO)(3) and Delta E-ST = -13.8 kcal/mol for the energy gap between the (1)A(1)' and (3)A(2) states, in excellent agreement with values from the NIPE spectra. In addition, simulations of the vibrational structures for formation of these states of (CO)(3) from the (2)A(2)" state of (CO)(3)(center dot-) provide a good fit to the shapes of broad bands in the 266 nm NIPE spectrum. The NIPE spectrum of (CO)(3)(center dot-) and the analysis of the spectrum by high-quality electronic structure calculations demonstrate that NIPES can not only access and provide information about transition structures but NIPES can also access and provide information about hilltops on potential energy surfaces.
C1 [Chen, Bo; Hrovat, David A.; Borden, Weston Thatcher] Univ N Texas, Dept Chem, Denton, TX 76203 USA.
[Chen, Bo; Hrovat, David A.; Borden, Weston Thatcher] Univ N Texas, Ctr Adv Sci Comp & Modeling, Denton, TX 76203 USA.
[West, Robert] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA.
[Deng, Shihu H. M.; Wang, Xue-Bin] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA.
RP Wang, XB (reprint author), Pacific NW Natl Lab, Div Phys Sci, POB 999,MS K8-88, Richland, WA 99352 USA.
EM xuebin.wang@pnnl.gov; weston.borden@unt.edu
FU National Science Foundation [CHE-0910527]; Robert A. Welch Foundation
[B0027]; U.S. Department of Energy (DOE), Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences and Biosciences;
DOE's Office of Biological and Environmental Research
FX The calculations at UNT were supported by grant CHE-0910527 from the
National Science Foundation and grant B0027 from the Robert A. Welch
Foundation. The NIPES research at PNNL was supported by the U.S.
Department of Energy (DOE), Office of Basic Energy Sciences, Division of
Chemical Sciences, Geosciences and Biosciences (X.-B.W.) and was
performed at the EMSL, a national scientific user facility sponsored by
DOE's Office of Biological and Environmental Research and located at
Pacific Northwest National Laboratory.
NR 73
TC 6
Z9 6
U1 5
U2 35
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD SEP 3
PY 2014
VL 136
IS 35
BP 12345
EP 12354
DI 10.1021/ja505582k
PG 10
WC Chemistry, Multidisciplinary
SC Chemistry
GA AO3JR
UT WOS:000341226000026
PM 25148567
ER
PT J
AU Kriel, JN
Karrasch, C
Kehrein, S
AF Kriel, J. N.
Karrasch, C.
Kehrein, S.
TI Dynamical quantum phase transitions in the axial next-nearest-neighbor
Ising chain
SO PHYSICAL REVIEW B
LA English
DT Article
AB We investigate sudden quenches across the critical point in the transverse field Ising chain with a perturbing nonintegrable next-nearest-neighbor interaction. Expressions for the return (Loschmidt) amplitude and associated rate function are derived to linear order in the next-nearest-neighbor coupling. In the thermodynamic limit these quantities exhibit nonanalytic behavior at a set of critical times, a phenomenon referred to as a dynamical quantum phase transition. We quantify the effect of the integrability breaking perturbation on the location and shape of these nonanalyticities. Our results agree with those of earlier numerical studies and offer further support for the assertion that the dynamical quantum phase transitions exhibited by this model are a generic feature of its postquench dynamics and are robust with respect to the inclusion of nonintegrable perturbations.
C1 [Kriel, J. N.] Univ Stellenbosch, Inst Theoret Phys, ZA-7600 Stellenbosch, South Africa.
[Karrasch, C.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 95720 USA.
[Karrasch, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Kehrein, S.] Univ Gottingen, Inst Theoret Phys, D-37077 Gottingen, Germany.
RP Kriel, JN (reprint author), Univ Stellenbosch, Inst Theoret Phys, ZA-7600 Stellenbosch, South Africa.
RI Karrasch, Christoph/S-5716-2016
OI Karrasch, Christoph/0000-0002-6475-3584
FU HB MJ Thom trust; Nanostructured Thermoelectrics program of LBNL;
Deutsche Forschungsgemeinschaft (DFG) [1073]
FX J. N. K. gratefully acknowledges the hospitality of the Institute for
Theoretical Physics at the University of Gottingen and the financial
support of the HB & MJ Thom trust. C. K. acknowledges the support of the
Nanostructured Thermoelectrics program of LBNL. S. K. acknowledges
support through SFB Grant No. 1073 of the Deutsche
Forschungsgemeinschaft (DFG).
NR 29
TC 23
Z9 23
U1 0
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD SEP 3
PY 2014
VL 90
IS 12
AR 125106
DI 10.1103/PhysRevB.90.125106
PG 9
WC Physics, Condensed Matter
SC Physics
GA AO3VR
UT WOS:000341265300003
ER
PT J
AU Stroberg, SR
Gade, A
Tostevin, JA
Bader, VM
Baugher, T
Bazin, D
Berryman, JS
Brown, BA
Campbell, CM
Kemper, KW
Langer, C
Lunderberg, E
Lemasson, A
Noji, S
Recchia, F
Walz, C
Weisshaar, D
Williams, SJ
AF Stroberg, S. R.
Gade, A.
Tostevin, J. A.
Bader, V. M.
Baugher, T.
Bazin, D.
Berryman, J. S.
Brown, B. A.
Campbell, C. M.
Kemper, K. W.
Langer, C.
Lunderberg, E.
Lemasson, A.
Noji, S.
Recchia, F.
Walz, C.
Weisshaar, D.
Williams, S. J.
TI Single-particle structure of silicon isotopes approaching Si-42
SO PHYSICAL REVIEW C
LA English
DT Article
ID GAMMA-RAY-SPECTROSCOPY; KNOCKOUT REACTIONS; NUCLEON-TRANSFER; EXOTIC
NUCLEI; SHELL CLOSURE; COLLECTIVITY; MOTION; BEAMS; ARRAY
AB The structure of the neutron-rich silicon isotopes Si-36,Si-38,Si-40 was studied by one-neutron and one-proton knockout reactions at intermediate beam energies. We construct level schemes for the knockout residues Si-35,Si-37,Si-39 and Al-35,Al-37,Al-39 and compare knockout cross sections to the predictions of an eikonal model in conjunction with large-scale shell-model calculations. The agreement of these calculations with the present experiment lends support to the microscopic explanation of the enhanced collectivity in the region of Si-42. We also present an empirical method for reproducing the observed low-momentum tails in the parallel momentum distributions of knockout residues.
C1 [Stroberg, S. R.; Gade, A.; Bader, V. M.; Baugher, T.; Bazin, D.; Berryman, J. S.; Brown, B. A.; Langer, C.; Lunderberg, E.; Lemasson, A.; Noji, S.; Recchia, F.; Walz, C.; Weisshaar, D.; Williams, S. J.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA.
[Stroberg, S. R.; Gade, A.; Bader, V. M.; Baugher, T.; Bazin, D.; Brown, B. A.; Lunderberg, E.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Tostevin, J. A.] Univ Surrey, Fac Engn & Phys Sci, Guildford GU2 7XH, Surrey, England.
[Campbell, C. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Kemper, K. W.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA.
[Langer, C.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA.
RP Stroberg, SR (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA.
RI Gade, Alexandra/A-6850-2008; Langer, Christoph/L-3422-2016
OI Gade, Alexandra/0000-0001-8825-0976;
FU Department of Energy National Nuclear Security Administration
[DE-NA0000979]; National Science Foundation [PHY-1068217]; U.S. DOE,
Office of Science; NSF [PHY-1102511(NSCL)]; DOE
[DE-AC02-05CH11231(LBNL)]; Science and Technology Facilities Council
(UK) [ST/J000051]
FX We thank the staff of the Coupled Cyclotron Facility for the delivery of
high-quality beams and Professor L. Riley for the developing and
providing the GRETINA simulation code. S.R.S. also thanks Professors F.
Nunes and C. Bertulani for helpful discussions of reaction theory and
J.K. Smith for discussions concerning neutron-unbound states. This
material is based on work supported by the Department of Energy National
Nuclear Security Administration under Grant No. DE-NA0000979. This work
was also supported by the National Science Foundation under Grant No.
PHY-1068217. GRETINA was funded by the U.S. DOE, Office of Science.
Operation of the array at NSCL is supported by NSF under Cooperative
Agreement No. PHY-1102511(NSCL) and DOE under Grant No.
DE-AC02-05CH11231(LBNL). J.A.T. acknowledges support of the Science and
Technology Facilities Council (UK) Grant No. ST/J000051.
NR 53
TC 13
Z9 13
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD SEP 3
PY 2014
VL 90
IS 3
AR 034301
DI 10.1103/PhysRevC.90.034301
PG 16
WC Physics, Nuclear
SC Physics
GA AO3WE
UT WOS:000341266700002
ER
PT J
AU Graziani, FR
Bauer, JD
Murillo, MS
AF Graziani, F. R.
Bauer, J. D.
Murillo, M. S.
TI Kinetic theory molecular dynamics and hot dense matter: Theoretical
foundations
SO PHYSICAL REVIEW E
LA English
DT Article
ID COUPLED HYDROGEN PLASMA; TRANSPORT-COEFFICIENTS; CLASSICAL DYNAMICS;
COULOMB-SYSTEMS; LIQUID-METALS; ELECTRON-GAS; SIMULATIONS; EQUILIBRIUM;
RELAXATION; VISCOSITY
AB Electrons are weakly coupled in hot, dense matter that is created in high-energy-density experiments. They are also mildly quantum mechanical and the ions associated with them are classical and may be strongly coupled. In addition, the dynamical evolution of plasmas under these hot, dense matter conditions involve a variety of transport and energy exchange processes. Quantum kinetic theory is an ideal tool for treating the electrons but it is not adequate for treating the ions. Molecular dynamics is perfectly suited to describe the classical, strongly coupled ions but not the electrons. We develop a method that combines a Wigner kinetic treatment of the electrons with classical molecular dynamics for the ions. We refer to this hybrid method as "kinetic theory molecular dynamics," or KTMD. The purpose of this paper is to derive KTMD from first principles and place it on a firm theoretical foundation. The framework that KTMD provides for simulating plasmas in the hot, dense regime is particularly useful since current computational methods are generally limited by their inability to treat the dynamical quantum evolution of the electronic component. Using the N-body von Neumann equation for the electron-proton plasma, three variations of KTMD are obtained. Each variant is determined by the physical state of the plasma (e.g., collisional versus collisionless). The first variant of KTMD yields a closed set of equations consisting of a mean-field quantum kinetic equation for the electron one-particle distribution function coupled to a classical Liouville equation for the protons. The latter equation includes both proton-proton Coulombic interactions and an effective electron-proton interaction that involves the convolution of the electron density with the electron-proton Coulomb potential. The mean-field approach is then extended to incorporate equilibrium electron-proton correlations through the Singwi-Tosi-Land-Sjolander (STLS) ansatz. This is the second variant of KTMD. The STLS contribution produces an effective electron-proton interaction that involves the electron-proton structure factor, thereby extending the usual mean-field theory to correlated but near equilibrium systems. Finally, a third variant of KTMD is derived. It includes dynamical electrons and their correlations coupled to a MD description for the ions. A set of coupled equations for the one-particle electron Wigner function and the electron-electron and electron-proton correlation functions are coupled to a classical Liouville equation for the protons. This latter variation has both time and momentum dependent correlations.
C1 [Graziani, F. R.; Bauer, J. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Murillo, M. S.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
RP Graziani, FR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
EM graziani1@llnl.gov
FU U.S. Department of Energy [DE-AC52-07NA27344, DE-AC52-06NA25396];
Laboratory Directed Research and Development Program at LLNL [09-SI-011]
FX F. R. G. wishes to thank M. Bontiz, J. Daligault, J. Dufty, M.
Desjarlais, and S. Trickey for many useful and enlightening
conversations. F. R. G. and M. S. M. also wish to thank R. Caflisch and
C. Ratsch for their warm hospitality during the Institute for Pure and
Applied Mathematics (UCLA) Long Program on high-energy-density physics,
where portions of this work were discussed and completed. This work was
performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract No.
DE-AC52-07NA27344 and Los Alamos National Security, LLC. (LANS),
operator of the Los Alamos National Laboratory under Contract No.
DE-AC52-06NA25396 with the U.S. Department of Energy. This work was
funded by the Laboratory Directed Research and Development Program at
LLNL under project tracking code 09-SI-011.
NR 74
TC 4
Z9 4
U1 5
U2 24
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
EI 1550-2376
J9 PHYS REV E
JI Phys. Rev. E
PD SEP 3
PY 2014
VL 90
IS 3
AR 033104
DI 10.1103/PhysRevE.90.033104
PG 13
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA AO3XF
UT WOS:000341269900009
PM 25314544
ER
PT J
AU Chen, YF
Qin, N
Guo, J
Qian, GR
Fang, DQ
Shi, D
Xu, M
Yang, FL
He, ZL
Van Nostrand, JD
Yuan, T
Deng, Y
Zhou, JZ
Li, LJ
AF Chen, Yanfei
Qin, Nan
Guo, Jing
Qian, Guirong
Fang, Daiqiong
Shi, Ding
Xu, Min
Yang, Fengling
He, Zhili
Van Nostrand, Joy D.
Yuan, Tong
Deng, Ye
Zhou, Jizhong
Li, Lanjuan
TI Functional gene arrays-based analysis of fecal microbiomes in patients
with liver cirrhosis
SO BMC GENOMICS
LA English
DT Article
DE End-stage liver disease; Intestines; Microbial communities; Alcohol;
Microarray
ID HUMAN GUT MICROBIOME; HEPATIC-ENCEPHALOPATHY; BACTERIAL TRANSLOCATION;
METAGENOMIC ANALYSIS; COMMUNITY ANALYSIS; COLONIC FUNCTION; MICROARRAYS;
ETHANOL; COGNITION; ALCOHOL
AB Background: Human gut microbiota plays an important role in the pathogenesis of cirrhosis complications. Although the phylogenetic diversity of intestinal microbiota in patients with liver cirrhosis has been examined in several studies, little is known about their functional composition and structure.
Results: To characterize the functional gene diversity of the gut microbiome in cirrhotic patients, we recruited a total of 42 individuals, 12 alcoholic cirrhosis patients, 18 hepatitis B virus (HBV)-related cirrhosis patients, and 12 normal controls. We determined the functional structure of these samples using a specific functional gene array, which is a combination of GeoChip for monitoring biogeochemical processes and HuMiChip specifically designed for analyzing human microbiomes. Our experimental data showed that the microbial community functional composition and structure were dramatically distinctive in the alcoholic cirrhosis. Various microbial functional genes involved in organic remediation, stress response, antibiotic resistance, metal resistance, and virulence were highly enriched in the alcoholic cirrhosis group compared to the control group and HBV-related cirrhosis group. Cirrhosis may have distinct influences on metabolic potential of fecal microbial communities. The abundance of functional genes relevant to nutrient metabolism, including amino acid metabolism, lipid metabolism, nucleotide metabolism, and isoprenoid biosynthesis, were significantly decreased in both alcoholic cirrhosis group and HBV-related cirrhosis group. Significant correlations were observed between functional gene abundances and Child-Pugh scores, such as those encoding aspartate-ammonia ligase, transaldolase, adenylosuccinate synthetase and IMP dehydrogenase.
Conclusions: Functional gene array was utilized to study the gut microbiome in alcoholic and HBV-related cirrhosis patients and controls in this study. Our array data indicated that the functional composition of fecal microbiomes was heavily influenced by cirrhosis, especially by alcoholic cirrhosis. This study provides new insights into the functional potentials and activity of gut microbiota in cirrhotic patients with different etiologies.
C1 [Chen, Yanfei; Qin, Nan; Guo, Jing; Qian, Guirong; Fang, Daiqiong; Shi, Ding; Xu, Min; Yang, Fengling; Li, Lanjuan] Zhejiang Univ, Affiliated Hosp 1, Collaborat Innovat Ctr Diag & Treatment Infect Di, State Key Lab Diag & Treatment Infect Dis, Hangzhou 310003, Zhejiang, Peoples R China.
[He, Zhili; Van Nostrand, Joy D.; Yuan, Tong; Deng, Ye; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Inst Environm Genom, Norman, OK 73019 USA.
[Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China.
[Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Earth Sci Div, Berkeley, CA 94720 USA.
RP Zhou, JZ (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, Inst Environm Genom, Norman, OK 73019 USA.
EM jzhou@ou.edu; ljli@zju.edu.cn
RI Van Nostrand, Joy/F-1740-2016;
OI Van Nostrand, Joy/0000-0001-9548-6450; ?, ?/0000-0002-7584-0632
FU National Program on Key Basic Research Project (973 Program)
[2013CB531404]; Major National S & T Project for Infectious Disease
[2008ZX10002-007]; Science Fund for Creative Research Groups of the
National Natural Science Foundation of China [81121002]; Oklahoma
Applied Research Support (OARS); Oklahoma Center for the Advancement of
Science and Technology (OCAST); State of Oklahoma [AR11-035]; ENIGMA
(Ecosystems and Networks Integrated with Genes and Molecular Assemblies)
through the Office of Science, Office of Biological and Environmental
Research; U. S. Department of Energy [DE-AC02-05CH11231]; OBER
Biological Systems Research on the Role of Microbial Communities in
Carbon Cycling Program [DE-SC0004601]; U.S. National Science Foundation
MacroSystems Biology program [NSF EF-1065844]
FX We thank Prof. Baoli Zhu in CAS Key Laboratory of Pathogenic
Microbiology & Immunology at Chinese Academy of Sciences for his
contribution in study design and data interpretation. This work was
supported by the National Program on Key Basic Research Project (973
Program) 2013CB531404, the Major National S & T Project for Infectious
Disease (11th Five Year) 2008ZX10002-007, the Science Fund for Creative
Research Groups of the National Natural Science Foundation of China (NO.
81121002), and the Oklahoma Applied Research Support (OARS), Oklahoma
Center for the Advancement of Science and Technology (OCAST), the State
of Oklahoma through the Project AR11-035. The development of the
GeoChips and associated computational pipelines used in this study were
supported by ENIGMA (Ecosystems and Networks Integrated with Genes and
Molecular Assemblies) through the Office of Science, Office of
Biological and Environmental Research, the U. S. Department of Energy
under Contract No. DE-AC02-05CH11231, by the OBER Biological Systems
Research on the Role of Microbial Communities in Carbon Cycling Program
(DE-SC0004601) and by the U.S. National Science Foundation MacroSystems
Biology program under the contract (NSF EF-1065844).
NR 49
TC 4
Z9 4
U1 5
U2 43
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1471-2164
J9 BMC GENOMICS
JI BMC Genomics
PD SEP 2
PY 2014
VL 15
AR 753
DI 10.1186/1471-2164-15-753
PG 13
WC Biotechnology & Applied Microbiology; Genetics & Heredity
SC Biotechnology & Applied Microbiology; Genetics & Heredity
GA AP0XQ
UT WOS:000341790200001
PM 25179593
ER
PT J
AU Kronewitter, SR
Marginean, I
Cox, JT
Zhao, R
Hagler, CD
Shukla, AK
Carlson, TS
Adkins, JN
Camp, DG
Moore, RJ
Rodland, KD
Smith, RD
AF Kronewitter, Scott R.
Marginean, Ioan
Cox, Jonathan T.
Zhao, Rui
Hagler, Clay D.
Shukla, Anil K.
Carlson, Timothy S.
Adkins, Joshua N.
Camp, David G., II
Moore, Ronald J.
Rodland, Karin D.
Smith, Richard D.
TI Polysialylated N-Glycans Identified in Human Serum Through Combined
Developments in Sample Preparation, Separations, and Electrospray
Ionization-Mass Spectrometry
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID CELL-ADHESION MOLECULE; SUBAMBIENT PRESSURE IONIZATION; OVARIAN-CANCER;
SUPRACHIASMATIC NUCLEUS; BIOMARKER DISCOVERY; LINKED GLYCANS;
SIALIC-ACID; PSA-NCAM; CHROMATOGRAPHY; GLYCOSYLATION
AB The N-glycan diversity of human serum glycoproteins, i.e., the human blood serum N-glycome, is both complex and constrained by the range of glycan structures potentially synthesizable by human glycosylation enzymes. The known glycome, however, has been further limited by methods of sample preparation, available analytical platforms, e.g., based upon electrospray ionization-mass spectrometry (ESI-MS), and software tools for data analysis. In this report several improvements have been implemented in sample preparation and analysis to extend ESI-MS glycan characterization and to include polysialylated N-glycans. Sample preparation improvements included acidified, microwave-accelerated, PNGase F N-glycan release to promote lactonization, and sodium borohydride reduction, that were both optimized to improve quantitative yields and conserve the number of glycoforms detected. Two-stage desalting (during solid phase extraction and on the analytical column) increased sensitivity by reducing analyte signal division between multiple reducing-end-forms or cation adducts. Online separations were improved by using extended length graphitized carbon columns and adding TFA as an acid modifier to a formic acid/reversed phase gradient, providing additional resolving power and significantly improved desorption of both large and heavily sialylated glycans. To improve MS sensitivity and provide gentler ionization conditions at the source-MS interface, subambient pressure ionization with nanoelectrospray (SPIN) was utilized. When these improved methods are combined together with the Glycomics Quintavariate Informed Quantification (GlyQ-IQ) recently described (Kronewitter et al. Anal. Chem. 2014, 86, 6268-6276), we are able to significantly extend glycan detection sensitivity and provide expanded glycan coverage. We demonstrated the application of these advances in the context of the human serum glycome, and for which our initial observations included the detection of a new class of heavily sialylated N-glycans, including polysialylated N-glycans.
C1 [Kronewitter, Scott R.; Marginean, Ioan; Cox, Jonathan T.; Zhao, Rui; Hagler, Clay D.; Shukla, Anil K.; Carlson, Timothy S.; Adkins, Joshua N.; Camp, David G., II; Moore, Ronald J.; Rodland, Karin D.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA.
EM rds@pnnl.gov
RI Marginean, Ioan/A-4183-2008; Smith, Richard/J-3664-2012
OI Marginean, Ioan/0000-0002-6693-0361; Smith, Richard/0000-0002-2381-2349
FU Genome Science Program of the U.S. DOE Office of Biological and
Environmental Research; NIH [P41 GM103493-11]; DOE [DE-AC05-76RLO 1830]
FX Portions of this work were conducted under the Pan-omics project
supported by the Genome Science Program of the U.S. DOE Office of
Biological and Environmental Research and by NIH Grant P41 GM103493-11
(R.D.S.). Work was performed in the EMSL, a DOE-BER national scientific
user facility PNNL. High-performance computing research was performed
using PNNL Institutional Computing at Pacific Northwest National
Laboratory. PNNL is a multiprogram national laboratory operated by
Battelle Memorial Institute for the DOE under Contract DE-AC05-76RLO
1830.
NR 62
TC 3
Z9 3
U1 12
U2 57
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
EI 1520-6882
J9 ANAL CHEM
JI Anal. Chem.
PD SEP 2
PY 2014
VL 86
IS 17
BP 8700
EP 8710
DI 10.1021/ac501839b
PG 11
WC Chemistry, Analytical
SC Chemistry
GA AO3KX
UT WOS:000341229200029
PM 25118826
ER
PT J
AU Derbin, AV
Gironi, L
Nagorny, SS
Pattavina, L
Beeman, JW
Bellini, F
Biassoni, M
Capelli, S
Clemenza, M
Drachnev, IS
Ferri, E
Giachero, A
Gotti, C
Kayunov, AS
Maiano, C
Maino, M
Muratova, VN
Pavan, M
Pirro, S
Semenov, DA
Sisti, M
Unzhakov, EV
AF Derbin, A. V.
Gironi, L.
Nagorny, S. S.
Pattavina, L.
Beeman, J. W.
Bellini, F.
Biassoni, M.
Capelli, S.
Clemenza, M.
Drachnev, I. S.
Ferri, E.
Giachero, A.
Gotti, C.
Kayunov, A. S.
Maiano, C.
Maino, M.
Muratova, V. N.
Pavan, M.
Pirro, S.
Semenov, D. A.
Sisti, M.
Unzhakov, E. V.
TI Search for axioelectric effect of solar axions using BGO scintillating
bolometer
SO EUROPEAN PHYSICAL JOURNAL C
LA English
DT Article
ID STRONG CP PROBLEM; BEAM-DUMP; PARTICLES; INVARIANCE; DETECTORS; SIGNALS;
REDUCTION; NOISE
AB A search for axioelectric absorption of solar axions produced in the p + d --> He-3 + gamma (5.5 MeV) reaction has been performed with a BGO detector placed in a low-background setup. A model-independent limit on the combination of axion-nucleon and axion-electron coupling constants has been obtained: vertical bar g(Ae) x g(AN)(3)vertical bar < 1.9 x 10(-10) for 90 % confidence level. The constraint of the axion-electron coupling constant has been obtained for hadronic axion with masses of (0.1-1) MeV: vertical bar g(Ae)vertical bar <= (0.96 - 8.2) x 10(-8).
C1 [Derbin, A. V.; Drachnev, I. S.; Kayunov, A. S.; Muratova, V. N.; Semenov, D. A.; Unzhakov, E. V.] St Petersburg Nucl Phys Inst, Gatchina 188350, Russia.
[Gironi, L.; Biassoni, M.; Capelli, S.; Clemenza, M.; Ferri, E.; Giachero, A.; Gotti, C.; Maiano, C.; Maino, M.; Pavan, M.; Sisti, M.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy.
[Gironi, L.; Biassoni, M.; Capelli, S.; Clemenza, M.; Ferri, E.; Giachero, A.; Gotti, C.; Maiano, C.; Maino, M.; Pavan, M.; Sisti, M.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy.
[Nagorny, S. S.; Pattavina, L.; Pirro, S.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, I-67100 Laquila, Italy.
[Nagorny, S. S.; Drachnev, I. S.] INFN, Gran Sasso Sci Inst, I-67100 Laquila, AQ, Italy.
[Beeman, J. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Bellini, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy.
[Bellini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
RP Derbin, AV (reprint author), St Petersburg Nucl Phys Inst, Gatchina 188350, Russia.
EM derbin@pnpi.spb.ru
RI Giachero, Andrea/I-1081-2013; Bellini, Fabio/D-1055-2009; Pattavina,
Luca/I-7498-2015; Sisti, Monica/B-7550-2013; Ferri, Elena/L-8531-2014;
Gironi, Luca/P-2860-2016; capelli, silvia/G-5168-2012;
OI Giachero, Andrea/0000-0003-0493-695X; Bellini,
Fabio/0000-0002-2936-660X; Drachnev, Ilia/0000-0002-4064-8093;
Pattavina, Luca/0000-0003-4192-849X; Sisti, Monica/0000-0003-2517-1909;
Ferri, Elena/0000-0003-1425-3669; Gironi, Luca/0000-0003-2019-0967;
capelli, silvia/0000-0002-0300-2752; Nahornyi,
Serhii/0000-0002-8679-3747; Derbin, Alexander/0000-0002-4351-2255;
Unzhakov, Evgeniy/0000-0003-2952-6412; Clemenza,
Massimiliano/0000-0002-8064-8936; pavan, maura/0000-0002-9723-7834;
Gotti, Claudio/0000-0003-2501-9608
FU RFBR [13-02-01199, 13-02-12140-ofi-m]
FX This work was supported by RFBR Grants 13-02-01199 and
13-02-12140-ofi-m.
NR 51
TC 1
Z9 1
U1 1
U2 10
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1434-6044
EI 1434-6052
J9 EUR PHYS J C
JI Eur. Phys. J. C
PD SEP 2
PY 2014
VL 74
IS 9
AR 3035
DI 10.1140/epjc/s10052-014-3035-8
PG 6
WC Physics, Particles & Fields
SC Physics
GA AO8EX
UT WOS:000341587300001
ER
PT J
AU Vogl, US
Das, PK
Weber, AZ
Winter, M
Kostecki, R
Lux, SF
AF Vogl, U. S.
Das, P. K.
Weber, A. Z.
Winter, M.
Kostecki, R.
Lux, S. F.
TI Mechanism of Interactions between CMC Binder and Si Single Crystal
Facets
SO LANGMUIR
LA English
DT Article
ID LITHIUM-ION-BATTERIES; CARBOXYMETHYL CELLULOSE; HIGH-CAPACITY; ALLOY
ANODES; ELECTROCHEMICAL PERFORMANCE; COMPOSITE ELECTRODES; NEGATIVE
ELECTRODES; CYCLING STABILITY; SILICON; SURFACE
AB Interactions of the active material particles with the binder are crucial in tailoring the properties of composite electrodes used in lithium-ion batteries. The dependency of the protonation degree of the carboxyl group in the carboxymethyl cellulose (CMC) structure on the pH value of the preparation solution was investigated by Fourier transform infrared spectroscopy (FTIR). Three different distinctive chemical states of CMC binder were chosen (protonated, deprotonated, and half-half), and their interactions with different silicon single crystal facets were investigated. The different Si surface orientations display distinct differences of strength of interactions with the CMC binder. The CMC/Si adhesion forces in solution and Si wettability of the silicon are also strongly dependent on the protonation degree of the CMC. This work provides an insight into the nature of these interactions, which determine the electrochemical performance of silicon composite electrodes.
C1 [Vogl, U. S.; Winter, M.; Lux, S. F.] Univ Munster, MEET Battery Res Ctr, D-48149 Munster, Germany.
[Vogl, U. S.; Das, P. K.; Weber, A. Z.; Kostecki, R.; Lux, S. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
RP Winter, M (reprint author), Univ Munster, MEET Battery Res Ctr, Corrensstr 46, D-48149 Munster, Germany.
EM martin.winter@uni-muenster.de; simon.lux@uni-muenster.de
OI Das, Prodip/0000-0001-9096-3721
FU Office of Vehicle Technologies of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX This work was supported by the Assistant Secretary for Energy Efficiency
and Renewable Energy, Office of Vehicle Technologies of the U.S.
Department of Energy under Contract DE-AC02-05CH11231. The authors thank
Dr. Gao Liu and Dr. Vincent Battaglia for their help with the peel-off
force investigations.
NR 40
TC 19
Z9 19
U1 7
U2 68
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
J9 LANGMUIR
JI Langmuir
PD SEP 2
PY 2014
VL 30
IS 34
BP 10299
EP 10307
DI 10.1021/la501791q
PG 9
WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
SC Chemistry; Materials Science
GA AO3LG
UT WOS:000341230100020
PM 25109709
ER
PT J
AU Boughezal, R
Focke, C
Li, Y
Liu, XH
AF Boughezal, Radja
Focke, Christfried
Li, Ye
Liu, Xiaohui
TI Jet vetoes for Higgs boson production at future hadron colliders
SO PHYSICAL REVIEW D
LA English
DT Article
ID TO-LEADING ORDER; LHC; SEARCH; QCD
AB We study Higgs boson production in exclusive jet bins at possible future 33 and 100 TeV proton-proton colliders. We compare the cross sections obtained using fixed-order perturbation theory with those obtained by also resumming large logarithms induced by the jet-binning in the gluon-fusion and associated production channels. The central values obtained by the best-available fixed-order predictions differ by 10%-20% from those obtained after including resummation over the majority of phase-space regions considered. Additionally, including the resummation dramatically reduces the residual scale variation in these regions, often by a factor of two or more. We further show that in several new kinematic regimes that can be explored at these high-energy machines, the inclusion of resummation improvement is mandatory.
C1 [Boughezal, Radja; Liu, Xiaohui] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Focke, Christfried; Liu, Xiaohui] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA.
[Li, Ye] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94309 USA.
RP Boughezal, R (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
EM rboughezal@anl.gov; christfried.focke@gmail.com; yli@slac.stanford.edu;
xiaohui.liu@northwestern.edu
FU U.S. Department of Energy, Division of High Energy Physics
[DE-AC02-06CH11357, DE-FG02-95ER40896, DE-FG02-08ER4153]; U.S.
Department of Energy [DE-AC02-76SF00515]; Office of Science of the U.S.
Department of Energy [DE-AC02-05CH11231]
FX The work of R. B. was supported by the U.S. Department of Energy,
Division of High Energy Physics, under Contract No. DE-AC02-06CH11357.
The work of C. F. and X. L. was supported by the U.S. Department of
Energy, Division of High Energy Physics, under Contract No.
DE-AC02-06CH11357 and Grants No. DE-FG02-95ER40896 and No.
DE-FG02-08ER4153. The work of Y. L. was supported by the U.S. Department
of Energy under Contract No. DE-AC02-76SF00515. This research used
resources of the National Energy Research Scientific Computing Center,
which is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.
NR 51
TC 5
Z9 5
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD SEP 2
PY 2014
VL 90
IS 5
AR 053001
DI 10.1103/PhysRevD.90.053001
PG 10
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA AO3PD
UT WOS:000341244100001
ER
PT J
AU Garbarini, F
Boero, R
D'Agata, F
Bravo, G
Mosso, C
Cauda, F
Duca, S
Geminiani, G
Sacco, K
AF Garbarini, Francesca
Boero, Riccardo
D'Agata, Federico
Bravo, Giangiacomo
Mosso, Cristina
Cauda, Franco
Duca, Sergio
Geminiani, Giuliano
Sacco, Katiuscia
TI Neural Correlates of Gender Differences in Reputation Building
SO PLOS ONE
LA English
DT Article
ID SEX-DIFFERENCES; SELF-CONTROL; COOPERATION; SYSTEMS; TRUST; EVOLUTION;
STRIATUM; REWARD; MODEL; RISK
AB Gender differences in cooperative choices and their neural correlates were investigated in a situation where reputation represented a crucial issue. Males and females were involved in an economic exchange (trust game) where economic and reputational payoffs had to be balanced in order to increase personal welfare. At the behavioral level, females showed a stronger reaction to negative reputation judgments that led to higher cooperation than males, measured by back transfers in the game. The neuroanatomical counterpart of this gender difference was found within the reward network (engaged in producing expectations of positive results) and reputation-related brain networks, such as the self-control network (engaged in strategically resisting the temptation to defect) and the mentalizing network (engaged in thinking about how one is viewed by others), in which the dorsolateral prefrontal cortex (DLPFC) and the medial (M) PFC respectively play a crucial role. Furthermore, both DLPFC and MPFC activity correlated with the amount of back transfer, as well as with the personality dimensions assessed with the Big-Five Questionnaire (BFQ-2). Males, according to their greater DLPFC recruitment and their higher level of the BFQ-2 subscale of Dominance, were more focused on implementing a profit-maximizing strategy, pursuing this target irrespectively of others' judgments. On the contrary, females, according to their greater MPFC activity and their lower level of Dominance, were more focused on the reputation per se and not on the strategic component of reputation building. These findings shed light on the sexual dimorphism related to cooperative behavior and its neural correlates.
C1 [Garbarini, Francesca; D'Agata, Federico; Mosso, Cristina; Cauda, Franco; Geminiani, Giuliano; Sacco, Katiuscia] Univ Turin, Dept Psychol, Turin, Italy.
[Boero, Riccardo] Los Alamos Natl Lab, Los Alamos, NM USA.
[D'Agata, Federico] Univ Turin, Dept Neurosci, Turin, Italy.
[D'Agata, Federico; Cauda, Franco; Duca, Sergio; Geminiani, Giuliano; Sacco, Katiuscia] Koelliker Hosp, CCS FMRI, Turin, Italy.
[Bravo, Giangiacomo] Linnaeus Univ, Dept Social Studies, Vaxjo, Sweden.
[Cauda, Franco; Geminiani, Giuliano; Sacco, Katiuscia] Univ Turin, NIT, Turin, Italy.
RP Garbarini, F (reprint author), Univ Turin, Dept Psychol, Turin, Italy.
EM fra.garbarini@gmail.com
RI Cauda, Franco /G-5021-2010; Mosso, Cristina /J-1422-2016;
OI Cauda, Franco /0000-0003-1526-8475; Bravo,
Giangiacomo/0000-0003-2837-0137; D'Agata, Federico/0000-0001-9432-0248;
Garbarini, Francesca/0000-0003-1210-0175; Boero,
Riccardo/0000-0002-7468-9096
FU Regione Piemonte, Human and Social Science "IIINBEMA - INstitutions,
BEhaviour and MArkets in Local and Global Settings'' [229/DB1300]; GIRS
- The invisible grammar of social relationships
FX This study was funded by Regione Piemonte, Human and Social Science 2008
(D.D. n. 229/DB1300), project "IIINBEMA - INstitutions, BEhaviour and
MArkets in Local and Global Settings'' and project "GIRS - The invisible
grammar of social relationships''. The funders had no role in study
design, data collection and analysis, decision to publish, or
preparation of the manuscript.
NR 43
TC 3
Z9 3
U1 3
U2 19
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD SEP 2
PY 2014
VL 9
IS 9
AR e106285
DI 10.1371/journal.pone.0106285
PG 13
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AO3LR
UT WOS:000341231500069
PM 25180581
ER
PT J
AU Seal, K
Sharoni, A
Messman, JM
Lokitz, BS
Shaw, RW
Schuller, IK
Snijders, PC
Ward, TZ
AF Seal, Katyayani
Sharoni, Amos
Messman, Jamie M.
Lokitz, Bradley S.
Shaw, Robert W.
Schuller, Ivan K.
Snijders, Paul C.
Ward, Thomas Z.
TI Resolving transitions in the mesoscale domain configuration in VO2 using
laser speckle pattern analysis
SO SCIENTIFIC REPORTS
LA English
DT Article
ID SURFACE-ROUGHNESS; LIGHT-SCATTERING; SPECTROSCOPY; STATISTICS;
MAGNETISM; ORDER
AB The configuration and evolution of coexisting mesoscopic domains with contrasting material properties are critical in creating novel functionality through emergent physical properties. However, current approaches that map the domain structure involve either spatially resolved but protracted scanning probe experiments without real time information on the domain evolution, or time resolved spectroscopic experiments lacking domain-scale spatial resolution. We demonstrate an elegant experimental technique that bridges these local and global methods, giving access to mesoscale information on domain formation and evolution at time scales orders of magnitude faster than current spatially resolved approaches. Our straightforward analysis of laser speckle patterns across the first order phase transition of VO2 can be generalized to other systems with large scale phase separation and has potential as a powerful method with both spatial and temporal resolution to study phase separation in complex materials.
C1 [Seal, Katyayani; Snijders, Paul C.; Ward, Thomas Z.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Seal, Katyayani; Snijders, Paul C.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Sharoni, Amos] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel.
[Sharoni, Amos] Bar Ilan Univ, Inst Nanotechnol, IL-52900 Ramat Gan, Israel.
[Sharoni, Amos; Schuller, Ivan K.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
[Sharoni, Amos; Schuller, Ivan K.] Univ Calif San Diego, Ctr Adv Nanosci, La Jolla, CA 92093 USA.
[Messman, Jamie M.; Lokitz, Bradley S.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Shaw, Robert W.] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA.
RP Snijders, PC (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
EM snijderspc@ornl.gov; wardtz@ornl.gov
RI Lokitz, Bradley/Q-2430-2015; Ward, Thomas/I-6636-2016
OI Lokitz, Bradley/0000-0002-1229-6078; Ward, Thomas/0000-0002-1027-9186
FU US Department of Energy (DOE), Basic Energy Sciences (BES), Materials
Sciences and Engineering Division, and Chemical Sciences, Geosciences,
and Biosciences Division; Scientific User Facilities Division, Office of
BES, US DOE; LDRD Program at ORNL; U.S. Department of Energy; Department
of Energy's Office of Basic Energy Science [DE FG03 87ER-45332]; Israel
Science Foundation [727/11]
FX Research supported by the US Department of Energy (DOE), Basic Energy
Sciences (BES), Materials Sciences and Engineering Division, (PCS, TZW)
and Chemical Sciences, Geosciences, and Biosciences Division (RWS).
Ellipsometry measurements (JMM, BSL) were conducted at the Center for
Nanophase Materials Sciences, which is sponsored at Oak Ridge National
Laboratory by the Scientific User Facilities Division, Office of BES, US
DOE. Partial support was also given by LDRD Program at ORNL (KS).
Partial support was also given by, U.S. Department of Energy, BES-DMS
funded by the Department of Energy's Office of Basic Energy Science,
under grant DE FG03 87ER-45332 (IKS). Partial support also given by
Israel Science Foundation grant No. 727/11 (AS).
NR 25
TC 3
Z9 3
U1 2
U2 31
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD SEP 2
PY 2014
VL 4
AR 6259
DI 10.1038/srep06259
PG 7
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AO6EO
UT WOS:000341442600001
PM 25178929
ER
PT J
AU Langan, P
Sangha, AK
Wymore, T
Parks, JM
Yang, ZMK
Hanson, BL
Fisher, Z
Mason, SA
Blakeley, MP
Forsyth, VT
Glusker, JP
Carrell, HL
Smith, JC
Keen, DA
Graham, DE
Kovalevsky, A
AF Langan, Paul
Sangha, Amandeep K.
Wymore, Troy
Parks, Jerry M.
Yang, Zamin Koo
Hanson, B. Leif
Fisher, Zoe
Mason, Sax A.
Blakeley, Matthew P.
Forsyth, V. Trevor
Glusker, Jenny P.
Carrell, Horace L.
Smith, Jeremy C.
Keen, David A.
Graham, David E.
Kovalevsky, Andrey
TI L-Arabinose Binding, Isomerization, and Epimerization by D-Xylose
Isomerase: X-Ray/Neutron Crystallographic and Molecular Simulation Study
SO STRUCTURE
LA English
DT Article
ID MEDIATED HYDRIDE SHIFT; D-GLUCOSE ISOMERASE; SACCHAROMYCES-CEREVISIAE;
L-RIBOSE; STREPTOMYCES-RUBIGINOSUS; NEUTRON-DIFFRACTION;
ACTINOPLANES-MISSOURIENSIS; ANOMERIC SPECIFICITY; DIRECTED EVOLUTION;
HEXOSE SUGARS
AB D-xylose isomerase (XI) is capable of sugar isomerization and slow conversion of some monosaccharides into their C2-epimers. We present X-ray and neutron crystallographic studies to locate H and D atoms during the respective isomerization and epimerization of L-arabinose to L-ribulose and L-ribose, respectively. Neutron structures in complex with cyclic and linear L-arabinose have demonstrated that the mechanism of ring-opening is the same as for the reaction with D-xylose. Structural evidence and QM/MM calculations show that in the reactive Michaelis complex L-arabinose is distorted to the high-energy S-5(1) conformation; this may explain the apparent high Km for this sugar. MD-FEP simulations indicate that amino acid substitutions in a hydrophobic pocket near C5 of L-arabinose can enhance sugar binding. L-ribulose and L-ribose were found in furanose forms when bound to XI. We propose that these complexes containing Ni2+ cofactors are Michaelis-like and the isomerization between these two sugars proceeds via a cis-ene-diol mechanism.
C1 [Langan, Paul; Kovalevsky, Andrey] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA.
[Sangha, Amandeep K.; Wymore, Troy; Parks, Jerry M.; Smith, Jeremy C.] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Biosci Div, Oak Ridge, TN 37831 USA.
[Yang, Zamin Koo; Graham, David E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
[Hanson, B. Leif] Univ Toledo, Dept Chem, Toledo, OH 43606 USA.
[Fisher, Zoe] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA.
[Mason, Sax A.; Blakeley, Matthew P.; Forsyth, V. Trevor] Inst Max Von Laue Paul Langevin, F-38000 Grenoble, France.
[Forsyth, V. Trevor] Keele Univ, EPSAM ISTM, Keele ST5 5BG, Staffs, England.
[Glusker, Jenny P.; Carrell, Horace L.] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA.
[Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA.
[Keen, David A.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England.
RP Kovalevsky, A (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA.
EM kovalevskyay@ornl.gov
RI Forsyth, V. Trevor/A-9129-2010; Parks, Jerry/B-7488-2009; mason, sax
/E-6738-2011; Graham, David/F-8578-2010; Blakeley, Matthew/G-7984-2015;
Langan, Paul/N-5237-2015; smith, jeremy/B-7287-2012; Hanson, Bryant
Leif/F-8007-2010;
OI Forsyth, V. Trevor/0000-0003-0380-3477; Parks,
Jerry/0000-0002-3103-9333; Graham, David/0000-0001-8968-7344; Blakeley,
Matthew/0000-0002-6412-4358; Langan, Paul/0000-0002-0247-3122; smith,
jeremy/0000-0002-2978-3227; Hanson, Bryant Leif/0000-0003-0345-3702;
Kovalevsky, Andrey/0000-0003-4459-9142
FU Office of Biological and Environmental Research of the Department of
Energy; DOE Office of Basic Energy Sciences; Office of Science of the US
Department of Energy [DE-AC02-05CH11231]; Durham University; Keele
University; Bath University; ILL (EPSRC grant) [GR/R47950/01]; DOE
Office of Biological and Environmental Research; NIH-NIGMS; ORNL; LBNL
FX The PCS is funded by the Office of Biological and Environmental Research
of the Department of Energy. The PCS is located at the Lujan Center at
Los Alamos Neutron Science Center, funded by the DOE Office of Basic
Energy Sciences. This research used resources of the National Energy
Research Scientific Computing Center, which is supported by the Office
of Science of the US Department of Energy under contract no.
DE-AC02-05CH11231. The D19 diffractometer was built as part of a
collaboration between Durham University, Keele University, Bath
University, and ILL (EPSRC grant GR/R47950/01). We gratefully
acknowledge the help of John Archer, John Allibon, and the efforts of
the ILL detector group. P.L., A.K.S., T.W., J.M.P., Z.K.Y., D.E.G., and
A.K. were partly supported by the DOE Office of Biological and
Environmental Research. P.L. was partly supported by an NIH-NIGMS funded
consortium between ORNL and LBNL to develop computational tools for
neutron protein crystallography.
NR 57
TC 9
Z9 9
U1 2
U2 45
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0969-2126
EI 1878-4186
J9 STRUCTURE
JI Structure
PD SEP 2
PY 2014
VL 22
IS 9
BP 1287
EP 1300
DI 10.1016/j.str.2014.07.002
PG 14
WC Biochemistry & Molecular Biology; Biophysics; Cell Biology
SC Biochemistry & Molecular Biology; Biophysics; Cell Biology
GA AO5NW
UT WOS:000341392800010
PM 25132082
ER
PT J
AU Jing, XM
Serpersu, EH
AF Jing, Xiaomin
Serpersu, Engin H.
TI Solvent Reorganization Plays a Temperature-Dependent Role in Antibiotic
Selection by a Thermostable Aminoglycoside Nucleotidyltransferase-4 '
SO BIOCHEMISTRY
LA English
DT Article
ID AMINO-ACID-RESIDUES; HEAT-CAPACITY; LIGAND-BINDING; KANAMYCIN
NUCLEOTIDYLTRANSFERASE; THERMODYNAMIC PARAMETERS; RESISTANCE ENZYME;
AQUEOUS-SOLUTION; PROTEIN; HYDRATION; ENTHALPY
AB The aminoglycoside nucleotidyltransferase-4' (ANT) is an enzyme that causes resistance to a large number of aminoglycoside antibiotics by nucleotidylation of the 4'-site on these antibiotics. The effect of solvent reorganization on enzyme-ligand interactions was investigated using a thermophilic variant of the enzyme resulting from a single-site mutation (T130K). Data showed that the binding of aminoglycosides to ANT causes exposure of polar groups to solvent. However, solvent reorganization becomes the major contributor to the enthalpy of the formation of enzyme-aminoglycoside complexes only above 20 degrees C. The change in heat capacity (Delta C-p) shows an aminoglycoside-dependent pattern such that it correlates with the affinity of the ligand for the enzyme. Differences in Delta C-p values determined in H2O and D2O also correlated with the ligand affinity. The temperature-dependent increase in the offset temperature (T-off), the temperature difference required to observe equal enthalpies in both solvents, is also dependent on the binding affinity of the ligand, and the steepest increase was observed with the tightest binding aminoglycoside, neomycin. Overall, these data, together with earlier observations with a different enzyme, the aminoglycoside N3-acetyltransferase-IIIb [Norris, A. L., and Serpersu, E. H. (2011) Biochemistry SO, 9309], show that solvent reorganization or changes in soft vibrational modes of the protein are interchangeable with respect to the role of being the major contributor to complex formation depending on temperature. These data suggest that such effects may more generally apply to enzyme ligand interactions, and studies at a single temperature may provide only a part of the whole picture of thermodynamics of enzyme-ligand interactions.
C1 [Jing, Xiaomin; Serpersu, Engin H.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA.
[Serpersu, Engin H.] Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN 37996 USA.
[Serpersu, Engin H.] Oak Ridge Natl Lab, Knoxville, TN 37996 USA.
RP Serpersu, EH (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Walters Life Sci Bldg,M 407, Knoxville, TN 37996 USA.
EM serpersu@utk.edu
FU National Science Foundation [MCB-0842743]; Dr. Donald L. Akers, Jr.,
Faculty Enrichment Award
FX This work is supported by a grant from the National Science Foundation
(MCB-0842743 to E.H.S.) and in part by the Dr. Donald L. Akers, Jr.,
Faculty Enrichment Award (to E.H.S.).
NR 31
TC 0
Z9 0
U1 2
U2 6
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0006-2960
J9 BIOCHEMISTRY-US
JI Biochemistry
PD SEP 2
PY 2014
VL 53
IS 34
BP 5544
EP 5550
DI 10.1021/bi5006283
PG 7
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA AO3LD
UT WOS:000341229800009
PM 25093604
ER
PT J
AU Watkins, EB
Gao, HF
Dennison, AJC
Chopin, N
Struth, B
Arnold, T
Florent, JC
Johannes, L
AF Watkins, Erik B.
Gao, Haifei
Dennison, Andrew J. C.
Chopin, Nathalie
Struth, Bernd
Arnold, Thomas
Florent, Jean-Claude
Johannes, Ludger
TI Carbohydrate Conformation and Lipid Condensation in Mono layers
Containing Glycosphingolipid Gb3: Influence of Acyl Chain Structure
SO BIOPHYSICAL JOURNAL
LA English
DT Article
ID GRAZING-INCIDENCE DIFFRACTION; GLYCOLIPID RECEPTOR FUNCTION; X-RAY;
PHOSPHOLIPID MONOLAYERS; MEMBRANE-SURFACE; CERAMIDE; BILAYER; BINDING;
RAFTS; MODEL
AB Globotriaosylceramide (Gb3), a glycosphingolipid found in the plasma membrane of animal cells, is the endocytic receptor of the bacterial Shiga toxin. Using x-ray reflectivity (XR) and grazing incidence x-ray diffraction (GIXD), lipid monolayers containing Gb3 were investigated at the air-water interface. XR probed Gb3 carbohydrate conformation normal to the interface, whereas GIXD precisely characterized Gb3's influence on acyl chain in-plane packing and area per molecule (APM). Two phospholipids, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), were used to study Gb3 packing in different lipid environments. Furthermore, the impact on monolayer structure of a naturally extracted Gb3 mixture was compared to synthetic Gb3 species with uniquely defined acyl chain structures. XR results showed that lipid environment and Gb3 acyl chain structure impact carbohydrate conformation with greater solvent accessibility observed for smaller phospholipid headgroups and long Gb3 acyl chains. In general, GIXD showed that Gb3 condensed phospholipid packing resulting in smaller APM than predicted by ideal mixing. Gb3's capacity to condense APM was larger for DSPC monolayers and exhibited different dependencies on acyl chain structure depending on the lipid environment. The interplay between Gb3-induced changes in lipid packing and the lipid environment's impact on carbohydrate conformation has broad implications for glycosphingolipid macromolecule recognition and ligand binding.
C1 [Watkins, Erik B.; Dennison, Andrew J. C.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France.
[Gao, Haifei; Chopin, Nathalie; Florent, Jean-Claude; Johannes, Ludger] Inst Curie, Ctr Rech, F-75248 Paris 5, France.
[Gao, Haifei; Chopin, Nathalie; Florent, Jean-Claude; Johannes, Ludger] CNRS, UMR3666, F-75005 Paris, France.
[Gao, Haifei; Chopin, Nathalie; Florent, Jean-Claude; Johannes, Ludger] INSERM, U1143, F-75005 Paris, France.
[Dennison, Andrew J. C.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden.
[Struth, Bernd] DESY, HASYLAB, D-22603 Hamburg, Germany.
[Arnold, Thomas] Diamond Light Source, Chilton, England.
RP Watkins, EB (reprint author), Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, POB 1663, Los Alamos, NM 87545 USA.
EM erik.b.watkins@gmail.com
OI Dennison, Ashley/0000-0003-0090-503X; Arnold, Thomas/0000-0001-8295-3822
FU Agence Nationale pour la Recherche [ANR-09-BLAN-283, ANR-11 BSV2 014
03]; Marie Curie Actions-Networks for Initial Training; European
Research Council [340485]; Swedish Research Council (VR)
FX This work was supported by grants from the Agence Nationale pour la
Recherche (ANR-09-BLAN-283 and ANR-11 BSV2 014 03), Marie Curie
Actions-Networks for Initial Training (FP7-PEOPLE-2010-ITN), and
European Research Council advanced grant (project 340485). A.J.C.D. was
funded by the Swedish Research Council (VR).
NR 34
TC 5
Z9 5
U1 2
U2 19
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0006-3495
EI 1542-0086
J9 BIOPHYS J
JI Biophys. J.
PD SEP 2
PY 2014
VL 107
IS 5
BP 1146
EP 1155
DI 10.1016/j.bpj.2014.07.023
PG 10
WC Biophysics
SC Biophysics
GA AO3ZD
UT WOS:000341275100015
PM 25185550
ER
PT J
AU Sekharan, S
Ertem, MZ
Zhuang, HY
Block, E
Matsunami, H
Zhang, RN
Wei, JN
Pan, Y
Batista, VS
AF Sekharan, Sivakumar
Ertem, Mehmed Z.
Zhuang, Hanyi
Block, Eric
Matsunami, Hiroaki
Zhang, Ruina
Wei, Jennifer N.
Pan, Yi
Batista, Victor S.
TI QM/MM Model of the Mouse Olfactory Receptor MOR244-3 Validated by
Site-Directed Mutagenesis Experiments
SO BIOPHYSICAL JOURNAL
LA English
DT Article
ID OPTIMIZATION; ODORANTS; KINETICS
AB Understanding structure/function relationships of olfactory receptors is challenging due to the lack of x-ray structural models. Here, we introduce a QM/MM model of the mouse olfactory receptor MOR244-3, responsive to organosulfur odorants such as (methylthio)methanethiol. The binding site consists of a copper ion bound to the heteroatoms of amino-acid residues H105, C109, and N202. The model is consistent with site-directed mutagenesis experiments and biochemical measurements of the receptor activation, and thus provides a valuable framework for further studies of the sense of smell at the molecular level.
C1 [Sekharan, Sivakumar; Ertem, Mehmed Z.; Wei, Jennifer N.; Batista, Victor S.] Yale Univ, Dept Chem, New Haven, CT 06520 USA.
[Ertem, Mehmed Z.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
[Zhuang, Hanyi; Zhang, Ruina; Pan, Yi] Shanghai Jiao Tong Univ, Sch Med, Chinese Minist Educ, Dept Pathophysiol,Key Lab Cell Differentiat & Apo, Shanghai 200030, Peoples R China.
[Zhuang, Hanyi] Chinese Acad Sci, Shanghai Inst Biol Sci, Shanghai Jiao Tong Univ, Inst Hlth Sci,Sch Med, Shanghai, Peoples R China.
[Block, Eric] SUNY Albany, Dept Chem, Albany, NY 12222 USA.
[Matsunami, Hiroaki] Duke Univ, Dept Mol Genet & Microbiol, Med Ctr, Durham, NC USA.
[Matsunami, Hiroaki] Duke Univ, Med Ctr, Dept Neurobiol, Durham, NC 27710 USA.
RP Sekharan, S (reprint author), Yale Univ, Dept Chem, New Haven, CT 06520 USA.
EM sivakumar.sekharan@yale.edu; nnzertem@bnl.gov; hanyizhuang@sjtu.edu.cn;
victor.batista@yale.edu
FU National Science Foundation [CHE-0911520, CHE-1265679, CHE-31070972];
973 Program of China [2012CB910401]; Shanghai Jiao Tong University
School of Medicine Doctoral Innovation Grant; Program for Innovative
Research Team of Shanghai Municipal Education Commission; Eastern
Scholar Program at Shanghai Institutions of Higher Learning [J50201];
National Institutes of Health [DC005782]; Computational Materials and
Chemical Sciences project at Brookhaven National Laboratory
[DE-AC02-98CH10886]; U.S. Department of Energy
FX We acknowledge support from the National Science Foundation (grants No.
CHE-0911520, CHE-1265679, and CHE-31070972), the 973 Program of China
(grant No. 2012CB910401), the Shanghai Jiao Tong University School of
Medicine Doctoral Innovation Grant, the Program for Innovative Research
Team of Shanghai Municipal Education Commission, the Eastern Scholar
Program at Shanghai Institutions of Higher Learning (grant No. J50201),
and the National Institutes of Health grant No. DC005782. M.Z.E. was
funded by a Computational Materials and Chemical Sciences project at
Brookhaven National Laboratory under contract No. DE-AC02-98CH10886 with
the U.S. Department of Energy.
NR 18
TC 9
Z9 9
U1 0
U2 12
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0006-3495
EI 1542-0086
J9 BIOPHYS J
JI Biophys. J.
PD SEP 2
PY 2014
VL 107
IS 5
BP L05
EP L08
DI 10.1016/j.bpj.2014.07.031
PG 4
WC Biophysics
SC Biophysics
GA AO3ZD
UT WOS:000341275100001
PM 25185561
ER
PT J
AU Bao, C
Wu, HF
Li, L
Newcomer, D
Long, PE
Williams, KH
AF Bao, Chen
Wu, Hongfei
Li, Li
Newcomer, Darrell
Long, Philip E.
Williams, Kenneth H.
TI Uranium Bioreduction Rates across Scales: Biogeochemical Hot Moments and
Hot Spots during a Biostimulation Experiment at Rifle, Colorado
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID SULFATE-REDUCING BACTERIA; CRYSTALLINE IRON(III) OXIDES; EMULSIFIED
VEGETABLE-OIL; IN-SITU BIOSTIMULATION; MICROBIAL REDUCTION; CONTAMINATED
AQUIFER; U(VI) REDUCTION; GEOBACTER-SULFURREDUCENS; MAGNESITE
DISSOLUTION; HYDROTHERMAL SYSTEMS
AB We aim to understand the scale-dependent evolution of uranium bioreduction during a field experiment at a former uranium mill site near Rifle, Colorado. Acetate was injected to stimulate Fe-reducing bacteria (FeRB) and to immobilize aqueous U(VI) to insoluble U(IV). Bicarbonate was coinjected in half of the domain to mobilize sorbed U(VI). We used reactive transport modeling to integrate hydraulic and geochemical data and to quantify rates at the grid block (0.25 m) and experimental field scale (tens of meters). Although local rates varied by orders of magnitude in conjunction with biostimulation fronts propagating downstream, field-scale rates were dominated by those orders of magnitude higher rates at a few selected hot spots where Fe(III), U(VI), and FeRB were at their maxima in the vicinity of the injection wells. At particular locations, the hot moments with maximum rates negatively corresponded to their distance from the injection wells. Although bicarbonate injection enhanced local rates near the injection wells by a maximum of 39.4%, its effect at the field scale was limited to a maximum of 10.0%. We propose a rate-versus-measurement-length relationship (log R' = -0.63 log L - 2.20, with R' in mu mol/mg cell protein/day and L in meters) for orders-of-magnitude estimation of uranium bioreduction rates across scales.
C1 [Bao, Chen; Wu, Hongfei; Li, Li] Penn State Univ, John & Willie Leone Dept Energy & Mineral Engn, University Pk, PA 16802 USA.
[Li, Li] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA.
[Li, Li] Penn State Univ, EESI, University Pk, PA 16802 USA.
[Newcomer, Darrell] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Long, Philip E.; Williams, Kenneth H.] Lawrence Berkeley Natl Lab, Berkeley, CA 94701 USA.
RP Li, L (reprint author), Penn State Univ, John & Willie Leone Dept Energy & Mineral Engn, University Pk, PA 16802 USA.
EM lili@eme.psu.edu
RI Williams, Kenneth/O-5181-2014; Long, Philip/F-5728-2013; Li,
Li/A-6077-2008
OI Williams, Kenneth/0000-0002-3568-1155; Long, Philip/0000-0003-4152-5682;
Li, Li/0000-0002-1641-3710
FU U.S. Department of Energy, Office of Sciences, Biological and
Environmental Research [DE-AC02-05CH1123]
FX Funding was provided by the U.S. Department of Energy, Office of
Sciences, Biological and Environmental Research to the LBNL Sustainable
Systems Scientific Focus Area under Award Number DE-AC02-05CH1123 and
through a subcontract to Penn State University. We acknowledge the Rifle
IFRC research team for facilitating collaboration and access to Rifle
data. We acknowledge the associate editor Dr. Jorge Gardea-Torresdey for
handling this paper and two anonymous reviewers for their diligent and
constructive reviews that have significantly improved the paper.
NR 83
TC 14
Z9 14
U1 5
U2 37
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD SEP 2
PY 2014
VL 48
IS 17
BP 10116
EP 10127
DI 10.1021/es501060d
PG 12
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA AO3KY
UT WOS:000341229300023
PM 25079237
ER
PT J
AU Lee, HJ
Aiona, PK
Laskin, A
Laskin, J
Nizkorodov, SA
AF Lee, Hyun Ji (Julie)
Aiona, Paige Kuuipo
Laskin, Alexander
Laskin, Julia
Nizkorodov, Sergey A.
TI Effect of Solar Radiation on the Optical Properties and Molecular
Composition of Laboratory Proxies of Atmospheric Brown Carbon
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID SECONDARY ORGANIC AEROSOL; IONIZATION MASS-SPECTROMETRY;
RADICAL-INITIATED REACTIONS; LIGHT-ABSORPTION; GAS-PHASE; PHOTOCHEMICAL
REDUCTION; AROMATIC-HYDROCARBONS; CLOUD-WATER; NAPHTHALENE; OXIDATION
AB Sources, optical properties, and chemical composition of atmospheric brown carbon (BrC) aerosol are uncertain, making it challenging to estimate its contribution to radiative forcing. Furthermore, optical properties of BrC may change significantly during its atmospheric aging. We examined the effect of photolysis on the molecular composition, mass absorption coefficient, and fluorescence of secondary organic aerosol (SOA) prepared by high-NOx photooxidation of naphthalene (NAP SOA). Our experiments were designed to model photolysis processes of NAP SOA compounds dissolved in cloud or fog droplets. Aqueous solutions of NAP SOA were observed to photobleach (i.e., lose their ability to absorb visible radiation) with an effective half-life of similar to 15 h (with sun in its zenith) for the loss of near-UV (300-400 nm) absorbance. The molecular composition of NAP SOA was significantly modified by photolysis, with the average SOA formula changing from C14.1H14.5O5.1N0.085 to C11.8H14.9O4.5N0.023 after 4 h of irradiation. However, the average O/C ratio did not change significantly, suggesting that it is not a good metric for assessing the extent of photolysis-driven aging in NAP SOA (and in BrC in general). In contrast to NAP SOA, the photobleaching of BrC material produced by the reaction of limonene + ozone SOA with ammonia vapor (aged LIM/O-3 SOA) was much faster, but it did not result in a significant change in average molecular composition. The characteristic absorbance of the aged LIM/O-3 SOA in the 450-600 nm range decayed with an effective half-life of <0.5 h. These results emphasize the highly variable and dynamic nature of different types of atmospheric BrC.
C1 [Lee, Hyun Ji (Julie); Aiona, Paige Kuuipo; Nizkorodov, Sergey A.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA.
[Laskin, Alexander] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
[Laskin, Julia] Pacific NW Natl Lab, Phys Sci Div, Richland, WA 99352 USA.
RP Nizkorodov, SA (reprint author), Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA.
EM nizkorod@uci.edu
RI Laskin, Julia/H-9974-2012; Laskin, Alexander/I-2574-2012; Nizkorodov,
Sergey/I-4120-2014
OI Laskin, Julia/0000-0002-4533-9644; Laskin,
Alexander/0000-0002-7836-8417; Nizkorodov, Sergey/0000-0003-0891-0052
FU U.S. Department of Commerce, National Oceanic and Atmospheric
Administration through Climate Program Office's AC4 program
[NA13OAR4310066, NA13OAR4310062]; NSF [AGS-1227579]; Office of
Biological and Environmental Research of the U.S.; US DOE [DE-AC06-76RL0
1830]
FX We acknowledge support by the U.S. Department of Commerce, National
Oceanic and Atmospheric Administration through Climate Program Office's
AC4 program, awards NA13OAR4310066 (PNNL) and NA13OAR4310062 (UCI).
H.J.L. acknowledges support by the NSF grant AGS-1227579. The ESI/HR-MS
analysis was performed at the W.R. Wiley Environmental Molecular
Sciences Laboratory (EMSL) - a national scientific user facility located
at PNNL - and sponsored by the Office of Biological and Environmental
Research of the U.S. PNNL is operated for US DOE by Battelle Memorial
Institute under Contract No. DE-AC06-76RL0 1830.
NR 69
TC 33
Z9 33
U1 10
U2 75
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD SEP 2
PY 2014
VL 48
IS 17
BP 10217
EP 10226
DI 10.1021/es502515r
PG 10
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA AO3KY
UT WOS:000341229300034
PM 25102050
ER
PT J
AU Horowitz, HM
Jacob, DJ
Amos, HM
Streets, DG
Sunderland, EM
AF Horowitz, Hannah M.
Jacob, Daniel J.
Amos, Helen M.
Streets, David G.
Sunderland, Elsie M.
TI Historical Mercury Releases from Commercial Products: Global
Environmental Implications
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID MUNICIPAL SOLID-WASTE; ATMOSPHERIC MERCURY; METHYLMERCURY EXPOSURE;
EMISSIONS; DEPOSITION; LANDFILLS; FLUXES; CORES; LAKES; BAY
AB The intentional use of mercury (Hg) in products and processes ("commercial Hg") has contributed a large and previously unquantified anthropogenic source of Hg to the global environment over the industrial era, with major implications for Hg accumulation in environmental reservoirs. We present a global inventory of commercial Hg uses and releases to the atmosphere, water, soil, and landfills from 1850 to 2010. Previous inventories of anthropogenic Hg releases have focused almost exclusively on atmospheric emissions from "byproduct" sectors (e.g., fossil fuel combustion). Cumulative anthropogenic atmospheric Hg emissions since 1850 have recently been estimated at 215 Gg (only including commercial Hg releases from chlor-alkali production, waste incineration, and mining). We find that other commercial Hg uses and nonatmospheric releases from chlor-alkali and mining result in an additional 540 Gg of Hg released to the global environment since 1850 (air: 20%; water: 30%; soil: 30%; landfills: 20%). Some of this release has been sequestered in landfills and benthic sediments, but 310 Gg actively cycles among geochemical reservoirs and contributes to elevated present-day environmental Hg concentrations. Commercial Hg use peaked in 1970 and has declined sharply since. We use our inventory of historical environmental releases to force a global biogeochemical model that includes new estimates of the global burial in ocean margin sediments. Accounting for commercial Hg releases improves model consistency with observed atmospheric concentrations and associated historical trends.
C1 [Horowitz, Hannah M.; Jacob, Daniel J.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA.
[Jacob, Daniel J.; Sunderland, Elsie M.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
[Streets, David G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA.
[Amos, Helen M.; Sunderland, Elsie M.] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02115 USA.
RP Horowitz, HM (reprint author), Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA.
EM hmhorow@fas.harvard.edu
RI Sunderland, Elsie/D-5511-2014
OI Sunderland, Elsie/0000-0003-0386-9548
FU Harvard School of Engineering and Applied Sciences TomKat Fund;
Atmospheric Chemistry Program of the National Science Foundation; NSF
GRFP
FX We acknowledge financial support for this work from the Harvard School
of Engineering and Applied Sciences Tom KatFund and the Atmospheric
Chemistry Program of the National Science Foundation. H.M.H.
acknowledges support from NSF GRFP. We thank the editor and three
anonymous reviewers for their thoughtful suggestions.
NR 75
TC 39
Z9 41
U1 16
U2 102
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD SEP 2
PY 2014
VL 48
IS 17
BP 10242
EP 10250
DI 10.1021/es501337j
PG 9
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA AO3KY
UT WOS:000341229300037
PM 25127072
ER
PT J
AU Hase, TPA
Brewer, MS
Arnalds, UB
Ahlberg, M
Kapaklis, V
Bjoerck, M
Bouchenoire, L
Thompson, P
Haskel, D
Choi, Y
Lang, J
Sanchez-Hanke, C
Hjorvarsson, B
AF Hase, Thomas P. A.
Brewer, Matthew S.
Arnalds, Unnar B.
Ahlberg, Martina
Kapaklis, Vassilios
Bjoerck, Matts
Bouchenoire, Laurence
Thompson, Paul
Haskel, Daniel
Choi, Yongseong
Lang, Jonathan
Sanchez-Hanke, Cecilia
Hjoervarsson, Bjoergvin
TI Proximity effects on dimensionality and magnetic ordering in Pd/Fe/Pd
trialyers
SO PHYSICAL REVIEW B
LA English
DT Article
ID ULTRATHIN FILMS; FE/PD(100); ALLOYS; PHOTOEMISSION; TRANSITION;
MORPHOLOGY; PALLADIUM; BEHAVIOR; CU(111); IRON
AB The element-specific magnetization and ordering in trilayers consisting of 0.3-1.4 monolayer (ML) thick Fe layers embedded in Pd(001) has been determined using x-ray resonant magnetic scattering. The proximity to Fe induces a large moment in the Pd which extends similar to 2 nm from the interfaces. The magnetization as a function of temperature is found to differ significantly for the Fe and Pd sublattices: The Pd signal resembles the results obtained by magneto-optical techniques with an apparent three-dimensional (3D) to two-dimensional (2D) transition in spatial dimensionality for Fe thickness below similar to 1 ML. In stark contrast, the Fe data exhibits a 2D behavior. No ferromagnetic signal is obtained from Fe below the 2D percolation limit in Fe coverage (similar to 0.7 ML), while Pd shows a ferromagnetic response for all samples. The results are attributed to the temperature dependence of the susceptibility of Pd and a profound local anisotropy of submonolayered Fe.
C1 [Hase, Thomas P. A.; Brewer, Matthew S.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Arnalds, Unnar B.; Ahlberg, Martina; Kapaklis, Vassilios; Bjoerck, Matts; Hjoervarsson, Bjoergvin] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden.
[Bouchenoire, Laurence; Thompson, Paul] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England.
[Bouchenoire, Laurence; Thompson, Paul] European Synchrotron Radiat Facil, XMaS Beamline, F-38043 Grenoble, France.
[Haskel, Daniel; Choi, Yongseong; Lang, Jonathan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Sanchez-Hanke, Cecilia] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
RP Hase, TPA (reprint author), Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
RI Arnalds, Unnar/L-9315-2015;
OI Arnalds, Unnar/0000-0002-5988-917X; Hjorvarsson,
Bjorgvin/0000-0003-1803-9467
FU UK-EPSRC; Swedish Research Council (VR); Knut and Alice Wallenberg
Foundation (KAW); Swedish Foundation for International Cooperation in
Research and Higher Education (STINT); U.S. DOE, Office of Science,
Office of Basic Energy Sciences [DE-AC02-98CH10886, DE-AC02-06CH11357];
EPSRC
FX The authors acknowledge the financial support of the UK-EPSRC and the
Swedish Research Council (VR) as well as the Knut and Alice Wallenberg
Foundation (KAW), the Swedish Foundation for International Cooperation
in Research and Higher Education (STINT). Work undertaken at the NSLS
and the APS were supported by the U.S. DOE, Office of Science, Office of
Basic Energy Sciences, under Contracts No. DE-AC02-98CH10886 and No.
DE-AC02-06CH11357. XMaS is a midrange facility supported by EPSRC. We
are indebted to Simon Brown, Oier Bikondoa, Didier Wermeille, Phil Ryan,
David Kearney, and Mike McDowell for invaluable support during beamtime.
NR 34
TC 5
Z9 5
U1 1
U2 29
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD SEP 2
PY 2014
VL 90
IS 10
AR 104403
DI 10.1103/PhysRevB.90.104403
PG 6
WC Physics, Condensed Matter
SC Physics
GA AO3NU
UT WOS:000341239100007
ER
PT J
AU Kennes, DM
Meden, V
Vasseur, R
AF Kennes, D. M.
Meden, V.
Vasseur, R.
TI Universal quench dynamics of interacting quantum impurity systems
SO PHYSICAL REVIEW B
LA English
DT Article
ID DIMENSIONAL ELECTRON-GAS; LUTTINGER LIQUID; ORTHOGONALITY CATASTROPHE;
RENORMALIZATION-GROUP; INTERFACE DEFECTS; KONDO PROBLEM; ENTANGLEMENT;
MODEL; CHAINS; STATES
AB The equilibrium physics of quantum impurities frequently involves a universal crossover from weak to strong reservoir-impurity coupling, characterized by single-parameter scaling and an energy scale T-K (Kondo temperature) that breaks scale invariance. For the noninteracting resonant level model, the nonequilibrium time evolution of the Loschmidt echo after a local quantum quench was recently computed explicitly [R. Vasseur, K. Trinh, S. Haas, and H. Saleur, Phys. Rev. Lett. 110, 240601 (2013)]. It shows single-parameter scaling with variable T(K)t. Here, we scrutinize whether similar universal dynamics can be observed in various interacting quantum impurity systems. Using density matrix and functional renormalization group approaches, we analyze the time evolution resulting from abruptly coupling two noninteracting Fermi or interacting Luttinger liquid leads via a quantum dot or a direct link. We also consider the case of a single Luttinger liquid lead suddenly coupled to a quantum dot. We investigate whether the field-theory predictions for the universal scaling as well as for the large-time behavior successfully describe the time evolution of the Loschmidt echo and the entanglement entropy of microscopic models. Our study shows that for the considered local quench protocols the above quantum impurity models fall into a class of problems for which the nonequilibrium dynamics can largely be understood based on the knowledge of the corresponding equilibrium physics.
C1 [Kennes, D. M.; Meden, V.] Rhein Westfal TH Aachen, Inst Theorie Stat Phys, D-52056 Aachen, Germany.
[Kennes, D. M.; Meden, V.] JARA Fundamentals Future Informat Technol, D-52056 Aachen, Germany.
[Vasseur, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Vasseur, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Kennes, DM (reprint author), Rhein Westfal TH Aachen, Inst Theorie Stat Phys, D-52056 Aachen, Germany.
FU Quantum Materials program of LBNL; Forschergruppe 723 of the DFG; US
Department of Energy [DE-FG03-01ER45908]
FX We are grateful to the MPIPKS Dresden for hosting the workshop "Quantum
Many Body Systems out of Equilibrium" where this work was initiated.
This work was supported by the Quantum Materials program of LBNL (RV)
and the Forschergruppe 723 of the DFG (DMK and VM). DMK thanks the
University of California, Berkeley for hospitality during his visit in
summer 2013. RV also wishes to thank H. Saleur and J.E. Moore for
discussions, and the University of Southern California for hospitality
and support through the US Department of Energy (Grant No.
DE-FG03-01ER45908).
NR 70
TC 10
Z9 10
U1 1
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD SEP 2
PY 2014
VL 90
IS 11
AR 115101
DI 10.1103/PhysRevB.90.115101
PG 13
WC Physics, Condensed Matter
SC Physics
GA AO3NW
UT WOS:000341239300001
ER
PT J
AU Leiner, J
Thampy, V
Christianson, AD
Abernathy, DL
Stone, MB
Lumsden, MD
Sefat, AS
Sales, BC
Hu, J
Mao, ZQ
Bao, W
Broholm, C
AF Leiner, J.
Thampy, V.
Christianson, A. D.
Abernathy, D. L.
Stone, M. B.
Lumsden, M. D.
Sefat, A. S.
Sales, B. C.
Hu, Jin
Mao, Zhiqiang
Bao, Wei
Broholm, C.
TI Modified magnetism within the coherence volume of superconducting
Fe1+delta SexTe1-x
SO PHYSICAL REVIEW B
LA English
DT Article
ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; SPIN EXCITATIONS; PAIRING MECHANISM;
CONDENSATION; RESONANCE; ENERGY
AB Neutron scattering is used to probe magnetic interactions as superconductivity develops in optimally doped Fe1+delta SexTe1-x. Applying the first moment sum rule to comprehensive neutron scattering data, we extract the change in magnetic exchange energy Delta[J(R-R')< S-R . S-R'>] in the superconducting state referenced to the normal state. Oscillatory changes are observed for Fe-Fe displacements |Delta R| < xi where xi = 1.3(1) nm is the superconducting coherence length. Dominated by a large reduction in the second nearest neighbor exchange energy [-1.2(2) meV/Fe], the overall reduction in magnetic interaction energy is Delta < H-mag > = -0.31(9) meV/Fe. Comparison to the superconducting condensation energy Delta E-SC = -0.013(1) meV/Fe, which we extract from specific heat data, suggests the modified magnetism we probe drives superconductivity in Fe1+delta SexTe1-x.
C1 [Leiner, J.; Christianson, A. D.; Abernathy, D. L.; Stone, M. B.; Lumsden, M. D.; Broholm, C.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA.
[Thampy, V.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
[Thampy, V.; Broholm, C.] Johns Hopkins Univ, Inst Quantum Matter, Baltimore, MD 21218 USA.
[Thampy, V.; Broholm, C.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Sefat, A. S.; Sales, B. C.] Oak Ridge Natl Lab, Correlated Electron Mat Grp, Oak Ridge, TN 37831 USA.
[Hu, Jin; Mao, Zhiqiang] Tulane Univ, Dept Phys, New Orleans, LA 70118 USA.
[Bao, Wei] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China.
[Broholm, C.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.
RP Leiner, J (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA.
EM leinerjc@ornl.gov
RI Stone, Matthew/G-3275-2011; Hu, Jin/C-4141-2014; Bao, Wei/E-9988-2011;
Abernathy, Douglas/A-3038-2012; christianson, andrew/A-3277-2016; BL18,
ARCS/A-3000-2012; Sefat, Athena/R-5457-2016; Lumsden, Mark/F-5366-2012
OI Stone, Matthew/0000-0001-7884-9715; Hu, Jin/0000-0003-0080-4239; Bao,
Wei/0000-0002-2105-461X; Abernathy, Douglas/0000-0002-3533-003X;
christianson, andrew/0000-0003-3369-5884; Sefat,
Athena/0000-0002-5596-3504; Lumsden, Mark/0000-0002-5472-9660
FU UT-Battelle LDRD [3211-2440]; National Science Foundation [DMR-0944772];
Scientific User Facilities Division, Office of Basic Energy Sciences, US
Department of Energy; Materials Sciences and Engineering Division,
Office of Basic Energy Sciences, US Department of Energy; NSF
[DMR-1205469]; National Basic Research Program of China [2012CB921700,
2011CBA00112]; National Science Foundation of China [11034012, 11190024]
FX This project was supported by UT-Battelle LDRD No. 3211-2440. Facilities
utilized at NIST were supported in part by the National Science
Foundation under Agreement No. DMR-0944772. Research conducted at ORNL's
Spallation Neutron Source was sponsored by the Scientific User
Facilities Division, Office of Basic Energy Sciences, US Department of
Energy. A.S. and B.C.S. were supported by the Materials Sciences and
Engineering Division, Office of Basic Energy Sciences, US Department of
Energy. The work at Tulane is supported by the NSF under Grant No.
DMR-1205469. The work at RUC was supported by the National Basic
Research Program of China Grants No. 2012CB921700 and No. 2011CBA00112,
and by the National Science Foundation of China Grants No. 11034012 and
No. 11190024.
NR 34
TC 2
Z9 2
U1 1
U2 26
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD SEP 2
PY 2014
VL 90
IS 10
AR 100501
DI 10.1103/PhysRevB.90.100501
PG 5
WC Physics, Condensed Matter
SC Physics
GA AO3NU
UT WOS:000341239100002
ER
PT J
AU Ma, J
Deng, HX
Luo, JW
Wei, SH
AF Ma, Jie
Deng, Hui-Xiong
Luo, Jun-Wei
Wei, Su-Huai
TI Origin of the failed ensemble average rule for the band gaps of
disordered nonisovalent semiconductor alloys
SO PHYSICAL REVIEW B
LA English
DT Article
ID INITIO MOLECULAR-DYNAMICS; QUASI-RANDOM STRUCTURES; 1ST-PRINCIPLES
CALCULATION; METALS; TRANSITION
AB Recent calculations show that the band gaps of the nonisovalent random alloys such as Zn0.5Sn0.5P are much smaller than those of their ordered phases; that is, the band gap of the random alloy is not the ensemble averaged value of the ordered structures, in contrast to the trend observed in most isovalent semiconductor alloys and predicted by the cluster expansion theory. We show that this abnormal behavior is caused by the strong wave-function localization of the band-edge states in the nonisovalent alloys. Moreover, we show that although the disordered phase of the isovalent alloys is similar to the random phase, for the nonisovalent alloy, the disordered phase deviates significantly from the random phase and the fully random phase is not achievable under the equilibrium growth conditions.
C1 [Ma, Jie; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Deng, Hui-Xiong; Luo, Jun-Wei] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China.
RP Ma, J (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM hxdeng@semi.ac.cn; swei@nrel.gov
RI LUO, JUNWEI/B-6545-2013
FU U.S. DOE [DE-AC36-08GO28308]; NERSC [DE-AC02-05CH11231]; National Basic
Research Program of China (973 Program) [G2009CB929300]; National
Natural Science Foundation of China [61121491, 11104264]
FX This work was funded by the U.S. DOE (Contract No. DE-AC36-08GO28308),
and some of the calculations were carried out using the NERSC
supercomputers (Contract No. DE-AC02-05CH11231). The work at IS, CAS was
supported by the National Basic Research Program of China (973 Program)
Grant No. G2009CB929300 and the National Natural Science Foundation of
China under Grants Nos. 61121491 and 11104264.
NR 30
TC 3
Z9 3
U1 1
U2 16
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD SEP 2
PY 2014
VL 90
IS 11
AR 115201
DI 10.1103/PhysRevB.90.115201
PG 5
WC Physics, Condensed Matter
SC Physics
GA AO3NW
UT WOS:000341239300007
ER
PT J
AU O'Neal, KR
Liu, Z
Miller, JS
Fishman, RS
Musfeldt, JL
AF O'Neal, K. R.
Liu, Z.
Miller, Joel S.
Fishman, R. S.
Musfeldt, J. L.
TI Pressure-driven high-to-low spin transition in the bimetallic quantum
magnet [Ru-2(O2CMe)(4)](3)[Cr(CN)(6)]
SO PHYSICAL REVIEW B
LA English
DT Article
ID MOLECULE-BASED MAGNETS; PHASE-DIAGRAM; AXIAL LIGANDS; GROUND-STATE;
COMPLEXES; SPECTRA; CHEMISTRY; FIELD; SPECTROSCOPY; ELECTRONS
AB Synchrotron-based infrared and Raman spectroscopies were brought together with diamond anvil cell techniques and an analysis of the magnetic properties to investigate the pressure-induced high -> low spin transition in [Ru-2(O2CMe)(4)](3)[Cr(CN)(6)]. The extended nature of the diruthenium wave function combined with coupling to chromium-related local lattice distortions changes the relative energies of the pi* and delta* orbitals and drives the high -> low spin transition on the mixed-valence diruthenium complex. This is a rare example of an externally controlled metamagnetic transition in which both spin-orbit and spin-lattice interactions contribute to the mechanism.
C1 [O'Neal, K. R.; Musfeldt, J. L.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
[Liu, Z.] Carnegie Inst Sci, Geophys Lab, Washington, DC USA.
[Miller, Joel S.] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA.
[Fishman, R. S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP O'Neal, KR (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
FU National Science Foundation [DMR-1063880, DMR-11063630]; US Department
of Energy, Office of Basic Energy Sciences, Materials Sciences and
Engineering Division; US Department of Energy [DE-AC98-06CH10886];
COMPRES under NSF [EAR 11-57758]; CDAC [DE-FC03-03N00144]
FX This research was funded by the National Science Foundation under Grants
No. DMR-1063880 (J.L.M.) and No. DMR-11063630 (J.S.M.) as well as by the
US Department of Energy, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division (R.S.F.). Work at the National
Synchrotron Light Source at Brookhaven National Laboratory was supported
by the US Department of Energy under Contract No. DE-AC98-06CH10886. The
use of U2A beamline was supported by COMPRES under NSF Cooperative
Agreement EAR 11-57758 and CDAC (DE-FC03-03N00144).
NR 63
TC 3
Z9 3
U1 3
U2 30
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD SEP 2
PY 2014
VL 90
IS 10
AR 104301
DI 10.1103/PhysRevB.90.104301
PG 6
WC Physics, Condensed Matter
SC Physics
GA AO3NU
UT WOS:000341239100004
ER
PT J
AU Casperson, RJ
Burke, JT
Scielzo, ND
Escher, JE
McCleskey, E
McCleskey, M
Saastamoinen, A
Spiridon, A
Ratkiewicz, A
Blanc, A
Kurokawa, M
Pizzone, RG
AF Casperson, R. J.
Burke, J. T.
Scielzo, N. D.
Escher, J. E.
McCleskey, E.
McCleskey, M.
Saastamoinen, A.
Spiridon, A.
Ratkiewicz, A.
Blanc, A.
Kurokawa, M.
Pizzone, R. G.
TI Measurement of the Am-240(n, f) cross section using the surrogate-ratio
method
SO PHYSICAL REVIEW C
LA English
DT Article
ID NUCLEAR-DATA LIBRARY; ACTINIDE NUCLEI; FISSION; SCIENCE; TECHNOLOGY
AB The Am-240(n, f) cross section has been measured for the first time above 4 MeV, using the surrogate-ratio method over the neutron energy range of 200 keV to 14 MeV. The reactions Am-243(p, tf) and U-238(p, tf), which proceed through the fissioning excited nuclei Am-241* and U-236*, were used as surrogates for the desired Am-240(n, f) and U-235(n, f) reactions. The experiment was fielded using the STARLiTeR detector system with a recently commissioned VME-based data acquisition system. The 38.4-MeV proton beam used in these measurements was provided by the K150 cyclotron at the Texas A&M Cyclotron Institute. The measured Am-240(n, f) cross section disagrees with many of the most recent evaluations, and a reevaluation is recommended.
C1 [Casperson, R. J.; Burke, J. T.; Scielzo, N. D.; Escher, J. E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[McCleskey, E.; McCleskey, M.; Saastamoinen, A.; Spiridon, A.] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA.
[Ratkiewicz, A.] Rutgers State Univ, Dept Phys & Astron, New Brunswick, NJ 08903 USA.
[Blanc, A.] Inst Laue Langevin, F-38042 Grenoble 9, France.
[Kurokawa, M.] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan.
[Pizzone, R. G.] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95123 Catania, Italy.
RP Casperson, RJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
EM casperson1@llnl.gov
RI Burke, Jason/I-4580-2012; Pizzone, Rosario/I-4527-2015
OI Pizzone, Rosario/0000-0003-2436-6640
FU US Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; Department of Energy's NNSA Office of Defense
Nuclear Nonproliferation Research Development; Texas A&M Cyclotron
Institute from NNSA [DE-FG52-09NA29467]; Texas A&M Cyclotron Institute
from DOE Office of Nuclear Physics [DE-FG02-93ER40773]
FX We wish to acknowledge the efforts of the Texas A&M Cyclotron
Institute's staff for their outstanding efforts on this first STARLiTeR
experiment. In particular, we thank George Kim, Fred Abegglen, Erik
Yendrey, Henry Clark, and Leigh Gathings. We would also like to thank
Frank S. Dietrich (LLNL) for useful discussions. This work was performed
under the auspices of the US Department of Energy by Lawrence Livermore
National Laboratory under Contract No. DE-AC52-07NA27344, the Department
of Energy's NNSA Office of Defense Nuclear Nonproliferation Research &
Development, and the Texas A&M Cyclotron Institute under Grants No.
DE-FG52-09NA29467 from NNSA and No. DE-FG02-93ER40773 from the DOE
Office of Nuclear Physics.
NR 32
TC 3
Z9 3
U1 0
U2 15
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD SEP 2
PY 2014
VL 90
IS 3
AR 034601
DI 10.1103/PhysRevC.90.034601
PG 9
WC Physics, Nuclear
SC Physics
GA AO3OH
UT WOS:000341240800002
ER
PT J
AU St-Onge, DA
Sydora, RD
AF St-Onge, D. A.
Sydora, R. D.
TI Kubo conductivity tensor for two- and three-dimensional magnetic nulls
SO PHYSICAL REVIEW E
LA English
DT Article
ID PARTICLE-ACCELERATION; GEOMAGNETIC TAIL; COLLISIONLESS CONDUCTIVITY;
NEUTRAL POINT; PLASMA SHEET; RECONNECTION; FIELDS; TRANSPORT; MODELS
AB The complete Kubo conductivity tensor is computed in two-and three-dimensional linear magnetic null systems using collisionless single-particle simulations. Regions of chaotic charged-particle dynamics are constructed for each case. It is found that stochastic frequency mixing of particle bounce motion, as well as gyromotion, contribute significantly to the conductivity. The conductivity curves are well approximated by power laws over a certain frequency range and the ac conductivity is found to be an order of magnitude smaller than the dc value, leading to enhanced resistivity, particularly near the cyclotron frequency. The ac conductivities must be accounted for in computation of the total dissipation.
C1 [St-Onge, D. A.; Sydora, R. D.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada.
RP St-Onge, DA (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
EM dstonge@pppl.gov; rsydora@ualberta.ca
FU Natural Science and Engineering Research Council (NSERC) of Canada;
NSERC
FX This work was supported by the Natural Science and Engineering Research
Council (NSERC) of Canada and D.St.O. thanks NSERC for a Postgraduate
Research Scholarship. We also thank Westgrid Canada for providing
computational resources for this research.
NR 33
TC 0
Z9 0
U1 1
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
EI 1550-2376
J9 PHYS REV E
JI Phys. Rev. E
PD SEP 2
PY 2014
VL 90
IS 3
AR 033103
DI 10.1103/PhysRevE.90.033103
PG 12
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA AO3QA
UT WOS:000341247200013
PM 25314543
ER
PT J
AU Aartsen, MG
Ackermann, M
Adams, J
Aguilar, JA
Ahlers, M
Ahrens, M
Altmann, D
Anderson, T
Arguelles, C
Arlen, TC
Auffenberg, J
Bai, X
Barwick, SW
Baum, V
Beatty, JJ
Tjus, JB
Becker, KH
BenZvi, S
Berghaus, P
Berley, D
Bernardini, E
Bernhard, A
Besson, DZ
Binder, G
Bindig, D
Bissok, M
Blaufuss, E
Blumenthal, J
Boersma, DJ
Bohm, C
Bose, D
Boser, S
Botner, O
Brayeur, L
Bretz, HP
Brown, AM
Casey, J
Casier, M
Chirkin, D
Christov, A
Christy, B
Clark, K
Classen, L
Clevermann, F
Coenders, S
Cowen, DF
Silva, AHC
Danninger, M
Daughhetee, J
Davis, JC
Day, M
de Andre, JPAM
De Clercq, C
De Ridder, S
Desiati, P
de Vries, KD
de With, M
DeYoung, T
Diaz-Velez, JC
Dunkman, M
Eagan, R
Eberhardt, B
Eichmann, B
Eisch, J
Euler, S
Evenson, PA
Fadiran, O
Fazely, AR
Fedynitch, A
Feintzeig, J
Felde, J
Feusels, T
Filimonov, K
Finley, C
Fischer-Wasels, T
Flis, S
Franckowiak, A
Frantzen, K
Fuchs, T
Gaisser, TK
Gallagher, J
Gerhardt, L
Gier, D
Gladstone, L
Glusenkamp, T
Goldschmidt, A
Golup, G
Gonzalez, JG
Goodman, JA
Gora, D
Grandmont, DT
Grant, D
Gretskov, P
Groh, JC
Gross, A
Ha, C
Haack, C
Ismail, AH
Hallen, P
Hallgren, A
Halzen, F
Hanson, K
Hebecker, D
Heereman, D
Heinen, D
Helbing, K
Hellauer, R
Hellwig, D
Hickford, S
Hill, GC
Hoffman, KD
Hoffmann, R
Homeier, A
Hoshina, K
Huang, F
Huelsnitz, W
Hulth, PO
Hultqvist, K
Hussain, S
Ishihara, A
Jacobi, E
Jacobsen, J
Jagielski, K
Japaridze, GS
Jero, K
Jlelati, O
Jurkovic, M
Kaminsky, B
Kappes, A
Karg, T
Karle, A
Kauer, M
Kelley, JL
Kheirandish, A
Kiryluk, J
Klas, J
Klein, SR
Kohne, JH
Kohnen, G
Kolanoski, H
Koob, A
Koepke, L
Kopper, C
Kopper, S
Koskinen, DJ
Kowalski, M
Kriesten, A
Krings, K
Kroll, G
Kunnen, J
Kurahashi, N
Kuwabara, T
Labare, M
Larsen, DT
Larson, MJ
Lesiak-Bzdak, M
Leuermann, M
Leute, J
Luenemann, J
Macias, O
Madsen, J
Maggi, G
Maruyama, R
Mase, K
Matis, HS
McNally, F
Meagher, K
Meli, A
Meures, T
Miarecki, S
Middell, E
Middlemas, E
Milke, N
Miller, J
Mohrmann, L
Montaruli, T
Morse, R
Nahnhauer, R
Naumann, U
Niederhausen, H
Nowicki, SC
Nygren, DR
Obertacke, A
Odrowski, S
Olivas, A
Omairat, A
O'Murchadha, A
Palczewski, T
Paul, L
Penek, O
Pepper, JA
Heros, CPDL
Pfendner, C
Pieloth, D
Pinat, E
Posselt, J
Price, PB
Przybylski, GT
Putz, J
Quinnan, M
Radel, L
Rameez, M
Rawlins, K
Redl, P
Rees, I
Reimann, R
Resconi, E
Rhode, W
Richman, M
Riedel, B
Robertson, S
Rodrigues, JP
Rongen, M
Rott, C
Ruhe, T
Ruzybayev, B
Ryckbosch, D
Saba, SM
Sander, HG
Santander, M
Sarkar, S
Schatto, K
Scheriau, F
Schmidt, T
Schmitz, M
Schoenen, S
Schoneberg, S
Schonwald, A
Schukraft, A
Schulte, L
Schulz, O
Seckel, D
Sestayo, Y
Seunarine, S
Shanidze, R
Sheremata, C
Smith, MWE
Soldin, D
Spiczak, GM
Spiering, C
Stamatikos, M
Stanev, T
Stanisha, NA
Stasik, A
Stezelberger, T
Stokstad, RG
Stossl, A
Strahler, EA
Strom, R
Strotjohann, NL
Sullivan, GW
Taavola, H
Taboada, I
Tamburro, A
Tepe, A
Ter-Antonyan, S
Terliuk, A
Tesic, G
Tilav, S
Toale, PA
Tobin, MN
Tosi, D
Tselengidou, M
Unger, E
Usner, M
Vallecorsa, S
van Eijndhoven, N
Vandenbroucke, J
van Santen, J
Vehring, M
Voge, M
Vraeghe, M
Walck, C
Wallraff, M
Weaver, C
Wellons, M
Wendt, C
Westerhoff, S
Whelan, BJ
Whitehorn, N
Wichary, C
Wiebe, K
Wiebusch, CH
Williams, DR
Wissing, H
Wolf, M
Wood, TR
Woschnagg, K
Xu, DL
Xu, XW
Yanez, JP
Yodh, G
Yoshida, S
Zarzhitsky, P
Ziemann, J
Zierke, S
Zoll, M
AF Aartsen, M. G.
Ackermann, M.
Adams, J.
Aguilar, J. A.
Ahlers, M.
Ahrens, M.
Altmann, D.
Anderson, T.
Arguelles, C.
Arlen, T. C.
Auffenberg, J.
Bai, X.
Barwick, S. W.
Baum, V.
Beatty, J. J.
Tjus, J. Becker
Becker, K. -H.
BenZvi, S.
Berghaus, P.
Berley, D.
Bernardini, E.
Bernhard, A.
Besson, D. Z.
Binder, G.
Bindig, D.
Bissok, M.
Blaufuss, E.
Blumenthal, J.
Boersma, D. J.
Bohm, C.
Bose, D.
Boeser, S.
Botner, O.
Brayeur, L.
Bretz, H. -P.
Brown, A. M.
Casey, J.
Casier, M.
Chirkin, D.
Christov, A.
Christy, B.
Clark, K.
Classen, L.
Clevermann, F.
Coenders, S.
Cowen, D. F.
Silva, A. H. Cruz
Danninger, M.
Daughhetee, J.
Davis, J. C.
Day, M.
de Andre, J. P. A. M.
De Clercq, C.
De Ridder, S.
Desiati, P.
de Vries, K. D.
de With, M.
DeYoung, T.
Diaz-Velez, J. C.
Dunkman, M.
Eagan, R.
Eberhardt, B.
Eichmann, B.
Eisch, J.
Euler, S.
Evenson, P. A.
Fadiran, O.
Fazely, A. R.
Fedynitch, A.
Feintzeig, J.
Felde, J.
Feusels, T.
Filimonov, K.
Finley, C.
Fischer-Wasels, T.
Flis, S.
Franckowiak, A.
Frantzen, K.
Fuchs, T.
Gaisser, T. K.
Gallagher, J.
Gerhardt, L.
Gier, D.
Gladstone, L.
Gluesenkamp, T.
Goldschmidt, A.
Golup, G.
Gonzalez, J. G.
Goodman, J. A.
Gora, D.
Grandmont, D. T.
Grant, D.
Gretskov, P.
Groh, J. C.
Gross, A.
Ha, C.
Haack, C.
Ismail, A. Haj
Hallen, P.
Hallgren, A.
Halzen, F.
Hanson, K.
Hebecker, D.
Heereman, D.
Heinen, D.
Helbing, K.
Hellauer, R.
Hellwig, D.
Hickford, S.
Hill, G. C.
Hoffman, K. D.
Hoffmann, R.
Homeier, A.
Hoshina, K.
Huang, F.
Huelsnitz, W.
Hulth, P. O.
Hultqvist, K.
Hussain, S.
Ishihara, A.
Jacobi, E.
Jacobsen, J.
Jagielski, K.
Japaridze, G. S.
Jero, K.
Jlelati, O.
Jurkovic, M.
Kaminsky, B.
Kappes, A.
Karg, T.
Karle, A.
Kauer, M.
Kelley, J. L.
Kheirandish, A.
Kiryluk, J.
Klaes, J.
Klein, S. R.
Koehne, J. -H.
Kohnen, G.
Kolanoski, H.
Koob, A.
Koepke, L.
Kopper, C.
Kopper, S.
Koskinen, D. J.
Kowalski, M.
Kriesten, A.
Krings, K.
Kroll, G.
Kunnen, J.
Kurahashi, N.
Kuwabara, T.
Labare, M.
Larsen, D. T.
Larson, M. J.
Lesiak-Bzdak, M.
Leuermann, M.
Leute, J.
Luenemann, J.
Macias, O.
Madsen, J.
Maggi, G.
Maruyama, R.
Mase, K.
Matis, H. S.
McNally, F.
Meagher, K.
Meli, A.
Meures, T.
Miarecki, S.
Middell, E.
Middlemas, E.
Milke, N.
Miller, J.
Mohrmann, L.
Montaruli, T.
Morse, R.
Nahnhauer, R.
Naumann, U.
Niederhausen, H.
Nowicki, S. C.
Nygren, D. R.
Obertacke, A.
Odrowski, S.
Olivas, A.
Omairat, A.
O'Murchadha, A.
Palczewski, T.
Paul, L.
Penek, O.
Pepper, J. A.
Heros, C. Perez de los
Pfendner, C.
Pieloth, D.
Pinat, E.
Posselt, J.
Price, P. B.
Przybylski, G. T.
Puetz, J.
Quinnan, M.
Raedel, L.
Rameez, M.
Rawlins, K.
Redl, P.
Rees, I.
Reimann, R.
Resconi, E.
Rhode, W.
Richman, M.
Riedel, B.
Robertson, S.
Rodrigues, J. P.
Rongen, M.
Rott, C.
Ruhe, T.
Ruzybayev, B.
Ryckbosch, D.
Saba, S. M.
Sander, H. -G.
Santander, M.
Sarkar, S.
Schatto, K.
Scheriau, F.
Schmidt, T.
Schmitz, M.
Schoenen, S.
Schoeneberg, S.
Schoenwald, A.
Schukraft, A.
Schulte, L.
Schulz, O.
Seckel, D.
Sestayo, Y.
Seunarine, S.
Shanidze, R.
Sheremata, C.
Smith, M. W. E.
Soldin, D.
Spiczak, G. M.
Spiering, C.
Stamatikos, M.
Stanev, T.
Stanisha, N. A.
Stasik, A.
Stezelberger, T.
Stokstad, R. G.
Stoessl, A.
Strahler, E. A.
Strom, R.
Strotjohann, N. L.
Sullivan, G. W.
Taavola, H.
Taboada, I.
Tamburro, A.
Tepe, A.
Ter-Antonyan, S.
Terliuk, A.
Tesic, G.
Tilav, S.
Toale, P. A.
Tobin, M. N.
Tosi, D.
Tselengidou, M.
Unger, E.
Usner, M.
Vallecorsa, S.
van Eijndhoven, N.
Vandenbroucke, J.
van Santen, J.
Vehring, M.
Voge, M.
Vraeghe, M.
Walck, C.
Wallraff, M.
Weaver, Ch.
Wellons, M.
Wendt, C.
Westerhoff, S.
Whelan, B. J.
Whitehorn, N.
Wichary, C.
Wiebe, K.
Wiebusch, C. H.
Williams, D. R.
Wissing, H.
Wolf, M.
Wood, T. R.
Woschnagg, K.
Xu, D. L.
Xu, X. W.
Yanez, J. P.
Yodh, G.
Yoshida, S.
Zarzhitsky, P.
Ziemann, J.
Zierke, S.
Zoll, M.
CA IceCube Collaboration
TI Observation of High-Energy Astrophysical Neutrinos in Three Years of
IceCube Data
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID GAMMA-RAY BURSTS; ACTIVE GALACTIC NUCLEI; FLUX; SEARCH; TELESCOPE;
ASTRONOMY; EMISSION; BLAZARS; LEPTONS; JETS
AB A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV-PeV range at the level of 10(-8) GeV cm(-2) s(-1) sr(-1) per flavor and reject a purely atmospheric explanation for the combined three-year data at 5.7 sigma. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotropic arrival directions, suggesting either numerous or spatially extended sources. The three-year data set, with a live time of 988 days, contains a total of 37 neutrino candidate events with deposited energies ranging from 30 to 2000 TeV. The 2000-TeV event is the highest-energy neutrino interaction ever observed.
C1 [Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Gretskov, P.; Haack, C.; Hallen, P.; Hellwig, D.; Koob, A.; Kriesten, A.; Krings, K.; Leuermann, M.; Paul, L.; Penek, O.; Raedel, L.; Reimann, R.; Rongen, M.; Schoenen, S.; Schukraft, A.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany.
[Aartsen, M. G.; Hill, G. C.; Robertson, S.; Whelan, B. J.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia.
[Japaridze, G. S.; Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA.
[Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA.
[Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
[Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Fazely, A. R.; Gerhardt, L.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA.
[Binder, G.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; Whitehorn, N.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Binder, G.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[de With, M.; Kolanoski, H.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany.
[Tjus, J. Becker; Eichmann, B.; Fedynitch, A.; Saba, S. M.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany.
[Boeser, S.; Franckowiak, A.; Hebecker, D.; Homeier, A.; Kowalski, M.; Schulte, L.; Stasik, A.; Strotjohann, N. L.; Usner, M.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany.
[de Vries, K. D.; Hanson, K.; Heereman, D.; Meures, T.; O'Murchadha, A.; Pinat, E.] Univ Libre Brussels, Fac Sci, B-1050 Brussels, Belgium.
[Brayeur, L.; Casier, M.; De Clercq, C.; Golup, G.; Kunnen, J.; Maggi, G.; Miller, J.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium.
[Ishihara, A.; Mase, K.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan.
[Adams, J.; Brown, A. M.; Hickford, S.; Macias, O.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand.
[Berley, D.; Blaufuss, E.; Christy, B.; Felde, J.; Goodman, J. A.; Hellauer, R.; Hoffmann, R.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Beatty, J. J.; Pfendner, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astro Particle Phys, Columbus, OH 43210 USA.
[Beatty, J. J.; Davis, J. C.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Koskinen, D. J.; Larson, M. J.; Sarkar, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Clevermann, F.; Frantzen, K.; Fuchs, T.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Ruhe, T.; Scheriau, F.; Schmitz, M.; Ziemann, J.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany.
[Grandmont, D. T.; Grant, D.; Nowicki, S. C.; Odrowski, S.; Sheremata, C.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada.
[Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany.
[Aguilar, J. A.; Ahlers, M.; Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland.
[De Ridder, S.; Feusels, T.; Ismail, A. Haj; Jlelati, O.; Labare, M.; Meli, A.; Ryckbosch, D.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium.
[Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA.
[Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA.
[Ahlers, M.; Arguelles, C.; BenZvi, S.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; Kopper, C.; Kurahashi, N.; Larsen, D. T.; Luenemann, J.; Maruyama, R.; McNally, F.; Middlemas, E.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Santen, J.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Ahlers, M.; Arguelles, C.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; Kroll, G.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Santen, J.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA.
[Baum, V.; Koepke, L.; Luenemann, J.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
[Kohnen, G.] Univ Mons, B-7000 Mons, Belgium.
[Bernhard, A.; Coenders, S.; Gross, A.; Jurkovic, M.; Leute, J.; Resconi, E.; Sestayo, Y.] Tech Univ Munich, D-85748 Garching, Germany.
[Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.
[Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Hussain, S.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
[Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England.
[Bai, X.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA.
[Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA.
[Ahrens, M.; Danninger, M.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.
[Ahrens, M.; Danninger, M.; Hultqvist, K.; Walck, C.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden.
[Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Bose, D.; Rott, C.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea.
[Clark, K.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada.
[Palczewski, T.; Pepper, J. A.; Toale, P. A.; Williams, D. R.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
[Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Anderson, T.; Arlen, T. C.; Cowen, D. F.; DeYoung, T.; Dunkman, M.; Eagan, R.; Groh, J. C.; Huang, F.; Quinnan, M.; Smith, M. W. E.; Stanisha, N. A.; Tesic, G.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
[Boersma, D. J.; Botner, O.; Euler, S.; Hallgren, A.; Heros, C. Perez de los; Strom, R.; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden.
[Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.; Tepe, A.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany.
[Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H. -P.; Silva, A. H. Cruz; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stoessl, A.; Terliuk, A.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany.
RP Feintzeig, J (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA.
RI Aguilar Sanchez, Juan Antonio/H-4467-2015; Tjus, Julia/G-8145-2012;
Sarkar, Subir/G-5978-2011; Koskinen, David/G-3236-2014; Auffenberg,
Jan/D-3954-2014; Beatty, James/D-9310-2011; Wiebusch,
Christopher/G-6490-2012; Taavola, Henric/B-4497-2011; Maruyama,
Reina/A-1064-2013
OI Groh, John/0000-0001-9880-3634; Larsen, Dag Toppe/0000-0002-9898-2174;
Perez de los Heros, Carlos/0000-0002-2084-5866; Strotjohann, Nora
Linn/0000-0002-4667-6730; Arguelles Delgado, Carlos/0000-0003-4186-4182;
Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Sarkar,
Subir/0000-0002-3542-858X; Koskinen, David/0000-0002-0514-5917;
Auffenberg, Jan/0000-0002-1185-9094; Beatty, James/0000-0003-0481-4952;
Wiebusch, Christopher/0000-0002-6418-3008; Rott,
Carsten/0000-0002-6958-6033; Taavola, Henric/0000-0002-2604-2810;
Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft,
Anne/0000-0002-9112-5479; Maruyama, Reina/0000-0003-2794-512X
FU U.S. National Science Foundation-Office of Polar Programs; U.S. National
Science Foundation-Physics Division; University of Wisconsin Alumni
Research Foundation; Grid Laboratory of Wisconsin (GLOW) grid
infrastructure at the University ofWisconsin-Madison; Open Science Grid
(OSG) grid infrastructure; U.S. Department of Energy and National Energy
Research Scientific Computing Center; Louisiana Optical Network
Initiative (LONI) grid computing resources; Natural Sciences and
Engineering Research Council of Canada; WestGrid and Compute/Calcul
Canada; Swedish Research Council; Swedish Polar Research Secretariat;
Swedish National Infrastructure for Computing (SNIC); Knut and Alice
Wallenberg Foundation, Sweden; German Ministry for Education and
Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Helmholtz
Alliance for Astroparticle Physics (HAP); Research Department of Plasmas
with Complex Interactions (Bochum), Germany; Fund for Scientific
Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to
Encourage Scientific and Technological Research in Industry (IWT);
Belgian Federal Science Policy Office (Belspo); University of Oxford,
United Kingdom; Marsden Fund, New Zealand; Australian Research Council;
Japan Society for Promotion of Science (JSPS); Swiss National Science
Foundation (SNSF), Switzerland; National Research Foundation of Korea
(NRF); Danish National Research Foundation, Denmark (DNRF)
FX We acknowledge support from the following agencies: U.S. National
Science Foundation-Office of Polar Programs, U.S. National Science
Foundation-Physics Division, University of Wisconsin Alumni Research
Foundation, the Grid Laboratory of Wisconsin (GLOW) grid infrastructure
at the University ofWisconsin-Madison, the Open Science Grid (OSG) grid
infrastructure; U.S. Department of Energy and National Energy Research
Scientific Computing Center, the Louisiana Optical Network Initiative
(LONI) grid computing resources; Natural Sciences and Engineering
Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish
Research Council, Swedish Polar Research Secretariat, Swedish National
Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg
Foundation, Sweden; German Ministry for Education and Research (BMBF),
Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for
Astroparticle Physics (HAP), Research Department of Plasmas with Complex
Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO),
FWO Odysseus programme, Flanders Institute to Encourage Scientific and
Technological Research in Industry (IWT), Belgian Federal Science Policy
Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New
Zealand; Australian Research Council; Japan Society for Promotion of
Science (JSPS); the Swiss National Science Foundation (SNSF),
Switzerland; National Research Foundation of Korea (NRF); Danish
National Research Foundation, Denmark (DNRF). Some of the results in
this paper have been derived using the HEALPix [75] package. We thank R.
Laha, J. Beacom, K. Murase, S. Razzaque, and N. Harrington for helpful
discussions.
NR 74
TC 283
Z9 286
U1 4
U2 40
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD SEP 2
PY 2014
VL 113
IS 10
AR 101101
DI 10.1103/PhysRevLett.113.101101
PG 8
WC Physics, Multidisciplinary
SC Physics
GA AO3QH
UT WOS:000341248100003
PM 25238345
ER
PT J
AU Schenke, B
Venugopalan, R
AF Schenke, Bjoern
Venugopalan, Raju
TI Eccentric Protons? Sensitivity of Flow to System Size and Shape in p
plus p, p plus Pb, and Pb plus Pb Collisions
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID ANGULAR-CORRELATIONS; PPB COLLISIONS; LONG-RANGE; MULTIPLICITY; SIDE
AB We determine the transverse system size of the initial nonequilibrium Glasma state and of the hydrodynamically evolving fireball as a function of produced charged particles in p + p, p + Pb, and Pb + Pb collisions at the Large Hadron Collider. Our results show features similar to those of recent measurements of Hanbury Brown-Twiss (HBT) radii by the ALICE Collaboration. Azimuthal anisotropy coefficients v(n) generated by combining the early time Glasma dynamics with viscous fluid dynamics in Pb + Pb collisions are in excellent agreement with experimental data for a wide range of centralities. In particular, event-by-event distributions of the vn values agree with the experimental data out to fairly peripheral centrality bins. In striking contrast, our results for p + Pb collisions significantly underestimate the magnitude and do not reproduce the centrality dependence of data for v 2 and v 3 coefficients. We argue that the measured vn data and HBT radii strongly constrain the shapes of initial parton distributions across system sizes that would be compatible with a flow interpretation in p + Pb collisions. Alternately, additional sources of correlations may be required to describe the systematics of long-range rapidity correlations in p + p and p + Pb collisions.
C1 [Schenke, Bjoern; Venugopalan, Raju] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
RP Schenke, B (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231];
DOE [DE-AC02-98CH10886]
FX This research used resources of the National Energy Research Scientific
Computing Center, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231. B.P.S.
and R. V. are supported under DOE Contract No. DE-AC02-98CH10886.
NR 42
TC 39
Z9 39
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD SEP 2
PY 2014
VL 113
IS 10
AR 102301
DI 10.1103/PhysRevLett.113.102301
PG 5
WC Physics, Multidisciplinary
SC Physics
GA AO3QH
UT WOS:000341248100004
PM 25238350
ER
PT J
AU Zhang, J
Myatt, JF
Short, RW
Maximov, AV
Vu, HX
DuBois, DF
Russell, DA
AF Zhang, J.
Myatt, J. F.
Short, R. W.
Maximov, A. V.
Vu, H. X.
DuBois, D. F.
Russell, D. A.
TI Multiple Beam Two-Plasmon Decay: Linear Threshold to Nonlinear
Saturation in Three Dimensions
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID NATIONAL IGNITION FACILITY; PARAMETRIC-INSTABILITIES;
INHOMOGENEOUS-PLASMA; TURBULENCE; SPECTRA
AB The linear stability of multiple coherent laser beams with respect to two-plasmon-decay instability in an inhomogeneous plasma in three dimensions has been determined. Cooperation between beams leads to absolute instability of long-wavelength decays, while shorter-wavelength shared waves are shown to saturate convectively. The multibeam, in its absolutely unstable form, has the lowest threshold for most cases considered. Nonlinear calculations using a three-dimensional extended Zakharov model show that Langmuir turbulence created by the absolute instability modifies the convective saturation of the shorter-wavelength modes, which are seen to dominate at late times.
C1 [Zhang, J.; Myatt, J. F.; Short, R. W.; Maximov, A. V.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA.
[Zhang, J.; Myatt, J. F.; Maximov, A. V.] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA.
[Vu, H. X.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA.
[DuBois, D. F.; Russell, D. A.] Lodestar Res Corp, Boulder, CO 80301 USA.
[DuBois, D. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Zhang, J (reprint author), Univ Rochester, Laser Energet Lab, 250 East River Rd, Rochester, NY 14623 USA.
EM jzha@lle.rochester.edu
FU U.S. Department of Energy Office of Inertial Confinement Fusion
[DE-FC52-08NA28302]; University of Rochester; New York State Energy
Research and Development Authority
FX This work was supported by the U.S. Department of Energy Office of
Inertial Confinement Fusion under Cooperative Agreement No.
DE-FC52-08NA28302, the University of Rochester, and the New York State
Energy Research and Development Authority. The support of DOE does not
constitute an endorsement by DOE of the views expressed in this Letter.
NR 34
TC 12
Z9 12
U1 6
U2 23
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD SEP 2
PY 2014
VL 113
IS 10
AR 105001
DI 10.1103/PhysRevLett.113.105001
PG 5
WC Physics, Multidisciplinary
SC Physics
GA AO3QH
UT WOS:000341248100006
PM 25238364
ER
PT J
AU Parameswaran, SA
Grover, T
Abanin, DA
Pesin, DA
Vishwanath, A
AF Parameswaran, S. A.
Grover, T.
Abanin, D. A.
Pesin, D. A.
Vishwanath, A.
TI Probing the Chiral Anomaly with Nonlocal Transport in Three-Dimensional
Topological Semimetals
SO PHYSICAL REVIEW X
LA English
DT Article
ID GRAPHENE; MODEL
AB Weyl semimetals are three-dimensional crystalline systems where pairs of bands touch at points in momentum space, termed Weyl nodes, that are characterized by a definite topological charge: the chirality. Consequently, they exhibit the Adler-Bell-Jackiw anomaly, which in this condensed-matter realization implies that the application of parallel electric (E) and magnetic (B) fields pumps electrons between nodes of opposite chirality at a rate proportional to E . B. We argue that this pumping is measurable via nonlocal transport experiments, in the limit of weak internode scattering. Specifically, we show that as a consequence of the anomaly, applying a local magnetic field parallel to an injected current induces a valley imbalance that diffuses over long distances. A probe magnetic field can then convert this imbalance into a measurable voltage drop far from source and drain. Such nonlocal transport vanishes when the injected current and magnetic field are orthogonal and therefore serves as a test of the chiral anomaly. We further demonstrate that a similar effect should also characterize Dirac semimetals-recently reported to have been observed in experiments-where the coexistence of a pair of Weyl nodes at a single point in the Brillouin zone is protected by a crystal symmetry. Since the nodes are analogous to valley degrees of freedom in semiconductors, the existence of the anomaly suggests that valley currents in three-dimensional topological semimetals can be controlled using electric fields, which has potential practical "valleytronic" applications.
C1 [Parameswaran, S. A.; Vishwanath, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Parameswaran, S. A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Grover, T.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA.
[Abanin, D. A.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada.
[Abanin, D. A.] Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada.
[Pesin, D. A.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA.
[Pesin, D. A.] CALTECH, Dept Phys, Pasadena, CA 91125 USA.
[Vishwanath, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Parameswaran, SA (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
FU Simons Foundation; NSF [PHYS-1066293]; Office of Science, Office of
Basic Energy Sciences, Materials Sciences and Engineering Division, of
the U.S. Department of Energy [DE-AC02-05CH11231]; Institute for Quantum
Information and Matter, a NSF Physics Frontiers Center; Gordon and Betty
Moore Foundation [GBMF1250]
FX We thank L. Balents, J. H. Bardarson, A. Burkov, Y.-B. Kim, R. Ilan, N.
P. Ong, and B. Z. Spivak for useful discussions on transport; F. de
Juan, I. Kimchi, P. Dumitrescu, N. P. Ong, and especially A. Potter for
conversations on Dirac semimetals; and an anonymous referee for comments
on an earlier version of this manuscript. This work was supported in
part by the Simons Foundation (S. A. P.); the NSF under Grant No.
PHYS-1066293 and the hospitality of the Aspen Center for Physics (S. A.
P. and D. A. P.); the Director, Office of Science, Office of Basic
Energy Sciences, Materials Sciences and Engineering Division, of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (A. V.);
and the Institute for Quantum Information and Matter, a NSF Physics
Frontiers Center, with support of the Gordon and Betty Moore Foundation
through Grant No. GBMF1250 (D. A. P.).
NR 39
TC 120
Z9 120
U1 12
U2 79
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2160-3308
J9 PHYS REV X
JI Phys. Rev. X
PD SEP 2
PY 2014
VL 4
IS 3
AR 031035
DI 10.1103/PhysRevX.4.031035
PG 12
WC Physics, Multidisciplinary
SC Physics
GA AO3QO
UT WOS:000341249000001
ER
PT J
AU Macintosh, B
Graham, JR
Ingraham, P
Konopacky, Q
Marois, C
Perrin, M
Poyneer, L
Bauman, B
Barman, T
Burrows, AS
Cardwell, A
Chilcote, J
De Rosa, RJ
Dillon, D
Doyon, R
Dunn, J
Erikson, D
Fitzgerald, MP
Gavel, D
Goodsell, S
Hartung, M
Hibon, P
Kalas, P
Larkin, J
Maire, J
Marchis, F
Marley, MS
McBride, J
Millar-Blanchaer, M
Morzinski, K
Norton, A
Oppenheimer, BR
Palmer, D
Patience, J
Pueyo, L
Rantakyro, F
Sadakuni, N
Saddlemyer, L
Savransky, D
Serio, A
Soummer, R
Sivaramakrishnan, A
Song, I
Thomas, S
Wallace, JK
Wiktorowicz, S
Wolff, S
AF Macintosh, Bruce
Graham, James R.
Ingraham, Patrick
Konopacky, Quinn
Marois, Christian
Perrin, Marshall
Poyneer, Lisa
Bauman, Brian
Barman, Travis
Burrows, Adam S.
Cardwell, Andrew
Chilcote, Jeffrey
De Rosa, Robert J.
Dillon, Daren
Doyon, Rene
Dunn, Jennifer
Erikson, Darren
Fitzgerald, Michael P.
Gavel, Donald
Goodsell, Stephen
Hartung, Markus
Hibon, Pascale
Kalas, Paul
Larkin, James
Maire, Jerome
Marchis, Franck
Marley, Mark S.
McBride, James
Millar-Blanchaer, Max
Morzinski, Katie
Norton, Andrew
Oppenheimer, B. R.
Palmer, David
Patience, Jennifer
Pueyo, Laurent
Rantakyro, Fredrik
Sadakuni, Naru
Saddlemyer, Leslie
Savransky, Dmitry
Serio, Andrew
Soummer, Remi
Sivaramakrishnan, Anand
Song, Inseok
Thomas, Sandrine
Wallace, J. Kent
Wiktorowicz, Sloane
Wolff, Schuyler
TI First light of the Gemini Planet Imager
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE high-contrast imaging; extreme adaptive optics; debris disks
ID ADAPTIVE-OPTICS SYSTEM; POINT-SPREAD FUNCTIONS; BETA-PICTORIS; FINDING
CAMPAIGN; FOURIER-TRANSFORM; GIANT PLANETS; DEBRIS DISK; HR 8799;
FREQUENCY; EXOPLANET
AB The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-sigma contrast of 10(6) at 0.75 arcseconds and 10(5) at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 +/- 6 milliarcseconds (mas) and position angle 211.8 +/- 0.5 degrees. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of 9.0(-0.4)(+0.8) AU near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017.
C1 [Macintosh, Bruce; Poyneer, Lisa; Bauman, Brian; Palmer, David] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Macintosh, Bruce; Ingraham, Patrick] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA.
[Graham, James R.; Kalas, Paul; McBride, James] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Konopacky, Quinn; Maire, Jerome; Millar-Blanchaer, Max] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada.
[Marois, Christian; Dunn, Jennifer; Erikson, Darren; Saddlemyer, Leslie] Natl Res Council Canada Herzberg, Victoria, BC V9E 2E7, Canada.
[Perrin, Marshall; Pueyo, Laurent; Soummer, Remi; Sivaramakrishnan, Anand] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Barman, Travis] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA.
[Burrows, Adam S.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Cardwell, Andrew; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Rantakyro, Fredrik; Sadakuni, Naru; Serio, Andrew] Gemini Observ, Hilo, HI 96720 USA.
[Chilcote, Jeffrey; Fitzgerald, Michael P.; Larkin, James] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[De Rosa, Robert J.; Patience, Jennifer] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA.
[Dillon, Daren; Gavel, Donald; Norton, Andrew; Wiktorowicz, Sloane] Univ Calif Santa Cruz, Univ Calif Observ Lick Observ, Santa Cruz, CA 95064 USA.
[Doyon, Rene] Univ Montreal, Observ Mt Megant, Montreal, PQ H3T 1J4, Canada.
[Doyon, Rene] Univ Montreal, Dept Phys, Montreal, PQ H3T 1J4, Canada.
[Marchis, Franck] Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA.
[Marley, Mark S.; Thomas, Sandrine] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Morzinski, Katie] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA.
[Oppenheimer, B. R.; Sivaramakrishnan, Anand] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA.
[Savransky, Dmitry] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA.
[Song, Inseok] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA.
[Wallace, J. Kent] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Wolff, Schuyler] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
RP Macintosh, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
EM bmacintosh@stanford.edu
RI Marley, Mark/I-4704-2013; Savransky, Dmitry/M-1298-2014;
OI Savransky, Dmitry/0000-0002-8711-7206; Marley, Mark/0000-0002-5251-2943;
Morzinski, Katie/0000-0002-1384-0063; Fitzgerald,
Michael/0000-0002-0176-8973
FU Gemini Observatory; National Science Foundation (NSF) Center for
Adaptive Optics at University of California, Santa Cruz; NSF
[AST-0909188, AST-1211562]; NASA Origins [NNX11AD21G, NNX10AH31G];
University of California Office of the President [LFRP-118057]; Dunlap
Institute, University of Toronto; U.S. Department of Energy by Lawrence
Livermore National Laboratory [DE-AC52-07NA27344]; California Institute
of Technology Jet Propulsion Laboratory - NASA through the Sagan
Fellowship Program
FX We thank the international team of engineers and scientists who worked
to make GPI a reality. We especially recognize the unique contributions
of Gary Sommargren, Steven Varlese, Christopher Lockwood, Russell
Makidon, Murray Fletcher, and Vincent Fesquet, who passed away during
the course of this project. We acknowledge financial support of the
Gemini Observatory, the National Science Foundation (NSF) Center for
Adaptive Optics at University of California, Santa Cruz, the NSF
(AST-0909188; AST-1211562), NASA Origins (NNX11AD21G and NNX10AH31G),
the University of California Office of the President (LFRP-118057), and
the Dunlap Institute, University of Toronto. Portions of this work were
performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
and under contract with the California Institute of Technology Jet
Propulsion Laboratory funded by NASA through the Sagan Fellowship
Program executed by the NASA Exoplanet Science Institute.
NR 51
TC 121
Z9 121
U1 1
U2 4
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD SEP 2
PY 2014
VL 111
IS 35
BP 12661
EP 12666
DI 10.1073/pnas.1304215111
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AO3LN
UT WOS:000341230800041
PM 24821792
ER
PT J
AU Frauenfelder, H
Fenimore, PW
Young, RD
AF Frauenfelder, Hans
Fenimore, Paul W.
Young, Robert D.
TI A wave-mechanical model of incoherent quasielastic scattering in complex
systems
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE quasielastic neutron scattering; neutron wave packet; protein
free-energy landscape
ID INELASTIC NEUTRON-SCATTERING; PROTEIN DYNAMICS; MOSSBAUER-SPECTROSCOPY;
FLUCTUATIONS; ENERGY; TRANSITION; LANDSCAPES; MYOGLOBIN; RESONANCE;
HYDRATION
AB Quasielastic incoherent neutron scattering (QENS) is an important tool for the exploration of the dynamics of complex systems such as biomolecules, liquids, and glasses. The dynamics is reflected in the energy spectra of the scattered neutrons. Conventionally these spectra are decomposed into a narrow elastic line and a broad quasielastic band. The band is interpreted as being caused by Doppler broadening due to spatial motion of the target molecules. We propose a quantum-mechanical model in which there is no separate elastic line. The quasielastic band is composed of sharp lines with twice the natural line width, shifted from the center by a random walk of the protein in the free-energy landscape of the target molecule. The walk is driven by vibrations and by external fluctuations. We first explore the model with the Mossbauer effect. In the subsequent application to QENS we treat the incoming neutron as a de Broglie wave packet. While the wave packet passes the protons in the protein and the hydration shell it exchanges energy with the protein during the passage time of about 100 ns. The energy exchange broadens the ensemble spectrum. Because the exchange involves the free-energy landscape of the protein, the QENS not only provides insight into the protein dynamics, but it may also illuminate the free-energy landscape of the protein-solvent system.
C1 [Frauenfelder, Hans; Fenimore, Paul W.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA.
[Young, Robert D.] Arizona State Univ, Ctr Biol Phys, Tempe, AZ 85287 USA.
RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, POB 1663, Los Alamos, NM 87545 USA.
EM hansfrauenfelder@me.com
FU Los Alamos National Laboratory's Directed Research and Development
Program under Department of Energy [DE-AC52-06NA25396]
FX We have received useful criticism and input from Salvatore Magazu,
Benjamin McMahon, Federica Migliardo, Fritz Parak, David Pines, Timothy
Sage, Jeremy Smith, and Peter Wolynes. The work has been supported by
Los Alamos National Laboratory's Directed Research and Development
Program under Department of Energy Contract DE-AC52-06NA25396.
NR 46
TC 4
Z9 4
U1 3
U2 30
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD SEP 2
PY 2014
VL 111
IS 35
BP 12764
EP 12768
DI 10.1073/pnas.1411781111
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AO3LN
UT WOS:000341230800059
PM 25136125
ER
PT J
AU Sawaya, MR
Cascio, D
Gingery, M
Rodriguez, J
Goldschmidt, L
Colletier, JP
Messerschmidt, MM
Boutet, S
Koglin, JE
Williams, GJ
Brewster, AS
Nass, K
Hattne, J
Botha, S
Doak, RB
Shoeman, RL
DePonte, DP
Park, HW
Federici, BA
Sauter, NK
Schlichting, I
Eisenberg, DS
AF Sawaya, Michael R.
Cascio, Duilio
Gingery, Mari
Rodriguez, Jose
Goldschmidt, Lukasz
Colletier, Jacques-Philippe
Messerschmidt, Marc M.
Boutet, Sebastien
Koglin, Jason E.
Williams, Garth J.
Brewster, Aaron S.
Nass, Karol
Hattne, Johan
Botha, Sabine
Doak, R. Bruce
Shoeman, Robert L.
DePonte, Daniel P.
Park, Hyun-Woo
Federici, Brian A.
Sauter, Nicholas K.
Schlichting, Ilme
Eisenberg, David S.
TI Protein crystal structure obtained at 2.9 angstrom resolution from
injecting bacterial cells into an X-ray free-electron laser beam
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE XFEL; Cry3A insecticidal toxin; serial femtosecond crystallography
ID SERIAL FEMTOSECOND CRYSTALLOGRAPHY; THURINGIENSIS VAR TENEBRIONIS;
BACILLUS-THURINGIENSIS; ROOM-TEMPERATURE; DELTA-ENDOTOXIN;
PHOTOSYSTEM-II; IN-VIVO; NANOCRYSTALLOGRAPHY; DIFFRACTION; REFINEMENT
AB It has long been known that toxins produced by Bacillus thuringiensis (Bt) are stored in the bacterial cells in crystalline form. Here we describe the structure determination of the Cry3A toxin found naturally crystallized within Bt cells. When whole Bt cells were streamed into an X-ray free-electron laser beam we found that scattering from other cell components did not obscure diffraction from the crystals. The resolution limits of the best diffraction images collected from cells were the same as from isolated crystals. The integrity of the cells at the moment of diffraction is unclear; however, given the short time (similar to 5 mu s) between exiting the injector to intersecting with the X-ray beam, our result is a 2.9-angstrom-resolution structure of a crystalline protein as it exists in a living cell. The study suggests that authentic in vivo diffraction studies can produce atomic-level structural information.
C1 [Sawaya, Michael R.; Cascio, Duilio; Gingery, Mari; Rodriguez, Jose; Goldschmidt, Lukasz; Eisenberg, David S.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA.
[Sawaya, Michael R.; Cascio, Duilio; Gingery, Mari; Rodriguez, Jose; Goldschmidt, Lukasz; Eisenberg, David S.] Univ Calif Los Angeles, Dept Biol Chem, Los Angeles, CA 90095 USA.
[Eisenberg, David S.] Univ Calif Los Angeles, Howard Hughes Med Inst, Los Angeles, CA 90095 USA.
[Colletier, Jacques-Philippe] Univ Grenoble Alpes, F-38044 Grenoble, France.
[Colletier, Jacques-Philippe] CNRS, F-38044 Grenoble, France.
[Colletier, Jacques-Philippe] Inst Biol Struct, Commissariat Energie Atom, F-38044 Grenoble, France.
[Messerschmidt, Marc M.; Boutet, Sebastien; Koglin, Jason E.; Williams, Garth J.] Natl Accelerator Lab, SLAC, Linac Coherent Light Source, Menlo Pk, CA 94025 USA.
[Brewster, Aaron S.; Hattne, Johan; Sauter, Nicholas K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Nass, Karol; Doak, R. Bruce; Shoeman, Robert L.; Schlichting, Ilme] Max Planck Inst Med Res, D-69120 Heidelberg, Germany.
[Doak, R. Bruce] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA.
[Park, Hyun-Woo; Federici, Brian A.] Univ Calif Riverside, Dept Entomol, Riverside, CA 92521 USA.
[Federici, Brian A.] Univ Calif Riverside, Grad Program Cell Mol & Dev Biol, Riverside, CA 92521 USA.
RP Eisenberg, DS (reprint author), Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA.
EM david@mbi.ucla.edu
RI Messerschmidt, Marc/F-3796-2010; Schlichting, Ilme/I-1339-2013; Sauter,
Nicholas/K-3430-2012
OI Messerschmidt, Marc/0000-0002-8641-3302;
FU National Center for Research Resources from the National Institutes of
Health (NIH) [5P41RR015301-10]; National Institute of General Medical
Sciences from the National Institutes of Health (NIH) [8 P41
GM103403-10]; US Department of Energy (DOE) [DE-AC02-06CH11357]; DOE
[DE-FC02-02ER63421]; DOE Office of Basic Energy Sciences; Linac Coherent
Light Source Ultrafast Science Instruments project; Keck Foundation
[2843398]; NIH [AG-029430, GM095887, GM102520, AI45817]; National
Science Foundation [MCB 0958111]; Howard Hughes Medical Institute; Max
Planck Society
FX We thank M. Capel, K. Rajashankar, N. Sukumar, J. Schuermann, I.
Kourinov, and F. Murphy [Northeastern Collaborative Access Team Beamline
24-ID at the Advanced Photon Source, which is supported by National
Center for Research Resources Grant 5P41RR015301-10 and National
Institute of General Medical Sciences Grant 8 P41 GM103403-10 from the
National Institutes of Health (NIH)]. Use of the Advanced Photon Source
is supported by the US Department of Energy (DOE) under Contract
DE-AC02-06CH11357. We also thank Harold Aschmann and the University of
California, Los Angeles (UCLA)-DOE X-ray Crystallography Core Facility,
which is supported by DOE Grant DE-FC02-02ER63421; and Heather McFarlane
and Daniel Anderson at UCLA for help with cell preparation and
filtration. Portions of this research were carried out at the Linac
Coherent Light Source, a National User Facility operated by Stanford
University on behalf of the DOE Office of Basic Energy Sciences. The CXI
instrument was funded by the Linac Coherent Light Source Ultrafast
Science Instruments project funded by the DOE Office of Basic Energy
Sciences. This work was supported by Keck Foundation Grant 2843398, NIH
Grant AG-029430, National Science Foundation Grant MCB 0958111, DOE
Grant DE-FC02-02ER63421, NIH Grants GM095887 and GM102520 for
data-processing methods (to N. K. S.), NIH Grant AI45817 (to B. A. F.),
Howard Hughes Medical Institute, and the Max Planck Society.
NR 35
TC 37
Z9 38
U1 4
U2 47
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD SEP 2
PY 2014
VL 111
IS 35
BP 12769
EP 12774
DI 10.1073/pnas.1413456111
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AO3LN
UT WOS:000341230800060
PM 25136092
ER
PT J
AU Pirbadian, S
Barchinger, SE
Leung, KM
Byun, HS
Jangir, Y
Bouhenni, RA
Reed, SB
Romine, MF
Saffarini, DA
Shi, L
Gorby, YA
Golbeck, JH
El-Naggar, MY
AF Pirbadian, Sahand
Barchinger, Sarah E.
Leung, Kar Man
Byun, Hye Suk
Jangir, Yamini
Bouhenni, Rachida A.
Reed, Samantha B.
Romine, Margaret F.
Saffarini, Daad A.
Shi, Liang
Gorby, Yuri A.
Golbeck, John H.
El-Naggar, Mohamed Y.
TI Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic
extensions of the extracellular electron transport components
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE extracellular electron transfer; bioelectronics; respiration; membrane
cytochromes
ID BACTERIAL NANOWIRES; MICROBIAL NANOWIRES; STRAIN MR-1; PLANT-CELLS;
CONDUCTIVITY; ENDOCYTOSIS; REDUCTION; PROTEINS; VESICLES; BIOFILMS
AB Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic-abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report, to our knowledge, the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella oneidensis MR-1. Live fluorescence measurements, immunolabeling, and quantitative gene expression analysis point to S. oneidensis MR-1 nanowires as extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures as previously thought. These membrane extensions are associated with outer membrane vesicles, structures ubiquitous in Gram-negative bacteria, and are consistent with bacterial nanowires that mediate long-range EET by the previously proposed multistep redox hopping mechanism. Redox-functionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution.
C1 [Pirbadian, Sahand; Leung, Kar Man; Byun, Hye Suk; Jangir, Yamini; El-Naggar, Mohamed Y.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA.
[Barchinger, Sarah E.; Golbeck, John H.] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA.
[Bouhenni, Rachida A.; Saffarini, Daad A.] Univ Wisconsin, Dept Biol Sci, Milwaukee, WI 53211 USA.
[Reed, Samantha B.; Romine, Margaret F.; Shi, Liang] Pacific NW Natl Lab, Richland, WA 99354 USA.
[Gorby, Yuri A.] Rensselaer Polytech Inst, Dept Civil & Environm Engn, Troy, NY 12180 USA.
[Golbeck, John H.] Penn State Univ, Dept Chem, University Pk, PA 16802 USA.
[El-Naggar, Mohamed Y.] Univ So Calif, Mol & Computat Biol Sect, Dept Biol Sci, Los Angeles, CA 90089 USA.
RP El-Naggar, MY (reprint author), Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA.
EM mnaggar@usc.edu
OI Romine, Margaret/0000-0002-0968-7641
FU Air Force Office of Scientific Research Young Investigator Research
Program Grant [FA9550-10-1-0144]; Division of Chemical Sciences,
Geosciences, and Biosciences, Office of Basic Energy Sciences of the US
Department of Energy Grant [EF-1104831]; Shewanella Federation
consortium - Genomics: Genomes to Life program of the US Department of
Energy Office of Biological and Environmental Research
FX The pHGE-PtacTorAGFP plasmid was generously provided by Prof. H. Gao
(Zhejiang University), and pProbeNT was kindly provided by Dr. Steven
Lindow (University of California, Berkeley). Atomic Force and Electron
Microscopy were performed at the University of Southern California
Centers of Excellence in NanoBioPhysics and Electron Microscopy and
Microanalysis. The development of the in vivo imaging platform and
chemostat cultivation was funded by Air Force Office of Scientific
Research Young Investigator Research Program Grant FA9550-10-1-0144 (to
M.Y.E.-N.). Redox sensing measurements, compositional analysis, and the
localization of multiheme cytochromes were funded by Division of
Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy
Sciences of the US Department of Energy Grant DE-FG02-13ER16415 (to
M.Y.E.-N.). RT-PCR experiments and genetic analyses were funded by
National Science Foundation Grant EF-1104831 (to J.H.G.). M.F.R.,
S.B.R., R.A.B., and D.A.S. were supported under the Shewanella
Federation consortium funded by the Genomics: Genomes to Life program of
the US Department of Energy Office of Biological and Environmental
Research.
NR 43
TC 92
Z9 94
U1 22
U2 194
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD SEP 2
PY 2014
VL 111
IS 35
BP 12883
EP 12888
DI 10.1073/pnas.1410551111
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AO3LN
UT WOS:000341230800079
PM 25143589
ER
PT J
AU Socha, AM
Parthasarathi, R
Shi, J
Pattathil, S
Whyte, D
Bergeron, M
George, A
Tran, K
Stavila, V
Venkatachalam, S
Hahn, MG
Simmons, BA
Singh, S
AF Socha, Aaron M.
Parthasarathi, Ramakrishnan
Shi, Jian
Pattathil, Sivakumar
Whyte, Dorian
Bergeron, Maxime
George, Anthe
Tran, Kim
Stavila, Vitalie
Venkatachalam, Sivasankari
Hahn, Michael G.
Simmons, Blake A.
Singh, Seema
TI Efficient biomass pretreatment using ionic liquids derived from lignin
and hemicellulose
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE renewable chemicals; bioenergy; lignocellulose conversion;
saccharification; green chemistry
ID LIGNOCELLULOSIC BIOMASS; REDUCTIVE AMINATION; WOOD PROPERTIES;
CELLULOSE; SWITCHGRASS; ELECTROLYTES; SOLVENT; RECALCITRANCE;
REGENERATION; TECHNOLOGIES
AB Ionic liquids (ILs), solvents composed entirely of paired ions, have been used in a variety of process chemistry and renewable energy applications. Imidazolium-based ILs effectively dissolve biomass and represent a remarkable platform for biomass pretreatment. Although efficient, imidazolium cations are expensive and thus limited in their large-scale industrial deployment. To replace imidazolium-based ILs with those derived from renewable sources, we synthesized a series of tertiary amine-based ILs from aromatic aldehydes derived from lignin and hemicellulose, the major by-products of lignocellulosic biofuel production. Compositional analysis of switchgrass pretreated with ILs derived from vanillin, p-anisaldehyde, and furfural confirmed their efficacy. Enzymatic hydrolysis of pretreated switchgrass allowed for direct comparison of sugar yields and lignin removal between biomass-derived ILs and 1-ethyl-3-methylimidazolium acetate. Although the rate of cellulose hydrolysis for switchgrass pretreated with biomass-derived ILs was slightly slower than that of 1-ethyl-3-methylimidazolium acetate, 90-95% glucose and 70-75% xylose yields were obtained for these samples after 72-h incubation. Molecular modeling was used to compare IL solvent parameters with experimentally obtained compositional analysis data. Effective pretreatment of lignocellulose was further investigated by powder X-ray diffraction and glycome profiling of switchgrass cell walls. These studies showed different cellulose structural changes and differences in hemicellulose epitopes between switchgrass pretreatments with the aforementioned ILs. Our concept of deriving ILs from lignocellulosic biomass shows significant potential for the realization of a "closed-loop" process for future lignocellulosic biorefineries and has far-reaching economic impacts for other IL-based process technology currently using ILs synthesized from petroleum sources.
C1 [Socha, Aaron M.; Parthasarathi, Ramakrishnan; Shi, Jian; Whyte, Dorian; Bergeron, Maxime; George, Anthe; Tran, Kim; Simmons, Blake A.; Singh, Seema] Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA 94608 USA.
[Socha, Aaron M.; Whyte, Dorian] CUNY, Bronx Community Coll, Ctr Sustainable Energy, Bronx, NY 10453 USA.
[Socha, Aaron M.; Whyte, Dorian] CUNY, Bronx Community Coll, Dept Chem & Chem Technol, Bronx, NY 10453 USA.
[Parthasarathi, Ramakrishnan; Shi, Jian; George, Anthe; Tran, Kim; Stavila, Vitalie; Simmons, Blake A.; Singh, Seema] Sandia Natl Labs, Biol & Mat Sci Ctr, Livermore, CA 94551 USA.
[Pattathil, Sivakumar; Venkatachalam, Sivasankari; Hahn, Michael G.] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA.
[Pattathil, Sivakumar; Hahn, Michael G.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA.
RP Singh, S (reprint author), Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA 94608 USA.
EM seesing@sandia.gov
RI Parthasarathi, Ramakrishnan/C-2093-2008;
OI Parthasarathi, Ramakrishnan/0000-0001-5417-5867; Hahn,
Michael/0000-0003-2136-5191; , Sivakumar Pattathil/0000-0003-3870-4137
FU Office of Science, Office of Biological and Environmental Research, US
Department of Energy [DE-AC02-05CH11231]; Research Foundation, City
University of New York [65102-00 43]; Office of Biological and
Environmental Research, Office of Science, US Department of Energy
[DE-AC05-00OR22725]; National Science Foundation Plant Genome Program
[DBI-0421683, IOS-0923992]
FX We thank Novozymes for their generous donation of Ctec2 and Htec2
enzymes, and Christian Rodriguez [Bronx Community College (BCC)] for his
kind assistance with NMR measurements. This work conducted by the Joint
BioEnergy Institute was supported by the Office of Science, Office of
Biological and Environmental Research, US Department of Energy, under
Contract DE-AC02-05CH11231. Additional funding was provided by Research
Foundation, City University of New York (65102-00 43). This research
used resources of the National Energy Research Scientific Computing
Center and BCC. The glycome profiling was supported by the BioEnergy
Science Center administered by Oak Ridge National Laboratory and funded
by Grant DE-AC05-00OR22725 from the Office of Biological and
Environmental Research, Office of Science, US Department of Energy. The
generation of the CCRC series of plant cell wall glycan-directed
monoclonal antibodies used in this work was supported by the National
Science Foundation Plant Genome Program (DBI-0421683 and IOS-0923992).
NR 63
TC 39
Z9 40
U1 14
U2 135
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD SEP 2
PY 2014
VL 111
IS 35
BP E3587
EP E3595
DI 10.1073/pnas.1405685111
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AO3LN
UT WOS:000341230800005
PM 25136131
ER
PT J
AU Ning, PQ
Wang, F
Zhang, D
AF Ning, Puqi
Wang, Fei
Zhang, Di
TI A High Density 250 degrees C Junction Temperature SiC Power Module
Development
SO IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS
LA English
DT Article
DE High-temperature techniques; semiconductor device packaging; silicon
carbide
ID FIN HEAT SINKS; HARMONIC CANCELLATION; GATE DRIVER; DESIGN; CONVERTERS;
METHODOLOGY; VOLTAGE; PWM
AB A high temperature wirebond-packaged phase-leg power module was designed, developed, and tested. Details of the layout, gate drive, and cooling system designs are described. Continuous power tests confirmed that the designed high-density power module can be successfully operated with 250 degrees C junction temperature. The power module was further utilized in an all-SiC rectifier system that achieves a 2.78 kW/lb power density.
C1 [Ning, Puqi] Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China.
[Wang, Fei] Oak Ridge Natl Lab, Knoxville, TN 37831 USA.
[Wang, Fei] Univ Tennessee, Knoxville, TN 37916 USA.
[Zhang, Di] GE Co, Global Res Ctr, Power Convers Syst Lab, Niskayuna, NY 12309 USA.
RP Ning, PQ (reprint author), Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China.
EM ning06@vt.edu; fred.wang@utk.edu; zhang@ge.com
NR 48
TC 5
Z9 5
U1 1
U2 4
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2168-6777
J9 IEEE J EM SEL TOP P
JI IEEE J. Emerg. Sel. Top. Power Electron.
PD SEP
PY 2014
VL 2
IS 3
BP 415
EP 424
DI 10.1109/JESTPE.2013.2290054
PG 10
WC Engineering, Electrical & Electronic
SC Engineering
GA CN7II
UT WOS:000358607400007
ER
PT J
AU Glover, MD
Shepherd, P
Francis, AM
Mudholkar, M
Mantooth, HA
Ericson, MN
Frank, SS
Britton, CL
Marlino, LD
McNutt, TR
Barkley, A
Whitaker, B
Lostetter, AB
AF Glover, Michael D.
Shepherd, Paul
Francis, A. Matt
Mudholkar, Mihir
Mantooth, Homer Alan
Ericson, Milton Nance
Frank, S. Shane
Britton, Charles L.
Marlino, Laura D.
McNutt, Ty R.
Barkley, Adam
Whitaker, Bret
Lostetter, Alexander B.
TI A UVLO Circuit in SiC Compatible With Power MOSFET Integration
SO IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS
LA English
DT Article
DE MOSFET circuits; power MOSFET; silicon carbide (SiC); temperature
ID GATE DRIVER; SILICON
AB The design and test of the first undervoltage lock-out circuit implemented in a low-voltage 4H silicon carbide process capable of single-chip integration with power MOSFETs is presented. The lock-out circuit, a block of the protection circuitry of a single-chip gate driver topology designed for use in a plug-in hybrid vehicle charger, was demonstrated to have rise/fall times compatible with a MOSFET switching speed of 250 kHz while operating over the targeted operating temperature range between 0 degrees C and 200 degrees C. Captured data show the circuit to be functional over a temperature range from -55 degrees C to 300 degrees C. The design of the circuit and test results is presented.
C1 [Glover, Michael D.; Shepherd, Paul; Francis, A. Matt; Mudholkar, Mihir; Mantooth, Homer Alan] Univ Arkansas, Fayetteville, AR 72701 USA.
[Ericson, Milton Nance; Frank, S. Shane; Britton, Charles L.; Marlino, Laura D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[McNutt, Ty R.; Barkley, Adam; Whitaker, Bret; Lostetter, Alexander B.] Arkansas Power Elect Int Inc, Fayetteville, AR 72701 USA.
RP Glover, MD (reprint author), Univ Arkansas, Fayetteville, AR 72701 USA.
EM mglover@uark.edu; pshepher@uark.edu; amfranci@uark.edu;
mihir.mudholkar@gmail.com; mantooth@uark.edu; ericsonmn@ornl.gov;
frankss@ornl.gov; brittoncl@ornl.gov; marlinold@ornl.gov;
tmcnutt@apei.net; abarkle@apei.net; bwhitak@apei.net; alostet@apei.net
FU agency of the United States Government
FX The authors wish to acknowledge the contributions made by S.-H. Ryu and
D. Grider at Cree in fabricating the SiC circuitry tested. The
information, data, or work presented herein was funded in part by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.
NR 17
TC 5
Z9 5
U1 0
U2 4
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2168-6777
J9 IEEE J EM SEL TOP P
JI IEEE J. Emerg. Sel. Top. Power Electron.
PD SEP
PY 2014
VL 2
IS 3
BP 425
EP 433
DI 10.1109/JESTPE.2014.2313119
PG 9
WC Engineering, Electrical & Electronic
SC Engineering
GA CN7II
UT WOS:000358607400008
ER
PT J
AU Liang, ZX
Ning, PQ
Wang, F
Marlino, L
AF Liang, Zhenxian
Ning, Puqi
Wang, Fred
Marlino, Laura
TI A Phase-Leg Power Module Packaged With Optimized Planar Interconnections
and Integrated Double-Sided Cooling
SO IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS
LA English
DT Article
DE Automotive power converter; integrated cooling; power electronics
packaging; power module
ID SEMICONDUCTOR-DEVICES; VEHICLES; SYSTEM
AB A multilayer planar interconnection structure was used for the packaging of liquid-cooled automotive power modules. The power semiconductor switch dies are sandwiched between two symmetric substrates, providing planar electrical interconnections and insulation. Two minicoolers are directly bonded to the outside of these substrates, allowing doublesided, integrated cooling. The power switch dies are orientated in a face-up/face-down 3-D interconnection configuration to form a phase leg. The bonding areas between the dies and substrates, and the substrates and coolers are designed to use identical materials and are formed in one heating process. A special packaging process has been developed so that high-efficiency production can be implemented. Incorporating high-efficiency cooling and low-loss electrical interconnections allows dramatic improvements in systems' cost, and electrical conversion efficiency. These features are demonstrated in a planar bond-packaged prototype of a 200 A/1200 V phase-leg power module made of silicon (Si) insulated gate bipolar transistor and PiN diodes.
C1 [Liang, Zhenxian; Ning, Puqi; Marlino, Laura] Oak Ridge Natl Lab, Power Elect & Elect Machinery Grp, Knoxville, TN 37932 USA.
[Wang, Fred] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA.
RP Liang, ZX (reprint author), Oak Ridge Natl Lab, Power Elect & Elect Machinery Grp, Knoxville, TN 37932 USA.
EM liangz@ornl.gov; npq@mail.iee.ac.cn; fred.wang@utk.edu;
marlinold@ornl.gov
FU Advanced Power Electronics and Electric Motors Program; DOE Vehicle
Technologies Office through UT Battelle, LLC [DE-AC05-00OR22725]
FX This work was supported in part by the Advanced Power Electronics and
Electric Motors Program and in part by DOE Vehicle Technologies Office
under Contract DE-AC05-00OR22725 through UT Battelle, LLC. Recommended
for publication by Associate Editor Alan H. Mantooth.
NR 23
TC 2
Z9 2
U1 3
U2 3
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2168-6777
J9 IEEE J EM SEL TOP P
JI IEEE J. Emerg. Sel. Top. Power Electron.
PD SEP
PY 2014
VL 2
IS 3
BP 443
EP 450
DI 10.1109/JESTPE.2014.2312292
PG 8
WC Engineering, Electrical & Electronic
SC Engineering
GA CN7II
UT WOS:000358607400010
ER
PT J
AU Ning, PQ
Liang, ZX
Wang, F
AF Ning, Puqi
Liang, Zhenxian
Wang, Fred
TI Power Module and Cooling System Thermal Performance Evaluation for HEV
Application
SO IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS
LA English
DT Article
DE Electric vehicles; semiconductor device packaging
ID IMPEDANCE; IGBTS; MODEL
AB To further reduce system costs and package volumes of hybrid electric vehicles, it is important to optimize the power module and associated cooling system. This paper reports the thermal performance evaluation and analysis of three commercial power modules and a proposed planar module with different cooling system. Results show that power electronics can be better merged with the mechanical environment. Experiments and simulations were conducted to help further optimization.
C1 [Ning, Puqi; Liang, Zhenxian] Oak Ridge Natl Lab, Power Elect & Elect Machinery Grp, Oak Ridge, TN 37831 USA.
[Wang, Fred] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA.
RP Ning, PQ (reprint author), Chinese Acad Sci, Inst Elect Engn, Lab Power Elect & Power Convers, Beijing 100190, Peoples R China.
EM npq@mail.iee.ac.cn; liangz@ornl.gov; fred.wang@utk.edu
FU Advanced Power Electronics; Electric Motors Program, DOE Office of
Vehicle Technologies, UT Battelle, LLC [DE-AC05-00OR22725]
FX This work was supported in part by the Advanced Power Electronics and in
part by the Electric Motors Program, DOE Office of Vehicle Technologies,
UT Battelle, LLC, under Contract DE-AC05-00OR22725.
NR 21
TC 3
Z9 3
U1 0
U2 1
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2168-6777
J9 IEEE J EM SEL TOP P
JI IEEE J. Emerg. Sel. Top. Power Electron.
PD SEP
PY 2014
VL 2
IS 3
BP 487
EP 495
DI 10.1109/JESTPE.2014.2303143
PG 9
WC Engineering, Electrical & Electronic
SC Engineering
GA CN7II
UT WOS:000358607400016
ER
PT J
AU Hoke, A
Brissette, A
Smith, K
Pratt, A
Maksimovic, D
AF Hoke, Anderson
Brissette, Alexander
Smith, Kandler
Pratt, Annabelle
Maksimovic, Dragan
TI Accounting for Lithium-Ion Battery Degradation in Electric Vehicle
Charging Optimization
SO IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS
LA English
DT Article
DE Battery chargers; battery degradation; charge optimization; electric
vehicles (EVs); lithium-ion (Li-ion)
ID ENERGY-STORAGE SYSTEMS; AUTOMOTIVE APPLICATIONS; AGING MECHANISMS;
MODEL; PERSPECTIVE; COST; WEAR; CELL
AB This paper presents a method for minimizing the cost of vehicle battery charging given variable electricity costs while also accounting for estimated costs of battery degradation using a simplified lithium-ion battery lifetime model. The simple battery lifetime model, also developed and presented here, estimates both energy capacity fade and power fade and includes effects due to temperature, state of charge profile, and daily depth of discharge. This model has been validated by comparison with a detailed model developed at National Renewable Energy Laboratory, which in turn has been validated through comparison with experimental data. The simple model runs quickly, allowing for iterative numerical minimization of charge cost, implemented on the charger controller. Resulting electric vehicle (EV) charge profiles show a compromise among four trends: 1) charging during low-electricity cost intervals; 2) charging slowly; 3) charging toward the end of the available charge time; and 4) suppression of vehicle-to-grid power exportation. Simulations based on experimental Prius plug-in hybrid EV usage data predict that batteries charged using optimized charging last significantly longer than those charged using typical charging methods, potentially allowing smaller batteries to meet vehicle lifetime requirements. These trends are shown to hold across a wide range of battery sizes and hence are applicable to both EVs and plug-in hybrid EVs.
C1 [Hoke, Anderson; Brissette, Alexander; Maksimovic, Dragan] Univ Colorado, Boulder, CO 80309 USA.
[Smith, Kandler; Pratt, Annabelle] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Pratt, Annabelle] Intel Labs, Hillsboro, OR 97124 USA.
RP Hoke, A (reprint author), Univ Colorado, Boulder, CO 80309 USA.
EM anderson.hoke@colorado.edu; alexander.brissette@colorado.edu;
kandler.smith@nrel.gov; annabelle.pratt@nrel.gov; maksimov@colorado.edu
FU Intel Labs; U.S. DOE Office of Vehicle Technologies Energy Storage
Program through the National Renewable Energy Laboratory Battery Life
Model
FX This work was supported in part by Intel Labs and in part by the U.S.
DOE Office of Vehicle Technologies Energy Storage Program through the
National Renewable Energy Laboratory Battery Life Model.
NR 50
TC 18
Z9 18
U1 3
U2 16
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2168-6777
J9 IEEE J EM SEL TOP P
JI IEEE J. Emerg. Sel. Top. Power Electron.
PD SEP
PY 2014
VL 2
IS 3
BP 691
EP 700
DI 10.1109/JESTPE.2014.2315961
PG 10
WC Engineering, Electrical & Electronic
SC Engineering
GA CN7II
UT WOS:000358607400034
ER
PT J
AU Jorgensen, MRV
Hathwar, VR
Bindzus, N
Wahlberg, N
Chen, YS
Overgaard, J
Iversen, BB
AF Jorgensen, Mads R. V.
Hathwar, Venkatesha R.
Bindzus, Niels
Wahlberg, Nanna
Chen, Yu-Sheng
Overgaard, Jacob
Iversen, Bo B.
TI Contemporary X-ray electron-density studies using synchrotron radiation
SO IUCRJ
LA English
DT Article
DE electron-density studies; synchrotron radiation; X-ray diffraction
ID EXPERIMENTAL CHARGE-DENSITY; MAXIMUM-ENTROPY-METHOD; WEAK INTERMOLECULAR
INTERACTIONS; CRITICAL-POINT PROPERTIES; NEUTRON-DIFFRACTION DATA; HUMAN
ALDOSE REDUCTASE; POWDER DIFFRACTION; COORDINATION POLYMER; TOPOLOGICAL
ANALYSIS; DATA SETS
AB Synchrotron radiation has many compelling advantages over conventional radiation sources in the measurement of accurate Bragg diffraction data. The variable photon energy and much higher flux may help to minimize critical systematic effects such as absorption, extinction and anomalous scattering. Based on a survey of selected published results from the last decade, the benefits of using synchrotron radiation in the determination of X-ray electron densities are discussed, and possible future directions of this field are examined.
C1 [Jorgensen, Mads R. V.; Hathwar, Venkatesha R.; Bindzus, Niels; Wahlberg, Nanna; Overgaard, Jacob; Iversen, Bo B.] Aarhus Univ, Dept Chem & iNANO, Ctr Mat Crystallog, DK-8000 Aarhus C, Denmark.
[Chen, Yu-Sheng] Univ Chicago, Adv Photon Source, ChemMatCARS, Chicago, IL 60637 USA.
RP Iversen, BB (reprint author), Aarhus Univ, Dept Chem & iNANO, Ctr Mat Crystallog, Langelandsgade 140, DK-8000 Aarhus C, Denmark.
EM bo@chem.au.dk
RI Jorgensen, Mads Ry Vogel/C-6109-2017;
OI Jorgensen, Mads Ry Vogel/0000-0001-5507-9615; Overgaard,
Jacob/0000-0001-6492-7962
FU Danish National Research Foundation [DNRF93]; Danish Council for Nature
and Universe (DanScatt)
FX This work was supported by the Danish National Research Foundation
(DNRF93) and the Danish Council for Nature and Universe (DanScatt).
NR 135
TC 8
Z9 8
U1 5
U2 21
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 2052-2525
J9 IUCRJ
JI IUCrJ
PD SEP
PY 2014
VL 1
BP 267
EP 280
DI 10.1107/S2052252514018570
PN 5
PG 14
WC Chemistry, Multidisciplinary; Crystallography; Materials Science,
Multidisciplinary
SC Chemistry; Crystallography; Materials Science
GA CL3QI
UT WOS:000356864900004
PM 25295169
ER
PT J
AU Camilli, L
Sutter, E
Sutter, P
AF Camilli, L.
Sutter, E.
Sutter, P.
TI Growth of two-dimensional materials on non-catalytic substrates:
h-BN/Au(111)
SO 2D Materials
LA English
DT Article
DE boron nitride; growth; gold; 2D materials; magnetron sputtering
ID HEXAGONAL BORON-NITRIDE; B-TRICHLOROBORAZINE (CLBNH)(3); CORRUGATED
MONOLAYER; GRAPHENE; NANOMESH; NI(111); HETEROSTRUCTURES; COPPER; FILM
AB The growth of two-dimensional (2D) materials is a topic of very high scientific and technological interest. While chemical vapour deposition on catalytic metals has become a well developed approach for the growth of graphene and hexagonal boron nitride (BN), very few alternative approaches for synthesis on non-reactive supports have been explored so far. Here we report the growth of BN on gold, using magnetron sputtering of B in N-2/Ar atmosphere, a scalable method using only non-toxic reagents. Scanning tunnelling microscopy at low coverage shows primarily triangular monolayer BN islands exhibiting two 'magic' orientations on the Au(111) surface. Such rotational alignment of BN on Au (111) is surprising, given the expected weak binding and the high lattice mismatch (similar to 14%) between BN and Au. Our observations are consistent with a strong coupling between the edges of BN flakes and the substrate, which leads to the selection of BN orientations that maximize the orbital overlap between edge atoms and Au surface atoms. Diverse flake morphologies resembling the shape of butterflies, six-apex stars and diamonds, implying alternating B- and N-terminated edges, are observed as well. Our results provide insight into the growth mechanisms of 2D materials on weakly interacting and chemically inert substrates, and provide the basis for integrating other 2D materials with atomically precise graphene nanostructures synthesized from molecular precursors on Au.
C1 [Camilli, L.; Sutter, E.; Sutter, P.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Sutter, P (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
EM psutter@bnl.gov
RI Camilli, Luca/C-4785-2016
OI Camilli, Luca/0000-0003-2498-0210
FU US Department of Energy, Office of Basic Energy Sciences
[DE-AC02-98CH10886]
FX Research carried out at the Center for Functional Nanomaterials,
Brookhaven National Laboratory, which is supported by the US Department
of Energy, Office of Basic Energy Sciences, under contract no.
DE-AC02-98CH10886.
NR 29
TC 6
Z9 6
U1 13
U2 65
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2053-1583
J9 2D MATER
JI 2D Mater.
PD SEP
PY 2014
VL 1
IS 2
AR 025003
DI 10.1088/2053-1583/1/2/025003
PG 11
WC Materials Science, Multidisciplinary
SC Materials Science
GA CG9PZ
UT WOS:000353650400008
ER
PT J
AU Takacs, Z
Imredy, JP
Bingham, JP
Zhorov, BS
Moczydlowski, EG
AF Takacs, Zoltan
Imredy, John P.
Bingham, Jon-Paul
Zhorov, Boris S.
Moczydlowski, Edward G.
TI Interaction of the BKCa channel gating ring with dendrotoxins
SO CHANNELS
LA English
DT Article
DE Ca2+-activated K+ channel; dendrotoxin; gating; ion channels; K+
channel; subconductance
ID PANCREATIC TRYPSIN-INHIBITOR; ACTIVATED POTASSIUM CHANNELS;
CA2+-ACTIVATED K+ CHANNELS; SODIUM-CHANNEL; NUCLEIC-ACIDS; FORCE-FIELD;
CALCIUM; VOLTAGE; PEPTIDE; INACTIVATION
AB Two classes of small homologous basic proteins, mamba snake dendrotoxins (DTX) and bovine pancreatic trypsin inhibitor (BPTI), block the large conductance Ca2+-activated K+ channel (BKCa, KCa1.1) by production of discrete subconductance events when added to the intracellular side of the membrane. This toxin-channel interaction is unlikely to be pharmacologically relevant to the action of mamba venom, but as a fortuitous ligand-protein interaction, it has certain biophysical implications for the mechanism of BKCa channel gating. In this work we examined the subconductance behavior of 9 natural dendrotoxin homologs and 6 charge neutralization mutants of -dendrotoxin in the context of current structural information on the intracellular gating ring domain of the BKCa channel. Calculation of an electrostatic surface map of the BKCa gating ring based on the Poisson-Boltzmann equation reveals a predominantly electronegative surface due to an abundance of solvent-accessible side chains of negatively charged amino acids. Available structure-activity information suggests that cationic DTX/BPTI molecules bind by electrostatic attraction to site(s) on the gating ring located in or near the cytoplasmic side portals where the inactivation ball peptide of the 2 subunit enters to block the channel. Such an interaction may decrease the apparent unitary conductance by altering the dynamic balance of open versus closed states of BKCa channel activation gating.
C1 [Takacs, Zoltan] ToxinTech, New York, NY USA.
[Imredy, John P.] Merck Res Lab, West Point, PA USA.
[Bingham, Jon-Paul] Univ Hawaii, Dept Mol Biosci & Bioengn, Honolulu, HI 96822 USA.
[Zhorov, Boris S.] McMaster Univ, Hamilton, ON, Canada.
[Zhorov, Boris S.] Russian Acad Med Sci, IM Sechenov Evolutionary Physiol & Biochem Inst, St Petersburg, Russia.
[Moczydlowski, Edward G.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Moczydlowski, Edward G.] Univ New Mexico, Sch Med, Dept Biochem & Mol Biol, Albuquerque, NM 87131 USA.
RP Moczydlowski, EG (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM egmoczy@sandia.gov
FU NIH [P01 NS42202]; Sandia National Laboratories; US Department of
Energy's National Nuclear Security Administration [DE-AC04-94AL85000];
Natural Sciences and Engineering Research Council of Canada
[GRPIN/238773-2009]
FX Experimental work was funded by NIH Grant P01 NS42202. EGM was supported
by an Early Career LDRD award from Sandia National Laboratories. Sandia
National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the US Department of Energy's National Nuclear Security
Administration under contract DE-AC04-94AL85000. Electrostatic
computations were made possible by the facilities of the Shared
Hierarchical Academic Research Computing Network
(SHARCNET:www.sharcnet.ca). This part of the work was supported by a
grant from the Natural Sciences and Engineering Research Council of
Canada to BSZ [Grant GRPIN/238773-2009].
NR 58
TC 1
Z9 1
U1 0
U2 3
PU LANDES BIOSCIENCE
PI AUSTIN
PA 1806 RIO GRANDE ST, AUSTIN, TX 78702 USA
SN 1933-6950
EI 1933-6969
J9 CHANNELS
JI Channels
PD SEP-OCT
PY 2014
VL 8
IS 5
BP 421
EP 432
DI 10.4161/19336950.2014.949186
PG 12
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA AZ7ER
UT WOS:000348382300009
PM 25483585
ER
PT J
AU Thom, R
Southard, S
Borde, A
AF Thom, Ronald
Southard, Susan
Borde, Amy
TI Climate-linked Mechanisms Driving Spatial and Temporal Variation in
Eelgrass (Zostera marina L.) Growth and Assemblage Structure in Pacific
Northwest Estuaries, USA
SO JOURNAL OF COASTAL RESEARCH
LA English
DT Article
DE Zostera marina; eelgrass growth; estuary climate impacts; Oceanic Nino
Index; El Nino-Southern Oscillation
ID SEA-LEVEL RISE; COASTAL ECOSYSTEMS; THERMAL-STRESS; STANDING-STOCK;
PUGET-SOUND; OPEN-OCEAN; IMPACTS; CARBON; SEAGRASSES; BAY
AB Using laboratory experiments on temperature and leaf metabolism, and field data sets from Washington, between 1991 and 2013, we developed lines of evidence showing that variations in water temperature, mean sea level, and desiccation stress appear to drive spatial and temporal variations in eelgrass (Zostera marina). Variations in the Oceanic Nino Index (ONI) and mean sea level (MSL), especially during the strong 1997-2001 El Nino-La Nina event, corresponded with variations in leaf growth rate of an intertidal population. Field studies suggested that this variation was associated with both desiccation period and temperature. Subtidal eelgrass shoot density recorded annually over a 10-year period was lowest during the warm and cool extremes of sea surface temperature. These periods corresponded to the extremes in the ONI. Variations in density of a very low intertidal population in a turbid estuary were explained by both variations in temperature and light reaching the plants during periods of higher MSL. These results show complex interactions between water-level variation, temperature and light as mechanisms regulating variation in eelgrass, which complicates the ability to predict the effects of climate variation and change on this important resource. Because of the extensive wide geographic distribution of eelgrass, its tractability for study, and its responsiveness to climate, this and other seagrass species should be considered useful indicators of the effects of climate variation and change on marine and estuarine ecosystems.
C1 [Thom, Ronald; Southard, Susan; Borde, Amy] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA.
RP Thom, R (reprint author), Pacific NW Natl Lab, Marine Sci Lab, 1529 West Sequim Bay Rd, Sequim, WA 98382 USA.
EM ron.thom@pnnl.gov
FU Washington State Department of Transportation (WSDOT); NOAA's Coastal
Ocean Program
FX We sincerely appreciate the invitation by DrsWenrui Huang and Scott
Hagen to participate in this special issue. Research at Clinton was
partially funded by the Washington State Department of Transportation
(WSDOT). NOAA's Coastal Ocean Program funded the Willapa Bay research.
The U.S. Department of Energy education programs provided support for a
number of outstanding students and interns who measured growth rates and
assisted in experiments including A. Simpson, K. Rust, K. Steenworthy,
B. Van Cleve, R. Moffitt, M. Prinzen, J. Lipfert, E. Fagergren, A.
Mullin, Y. Duarte, L. Ward, D. Kennedy, S. Gobert, and W. Pratt. The
valued assistance in field data collection by J. Southard, G. Williams,
D. Woodruff, H. Diefenderfer, M. Blanton, L. Antrim, W. Gardiner, J.
Vavrinec, and S. Rumrill is sincerely appreciated. Based on his
observations in San Diego Bay, K. Merkel recommended we consider sea
level anomalies. Finally, we thank S. Ennor for editing the manuscript,
L. Aston for internal review comments, and two anonymous peer reviewers
for their comments. The Pacific Northwest National Laboratory is
operated by Battelle Memorial Institute for the U.S. Department of
Energy. Report number PNNL-SA-102122.
NR 72
TC 3
Z9 3
U1 4
U2 43
PU COASTAL EDUCATION & RESEARCH FOUNDATION
PI LAWRENCE
PA 810 EAST 10TH STREET, LAWRENCE, KS 66044 USA
SN 0749-0208
EI 1551-5036
J9 J COASTAL RES
JI J. Coast. Res.
PD FAL
PY 2014
SI 68
BP 1
EP 11
DI 10.2112/SI68-001.1
PG 11
WC Environmental Sciences; Geography, Physical; Geosciences,
Multidisciplinary
SC Environmental Sciences & Ecology; Physical Geography; Geology
GA AX8FM
UT WOS:000347145600002
ER
PT J
AU Larrick, JW
Parren, PWHI
Huston, JS
Pluckthun, A
Bradbury, A
Tomlinson, IM
Chester, KA
Burton, DR
Adams, GP
Weiner, LM
Scott, JK
Alfenito, MR
Veldman, T
Reichert, JM
AF Larrick, James W.
Parren, Paul W. H. I.
Huston, James S.
Plueckthun, Andreas
Bradbury, Andrew
Tomlinson, Ian M.
Chester, Kerry A.
Burton, Dennis R.
Adams, Gregory P.
Weiner, Louis M.
Scott, Jamie K.
Alfenito, Mark R.
Veldman, Trudi
Reichert, Janice M.
TI Antibody engineering and therapeutics conference The annual meeting of
the antibody society, Huntington Beach, CA, December 7-11, 2014
SO MABS
LA English
DT Article
DE antibody-drug conjugate; antibody engineering; bispecific antibody;
effector functions; immunocytokine
AB The 25th anniversary of the Antibody Engineering & Therapeutics Conference, the Annual Meeting of The Antibody Society, will be held in Huntington Beach, CA, December 7-11, 2014. Organized by IBC Life Sciences, the event will celebrate past successes, educate participants on current activities and offer a vision of future progress in the field. Keynote addresses will be given by academic and industry experts Douglas Lauffenburger (Massachusetts Institute of Technology), Ira Pastan (National Cancer Institute), James Wells (University of California, San Francisco), Ian Tomlinson (GlaxoSmithKline) and Anthony Rees (Rees Consulting AB and Emeritus Professor, University of Bath). These speakers will provide updates of their work, placed in the context of the substantial growth of the industry over the past 25 years.
C1 [Larrick, James W.] Panorama Res Inst, San Francisco, CA USA.
[Larrick, James W.] Veloc Pharmaceut Dev, San Francisco, CA USA.
[Parren, Paul W. H. I.] Genmab, Utrecht, Netherlands.
[Huston, James S.] Huston BioConsulting LLC, Boston, MA USA.
[Plueckthun, Andreas] Univ Zurich, Inst Biochem, CH-8057 Zurich, Switzerland.
[Bradbury, Andrew] Los Alamos Natl Lab, Los Alamos, NM USA.
[Tomlinson, Ian M.] GlaxoSmithKline, Stevenage, Herts, England.
[Chester, Kerry A.] UCL, London, England.
[Burton, Dennis R.] Scripps Res Inst, La Jolla, CA 92037 USA.
[Adams, Gregory P.] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA.
[Weiner, Louis M.] Georgetown Univ, Med Ctr, Washington, DC 20007 USA.
[Scott, Jamie K.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Alfenito, Mark R.] EnGen Bio Inc, San Mateo, CA USA.
[Veldman, Trudi] AbbVie, Worcester, MA USA.
[Reichert, Janice M.] Reichert Biotechnol Consulting LLC, Framingham, MA 01701 USA.
RP Reichert, JM (reprint author), Reichert Biotechnol Consulting LLC, Framingham, MA 01701 USA.
EM reichert.biotechconsulting@gmail.com
OI Bradbury, Andrew/0000-0002-5567-8172
NR 0
TC 0
Z9 0
U1 0
U2 1
PU LANDES BIOSCIENCE
PI AUSTIN
PA 1806 RIO GRANDE ST, AUSTIN, TX 78702 USA
SN 1942-0862
EI 1942-0870
J9 MABS-AUSTIN
JI mAbs
PD SEP-OCT
PY 2014
VL 6
IS 5
BP 1115
EP 1123
DI 10.4161/19420862.2014.971627
PG 9
WC Medicine, Research & Experimental
SC Research & Experimental Medicine
GA AX4BG
UT WOS:000346878500001
PM 25517297
ER
PT J
AU Bingert, SR
AF Bingert, Sherri R.
TI SHERRI R. BINGERT
SO INTERNATIONAL JOURNAL OF POWDER METALLURGY
LA English
DT Editorial Material
C1 [Bingert, Sherri R.] Los Alamos Natl Lab, Off RDT&E DOE NNSA, Los Alamos, NM 87545 USA.
EM sherri@lanl.gov
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER POWDER METALLURGY INST
PI PRINCETON
PA 105 COLLEGE ROAD EAST, PRINCETON, NJ 08540 USA
SN 0888-7462
J9 INT J POWDER METALL
JI Int. J. Powder Metall.
PD FAL
PY 2014
VL 50
IS 4
BP 6
EP 8
PG 3
WC Metallurgy & Metallurgical Engineering
SC Metallurgy & Metallurgical Engineering
GA AX4DC
UT WOS:000346883100003
ER
PT J
AU Peisert, S
Margulies, J
Nicol, DM
Khurana, H
Sawall, C
AF Peisert, Sean
Margulies, Jonathan
Nicol, David M.
Khurana, Himanshu
Sawall, Chris
TI Designed-in Security for Cyber-Physical Systems
SO IEEE SECURITY & PRIVACY
LA English
DT Editorial Material
C1 [Peisert, Sean] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Peisert, Sean] Univ Calif Davis, Davis, CA 95616 USA.
[Margulies, Jonathan] Qmulos, Chantilly, VA USA.
[Nicol, David M.] Univ Illinois, Chicago, IL 60680 USA.
[Khurana, Himanshu] Honeywell, Morristown, NJ USA.
[Sawall, Chris] Ameren, St Louis, MO USA.
RP Peisert, S (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM sppeisert@lbl.gov; margulies@gmail.com; dmnicol@illinois.edu;
himanshu.khurana@honeywell.com; sawall@gmail.com
NR 0
TC 0
Z9 0
U1 1
U2 17
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 1540-7993
EI 1558-4046
J9 IEEE SECUR PRIV
JI IEEE Secur. Priv.
PD SEP-OCT
PY 2014
VL 12
IS 5
BP 9
EP 12
PG 4
WC Computer Science, Information Systems; Computer Science, Software
Engineering
SC Computer Science
GA AW5MS
UT WOS:000346319800003
ER
PT J
AU Dwyer, DA
AF Dwyer, Daniel A.
TI The neutrino mixing angle theta(13): Reactor and accelerator experiments
SO PHYSICS OF THE DARK UNIVERSE
LA English
DT Article
DE Neutrino oscillation; Neutrino mixing; Neutrino mass hierarchy; Reactor;
Accelerator
AB Recent measurements of the neutrino mixing angle theta(13) cap a decade of observations which have clearly established the oscillation of neutrino flavor. Measurements of reactor (nu) over bar (e) disappearance over similar to km distances have provided a precise value for this mixing angle. Detection of nu(e) in beams of nu(mu) from particle accelerators also support a non-zero value of theta(13), and comparisons between these two techniques are sensitive to the remaining unknowns of neutrino oscillation. The unexpectedly large value for theta(13) allows for future tests of the neutrino mass hierarchy and CP-violation in neutrino oscillation. Measurement of the energy dependence of reactor (nu) over bar (e) disappearance has been used to determine the larger neutrino mass-squared difference, vertical bar Lambda m(31)(2)vertical bar approximate to vertical bar Lambda m(32)(2)vertical bar. Consistency with observations of accelerator nu(mu) disappearance supports the three-flavor model of neutrino flavor oscillation. (C) 2014 The Author. Published by Elsevier B.V.
C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Dwyer, DA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM dadwyer@lbl.gov
FU DOE OHEP [DE-AC02-05CH11231]
FX The author would like to thank the organizers of the 13th International
Conference on Topics in Astroparticle and Underground Physics for the
opportunity to present this material. This work was supported under DOE
OHEP DE-AC02-05CH11231.
NR 34
TC 0
Z9 0
U1 0
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2212-6864
J9 PHYS DARK UNIVERSE
JI Phys. Dark Universe
PD SEP
PY 2014
VL 4
BP 31
EP 35
DI 10.1016/j.dark.2014.05.001
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AW3UJ
UT WOS:000346211200008
ER
PT J
AU Tan, SR
Huang, LJ
AF Tan, Sirui
Huang, Lianjie
TI Reducing the computer memory requirement for 3D reverse-time migration
with a boundary-wavefield extrapolation method
SO GEOPHYSICS
LA English
DT Article
ID INDEPENDENT STABILITY-CRITERIA; DIFFERENCE APPROXIMATIONS;
CONSERVATION-LAWS; IMPLEMENTATION; PROPAGATION; INVERSION
AB Reverse-time migration (RTM) using the crosscorrelation imaging condition requires that the forward-propagated source wavefield and the backward-propagated receiver wavefield be accessible within the imaging domain at the same time step. There are two categories of methods to balance the computer memory requirement and the computational complexity of RTM: checkpointing methods and source-wavefield reconstruction methods. We have developed a new source-wavefield reconstruction method to improve the balance between the computer memory requirement and the computational complexity of RTM. During the forward simulation of the source wavefield, we stored boundary wavefields only at one or two layers of spatial grid points and reconstructed the back-propagated source wavefield at the same time step as that of the back-propagated receiver wavefield, using a high-order wave-equation extrapolation scheme. One conventional RTM method uses boundary wavefields stored at multiple layers of spatial grid points and a high-order finite-difference (FD) scheme to reconstruct the back-propagated source wavefield. For an FD scheme with the eighth or sixteenth order of accuracy in space, our new method used only 37.5% of the computer memory required by this conventional method to store the boundary wavefields. This reduction of computer memory usage is significant because storing the boundary wavefields consumes most of the computer memory required for 3D migration using reconstructed source wavefields. Moreover, our method maintained the spatial order of accuracy of the FD scheme for the entire imaging domain, whereas some conventional methods reduce the spatial-order accuracy of the FD scheme near the boundaries to back-propagate the source wavefield to decrease the computer memory requirement. We validated our method using synthetic seismic data. Our method produced 2D and 3D migration images of complex subsurface structures as accurate as those yielded using an RTM method without reducing the spatial order of accuracy near the boundaries.
C1 [Tan, Sirui; Huang, Lianjie] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM USA.
RP Tan, SR (reprint author), ExxonMobil Upstream Res Co, Houston, TX 77098 USA.
EM siruitan@hotmail.com; ljh@lanl.gov
RI Tan, Sirui/H-9565-2015
OI Tan, Sirui/0000-0002-8150-3261
FU U.S. Department of Energy [DE-AC52-06NA25396]
FX This work was supported by U.S. Department of Energy through contract
DE-AC52-06NA25396 to Los Alamos National Laboratory (LANL). The
computation was performed using supercomputers of LANL's Institutional
Computing Program. We thank the associate editor F. Liu and three
anonymous reviewers for their valuable comments. We also thank M.
Intrator for her careful review of this paper.
NR 31
TC 7
Z9 7
U1 1
U2 6
PU SOC EXPLORATION GEOPHYSICISTS
PI TULSA
PA 8801 S YALE ST, TULSA, OK 74137 USA
SN 0016-8033
EI 1942-2156
J9 GEOPHYSICS
JI Geophysics
PD SEP-OCT
PY 2014
VL 79
IS 5
BP S185
EP S194
DI 10.1190/GEO2014-0075.1
PG 10
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AU9JA
UT WOS:000345907100033
ER
PT J
AU Tan, SR
Huang, LJ
AF Tan, Sirui
Huang, Lianjie
TI Least-squares reverse-time migration with a wavefield-separation imaging
condition and updated source wavefields
SO GEOPHYSICS
LA English
DT Article
ID REFLECTION DATA; INVERSION
AB Directly imaging steeply dipping fault zones is difficult for conventional migration, including reverse-time migration (RTM). We developed a new least-squares RTM (LSRTM) method to directly image steeply dipping fault zones. The method uses a wavefield-separation imaging condition and updated source wavefields during each iteration. Our new imaging method produces horizontal-looking images that show mostly steeply dipping fault zones. Conventional least-squares RTM does not update source wavefields and cannot directly image vertical fault zones. We numerically determined that it is crucial to update source wavefields to image steeply dipping fault zones. Using synthetic seismic data, we proved that our new LSRTM method can directly image steeply dipping fault zones with dipping angles up to 90 degrees. Compared with conventional LSRTM, our LSRTM method was less sensitive to the smoothness and the velocity error of the initial migration velocity model.
C1 [Tan, Sirui; Huang, Lianjie] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM USA.
RP Tan, SR (reprint author), ExxonMobil Upstream Res Co, Houston, TX 77098 USA.
EM siruitan@hotmail.com; ljh@lanl.gov
RI Tan, Sirui/H-9565-2015
OI Tan, Sirui/0000-0002-8150-3261
FU United States Department of Energy [DE-AC52-06NA25396]
FX This work was supported by United States Department of Energy through
contract no. DE-AC52-06NA25396 to Los Alamos National Laboratory (LANL).
The computation was performed using supercomputers at LANL's
Institutional Computing Program. We thank J. Queen of Hi-Q Geophysical
Inc. for providing the velocity model from Brady's geothermal field
containing four steeply dipping fault zones. We thank associate editor
F. Liu, reviewer M. Wong, and two anonymous reviewers for their valuable
comments.
NR 16
TC 9
Z9 10
U1 0
U2 4
PU SOC EXPLORATION GEOPHYSICISTS
PI TULSA
PA 8801 S YALE ST, TULSA, OK 74137 USA
SN 0016-8033
EI 1942-2156
J9 GEOPHYSICS
JI Geophysics
PD SEP-OCT
PY 2014
VL 79
IS 5
BP S195
EP S205
DI 10.1190/GEO2014-0020.1
PG 11
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AU9JA
UT WOS:000345907100034
ER
PT J
AU Trainor-Guitton, WJ
Hoversten, GM
Ramirez, A
Roberts, J
Juliusson, E
Key, K
Mellors, R
AF Trainor-Guitton, Whitney J.
Hoversten, G. Michael
Ramirez, Abelardo
Roberts, Jeffery
Juliusson, Egill
Key, Kerry
Mellors, Robert
TI The value of spatial information for determining well placement: A
geothermal example
SO GEOPHYSICS
LA English
DT Article
ID ELECTRICAL-RESISTIVITY; SEISMIC AMPLITUDE; METHODOLOGY; RESERVOIRS;
FIELD
AB We have developed a spatial, value of information (VOI) methodology that is designed specifically to include the inaccuracies of multidimensional geophysical inversions. VOI assesses the worth of information in terms of how it can improve the decision maker's likelihood of a higher valued outcome. VOI can be applied to spatial data using an exploration example for hidden geothermal resources. This methodology is applicable for spatial decisions for other exploration decisions (e.g., oil, mining, etc.). This example evaluates how well the magnetotelluric (MT) technique is able to delineate the lateral position of electrically conductive materials that are indicative of a hidden geothermal resource. The conductive structure (referred to as the clay cap) represented where the geothermal alteration occurred. The prior uncertainty of the position of the clay cap (drilling target) is represented with multiple earth models. These prior models are used to numerically simulate the data collection, noise, inversion, and interpretation of the MT technique. MT's ability to delineate the correct lateral location can be quantified by comparing the true location in each prior model to the location that is interpreted from each respective inverted model. Additional complexity in the earth models is included by adding more electrical conductors (not associated with the clay cap) and deeper targets. Both degrade the ability of the MT technique (the signal and inversion) to locate the clay cap thereby decreasing the VOI. The results indicate the ability of the prior uncertainty to increase and decrease the final VOI assessment. The results also demonstrate how VOI depends on whether or not a resource still exists below the clay cap because the clay cap is only a potential indicator of economic temperatures.
C1 [Trainor-Guitton, Whitney J.; Ramirez, Abelardo; Roberts, Jeffery; Mellors, Robert] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Ramirez, Abelardo] ChevronTexaco, San Ramon, CA USA.
[Juliusson, Egill] Landsvirkjun, Reykjavik, Iceland.
[Key, Kerry] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA.
RP Trainor-Guitton, WJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM trainorguitton@llnl.gov; hovg@chevron.com; ramirez3@llnl.gov;
roberts17@llnl.gov; egill.juliusson@landsvirkjun.is; kkey@ucsd.edu;
mellors1@llnl.gov
RI Mellors, Robert/K-7479-2014; Key, Kerry/B-1092-2008
OI Mellors, Robert/0000-0002-2723-5163;
FU Geothermal Program of the Department of Energy; U.S. Department of
Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
FX The authors would like to thank J. Ziagos for his early contributions to
this work, the Geothermal Program of the Department of Energy for
funding this research, and for the reviewers who greatly improved the
quality of this manuscript, especially the reviewer who offered the
notation for the posterior calculation. This research was performed
under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under contract no. DE-AC52-07NA27344.
NR 28
TC 2
Z9 2
U1 2
U2 8
PU SOC EXPLORATION GEOPHYSICISTS
PI TULSA
PA 8801 S YALE ST, TULSA, OK 74137 USA
SN 0016-8033
EI 1942-2156
J9 GEOPHYSICS
JI Geophysics
PD SEP-OCT
PY 2014
VL 79
IS 5
BP W27
EP W41
DI 10.1190/GEO2013-0337.1
PG 15
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AU9JA
UT WOS:000345907100047
ER
PT J
AU Davidovich, RL
Tkachev, VV
Logvinova, VB
Kostin, VI
Stavila, V
AF Davidovich, R. L.
Tkachev, V. V.
Logvinova, V. B.
Kostin, V. I.
Stavila, V.
TI Crystal structure of tetramethylammonium fluoridotitanate(IV) with
dimeric complex anions of different compositions
SO JOURNAL OF STRUCTURAL CHEMISTRY
LA English
DT Article
DE thermodynamics crystal structure; fluoridotitanate(IV);
tetramethylammonium; dimeric complex anion; octahedron; tetrahedron
ID SALTS
AB To the best of our knowledge, this is the first report of the synthesis and characterization of tetramethylammonium fluoridotitanate(IV) [N(CH3)(4)](4)[Ti2F11][Ti2F9(H2O)(2)] with two dimeric complex anions of different compositions. The disordered crystal structure of [N(CH3)(4)](4)[Ti2F11][Ti2F9(H2O)(2)] is formed by dimeric complex anions [Ti2F11](3-) and [Ti2F9(H2O)(2)](-) in a 1:1 ratio and tetramethylammonium cations N(CH3) (4) (+) , each with an occupancy factor of 0.5. The dimeric complex anions, which structurally alternate with an occupancy factor of 0.5, form a pseudodimeric anion {(Ti2F11)(0,5)(Ti2F9(H2O)(2))(0,5)}(2-) whose charge is compensated by the disordered cations N(CH3) (4) (+) . The hydrogen bonds O-Ha <-F link the dimeric complex anions [Ti2F11](3-) and [Ti2F9(H2O)(2)](-) into polymeric ribbons, with the N(CH3) (4) (+) cations being located between the ribbons.
C1 [Davidovich, R. L.; Logvinova, V. B.; Kostin, V. I.] Russian Acad Sci, Inst Chem, Far Eastern Branch, Vladivostok 690022, Russia.
[Tkachev, V. V.] Russian Acad Sci, Inst Problems Chem Phys, Chernogolovka 142432, Russia.
[Stavila, V.] Sandia Natl Labs, Livermore, CA USA.
RP Davidovich, RL (reprint author), Russian Acad Sci, Inst Chem, Far Eastern Branch, Vladivostok 690022, Russia.
EM davidovich@ich.dvo.ru; vatka@icp.ac.ru; vstavila@gmail.com
NR 12
TC 1
Z9 1
U1 0
U2 1
PU MAIK NAUKA/INTERPERIODICA/SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA
SN 0022-4766
EI 1573-8779
J9 J STRUCT CHEM+
JI J. Struct. Chem.
PD SEP
PY 2014
VL 55
IS 5
BP 923
EP 926
DI 10.1134/S0022476614050199
PG 4
WC Chemistry, Inorganic & Nuclear; Chemistry, Physical
SC Chemistry
GA AW0GL
UT WOS:000345969100019
ER
PT J
AU Niculaes, C
Morreel, K
Kim, H
Lu, FC
Mckee, LS
Ivens, B
Haustraete, J
Vanholme, B
De Rycke, R
Hertzberg, M
Fromm, J
Bulone, V
Polle, A
Ralph, J
Boerjan, W
AF Niculaes, Claudiu
Morreel, Kris
Kim, Hoon
Lu, Fachuang
Mckee, Lauren S.
Ivens, Bart
Haustraete, Jurgen
Vanholme, Bartel
De Rycke, Riet
Hertzberg, Magnus
Fromm, Jorg
Bulone, Vincent
Polle, Andrea
Ralph, John
Boerjan, Wout
TI Phenylcoumaran Benzylic Ether Reductase Prevents Accumulation of
Compounds Formed under Oxidative Conditions in Poplar Xylem
SO PLANT CELL
LA English
DT Article
ID TRACHEARY ELEMENT DIFFERENTIATION; PULSED-FIELD GRADIENTS; ZINNIA
MESOPHYLL-CELLS; MASS-SPECTROMETRY; STRUCTURAL-CHARACTERIZATION;
PINORESINOL-LARICIRESINOL; ISOFLAVONE REDUCTASES; PHENOLIC-COMPOUNDS;
LIGNIFICATION; LIGNIN
AB Phenylcoumaran benzylic ether reductase (PCBER) is one of the most abundant proteins in poplar (Populus spp) xylem, but its biological role has remained obscure. In this work, metabolite profiling of transgenic poplar trees downregulated in PCBER revealed both the in vivo substrate and product of PCBER. Based on mass spectrometry and NMR data, the substrate was identified as a hexosylated 8-5-coupling product between sinapyl alcohol and guaiacylglycerol, and the product was identified as its benzyl-reduced form. This activity was confirmed in vitro using a purified recombinant PCBER expressed in Escherichia coli. Assays performed on 20 synthetic substrate analogs revealed the enzyme specificity. In addition, the xylem of PCBER-downregulated trees accumulated over 2000-fold higher levels of cysteine adducts of monolignol dimers. These compounds could be generated in vitro by simple oxidative coupling assays involving monolignols and cysteine. Altogether, our data suggest that the function of PCBER is to reduce phenylpropanoid dimers in planta to form antioxidants that protect the plant against oxidative damage. In addition to describing the catalytic activity of one of the most abundant enzymes in wood, we provide experimental evidence for the antioxidant role of a phenylpropanoid coupling product in planta.
C1 [Niculaes, Claudiu; Morreel, Kris; Ivens, Bart; Vanholme, Bartel; De Rycke, Riet; Boerjan, Wout] VIB Inst, Dept Plant Syst Biol, B-9052 Ghent, Belgium.
[Niculaes, Claudiu; Morreel, Kris; Ivens, Bart; Vanholme, Bartel; De Rycke, Riet; Boerjan, Wout] Univ Ghent, Dept Plant Biotechnol & Bioinformat, B-9052 Ghent, Belgium.
[Kim, Hoon; Lu, Fachuang; Ralph, John] Univ Wisconsin, Wisconsin Energy Inst, Dept Biochem, Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA.
[Kim, Hoon; Lu, Fachuang; Ralph, John] Univ Wisconsin, Wisconsin Energy Inst, Great Lakes Bioenergy Res Ctr, US Dept Energy, Madison, WI 53726 USA.
[Mckee, Lauren S.; Bulone, Vincent] AlbaNova Univ Ctr, Royal Inst Technol, KTH, Div Glycosci,Sch Biotechnol, S-10691 Stockholm, Sweden.
[Haustraete, Jurgen] Univ Ghent VIB, Dept Mol Biomed Res, Prot Serv Facil, B-9052 Ghent, Belgium.
[Hertzberg, Magnus] SweTree Technol, SE-90403 Umea, Sweden.
[Fromm, Jorg] Univ Hamburg, Zentrum Holzwirtschaft, D-21031 Hamburg, Germany.
[Polle, Andrea] Univ Gottingen, Busgen Inst, D-37077 Gottingen, Germany.
RP Boerjan, W (reprint author), VIB Inst, Dept Plant Syst Biol, B-9052 Ghent, Belgium.
EM woboe@psb.vib-ugent.be
OI /0000-0002-3372-8773; Boerjan, Wout/0000-0003-1495-510X
FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science)
[DE-FC02-07ER64494]; Hercules program of Ghent University [AUGE/014];
Flanders Research Foundation (FWO) [G.0637.07N]; European collaborative
project ENERGYPOPLAR [FP7-211917]
FX NMR experiments on the 600-MHz Bruker microcryoprobe NMR instrument made
use of the National Magnetic Resonance Facility at the University of
Wisconsin-Madison (http://www.nmrfam.wisc.edu); we thank Mark Anderson
for his help with this instrument and Milo Westler for aid with the
water suppression experiments. We thank Kristine Vander Mijnsbrugge,
Catherine Lapierre, and Brigitte Pollet for various analyses on an
earlier set of poplar lines that were less stably downregulated for
PCBER and that were generated by antisense technology; Andras Gorzsas
for Fourier transform infrared analysis of wood samples and Frederic
Leroux for electron microscopy analysis; Frank Van Breusegem and Pavel
Kerchev for critical reading of the article; and Eric Messens for
helpful discussions. J.R., F.L., and H.K. were funded by the DOE Great
Lakes Bioenergy Research Center (DOE BER Office of Science
DE-FC02-07ER64494). We also thank the Hercules program of Ghent
University for the Synapt Q-Tof (Grant AUGE/014); the Bijzonder
Onderzoeksfonds-Zware Apparatuur of Ghent University for the Fourier
transform ion cyclotron resonance mass spectrometer (174PZA05); and the
Multidisciplinary Research Partnership Biotechnology for a Sustainable
Economy (01MRB510W) of Ghent University. C.N. was funded by Flanders
Research Foundation (FWO) Grant G.0637.07N and by the European
collaborative project ENERGYPOPLAR (FP7-211917).
NR 58
TC 5
Z9 6
U1 1
U2 29
PU AMER SOC PLANT BIOLOGISTS
PI ROCKVILLE
PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA
SN 1040-4651
EI 1532-298X
J9 PLANT CELL
JI Plant Cell
PD SEP
PY 2014
VL 26
IS 9
BP 3775
EP 3791
DI 10.1105/tpc.114.125260
PG 17
WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology
SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology
GA AU9NF
UT WOS:000345919700023
PM 25238751
ER
PT J
AU Zaborin, A
Smith, D
Garfield, K
Quensen, J
Shakhsheer, B
Kade, M
Tirrell, M
Tiedje, J
Gilbert, JA
Zaborina, O
Alverdy, JC
AF Zaborin, Alexander
Smith, Daniel
Garfield, Kevin
Quensen, John
Shakhsheer, Baddr
Kade, Matthew
Tirrell, Matthew
Tiedje, James
Gilbert, Jack A.
Zaborina, Olga
Alverdy, John C.
TI Membership and Behavior of Ultra-Low-Diversity Pathogen Communities
Present in the Gut of Humans during Prolonged Critical Illness
SO MBIO
LA English
DT Article
ID BACTERIA-HOST COMMUNICATION; BLOOD-STREAM INFECTIONS;
GASTROINTESTINAL-TRACT; PSEUDOMONAS-AERUGINOSA; CANDIDA-ALBICANS;
ANTIBIOTIC SUSCEPTIBILITY; VIRULENCE EXPRESSION; NEONATAL SEPSIS; GENES;
MORPHINE
AB We analyzed the 16S rRNA amplicon composition in fecal samples of selected patients during their prolonged stay in an intensive care unit (ICU) and observed the emergence of ultra-low-diversity communities (1 to 4 bacterial taxa) in 30% of the patients. Bacteria associated with the genera Enterococcus and Staphylococcus and the family Enterobacteriaceae comprised the majority of these communities. The composition of cultured species from stool samples correlated to the 16S rRNA analysis and additionally revealed the emergence of Candida albicans and Candida glabrata in similar to 75% of cases. Four of 14 ICU patients harbored 2-member pathogen communities consisting of one Candida taxon and one bacterial taxon. Bacterial members displayed a high degree of resistance to multiple antibiotics. The virulence potential of the 2-member communities was examined in C. elegans during nutrient deprivation and exposure to opioids in order to mimic local conditions in the gut during critical illness. Under conditions of nutrient deprivation, the bacterial members attenuated the virulence of fungal members, leading to a "commensal lifestyle." However, exposure to opioids led to a breakdown in this commensalism in 2 of the ultra-low-diversity communities. Application of a novel antivirulence agent (phosphate-polyethylene glycol [Pi-PEG]) that creates local phosphate abundance prevented opioid-induced virulence among these pathogen communities, thus rescuing the commensal lifestyle. To conclude, the gut microflora in critically ill patients can consist of ultra-low-diversity communities of multidrug-resistant pathogenic microbes. Local environmental conditions in gut may direct pathogen communities to adapt to either a commensal style or a pathogenic style.
IMPORTANCE During critical illness, the normal gut microbiota becomes disrupted in response to host physiologic stress and antibiotic treatment. Here we demonstrate that the community structure of the gut microbiota during prolonged critical illness is dramatically changed such that in many cases only two-member pathogen communities remain. Most of these ultra-low-membership communities display low virulence when grouped together (i.e., a commensal lifestyle); individually, however, they can express highly harmful behaviors (i.e., a pathogenic lifestyle). The commensal lifestyle of the whole community can be shifted to a pathogenic one in response to host factors such as opioids that are released during physiologic stress and critical illness. This shift can be prevented by using compounds such as Pi-PEG15-20 that interrupt bacterial virulence expression. Taking the data together, this report characterizes the plasticity seen with respect to the choice between a commensal lifestyle and a pathogenic lifestyle among ultra-low-diversity pathogen communities that predominate in the gut during critical illness and offers novel strategies for prevention of sepsis.
C1 [Zaborin, Alexander; Shakhsheer, Baddr; Kade, Matthew; Tirrell, Matthew; Gilbert, Jack A.; Zaborina, Olga; Alverdy, John C.] Univ Chicago, Chicago, IL 60637 USA.
[Smith, Daniel; Gilbert, Jack A.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Garfield, Kevin; Quensen, John; Tiedje, James] Michigan State Univ, E Lansing, MI 48824 USA.
RP Alverdy, JC (reprint author), Univ Chicago, Chicago, IL 60637 USA.
EM ozaborin@surgery.bsd.uchicago.edu; jalverdy@surgery.bsd.uchicago.edu
FU NIH [RO1 2R01GM062344-13A1]; U.S. Dept. of Energy [DE-AC02-06CH11357];
U.S. Department of Energy, Office of Science, Basic Energy Sciences,
Materials Sciences, and an Engineering Division
FX This study was funded by NIH grant RO1 2R01GM062344-13A1 (J.C.A.). This
work was supported in part by the U.S. Dept. of Energy under contract
DE-AC02-06CH11357 (J.G.) and by the U.S. Department of Energy, Office of
Science, Basic Energy Sciences, Materials Sciences, and an Engineering
Division (M.K. and M.T.).
NR 42
TC 36
Z9 36
U1 2
U2 21
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 2150-7511
J9 MBIO
JI mBio
PD SEP-OCT
PY 2014
VL 5
IS 5
AR e01361-14
DI 10.1128/mBio.01361-14
PG 14
WC Microbiology
SC Microbiology
GA AU2OY
UT WOS:000345459000007
PM 25249279
ER
PT J
AU Funk, C
Hoell, A
Stone, D
AF Funk, Chris
Hoell, Andrew
Stone, Daithi
TI EXAMINING THE CONTRIBUTION OF THE OBSERVED GLOBAL WARMING TREND TO THE
CALIFORNIA DROUGHTS OF 2012/13 AND 2013/14
SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY
LA English
DT Article
AB Long-term SST warming trends did not contribute substantially to the 2012/13 and 2013/14 California droughts. North Pacific SSTs were exceptionally warm, however; and coupled models indicate more frequent extreme precipitation.
C1 [Funk, Chris] US Geol Survey, Santa Barbara, CA USA.
[Funk, Chris; Hoell, Andrew] Univ Calif Santa Barbara, Climate Hazard Grp, Santa Barbara, CA 93106 USA.
[Stone, Daithi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Funk, C (reprint author), US Geol Survey, Santa Barbara, CA USA.
NR 0
TC 23
Z9 24
U1 3
U2 37
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0003-0007
EI 1520-0477
J9 B AM METEOROL SOC
JI Bull. Amer. Meteorol. Soc.
PD SEP
PY 2014
VL 95
IS 9
SU S
BP S11
EP S15
PG 5
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA AT3FD
UT WOS:000344820500004
ER
PT J
AU Singh, D
Horton, DE
Tsiang, M
Haugen, M
Ashfaq, M
Mei, R
Rastogi, D
Johnson, NC
Charland, A
Rajaratnam, B
Diffenbaugh, NS
AF Singh, Deepti
Horton, Daniel E.
Tsiang, Michael
Haugen, Matz
Ashfaq, Moetasim
Mei, Rui
Rastogi, Deeksha
Johnson, Nathaniel C.
Charland, Allison
Rajaratnam, Bala
Diffenbaugh, Noah S.
TI SEVERE PRECIPITATION IN NORTHERN INDIA IN JUNE 2013: CAUSES, HISTORICAL
CONTEXT, AND CHANGES IN PROBABILITY
SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY
LA English
DT Article
AB Cumulative precipitation in northern India in June 2013 was a century-scale event, and evidence for increased probability in the present climate compared to the preindustrial climate is equivocal.
C1 [Singh, Deepti; Horton, Daniel E.; Tsiang, Michael; Haugen, Matz; Charland, Allison; Rajaratnam, Bala; Diffenbaugh, Noah S.] Stanford Univ, Dept Environm Earth Syst Sci, Stanford, CA 94305 USA.
[Singh, Deepti; Horton, Daniel E.; Tsiang, Michael; Haugen, Matz; Charland, Allison; Rajaratnam, Bala; Diffenbaugh, Noah S.] Stanford Univ, Woods Inst Environm, Stanford, CA 94305 USA.
[Tsiang, Michael; Haugen, Matz; Rajaratnam, Bala] Stanford Univ, Dept Stat, Stanford, CA 94305 USA.
[Ashfaq, Moetasim; Mei, Rui; Rastogi, Deeksha] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA.
[Johnson, Nathaniel C.] Univ Hawaii Manoa, Int Pacific Res Ctr, Honolulu, HI 96822 USA.
[Johnson, Nathaniel C.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA.
RP Singh, D (reprint author), Stanford Univ, Dept Environm Earth Syst Sci, Stanford, CA 94305 USA.
RI Johnson, Nathaniel/L-8045-2015
OI Johnson, Nathaniel/0000-0003-4906-178X
NR 0
TC 9
Z9 10
U1 0
U2 2
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0003-0007
EI 1520-0477
J9 B AM METEOROL SOC
JI Bull. Amer. Meteorol. Soc.
PD SEP
PY 2014
VL 95
IS 9
SU S
BP S58
EP S61
PG 4
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA AT3FD
UT WOS:000344820500017
ER
PT J
AU Giorgi, EE
Stram, DO
Taverna, D
Turner, SD
Schumacher, F
Haiman, CA
Lum-Jones, A
Tirikainen, M
Caberto, C
Duggan, D
Henderson, BE
Le Marchand, L
Cheng, I
AF Giorgi, Elena E.
Stram, Daniel O.
Taverna, Darin
Turner, Stephen D.
Schumacher, Fredrick
Haiman, Christopher A.
Lum-Jones, Annette
Tirikainen, Maarit
Caberto, Christian
Duggan, David
Henderson, Brian E.
Le Marchand, Loic
Cheng, Iona
TI Fine-Mapping IGF1 and Prostate Cancer Risk in African Americans: The
Multiethnic Cohort Study
SO CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION
LA English
DT Article
ID GENOME-WIDE ASSOCIATION; GENETIC-VARIATION; CIRCULATING LEVELS;
BREAST-CANCER; IGFBP3
AB Genetic variation at insulin-like growth factor 1 (IGF1) has been linked to prostate cancer risk. However, the specific predisposing variants have not been identified. In this study, we fine-mapped the IGF1 locus for prostate cancer risk in African Americans. We conducted targeted Roche GS-Junior 454 resequencing of a 156-kb region of IGF1 in 80 African American aggressive prostate cancer cases. Three hundred and thirty-four IGF1 SNPs were examined for their association with prostate cancer risk in 1,000 African American prostate cancer cases and 991 controls. The top associated SNP in African Americans, rs148371593, was examined in an additional 3,465 prostate cancer cases and 3,425 controls of non-African American ancestry-European Americans, Japanese Americans, Latinos, and Native Hawaiians. The overall association of 334 IGF1 SNPs and prostate cancer risk was assessed using logistic kernel-machine methods. The association between each SNP and prostate cancer risk was evaluated through unconditional logistic regression. A false discovery rate threshold of q < 0.1 was used to determine statistical significance of associations. We identified 8 novel IGF1 SNPs. The cumulative effect of the 334 IGF1 SNPs was not associated with prostate cancer risk (P = 0.13) in African Americans. Twenty SNPs were nominally associated with prostate cancer at P < 0.05. The top associated SNP among African Americans, rs148371593 [minor allele frequency (MAF) = 0.03; P = 0.0014; q > 0.1], did not reach our criterion of statistical significance. This polymorphism was rare in non-African Americans (MAF < 0.003) and was not associated with prostate cancer risk (P = 0.98). Our findings do not support the role of IGF1 variants and prostate cancer risk among African Americans. (C) 2014 AACR.
C1 [Giorgi, Elena E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA.
[Stram, Daniel O.; Schumacher, Fredrick; Haiman, Christopher A.; Henderson, Brian E.] Univ So Calif, Keck Sch Med, Norris Comprehens Canc Ctr, Dept Prevent Med, Los Angeles, CA 90033 USA.
[Taverna, Darin; Duggan, David] Translat Genom Res Inst, Div Genet Basis Human Dis, Phoenix, AZ USA.
[Turner, Stephen D.] Univ Virginia, Sch Med, Charlottesville, VA 22908 USA.
[Lum-Jones, Annette; Tirikainen, Maarit; Caberto, Christian; Le Marchand, Loic] Univ Hawaii, Ctr Canc, Program Epidemiol, Honolulu, HI 96822 USA.
[Cheng, Iona] Canc Prevent Inst Calif, Fremont, CA USA.
[Taverna, Darin] Syst Imaginat Inc, Phoenix, AZ USA.
RP Giorgi, EE (reprint author), Los Alamos Natl Lab, MS K710, Los Alamos, NM 87544 USA.
EM egiorgi@lanl.gov
FU Jim Valvano Foundation for Cancer Research; Center for Nonlinear
Studies, LANL, through Laboratory Directed Research and Development
(LDRD) funds [201110434DR]
FX This work was supported by the V Scholar Award (I. Cheng) from the Jim
Valvano Foundation for Cancer Research. E.E. Giorgi is supported by the
Center for Nonlinear Studies, LANL, through Laboratory Directed Research
and Development (LDRD) funds, number 201110434DR.
NR 18
TC 2
Z9 2
U1 0
U2 2
PU AMER ASSOC CANCER RESEARCH
PI PHILADELPHIA
PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA
SN 1055-9965
EI 1538-7755
J9 CANCER EPIDEM BIOMAR
JI Cancer Epidemiol. Biomarkers Prev.
PD SEP
PY 2014
VL 23
IS 9
BP 1928
EP 1932
DI 10.1158/1055-9965.EPI-14-0333
PG 5
WC Oncology; Public, Environmental & Occupational Health
SC Oncology; Public, Environmental & Occupational Health
GA AT9XC
UT WOS:000345276100022
PM 24904019
ER
PT J
AU Williams, IN
Torn, MS
Riley, WJ
Wehner, MF
AF Williams, I. N.
Torn, M. S.
Riley, W. J.
Wehner, M. F.
TI Impacts of climate extremes on gross primary production under global
warming
SO ENVIRONMENTAL RESEARCH LETTERS
LA English
DT Article
DE ecosystem carbon; water stress; climate impacts; climate extremes; soil
moisture
ID CARBON-CYCLE; DROUGHT; TEMPERATURE; VARIABILITY; REDUCTION; CMIP5; RAIN;
PROJECTIONS; ENSEMBLE; FORESTS
AB The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at the warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate projections, and the time taken to return to locally optimal climates for GPP following climate extremes increases by more than 25% over many land regions.
C1 [Williams, I. N.; Torn, M. S.; Riley, W. J.] Natl Lab, Climate Sci Dept, Div Earth Sci, Berkeley, CA 94720 USA.
[Wehner, M. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.
RP Williams, IN (reprint author), Natl Lab, Climate Sci Dept, Div Earth Sci, Berkeley, CA 94720 USA.
EM inwilliams@lbl.gov
RI Williams, Ian/G-3256-2015; Riley, William/D-3345-2015; Torn,
Margaret/D-2305-2015
OI Williams, Ian/0000-0003-0355-1310; Riley, William/0000-0002-4615-2304;
FU Office of Science, Office of Biological and Environmental Research of
the US Department of Energy, Atmospheric System Research and Regional
and Global Climate Modeling (RGCM) Programs [DE-AC02-05CH11231]
FX This research was supported by the Director, Office of Science, Office
of Biological and Environmental Research of the US Department of Energy
under Contract No. DE-AC02-05CH11231 as part of the Atmospheric System
Research and Regional and Global Climate Modeling (RGCM) Programs. We
acknowledge the World Climate Research Programme's Working Group on
Coupled Modelling, which is responsible for CMIP, and we thank the
climate modeling groups (listed in table S1 of this paper) for producing
and making available their model output. For CMIP the US Department of
Energy's Program for Climate Model Diagnosis and Intercomparison
provides coordinating support and led development of software
infrastructure in partnership with the Global Organization for Earth
System Science Portals.
NR 39
TC 7
Z9 7
U1 5
U2 40
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-9326
J9 ENVIRON RES LETT
JI Environ. Res. Lett.
PD SEP
PY 2014
VL 9
IS 9
AR 094011
DI 10.1088/1748-9326/9/9/094011
PG 10
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA AT5DK
UT WOS:000344963500016
ER
PT J
AU Goldstein, J
De Pascuale, S
Kletzing, C
Kurth, W
Genestreti, KJ
Skoug, RM
Larsen, BA
Kistler, LM
Mouikis, C
Spence, H
AF Goldstein, J.
De Pascuale, S.
Kletzing, C.
Kurth, W.
Genestreti, K. J.
Skoug, R. M.
Larsen, B. A.
Kistler, L. M.
Mouikis, C.
Spence, H.
TI Simulation of Van Allen Probes plasmapause encounters
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID MAGNETOSPHERIC ELECTRIC-FIELDS; PLASMASPHERIC DRAINAGE PLUMES;
EXTREME-ULTRAVIOLET IMAGER; RELATIVISTIC ELECTRONS; ART.; DYNAMICS;
BELT; STORM; EVOLUTION; CLUSTER
AB We use an E x B-driven plasmapause test particle (PTP) simulation to provide global contextual information for in situ measurements by the Van Allen Probes (Radiation Belt Storm Probes (RBSP)) during 15-20 January 2013. During 120 h of simulation time beginning on 15 January, geomagnetic activity produced three plumes. The third and largest simulated plume formed during enhanced convection on 17 January, and survived as a rotating, wrapped, residual plume for tens of hours. To validate the simulation, we compare its output with RBSP data. Virtual RBSP satellites recorded 28 virtual plasmapause encounters during 15-19 January. For 26 of 28 (92%) virtual crossings, there were corresponding actual RBSP encounters with plasmapause density gradients. The mean difference in encounter time between model and data is 36 min. The mean model-data difference in radial location is 0.40 +/- 0.05 R-E. The model-data agreement is better for strong convection than for quiet or weakly disturbed conditions. On 18 January, both RBSP spacecraft crossed a tenuous, detached plasma feature at approximately the same time and nightside location as a wrapped residual plume, predicted by the model to have formed 32 h earlier on 17 January. The agreement between simulation and data indicates that the model-provided global information is adequate to correctly interpret the RBSP density observations.
C1 [Goldstein, J.; Genestreti, K. J.] SW Res Inst, Space Sci & Engn Div, San Antonio, TX 78284 USA.
[Goldstein, J.; Genestreti, K. J.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA.
[De Pascuale, S.; Kletzing, C.; Kurth, W.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
[Skoug, R. M.; Larsen, B. A.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Kistler, L. M.; Mouikis, C.; Spence, H.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA.
RP Goldstein, J (reprint author), SW Res Inst, Space Sci & Engn Div, San Antonio, TX 78284 USA.
EM jgoldstein@swri.edu
RI Larsen, Brian/A-7822-2011;
OI Larsen, Brian/0000-0003-4515-0208; De Pascuale,
Sebastian/0000-0001-7142-0246; Kletzing, Craig/0000-0002-4136-3348;
Kurth, William/0000-0002-5471-6202
FU NASA Van Allen Probes mission's RBSP-ECT project; NASA Heliophysics
Guest Investigator program [NNX07AG48G]; NSF Geospace Environment
Modeling program [ATM0902591]
FX This work was supported by the NASA Van Allen Probes mission's RBSP-ECT
project, the NASA Heliophysics Guest Investigator program under
NNX07AG48G, and the NSF Geospace Environment Modeling program under
ATM0902591. OMNI 5 min data, provided by J.H. King, N. Patatashvilli at
AdnetSystems, NASA GSFC, and CDAWeb, were derived from ACE data provided
by N. Ness at Bartol Research Institute and D.J. McComas at Southwest
Research Institute.
NR 65
TC 16
Z9 16
U1 1
U2 9
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD SEP
PY 2014
VL 119
IS 9
DI 10.1002/2014JA020252
PG 21
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AT3BN
UT WOS:000344810200031
ER
PT J
AU Simms, LE
Pilipenko, V
Engebretson, MJ
Reeves, GD
Smith, AJ
Clilverd, M
AF Simms, Laura E.
Pilipenko, Viacheslav
Engebretson, Mark J.
Reeves, Geoffrey D.
Smith, A. J.
Clilverd, Mark
TI Prediction of relativistic electron flux at geostationary orbit
following storms: Multiple regression analysis
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID RADIATION-BELT ELECTRONS; VAN ALLEN PROBES; SOLAR-WIND; GEOSYNCHRONOUS
ORBIT; MAGNETIC STORMS; ULF WAVES; ENERGETIC ELECTRONS; GEOMAGNETIC
STORMS; CHORUS WAVES; ACCELERATION
AB Many solar wind and magnetosphere parameters correlate with relativistic electron flux following storms. These include relativistic electron flux before the storm; seed electron flux; solar wind velocity and number density (and their variation); interplanetary magnetic field B-z, AE and Kp indices; and ultra low frequency (ULF) and very low frequency (VLF) wave power. However, as all these variables are intercorrelated, we use multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Using 219 storms (1992-2002), we obtained hourly averaged electron fluxes for outer radiation belt relativistic electrons (>1.5 MeV) and seed electrons (100 keV) from Los Alamos National Laboratory spacecraft (geosynchronous orbit). For each storm, we found the log(10) maximum relativistic electron flux 48-120 h after the end of the main phase of each storm. Each predictor variable was averaged over the 12 h before the storm, the main phase, and the 48 h following minimum Dst. High levels of flux following storms are best modeled by a set of variables. In decreasing influence, ULF, seed electron flux, Vsw and its variation, and after-storm B-z were the most significant explanatory variables. Kp can be added to the model, but it adds no further explanatory power. Although we included ground-based VLF power from Halley, Antarctica, it shows little predictive ability. We produced predictive models using the coefficients from the regression models and assessed their effectiveness in predicting novel observations. The correlation between observed values and those predicted by these empirical models ranged from 0.645 to 0.795.
C1 [Simms, Laura E.; Engebretson, Mark J.] Augsburg Coll, Dept Phys, Minneapolis, MN 55454 USA.
[Pilipenko, Viacheslav] Russian Acad Sci, Inst Phys Earth, Moscow, Russia.
[Reeves, Geoffrey D.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Smith, A. J.] VLF ELF Radio Res Inst, Bradwell, England.
[Clilverd, Mark] British Antarctic Survey, Cambridge CB3 0ET, England.
RP Simms, LE (reprint author), Augsburg Coll, Dept Phys, Minneapolis, MN 55454 USA.
EM simmsl@augsburg.edu
RI Reeves, Geoffrey/E-8101-2011
OI Reeves, Geoffrey/0000-0002-7985-8098
FU National Science Foundation [ATM-0827903]
FX Relativistic electron and seed electron flux data were obtained from Los
Alamos National Laboratory (LANL) geosynchronous energetic particle
instruments (contact G.D. Reeves). Satellite and ground-based ULF
indices are available at http://virbo.org/Augsburg/ULF and Halley VLF
VELOX data at http://bsauasc.nerc-bas.ac.uk:8080/similar to
pdata/velox_summary/. Bz, V, N, P, sigma V, sigma N, and Kp,
Dst, and AE indices are available from Goddard Space Flight Center Space
Physics Data Facility at the OMNIWeb data website
(httpi/omniweb.gsfc.nasa.gov/html/ow_data.html). We thank the referees
for their helpful comments. This work was supported by National Science
Foundation grant ATM-0827903 to Augsburg College.
NR 63
TC 5
Z9 5
U1 0
U2 11
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD SEP
PY 2014
VL 119
IS 9
DI 10.1002/2014JA019955
PG 22
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AT3BN
UT WOS:000344810200021
ER
PT J
AU Zheng, LH
Chan, AA
Albert, JM
Elkington, SR
Koller, J
Horne, RB
Glauert, SA
Meredith, NP
AF Zheng, Liheng
Chan, Anthony A.
Albert, Jay M.
Elkington, Scot R.
Koller, Josef
Horne, Richard B.
Glauert, Sarah A.
Meredith, Nigel P.
TI Three-dimensional stochastic modeling of radiation belts in adiabatic
invariant coordinates
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID PART I IMPLICIT; NUMERICAL-SIMULATION; RELATIVISTIC ELECTRONS;
SEMIIMPLICIT SCHEMES; DIFFUSION TENSOR; PITCH-ANGLE; RESONANT
INTERACTION; GEOMAGNETIC STORMS; DYNAMICS; MAGNETOSPHERE
AB A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of Ito stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch angle alpha(0) = 90 degrees is also derived. The model is applied to a simulation of the October 2002 storm event. At alpha(0) near 90 degrees, our results are quantitatively consistent with GPS observations of phase space density (PSD) increases, suggesting dominance of radial diffusion; at smaller alpha(0), the observed PSD increases are overestimated by the model, possibly due to the alpha(0)-independent radial diffusion coefficients, or to insufficient electron loss in the model, or both. Statistical analysis of the stochastic processes provides further insights into the diffusion processes, showing distinctive electron source distributions with and without local acceleration.
C1 [Zheng, Liheng; Chan, Anthony A.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.
[Albert, Jay M.] Air Force Res Lab, Space Vehicles Directorate, Albuquerque, NM USA.
[Elkington, Scot R.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA.
[Koller, Josef] Los Alamos Natl Lab, Los Alamos, NM USA.
[Horne, Richard B.; Glauert, Sarah A.; Meredith, Nigel P.] British Antarctic Survey, Nat Environm Res Council, Cambridge CB3 0ET, England.
RP Zheng, LH (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.
EM zhengliheng@rice.edu
OI Albert, Jay/0000-0001-9494-7630; Horne, Richard/0000-0002-0412-6407;
Meredith, Nigel/0000-0001-5032-3463
FU National Aeronautics and Space Administration through the Science
Mission Directorate [NNX11AJ38G, NNX10AL02G]
FX This material is based upon work supported by the National Aeronautics
and Space Administration under grants NNX11AJ38G and NNX10AL02G issued
through the Science Mission Directorate. We gratefully acknowledge Los
Alamos National Lab for providing phase space density data and Air Force
Research Lab and British Antarctic Survey for supplying chorus wave
diffusion coefficients. Liheng Zheng wishes to thank Xin Tao for
valuable discussions about the SDE method.
NR 64
TC 7
Z9 7
U1 0
U2 5
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD SEP
PY 2014
VL 119
IS 9
DI 10.1002/2014JA020127
PG 21
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AT3BN
UT WOS:000344810200041
ER
PT J
AU Calafiore, G
Koshelev, A
Dhuey, S
Goltsov, A
Sasorov, P
Babin, S
Yankov, V
Cabrini, S
Peroz, C
AF Calafiore, Giuseppe
Koshelev, Alexander
Dhuey, Scott
Goltsov, Alexander
Sasorov, Pavel
Babin, Sergey
Yankov, Vladimir
Cabrini, Stefano
Peroz, Christophe
TI Holographic planar lightwave circuit for on-chip spectroscopy
SO LIGHT-SCIENCE & APPLICATIONS
LA English
DT Article
DE digital planar holograms; integrated optics; nanofabrication;
nanophotonics; spectrometer
ID WAVE-GUIDES; OPTICAL SPECTROMETER; MICROSPECTROMETER; RESONATORS;
DEVICES
AB Computer-generated planar holograms are a powerful approach for designing planar lightwave circuits with unique properties. Digital planar holograms in particular can encode any optical transfer function with high customizability and is compatible with semiconductor lithography techniques and nanoimprint lithography. Here, we demonstrate that the integration of multiple holograms on a single device increases the overall spectral range of the spectrometer and offsets any performance decrement resulting from miniaturization. The validation of a high-resolution spectrometer-on-chip based on digital planar holograms shows performance comparable with that of a macrospectrometer. While maintaining the total device footprint below 2 cm(2), the newly developed spectrometer achieved a spectral resolution of 0.15 nm in the red and near infrared range, over a 148 nm spectral range and 926 channels. This approach lays the groundwork for future on-chip spectroscopy and lab-on-chip sensing.
C1 [Calafiore, Giuseppe; Babin, Sergey; Peroz, Christophe] aBeam Technol, Hayward, CA 94541 USA.
[Calafiore, Giuseppe] Polytech Univ Turin, I-10129 Turin, Italy.
[Koshelev, Alexander; Goltsov, Alexander; Sasorov, Pavel; Yankov, Vladimir] Nanoopt Devices, Santa Clara, CA 95054 USA.
[Koshelev, Alexander] Moscow Inst Phys & Technol, Moscow 141700, Russia.
[Dhuey, Scott; Cabrini, Stefano] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
RP Peroz, C (reprint author), aBeam Technol, Castro Valley, CA 94546 USA.
EM cp@abeamtech.com
RI Foundry, Molecular/G-9968-2014
FU Office of Science, Office of Basic Energy Sciences, of the United States
Department of Energy [DEAC02-05CH11231]; Air Force Office of Scientific
Research, Air Force Material Command, USAF [FA9550-12-C-0077]
FX The authors would like to thank Professor J Bokor, Professor FC Pirri,
Dr A Schwartzberg, Dr B Brough, Dr D Olynick and Dr I Ivonin for their
useful discussions. Work at the Molecular Foundry was supported by the
Office of Science, Office of Basic Energy Sciences, of the United States
Department of Energy under contract DEAC02-05CH11231. This study is
supported by the Air Force Office of Scientific Research, Air Force
Material Command, USAF, under grant/contract FA9550-12-C-0077.
NR 40
TC 10
Z9 10
U1 2
U2 15
PU CHINESE ACAD SCIENCES, CHANGCHUN INST OPTICS FINE MECHANICS AND PHYSICS
PI CHANGCHUN
PA 3888, DONGNANHU ROAD, CHANGCHUN, 130033, PEOPLES R CHINA
SN 2047-7538
J9 LIGHT-SCI APPL
JI Light-Sci. Appl.
PD SEP
PY 2014
VL 3
AR e203
DI 10.1038/lsa.2014.84
PG 7
WC Optics
SC Optics
GA AT8MO
UT WOS:000345187500001
ER
PT J
AU Kring, D
Boslough, M
AF Kring, David
Boslough, Mark
TI Chelyabinsk: Portrait of an asteroid airburst
SO PHYSICS TODAY
LA English
DT Article
ID IMPACT EVENT; HAZARD; EARTH
C1 [Kring, David] Lunar & Planetary Inst, Houston, TX 77058 USA.
[Kring, David] LPI, Ctr Lunar Sci & Explorat, Houston, TX USA.
[Boslough, Mark] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Kring, D (reprint author), Lunar & Planetary Inst, 3303 NASA Rd 1, Houston, TX 77058 USA.
NR 15
TC 0
Z9 0
U1 4
U2 8
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0031-9228
EI 1945-0699
J9 PHYS TODAY
JI Phys. Today
PD SEP
PY 2014
VL 67
IS 9
BP 32
EP 37
DI 10.1063/PT.3.2515
PG 6
WC Physics, Multidisciplinary
SC Physics
GA AT5BL
UT WOS:000344958600017
ER
PT J
AU Li, H
Wheeler, JC
AF Li, Hui
Wheeler, J. Craig
TI Stirling Auchincloss Colgate obituary
SO PHYSICS TODAY
LA English
DT Biographical-Item
C1 [Li, Hui] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
[Wheeler, J. Craig] Univ Texas Austin, Austin, TX 78712 USA.
RP Li, H (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
NR 0
TC 0
Z9 0
U1 0
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0031-9228
EI 1945-0699
J9 PHYS TODAY
JI Phys. Today
PD SEP
PY 2014
VL 67
IS 9
BP 54
EP 54
DI 10.1063/PT.3.2523
PG 1
WC Physics, Multidisciplinary
SC Physics
GA AT5BL
UT WOS:000344958600019
ER
PT J
AU Cheng, BL
Castor, J
Stone, J
AF Cheng, Baolian
Castor, John
Stone, James
TI Dimitri Manuel Mihalas Obituary
SO PHYSICS TODAY
LA English
DT Biographical-Item
C1 [Cheng, Baolian] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
[Castor, John] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Stone, James] Princeton Univ, Princeton, NJ 08544 USA.
RP Cheng, BL (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
NR 3
TC 0
Z9 0
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0031-9228
EI 1945-0699
J9 PHYS TODAY
JI Phys. Today
PD SEP
PY 2014
VL 67
IS 9
BP 55
EP 55
DI 10.1063/PT.3.2524
PG 1
WC Physics, Multidisciplinary
SC Physics
GA AT5BL
UT WOS:000344958600020
ER
PT J
AU Hack, JJ
Papka, ME
AF Hack, James J.
Papka, Michael E.
TI Advances in Leadership Computing INTRODUCTION
SO COMPUTING IN SCIENCE & ENGINEERING
LA English
DT Editorial Material
C1 [Hack, James J.] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA.
[Papka, Michael E.] No Illinois Univ, Argonne Natl Lab, De Kalb, IL 60115 USA.
RP Hack, JJ (reprint author), Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA.
EM jhack@ornl.gov; papka@anl.gov
NR 0
TC 0
Z9 0
U1 0
U2 0
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 1521-9615
EI 1558-366X
J9 COMPUT SCI ENG
JI Comput. Sci. Eng.
PD SEP-OCT
PY 2014
VL 16
IS 5
BP 10
EP 12
PG 3
WC Computer Science, Interdisciplinary Applications
SC Computer Science
GA AP7ST
UT WOS:000342277700002
ER
PT J
AU Teixeira, J
Waliser, D
Ferraro, R
Gleckler, P
Lee, T
Potter, G
AF Teixeira, Joao
Waliser, Duane
Ferraro, Robert
Gleckler, Peter
Lee, Tsengdar
Potter, Gerald
TI Satellite Observations for CMIP5 The Genesis of Obs4MIPs
SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY
LA English
DT Editorial Material
C1 [Teixeira, Joao; Waliser, Duane; Ferraro, Robert] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Gleckler, Peter] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA.
[Lee, Tsengdar] NASA HQ, Washington, DC USA.
[Potter, Gerald] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Teixeira, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM joao.teixeira@jpl.nasa.gov
NR 8
TC 17
Z9 17
U1 0
U2 5
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0003-0007
EI 1520-0477
J9 B AM METEOROL SOC
JI Bull. Amer. Meteorol. Soc.
PD SEP
PY 2014
VL 95
IS 9
BP 1329
EP 1334
DI 10.1175/BAMS-D-12-00204.1
PG 6
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA AS7MY
UT WOS:000344441200007
ER
PT J
AU Olive, KA
Agashe, K
Amsler, C
Antonelli, M
Arguin, JF
Asner, DM
Baer, H
Band, HR
Barnett, RM
Basaglia, T
Bauer, CW
Beatty, JJ
Belousov, VI
Beringer, J
Bernardi, G
Bethke, S
Bichsel, H
Biebel, O
Blucher, E
Blusk, S
Brooijmans, G
Buchmueller, O
Burkert, V
Bychkov, MA
Cahn, RN
Carena, M
Ceccucci, A
Cerri, A
Chakraborty, D
Chen, MC
Chivukula, RS
Copic, K
Cowan, G
Dahl, O
D'Ambrosio, G
Damour, T
de Florian, D
de Gouvea, A
DeGrand, T
de Jong, P
Dissertori, G
Dobrescu, BA
Doser, M
Drees, M
Dreiner, HK
Edwards, DA
Eidelman, S
Erler, J
Ezhela, VV
Fetscher, W
Fields, BD
Foster, B
Freitas, A
Gaisser, TK
Gallagher, H
Garren, L
Gerber, HJ
Gerbier, G
Gershon, T
Gherghetta, T
Golwala, S
Goodman, M
Grab, C
Gritsan, AV
Grojean, C
Groom, DE
Grunewald, M
Gurtu, A
Gutsche, T
Haber, HE
Hagiwara, K
Hanhart, C
Hashimoto, S
Hayato, Y
Hayes, KG
Heffner, M
Heltsley, B
Hernandez-Rey, JJ
Hikasa, K
Hocker, A
Holder, J
Holtkamp, A
Huston, J
Jackson, JD
Johnson, KF
Junk, T
Kado, M
Karlen, D
Katz, UF
Klein, SR
Klempt, E
Kowalewski, RV
Krauss, F
Kreps, M
Krusche, B
Kuyanov, YV
Kwon, Y
Lahav, O
Laiho, J
Langacker, P
Liddle, A
Ligeti, Z
Lin, CJ
Liss, TM
Littenberg, L
Lugovsky, KS
Lugovsky, SB
Maltoni, F
Mannel, T
Manohar, AV
Marciano, WJ
Martin, AD
Masoni, A
Matthews, J
Milstead, D
Molaro, P
Monig, K
Moortgat, F
Mortonson, MJ
Murayama, H
Nakamura, K
Narain, M
Nason, P
Navas, S
Neubert, M
Nevski, P
Nir, Y
Pape, L
Parsons, J
Patrignani, C
Peacock, JA
Pennington, M
Petcov, ST
Piepke, A
Pomarol, A
Quadt, A
Raby, S
Rademacker, J
Raffelt, G
Ratcliff, BN
Richardson, P
Ringwald, A
Roesler, S
Rolli, S
Romaniouk, A
Rosenberg, LJ
Rosner, JL
Rybka, G
Achrajda, CT
Sakai, Y
Salam, GP
Sarkar, S
Sauli, F
Schneider, O
Scholberg, K
Scott, D
Sharma, V
Sharpe, SR
Silari, M
Sjostrand, T
Skands, P
Smith, JG
Smoot, GF
Spanier, S
Spieler, H
Spiering, C
Stah, A
Stanev, T
Stone, SL
Sumiyoshi, T
Sphers, MJ
Takahashi, F
Tanabashi, M
Terning, J
Tiator, L
Titov, M
Tkachenko, NP
Tornqvist, NA
Tovey, D
Valencia, G
Venanzoni, G
Vincter, MG
Vogel, P
Vogt, A
Wakely, SP
Walkowiak, W
Walter, CW
Ward, DR
Weiglein, G
Weinberg, DH
Weinberg, EJ
White, M
Wiencke, LR
Woh, CC
Wofenstein, L
Womersley, J
Woody, CL
Workman, RL
Yamamoto, A
Yao, WM
Zeller, GP
Zenin, OV
Zhang, J
Zhu, RY
Zimmermann, F
Zyla, PA
Harper, G
Lugovsky, VS
Schaffner, P
AF Olive, K. A.
Agashe, K.
Amsler, C.
Antonelli, M.
Arguin, J. -F.
Asner, D. M.
Baer, H.
Band, H. R.
Barnett, R. M.
Basaglia, T.
Bauer, C. W.
Beatty, J. J.
Belousov, V. I.
Beringer, J.
Bernardi, G.
Bethke, S.
Bichsel, H.
Biebel, O.
Blucher, E.
Blusk, S.
Brooijmans, G.
Buchmueller, O.
Burkert, V.
Bychkov, M. A.
Cahn, R. N.
Carena, M.
Ceccucci, A.
Cerri, A.
Chakraborty, D.
Chen, M. -C.
Chivukula, R. S.
Copic, K.
Cowan, G.
Dahl, O.
D'Ambrosio, G.
Damour, T.
de Florian, D.
de Gouvea, A.
DeGrand, T.
de Jong, P.
Dissertori, G.
Dobrescu, B. A.
Doser, M.
Drees, M.
Dreiner, H. K.
Edwards, D. A.
Eidelman, S.
Erler, J.
Ezhela, V. V.
Fetscher, W.
Fields, B. D.
Foster, B.
Freitas, A.
Gaisser, T. K.
Gallagher, H.
Garren, L.
Gerber, H. -J.
Gerbier, G.
Gershon, T.
Gherghetta, T.
Golwala, S.
Goodman, M.
Grab, C.
Gritsan, A. V.
Grojean, C.
Groom, D. E.
Grunewald, M.
Gurtu, A.
Gutsche, T.
Haber, H. E.
Hagiwara, K.
Hanhart, C.
Hashimoto, S.
Hayato, Y.
Hayes, K. G.
Heffner, M.
Heltsley, B.
Hernandez-Rey, J. J.
Hikasa, K.
Hoecker, A.
Holder, J.
Holtkamp, A.
Huston, J.
Jackson, J. D.
Johnson, K. F.
Junk, T.
Kado, M.
Karlen, D.
Katz, U. F.
Klein, S. R.
Klempt, E.
Kowalewski, R. V.
Krauss, F.
Kreps, M.
Krusche, B.
Kuyanov, Yu. V.
Kwon, Y.
Lahav, O.
Laiho, J.
Langacker, P.
Liddle, A.
Ligeti, Z.
Lin, C. -J.
Liss, T. M.
Littenberg, L.
Lugovsky, K. S.
Lugovsky, S. B.
Maltoni, F.
Mannel, T.
Manohar, A. V.
Marciano, W. J.
Martin, A. D.
Masoni, A.
Matthews, J.
Milstead, D.
Molaro, P.
Moenig, K.
Moortgat, F.
Mortonson, M. J.
Murayama, H.
Nakamura, K.
Narain, M.
Nason, P.
Navas, S.
Neubert, M.
Nevski, P.
Nir, Y.
Pape, L.
Parsons, J.
Patrignani, C.
Peacock, J. A.
Pennington, M.
Petcov, S. T.
Piepke, A.
Pomarol, A.
Quadt, A.
Raby, S.
Rademacker, J.
Raffelt, G.
Ratcliff, B. N.
Richardson, P.
Ringwald, A.
Roesler, S.
Rolli, S.
Romaniouk, A.
Rosenberg, L. J.
Rosner, J. L.
Rybka, G.
Achrajda, C. T.
Sakai, Y.
Salam, G. P.
Sarkar, S.
Sauli, F.
Schneider, O.
Scholberg, K.
Scott, D.
Sharma, V.
Sharpe, S. R.
Silari, M.
Sjostrand, T.
Skands, P.
Smith, J. G.
Smoot, G. F.
Spanier, S.
Spieler, H.
Spiering, C.
Stah, A.
Stanev, T.
Stone, S. L.
Sumiyoshi, T.
Sphers, M. J.
Takahashi, F.
Tanabashi, M.
Terning, J.
Tiator, L.
Titov, M.
Tkachenko, N. P.
Tornqvist, N. A.
Tovey, D.
Valencia, G.
Venanzoni, G.
Vincter, M. G.
Vogel, P.
Vogt, A.
Wakely, S. P.
Walkowiak, W.
Walter, C. W.
Ward, D. R.
Weiglein, G.
Weinberg, D. H.
Weinberg, E. J.
White, M.
Wiencke, L. R.
Woh, C. C.
Wofenstein, L.
Womersley, J.
Woody, C. L.
Workman, R. L.
Yamamoto, A.
Yao, W. -M.
Zeller, G. P.
Zenin, O. V.
Zhang, J.
Zhu, R. -Y.
Zimmermann, F.
Zyla, P. A.
Harper, G.
Lugovsky, V. S.
Schaffner, P.
CA Particle Data Grp
TI REVIEW OF PARTICLE PHYSICS Particle Data Group
SO CHINESE PHYSICS C
LA English
DT Review
ID DEEP-INELASTIC-SCATTERING; SUPERSYMMETRIC STANDARD MODEL; HIGGS-BOSON
PRODUCTION; TO-LEADING-ORDER; GRAND UNIFIED THEORIES; HADRONIC-Z-DECAYS;
ELECTROWEAK SYMMETRY-BREAKING; ANOMALOUS MAGNETIC-MOMENT;
DOUBLE-BETA-DECAY; CHIRAL PERTURBATION-THEORY
AB The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 Japers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters.
C1 [Olive, K. A.; Gherghetta, T.] Univ Minnesota, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA.
[Agashe, K.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Amsler, C.] Univ Bern, Albert Einstein Ctr Fundamental Phys, CH-3012 Bern, Switzerland.
[Antonelli, M.; Venanzoni, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Rome, Italy.
[Arguin, J. -F.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada.
[Asner, D. M.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Baer, H.] Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA.
[Band, H. R.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Barnett, R. M.; Bauer, C. W.; Beringer, J.; Cahn, R. N.; Copic, K.; Dahl, O.; Groom, D. E.; Haber, H. E.; Jackson, J. D.; Ligeti, Z.; Lin, C. -J.; Mortonson, M. J.; Murayama, H.; Smoot, G. F.; Spieler, H.; White, M.; Woh, C. C.; Yao, W. -M.; Zyla, P. A.; Harper, G.; Schaffner, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Phys, Berkeley, CA 94720 USA.
[Basaglia, T.; Ceccucci, A.; Doser, M.; Gurtu, A.; Hoecker, A.; Holtkamp, A.; Kado, M.; Moortgat, F.; Roesler, S.; Salam, G. P.; Sauli, F.; Silari, M.; Skands, P.; Zimmermann, F.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland.
[Beatty, J. J.; Raby, S.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Belousov, V. I.; Ezhela, V. V.; Kuyanov, Yu. V.; Lugovsky, K. S.; Lugovsky, S. B.; Tkachenko, N. P.; Zenin, O. V.; Lugovsky, V. S.] Inst High Energy Phys, COMPAS Grp, RU-142284 Protvino, Russia.
[Bernardi, G.] CNRS, IN2P3, LPNHE, F-75252 Paris, France.
[Bernardi, G.] Univ Paris 06, F-75252 Paris, France.
[Bernardi, G.] Univ Paris 07, F-75252 Paris, France.
[Bethke, S.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany.
[Bichsel, H.; Rosenberg, L. J.; Rybka, G.; Sharpe, S. R.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Biebel, O.] Univ Munich, Fak Phys, D-80799 Munich, Germany.
[Blucher, E.; Carena, M.; Rosner, J. L.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Blucher, E.; Carena, M.; Rosner, J. L.; Wakely, S. P.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA.
[Blusk, S.; Laiho, J.; Stone, S. L.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA.
[Brooijmans, G.; Parsons, J.; Weinberg, E. J.] Columbia Univ, Dept Phys, New York, NY 10027 USA.
[Buchmueller, O.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, High Energy Phys Grp, London SW7 2AZ, England.
[Burkert, V.; Pennington, M.] Jefferson Lab, Newport News, VA 23606 USA.
[Bychkov, M. A.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA.
[Carena, M.; Ceccucci, A.; Cerri, A.; Dobrescu, B. A.; Garren, L.; Junk, T.; Zeller, G. P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Carena, M.; Wakely, S. P.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Cerri, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England.
[Chakraborty, D.] Univ Illinois, Dept Phys, De Kalb, IL 60115 USA.
[Chen, M. -C.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Chivukula, R. S.; Huston, J.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Cowan, G.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England.
[D'Ambrosio, G.] Complesso Univ Monte St Angelo, INFN Sez Napoli, I-80126 Naples, Italy.
[Damour, T.] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France.
[de Florian, D.] Univ Buenos Aires, Dept Fis, FCEyN, RA-1428 Buenos Aires, DF, Argentina.
[de Gouvea, A.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA.
[DeGrand, T.; Smith, J. G.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA.
[de Jong, P.; Dissertori, G.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands.
[Fetscher, W.; Gerber, H. -J.; Grab, C.; Pape, L.] ETH, Inst Particle Phys, CH-8093 Zurich, Switzerland.
[Drees, M.; Dreiner, H. K.] Univ Bonn, Phys Inst, D-53115 Bonn, Germany.
[Edwards, D. A.; Foster, B.; Ringwald, A.; Weiglein, G.] Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany.
[Eidelman, S.] SB RAS, Budker Inst Nucl Phys, Novosibirsk 630090, Russia.
[Eidelman, S.] Novosibirsk State Univ, Novosibirsk 630090, Russia.
[Erler, J.] Univ Nacl Autonoma Mexico, Inst Fis, Dept Fis Teor, Mexico City 04510, DF, Mexico.
[Erler, J.; Tiator, L.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany.
[Fields, B. D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA.
[Fields, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Foster, B.] Univ Hamburg, D-22607 Hamburg, Germany.
[Foster, B.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England.
[Freitas, A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Gaisser, T. K.; Holder, J.; Stanev, T.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.
[Gallagher, H.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA.
[Gerbier, G.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France.
[Gershon, T.; Kreps, M.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Golwala, S.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA.
[Goodman, M.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Grojean, C.] Inst Fis Altes Energies, Inst Catalana Recerca & Estudis Avancats, E-08193 Bellaterra, Barcelona, Spain.
[Grunewald, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium.
[Grunewald, M.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland.
[Gurtu, A.] TIFR, Bombay, Maharashtra, India.
[Gutsche, T.] Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany.
[Haber, H. E.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Hagiwara, K.; Hashimoto, S.; Nakamura, K.; Sakai, Y.; Yamamoto, A.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan.
[Hanhart, C.] Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany.
[Hayato, Y.] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany.
[Hayato, Y.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan.
[Hayes, K. G.] Hillsdale Coll, Dept Phys, Hillsdale, MI 49242 USA.
[Heffner, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Heltsley, B.] Cornell Univ, Elementary Particle Sci Lab, Ithaca, NY 14853 USA.
[Hernandez-Rey, J. J.] Univ Valencia CSIC, IFIC Inst Fis Corpuscular, E-46071 Valencia, Spain.
[Hikasa, K.; Takahashi, F.] Tohoku Univ, Dept Phys, Aoba Ku, Sendai, Miyagi 9808578, Japan.
[Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
[Johnson, K. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Kado, M.] CNRS, IN2P3, LAL, F-91898 Orsay, France.
[Kado, M.] Univ Paris 11, F-91898 Orsay, France.
[Karlen, D.; Kowalewski, R. V.] Univ Victoria, Victoria, BC V8W 3P6, Canada.
[Katz, U. F.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany.
[Klein, S. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
[Klempt, E.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, Bonn, Germany.
[Krauss, F.; Martin, A. D.; Richardson, P.] Univ Durham, Inst Particle Phys Phenomenol, Dept Phys, Durham DH1 3LE, England.
[Krusche, B.] Univ Basel, Inst Phys, CH-4056 Basel, Switzerland.
[Kwon, Y.] Yonsei Univ, Dept Phys, Seoul 120749, South Korea.
[Lahav, O.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Langacker, P.] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA.
[Liddle, A.; Peacock, J. A.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland.
[Liss, T. M.] CUNY City Coll, Div Sci, New York, NY 10031 USA.
[Littenberg, L.; Marciano, W. J.; Nevski, P.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Maltoni, F.] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol CP3, B-1348 Louvain, Belgium.
[Mannel, T.; Walkowiak, W.] Univ Siegen, Dept Phys, D-57068 Siegen, Germany.
[Manohar, A. V.; Sharma, V.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
[Masoni, A.] INFN Sez Cagliari, I-09042 Monserrato, CA, Italy.
[Matthews, J.] Louisana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA.
Stockholms Univ, AlbaNova Univ Ctr, Fysikum, SE-10691 Stockholm, Sweden.
[Molaro, P.] INAF OATS, I-34143 Trieste, Italy.
[Moenig, K.; Spiering, C.] DESY, D-15735 Zeuthen, Germany.
[Mortonson, M. J.] Univ Calif Berkeley, SSL, Berkeley, CA 94720 USA.
[Murayama, H.; Nakamura, K.; Petcov, S. T.] Univ Tokyo, Todai Inst Adv Study, Kavli IPMU WPI, Kashiwa, Chiba 2778583, Japan.
[Murayama, H.; Smoot, G. F.; White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Narain, M.] Brown Univ, Dept Phys, Providence, RI 02912 USA.
[Nason, P.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy.
[Navas, S.] Univ Granada, Dpto Fis Teor & Cosmos, E-18071 Granada, Spain.
[Navas, S.] Univ Granada, CAFPE, E-18071 Granada, Spain.
[Neubert, M.] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55099 Mainz, Germany.
[Neubert, M.] Johannes Gutenberg Univ Mainz, Mainz Inst Theoret Phys, D-55099 Mainz, Germany.
[Nir, Y.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-7610001 Rehovot, Israel.
[Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy.
[Patrignani, C.] Univ Genoa, Ist Nazl Fis Nucl, I-16146 Genoa, Italy.
[Petcov, S. T.] SISSA INFN, I-34136 Trieste Ts, Italy.
[Petcov, S. T.] Bulgarian Acad Sci, INRNE, BU-1784 Sofia, Bulgaria.
[Piepke, A.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
[Pomarol, A.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain.
[Quadt, A.] Univ Gottingen, Phys Inst 2, D-37077 Gottingen, Germany.
[Rademacker, J.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England.
[Raffelt, G.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany.
[Ratcliff, B. N.] SLAG Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Rolli, S.] US DOE, Washington, DC 20585 USA.
[Romaniouk, A.] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, Moscow 115409, Russia.
[Achrajda, C. T.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England.
[Sarkar, S.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England.
[Sarkar, S.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland.
[Scholberg, K.; Walter, C. W.] Duke Univ, Dept Phys, Durham, NC 27708 USA.
[Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
[Sjostrand, T.] Lund Univ, Dept Astron & Theoret Phys, S-22362 Lund, Sweden.
[Skands, P.] Monash Univ, Sch Phys, Melbourne, Vic 3800, Australia.
[Smoot, G. F.] Univ Paris Diderot, Univ Sorbonne Paris Cite, APC CNRS, Paris Ctr Cosmol Phys, F-75013 Paris, France.
[Spanier, S.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Stah, A.] Rhein Westfal TH Aachen, Phys Inst 3, Phys Zentrum, D-52056 Aachen, Germany.
[Sumiyoshi, T.] Tokyo Metropolitan Univ, High Energy Phys Lab, Tokyo 1920397, Japan.
[Sphers, M. J.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA.
[Tanabashi, M.] Nagoya Univ, Kobayashi Maskawa Inst, Chikusa Ku, Nagoya, Aichi 4640028, Japan.
[Terning, J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Titov, M.] CEA Saclay, F-91191 Gif Sur Yvette, France.
[Tornqvist, N. A.] Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland.
[Tovey, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England.
[Valencia, G.] Iowa State Univ, Dept Phys, Ames, IA 50011 USA.
[Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada.
[Vogel, P.] CALTECH, Kellogg Radiat Lab 106 38, Pasadena, CA 91125 USA.
[Vogt, A.] Univ Liverpool, Div Theoret Phys, Dept Math Sci, Liverpool L69 3BX, Merseyside, England.
[Ward, D. R.] Cavendish Lab, Cambridge CB3 OHE, England.
[Weinberg, D. H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Weinberg, D. H.] Ohio State Univ, CCAPP, Columbus, OH 43210 USA.
[Wiencke, L. R.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA.
[Wofenstein, L.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA.
[Womersley, J.] STFC Rutherfprd Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Workman, R. L.] George Washington Univ, Dept Phys, Ashburn, VA 20147 USA.
[Zhang, J.] Chinese Acad Sci, IHEP, Beijing 100049, Peoples R China.
[Zhu, R. -Y.] CALTECH, Pasadena, CA 91125 USA.
RP Olive, KA (reprint author), Univ Minnesota, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA.
RI Patrignani, Claudia/C-5223-2009; Chivukula, R. Sekhar/C-3367-2012;
Waxler, Bob/E-3414-2015; Katz, Uli/E-1925-2013; White,
Martin/I-3880-2015; de Florian, Daniel/B-6902-2011; Hernandez-Rey, Juan
Jose/N-5955-2014; Navas, Sergio/N-4649-2014; Beatty, James/D-9310-2011;
EPFL, Physics/O-6514-2016; Sarkar, Subir/G-5978-2011
OI Patrignani, Claudia/0000-0002-5882-1747; Chivukula, R.
Sekhar/0000-0002-4142-1077; Katz, Uli/0000-0002-7063-4418; White,
Martin/0000-0001-9912-5070; de Florian, Daniel/0000-0002-3724-0695;
Hernandez-Rey, Juan Jose/0000-0002-1527-7200; Navas,
Sergio/0000-0003-1688-5758; Beatty, James/0000-0003-0481-4952; Sarkar,
Subir/0000-0002-3542-858X
FU Office of Science, Office of High Energy Physics of the U.S. Department
of Energy [DE-AC02-05CH11231]; U.S. National Science Foundation
[PHY-0652989]; European Laboratory for Particle Physics (CERN);
government of Japan (MEXT: Ministry of Education, Culture, Sports,
Science and Technology); government of Japan United States (DOE) on
cooperative research and development; Italian National Institute of
Nuclear Physics (INFN)
FX The publication of the Review of Particle Physics is supported by the
Director, Office of Science, Office of High Energy Physics of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231; by the U.S.
National Science Foundation under Agreement No. PHY-0652989; by the
European Laboratory for Particle Physics (CERN); by an implementing
arrangement between the governments of Japan (MEXT: Ministry of
Education, Culture, Sports, Science and Technology) and the United
States (DOE) on cooperative research and development; and by the Italian
National Institute of Nuclear Physics (INFN).
NR 7176
TC 3812
Z9 3854
U1 110
U2 527
PU CHINESE PHYSICAL SOC
PI BEIJING
PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA
SN 1674-1137
J9 CHINESE PHYS C
JI Chin. Phys. C
PD SEP
PY 2014
VL 38
IS 9
AR UNSP 090001
DI 10.1088/1674-1137/38/9/090001
PG 1658
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA AS2UY
UT WOS:000344135900001
ER
PT J
AU Gerhardt, L
Velez, JCD
Klein, SR
AF Gerhardt, Lisa
Diaz Velez, Juan Carlos
Klein, Spencer R.
TI Adventures in Antarctic Computing, or How I Learned to Stop Worrying and
Love the Neutrino
SO COMPUTER
LA English
DT Article
ID ICECUBE
AB IceCube-a neutrino telescope that encompasses a cubic kilometer of Antarctic ice at the South Pole, collecting and processing data from 5,160 optical sensors buried a mile deep in the icecap-presents considerable challenges, from overcoming power and bandwidth limitations to simulating the complexities of Antarctic ice, which continue to stretch computing technology.
C1 [Gerhardt, Lisa] Lawrence Berkeley Natl Lab, Natl Energy Res Sci Comp Ctr NERSC, Berkeley, CA 94720 USA.
[Diaz Velez, Juan Carlos] Univ Wisconsin Madison, Wisconsin IceCube Particle & Astrophys Ctr, Madison, WI USA.
[Klein, Spencer R.] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[Klein, Spencer R.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
RP Gerhardt, L (reprint author), Lawrence Berkeley Natl Lab, Natl Energy Res Sci Comp Ctr NERSC, Berkeley, CA 94720 USA.
EM lgerhardt@lbl.gov; juancarlos.diazvelez@icecube.wisc.edu;
srklein@lbl.gov
FU National Science Foundation [1307472]; Department of Energy
[DE-AC-76SF00098]
FX This work was supported in part by the National Science Foundation under
grant 1307472 and the Department of Energy under contract number
DE-AC-76SF00098.
NR 7
TC 0
Z9 0
U1 0
U2 1
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 0018-9162
EI 1558-0814
J9 COMPUTER
JI Computer
PD SEP
PY 2014
VL 47
IS 9
BP 56
EP 61
PG 6
WC Computer Science, Hardware & Architecture; Computer Science, Software
Engineering
SC Computer Science
GA AS8CO
UT WOS:000344478100022
ER
PT J
AU Bielicki, JK
Hafiane, A
Azhar, S
Johansson, J
Bittner, S
Tabassum, J
Genest, J
AF Bielicki, J. K.
Hafiane, A.
Azhar, S.
Johansson, J.
Bittner, S.
Tabassum, J.
Genest, J.
TI The ABCA1 agonist CS-6253 generates functional nascent HDL particles
resulting in efficient cholesterol SR-BI delivery to hepatic cells and
shows macrophage specific cholesterol mobilization and ather
SO EUROPEAN HEART JOURNAL
LA English
DT Meeting Abstract
CT Congress of the European-Society-of-Cardiology (ESC)
CY AUG 30-SEP 03, 2014
CL Barcelona, SPAIN
SP European Soc Cardiol
C1 [Bielicki, J. K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Donner Lab, Berkeley, CA 94720 USA.
[Hafiane, A.; Genest, J.] McGill Univ, Div Cardiol, Cardiovasc Genet Lab, Montreal, PQ, Canada.
[Azhar, S.; Bittner, S.; Tabassum, J.] Stanford Univ, VA PAIRE, Geriatr Res Educ & Clin Ctr, Palo Alto, CA 94304 USA.
[Johansson, J.] ARTERY Therapeut Inc, San Ramon, CA USA.
NR 0
TC 0
Z9 0
U1 0
U2 1
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0195-668X
EI 1522-9645
J9 EUR HEART J
JI Eur. Heart J.
PD SEP 1
PY 2014
VL 35
SU 1
MA P2106
BP 371
EP 371
PG 1
WC Cardiac & Cardiovascular Systems
SC Cardiovascular System & Cardiology
GA AQ7MG
UT WOS:000343001302170
ER
PT J
AU Micheletti, R
Pezzuto, I
Sheta, R
Nemir, M
Gonzales, C
Blow, M
May, D
Pennacchio, L
Ounzain, S
Pedrazzini, T
AF Micheletti, R.
Pezzuto, I.
Sheta, R.
Nemir, M.
Gonzales, C.
Blow, M.
May, D.
Pennacchio, L.
Ounzain, S.
Pedrazzini, T.
TI Functional importance of cardiac enhancer-associated noncoding RNAs
during cardiac development and disease
SO EUROPEAN HEART JOURNAL
LA English
DT Meeting Abstract
CT Congress of the European-Society-of-Cardiology (ESC)
CY AUG 30-SEP 03, 2014
CL Barcelona, SPAIN
SP European Soc Cardiol
C1 [Micheletti, R.; Pezzuto, I.; Sheta, R.; Nemir, M.; Gonzales, C.; Ounzain, S.; Pedrazzini, T.] Univ Hosp Ctr Vaudois CHUV, Dept Med, Lausanne, Switzerland.
[Blow, M.; May, D.; Pennacchio, L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0195-668X
EI 1522-9645
J9 EUR HEART J
JI Eur. Heart J.
PD SEP 1
PY 2014
VL 35
SU 1
MA 4083
BP 716
EP 716
PG 1
WC Cardiac & Cardiovascular Systems
SC Cardiovascular System & Cardiology
GA AQ7MG
UT WOS:000343001304248
ER
PT J
AU Zhang, W
Krishnan, KM
AF Zhang, Wei
Krishnan, Kannan M.
TI Epitaxial patterning of thin-films: conventional lithographies and
beyond
SO JOURNAL OF MICROMECHANICS AND MICROENGINEERING
LA English
DT Review
DE epitaxial patterning; magnetic thin films; nanoimprint lithography;
nanomagnetism
ID ATOMIC-FORCE MICROSCOPY; ELECTRON-BEAM LITHOGRAPHY; PULSED-LASER
DEPOSITION; SCANNING PROBE LITHOGRAPHY; SELF-ASSEMBLED MONOLAYERS;
UV-NANOIMPRINT LITHOGRAPHY; TIP-INDUCED ANODIZATION; MOLYBDENUM
LIFT-OFF; LOCAL-OXIDATION; NANODOT ARRAYS
AB Thin-film based novel magnetic and electronic devices have entered a new era in which the film crystallography, structural coherence, and epitaxy play important roles in determining their functional properties. The capabilities of controlling such structural and functional properties are being continuously developed by various physical deposition technologies. Epitaxial patterning strategies further allow the miniaturization of such novel devices, which incorporates thin-film components into nanoscale architectures while keeping their functional properties unmodified from their ideal single-crystal values. In the past decade, epitaxial patterning methods on the laboratory scale have been reported to meet distinct scientific inquires, in which the techniques and processes used differ from one to the other. In this review we summarize many of these pioneering endeavors in epitaxial patterning of thin-film devices that use both conventional and novel lithography techniques. These methods demonstrate epitaxial patterning for a broad range of materials (metals, oxides, and semiconductors) and cover common device length scales from micrometer to sub-hundred nanometer. Whilst we have been motivated by magnetic materials and devices, we present our outlook on developing systematic-strategies for epitaxial patterning of functional materials which will pave the road for the design, discovery and industrialization of next-generation advanced magnetic and electronic nano-devices.
C1 [Zhang, Wei; Krishnan, Kannan M.] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA.
RP Zhang, W (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM zwei@anl.gov; kannanmk@uw.edu
RI Zhang, Wei/G-1523-2012; Foundry, Molecular/G-9968-2014
OI Zhang, Wei/0000-0002-5878-3090;
FU NSF-DMR [1063489]
FX WZ is very grateful for the early mentorship on lithography from Dr Dirk
Weiss. WZ would like to thank Dr Weilun Chao and Dr Deirdre Olynick for
their hospitality during his stay at the Molecular Foundry, Berkeley. We
thank Professor Karl Bohringer, Dr Yufeng Hou and Zheng Li for
insightful discussions. This work was supported by NSF-DMR under grant
#1063489. We also acknowledge use of the UW Microfabrication Facility, a
member of the National Nanotechnology Infrastructure Network.
NR 140
TC 9
Z9 9
U1 2
U2 38
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0960-1317
EI 1361-6439
J9 J MICROMECH MICROENG
JI J. Micromech. Microeng.
PD SEP
PY 2014
VL 24
IS 9
AR 093001
DI 10.1088/0960-1317/24/9/093001
PG 23
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Instruments & Instrumentation; Physics, Applied
SC Engineering; Science & Technology - Other Topics; Instruments &
Instrumentation; Physics
GA AS8TT
UT WOS:000344521600001
ER
PT J
AU Tsao, JY
Crawford, MH
Coltrin, ME
Fischer, AJ
Koleske, DD
Subramania, GS
Wang, GT
Wierer, JJ
Karlicek, RF
AF Tsao, Jeffrey Y.
Crawford, Mary H.
Coltrin, Michael E.
Fischer, Arthur J.
Koleske, Daniel D.
Subramania, Ganapathi S.
Wang, G. T.
Wierer, Jonathan J.
Karlicek, Robert F., Jr.
TI Toward Smart and Ultra-efficient Solid-State Lighting
SO ADVANCED OPTICAL MATERIALS
LA English
DT Article
ID VAPOR-PHASE EPITAXY; INGAN QUANTUM-WELLS; EMITTING-DIODES; NANOWIRE
HETEROSTRUCTURES; CRYSTALLINE-QUALITY; PHOTONIC CRYSTALS;
THERMAL-STABILITY; GAN LAYERS; COLOR; TEMPERATURE
AB Solid-state lighting has made tremendous progress this past decade, with the potential to make much more progress over the coming decade. In this article, the current status of solid-state lighting relative to its ultimate potential to be "smart" and ultra-efficient is reviewed. Smart, ultra-efficient solid-state lighting would enable both very high "effective" efficiencies and potentially large increases in human performance. To achieve ultra-efficiency, phosphors must give way to multi-color semiconductor electroluminescence: some of the technological challenges associated with such electroluminescence at the semiconductor level are reviewed. To achieve smartness, additional characteristics such as control of light flux and spectra in time and space will be important: some of the technological challenges associated with achieving these characteristics at the lamp level are also reviewed. It is important to emphasise that smart and ultra-efficient are not either/or, and few compromises need to be made between them. The ultimate route to ultra-efficiency brings with it the potential for smartness, the ultimate route to smartness brings with it the potential for ultra-efficiency, and the long-term ultimate route to both might well be color-mixed RYGB lasers.
C1 [Tsao, Jeffrey Y.; Crawford, Mary H.; Coltrin, Michael E.; Fischer, Arthur J.; Koleske, Daniel D.; Subramania, Ganapathi S.; Wang, G. T.; Wierer, Jonathan J.] Sandia Natl Labs, Energy Frontier Res Ctr Solid State Lighting Sci, POB 5800, Albuquerque, NM 87185 USA.
[Karlicek, Robert F., Jr.] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Smart Lighting Engn Res Ctr, Troy, NY 12181 USA.
RP Tsao, JY (reprint author), Sandia Natl Labs, Energy Frontier Res Ctr Solid State Lighting Sci, POB 5800, Albuquerque, NM 87185 USA.
EM jytsao@sandia.gov
RI Wierer, Jonathan/G-1594-2013
OI Wierer, Jonathan/0000-0001-6971-4835
FU Sandia's Solid-State-Lighting Science Energy Frontier Research Center -
U.S. Department of Energy, Office of Basic Energy Sciences; U.S.
Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]; National Science Foundation [EEC-0812056]; New York
State under NYSTAR [C090145]
FX Work at Sandia National Laboratories was supported by Sandia's
Solid-State-Lighting Science Energy Frontier Research Center, funded by
the U.S. Department of Energy, Office of Basic Energy Sciences. Sandia
National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000. Work at
Rensselaer Polytechnic Institute was performed at the Smart Lighting
Engineering Research Center and was supported by the National Science
Foundation under cooperative agreement EEC-0812056 and by New York State
under NYSTAR contract C090145.
NR 173
TC 58
Z9 58
U1 8
U2 66
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 2195-1071
J9 ADV OPT MATER
JI Adv. Opt. Mater.
PD SEP
PY 2014
VL 2
IS 9
BP 809
EP 836
DI 10.1002/adom.201400131
PG 28
WC Materials Science, Multidisciplinary; Optics
SC Materials Science; Optics
GA AS3IX
UT WOS:000344171800001
ER
PT J
AU Rosado, PJ
Faulkner, D
Sullivan, DP
Levinson, R
AF Rosado, Pablo J.
Faulkner, David
Sullivan, Douglas P.
Levinson, Ronnen
TI Measured temperature reductions and energy savings from a cool tile roof
on a central California home
SO ENERGY AND BUILDINGS
LA English
DT Article
DE Cool roof; Energy savings; Solar reflectance; Thermal mass;
Above-sheathing ventilation; Residential building; Temperature
reduction; Ceiling heat flow; Asphalt shingle; Concrete tile
ID SOLAR REFLECTANCE; HEAT-ISLAND; MITIGATION; BUILDINGS; COMFORT
AB To assess cool-roof benefits, the temperatures, heat flows, and energy uses in two similar single-family, single-story homes built side by side in Fresno, California were measured for a year. The "cool" house had a reflective cool concrete tile roof (initial albedo 0.51) with above-sheathing ventilation, and nearly twice the thermal capacitance of the standard dark asphalt shingle roof (initial albedo 0.07) on the "standard" house.
Cool-roof energy savings in the cooling and heating seasons were computed two ways. Method A divides by HVAC efficiency the difference (standard cool) in ceiling + duct heat gain. Method B measures the difference in HVAC energy use, corrected for differences in plug and window heat gains.
Based on the more conservative Method B, annual cooling (compressor + fan), heating fuel, and heating fan site energy savings per unit ceiling area were 2.82 kWh/m(2) (26%), 1.13 kWh/m(2) (4%), and 0.0294 kWh/m(2) (3%), respectively. Annual space conditioning (heating + cooling) source energy savings were 10.7 kWh/m(2) (15%); annual energy cost savings were $0.886/m(2) (20%). Annual conditioning CO2, NOx, and SO2 emission reductions were 1.63 kg/m(2) (15%), 0.621 g/m(2) (10%), and 0.0462 g/m(2) (22%). Peak-hour cooling power demand reduction was 0.88 W/m(2) (37%). (C) 2014 Elsevier B.V. All rights reserved.
C1 [Rosado, Pablo J.; Faulkner, David; Sullivan, Douglas P.; Levinson, Ronnen] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Levinson, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM RML27@cornell.edu
FU California Energy Commission (CEC) through its Public Interest Energy
Research Program (PIER); Office of Building Technology, State, and
Community Programs, of the U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the California Energy Commission (CEC)
through its Public Interest Energy Research Program (PIER). It was also
supported by the Assistant Secretary for Energy Efficiency and Renewable
Energy, Office of Building Technology, State, and Community Programs, of
the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We
wish to thank Michael Spears, Woody Delp, and Charlie Curcija (Lawrence
Berkeley National Laboratory); Victor Gonzalez, Tony Seaton, Terry
Anderson, Darius Assemi, Mike Bergeron, and Karl Gosswiller (Granville
Homes Inc.); Ming Shiao and Richard Snyder (CertainTeed Corp.); Annette
Sindar and Greg Peterson (Eagle Roofing Products); Danny Parker (Florida
Solar Energy Center); and Hashem Akbari (Concordia University).
NR 47
TC 10
Z9 11
U1 1
U2 9
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0378-7788
EI 1872-6178
J9 ENERG BUILDINGS
JI Energy Build.
PD SEP
PY 2014
VL 80
BP 57
EP 71
DI 10.1016/j.enbuild.2014.04.024
PG 15
WC Construction & Building Technology; Energy & Fuels; Engineering, Civil
SC Construction & Building Technology; Energy & Fuels; Engineering
GA AS0DU
UT WOS:000343949400007
ER
PT J
AU Mills, E
Bourassa, NJ
Rainer, LI
Homan, G
Merket, N
Parker, D
Dickey, G
Glickman, J
AF Mills, Evan
Bourassa, Norman J.
Rainer, Leo I.
Homan, Gregory
Merket, Noel
Parker, Danny
Dickey, Glenn
Glickman, Joan
TI Asset rating with the home energy scoring tool
SO ENERGY AND BUILDINGS
LA English
DT Article
DE Residential; Home rating; Validation
AB In 2010, as one of many energy initiatives within a broader economic stimulus program, the U.S. Department of Energy (DOE) and Lawrence Berkeley National Laboratory (LBNL) initiated development of a new web-based computer tool and method for providing an energy rating of existing single-family homes. The resulting Home Energy Scoring Tool is a key component of the DOE's Home Energy Score Program for residential building energy labeling, a voluntary national asset rating method that employs a simplified and standardized energy assessment process. The tool-development component of the program has been designed to support the energy audit marketplace by providing a substantially lower-cost, entry-level assessment method analogous to the fuel-economy ratings associated with vehicles. Averaged over a well-characterized sample of homes, the Home Energy Scoring tool is accurate to within 1% of mean weather-normalized energy bills (with 82% of homes having an absolute error of 25% or less), significantly better than two other popular methods known as SIMPLE and REM/Rate. This article presents technical details of the Home Energy Scoring Tool, and how it has evolved over time, including the calculation methodology, accuracy validation, and the web services feature that allows any qualified third-party software developer to integrate the methodology into their own web-based applications and market delivery strategy. As of April 2014, approximately 200 individuals had been qualified to deliver the assessments and had rated 10,600 homes in cooperation with 23 partner organizations across the United States. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Mills, Evan; Bourassa, Norman J.; Rainer, Leo I.; Homan, Gregory] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Merket, Noel] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Parker, Danny] Florida Solar Energy Ctr, Cocoa, FL 32922 USA.
[Dickey, Glenn] SRA Int, Rockville, MD 20852 USA.
[Glickman, Joan] US DOE, Washington, DC 20585 USA.
RP Mills, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM EMills@lbl.gov; NJbourassa@lbl.gov; LIRainer@lbl.gov; GKHoman@lbl.gov;
Noel.Merket@nrel.gov; dparker@fsec.ucf.edu; Glenn_Dickey@sra.com;
Joan.Glickman@ee.doe.gov
FU U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the Assistant Secretary for Energy Efficiency
and Renewable Energy and the Building Technologies Program, of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231. The Home
Energy Saver and Home Energy Scoring Tool core team also includes
software engineers from Bighead Technologies. Helpful comments were
provided by Lain Walker and two anonymous reviewers.
NR 25
TC 5
Z9 5
U1 2
U2 4
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0378-7788
EI 1872-6178
J9 ENERG BUILDINGS
JI Energy Build.
PD SEP
PY 2014
VL 80
BP 441
EP 450
DI 10.1016/j.enbuild.2014.05.044
PG 10
WC Construction & Building Technology; Energy & Fuels; Engineering, Civil
SC Construction & Building Technology; Energy & Fuels; Engineering
GA AS0DU
UT WOS:000343949400042
ER
PT J
AU Goldstein, K
Blasnik, M
Heaney, M
Polly, B
Christensen, C
Norford, L
AF Goldstein, Kate
Blasnik, Michael
Heaney, Michael
Polly, Ben
Christensen, Craig
Norford, Les
TI Developing a pre-retrofit energy consumption metric to model
post-retrofit energy savings: Phase one of a three-phase research
initiative
SO ENERGY AND BUILDINGS
LA English
DT Article
DE Single family residential; Energy efficiency; Data; Retrofit; Utility
programs
ID PRISM
AB This paper details the process and results from the first step of a three-step research process. This first step looks to identify the most predictive pre-retrofit metric of energy consumption to utilize in a model to predict the energy savings post retrofit. The ultimate goal of this research is to predict candidacy for retrofit using only a combination of demographic and home-characteristics data that is available for the entirety of the U.S. residential housing stock. This is important, as utility data is almost always protected for privacy and thus unavailable to assist in targeting where energy efficiency retrofits will be successful.
It is found that the best metric is the simplest, total energy consumption divided by total floor area. In addition to evaluating which pre-use metric is most indicative of post retrofit savings, the paper evaluates the endogenous component of pre-use to post use and a potential method to alleviate this endogeneity. The research finds that by removing the year that is used to calculate the savings as the baseline pre-use year removes a portion of the endogeneity. It is also found that one year before the savings base year is the best year to utilize as the base. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Goldstein, Kate; Norford, Les] MIT, Cambridge, MA 02139 USA.
[Blasnik, Michael] Michael Blasnik & Associates, Roslindale, MA 02131 USA.
[Heaney, Michael; Polly, Ben; Christensen, Craig] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Heaney, M (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA.
EM Michael.Heaney@nrel.gov
NR 6
TC 2
Z9 2
U1 1
U2 2
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0378-7788
EI 1872-6178
J9 ENERG BUILDINGS
JI Energy Build.
PD SEP
PY 2014
VL 80
BP 556
EP 561
DI 10.1016/j.enbuild.2014.03.068
PG 6
WC Construction & Building Technology; Energy & Fuels; Engineering, Civil
SC Construction & Building Technology; Energy & Fuels; Engineering
GA AS0DU
UT WOS:000343949400052
ER
PT J
AU Johnston, S
Zaunbrecher, K
Ahrenkiel, R
Kuciauskas, D
Albin, D
Metzger, W
AF Johnston, Steve
Zaunbrecher, Katherine
Ahrenkiel, Richard
Kuciauskas, Darius
Albin, David
Metzger, Wyatt
TI Simultaneous Measurement of Minority-Carrier Lifetime in Single-Crystal
CdTe Using Three Transient Decay Techniques
SO IEEE JOURNAL OF PHOTOVOLTAICS
LA English
DT Article
DE Cadmium compounds; charge carrier lifetime; infrared detectors;
microwave bands; photoconductivity; photoluminescence; photovoltaic
cells; tellurium
ID SEMICONDUCTORS; DEPENDENCE; ABSORPTION
AB Minority-carrier lifetimes have simultaneously been measured on a single-crystal CdTe sample using three transient decay techniques. These measurements are microwave-reflection photoconductive decay (mu-PCD), time-resolved photoluminescence (TRPL), and transient free-carrier absorption (TFCA). The sample is a 0.8-mm-thick single-crystal CdTe sample from JX Nippon Mining & Metals USA, Inc., which is nominally undoped but has a hole concentration of about 2 - 3 x 10(14) cm(-3). Excess carriers are generated using a Nd:YAG laser with similar to 5-ns pulses, and lifetimes are measured at room temperature. Using 532-nm excitation, the decay curves show an initial short-lifetime component, as carriers are generated near the unpassivated front surface. While TRPL shows a short lifetime of similar to 7 ns, both mu-PCD and TFCA have relatively long single-exponential decays after the initial 100 ns response. These decay times, which are more dominated by the bulk lifetime after the initial surface recombination, are similar to 190 ns for both mu-PCD and TFCA. Simultaneous measurements using two-photon (1064 nm) excitation show bulk-dominated recombination for all three techniques. Lifetimes for both mu-PCD and TFCA are 270 ns, while the TRPL lifetime, which still shows some surface-limited initial decay, is 160 ns.
C1 [Johnston, Steve; Zaunbrecher, Katherine; Ahrenkiel, Richard; Kuciauskas, Darius; Albin, David; Metzger, Wyatt] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Zaunbrecher, Katherine] Colorado State Univ, Ft Collins, CO 80523 USA.
[Ahrenkiel, Richard] Lakewood Semicond, Lakewood, CO 80232 USA.
RP Johnston, S (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM steve.johnston@nrel.gov; katherine.zaunbrecher@nrel.gov;
colodick@me.com; darius.kuciauskas@nrel.gov; David.albin@nrel.gov;
wyatt.metzger@nrel.gov
FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable
Energy Laboratory, in part by the Non-Proprietary Partnering Program;
American Recovery and Reinvestment Act
FX This work was supported by the U.S. Department of Energy under Contract
DE-AC36-08-GO28308 with the National Renewable Energy Laboratory, in
part by the Non-Proprietary Partnering Program, and by the American
Recovery and Reinvestment Act.
NR 19
TC 6
Z9 6
U1 2
U2 12
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2156-3381
J9 IEEE J PHOTOVOLT
JI IEEE J. Photovolt.
PD SEP
PY 2014
VL 4
IS 5
BP 1295
EP 1300
DI 10.1109/JPHOTOV.2014.2339491
PG 6
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA AS9DD
UT WOS:000344542500017
ER
PT J
AU Lei, HM
Huang, MY
Leung, LR
Yang, DW
Shi, XY
Mao, JF
Hayes, DJ
Schwalm, CR
Wei, YX
Liu, SS
AF Lei, Huimin
Huang, Maoyi
Leung, L. Ruby
Yang, Dawen
Shi, Xiaoying
Mao, Jiafu
Hayes, Daniel J.
Schwalm, Christopher R.
Wei, Yaxing
Liu, Shishi
TI Sensitivity of global terrestrial gross primary production to hydrologic
states simulated by the Community Land Model using two runoff
parameterizations
SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS
LA English
DT Article
ID GENERAL-CIRCULATION MODELS; SURFACE SCHEME; CLIMATE MODELS; PART I;
CARBON; WATER; TRANSFERABILITY; PROJECT; BASINS; FLOW
AB Soil moisture plays an important role in the coupled water, energy, and carbon cycles. In addition to surface processes such as evapotranspiration, the boundary fluxes that influence soil moisture are closely related to surface or subsurface runoff. To elucidate how uncertainties in representing surface and subsurface hydrology may influence simulations of the carbon cycle, numerical experiments were performed using version 4 of the Community Land Model with two widely adopted runoff generation parameterizations from the TOPMODEL and Variable Infiltration Capacity (VIC) model under the same protocol. The results showed that differences in the runoff generation schemes caused a relative difference of 36% and 34% in global mean total runoff and soil moisture, respectively, with substantial differences in their spatial distribution and seasonal variability. Changes in the simulated gross primary production (GPP) were found to correlate well with changes in soil moisture through its effects on leaf photosynthesis (A(n)) and leaf area index (LAI), which are the two dominant components determining GPP. Soil temperature, which is influenced by soil moisture, also affects LAI and GPP for the seasonal-deciduous and stress-deciduous plant functional types that dominate in cold regions. Consequently, the simulated global mean GPP differs by 20.4% as a result of differences in soil moisture and soil temperature simulated between the two models. Our study highlights the significant interactions among the water, energy, and carbon cycles and the need for reducing uncertainty in the hydrologic parameterization of land surface models to better constrain carbon cycle modeling.
C1 [Lei, Huimin; Yang, Dawen] Tsinghua Univ, Dept Hydraul Engn, Beijing 100084, Peoples R China.
[Lei, Huimin; Huang, Maoyi; Leung, L. Ruby] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA.
[Shi, Xiaoying; Mao, Jiafu; Hayes, Daniel J.; Wei, Yaxing; Liu, Shishi] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA.
[Shi, Xiaoying; Mao, Jiafu; Hayes, Daniel J.; Wei, Yaxing; Liu, Shishi] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Schwalm, Christopher R.] No Arizona Univ, Sch Earth Sci & Environm Sustainabil, Flagstaff, AZ 86011 USA.
RP Huang, MY (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA.
EM maoyi.huang@pnnl.gov
RI Huang, Maoyi/I-8599-2012; Lei, Huimin/H-9596-2015; Mao,
Jiafu/B-9689-2012
OI Huang, Maoyi/0000-0001-9154-9485; Lei, Huimin/0000-0002-1175-2334; Mao,
Jiafu/0000-0002-2050-7373
FU Office of Science of the U.S. Department of Energy; National Aeronautics
and Space Administration (NASA) [NNX11AO08A, NNH10AN68I]; DOE's Office
of Biological and Environmental Research; BATTELLE Memorial Institute
[DE-AC05-76RLO1830]; UT-BATTELLE for DOE [DE-AC05-00OR22725]; National
Natural Science Funds for Distinguished Young Scholar [51025931];
National Natural Science Foundation of China [51209117, 51139002]
FX This study was supported by the Office of Science of the U.S. Department
of Energy through the Earth System Modeling program, and in part by
National Aeronautics and Space Administration (NASA) under grants
NNX11AO08A and NNH10AN68I as a contribution to the North American Carbon
Program. CLM4VIC simulations were performed using the Environmental
Molecular Sciences Laboratory (EMSL), a national scientific user
facility sponsored by the DOE's Office of Biological and Environmental
Research and located at Pacific Northwest National Laboratory. PNNL is
operated for the US DOE by BATTELLE Memorial Institute under contract
DE-AC05-76RLO1830. The MsTMIP CLM4 simulations were supported by the US
Department of Energy (DOE), Office of Science, Biological, and
Environmental Research. Oak Ridge National Laboratory is managed by
UT-BATTELLE for DOE under contract DE-AC05-00OR22725. Huimin Lei was
funded by the National Natural Science Funds for Distinguished Young
Scholar (Project 51025931) and the National Natural Science Foundation
of China (Projects 51209117 and 51139002) during his visit at PNNL. We
thank Hongyi Li and Nathalie Voisin for their suggestions and comments.
NR 80
TC 8
Z9 8
U1 6
U2 26
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1942-2466
J9 J ADV MODEL EARTH SY
JI J. Adv. Model. Earth Syst.
PD SEP
PY 2014
VL 6
IS 3
BP 658
EP 679
DI 10.1002/2013MS000252
PG 22
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA AS6QP
UT WOS:000344387900011
ER
PT J
AU Wang, MH
Liu, XH
Zhang, K
Comstock, JM
AF Wang, Minghuai
Liu, Xiaohong
Zhang, Kai
Comstock, Jennifer M.
TI Aerosol effects on cirrus through ice nucleation in the Community
Atmosphere Model CAM5 with a statistical cirrus scheme
SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS
LA English
DT Article
ID TROPICAL TROPOPAUSE LAYER; MESOSCALE TEMPERATURE-FLUCTUATIONS;
STRATIFORM CLOUD MICROPHYSICS; GLOBAL CLIMATE MODEL; RELATIVE-HUMIDITY;
UPPER TROPOSPHERE; VERSION-3 CAM3; PART I; NUCLEI; PARAMETERIZATION
AB A statistical cirrus scheme that tracks ice saturation ratio in the clear-sky and cloudy portion of a grid box separately has been implemented into the Community Atmosphere Model CAM5 to provide a consistent treatment of ice nucleation and cloud formation. Simulated ice supersaturation and ice crystal number concentrations strongly depend on the number concentrations of heterogeneous ice nuclei (IN), subgrid temperature formulas, and the number concentration of sulfate particles participating in homogeneous freezing, while simulated ice water content is insensitive to these perturbations. Allowing 1-10% of dust particles to serve as heterogeneous IN is found to produce ice supersaturation in better agreement with observations. Introducing a subgrid temperature perturbation based on long-term aircraft observations produces a better hemispheric contrast in ice supersaturation compared to observations. Heterogeneous IN from dust particles alter the net radiative fluxes at the top of atmosphere (TOA) (-0.24 to -1.59 W m(-2)) with a significant clear-sky longwave component (0.01 to -0.55 W m(-2)). Different cirrus treatments significantly perturb the net TOA anthropogenic aerosol forcing from -1.21 W m(-2) to -1.54 W m(-2), with a standard deviation of 0.10 W m(-2). Aerosol effects on cirrus exert an even larger impact on the atmospheric component of the radiative fluxes (2 or 3 times the changes in the TOA radiative fluxes) and therefore through the fast atmosphere response on the hydrological cycle. This points to the urgent need to quantify aerosol effects on cirrus through ice nucleation and how these further affect the hydrological cycle.
C1 [Wang, Minghuai; Liu, Xiaohong; Zhang, Kai; Comstock, Jennifer M.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA.
[Liu, Xiaohong] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA.
RP Wang, MH (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA.
EM Minghuai.Wang@pnnl.gov
RI Wang, Minghuai/E-5390-2011; Liu, Xiaohong/E-9304-2011; Zhang,
Kai/F-8415-2010
OI Wang, Minghuai/0000-0002-9179-228X; Liu, Xiaohong/0000-0002-3994-5955;
Zhang, Kai/0000-0003-0457-6368
FU DOE Atmospheric System Research (ASR) Program; Battelle Memorial
Institute [DE-AC06-76RLO 1830]
FX This study was supported by the DOE Atmospheric System Research (ASR)
Program. The Pacific Northwest National Laboratory is operated for DOE
by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. We are
grateful to Anna Luebke for providing IWC observational data used in
Figures 6 and 7. We are also grateful to Larry Berg and Heng Xiao for
their constructive comments. All model output is stored on a local linux
cluster at the Pacific Northwest National Laboratory and is available
upon request.
NR 74
TC 10
Z9 10
U1 2
U2 19
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1942-2466
J9 J ADV MODEL EARTH SY
JI J. Adv. Model. Earth Syst.
PD SEP
PY 2014
VL 6
IS 3
BP 756
EP 776
DI 10.1002/2014MS000339
PG 21
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA AS6QP
UT WOS:000344387900016
ER
PT J
AU Guo, Z
Wang, MH
Qian, Y
Larson, VE
Ghan, S
Ovchinnikov, M
Bogenschutz, PA
Zhao, C
Lin, G
Zhou, TJ
AF Guo, Zhun
Wang, Minghuai
Qian, Yun
Larson, Vincent E.
Ghan, Steven
Ovchinnikov, Mikhail
Bogenschutz, Peter A.
Zhao, Chun
Lin, Guang
Zhou, Tianjun
TI A sensitivity analysis of cloud properties to CLUBB parameters in the
single-column Community Atmosphere Model (SCAM5)
SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS
LA English
DT Article
ID PROBABILITY DENSITY-FUNCTIONS; BOUNDARY-LAYER CLOUDS; PDF-BASED MODEL;
UNCERTAINTY QUANTIFICATION; CLIMATE SIMULATIONS; SHALLOW CUMULUS; PART
II; CONVECTION; MICROPHYSICS; IMPACT
AB In this study, we investigate the sensitivity of simulated shallow cumulus and stratocumulus to selected tunable parameters of Cloud Layers Unified by Binormals (CLUBB) in the single-column version of Community Atmosphere Model version 5 (SCAM5). A quasi-Monte Carlo (QMC) sampling approach is adopted to effectively explore the high-dimensional parameter space and a generalized linear model is adopted to study the responses of simulated cloud fields to tunable parameters. One stratocumulus and two shallow cumulus cases are configured at both coarse and fine vertical resolutions in this study. Our results show that most of the variance in simulated cloud fields can be explained by a small number of tunable parameters. The parameters related to Newtonian and buoyancy-damping terms of total water flux are found to be the most influential parameters for stratocumulus. For shallow cumulus, the most influential parameters are those related to skewness of vertical velocity, reflecting the strong coupling between cloud properties and dynamics in this regime. The influential parameters in the stratocumulus case are sensitive to the vertical resolution while little sensitivity is found for the shallow cumulus cases, as eddy mixing length (or dissipation time scale) plays a more important role and depends more strongly on the vertical resolution in stratocumulus than in shallow convections. The influential parameters remain almost unchanged when the number of tunable parameters increases from 16 to 35. This study improves understanding of the CLUBB behavior associated with parameter uncertainties and provides valuable insights for other high-order turbulence closure schemes.
C1 [Guo, Zhun; Wang, Minghuai; Qian, Yun; Ghan, Steven; Ovchinnikov, Mikhail; Zhao, Chun; Lin, Guang] Pacific NW Natl Lab, Atmosphere Sci & Global Change Div, Richland, WA 99352 USA.
[Guo, Zhun; Zhou, Tianjun] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing, Peoples R China.
[Guo, Zhun; Zhou, Tianjun] Chinese Acad Sci, Climate Change Res Ctr, Beijing, Peoples R China.
[Larson, Vincent E.] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA.
[Bogenschutz, Peter A.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
RP Wang, MH (reprint author), Pacific NW Natl Lab, Atmosphere Sci & Global Change Div, Richland, WA 99352 USA.
EM Zhun.Guo@pnnl.gov; Minghuai.Wang@pnnl.gov
RI qian, yun/E-1845-2011; Wang, Minghuai/E-5390-2011; Zhao,
Chun/A-2581-2012; Ghan, Steven/H-4301-2011; ZHOU, Tianjun/C-3195-2012
OI Wang, Minghuai/0000-0002-9179-228X; Zhao, Chun/0000-0003-4693-7213;
Ghan, Steven/0000-0001-8355-8699; ZHOU, Tianjun/0000-0002-5829-7279
FU U.S. Department of Energy's Office of Science through Advanced Computing
Program; Battelle Memorial Institute [DE-AC05-76RL01830]; Office of
Science (BER), U.S. Department of Energy [DE-SC0008323]; Office of
Science of the U.S. Department of Energy [DE-AC02-05CH11231]
FX This study was supported by the U.S. Department of Energy's Office of
Science as part of the Scientific Discoveries through Advanced Computing
Program. The Pacific Northwest National Laboratory is operated for DOE
by Battelle Memorial Institute under contract DE-AC05-76RL01830. V.
Larson gratefully acknowledges support from the Office of Science (BER),
U.S. Department of Energy, Grant DE-SC0008323. This research used
resources of the National Energy Research Scientific Computing Center,
which is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231. All SCAM5 results are
stored on a local PNNL cluster and are available upon request.
NR 37
TC 10
Z9 10
U1 1
U2 16
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1942-2466
J9 J ADV MODEL EARTH SY
JI J. Adv. Model. Earth Syst.
PD SEP
PY 2014
VL 6
IS 3
BP 829
EP 858
DI 10.1002/2014MS000315
PG 30
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA AS6QP
UT WOS:000344387900019
ER
PT J
AU Evans, KJ
Mahajan, S
Branstetter, M
McClean, JL
Caron, J
Maltrud, ME
Hack, JJ
Bader, DC
Neale, R
Leifeld, JK
AF Evans, Katherine J.
Mahajan, Salil
Branstetter, Marcia
McClean, Julie L.
Caron, Julie
Maltrud, Matthew E.
Hack, James J.
Bader, David C.
Neale, Richard
Leifeld, Juliann K.
TI A spectral transform dynamical core option within the Community
Atmosphere Model (CAM4)
SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS
LA English
DT Article
ID GLOBAL PRECIPITATION; CLIMATE MODEL; SYSTEM MODEL; REANALYSIS;
RESOLUTION; CCSM3; UNCERTAINTY; PERFORMANCE; SIMULATION; RADIATION
AB An ensemble of simulations covering the present day observational period using forced sea surface temperatures and prescribed sea-ice extent is configured with an 85 truncation resolution spectral transform dynamical core (T85) within the Community Atmosphere Model (CAM), version 4 and is evaluated relative to observed and model derived data sets and the one degree finite volume (FV) dynamical core. The spectral option provides a well-known base within the climate model community to assess climate behavior and statistics, and its relative computational efficiency for smaller computing platforms allows it to be extended to perform high-resolution climate length simulations. Overall, the quality of the T85 ensemble is similar to FV. Analyzing specific features of the T85 simulations show notable improvements to the representation of wintertime Arctic sea level pressure and summer precipitation over the Western Indian subcontinent. The mean and spatial patterns of the land surface temperature trends over the AMIP period are generally well simulated with the T85 ensemble relative to observations, however the model is not able to capture the extent nor magnitude of changes in temperature extremes over the boreal summer, where the changes are most dramatic. Biases in the wintertime Arctic surface temperature and annual mean surface stress fields persist with T85 as with the CAM3 version of T85, as compared to FV. An experiment to identify the source of differences between dycores has revealed that the longwave cloud forcing is sensitive to the choice of dycore, which has implications for tuning strategies of the physics parameter settings.
C1 [Evans, Katherine J.; Mahajan, Salil; Branstetter, Marcia; Hack, James J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[McClean, Julie L.] Scripps Inst Oceanog, San Diego, CA USA.
[Caron, Julie; Neale, Richard] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Maltrud, Matthew E.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Bader, David C.] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Leifeld, Juliann K.] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA.
RP Evans, KJ (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA.
EM evanskj@ornl.gov
RI Bader, David/H-6189-2011;
OI Bader, David/0000-0003-3210-339X; Mahajan, Salil/0000-0001-5767-8590;
Evans, Katherine/0000-0001-8174-6450
FU Office of Science of the U.S. Department of Energy; National Science
Foundation; U.S. Department of Energy Office of Biological and
Environmental Research (BER) project; U.S. Department of Energy
[DE-AC05-00OR22725]
FX We would like to thank J. Truesdale and M. Vertenstein for help
configuring the spectral option with CESM/CAM, Rick Archibald for
verifying the sensitivity of the physics parameters, and the thoughtful
comments from two anonymous reviewers. The CESM project is supported by
the Office of Science of the U.S. Department of Energy and the National
Science Foundation. NCAR is supported by the National Science
Foundation. Evans, Mahajan, Branstetter, McClean, Maltrud, Hack, and
Bader were funded through the U.S. Department of Energy Office of
Biological and Environmental Research (BER) project, "Ultra High
Resolution Global Climate Simulation to Explore and Quantify Predictive
Skill for Climate Means, Variability and Extremes." The simulation data
used for the analysis are available upon request. This research used the
NCAR Command Language software [NCL, 2012] for some the plots and used
the resources of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under contract DE-AC05-00OR22725.
NR 53
TC 2
Z9 2
U1 1
U2 7
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1942-2466
J9 J ADV MODEL EARTH SY
JI J. Adv. Model. Earth Syst.
PD SEP
PY 2014
VL 6
IS 3
BP 902
EP 922
DI 10.1002/2014MS000329
PG 21
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA AS6QP
UT WOS:000344387900022
ER
PT J
AU Hagos, S
Feng, Z
Landu, K
Long, CN
AF Hagos, Samson
Feng, Zhe
Landu, Kiranmayi
Long, Charles N.
TI Advection, moistening, and shallow-to-deep convection transitions during
the initiation and propagation of Madden-Julian Oscillation
SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS
LA English
DT Article
ID TROPICAL CONVECTION; CLOUD; RADAR; MODEL; SIMULATION; CONGESTUS;
RAINFALL
AB Using observations from the 2011 AMIE/DYNAMO field campaign over the Indian Ocean and a high-resolution regional model simulation, the processes that lead to the rapid shallow-to-deep convection transitions associated with the initiation and eastward propagation of the Madden-Julian Oscillation (MJO) are examined. By tracking the evolution of the depth of several thousand individual model simulated precipitation features, the role of and the processes that control the observed midtropospheric moisture buildup ahead of the detection of deep convection are quantified at large and convection scales. The frequency of shallow-to-deep convection transitions is found to be sensitive to this midlevel moisture and large-scale uplift. This uplift along with the decline of large-scale drying by equator-ward advection causes the moisture buildup leading to the initiation of the MJO. Convection scale moisture variability and uplift, and large-scale zonal advection play secondary roles.
C1 [Hagos, Samson; Feng, Zhe; Long, Charles N.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Landu, Kiranmayi] Indian Inst Technol, Bhubaneswar, Orissa, India.
RP Hagos, S (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM samson.hagos@pnnl.gov
RI Feng, Zhe/E-1877-2015
OI Feng, Zhe/0000-0002-7540-9017
FU U.S. Department of Energy, Office of Science, Biological and
Environmental Research under the Atmospheric System Research Program;
Regional and Global Climate Modeling Program; U.S. Department of Energy
[DE-AC06-76RLO1830]
FX The authors thank two anonymous reviewers for their constructive
comments that improved the quality of the paper. This research is based
on work supported by the U.S. Department of Energy, Office of Science,
Biological and Environmental Research under the Atmospheric System
Research Program, and the Regional and Global Climate Modeling Program.
Computing resources for the simulations are provided by the Oak Ridge
Leadership Computing Facility (OLCF) through the INCITE Climate End
Station project and National Energy Research Scientific Computing Center
(NERSC). Pacific Northwest National Laboratory is operated by Battelle
for the U.S. Department of Energy under contract DE-AC06-76RLO1830. Data
collected on Gan Island during the AMIE field campaign, including radar,
lidar, surface MET, and sounding data, are obtained from the U.S.
Department of Energy as part of the Atmospheric Radiation Measurement
(ARM) Climate Research Facility. The DYNAMO field campaign data used in
this paper is available at NCAR's Earth Observing Laboratory's DYNAMO
Data Catalogue https://www.eol.ucar.edu/field_projects/dynamo.
NR 29
TC 18
Z9 18
U1 1
U2 7
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1942-2466
J9 J ADV MODEL EARTH SY
JI J. Adv. Model. Earth Syst.
PD SEP
PY 2014
VL 6
IS 3
BP 938
EP 949
DI 10.1002/2014MS000335
PG 12
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA AS6QP
UT WOS:000344387900024
ER
PT J
AU Basunia, MS
AF Basunia, M. Shamsuzzoha
TI Nuclear Data Sheets for A=210
SO NUCLEAR DATA SHEETS
LA English
DT Article
ID HIGH-SPIN STATES; ALPHA-DECAY PROPERTIES; ATOMIC MASS EVALUATION;
CORE-EXCITED-STATES; 2-NUCLEON TRANSFER-REACTIONS; NEUTRON-DEFICIENT
FRANCIUM; FILLED RECOIL SEPARATOR; L-SUBSHELL FLUORESCENCE; GAMMA-RAY
SPECTROSCOPY; SQUARE CHARGE RADII
AB Evaluated spectroscopic data for Au-210, Hg-210, Tl-210, Pb-210, Bi-210, Po-210., At-210, Rn-210, Fr-210, Ra-210, Ac-210, and Th-210 and corresponding level schemes from radioactive decay and reaction studies are presented. This evaluation supersedes the previous evaluation by E. Browne (2003Br13). Highlights of this publication are the identification of new us isomers of Hg-210 by 2013Go10 and measurement of an excited level energy at 1709 keV 30 of Rn-210 from Rn-214 alpha decay: : 68.6 mu s by 2006Ku26 denoted as x+1664.6 in the Adopted Levels. Earlier experimental limits for x <= 50 keV was proposed in 1979Po19 and 1982Po03 - (Hl,xn gamma).
C1 Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RP Basunia, MS (reprint author), Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
FU Office of Basic Energy Sciences, US Department of Energy
[DE-AC02-05CH11231]; Office of Energy Research, Office of High Energy
and Nuclear Physics, Nuclear Physics Division of the US Department of
Energy [DE-AC03-76SF00098]
FX Research sponsored by Office of Basic Energy Sciences, US Department of
Energy, under contract DE-AC02-05CH11231.; This work was supported by
the Director, Office of Energy Research, Office of High Energy and
Nuclear Physics, Nuclear Physics Division of the US Department of Energy
under contract DE-AC03-76SF00098.
NR 410
TC 8
Z9 8
U1 2
U2 8
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0090-3752
EI 1095-9904
J9 NUCL DATA SHEETS
JI Nucl. Data Sheets
PD SEP-OCT
PY 2014
VL 121
BP 561
EP 693
DI 10.1016/j.nds.2014.09.004
PG 133
WC Physics, Nuclear
SC Physics
GA AS0KR
UT WOS:000343966600004
ER
PT J
AU Nesaraja, CD
McCutchan, EA
AF Nesaraja, C. D.
McCutchan, E. A.
TI Nuclear Data Sheets for A=243
SO NUCLEAR DATA SHEETS
LA English
DT Article
ID SPONTANEOUSLY FISSIONING ISOMERS; NEUTRON-INDUCED FISSION; ALPHA-DECAY
PROPERTIES; ODD-MASS NUCLEI; CAPTURE CROSS-SECTION; QUASI-PARTICLE
STATES; PARTIAL HALF-LIVES; N-GAMMA-F; ACTINIDE NUCLEI; GROUND-STATE
AB Available information pertaining to the nuclear structure of all nuclei with mass numbers A=243 is presented. Various decay and reaction data are evaluated and compared. Adopted data, levels, spin, parity and configuration assignments are given. When there are insufficient data, expected values from systematics of nuclear properties or/and theoretical calculations are quoted. Unexpected or discrepant experimental results are also noted. A summary and compilation of the discovery of various isotopes in this mass region is given in 2013Fr02 (Np-243, Pu-243, Am-243, Cm-243, Bk-243, and Cf-243, 2011Me01 (Es-243), and 2013Th02 (Fm-243).
C1 [Nesaraja, C. D.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[McCutchan, E. A.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA.
RP Nesaraja, CD (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
OI Nesaraja, Caroline/0000-0001-5571-8341
FU Office of Nuclear Physics, Office of Science, US Department of Energy
[DE-AC02-98CH10946, DE-AC05-000R22725]
FX Research sponsored by Office of Nuclear Physics, Office of Science, US
Department of Energy, under contract DE-AC02-98CH10946 (EM.),
DE-AC05-000R22725 (C.N.).
NR 235
TC 3
Z9 3
U1 0
U2 0
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0090-3752
EI 1095-9904
J9 NUCL DATA SHEETS
JI Nucl. Data Sheets
PD SEP-OCT
PY 2014
VL 121
BP 695
EP 748
DI 10.1016/j.nds.2014.09.005
PG 54
WC Physics, Nuclear
SC Physics
GA AS0KR
UT WOS:000343966600005
ER
PT J
AU Blom, DA
Vogt, T
Allard, LF
Buttrey, DJ
AF Blom, Douglas A.
Vogt, Thomas
Allard, Larry F.
Buttrey, Douglas J.
TI Observation of Sublattice Disordering of the Catalytic Sites in a
Complex Mo-V-Nb-Te-O Oxidation Catalyst Using High Temperature STEM
Imaging
SO TOPICS IN CATALYSIS
LA English
DT Article
DE MoVNbTeO catalyst; M1 phase; Selective oxidation; Ammoxidation;
Sublattice disorder; Active site; STEM imaging
ID M1 PHASE; SELECTIVE OXIDATION; OXIDE CATALYSTS; ACTIVE-CENTERS; PROPANE;
SURFACE; AMMOXIDATION; M2; (AMM)OXIDATION; MULTIFUNCTIONALITY
AB A Mo-V-Nb-Te-O oxidation catalyst has been imaged using scanning transmission electron microscopy at 780 K, which is slightly above its operating temperature. We observe a sublattice disordering of the corner-sharing octahedra forming the catalytic sites containing V5+ while the edge-sharing pentagonal bipyramidal {Nb(Mo-5)} sublattice remains structurally more rigid and thereby maintains the overall structural integrity of the catalyst. Imaging the termination of the edges of the [001] basal zones at room temperature reveal a preference for presence of a closed network of secondary structural {Nb(Mo)(5)} units providing further evidence of the stability of this sublattice structure. We propose that sublattice disordering of catalytic sites enables structural flexibility to accommodate different oxidation states during multistep chemical reactions within a more rigid superstructure and presents a new paradigm for compositionally and structurally complex catalysts.
C1 [Blom, Douglas A.; Vogt, Thomas] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA.
[Blom, Douglas A.; Vogt, Thomas] Univ S Carolina, Nano Ctr, Columbia, SC 29208 USA.
[Allard, Larry F.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Buttrey, Douglas J.] Univ Delaware, Dept Chem & Biomol Engn, Ctr Catalyt Sci & Technol, Newark, DE 19716 USA.
RP Buttrey, DJ (reprint author), Univ Delaware, Dept Chem & Biomol Engn, Ctr Catalyt Sci & Technol, Newark, DE 19716 USA.
EM dbuttrey@udel.edu
FU USC NanoCenter; U.S. Department of Energy, Office of Energy Efficiency
and Renewable Energy, Vehicle Technologies Program, Propulsion Materials
Program
FX We thank the USC NanoCenter for financial support for beam time on the
JEOL 2100 F and travel support to ORNL. We also thank A. F. Volpe Jr.,
C. G. Lugmair, and R. K. Grasselli for providing the M1 specimen used in
this study. Microscopy research at the Oak Ridge National Laboratory was
sponsored by the U.S. Department of Energy, Office of Energy Efficiency
and Renewable Energy, Vehicle Technologies Program, as part of the
Propulsion Materials Program.
NR 24
TC 7
Z9 7
U1 1
U2 21
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1022-5528
EI 1572-9028
J9 TOP CATAL
JI Top. Catal.
PD SEP
PY 2014
VL 57
IS 14-16
BP 1138
EP 1144
DI 10.1007/s11244-014-0278-4
PG 7
WC Chemistry, Applied; Chemistry, Physical
SC Chemistry
GA AS3DY
UT WOS:000344157900004
ER
PT J
AU Alexandrov, BS
Vesselinov, VV
AF Alexandrov, Boian S.
Vesselinov, Velimir V.
TI Blind source separation for groundwater pressure analysis based on
nonnegative matrix factorization
SO WATER RESOURCES RESEARCH
LA English
DT Article
DE inversion; source identification; blind source separation; k-means
analysis; non-negative matrix factorization
ID INDEPENDENT COMPONENT ANALYSIS; CROSS-HOLE TESTS; 3-DIMENSIONAL
NUMERICAL INVERSION; HYDRAULIC TOMOGRAPHY; MUTATIONAL PROCESSES; HUMAN
CANCER; WATER; FLUCTUATIONS; SIGNATURES; ALGORITHM
AB The identification of the physical sources causing spatial and temporal fluctuations of aquifer water levels is a challenging, yet a very important hydrogeological task. The fluctuations can be caused by variations in natural and anthropogenic sources such as pumping, recharge, barometric pressures, etc. The source identification can be crucial for conceptualization of the hydrogeological conditions and characterization of aquifer properties. We propose a new computational framework for model-free inverse analysis of pressure transients based on Nonnegative Matrix Factorization (NMF) method for Blind Source Separation (BSS) coupled with k-means clustering algorithm, which we call NMFk. NMFk is capable of identifying a set of unique sources from a set of experimentally measured mixed signals, without any information about the sources, their transients, and the physical mechanisms and properties controlling the signal propagation through the subsurface flow medium. Our analysis only requires information about pressure transients at a number of observation points, m, where mr, and r is the number of unknown unique sources causing the observed fluctuations. We apply this new analysis on a data set from the Los Alamos National Laboratory site. We demonstrate that the sources identified by NMFk have real physical origins: barometric pressure and water-supply pumping effects. We also estimate the barometric pressure efficiency of the monitoring wells. The possible applications of the NMFk algorithm are not limited to hydrogeology problems; NMFk can be applied to any problem where temporal system behavior is observed at multiple locations and an unknown number of physical sources are causing these fluctuations.
C1 [Alexandrov, Boian S.] Los Alamos Natl Lab, Div Theoret, Phys & Chem Mat Grp, Los Alamos, NM USA.
[Vesselinov, Velimir V.] Los Alamos Natl Lab, Div Earth & Environm Sci, Computat Earth Sci Grp, Los Alamos, NM 87545 USA.
RP Vesselinov, VV (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Computat Earth Sci Grp, Los Alamos, NM 87545 USA.
EM vvv@lanl.gov
RI Vesselinov, Velimir/P-4724-2016;
OI Vesselinov, Velimir/0000-0002-6222-0530; Alexandrov,
Boian/0000-0001-8636-4603
FU Environmental Programs Directorate of the Los Alamos National Laboratory
FX The authors wish to thank the associated editor and three anonymous
reviewers for comments that substantially improved the manuscript. This
research was funded by the Environmental Programs Directorate of the Los
Alamos National Laboratory.
NR 48
TC 1
Z9 1
U1 1
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
EI 1944-7973
J9 WATER RESOUR RES
JI Water Resour. Res.
PD SEP
PY 2014
VL 50
IS 9
BP 7332
EP 7347
DI 10.1002/2013WR015037
PG 16
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA AR9YK
UT WOS:000343933400016
ER
PT J
AU Niu, J
Shen, CP
Li, SG
Phanikumar, MS
AF Niu, Jie
Shen, Chaopeng
Li, Shu-Guang
Phanikumar, Mantha S.
TI Quantifying storage changes in regional Great Lakes watersheds using a
coupled subsurface-land surface process model and GRACE, MODIS products
SO WATER RESOURCES RESEARCH
LA English
DT Article
DE water budgets; storage; Great Lakes; watershed
ID EVAPOTRANSPIRATION ALGORITHM; DATA ASSIMILATION; HYDROLOGIC-CYCLE;
BUDGET; CLASSIFICATION; COMPUTATIONS; GROUNDWATER; BASINS; SYSTEM
AB As a direct measure of watershed resilience, watershed storage is important for understanding climate change impacts on water resources. In this paper we quantify water budget components and storage changes for two of the largest watersheds in the State of Michigan, USA (the Grand River and the Saginaw Bay watersheds) using remotely sensed data and a process-based hydrologic model (PAWS) that includes detailed representations of subsurface and land surface processes. Model performance is evaluated using ground-based observations (streamflows, groundwater heads, soil moisture, and soil temperature) as well as satellite-based estimates of evapotranspiration (Moderate-resolution Imaging Spectroradiometer, MODIS) and watershed storage changes (Gravity Recovery and Climate Experiment, GRACE). We use the model to compute annual-average fluxes due to evapotranspiration, surface runoff, recharge and groundwater contribution to streams and analyze the impacts of land use and land cover (LULC) and soil types on annual hydrologic budgets using correlation analysis. Watershed storage changes based on GRACE data and model results showed similar patterns. Storage was dominated by subsurface components and showed an increasing trend over the past decade. This work provides new estimates of water budgets and storage changes in Great Lakes watersheds and the results are expected to aid in the analysis and interpretation of the current trend of declining lake levels, in understanding projected future impacts of climate change as well as in identifying appropriate climate adaptation strategies.
C1 [Niu, Jie; Li, Shu-Guang; Phanikumar, Mantha S.] Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA.
[Niu, Jie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Shen, Chaopeng] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA.
RP Niu, J (reprint author), Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA.
EM jniu@lbl.gov
OI Shen, Chaopeng/0000-0002-0685-1901
FU NOAA [3002283555]
FX This research was funded by a NOAA grant to the last author (award
3002283555). We thank Han Qiu for his assistance with data compilation,
model runs, and postprocessing. Data sets used as model inputs or for
model testing are owned by several agencies including the USGS, USDA,
NOAA, NASA/JPL, the Michigan Department of Natural Resources (MDNR) and
MAWN (Michigan Automated Weather Network or Enviro-Weather) and details
of these sources (with web links where available) are provided in the
paper. We acknowledge AGU's data policy; however, we are not in a
position to share these publicly available data sets, as we do not have
ownership of the data.
NR 66
TC 14
Z9 14
U1 5
U2 46
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
EI 1944-7973
J9 WATER RESOUR RES
JI Water Resour. Res.
PD SEP
PY 2014
VL 50
IS 9
BP 7359
EP 7377
DI 10.1002/2014WR015589
PG 19
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA AR9YK
UT WOS:000343933400018
ER
PT J
AU Riding, R
Liang, L
Braga, JC
AF Riding, R.
Liang, L.
Braga, J. C.
TI Millennial-scale ocean acidification and late Quaternary decline of
cryptic bacterial crusts in tropical reefs
SO GEOBIOLOGY
LA English
DT Article
ID SULFATE-REDUCING BACTERIA; GREAT-BARRIER-REEF; ATMOSPHERIC
CARBON-DIOXIDE; LAST GLACIAL MAXIMUM; MODERN MARINE STROMATOLITES;
LITHIFIED MICRITIC LAMINAE; PERMIAN MASS EXTINCTION; SOLAR LAKE SINAI;
FOSSIL-FUEL CO2; SEA-LEVEL RISE
AB Ocean acidification by atmospheric carbon dioxide has increased almost continuously since the last glacial maximum (LGM), 21 000 years ago. It is expected to impair tropical reef development, but effects on reefs at the present day and in the recent past have proved difficult to evaluate. We present evidence that acidification has already significantly reduced the formation of calcified bacterial crusts in tropical reefs. Unlike major reef builders such as coralline algae and corals that more closely control their calcification, bacterial calcification is very sensitive to ambient changes in carbonate chemistry. Bacterial crusts in reef cavities have declined in thickness over the past 14 000 years with largest reduction occurring 12 00010 000 years ago. We interpret this as an early effect of deglacial ocean acidification on reef calcification and infer that similar crusts were likely to have been thicker when seawater carbonate saturation was increased during earlier glacial intervals, and thinner during interglacials. These changes in crust thickness could have substantially affected reef development over glacial cycles, as rigid crusts significantly strengthen framework and their reduction would have increased the susceptibility of reefs to biological and physical erosion. Bacterial crust decline reveals previously unrecognized millennial-scale acidification effects on tropical reefs. This directs attention to the role of crusts in reef formation and the ability of bioinduced calcification to reflect changes in seawater chemistry. It also provides a long-term context for assessing anticipated anthropogenic effects.
C1 [Riding, R.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA.
[Liang, L.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Braga, J. C.] Univ Granada, Dept Estratigrafia & Paleontol, Granada, Spain.
RP Riding, R (reprint author), Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA.
EM rriding@utk.edu
RI Liang, Liyuan/O-7213-2014
OI Liang, Liyuan/0000-0003-1338-0324
FU NSF; Japan's Ministry of Education, Culture, Sports, Science and
Technology; European Consortium for Ocean Drilling Research; People's
Republic of China, Ministry of Science and Technology; U.S. Department
of Energy (DOE), Office of Science, Office of Biological and
Environmental Research to Oak Ridge National Laboratory (ORNL); UT
Battelle, LLC, for the U. S. Department of Energy [DE-AC05-00OR22725]
FX This research used samples provided by the Integrated Ocean Drilling
Program (IODP). IODP is supported by NSF; Japan's Ministry of Education,
Culture, Sports, Science and Technology; the European Consortium for
Ocean Drilling Research; and the People's Republic of China, Ministry of
Science and Technology. LL acknowledges scientific support by the U.S.
Department of Energy (DOE), Office of Science, Office of Biological and
Environmental Research to Oak Ridge National Laboratory (ORNL). ORNL is
managed by UT Battelle, LLC, for the U. S. Department of Energy under
contract DE-AC05-00OR22725. We thank anonymous reviewers, including four
for Geobiology, whose very helpful suggestions improved this work. We
are grateful to Mariia del Mar Rueda for statistical help, Fabio Tosti
for assistance with figure drafting, and Kurt Konhauser for editorial
guidance.
NR 226
TC 12
Z9 12
U1 2
U2 31
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1472-4677
EI 1472-4669
J9 GEOBIOLOGY
JI Geobiology
PD SEP
PY 2014
VL 12
IS 5
BP 387
EP 405
DI 10.1111/gbi.12097
PG 19
WC Biology; Environmental Sciences; Geosciences, Multidisciplinary
SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences &
Ecology; Geology
GA AR9BO
UT WOS:000343866300002
PM 25040070
ER
PT J
AU Bolin, TB
AF Bolin, Trudy B.
TI S-XANES analysis of thermal iron sulfide transformations in a suite of
Argonne Premium Coals: A study of particle size effects during pyrolysis
SO INTERNATIONAL JOURNAL OF COAL GEOLOGY
LA English
DT Article
DE Pyrite; Marcasite; Argonne Premium Coals; Pyrrhotite; Troilite;
Shrinking core model
ID X-RAY; ABSORPTION-SPECTROSCOPY; PETROLEUM ASPHALTENES; SAMPLE PROGRAM;
SULFUR FORMS; PYRITE; MARCASITE; DECOMPOSITION; TEMPERATURE; REDUCTION
AB A suite of four bituminous Argonne Premium Coal Samples, namely Pittsburgh#8 (P8), Blind Canyon (BC), Upper Freeport (UF), and Illinois #6 (IL6), were pyrolyzed according to the Easy R-o kinetic model (Burnham and Sweeney, 1989) to R-o = 4.3 and iron sulfide thermal transformations were tracked by the use of S-XANES (Sulfur X-ray Absorption Near Edge Structure.) It was shown that the pyrite transformed first to pyrrhotite by R-o = 1.5, and then started to transform to troilite by R-o = 2.4. Some Argonne Coals displayed evidence of structural instability. In addition, particle size effects were examined. Pyrolysis was performed on not-ground (large-particled) coal samples, which were subsequently ground to micron-size particles before data collection. S-XANES was also collected for the not-ground post-pyrolysis IL6 coal to show the effect of the extent of reaction on the surface of the particles as opposed to the bulk. It was found that the pyrite-to-pyrrhotite transformation in large particles of IL6 coal proceeded from the surface of the particle and progress inward, consistent with the shrinking core model. A scheme for determining particle size based on organic sulfur content was also developed for a coal model consisting of a 50/50 mol% mixture of pyrite and Maya petroleum vacuum resid asphaltene for a range of known particle sizes. Lastly, the behavior of both marcasite (a polymorph of pyrite) and pyrite in a coal model was investigated for large (similar to 100 mu m) and small (similar to 5 mu m) particles. The marcasite proved to be less structurally stable than pyrite for the large particles, with an abrupt transformation to a mixture of pyrrhotite and troilite, and an abrupt drop in aliphatic sulfur content, indicating consequent H2S generation at R-o = 2.4. This transformation is much less pronounced for pyrite at the same point in pyrolysis. (C) 2014 Elsevier B.V. All rights reserved.
C1 Argonne Natl Lab, Argonne, IL 60439 USA.
RP Bolin, TB (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
FU U.S. DOE [DE-AC02-06CH11357]
FX The author would like to heartily thank Simon Kelemen, Clifford Walters,
and Michael Sansone for their very helpful guidance, and also Matthew
Suchomel and Lynn Ribaud for their assistance with powder diffraction at
11-BM. The author would also like to thank Darren Locke for assistance
with SEM. Use of the Advanced Photon Source, an Office of Science User
Facility operated for the U.S. Department of Energy (DOE) Office of
Science by Argonne National Laboratory, was supported by the U.S. DOE
under Contract No. DE-AC02-06CH11357.
NR 38
TC 2
Z9 2
U1 7
U2 22
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-5162
EI 1872-7840
J9 INT J COAL GEOL
JI Int. J. Coal Geol.
PD SEP 1
PY 2014
VL 131
BP 200
EP 213
DI 10.1016/j.coal.2014.06.015
PG 14
WC Energy & Fuels; Geosciences, Multidisciplinary
SC Energy & Fuels; Geology
GA AR8RS
UT WOS:000343842800018
ER
PT J
AU Perego, M
Price, S
Stadler, G
AF Perego, Mauro
Price, Stephen
Stadler, Georg
TI Optimal initial conditions for coupling ice sheet models to Earth system
models
SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE
LA English
DT Article
DE ice sheet modeling; ice sheet model optimization; coupled ice sheet and
climate modeling
ID FUTURE SEA-LEVEL; SURFACE MASS-BALANCE; HIGHER-ORDER; DATA ASSIMILATION;
GREENLAND; RISE; FLOW; IMPLEMENTATION; SENSITIVITY; PROJECTIONS
AB We address complications in the coupling of a dynamic ice sheet model (ISM) and forcing from an Earth system model (ESM), which arise because of the unknown ISM initial conditions. Unless explicitly accounted for during ISM initialization, the ice sheet is far from thermomechanical equilibrium with the surface mass balance forcing from the ESM. Upon coupling to ESM forcing, the result is a shock and unphysical and undesirable transients in ice geometry and other state variables. Under the assumption of thermomechanical equilibrium, we present an approach for finding ISM initial conditionscharacterized by optimization of the basal sliding coefficient and basal topography fieldsthat balance a best fit to surface velocity and basal topography observations against the minimization of unphysical transients when coupling to surface mass balance forcing. A quasi-Newton method is used to solve the resulting large-scale, partial differential equation-constrained optimization problem, where the cost function gradients with respect to the parameter fields are computed using adjoints. After studying properties of our approach on a synthetic test problem, we apply the method toward obtaining optimal initial conditions for a model of the Greenland ice sheet. Our results show that, in the presence of uncertainties in the basal topography, ice thickness should also be treated as an optimization variable. While the focus here is on the coupling between an ISM and ESM-derived surface mass balance, the method is easily extended to include optimal coupling to forcing from an ocean model through submarine melt rates.
C1 [Perego, Mauro] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Price, Stephen] Los Alamos Natl Lab, Fluid Dynam & Solid Mech Grp, Los Alamos, NM USA.
[Stadler, Georg] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA.
RP Perego, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM mperego@sandia.gov
RI Price, Stephen /E-1568-2013
OI Price, Stephen /0000-0001-6878-2553
FU Scientific Discovery through Advanced Computing (SciDAC) program - U.S.
Department of Energy (DOE), Office of Science, Advanced Scientific
Computing Research, and Biological and Environmental Research; U.S.
Department of Energy Office of Science, Advanced Scientific Computing
Research, and Biological and Environmental Research programs
[DE-SC0009286, DE-SC000665, DE-11018096]; Office of Science of the U.S.
Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy's
National Nuclear Security Administration [DE-AC04-94AL85000]
FX The authors would like to thank M. Gunzburger, A. Salinger, O. Ghattas,
N. Petra, and T. Isaac for helpful discussions, and D. Kouri and D.
Ridzal for help with coupling ROL and LifeV and setting the options for
the optimization solver. Support for M.P. and S.P. was provided through
the Scientific Discovery through Advanced Computing (SciDAC) program
funded by the U.S. Department of Energy (DOE), Office of Science,
Advanced Scientific Computing Research, and Biological and Environmental
Research. Support for G.S. was provided by the U.S. Department of Energy
Office of Science, Advanced Scientific Computing Research, and
Biological and Environmental Research programs under grants
DE-SC0009286, DE-SC000665, and DE-11018096. This research used resources
of the National Energy Research Scientific Computing Center, which is
supported by the Office of Science of the U.S. Department of Energy
under contract DE-AC02-05CH11231. Sandia National Laboratories is a
multiprogram laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-AC04-94AL85000. Data will be made available upon request to
the authors.
NR 55
TC 10
Z9 10
U1 2
U2 10
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9003
EI 2169-9011
J9 J GEOPHYS RES-EARTH
JI J. Geophys. Res.-Earth Surf.
PD SEP
PY 2014
VL 119
IS 9
BP 1894
EP 1917
DI 10.1002/2014JF003181
PG 24
WC Geosciences, Multidisciplinary
SC Geology
GA AR9EY
UT WOS:000343876500007
ER
PT J
AU Jeffery, N
Hunke, EC
AF Jeffery, N.
Hunke, E. C.
TI Modeling the winter-spring transition of first-year ice in the western
Weddell Sea
SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
LA English
DT Article
DE sea ice; halodynamics; numerical modeling; Weddell Sea; desalination;
salinity
ID POROUS-MEDIA; SALINITY PROFILE; GRAVITY DRAINAGE; THICKNESS; SUMMER;
ISPOL; SIMULATIONS; DISPERSION; DYNAMICS; SYSTEM
AB A new halodynamic scheme is coupled with the Los Alamos sea ice model to simulate western Weddell Sea ice during the winter-spring transition. One-dimensional temperature and salinity profiles are consistent with the warming and melt stages exhibited in first-year ice cores from the 2004 Ice Station POLarstern (ISPOL) expedition. Results are highly sensitive to snowfall. Simulations which use reanalysis precipitation data do not retain a snow cover beyond mid-December, and the warming transition occurs too rapidly. Model performance is greatly improved by prescribing a snowfall rate based on reported snow thicknesses. During ice growth prior to ISPOL, simulations indicate a period of thick snow and upper ice salinity enrichment. Gravity drainage model parameters impact the simulation immediately, while effects from the flushing parameter (snow porosity at the ice top) appear as the freeboard becomes negative. Simulations using a snow porosity of 0.3, consistent with that of wet snow, agree with salinity observations. The model does not include lateral sources of sea-water flooding, but vertical transport processes account for the high upper-ice salinities observed in ice cores at the start of the expedition. As the ice warms, a fresh upper-ice layer forms, and the high salinity layer migrates downward. This pattern is consistent with the early spring development stages of high-porosity layers observed in Antarctic sea ice that are associated with rich biological production. Future extensions of the model may be valuable in Antarctic ice-biogeochemical applications.
C1 [Jeffery, N.] Los Alamos Natl Lab, Dept Comp & Computat Sci, Los Alamos, NM 87545 USA.
[Hunke, E. C.] Los Alamos Natl Lab, Dept Fluid Dynam & Solid Mech, Los Alamos, NM USA.
RP Jeffery, N (reprint author), Los Alamos Natl Lab, Dept Comp & Computat Sci, POB 1663, Los Alamos, NM 87545 USA.
EM njeffery@lanl.gov
FU U.S. Department of Energy Cloud-Cryosphere Project; U.S. Department of
Energy Biological and Environmental Research (BER) Climate Change
Prediction Program
FX The authors thank two anonymous reviewers, whose thoughtful critiques
led to a substantially improved manuscript. We also thank Mathew
Maltrud, Cecilia Bitz, Scott Elliott, Adrian Turner, Chris Jeffery, and
Jean-Francois Lamarque for many helpful and insightful discussions. The
data used in this paper are available upon request. This research was
supported by the U.S. Department of Energy Cloud-Cryosphere Project and
the U.S. Department of Energy Biological and Environmental Research
(BER) Climate Change Prediction Program.
NR 58
TC 1
Z9 1
U1 2
U2 9
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9275
EI 2169-9291
J9 J GEOPHYS RES-OCEANS
JI J. Geophys. Res.-Oceans
PD SEP
PY 2014
VL 119
IS 9
BP 5891
EP 5920
DI 10.1002/2013JC009634
PG 30
WC Oceanography
SC Oceanography
GA AR9FW
UT WOS:000343879200018
ER
PT J
AU Renaud, G
Riviere, J
Larmat, C
Rutledge, JT
Lee, RC
Guyer, RA
Stokoe, K
Johnson, PA
AF Renaud, G.
Riviere, J.
Larmat, C.
Rutledge, J. T.
Lee, R. C.
Guyer, R. A.
Stokoe, K.
Johnson, P. A.
TI In situ characterization of shallow elastic nonlinear parameters with
Dynamic Acoustoelastic Testing
SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
LA English
DT Article
DE nonlinear elasticity; in situ measurement; acoustoelasticity; soil;
nonlinear wave interaction; nonlinear site response
ID 1994 NORTHRIDGE EARTHQUAKE; OKI-EARTHQUAKE; GROUND-MOTION; PROPAGATION;
RESONANCE; SEDIMENTS; SIGNALS; SOLIDS; ROCK
AB In situ measurement of the elastic nonlinear site response is advantageous to provide optimal information for prediction of strong ground motion at a site. We report the first implementation of a technique known as Dynamic Acoustoelastic Testing (DAET) in situ with the ultimate goal of developing a new approach for site characterization. DAET has shown promising results at the laboratory scale for the study of nonlinear elasticity of Earth materials, detailing the full nonlinear elastic properties of the studied sample. We demonstrate the feasibility of DAET in situ and compare it to other methods (nonlinear resonance spectroscopy, wave amplitude dependence of propagation velocity, and wave distortion). Nonlinear elastic properties are characterized by DAET with the advantage of providing a local assessment compared to other methods, here at a depth of 4 m to 5 m. A vertical dynamic strain amplitude of 5 x10(-5) produces a relative change in compressional wave modulus of 6%. We measure an effective parameter of quadratic elastic nonlinearity of order -10(3), the same order of magnitude measured at the laboratory scale in rocks and in packs of unconsolidated glass beads. Hysteresis is observed in the variation in soil elasticity as a function of the instantaneous dynamic strain that evolves as the dynamic strain amplitude is increased from 9 x10(-7) to 5 x10(-5).
C1 [Renaud, G.] Erasmus MC, Dept Biomed Engn, Rotterdam, Netherlands.
[Renaud, G.] Univ Paris 06, Lab Imagerie Biomed, Sorbonne Univ, Paris, France.
[Riviere, J.; Larmat, C.; Lee, R. C.; Guyer, R. A.; Johnson, P. A.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Rutledge, J. T.] Schlumberger, Houston, TX USA.
[Guyer, R. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA.
[Stokoe, K.] Univ Texas Austin, Dept Civil Engn, Austin, TX 78712 USA.
RP Renaud, G (reprint author), Erasmus MC, Dept Biomed Engn, Rotterdam, Netherlands.
EM renaud_gu@yahoo.fr
OI Larmat, Carene S/0000-0002-3607-7558
FU U.S. Department of Energy, Office of Basic Energy Research; Terry Rust
and Larry Goen of Los Alamos National Laboratory
FX We gratefully acknowledge the support of the U.S. Department of Energy,
Office of Basic Energy Research and the funding for the experiment by
Terry Rust and Larry Goen of Los Alamos National Laboratory. We thank
Farn-Yuh Menq (University of Texas) for data acquisition support. Thanks
to Bruce Redpath for the design and installation of the high-frequency
sources and receivers. We also thank Major Matthew LeBlanc and Captain
Allen Branco (University of Texas) for assistance on installation of
sensors and their field support during the course of the experiment.
Finally, we thank Didier Cassereau for his help with SimSonic
simulations.
NR 49
TC 6
Z9 6
U1 0
U2 12
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9313
EI 2169-9356
J9 J GEOPHYS RES-SOL EA
JI J. Geophys. Res.-Solid Earth
PD SEP
PY 2014
VL 119
IS 9
BP 6907
EP 6923
DI 10.1002/2013JB010625
PG 17
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AR9EI
UT WOS:000343874600011
ER
PT J
AU Walker, A
Mehta, P
Koller, J
AF Walker, Andrew
Mehta, Piyush
Koller, Josef
TI Different Implementations of Diffuse Reflection with Incomplete
Accommodation for Drag Coefficient Modeling
SO JOURNAL OF SPACECRAFT AND ROCKETS
LA English
DT Article
ID GAS-SURFACE INTERACTIONS
AB Diffuse reflection with incomplete accommodation is the favored gas-surface interaction model for calculating the drag coefficient of satellites in low Earth orbit, where drag is the largest source of uncertainty in the orbital trajectory of satellites. Closed-form solutions have incorporated the variation of the energy accommodation coefficient through equating the total energy of the incident and reflected flows; however, this leads to an incorrect reflected velocity distribution for incomplete accommodation. The problem is highlighted by investigating the velocity distribution functions for a gas reflected from a flat plate at zero accommodation. A physically accurate implementation for diffuse reflection with incomplete accommodation based on the Cercignani-Lampis-Lord gas-surface interaction model is compared with the closed-form solutions that equate the incident and reflected energy of the flow. The Cercignani-Lampis-Lord gas-surface interaction model shows the conservation of energy on a molecule-by-molecule basis for zero accommodation, as expected, whereas the closed-form method only conserves energy on average. The macroscopic effect of the different velocity distributions manifests in differences of similar to 1.8-2.5% in the drag coefficient of a flat plate, sphere, and the GRACE satellite at zero accommodation and differences larger than 1% for energy accommodation coefficients less than 0.90.
C1 [Walker, Andrew; Mehta, Piyush] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Koller, Josef] Los Alamos Natl Lab, IMPACT Project, Los Alamos, NM 87545 USA.
RP Walker, A (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
OI Walker, Andrew/0000-0002-7890-1779
FU U.S. Department of Energy through the Los Alamos National
Laboratory/Laboratory Directed Research and Development program as part
of the Integrated Modeling of Perturbations in Atmospheres for
Conjunction Tracking project
FX Funding for this work was provided by the U.S. Department of Energy
through the Los Alamos National Laboratory/Laboratory Directed Research
and Development program as part of the Integrated Modeling of
Perturbations in Atmospheres for Conjunction Tracking project.
NR 19
TC 1
Z9 1
U1 0
U2 6
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0022-4650
EI 1533-6794
J9 J SPACECRAFT ROCKETS
JI J. Spacecr. Rockets
PD SEP-OCT
PY 2014
VL 51
IS 5
BP 1522
EP 1532
DI 10.2514/1.A32668
PG 11
WC Engineering, Aerospace
SC Engineering
GA AR8AH
UT WOS:000343797500012
ER
PT J
AU Walker, A
Mehta, P
Koller, J
AF Walker, Andrew
Mehta, Piyush
Koller, Josef
TI Drag Coefficient Model Using the Cercignani-Lampis-Lord Gas-Surface
Interaction Model
SO JOURNAL OF SPACECRAFT AND ROCKETS
LA English
DT Article
ID ENERGY-ACCOMMODATION COEFFICIENTS; MONTE-CARLO METHOD; ATMOSPHERIC
DENSITY; BOLTZMANN-EQUATION; SATELLITE; SCATTERING; ADSORPTION; SPHERE;
WINDS
AB Drag coefficient calculations using the Cercignani-Lampis-Lord quasi-specular gas-surface interaction model have been used to derive modified closed-form solutions for several simple geometries. The key component of the modified closed-form solutions is a relation between the normal energy and normal momentum accommodation coefficients, which is valid within similar to 0.5% over the global parameter space. The modified closed-form solutions are made self-consistent by relating the effective energy accommodation to the partial pressure of atomic oxygen through a Langmuir isotherm. The modified closed-form solutions are compared to fitted drag coefficients and drag coefficients computed using two other gas-surface interaction models: diffuse reflection with incomplete accommodation and Maxwell's model. Comparison during solar maximum conditions shows that both the diffuse reflection with incomplete accommodation and Cercignani-Lampis-Lord models agree with fitted drag coefficients within similar to 2% below similar to 500 km altitude. Further comparison shows that solar minimum drag coefficients are up to similar to 24% higher than those at solar maximum based on global ionosphere-thermosphere model atmospheric properties. Drag coefficients computed with atmospheric properties from the Naval Research Laboratory mass spectrometer incoherent scatter extended model and the global ionosphere-thermosphere model agree within similar to 2% at solar maximum but disagree by up to similar to 11% at solar minimum.
C1 [Walker, Andrew; Mehta, Piyush] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
[Koller, Josef] Los Alamos Natl Lab, IMPACT Project, Los Alamos, NM 87544 USA.
RP Walker, A (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA.
OI Walker, Andrew/0000-0002-7890-1779
FU U.S. Department of Energy through the Los Alamos National
Laboratory/Laboratory Directed Research and Development program as part
of the Integrated Modeling of Perturbations in Atmospheres for
Conjunction Tracking project
FX Funding for this work was provided by the U.S. Department of Energy
through the Los Alamos National Laboratory/Laboratory Directed Research
and Development program as part of the Integrated Modeling of
Perturbations in Atmospheres for Conjunction Tracking project.
Computations were performed with Los Alamos National Laboratory
high-performance computing systems.
NR 54
TC 3
Z9 3
U1 1
U2 10
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0022-4650
EI 1533-6794
J9 J SPACECRAFT ROCKETS
JI J. Spacecr. Rockets
PD SEP-OCT
PY 2014
VL 51
IS 5
BP 1544
EP 1563
DI 10.2514/1.A32677
PG 20
WC Engineering, Aerospace
SC Engineering
GA AR8AH
UT WOS:000343797500014
ER
PT J
AU Kohler, M
Habart, E
Arab, H
Bernard-Salas, J
Ayasso, H
Abergel, A
Zavagno, A
Polehampton, E
van der Wiel, MHD
Naylor, DA
Makiwa, G
Dassas, K
Joblin, C
Pilleri, P
Berne, O
Fuente, A
Gerin, M
Goicoechea, JR
Teyssier, D
AF Koehler, M.
Habart, E.
Arab, H.
Bernard-Salas, J.
Ayasso, H.
Abergel, A.
Zavagno, A.
Polehampton, E.
van der Wiel, M. H. D.
Naylor, D. A.
Makiwa, G.
Dassas, K.
Joblin, C.
Pilleri, P.
Berne, O.
Fuente, A.
Gerin, M.
Goicoechea, J. R.
Teyssier, D.
TI Physical structure of the photodissociation regions in NGC 7023
Observations of gas and dust emission with Herschel
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE infrared: ISM; submillimeter: ISM; ISM: lines and bands; ISM: molecules;
ISM: clouds; dust, extinction
ID FOURIER-TRANSFORM SPECTROMETER; H-II REGIONS; POLYCYCLIC
AROMATIC-HYDROCARBONS; EXTENDED RED EMISSION; INTERSTELLAR-MEDIUM; STAR
HD-200775; SPIRE INSTRUMENT; MASSIVE STAR; SMALL GRAINS; EVOLUTION
AB Context. The determination of the physical conditions in molecular clouds is a key step towards our understanding of their formation and evolution of associated star formation. We investigate the density, temperature, and column density of both dust and gas in the photodissociation regions (PDRs) located at the interface between the atomic and cold molecular gas of the NGC 7023 reflection nebula. We study how young stars affect the gas and dust in their environment.
Aims. Several Herschel Space Telescope programs provide a wealth of spatial and spectral information of dust and gas in the heart of PDRs. We focus our study on Spectral and Photometric Image Receiver (SPIRE) Fourier-Transform Spectrometer (FTS) fully sampled maps that allow us for the first time to study the bulk of cool/warm dust and warm molecular gas (CO) together. In particular, we investigate if these populations spatially coincide, if and how the medium is structured, and if strong density and temperature gradients occur, within the limits of the spatial resolution obtained with Herschel.
Methods. The SPIRE FTS fully sampled maps at different wavelengths are analysed towards the northwest (NW) and the east (E) PDRs in NGC 7023. We study the spatial and spectral energy distribution of a wealth of intermediate rotational (CO)-C-12 4 <= J(u) <= 13 and (CO)-C-13 5 <= J(u) <= 10 lines. A radiative transfer code is used to assess the gas kinetic temperature, density, and column density at different positions in the cloud. The dust continuum emission including Spitzer, the Photoconductor Array Camera and Spectrometer (PACS), and SPIRE photometric and the Institute for Radio Astronomy in the Millimeter Range (IRAM) telescope data is also analysed. Using a single modified black body and a radiative transfer model, we derive the dust temperature, density, and column density.
Results. The cloud is highly inhomogeneous, containing several irradiated dense structures. Excited (CO)-C-12 and (CO)-C-13 lines and warm dust grains localised at the edge of the dense structures reveal high column densities of warm/cool dense matter. Both tracers give a good agreement in the local density, column density, and physical extent, leading to the conclusion that they trace the same regions. The derived density profiles show a steep gradient at the cloud edge reaching a maximum gas density of 10(5) -10(6) cm(-3) in the PDR NGC 7023 NW and 10(4)-10(5) cm(-3) in the PDR NGC 7023 E and a subsequent decrease inside the cloud. Close to the PDR edges, the dust temperature (30 K and 20 K for the NW and E PDRs, respectively) is lower than the gas temperature derived from CO lines (65-130 K and 45-55 K, respectively). Further inside the cloud, the dust and gas temperatures are similar. The derived thermal pressure is about 10 times higher in NGC 7023 NW than in NGC 7023 E. Comparing the physical conditions to the positions of known young stellar object candidates in NGC 7023 NW, we find that protostars seem to be spatially correlated with the dense structures.
Conclusions. Our approach combining both dust and gas delivers strong constraints on the physical conditions of the PDRs. We find dense and warm molecular gas of high column density in the PDRs.
C1 [Koehler, M.; Habart, E.; Arab, H.; Bernard-Salas, J.; Ayasso, H.; Abergel, A.; Dassas, K.] Univ Paris 11, IAS, F-91405 Orsay, France.
[Koehler, M.; Habart, E.; Arab, H.; Bernard-Salas, J.; Ayasso, H.; Abergel, A.; Dassas, K.] CNRS, F-91405 Orsay, France.
[Bernard-Salas, J.] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England.
[Zavagno, A.] CNRS, Lab Astrophys Marseille, UMR 6110, F-13388 Marseille 13, France.
[Zavagno, A.] Univ Aix Marseille 1, F-13388 Marseille 13, France.
[Polehampton, E.] Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England.
[Polehampton, E.; van der Wiel, M. H. D.; Naylor, D. A.; Makiwa, G.] Univ Lethbridge, Dept Phys & Astron, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada.
[Joblin, C.; Berne, O.] Univ Toulouse, UPS OMP, IRAP, F-31400 Toulouse, France.
[Joblin, C.; Berne, O.] CNRS, IRAP, F-31028 Toulouse 4, France.
[Pilleri, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Fuente, A.] OAN, IGN, Alcala De Henares 28803, Spain.
[Gerin, M.] Observ Paris, LERMA, F-75014 Paris, France.
[Goicoechea, J. R.] CSIC INTA, Ctr Astrobiol, Dept Astrofis, Madrid 28850, Spain.
[Teyssier, D.] ESAC, Madrid 28691, Spain.
RP Kohler, M (reprint author), Univ Paris 11, IAS, Bat 121, F-91405 Orsay, France.
EM mkoehler@ias.u-psud.fr
RI van der Wiel, Matthijs/M-4531-2014; Fuente, Asuncion/G-1468-2016
OI van der Wiel, Matthijs/0000-0002-4325-3011; Fuente,
Asuncion/0000-0001-6317-6343
FU Herschel SPIRE Guaranteed Time Key project Evolution of Interstellar
Dust; CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS
(France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA
(USA); Spanish MINECO [CSD2009-00038, AYA2012-32032]
FX We thank the anonymous referee for very helpful suggestions and
comments. This research acknowledges the support of the Herschel SPIRE
Guaranteed Time Key project Evolution of Interstellar Dust. SPIRE has
been developed by a consortium of institutes led by Cardiff Univ. (UK)
and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM
(France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory
(Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex
(UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has
been supported by national funding agencies: CSA (Canada); NAOC (China);
CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden);
STFC (UK); and NASA (USA). AF and JRG thanks the Spanish MINECO for
funding support from grants CSD2009-00038 and AYA2012-32032.
NR 64
TC 5
Z9 5
U1 0
U2 4
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
EI 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP
PY 2014
VL 569
AR A109
DI 10.1051/0004-6361/201322711
PG 20
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AQ8PZ
UT WOS:000343092100016
ER
PT J
AU Trevino-Morales, SP
Pilleri, P
Fuente, A
Kramer, C
Roueff, E
Gonzalez-Garcia, M
Cernicharo, J
Gerin, M
Goicoechea, JR
Pety, J
Berne, O
Ossenkopf, V
Ginard, D
Garcia-Burillo, S
Rizzo, JR
Viti, S
AF Trevino-Morales, S. P.
Pilleri, P.
Fuente, A.
Kramer, C.
Roueff, E.
Gonzalez-Garcia, M.
Cernicharo, J.
Gerin, M.
Goicoechea, J. R.
Pety, J.
Berne, O.
Ossenkopf, V.
Ginard, D.
Garcia-Burillo, S.
Rizzo, J. R.
Viti, S.
TI Deuteration around the ultracompact HII region Monoceros R2
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE astrochemistry; HII regions; photon-dominated region (PDR); radio lines:
ISM
ID DENSE INTERSTELLAR CLOUDS; GRAIN SURFACE-CHEMISTRY; DEUTERIUM
FRACTIONATION; LOW-TEMPERATURE; DARK CLOUDS; PHOTODISSOCIATION REGIONS;
MOLECULAR-SPECTROSCOPY; EVOLUTIONARY TRACER; PHYSICAL CONDITIONS; SMALL
HYDROCARBONS
AB Context. The massive star-forming region Monoceros R2 (Mon R2) hosts the closest ultra-compact HII region, where the photon-dominated region (PDR) between the ionized and molecular gas can be spatially resolved with current single-dish telescopes.
Aims. We aim at studying the chemistry of deuterated molecules toward Mon R2 to determine the deuterium fractions around a high-UV irradiated PDR and investigate the chemistry of these species.
Methods. We used the IRAM-30 m telescope to carry out an unbiased spectral survey toward two important positions (namely IF and MP2) in Mon R2 at 1, 2, and 3 mm. This spectral survey is the observational basis of our study of the deuteration in this massive star-forming region. Our high spectral resolution observations (similar to 0.25-0.65 km s(-1)) allowed us to resolve the line profiles of the different species detected.
Results. We found a rich chemistry of deuterated species at both positions of Mon R2, with detections of C2D, DCN, DNC, DCO+, D2CO, HDCO, NH2D, and N2D+ and their corresponding hydrogenated species and rarer isotopologs. The high spectral resolution of our observations allowed us to resolve three velocity components: the component at 10 km s(-1) is detected at both positions and seems associated with the layer most exposed to the UV radiation from IRS 1; the component at 12 km s(-1) is found toward the IF position and seems related to the foreground molecular gas; finally, a component at 8.5 km s(-1) is only detected toward the MP2 position, most likely related to a low-UV irradiated PDR. We derived the column density of the deuterated species (together with their hydrogenated counterparts), and determined the deuterium fractions as D-frac = [XD]/[XH]. The values of Dfrac are around 0.01 for all the observed species, except for HCO+ and N2H+, which have values 10 times lower. The values found in Mon R2 are similar to those measured in the Orion Bar, and are well explained with a pseudo-time-dependent gas-phase model in which deuteration occurs mainly via ion-molecule reactions with H2D+, CH2D+ and C2HD+. Finally, the [(HCN)-C-13]/[(HNC)-C-13] ratio is very high (similar to 11) for the 10 km s(-1) component, which also agree with our model predictions for an age of similar to 0.01 to a few 0.1 Myr.
Conclusions. The deuterium chemistry is a good tool for studying the low-mass and high-mass star-forming regions. However, while low-mass star-forming regions seem well characterized with D-frac(N2H+) or D-frac(HCO+), a more complete chemical modeling is required to date massive star-forming regions. This is due to the higher gas temperature together with the rapid evolution of massive protostars.
C1 [Trevino-Morales, S. P.; Kramer, C.; Gonzalez-Garcia, M.] Inst Radioastron Milimetr IRAM Spain, Granada 18012 20, Spain.
[Pilleri, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Pilleri, P.; Fuente, A.; Ginard, D.; Garcia-Burillo, S.] Observ Astron Nacl, Madrid 28803, Spain.
[Pilleri, P.; Cernicharo, J.; Goicoechea, J. R.; Rizzo, J. R.] Ctr Astrobiol INTA CSIC, Dept Astrofis, Torrejon De Ardoz 28850, Spain.
[Roueff, E.] CNRS, LUTH UMR 8102, F-92195 Meudon, France.
[Roueff, E.] Observ Paris, F-92195 Meudon, France.
[Gerin, M.] CNRS, UMR 8112, LERMA, F-75014 Paris, France.
[Gerin, M.] Observ Paris, F-75014 Paris, France.
[Pety, J.] IRAM, F-38406 St Martin Dheres, France.
[Pety, J.] Observ Paris, UMR 8112, LERMA LRA, F-75231 Paris, France.
[Pety, J.] Ecole Normale Super, F-75231 Paris, France.
[Berne, O.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse, France.
[Berne, O.] CNRS, IRAP, F-31028 Toulouse 4, France.
[Ossenkopf, V.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany.
[Viti, S.] UCL, Dept Phys & Astron, London, England.
RP Trevino-Morales, SP (reprint author), Inst Radioastron Milimetr IRAM Spain, Ave Div Pastora 7, Granada 18012 20, Spain.
EM trevino@iram.es
RI Rizzo, J. Ricardo/N-5879-2014; Fuente, Asuncion/G-1468-2016;
OI Rizzo, J. Ricardo/0000-0002-8443-6631; Fuente,
Asuncion/0000-0001-6317-6343; PETY, Jerome/0000-0003-3061-6546;
Garcia-Burillo, Santiago/0000-0003-0444-6897; Ginard Pariente,
David/0000-0003-0471-0926
FU Spanish MINECO [CSD2009-00038, AYA2009-07304, AYA2012-32032]
FX We acknowledge A. Sanchez-Monge for useful comments and suggestions. We
also thank J. A. Toala for a critical reading of the manuscript. We
thank the anonymous referee for his/her comments. We thank the Spanish
MINECO for funding support from grants CSD2009-00038, AYA2009-07304, and
AYA2012-32032.
NR 74
TC 3
Z9 3
U1 0
U2 2
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
EI 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP
PY 2014
VL 569
AR A19
DI 10.1051/0004-6361/201423407
PG 30
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AQ8PZ
UT WOS:000343092100040
ER
PT J
AU Winter, W
Tjus, JB
Klein, SR
AF Winter, W.
Tjus, J. Becker
Klein, S. R.
TI Impact of secondary acceleration on the neutrino spectra in gamma-ray
bursts
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE acceleration of particles; neutrinos; astroparticle physics; gamma-ray
burst: general
ID HIGH-ENERGY NEUTRINOS; COSMIC NEUTRINOS; MUON NEUTRINOS; EMISSION;
ICECUBE; DETECTOR; SEARCH; MODELS; SIMULATIONS; VARIABILITY
AB Context. The observation of charged cosmic rays with energies up to 10(20) eV shows that particle acceleration must occur in astrophysical sources. Acceleration of secondary particles like muons and pions, produced in cosmic ray interactions, are usually neglected, however, when calculating the flux of neutrinos from cosmic ray interactions.
Aims. Here, we discuss the acceleration of secondary muons, pions, and kaons in gamma-ray bursts (GRBs) within the internal shock scenario, and their impact on the neutrino fluxes.
Methods. We introduce a two-zone model consisting of an acceleration zone (the shocks) and a radiation zone (the plasma downstream the shocks). The acceleration in the shocks, which is an unavoidable consequence of efficient proton acceleration, requires efficient transport from the radiation back to the acceleration zone. On the other hand, stochastic acceleration in the radiation zone can enhance the secondary spectra of muons and kaons significantly if there is a sufficiently large turbulent region.
Results. Overall, it is plausible that neutrino spectra can be enhanced by up to a factor of two at the peak by stochastic acceleration, that an additional spectral peak appears from shock acceleration of the secondary muons and pions, and that the neutrino production from kaon decays is enhanced.
Conclusions. Depending on the GRB parameters, the general conclusions concerning the limits to the internal shock scenario obtained by recent IceCube and ANTARES analyses may be affected by up to a factor of two by secondary acceleration. Most of the changes occur at energies above 10(7) GeV, so the effects for next-generation radio-detection experiments will be more pronounced. In the future, however, if GRBs are detected as high-energy neutrino sources, the detection of one or several pronounced peaks around 10(6) GeV or higher energies could help to derive the basic properties of the magnetic field strength in the GRB.
C1 [Winter, W.] DESY, D-15738 Zeuthen, Germany.
[Tjus, J. Becker] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany.
[Klein, S. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Klein, S. R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
RP Winter, W (reprint author), DESY, Platanenallee 6, D-15738 Zeuthen, Germany.
EM walter.winter@desy.de; julia.tjus@rub.de; srklein@lbl.gov
RI Tjus, Julia/G-8145-2012
FU DFG [WI 2639/3-1, WI 2639/4-1]; FP7 Invisibles network (Marie Curie
Actions) [PITN-GA-2011-289442]; "Helmholtz Alliance for Astroparticle
Physics HAP" - Initiative and Networking fund of the Helmholtz
association; Research Department of Plasmas with Complex Interactions
(Bochum); MERCUR Project [Pr-2012-0008]; US National Science Foundation
[PHY-1307472]; US Department of Energy [DE-AC-76SF00098]
FX W.W. acknowledges support from DFG grants WI 2639/3-1 and WI 2639/4-1,
the FP7 Invisibles network (Marie Curie Actions, PITN-GA-2011-289442),
and the "Helmholtz Alliance for Astroparticle Physics HAP", funded by
the Initiative and Networking fund of the Helmholtz association. J.B.T.
acknowledges support from the Research Department of Plasmas with
Complex Interactions (Bochum) and from the MERCUR Project Pr-2012-0008.
The work of S.K. was supported in part by US National Science Foundation
under grant PHY-1307472 and the US Department of Energy under contract
number DE-AC-76SF00098. We are grateful to P. Baerwald, M. Reynoso, R.
Tarkeshian, and E. Waxman for useful discussions. We thank members of
the IceCube collaboration for useful discussions.
NR 54
TC 8
Z9 8
U1 0
U2 3
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP
PY 2014
VL 569
AR A58
DI 10.1051/0004-6361/201423745
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AQ8PZ
UT WOS:000343092100059
ER
PT J
AU Iyer, G
Hultman, N
Fetter, S
Kim, SH
AF Iyer, Gokul
Hultman, Nathan
Fetter, Steve
Kim, Son H.
TI Implications of small modular reactors for climate change mitigation
SO ENERGY ECONOMICS
LA English
DT Article
DE Small modular reactor; Climate change; Nuclear Integrated assessment
model
ID NUCLEAR-POWER; TECHNOLOGICAL-CHANGE; ENERGY TECHNOLOGIES; INTEGRATED
ASSESSMENT; ENVIRONMENTAL-POLICY; SAFETY FEATURES; PUBLIC-OPINION;
PERCEIVED RISK; LOCK-IN; FUTURE
AB Achieving climate policy targets will require large-scale deployment of low-carbon energy technologies, including nuclear power. The small modular reactor (SMR) is viewed as a possible solution to the problems of energy security as well as climate change. In this paper, we use an integrated assessment model (IAM) to investigate the evolution of a global energy portfolio with SMRs under a stringent climate policy. Technology selection in the model is based on costs; we use results from previous expert elicitation studies of SMR costs. We find that the costs of achieving a 2 C target are lower with SMRs than without. The costs are higher when large reactors do not compete for market share compared to a world in which they can compete freely. When both SMRs and large reactors compete for market share, reduction in mitigation cost is achieved only under advanced assumptions about SMR technology costs and future cost improvements. While the availability of SMRs could lower mitigation costs by a moderate amount, actual realization of these benefits would depend on the rapid up-scaling of SMRs in the near term. Such rapid deployment could be limited by several social, institutional and behavioral obstacles. (C)2014 Elsevier B.V. All rights reserved.
C1 [Iyer, Gokul; Hultman, Nathan; Fetter, Steve] Univ Maryland, Sch Publ Policy, College Pk, MD 20742 USA.
[Iyer, Gokul; Hultman, Nathan; Kim, Son H.] Joint Global Change Res Inst, Pacific NW Natl Lab, College Pk, MD 20740 USA.
[Iyer, Gokul; Hultman, Nathan; Kim, Son H.] Univ Maryland, College Pk, MD 20740 USA.
RP Iyer, G (reprint author), Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA.
NR 91
TC 3
Z9 3
U1 4
U2 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0140-9883
EI 1873-6181
J9 ENERG ECON
JI Energy Econ.
PD SEP
PY 2014
VL 45
BP 144
EP 154
DI 10.1016/j.eneco2014.06.023
PG 11
WC Economics
SC Business & Economics
GA AR5GQ
UT WOS:000343613500012
ER
PT J
AU Harvey, W
Park, IH
Rubel, O
Pascucci, V
Bremer, PT
Li, CL
Wang, YS
AF Harvey, William
Park, In-Hee
Ruebel, Oliver
Pascucci, Valerio
Bremer, Peer-Timo
Li, Chenglong
Wang, Yusu
TI A collaborative visual analytics suite for protein folding research
SO JOURNAL OF MOLECULAR GRAPHICS & MODELLING
LA English
DT Article
DE Molecular simulation data; Visualization tool
ID NONLINEAR DIMENSIONALITY REDUCTION; POTENTIAL-ENERGY SURFACES;
LANDSCAPE; CRYSTALLINS; TOPOLOGY; PEPTIDE; VISUALIZATION; SIMULATIONS;
EIGENMAPS; DYNAMICS
AB Molecular dynamics (MD) simulation is a crucial tool for understanding principles behind important biochemical processes such as protein folding and molecular interaction. With the rapidly increasing power of modern computers, large-scale MD simulation experiments can be performed regularly, generating huge amounts of MD data. An important question is how to analyze and interpret such massive and complex data.
One of the (many) challenges involved in analyzing MD simulation data computationally is the high-dimensionality of such data. Given a massive collection of molecular conformations, researchers typically need to rely on their expertise and prior domain knowledge in order to retrieve certain conformations of interest. It is not easy to make and test hypotheses as the data set as a whole is somewhat "invisible" due to its high dimensionality. In other words, it is hard to directly access and examine individual conformations from a sea of molecular structures, and to further explore the entire data set. There is also no easy and convenient way to obtain a global view of the data or its various modalities of biochemical information.
To this end, we present an interactive, collaborative visual analytics tool for exploring massive, high-dimensional molecular dynamics simulation data sets. The most important utility of our tool is to provide a platform where researchers can easily and effectively navigate through the otherwise "invisible" simulation data sets, exploring and examining molecular conformations both as a whole and at individual levels. The visualization is based on the concept of a topological landscape, which is a 2D terrain metaphor preserving certain topological and geometric properties of the high dimensional protein energy landscape. In addition to facilitating easy exploration of conformations, this 2D terrain metaphor also provides a platform where researchers can visualize and analyze various properties (such as contact density) overlayed on the top of the 20 terrain. Finally, the software provides a collaborative environment where multiple researchers can assemble observations and biochemical events into storyboards and share them in real time over the Internet via a client-server architecture.
The software is written in Scala and runs on the cross-platform Java Virtual Machine. Binaries and source code are available at http://www.aylasoftware.org and have been released under the GNU General Public License. (C) 2014 Elsevier Inc. All rights reserved.
C1 [Harvey, William; Wang, Yusu] Ohio State Univ, Dept Comp Sci & Engn, Columbus, OH 43210 USA.
[Park, In-Hee; Li, Chenglong] Ohio State Univ, Chem Phys Program, Columbus, OH 43210 USA.
[Ruebel, Oliver] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Visualizat Grp, Berkeley, CA 94720 USA.
[Pascucci, Valerio] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT USA.
[Bremer, Peer-Timo] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA.
[Li, Chenglong] Ohio State Univ, Coll Pharm, Columbus, OH 43210 USA.
RP Harvey, W (reprint author), Ohio State Univ, Dept Comp Sci & Engn, Columbus, OH 43210 USA.
EM harveywi@cse.ohio-state.edu; yusu@cse.ohio-state.edu
RI Li, Chenglong/E-7182-2010
OI Li, Chenglong/0000-0003-3174-8719
FU National Science Foundation [DBI-0750891, CCF-1319406]
FX We would like to thank anonymous reviewers for helpful comments. And we
thank the Ohio Supercomputer Center for generous computing resources.
This work is partially supported by National Science Foundation under
projects DBI-0750891 and CCF-1319406.
NR 52
TC 0
Z9 0
U1 1
U2 11
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 1093-3263
EI 1873-4243
J9 J MOL GRAPH MODEL
JI J. Mol. Graph.
PD SEP
PY 2014
VL 53
BP 59
EP 71
DI 10.1016/j.jmgm.2014.06.003
PG 13
WC Biochemical Research Methods; Biochemistry & Molecular Biology; Computer
Science, Interdisciplinary Applications; Crystallography; Mathematical &
Computational Biology
SC Biochemistry & Molecular Biology; Computer Science; Crystallography;
Mathematical & Computational Biology
GA AR5NS
UT WOS:000343631800006
PM 25068440
ER
PT J
AU Romero-Severson, E
Skar, H
Bulla, I
Albert, J
Leitner, T
AF Romero-Severson, Ethan
Skar, Helena
Bulla, Ingo
Albert, Jan
Leitner, Thomas
TI Timing and Order of Transmission Events Is Not Directly Reflected in a
Pathogen Phylogeny
SO MOLECULAR BIOLOGY AND EVOLUTION
LA English
DT Article
DE HIV; within-host dynamics; molecular epidemiology; phylodynamics;
transmission reconstruction; coalescent
ID IMMUNODEFICIENCY-VIRUS TYPE-1; LIKELY GENE TREES; SPECIES TREES; PRIMARY
INFECTION; GENERATION TIME; DRUG-USERS; IN-VIVO; HIV-1; EVOLUTION;
POPULATION
AB Pathogen phylogenies are often used to infer spread among hosts. There is, however, not an exact match between the pathogen phylogeny and the host transmission history. Here, we examine in detail the limitations of this relationship. First, all splits in a pathogen phylogeny of more than 1 host occur within hosts, not at the moment of transmission, predating the transmission events as described by the pretransmission interval. Second, the order in which nodes in a phylogeny occur may be reflective of the within-host dynamics rather than epidemiologic relationships. To investigate these phenomena, motivated by within-host diversity patterns, we developed a two-phase coalescent model that includes a transmission bottleneck followed by linear outgrowth to a maximum population size followed by either stabilization or decline of the population. The model predicts that the pretransmission interval shrinks compared with predictions based on constant population size or a simple transmission bottleneck. Because lineages coalesce faster in a small population, the probability of a pathogen phylogeny to resemble the transmission history depends on when after infection a donor transmits to a new host. We also show that the probability of inferring the incorrect order of multiple transmissions from the same host is high. Finally, we compare time of HIV-1 infection informed by genetic distances in phylogenies to independent biomarker data, and show that, indeed, the pretransmission interval biases phylogeny-based estimates of when transmissions occurred. We describe situations where caution is needed not to misinterpret which parts of a phylogeny that may indicate outbreaks and tight transmission clusters.
C1 [Romero-Severson, Ethan; Skar, Helena; Bulla, Ingo; Leitner, Thomas] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA.
[Albert, Jan] Karolinska Inst, Dept Microbiol Tumor & Cell Biol, Stockholm, Sweden.
[Albert, Jan] Karolinska Univ Hosp, Dept Clin Microbiol, Stockholm, Sweden.
RP Leitner, T (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA.
EM tkl@lanl.gov
FU National Institutes of Health [R01AI087520]; Vetenskapsradet
[623-2011-1100, K2008-56X-09935-17-3]; Deutsche Forschungsgemeinschaft
[BU 2685/4-1]; EU project SPREAD [QLK2-CT-2001-01344]; EU project CHAIN
FX This work was supported by National Institutes of Health (grant number
R01AI087520), Vetenskapsradet (fellowship 623-2011-1100), Deutsche
Forschungsgemeinschaft (fellowship BU 2685/4-1), Vetenskapsradet (grant
number K2008-56X-09935-17-3), and EU projects SPREAD
(QLK2-CT-2001-01344), and CHAIN (FP7/2007-2013).
NR 56
TC 19
Z9 19
U1 1
U2 11
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0737-4038
EI 1537-1719
J9 MOL BIOL EVOL
JI Mol. Biol. Evol.
PD SEP
PY 2014
VL 31
IS 9
BP 2472
EP 2482
DI 10.1093/molbev/msu179
PG 11
WC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics &
Heredity
SC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics &
Heredity
GA AR2GF
UT WOS:000343401100018
PM 24874208
ER
PT J
AU Pierson, FB
Williams, CJ
Kormos, PR
Al-Hamdan, OZ
AF Pierson, Frederick B.
Williams, C. Jason
Kormos, Patrick R.
Al-Hamdan, Osama Z.
TI Short-Term Effects of Tree Removal on Infiltration, Runoff, and Erosion
in Woodland-Encroached Sagebrush Steppe
SO RANGELAND ECOLOGY & MANAGEMENT
LA English
DT Article
DE aggregate stability; hydrophobicity; juniper; pinon; prescribed fire;
rangeland; restoration; soil water repellency; tree mastication
ID SOIL-WATER REPELLENCY; PINYON-JUNIPER WOODLAND; WESTERN JUNIPER;
PRESCRIBED-FIRE; BROMUS-TECTORUM; AGGREGATE STABILITY; RANGELAND
HYDROLOGY; TRANSITION MODELS; SEMIARID WOODLAND; CENTRAL OREGON
AB Land owners and managers across the western United States are increasingly searching for methods to evaluate and mitigate the effects of woodland encroachment on sagebrush steppe ecosystems. We used small-plot scale (0.5 m(2)) rainfall simulations and measures of vegetation, ground cover, and soils to investigate woodland response to tree removal (prescribed fire and mastication) at two late-succession woodlands. We also evaluated the effects of burning on soil water repellency and effectiveness of aggregate stability indices to detect changes in erosion potential. Plots were located in interspaces between tree and shrub canopies and on undercanopy tree and shrub microsites. Erosion from untreated interspaces in the two woodlands differed more than 6-fold, and erosion responses to prescribed burning differed by woodland site. High-intensity rainfall (102 mm . h(-1)) on the less erodible woodland generated amplified runoff and erosion from tree microsites postfire, but erosion (45-75 g . m(-2)) was minor relative to the 3-13-fold fire-induced increase in erosion on tree microsites at the highly erodible site (240 295 g . m(-2)). Burning the highly erodible woodland also generated a 7-fold increase in erosion from shrub microsites (220-230 g .m(-2)) and 280-350 g . m(-2) erosion from interspaces. High levels of runoff (40-45 mm) and soil erosion (230-275 g . m(-2)) on unburned interspaces at the more erodible site were reduced 4-5-fold (10 mm and 50 g . m(-2)) by masticated tree material. The results demonstrate that similarly degraded conditions at woodland-encroached sites may elicit differing hydrologic and erosion responses to treatment and that treatment decisions should consider inherent site-specific erodibility when evaluating tree-removal alternatives. Strong soil water repellency was detected from 0 cm to 3 cm soil depth underneath unburned tree canopies at both woodlands and its strength was not altered by burning. However, fire removal of litter exacerbated repellency effects on infiltration, runoff generation, and erosion. The aggregate stability index method detected differences in relative soil stability between areas underneath trees and in the intercanopy at both sites, but failed to provide any indication of between-site differences in erodibility or the effects of burning on soil erosion potential.
C1 [Pierson, Frederick B.; Williams, C. Jason; Al-Hamdan, Osama Z.] ARS, Northwest Watershed Res Ctr, USDA, Boise, ID 83712 USA.
[Kormos, Patrick R.] US Forest Serv, Rocky Mt Res Stn, USDA, Boise, ID 83702 USA.
[Kormos, Patrick R.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA.
[Al-Hamdan, Osama Z.] Univ Idaho, Dept Biol & Agr Engn, Moscow, ID 83844 USA.
RP Pierson, FB (reprint author), ARS, Northwest Watershed Res Ctr, USDA, 800 Pk Blvd,Suite 105, Boise, ID 83712 USA.
EM fred.pierson@ars.usda.gov
OI Kormos, Patrick/0000-0003-1874-9215; Williams, Jason/0000-0002-6289-4789
FU US Joint Fire Science Program; National Interagency Fire Center; Great
Northern Landscape Conservation Cooperative; Bureau of Land Management
FX The authors thank Jaime Calderon and Mathew Frisby for assistance with
data collection. We also thank two anonymous reviewers whose comments
and suggestions improved the manuscript. This is Contribution Number 89
of the Sagebrush Steppe Treatment Evaluation Project (SageSTEP), funded
by the US Joint Fire Science Program, the Bureau of Land Management, the
National Interagency Fire Center, and the Great Northern Landscape
Conservation Cooperative.
NR 99
TC 11
Z9 12
U1 3
U2 37
PU SOC RANGE MANAGEMENT
PI LAKEWOOD
PA 445 UNION BLVD, STE 230, LAKEWOOD, CO 80228-1259 USA
SN 1550-7424
EI 1551-5028
J9 RANGELAND ECOL MANAG
JI Rangel. Ecol. Manag.
PD SEP
PY 2014
VL 67
IS 5
BP 522
EP 538
DI 10.2111/REM-D-13-00033.1
PG 17
WC Ecology; Environmental Sciences
SC Environmental Sciences & Ecology
GA AR3ZY
UT WOS:000343529000008
ER
PT J
AU Wagle, P
Xiao, XM
Torn, MS
Cook, DR
Matamala, R
Fischer, ML
Jin, C
Dong, JW
Biradar, C
AF Wagle, Pradeep
Xiao, Xiangming
Torn, Margaret S.
Cook, David R.
Matamala, Roser
Fischer, Marc L.
Jin, Cui
Dong, Jinwei
Biradar, Chandrashekhar
TI Sensitivity of vegetation indices and gross primary production of
tallgrass prairie to severe drought
SO REMOTE SENSING OF ENVIRONMENT
LA English
DT Article
DE Drought; Gross primary production; Light use efficiency; MODIS;
Vegetation Photosynthesis Model (VPM)
ID NET PRIMARY PRODUCTIVITY; EVERGREEN NEEDLELEAF FOREST; LIGHT-USE
EFFICIENCY; CARBON-DIOXIDE; CLIMATE DATA; ECOSYSTEM EXCHANGE;
WATER-VAPOR; NORTHEASTERN CHINA; PROCESS MODEL; MODIS DATA
AB Drought affects vegetation photosynthesis and growth. Many studies have used the normalized difference vegetation index (NDVI), which is calculated as the normalized ratio between near infrared and red spectral bands in satellite images, to evaluate the response of vegetation to drought. In this study, we examined the impacts of drought on three vegetation indices (NDVI, enhanced vegetation index, EVI, and land surface water index, LSWI) and CO2 flux from three tallgrass prairie eddy flux tower sites in the U.S. Gross primary production (GPP) was also modeled using a satellite-based Vegetation Photosynthesis Model (VPM), and the modeled GPP (GPP(VPM)) was compared with the GPP (GPP(EC)) derived from eddy covariance measurements. Precipitation at two sites in Oklahoma was 30% below the historical mean in both years of the study period (2005-2006), while the site in Illinois did not experience drought in the 2005-2007 study period. The EVI explained the seasonal dynamics of GPP better than did NDVI. The LSWI dropped below zero during severe droughts in the growing season, showing its potential to track drought. The result shows that GPP was more sensitive to drought than were vegetation indices, and EVI and LSWI were more sensitive than NDVI. We developed a modified function (Wsailar), calculated as a function of LSWI, to account for the effect of severe droughts on GPP in VPM. The GPP(VPM) from the modified VPM accounted for the rapid reduction in GPP during severe droughts and the seasonal dynamics of GPPvpm agreed reasonably well with GPP(EC). Our analysis shows that 8-day averaged values (temperature, vapor-pressure deficit) do not reflect the short-term extreme climate events well, suggesting that satellitebased models may need to be run at daily or hourly scales, especially under unfavorable climatic conditions. (C) 2014 Elsevier Inc. All rights reserved.
C1 [Wagle, Pradeep; Xiao, Xiangming; Jin, Cui; Dong, Jinwei] Univ Oklahoma, Ctr Spatial Anal, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.
[Torn, Margaret S.; Fischer, Marc L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Atmospher Sci, Berkeley, CA 94720 USA.
[Cook, David R.; Matamala, Roser] Argonne Natl Lab, Argonne, IL 60439 USA.
[Biradar, Chandrashekhar] ICARDA, Amman, Jordan.
RP Xiao, XM (reprint author), Univ Oklahoma, Ctr Spatial Anal, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.
EM xiangming.xiao@ou.edu
RI Dong, Jinwei/C-4949-2009; Torn, Margaret/D-2305-2015;
OI Dong, Jinwei/0000-0001-5687-803X; Wagle, Pradeep/0000-0001-7444-0461
FU USDA National Institute for Food and Agriculture (NIFA)'s Agriculture
and Food Research Initiative (AFRI), Regional Approaches for Adaptation
to and Mitigation of Climate Variability and Change [2012-02355];
National Science Foundation EPSCoR [IIA-1301789]
FX This study was supported in part by a research grant (Project No.
2012-02355) through the USDA National Institute for Food and Agriculture
(NIFA)'s Agriculture and Food Research Initiative (AFRI), Regional
Approaches for Adaptation to and Mitigation of Climate Variability and
Change, and a research grant from the National Science Foundation EPSCoR
(IIA-1301789). We would also like to thank Melissa L. Scott and Dan
Hawkes for the English correction and manuscript editing. We thank two
reviewers for their critiques and suggestions on the earlier version of
the manuscript.
NR 59
TC 22
Z9 23
U1 9
U2 60
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0034-4257
EI 1879-0704
J9 REMOTE SENS ENVIRON
JI Remote Sens. Environ.
PD SEP
PY 2014
VL 152
BP 1
EP 14
DI 10.1016/j.rse.2014.05.010
PG 14
WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic
Technology
SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science &
Photographic Technology
GA AR2CW
UT WOS:000343392200001
ER
PT J
AU Joiner, J
Yoshida, Y
Vasilkov, A
Schaefer, K
Jung, M
Guanter, L
Zhang, Y
Garrity, S
Middleton, EM
Huemmrich, KF
Gu, L
Marchesini, LB
AF Joiner, J.
Yoshida, Y.
Vasilkov, Ap.
Schaefer, K.
Jung, M.
Guanter, L.
Zhang, Y.
Garrity, S.
Middleton, E. M.
Huemmrich, K. F.
Gu, L.
Marchesini, L. Belelli
TI The seasonal cycle of satellite chlorophyll fluorescence observations
and its relationship to vegetation phenology and ecosystem atmosphere
carbon exchange
SO REMOTE SENSING OF ENVIRONMENT
LA English
DT Article
DE Fluorescence; Vegetation; Fluorescence; Chlorophyll; GOME-2; Gross
primary productivity; Light-use efficiency; Flux tower; Growing season;
Carbon uptake period; Phenology
ID GROSS PRIMARY PRODUCTION; LIGHT-USE EFFICIENCY; DECIDUOUS BROADLEAF
FOREST; EDDY-COVARIANCE; UNITED-STATES; MODIS DATA; PHOTOSYNTHETIC
EFFICIENCY; RESPONSE PARAMETERS; TOWER MEASUREMENTS; FLUX MEASUREMENTS
AB Mapping of terrestrial chlorophyll fluorescence from space has shown potential for providing global measurements related to gross primary productivity (GPP). In particular, space-based fluorescence may provide information on the length of the carbon uptake period. Here, for the first time we test the ability of satellite fluorescence retrievals to track seasonal cycle of photosynthesis as estimated from a diverse set of tower gas exchange measurements from around the world. The satellite fluorescence retrievals are obtained using new observations near the 740 nm emission feature from the Global Ozone Monitoring Experiment 2 (GOME-2) instrument offering the highest temporal and spatial resolution of available global measurements. Because GOME-2 has a large ground footprint (similar to 40 x 80 km(2)) as compared with that of the flux towers and the GOME-2 data require averaging to reduce random errors, we additionally compare with seasonal cycles of upscaled GPP estimated from a machine learning approach averaged over the same temporal and spatial domain as the satellite data surrounding the tower locations. We also examine the seasonality of absorbed photosynthetically-active radiation (AFAR) estimated from satellite measurements. Finally, to assess whether global vegetation models may benefit from the satellite fluorescence retrievals through validation or additional constraints, we examine seasonal cycles of GPP as produced from an ensemble of vegetation models. Several of the data-driven models rely on satellite reflectance-based vegetation parameters to derive estimates of APAR that are used to compute GPP. For forested (especially deciduous broadleaf and mixed forests) and cropland sites, the GOME-2 fluorescence data track the spring onset and autumn shutoff of photosynthesis as delineated by the upscaled GPP estimates. In contrast the reflectance-based indicators and many of the models, particularly those driven by data, tend to overestimate the length of the photosynthetically-active period for these biomes. Satellite fluorescence measurements therefore show potential for improving the seasonal dependence of photosynthesis simulated by global models at similar spatial scales. (C) 2014 Elsevier Inc All rights reserved.
C1 [Joiner, J.; Middleton, E. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Yoshida, Y.; Vasilkov, Ap.] Sci Syst & Applicat Inc, Lanham, MD USA.
[Schaefer, K.] Univ Colorado, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA.
[Jung, M.] Max Planck Inst Biogeochem, D-07745 Jena, Germany.
[Guanter, L.; Zhang, Y.] Free Univ Berlin, Berlin, Germany.
[Garrity, S.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
[Huemmrich, K. F.] Univ Maryland Baltimore Cty, JCET, Baltimore, MD 21228 USA.
[Gu, L.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Marchesini, L. Belelli] Vrije Univ Amsterdam, Amsterdam, Netherlands.
RP Garrity, S (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
EM Joanna.joiner@nasa.gov
RI Guanter, Luis/I-1588-2015; Belelli Marchesini, Luca/M-3554-2014; Gu,
Lianhong/H-8241-2014;
OI Guanter, Luis/0000-0002-8389-5764; Belelli Marchesini,
Luca/0000-0001-8408-4675; Gu, Lianhong/0000-0001-5756-8738; Zhang,
Yongguang/0000-0001-8286-300X
FU NASA Carbon Cycle Science program [NNH1ODA001N]; U.S. Department of
Energy, Biological and Environmental Research, Terrestrial Carbon
Program [DEFG0204ER63917, DEFG0204ER63911]; CFCAS; NSERC; BIOCAP;
Environment Canada; NRCan; CarboEuropeIP; FAOGTOSTCO; iLEAPS; Max Planck
Institute for Biogeochemistry; National Science Foundation; University
of Tuscia; Wageningen University CALM Group; Universit Laval; U.S.
Department of Energy; National Science Foundation (NSF); U.S. Department
of Agriculture (USDA); U.S. Department of Energy (DOE); Biological and
Environmental Research Program (BER); U.S. DOE, through the Midwestern
Center of the National Institute for Global Environmental Change (NIGEC)
[DE-FC03-90ER61010]; BER [DE FG02-03ER63624, DE-FG03-01ER63278]; NOAA
[NA09OAR4310063]; NASA [NNX10AR63G, NNX11A008A]; NASA Terrestrial
Ecology Program [NNX08AI77G]; NSF Biocomplexity Program [EAR-0120630];
Australian Research Council FT [FT1110602]; [DP130101566]
FX Funding for this work was provided in part by the NASA Carbon Cycle
Science program (NNH1ODA001N). The authors gratefully acknowledge
EUMETSAT and the MODIS data processing team for making available the
GOME-2 and MODIS data sets, respectively, used here as well as the
algorithm development teams. We also thank James Collatz, Randy Kawa,
William Cook, Yen-Ben Cheng, Larry Corp, Petya Campbell, Qingyuan Zhang,
and Arlindo da Silva for helpful discussions. We are indebted to Philip
Durbin for assistance with the GOME-2 satellite data set. We also thank
Joshua Fisher and an anonymous reviewer for helpful comments that helped
to improve the paper.; This study uses eddy covariance data acquired by
the FLUXNET community and in particular by the following networks:
AmeriFlux (U.S. Department of Energy, Biological and Environmental
Research, Terrestrial Carbon Program (DEFG0204ER63917 and
DEFG0204ER63911)) AfriFlux, CarboAfrica, CarboEuropelP, CarboItaly,
CarboMont, FluxnetCanada (supported by the CFCAS, NSERC, BIOCAP,
Environment Canada, and NRCan), GreenGrass, KoFlux, LBA, NECC, OzFlux,
and USCCC. We acknowledge the financial support to the eddy covariance
data harmonization provided by the CarboEuropeIP, FAOGTOSTCO, iLEAPS,
Max Planck Institute for Biogeochemistry, National Science Foundation,
University of Tuscia, Wageningen University CALM Group (Climate change
and Adaptive Land and Water Management), Universit Laval and Environment
Canada and U.S. Department of Energy and the database development and
technical support from the Berkeley Water Center, Lawrence Berkeley
National Laboratory, Microsoft Research eScience, Oak Ridge National
Laboratory, University of California Berkeley, University of Virginia,
and South Dakota State University. Sites in the U.S. also acknowledge
support from the National Science Foundation (NSF), U.S. Department of
Agriculture (USDA), and the U.S. Department of Energy (DOE). Funding for
this research was also provided by the Biological and Environmental
Research Program (BER), U.S. DOE, through the Midwestern Center of the
National Institute for Global Environmental Change (NIGEC) under
Cooperative Agreements DE-FC03-90ER61010, and from the BER under
Cooperative Agreements DE FG02-03ER63624 and DE-FG03-01ER63278, NOAA
grant NA09OAR4310063, and NASA grants NNX10AR63G and NNX11A008A. Any
opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the
views of the DOE. Access to the MMSF AmeriFlux site is provided by the
Indiana Department of Natural Resources, Division of Forestry. The
ZA-Kru site was supported by the NASA Terrestrial Ecology Program (Grant
# NNX08AI77G) and NSF Biocomplexity Program (Grant # EAR-0120630)
through grants to NPH. The OzFlux sites (AU-Wac, AU-Fog, AI-How) were
provided by Jason Beringer who was funded under an Australian Research
Council FT (FT1110602) and project support from DP130101566. Support for
collection and archiving was provided through the Australia Terrestrial
Ecosystem Research Network (TERN) (http://www.tem.org.au).
NR 123
TC 38
Z9 38
U1 14
U2 81
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0034-4257
EI 1879-0704
J9 REMOTE SENS ENVIRON
JI Remote Sens. Environ.
PD SEP
PY 2014
VL 152
BP 375
EP 391
DI 10.1016/j.rse.2014.06.022
PG 17
WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic
Technology
SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science &
Photographic Technology
GA AR2CW
UT WOS:000343392200030
ER
PT J
AU Kassianov, E
Barnard, J
Flynn, C
Riihimaki, L
Michalsky, J
Hodges, G
AF Kassianov, Evgueni
Barnard, James
Flynn, Connor
Riihimaki, Laura
Michalsky, Joseph
Hodges, Gary
TI Areal-Averaged Spectral Surface Albedo from Ground-Based Transmission
Data Alone: Toward an Operational Retrieval
SO ATMOSPHERE
LA English
DT Article
DE Multi-Filter Rotating Shadowband Radiometer (MFRSR); tower-based
measurements; Moderate Resolution Imaging Spectroradiometer (MODIS)
observations; atmospheric transmission; areal-averaged and local surface
albedo; spectral and seasonal variability; ARM Southern Great Plains
(SGP) site; NOAA Table Mountain site
ID CLOUD OPTICAL-THICKNESS; SGP CENTRAL FACILITY; RADIATIVE PROPERTIES;
WATER CLOUDS; IN-SITU; MODIS; REFLECTANCE; MODELS; PARAMETERIZATION;
DEPTH
AB We present here a simple retrieval of the areal-averaged spectral surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation. The feasibility of our retrieval for routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements: (1) spectral atmospheric transmission from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) at five wavelengths (415, 500, 615, 673, and 870 nm); (2) tower-based measurements of local surface albedo at the same wavelengths; and (3) areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm) from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) observations. These integrated datasets cover both temporally long (2008-2013) and short (April-May 2010) periods at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site and the National Oceanic and Atmospheric Administration (NOAA) Table Mountain site, respectively. The calculated root mean square error (RMSE), defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved areal-averaged albedo, is quite small (RMSE <= 0.015) and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between tower-based measurements of daily-averaged surface albedo for completely overcast and non-overcast conditions is also demonstrated.
C1 [Kassianov, Evgueni; Barnard, James; Flynn, Connor; Riihimaki, Laura] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Michalsky, Joseph] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA.
[Hodges, Gary] Univ Colorado, CIRES, Boulder, CO 80309 USA.
RP Kassianov, E (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM Evgueni.Kassianov@pnnl.gov; James.Barnard@pnnl.gov;
Connor.Flynn@pnnl.gov; Laura.Riihimaki@pnnl.gov;
Joseph.Michalsky@noaa.gov; Gary.Hodges@noaa.gov
FU Office of Biological and Environmental Research (OBER) of the US
Department of Energy (DOE); DOE [DE-A06-76RLO 1830]
FX This work has been supported by the Office of Biological and
Environmental Research (OBER) of the US Department of Energy (DOE) as
part of the Atmospheric Radiation Measurement (ARM) Program. The Pacific
Northwest National Laboratory (PNNL) is operated by Battelle for the DOE
under contract DE-A06-76RLO 1830. The MODIS surface albedo data, with
product designation MCD43B3
(https://lpdaac.usgs.gov/products/modis_products_table/mcd43b3; 1-km
resolution), are downloaded from the MODIS Reprojection Tool Web
Interface (MRTWeb) site (https://mrtweb.cr.usgs.gov/). We greatly
appreciate that these data have been made available to us. The image of
the Atmospheric Radiation Measurement (ARM) Southern Great Plains
Central Facility 60-meter tower is provided courtesy of the U.S.
Department of Energy ARM Climate Research Facility. We are grateful to
Allison McComiskey and three anonymous reviewers for thoughtful
comments.
NR 41
TC 5
Z9 5
U1 0
U2 7
PU MDPI AG
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
SN 2073-4433
J9 ATMOSPHERE-BASEL
JI Atmosphere
PD SEP
PY 2014
VL 5
IS 3
BP 597
EP 621
DI 10.3390/atmos5030597
PG 25
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA AQ8UZ
UT WOS:000343111900007
ER
PT J
AU Srinivasan, B
Tang, XZ
AF Srinivasan, Bhuvana
Tang, Xian-Zhu
TI Mitigating hydrodynamic mix at the gas-ice interface with a combination
of magnetic, ablative, and viscous stabilization
SO EPL
LA English
DT Article
ID RAYLEIGH-TAYLOR INSTABILITY; DECELERATION-PHASE; FUSION IMPLOSIONS
AB Mix reduction is an important ingredient in yield performance in inertial confinement fusion (ICF). In an ignition-grade target design, shell adiabat shaping can mitigate hydrodynamic mix at the outer ablator surface via a high adiabat like that in the high-foot design, but the high Atwood number at the gas-ice interface associated with a low-adiabat ice, which is desirable for achieving high convergence ratio for a given laser system, still provides a robust drive for hydrodynamic instability during the deceleration phase of the implosion. The results presented here show that combined magnetic, viscous, and ablative stabilization can complement each other for adequate mix mitigation at the gas-ice interface in a range of magnetic-field strengths that are experimentally accessible. Copyright (C) EPLA, 2014
C1 [Srinivasan, Bhuvana; Tang, Xian-Zhu] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Srinivasan, Bhuvana] Virginia Tech, Dept Aerosp & Ocean Engn, Blacksburg, VA 24061 USA.
RP Srinivasan, B (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
FU U.S. Department of Energy at Los Alamos National Laboratory
FX This research was supported by the U.S. Department of Energy at Los
Alamos National Laboratory. The authors wish to acknowledge the use of
the WARPX code which was developed at the University of Washington. All
simulations in this paper were performed using the Los Alamos National
Laboratory Institutional Computing and Turquoise network clusters.
NR 34
TC 2
Z9 2
U1 1
U2 5
PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY
PI MULHOUSE
PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE
SN 0295-5075
EI 1286-4854
J9 EPL-EUROPHYS LETT
JI EPL
PD SEP
PY 2014
VL 107
IS 6
AR 65001
DI 10.1209/0295-5075/107/65001
PG 6
WC Physics, Multidisciplinary
SC Physics
GA AQ8YD
UT WOS:000343125400012
ER
PT J
AU Wohlbach, DJ
Rovinskiy, N
Lewis, JA
Sardi, M
Schackwitz, WS
Martin, JA
Deshpande, S
Daum, CG
Lipzen, A
Sato, TK
Gasch, AP
AF Wohlbach, Dana J.
Rovinskiy, Nikolay
Lewis, Jeffrey A.
Sardi, Maria
Schackwitz, Wendy S.
Martin, Joel A.
Deshpande, Shweta
Daum, Christopher G.
Lipzen, Anna
Sato, Trey K.
Gasch, Audrey P.
TI Comparative Genomics of Saccharomyces cerevisiae Natural Isolates for
Bioenergy Production
SO GENOME BIOLOGY AND EVOLUTION
LA English
DT Article
DE bioenergy; genomics; transcriptomics; environmental stress
ID AMMONIA FIBER EXPANSION; POPULATION-STRUCTURE; GENE-EXPRESSION; ETHANOL
STRESS; TRADE-OFFS; LABORATORY EVOLUTION; WIDE IDENTIFICATION;
MICROARRAY DATA; OPEN SOFTWARE; SAKE YEAST
AB Lignocellulosic plant material is a viable source of biomass to produce alternative energy including ethanol and other biofuels. However, several factors-including toxic byproducts from biomass pretreatment and poor fermentation of xylose and other pentose sugars-currently limit the efficiency of microbial biofuel production. To begin to understand the genetic basis of desirable traits, we characterized three strains of Saccharomyces cerevisiae with robust growth in a pretreated lignocellulosic hydrolysate or tolerance to stress conditions relevant to industrial biofuel production, through genome and transcriptome sequencing analysis. All stress resistant strains were highly mosaic, suggesting that genetic admixture may contribute to novel allele combinations underlying these phenotypes. Strain-specific gene sets not found in the lab strain were functionally linked to the tolerances of particular strains. Furthermore, genes with signatures of evolutionary selection were enriched for functional categories important for stress resistance and included stress-responsive signaling factors. Comparison of the strains' transcriptomic responses to heat and ethanol treatment-two stresses relevant to industrial bioethanol production-pointed to physiological processes that were related to particular stress resistance profiles. Many of the genotype-by-environment expression responses occurred at targets of transcription factors with signatures of positive selection, suggesting that these strains have undergone positive selection for stress tolerance. Our results generate new insights into potential mechanisms of tolerance to stresses relevant to biofuel production, including ethanol and heat, present a backdrop for further engineering, and provide glimpses into the natural variation of stress tolerance in wild yeast strains.
C1 [Wohlbach, Dana J.; Rovinskiy, Nikolay; Lewis, Jeffrey A.; Sardi, Maria; Gasch, Audrey P.] Univ Wisconsin, Genet Lab, Madison, WI 53706 USA.
[Wohlbach, Dana J.; Rovinskiy, Nikolay; Lewis, Jeffrey A.; Sardi, Maria; Sato, Trey K.; Gasch, Audrey P.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA.
[Schackwitz, Wendy S.; Martin, Joel A.; Deshpande, Shweta; Daum, Christopher G.; Lipzen, Anna] US DOE, Joint Genome Inst, Walnut Creek, CA USA.
RP Gasch, AP (reprint author), Univ Wisconsin, Genet Lab, Madison, WI 53706 USA.
EM agasch@wisc.edu
FU DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER)
[DE-FC02-07ER64494]; Office of Science of the U.S. Department of Energy
[DE-AC02-05CH11231]; NSF Graduate Research Fellowship
FX The authors thank Cletus Kurtzman, Justin Fay, and the Saccharomyces
Genome Resequencing Project for yeast strains and sequences; Yaoping
Zhang for AFEX hydrolysate; and Christa Pennachio for coordination of
sequencing. This work was funded in part by the DOE Great Lakes
Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494).
The work conducted by the U.S. Department of Energy Joint Genome
Institute is supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231. M.S. is supported by an
NSF Graduate Research Fellowship. The authors declare that they have no
competing interests.
NR 77
TC 17
Z9 17
U1 2
U2 31
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1759-6653
J9 GENOME BIOL EVOL
JI Genome Biol. Evol.
PD SEP
PY 2014
VL 6
IS 9
BP 2557
EP 2566
DI 10.1093/gbe/evu199
PG 10
WC Evolutionary Biology; Genetics & Heredity
SC Evolutionary Biology; Genetics & Heredity
GA AR0GP
UT WOS:000343249300030
PM 25364804
ER
PT J
AU Aad, G
Abbott, B
Abdallah, J
Khalek, SA
Abdinov, O
Aben, R
Abi, B
Abolins, M
AbouZeid, OS
Abramowicz, H
Abreu, H
Abreu, R
Abulaitia, Y
Acharya, BS
Adamczyka, L
Adams, DL
Adelman, J
Adomeit, S
Adye, T
Agatonovic-Jovin, T
Aguilar-Saavedra, JA
Agustoni, M
Ahlen, SP
Ahmadov, F
Aielli, G
Akerstedt, H
Akesson, TPA
Akimoto, G
Akimov, AV
Alberghi, GL
Albert, J
Albrand, S
Verzini, MJA
Aleksa, M
Aleksandrov, IN
Alexa, C
Alexander, G
Alexandre, G
Alexopoulos, T
Alhroob, M
Alimonti, G
Alio, L
Alison, J
Allbrooke, BMM
Allison, LJ
Allport, PP
Almond, J
Aloisio, A
Alonso, A
Alonso, F
Alpigiani, C
Altheimer, A
Gonzalez, BA
Alviggi, MG
Amako, K
Coutinho, YA
Amelung, C
Amidei, D
Dos Santos, SPA
Amorim, A
Amoroso, S
Amram, N
Amundsen, G
Anastopoulos, C
Ancu, LS
Andari, N
Andeen, T
Anders, CF
Anders, G
Anderson, KJ
Andreazza, A
Andrei, V
Anduag, XS
Angelidakis, S
Angelozzi, I
Anger, P
Angerami, A
Anghinolfi, F
Anisenkov, AV
Anjos, N
Annovi, A
Antonaki, A
Antonelli, M
Antonov, A
Antos, J
Anulli, F
Aoki, M
Bella, LA
Apolle, R
Arabidze, G
Aracena, I
Arai, Y
Araque, JP
Arce, ATH
Arguin, JF
Argyropoulos, S
Arik, M
Armbruster, AJ
Arnaez, O
Arnal, V
Arnold, H
Arratia, M
Arslan, O
Artamonov, A
Artoni, G
Asai, S
Asbah, N
Ashkenazi, A
Asmana, B
Asquith, L
Assamagan, K
Astalos, R
Atkinson, M
Atlay, NB
Auerbach, B
Augsten, K
Aurousseau, M
Avolio, G
Azuelos, G
Azuma, Y
Baak, MA
Baas, A
Bacci, C
Bachacou, H
Bachas, K
Backes, M
Backhaus, M
Mayes, JB
Badescu, E
Bagiacchi, P
Bagnaia, P
Bai, Y
Bain, T
Baines, JT
Baker, OK
Balek, P
Balli, F
Banas, E
Banerjee, S
Bannoura, AAE
Bansal, V
Bansil, HS
Barak, L
Baranov, SP
Barberio, EL
Barberis, D
Barbero, M
Barillari, T
Barisonzi, M
Barklow, T
Barlow, N
Barnett, BM
Barnett, RM
Barnovska, Z
Baroncelli, A
Barone, G
Barr, AJ
Barreiro, F
da Costa, JBG
Bartoldus, R
Barton, AE
Bartos, P
Bartsch, V
Bassalat, A
Basye, A
Bates, RL
Batkova, L
Batley, JR
Battaglia, M
Battistin, M
Bauer, F
Bawa, HS
Beau, T
Beauchemin, PH
Beccherle, R
Bechtle, P
Beck, HP
Becker, K
Becker, S
Beckingham, M
Becot, C
Beddall, AJ
Beddall, A
Bedikian, S
Bednyakov, A
Bee, CP
Beemster, LJ
Beermann, TA
Begel, M
Behr, K
Belanger-Champagne, C
Bell, PJ
Bell, WH
Bella, G
Bellagamba, L
Bellerive, A
Bellomo, M
Belotskiy, K
Beltramello, O
Benary, O
Benchekroun, D
Bendtz, K
Benekos, N
Benhammou, Y
Noccioli, EB
Garcia, JAB
Benjamin, DP
Bensinger, JR
Benslama, K
Bentvelsen, S
Berge, D
Kuutmann, EB
Berger, N
Berghaus, F
Beringer, J
Bernard, C
Bernat, P
Bernius, C
Bernlochner, FU
Berry, T
Berta, P
Bertella, C
Bertoli, G
Bertolucci, F
Bertsche, D
Besana, MI
Besjes, GJ
Bessidskaia, O
Bessner, MF
Besson, N
Betancourt, C
Bethke, S
Bhimji, W
Bianchi, RM
Bianchini, L
Bianco, M
Biebel, O
Bieniek, SP
Bierwagen, K
Biesiada, J
Biglietti, M
De Mendizabal, JB
Bilokon, H
Bindi, M
Bingulc, SBA
Bingul, A
Bini, C
Black, CW
Black, JE
Black, KM
Blackburn, D
Blair, RE
Blanchard, JB
Blazek, T
Bloch, I
Blocker, C
Blum, W
Blumenschein, U
Bobbink, GJ
Bobrovnikov, VS
Bocchetta, SS
Bocci, A
Bock, C
Boddy, CR
Boehler, M
Boek, TT
Bogaerts, JA
Bogdanchikov, AG
Bogouch, A
Bohm, C
Bohm, J
Boisvert, V
Bold, T
Boldea, V
Boldyrev, AS
Bomben, M
Bona, M
Boonekamp, M
Borisov, A
Borissov, G
Borri, M
Borroni, S
Bortfeldt, J
Bortolotto, V
Bos, K
Boscherini, D
Bosman, M
Boterenbrood, H
Boudreau, J
Bouffard, J
Bouhova-Thacker, EV
Boumediene, D
Bourdarios, C
Bousson, N
Boutouil, S
Boveia, A
Boyd, J
Boyko, IR
Bracinik, J
Brandt, A
Brandt, G
Brandt, O
Bratzler, U
Brau, B
Brau, JE
Braun, HM
Brazzale, SF
Brelier, B
Brendlinger, K
Brennan, AJ
Brenner, R
Bressler, S
Bristow, K
Bristow, TM
Britton, D
Brochu, FM
Brock, I
Brock, R
Bromberg, C
Bronner, J
Brooijmans, G
Brooks, T
Brooks, WK
Brosamer, J
Brost, E
Brown, J
de Renstrom, PAB
Bruncko, D
Bruneliere, R
Brunet, S
Bruni, A
Bruni, G
Bruschi, M
Bryngemark, L
Buanes, T
Buat, Q
Bucci, F
Buchholz, P
Buckingham, RM
Buckley, AG
Buda, SI
Budagov, IA
Buehrer, F
Bugge, L
Bugge, MK
Bulekov, O
Bundock, AC
Burckhart, H
Burdin, S
Burghgrave, B
Burke, S
Burmeister, I
Busato, E
Buscher, D
Buscher, V
Bussey, P
Buszello, CP
Butler, B
Butler, JM
Butt, AI
Buttar, CM
Butterworth, JM
Butti, P
Buttinger, W
Buzatu, A
Byszewski, M
Urban, SC
Caforio, D
Cakir, O
Calafiura, P
Calandri, A
Calderini, G
Calfayan, P
Calkins, R
Caloba, LP
Calvet, D
Calvet, S
Toro, RC
Camarda, S
Cameron, D
Caminada, LM
Armadans, RC
Campana, S
Campanelli, M
Campoverde, A
Canale, V
Canepa, A
Bret, MC
Cantero, J
Cantrill, R
Cao, T
Garrido, MDMC
Caprini, I
Caprini, M
Capua, M
Caputo, R
Cardarelli, R
Carli, T
Carlino, G
Carminati, L
Caron, S
Carquin, E
Carrillo-Montoya, GD
Carter, JR
Carvalho, J
Casadei, D
Casado, MP
Casolino, M
Castaneda-Miranda, E
Castelli, A
Gimenez, VC
Castro, NF
Catastini, P
Catinaccio, A
Catmore, JR
Cattai, A
Cattani, G
Caughron, S
Cavaliere, V
Cavalli, D
Cavalli-Sforza, M
Cavasinni, V
Ceradini, F
Cerio, B
Cerny, K
Cerqueira, AS
Cerri, A
Cerrito, L
Cerutti, F
Cerv, M
Cervelli, A
Cetin, SA
Chafaq, A
Chakraborty, D
Chalupkova, I
Chang, P
Chapleau, B
Chapman, JD
Charfeddine, D
Charlton, DG
Chau, CC
Barajas, CAC
Cheatham, S
Chegwidden, A
Chekanov, S
Chekulaev, SV
Chelkov, GA
Chelstowska, MA
Chen, C
Chen, H
Chen, K
Chen, L
Chen, S
Chen, X
Chen, Y
Cheng, HC
Cheng, Y
Cheplakov, A
El Moursli, RC
Chernyatin, V
Cheu, E
Chevalier, L
Chiarella, V
Chiefari, G
Childers, JT
Chilingarov, A
Chiodini, G
Chisholm, AS
Chislett, RT
Chitan, A
Chizhov, MV
Chouridou, S
Chow, BKB
Chromek-Burckhart, D
Chu, ML
Chudoba, J
Chwastowski, JJ
Chytka, L
Ciapetti, G
Ciftci, AK
Ciftci, R
Cinca, D
Cindro, V
Ciocio, A
Cirkovic, P
Citron, ZH
Citterio, M
Ciubancan, M
Clark, A
Clark, PJ
Clarke, RN
Cleland, W
Clemens, JC
Clement, C
Coadou, Y
Cobal, M
Coccaro, A
Cochran, J
Coffey, L
Cogan, JG
Coggeshall, J
Cole, B
Cole, S
Colijn, AP
Collot, J
Colombo, T
Colon, G
Compostella, G
Muino, PC
Coniavitis, E
Conidi, MC
Connell, SH
Connelly, IA
Consonni, SM
Consorti, V
Constantinescu, S
Conta, C
Conti, G
Conventi, F
Cooke, M
Cooper, BD
Cooper-Sarkar, AM
Cooper-Smith, NJ
Copic, K
Cornelissen, T
Corradi, M
Corriveau, F
Corso-Radu, A
Cortes-Gonzalez, A
Cortiana, G
Costa, G
Costa, MJ
Costanzo, D
Cote, D
Cottin, G
Cowan, G
Cox, BE
Cranmer, K
Cree, G
Crepe-Renaudin, S
Crescioli, F
Cribbs, WA
Ortuzar, MC
Cristinziani, M
Croft, V
Crosetti, G
Cuciuc, CM
Donszelmann, TC
Cummings, J
Curatolo, M
Cuthbert, C
Czirr, H
Czodrowski, P
Czyczula, Z
D'Auria, S
D'Onofrio, M
De Sousaa, MJDS
Da Via, C
Dabrowski, W
Dafinca, A
Dai, T
Dale, O
Dallaire, F
Dallapiccola, C
Dam, M
Daniells, AC
Hoffmann, MD
Dao, V
Darbo, G
Darmora, S
Dassoulas, JA
Dattagupta, A
Davey, W
David, C
Davidek, T
Davies, E
Davies, M
Davignon, O
Davison, AR
Davison, P
Davygora, Y
Dawe, E
Dawson, I
Daya-Ishmukhametova, RK
De, K
de Asmundis, R
De Castro, S
De Cecco, S
De Groot, N
de Jong, P
De la Torre, H
De Lorenzi, F
De Nooij, L
De Pedis, D
De Salvo, A
De Sanctis, U
De Santo, A
De Regie, JBD
Dearnaley, WJ
Debbe, R
Debenedetti, C
Dechenaux, B
Dedovich, DV
Deigaard, I
Del Peso, J
Del Prete, T
Deliot, F
Delitzsch, CM
Deliyergiyev, M
Dell'Acqua, A
Dell'Asta, L
Dell'Orso, M
Della Pietra, M
della Volpe, D
Delmastro, M
Delsart, PA
Deluca, C
Demers, S
Demichev, M
Demilly, A
Denisov, SP
Derendarz, D
Derkaoui, JE
Derue, F
Dervan, P
Desch, K
Deterre, C
Deviveiros, PO
Dewhurst, A
Dhaliwal, S
Di Ciaccio, A
Di Ciaccio, L
Di Domenico, A
Di Donato, C
Di Girolamo, A
Di Girolamo, B
Di Mattia, A
Di Micco, B
Di Nardo, R
Di Simone, A
Di Sipio, R
Di Valentino, D
Dias, FA
Diaz, MA
Diehl, EB
Dietrich, J
Dietzsch, TA
Diglio, S
Dimitrievska, A
Dingfelder, J
Dionisi, C
Dita, P
Dita, S
Dittus, F
Djama, F
Djobava, T
do Vale, MAB
Wemans, ADV
Doan, TKO
Dobos, D
Doglioni, C
Doherty, T
Dohmae, T
Dolejsi, J
Dolezal, Z
Dolgoshein, BA
Donadelli, M
Donati, S
Dondero, P
Donini, J
Dopke, J
Doria, A
Dova
Doyle, AT
Dris, M
Dubbert, J
Dube, S
Dubreuil, E
Duchovni, E
Duckeck, G
Ducu, OA
Duda, D
Dudarev, A
Dudziak, F
Duflot, L
Duguid, L
Duhrssen, M
Dunford, M
Yildiz, HD
Duren, M
Durglishvili, A
Dwuznik, M
Dyndal, M
Ebke, J
Edson, W
Edwards, NC
Ehrenfeld, W
Eifert, T
Eigen, G
Einsweiler, K
Ekelof, T
El Kacimi, M
Ellert, M
Elles, S
Ellinghaus, F
Ellis, N
Elmsheuser, J
Elsing, M
Emeliyanov, D
Enari, Y
Endner, OC
Endo, M
Engelmann, R
Erdmann, J
Ereditato, A
Eriksson, D
Ernis, G
Ernst, J
Ernst, M
Ernwein, J
Errede, D
Errede, S
Ertel, E
Escalier, M
Esch, H
Escobar, C
Esposito, B
Etienvre, AI
Etzion, E
Evans, H
Ezhilov, A
Fabbri, L
Facini, G
Fakhrutdinov, RM
Falciano, S
Falla, RJ
Faltova, J
Fang, Y
Fanti, M
Farbin, A
Farilla, A
Farooque, T
Farrell, S
Farrington, SM
Farthouat, P
Fassie, F
Fassnacht, P
Fassouliotis, D
Favareto, A
Fayard, L
Federic, P
Fedin, OL
Fedorko, W
Fehling-Kaschek, M
Feigl, S
Feligioni, L
Fengd, C
Feng, EJ
Feng, H
Fenyuk, AB
Perez, SF
Ferrag, S
Ferrando, J
Ferrari, A
Ferrari, P
Ferrari, R
de Lima, DEF
Ferrer, A
Ferrere, D
Ferretti, C
Parodi, AF
Fiascaris, M
Fiedler, F
Filipcic, A
Filipuzzi, M
Filthaut, F
Fincke-Keeler, M
Finelli, KD
Fiolhais, MCN
Fiorini, L
Firan, A
Fischer, A
Fischer, J
Fisher, WC
Fitzgerald, EA
Flechl, M
Fleck, I
Fleischmann, P
Fleischmann, S
Fletcher, GT
Fletcher, G
Flick, T
Floderus, A
Castillo, LRF
Bustos, ACF
Flowerdew, MJ
Formica, A
Forti, A
Fortin, D
Fournier, D
Fox, H
Fracchia, S
Francavilla, P
Franchini, M
Franchino, S
Francis, D
Franklin, M
Franz, S
Fraternali, M
French, T
Friedrich, C
Friedrich, F
Froidevaux
Frost, JA
Fukunaga, C
Torregrosa, EF
Fulsom, BG
Fuster, J
Gabaldon, C
Gabizon, O
Gabrielli, A
Gabrielli, A
Gadatsch, S
Gadomski, S
Gagliardi, G
Gagnon, P
Galea, C
Galhardo, B
Gallas, EJ
Gallo, V
Gallop, BJ
Gallus, P
Galster, G
Gan, KK
Gandrajula, RP
Gao, J
Gao, YS
Walls, FMG
Garberson, F
Garcia, C
Navarro, JEG
Garcia-Sciveres, M
Gardner, RW
Garelli, N
Garonne, V
Gatti, C
Gaudio, G
Gaur, B
Gauthier, L
Gauzzi, P
Gavrilenko, L
Gay, C
Gaycken, G
Gazis, EN
Ge, P
Gecse, Z
Gee, CNP
Geerts, DAA
Geich-Gimbel, C
Gellerstedt, K
Gemme, C
Gemmell, A
Genest, MH
Gentile, S
George, M
George, S
Gerbaudo, D
Gershon, A
Ghazlane, H
Ghodbane, N
Giacobbe, B
Giagu, S
Giangiobbe, V
Giannetti, P
Gianotti, F
Gibbard, B
Gibson, SM
Gilchriese, M
Gillam, TPS
Gillberg, D
Gilles, G
Gingrich, DM
Giokaris, N
Giordani, MP
Giordano, R
Giorgi, FM
Giorgi, FM
Giraud, PF
Giugni, D
Giuliani, C
Giulini, M
Gjelsten, BK
Gkaitatzis, S
Gkialas, I
Gladilin, LK
Glasman, C
Glatzer, J
Glaysher, PCF
Glazov, A
Glonti, GL
Goblirsch-Kolb, M
Goddard, JR
Godfrey, J
Godlewski, J
Goeringer, C
Goldfarb, S
Golling, T
Golubkov, D
Gomes, A
Fajardo, LSG
Goncalo, R
Da Costa, JGPF
Gonella, L
de la Hoz, SG
Parra, GG
Gonzalez-Sevilla, S
Goossens, L
Gorbounov, PA
Gordon, HA
Gorelov, I
Gorini, B
Gorini, E
Gorisek, A
Gornicki, E
Goshaw, AT
Gossling, C
Gostkin, MI
Gouighri, M
Goujdami, D
Goulette, MP
Goussiou, AG
Goy, C
Gozpinar, S
Grabas, HMX
Graber, L
Grabowska-Bold, I
Grafstrom, P
Grahn, KJ
Gramling, J
Gramstad, E
Grancagnolo, S
Grassi, V
Gratchev, V
Gray, HM
Graziani, E
Grebenyuk, OG
Greenwood, ZD
Gregersen, K
Gregor, IM
Grenier, P
Griffiths, J
Grohsjean, A
Gross, E
Grosse-Knetter, J
Grossia, GC
Groth-Jensen, J
Grout, ZJ
Guan, L
Guescini, F
Guest, D
Gueta, O
Guicheney, C
Guido, E
Guillemin, T
Guindon, S
Gul, U
Gumpert, C
Gunther, J
Guo, J
Gupta, S
Gutierrez, P
Ortiz, NGG
Gutschow, C
Guttman, N
Guyot, C
Gwenlan, C
Gwilliam, CB
Haas, A
Haber, C
Hadavand, HK
Haddad, N
Haefner, P
Hagebock, S
Hajduk, Z
Hakobyan, H
Haleem, M
Hall, D
Halladjian, G
Hamacher, K
Hamal, P
Hamano, K
Hamer, M
Hamilton, A
Hamilton, S
Hamnett, PG
Han, L
Hanagaki, K
Hanawa, K
Hance, M
Hanke, P
Hanna, R
Hansen, B
Hansen, JD
Hansen, PH
Hara, K
Hard, AS
Harenberg, T
Hariri, F
Harkusha, S
Harper, D
Harrington, RD
Harris, OM
Harrison, PF
Hartjes, F
Hasegawa, S
Hasegawa, Y
Hasib, A
Hassani, S
Haug, S
Hauschild, M
Hauser, R
Havranek, M
Hawkes, CM
Hawkings, RJ
Hawkins, AD
Hayashi, T
Hayden, D
Hays, CP
Hayward, HS
Haywood, SJ
Head, SJ
Heck, T
Hedberg, V
Heelan, L
Heim, S
Heim, T
Heinemann, B
Heinrich, L
Hejbal, J
Helary, L
Heller, C
Heller, M
Hellman, S
Hellmich, D
Helsens, C
Henderson, J
Henderson, RCW
Heng, Y
Hengler, C
Henrichs, A
Correia, AMH
Henrot-Versille, S
Hensel, C
Herbert, GH
Jimenez, YH
Herrberg-Schubert, R
Herten, G
Hertenberger, R
Hervas, L
Hesketh, GG
Hessey, NP
Hickling, R
Higon-Rodriguez, E
Hill, E
Hill, JC
Hiller, KH
Hillert, S
Hillier, SJ
Hinchliffe, I
Hines, E
Hirose, M
Hirschbuehl, D
Hobbs, J
Hod, N
Hodgkinson, MC
Hodgson, P
Hoecker, A
Hoeferkamp, MR
Hoffman, J
Hoffmann, D
Hofmann, JI
Hohlfeld, M
Holmes, TR
Hong, TM
van Huysduynen, LH
Hostachy, JY
Hou, S
Hoummada, A
Howard, J
Howarth, J
Hrabovsky, M
Hristova, I
Hrivnac, J
Hryn'ova, T
Hsu, C
Hsu, PJ
Hsu, SC
Hu, D
Hu, X
Huang, Y
Hubacek, Z
Hubaut, F
Huegging, F
Huffman, TB
Hughes, EW
Hughes, G
Huhtinen, M
Hulsing, TA
Hurwitz, M
Huseynov, N
Huston, J
Huth, J
Iacobucci, G
Iakovidis, G
Ibragimov, I
Iconomidou-Fayard, L
Ideal, E
Iengo, P
Igonkina, O
Iizawa, T
Ikegami, Y
Ikematsu, K
Ikeno, M
Ilchenko, Y
Iliadis, D
Ilic, N
Inamaru, Y
Ince, T
Ioannou, P
Iodice, M
Iordanidou, K
Ippolito, V
Quiles, AI
Isaksson, C
Ishino, M
Ishitsuka, M
Ishmukhametov, R
Issever, C
Istin, S
Ponce, JMI
Iuppa, R
Ivarsson, J
Iwanski, W
Iwasaki, H
Izen, JM
Izzo, V
Jackson, B
Jackson, M
Jackson, P
Jaekel, MR
Jain, V
Jakobs, K
Jakobsen, S
Jakoubek, T
Jakubek, J
Jamin, DO
Jana, K
Jansen, E
Jansen, H
Janssen, J
Janus, M
Jarlskog, G
Javadov, N
Javurek, T
Jeanty, L
Jejelava, J
Jeng, GY
Jennens, D
Jenni, P
Jentzsch, J
Jeske, C
Jezequel, S
Ji, H
Ji, W
Jia, J
Jiang, Y
Belenguer, MJ
Jin, S
Jinaru, A
Jinnouchi, O
Joergensen, MD
Johansson, KE
Johansson, P
Johns, KA
Jon-And, K
Jones, G
Jones, RWL
Jones, TJ
Jongmanns, J
Jorge, PM
Joshi, KD
Jovicevic, J
Ju, X
Jung, CA
Jungst, RM
Jussel, P
Rozas, AJ
Kaci, M
Kaczmarska, A
Kado, M
Kagan, H
Kagan, M
Kajomovitz, E
Kalderon, CW
Kama, S
Kamenshchikov, A
Kanaya, N
Kaneda, M
Kaneti, S
Kantserov, A
Kanzaki, J
Kaplan, B
Kapliy, A
Kar, D
Karakostas, K
Karastathis, N
Karnevskiy, M
Karpov, SN
Karpova, ZM
Karthik, K
Kartvelishvili, V
Karyukhin, AN
Kashif, L
Kasieczka, G
Kass, RD
Kastanas, A
Kataoka, Y
Katre, A
Katzy, J
Kaushik, V
Kawagoe, K
Kawamoto, T
Kawamura, G
Kazama, S
Kazanin, VF
Kazarinov, MY
Keeler, R
Kehoe, R
Keil, M
Keller, JS
Kempster, JJ
Keoshkerian, H
Kepka, O
Kersevan, BP
Kersten, S
Kessoku, K
Keung, J
Khalil-zada, F
Khandanyan, H
Khanov, A
Khodinov, A
Khomich, A
Khoo, TJ
Khoriauli, G
Khoroshilov, A
Khovanskiy, V
Khramov, E
Khubua, J
Kim, HY
Kim, H
Kim, SH
Kimura, N
Kind, O
King, TB
King, M
King, RSB
King, SB
Kirk, J
Kiryunin, AE
Kishimoto, T
Kisielewska, D
Kiss, F
Kittelmann, T
Kiuchi, K
Kladiva, E
Klein, M
Klein, U
Kleinknecht, K
Klimek, P
Klimentov, A
Klingenberg, R
Klinger, JA
Klioutchnikova, T
Klok, PF
Kluge, EE
Kluit, P
Kluth, S
Kneringer, E
Knoops, EBFG
Knue, A
Kobayashi, D
Kobayashi, T
Kobel, M
Kocian, M
Kodys, P
Koevesarki, P
Koffas, T
Koffeman, E
Kogan, LA
Kohlmann, S
Kohout, Z
Kohriki, T
Koi, T
Kolanoski, H
Koletsou, I
Koll, J
Komar, AA
Komori, Y
Kondo, T
Kondrashova, N
Koneke, K
Konig, AC
Konig, S
Kono, T
Konoplich, R
Konstantinidis, N
Kopeliansky, R
Koperny, S
Kopke, L
Kopp, AK
Korcyl, K
Kordas, K
Korn, A
Korol, AA
Korolkov, I
Korolkova, EV
Korotkov, VA
Kortner, O
Kortner, S
Kostyukhin, V
Kotov, VM
Kotwal, A
Kourkoumelis, C
Kouskoura, V
Koutsman, A
Kowalewski, R
Kowalski, Z
Kozanecki, W
Kozhin, AS
Kral, V
Kramarenko, VA
Kramberger, G
Krasnopevtsev, D
Krasny, MW
Krasznahorkay, A
Kraus, JK
Kravchenko, A
Kreiss, S
Kretz, M
Kretzschmar, J
Kreutzfeldt, K
Krieger, P
Kroeninger, K
Kroha, H
Kroll, J
Kroseberg, J
Krstic, J
Kruchonak, U
Kruger, H
Kruker, T
Krumnack, N
Krumshteyn, ZV
Kruse, A
Kruse, MC
Kruskal, M
Kubota, T
Kuday, S
Kuehn, S
Kugel, A
Kuhl, A
Kuhl, T
Kukhtin, V
Kulchitsky, Y
Kuleshov, S
Kuna, M
Kunkle, J
Kupco, A
Kurashige, H
Kurochkin, YA
Kurumida, R
Kus, V
Kuwertz, ES
Kuze, M
Kvita, J
La Rosa, A
La Rotonda, L
Lacasta, C
Lacava, F
Lacey, J
Lacker, H
Lacour, D
Lacuesta, VR
Ladygin, E
Lafaye, R
Laforge, B
Lagouri, T
Lai, S
Laier, H
Lambourne, L
Lammers, S
Lampen, CL
Lampl, W
Lancon, E
Landgraf, U
Landon, MPJ
Lang, VS
Lankford, AJ
Lanni, F
Lantzsch, K
Laplace, S
Lapoire, C
Laporte, JF
Lari, T
Lassnig, M
Laurelli, P
Lavrijsen, W
Law, AT
Laycock, P
Le, BT
Le Dortz, O
Le Guirriec, E
Le Menedeu, E
LeCompte, T
Ledroit-Guillon, F
Lee, CA
Lee, H
Lee, JSH
Lee, SC
Lee, L
Lefebvre, G
Lefebvre, M
Legger, F
Leggett, C
Lehan, A
Lehmacher, M
Miotto, GL
Lei, X
Leight, WA
Leisos, A
Leister, AG
Leite, MAL
Leitner, R
Lellouch, D
Lemmer, B
Leney, KJC
Lenz, T
Lenzen, G
Lenzi, B
Leone, R
Leone, S
Leonhardt, K
Leonidopoulos, C
Leontsinis, S
Leroy, C
Lester, CG
Lester, CM
Levchenko, M
Leveque, J
Levin, D
Levinson, LJ
Levy, M
Lewis, A
Lewis, GH
Leyko, AM
Leyton, M
Li, B
Li, B
Li, H
Li, HL
Li, L
Li, L
Li, S
Li, Y
Liang, Z
Liao, H
Liberti, B
Lichard, P
Lie, K
Liebal, J
Liebig, W
Limbach, C
Limosani, A
Lin, SC
Lin, TH
Linde, F
Lindquist, E
Linnemann, JT
Lipeles, E
Lipniacka, A
Lisovyi, M
Liss, TM
Lissauer, D
Lister, A
Litke, AM
Liu, B
Liu, D
Liu, JB
Liu, K
Liu, L
Liu, M
Liu, M
Liu, Y
Livan, M
Livermore, SSA
Lleres, A
Merino, JL
Lloyd, SL
Lo Sterzo, F
Lobodzinska, E
Loch, P
Lockman, WS
Loddenkoetter, T
Loebinger, FK
Loevschall-Jensen, AE
Loginov, A
Loh, CW
Lohse, T
Lohwasser, K
Lokajicek, M
Lombardo, VP
Long, BA
Long, JD
Long, RE
Lopes, L
Mateos, DL
Paredes, BL
Paz, IL
Lorenz, J
Martinez, NL
Losada, M
Loscutoff, P
Lou, X
Lounis, A
Love, J
Love, PA
Lowe, AJ
Lu, F
Lubatti, HJ
Luci, C
Lucotte, A
Luehring, F
Lukas, W
Luminari, L
Lundberg, O
Lund-Jensen, B
Lungwitz, M
Lynn, D
Lysak, R
Lytken, E
Ma, H
Mad, LL
Maccarrone, G
Macchiolo, A
Miguens, JM
Macina, D
Madaffari, D
Madar, R
Maddocks, HJ
Mader, WF
Madsen, A
Maeno, M
Maeno, T
Magradze, E
Mahboubi, K
Mahlstedt, J
Mahmoud, S
Maiani, C
Maidantchik, C
Maier, AA
Maio, A
Majewski, S
Makida, Y
Makovec, N
Mal, P
Malaescu, B
Malecki, P
Maleev, VP
Malek, F
Mallik, U
Malon, D
Malone, C
Maltezos, S
Malyshev, VM
Malyukov, S
Mamuzic, J
Mandelli, B
Mandelli, L
Mandic, I
Mandrysch, R
Maneira, J
Manfredini, A
de Andrade, LM
Ramos, JAM
Mann, A
Manning, PM
Manousakis-Katsikakis, A
Mansoulie, B
Mantifel, R
Mapelli, L
March, L
Marchand, JF
Marchiori, G
Marcisovsky, M
Marino, CP
Marjanovic, M
Marques, CN
Marroquim, F
Marsden, SP
Marshall, Z
Marti, LF
Marti-Garcia, S
Martin, B
Martin, B
Martin, TA
Martin, VJ
Latour, BMD
Martinez, H
Martinez, M
Martin-Haugh, S
Martyniuk, AC
Marx, M
Marzano, F
Marzin, A
Masetti, L
Mashimo, T
Mashinistov, R
Masik, J
Maslennikov, AL
Massa, I
Massol, N
Mastrandrea, P
Mastroberardino, A
Masubuchi, T
Mattig, P
Mattmann, J
Maurer, J
Maxfield, SJ
Maximov, DA
Mazini, R
Mazzaferro, L
Mc Goldrick, G
Mc Kee, SP
McCarn, A
McCarthy, RL
McCarthy, TG
McCubbin, NA
McFarlane, KW
Mcfayden, JA
Mchedlidze, G
McMahon, SJ
McPherson, RA
Meade, A
Mechnich, J
Medinnis, M
Meehan, S
Mehlhase, S
Mehta, A
Meier, K
Meineck, C
Meirose, B
Melachrinos, C
Garcia, BRM
Meloni, F
Mengarelli, A
Menke, S
Meoni, E
Mercurio, KM
Mergelmeyer, S
Meric, N
Mermod, P
Merola, L
Meroni, C
Merritt, FS
Merritt, H
Messina, A
Metcalfe, J
Mete, AS
Meyer, C
Meyer, C
Meyer, JP
Meyer, J
Middleton, RP
Migas, S
Mijovic, L
Mikenberg, G
Mikestikova, M
Mikuz, M
Milic, A
Miller, DW
Mills, C
Milov, A
Milstead, DA
Milstein, D
Minaenko, AA
Minashvili, IA
Mincer, AI
Mindur, B
Mineev, M
Ming, Y
Mir, LM
Mirabelli, G
Mitani, T
Mitrevski, J
Mitsou, A
Mitsui, S
Miucci, A
Miyagawa, PS
Mjornmark, JU
Moa, T
Mochizuki, K
Mohapatra, S
Mohr, W
Molander, S
Moles-Valls, R
Monig, K
Monini, C
Monk, J
Monnier, E
Berlingen, JM
Monticelli, F
Monzani, S
Moore, RW
Moraes, A
Morange, N
Moreno, D
Llacer, MM
Morettini, P
Morgenstern, M
Morii, M
Moritz, S
Morley, AK
Mornacchi, G
Morris, JD
Morvaj, L
Moser, HG
Mosidzeb, M
Moss, J
Motohashi, K
Mount, R
Mountricha, E
Mouraviev, SV
Moyse, EJW
Muanza, S
Mudd, RD
Mueller, F
Mueller, J
Mueller, K
Mueller, T
Mueller, T
Muenstermann, D
Munwes, Y
Quijada, JAM
Murray, WJ
Musheghyan, H
Musto, E
Myagkov, AG
Myska, M
Nackenhorst, O
Nadal, J
Nagai, K
Nagai, R
Nagai, Y
Nagano, K
Nagarkar, A
Nagasaka, Y
Nagel, M
Nairz, AM
Nakahama, Y
Nakamura, K
Nakamura, T
Nakano, I
Namasivayam, H
Nanava, G
Narayan, R
Nattermann, T
Naumann, T
Navarro, G
Nayyar, R
Neal, HA
Nechaeva, PY
Neep, TJ
Nef, PD
Negri, A
Negri, G
Negrini, M
Nektarijevic, S
Nelson, A
Nelson, TK
Nemecek, S
Nemethy, P
Nepomuceno, AA
Nessi, M
Neubauer, MS
Neumann, M
Neves, RM
Nevski, P
Newman, PR
Nguyen, DH
Nickerson, RB
Nicolaidou, R
Nicquevert, B
Nielsen, J
Nikiforou, N
Nikiforov, A
Nikolaenko, V
Nikolic-Audit, I
Nikolics, K
Nikolopoulos, K
Nilsson, P
Ninomiya, Y
Nisati, A
Nisius, R
Nobe, T
Nodulman, L
Nomachi, M
Nomidis, I
Norberg, S
Nordberg, M
Novgorodova, O
Nowak, S
Nozaki, M
Nozka, L
Ntekas, K
Hanninger, GN
Nunnemann, T
Nurse, E
Nuti, F
O'Brien, BJ
O'grady, F
O'Neil, DC
O'Shea, V
Oakham, FG
Oberlack, H
Obermann, T
Ocariz, J
Ochi, A
Ochoa, MI
Oda, S
Odaka, S
Ogren, H
Oh, A
Oh, SH
Ohm, CC
Ohman, H
Ohshima, T
Okamura, W
Okawa, H
Okumura, Y
Okuyama, T
Olariu, A
Olchevski, AG
Pino, SAO
Damazio, DO
Garcia, EO
Olszewski, A
Olszowska, J
Onofre, A
Onyisi, PUE
Oram, CJ
Oreglia, MJ
Oren, Y
Orestano, D
Orlando, N
Barrera, CO
Orr, RS
Osculati, B
Ospanov, R
Garzon, GOY
Otono, H
Ouchrif, M
Ouellette, EA
Ould-Saada, F
Ouraou, A
Oussoren, KP
Ouyang, Q
Ovcharova, A
Owen, M
Ozcan, VE
Ozturk, N
Pachal, K
Pages, AP
Aranda, CP
Pagacova, M
Griso, SP
Paganis, E
Pahl, C
Paige, F
Pais, P
Pajchel, K
Palacino, G
Palestini, S
Palka, M
Pallin, D
Palma, A
Palmer, JD
Pan, YB
Panagiotopoulou, E
Vazquez, JGP
Pani, P
Panikashvili, N
Panitkin, S
Pantea, D
Paolozzi, L
Papadopoulou, TD
Papageorgiou, K
Paramonov, A
Hernandez, DP
Parker, MA
Parodi, F
Parsons, JA
Parzefall, U
Pasqualucci, E
Passaggio, S
Passeri, A
Pastore, F
Pastore, F
Pasztor, G
Pataraia, S
Patel, ND
Pater, JR
Patricelli, S
Pauly, T
Pearce, J
Pedersen, M
Lopez, SP
Pedro, R
Peleganchuk, SV
Pelikan, D
Peng, H
Penning, B
Penwell, J
Perepelitsa, DV
Codina, EP
Garcia-Estan, MTP
Reale, VP
Perini, L
Pernegger, H
Perrino, R
Peschke, R
Peshekhonov, VD
Peters, K
Peters, RFY
Petersen, BA
Petersen, TC
Petit, E
Petridis, A
Petridou, C
Petrolo, E
Petrucci, F
Pettersson, NE
Pezoa, R
Phillips, PW
Piacquadio, G
Pianori, E
Picazio, A
Piccaro, E
Piccinini, M
Piegaia, R
Pignotti, DT
Pilcher, JE
Pilkington, AD
Pina, J
Pinamonti, M
Pinder, A
Pinfold, JL
Pingel, A
Pinto, B
Pires, S
Pitt, M
Pizio, C
Plazak, L
Pleier, MA
Pleskot, V
Plotnikova, E
Plucinski, P
Poddar, S
Podlyski, F
Poettgen, R
Poggioli, L
Pohl, D
Pohl, M
Polesello, G
Policicchio, A
Polifka, R
Polini, A
Pollard, CS
Polychronakos, V
Pommes, K
Pontecorvo, L
Pope, BG
Popeneciu, GA
Popovic, DS
Poppleton, A
Bueso, XP
Pospisil, S
Potamianos, K
Potrap, IN
Potter, CJ
Potter, CT
Poulard, G
Poveda, J
Pozdnyakov, V
Pralavorio, P
Pranko, A
Prasad, S
Pravahan, R
Prell, S
Price, D
Price, J
Price, LE
Prieur, D
Primavera, M
Proissl, M
Prokofiev, K
Prokoshin, F
Protopapadaki, E
Protopopescu, S
Proudfoot, J
Przybycien, M
Przysiezniak, H
Ptacek, E
Puddu, D
Pueschel, E
Puldon, D
Purohit, M
Puzo, P
Qian, J
Qin, G
Qin, Y
Quadt, A
Quarrie, DR
Quayle, WB
Queitsch-Maitland, M
Quilty, D
Qureshi, A
Radeka, V
Radescu, V
Radhakrishnan, SK
Radloff, P
Rados, P
Ragusa, F
Rahal, G
Rajagopalan, S
Rammensee, M
Randle-Conde, AS
Rangel-Smith, C
Rao, K
Rauscher, F
Rave, TC
Ravenscroft, T
Raymond, M
Read, AL
Readioff, NP
Rebuzzi, DM
Redelbach, A
Redlinger, G
Reece, R
Reeves, K
Rehnisch, L
Reisin, H
Relich, M
Rembser, C
Ren, H
Ren, ZL
Renaud, A
Rescigno, M
Resconi, S
Rezanova, OL
Reznicek, P
Rezvani, R
Richter, R
Ridel, M
Rieck, P
Rieger, J
Rijssenbeek, M
Rimoldi, A
Rinaldi, L
Ritsch, E
Riu, I
Rizatdinova, F
Rizvi, E
Robertson, SH
Robichaud-Veronneau, A
Robinson, D
Robinson, JEM
Robson, A
Roda, C
Rodrigues, L
Roe, S
Rohne, O
Rolli, S
Romaniouk, A
Romano, M
Adam, ER
Rompotis, N
Roos, L
Ros, E
Rosati, S
Rosbach, K
Rose, M
Rosendahl, PL
Rosenthal, O
Rossetti, V
Rossi, E
Rossi, LP
Rosten, R
Rotaru, M
Roth, I
Rothberg, J
Rousseau, D
Royon, CR
Rozanov, A
Rozen, Y
Ruan, X
Rubbo, F
Rubinskiy, I
Rud, VI
Rudolph, C
Rudolph, MS
Ruhr, F
Ruiz-Martinez, A
Rurikova, Z
Rusakovich, NA
Ruschke, A
Rutherfoord, JP
Ruthmann, N
Ryabov, YF
Rybar, M
Rybkin, G
Ryder, NC
Saavedra, AF
Sacerdoti, S
Saddique, A
Sadeh, I
Sadrozinski, HFW
Sadykov, R
Tehrani, FS
Sakamoto, H
Sakurai, Y
Salamanna, G
Salamon, A
Saleem, M
Salek, D
De Bruin, PHS
Salihagic, D
Salnikov, A
Salt, J
Ferrando, BMS
Salvatore, D
Salvatore, F
Salvucci, A
Salzburger, A
Sampsonidis, D
Sanchez, A
Sanchez, J
Martinez, VS
Sandaker, H
Sandbach, RL
Sander, HG
Sanders, MP
Sandhoff, M
Sandoval
Sandoval
Sandstroem, R
Sankey, DPC
Sansoni, A
Santoni, C
Santonico, R
Santos, H
Castillo, IS
Sapp, K
Sapronov, A
Saraiva, JG
Sarrazin, B
Sartisohn, G
Sasaki, O
Sasaki, Y
Sauvage, G
Sauvan, E
Savard, P
Savu, DO
Sawyer, C
Sawyer, L
Saxon, DH
Saxon, J
Sbarra, C
Sbrizzi, A
Scanlon, T
Scannicchio, DA
Scarcella, M
Scarfone, V
Schaarschmidt, J
Schacht, P
Schaefer, D
Schaefer, R
Schaepe, S
Schaetzel, S
Schafer, U
Schaffer, AC
Schaile, D
Schamberger, RD
Scharf, V
Schegelsky, VA
Scheirich, D
Schernau, M
Scherzer, MI
Schiavi, C
Schieck, J
Schillo, C
Schioppa, M
Schlenker, S
Schmidt, E
Schmieden, K
Schmitt, C
Schmitt, C
Schmitt, S
Schneider, B
Schnellbach, J
Schnoor, U
Schoeffel, L
Schoening, A
Schoenrock, BD
Schorlemmer, ALS
Schott, M
Schouten, D
Schovancova, J
Schramm, S
Schreyer, M
Schroeder, C
Schuh, N
Schultens, MJ
Schultz-Coulon, HC
Schulz, H
Schumacher, M
Schumm, BA
Schune, P
Schwanenberger, C
Schwartzman, A
Schwegler, P
Schwemling, P
Schwienhorst, R
Schwindling, J
Schwindt, T
Schwoerer, M
Sciacca, FG
Scifo, E
Sciolla, G
Scott, WG
Scuri, F
Scutti, F
Searcy, J
Sedov, G
Sedykh, E
Seidel, SC
Seiden, A
Seifert, F
Seixas, JM
Sekhniaidze, G
Sekula, SJ
Selbach, KE
Seliverstov, DM
Sellers, G
Semprini-Cesari, N
Serfon, C
Serin, L
Serkin, L
Serre, T
Seuster, R
Severini, H
Sfiligoj, T
Sforza, F
Sfyrla, A
Shabalina, E
Shamim, M
Shan, LY
Shang, R
Shank, JT
Shapiro, M
Shatalov, PB
Shaw, K
Shehu, CY
Sherwood, P
Shi, L
Shimizu, S
Shimmin, CO
Shimojima, M
Shiyakova, M
Shmeleva, A
Shochet, MJ
Short, D
Shrestha, S
Shulga, E
Shupe, MA
Shushkevich, S
Sicho, P
Sidiropoulou, O
Sidorov, D
Sidoti, A
Siegert, F
Sijacki, D
Silva, J
Silver, Y
Silverstein, D
Silverstein, SB
Simak, V
Simard, O
Simic, L
Simion, S
Simioni, E
Simmons, B
Simoniello, R
Simonyan, M
Sinervo, P
Sinev, NB
Sipica, V
Siragusa, G
Sircar, A
Sisakyan, N
Sivoklokov, SY
Sjolin, J
Sjursen, TB
Skottowe, HP
Skovpen, KY
Skubic, P
Slater, M
Slavicek, T
Sliwa, K
Smakhtin, V
Smart, BH
Smestad, L
Smirnov, SY
Smirnov, Y
Smirnova, LN
Smirnova, O
Smith, KM
Smizanska, M
Smolek, K
Snesarev, AA
Snidero, G
Snyder, S
Sobie, R
Socher, F
Soffer, A
Soh, DA
Solans, CA
Solar, M
Solc, J
Soldatov, EY
Soldevila, U
Camillocci, ES
Solodkov, AA
Soloshenko, A
Solovyanov, OV
Solovyev, V
Sommer, P
Song, HY
Soni, N
Sood, A
Sopczak, A
Sopko, B
Sopko, V
Sorin, V
Sosebee, M
Soualah, R
Soueid, P
Soukharev, M
South, D
Spagnolo, S
Spano, F
Spearman, WR
Spettel, F
Spighi, R
Spigo, G
Spousta, M
Spreitzer, T
Spurlock, B
Denis, RDS
Staerz, S
Stahlman, J
Stamen, R
Stanecka, E
Stanek, RW
Stanescu, C
Stanescu-Bellu, M
Stanitzki, MM
Stapnes, S
Starchenko, EA
Stark, J
Staroba, P
Starovoitov, P
Staszewski, R
Stavina, P
Steinberg, P
Stelzer, B
Stelzer, HJ
Stelzer-Chilton, O
Stenzel, H
Stern, S
Stewart, GA
Stillings, JA
Stockton, MC
Stoebe, M
Stoicea, G
Stolte, P
Stonjek, S
Stradling, AR
Straessner, A
Stramaglia, ME
Strandberg, J
Strandberg, S
Strandlie, A
Strauss, E
Strauss, M
Strizenec, P
Strohmer, R
Strom, DM
Stroynowski, R
Stucci, SA
Stugu, B
Styles, NA
Su, D
Su, J
Subramania, HS
Subramaniam, R
Succurro, A
Sugaya, Y
Suhr, C
Suk, M
Sulin, VV
Sultansoy, S
Sumida, T
Sun, X
Sundermann, JE
Suruliz, K
Susinno, G
Sutton, MR
Suzuki, Y
Svatos, M
Swedish, S
Swiatlowski, M
Sykora, I
Sykora, T
Ta, D
Taccini, C
Tackmann, K
Taenzer, J
Taffard, A
Tafirout, R
Taiblum, N
Takahashi, Y
Takai, H
Takashima, R
Takeda, H
Takeshita, T
Takubo, Y
Talby, M
Talyshev, AA
Tam, JYC
Tan, KG
Tanaka, J
Tanaka, R
Tanaka, S
Tanaka, S
Tanasijczuk, AJ
Tannenwald, BB
Tannoury, N
Tapprogge, S
Tarem, S
Tarrade, F
Tartarelli, GF
Tas, P
Tasevsky, M
Tashiro, T
Tassi, E
Delgado, AT
Tayalati, Y
Taylor, FE
Taylor, GN
Taylor, W
Teischinger, FA
Castanheira, MTD
Teixeira-Dias, P
Temming, KK
Ten Kate, H
Teng, PK
Teoh, JJ
Terada, S
Terashi, K
Terron, J
Terzo, S
Testa, M
Teuscher, RJ
Therhaag, J
Theveneaux-Pelzer, T
Thomas, JP
Thomas-Wilsker, J
Thompson, EN
Thompson, PD
Thompson, PD
Thompson, AS
Thomsen, LA
Thomson, E
Thomson, M
Thong, WM
Thun, RP
Tian, F
Tibbetts, MJ
Tikhomirov, VO
Tikhonov, YA
Timoshenko, S
Tiouchichine, E
Tipton, P
Tisserant, S
Todorov, T
Todorova-Nova, S
Toggerson, B
Tojo, J
Tokar, S
Tokushuku, K
Tollefson, K
Tomlinson, L
Tomoto, M
Tompkins, L
Toms, K
Topilin, ND
Torrence, E
Torres, H
Pastor, ET
Toth, J
Touchard, F
Tovey, DR
Tran, HL
Trefzger, T
Tremblet, L
Tricoli, A
Trigger, IM
Trincaz-Duvoid, S
Tripiana, MF
Triplett, N
Trischuk, W
Trocme, B
Troncon, C
Trottier-McDonald, M
Trovatelli, M
True, P
Trzebinski, M
Trzupek, A
Tsarouchas, C
Tseng, JCL
Tsiareshka, PV
Tsionou, D
Tsipolitis, G
Tsirintanis, N
Tsiskaridze, S
Tsiskaridze, V
Tskhadadze, EG
Tsukerman, II
Tsulaia, V
Tsuno, S
Tsybychev, D
Tudorache, A
Tudorache, V
Tuna, AN
Tupputi, SA
Turchikhin, S
Turecek, D
Cakir, IT
Turra, R
Tuts, PM
Tykhonov, A
Tylmad, M
Tyndel, M
Uchida, K
Ueda, I
Ueno, R
Ughetto, M
Ugland, M
Uhlenbrock, M
Ukegawa, F
Unal, G
Undrus, A
Unel, G
Ungaro, FC
Unno, Y
Urbaniec, D
Urquijo, P
Usai, G
Usanova, A
Vacavant, L
Vacek, V
Vachon, B
Valencic, N
Valentinetti, S
Valero, A
Valery, L
Valkar, S
Gallego, EV
Vallecorsa, S
Ferrer, JAV
Van Den Wollenberg, W
Van Der Deijl, PC
van der Geer, R
van der Graaf, H
Van Der Leeuw, R
van der Ster, D
van Eldik, N
van Gemmeren, P
Van Nieuwkoop, J
van Vulpen, I
van Woerden, MC
Vanadia, M
Vandelli, W
Vanguri, R
Vaniachine, A
Vankov, P
Vannucci, F
Vardanyan, G
Vari, R
Varnes, EW
Varol, T
Varouchas, D
Vartapetian, A
Varvell, KE
Vazeille, F
Schroeder, TV
Veatch, J
Veloso, F
Veneziano, S
Ventura, A
Ventura, D
Venturi, M
Venturi, N
Venturini, A
Vercesi, V
Verducci, M
Verkerke, W
Vermeulen, JC
Vest, A
Vetterli, MC
Viazlo, O
Vichou, I
Vickey, T
Boeriu, OEV
Viehhauser, GHA
Viel, S
Vigne, R
Villa, M
Perez, MV
Vilucchi, E
Vincter, MG
Vinogradov, VB
Virzi, J
Vivarelli, I
Vaque, FV
Vlachos, S
Vladoiu, D
Vlasak, M
Vogel, A
Vogel, M
Vokac, P
Volpi, G
Volpi, M
von der Schmitt, H
von Radziewski, H
von Toerne, E
Vorobel, V
Vorobev, K
Vos, M
Voss, R
Vossebeld, JH
Vranjes, N
Milosavljevic, MV
Vrba, V
Vreeswijk, M
Anh, TV
Vuillermet, R
Vukotic, I
Vykydal, Z
Wagner, P
Wagner, W
Wahlberg, H
Wahrmund, S
Wakabayashi, J
Walder, J
Walker, R
Walkowiak, W
Wall, R
Waller, P
Walsh, B
Wang, C
Wang, C
Wang, F
Wang, H
Wang, H
Wang, J
Wang, J
Wang, K
Wang, R
Wang, SM
Wang, T
Wang, X
Wanotayaroj, C
Warburton, A
Ward, CP
Wardrope, DR
Warsinsky, M
Washbrook, A
Wasicki, C
Watkins, PM
Watson, AT
Watson, IJ
Watson, MF
Watts, G
Watts, S
Waugh, BM
Webb, S
Weber, MS
Weber, SW
Webster, JS
Weidberg, AR
Weigell, P
Weinert, B
Weingarten, J
Weiser, C
Weits, H
Wells, PS
Wenaus, T
Wendland, D
Weng, Z
Wengler, T
Wenig, S
Wermes, N
Werner, M
Werner, P
Wessels, M
Wetter, J
Whalen, K
White, A
White, MJ
White, R
White, S
Whiteson, D
Wicke, D
Wickens, FJ
Wiedenmann, W
Wielers, M
Wienemann, P
Wiglesworth, C
Wiik-Fuchs, LAM
Wijeratne, PA
Wildauer, A
Wildt, MA
Wilkens, HG
Will, JZ
Williams, HH
Williams, S
Willis, C
Willocq, S
Wilson, A
Wilson, JA
Wingerter-Seez, I
Winklmeier, F
Winter, BT
Wittgen, M
Wittig, T
Wittkowski, J
Wollstadt, SJ
Wolter, MW
Wolters, H
Wosiek, BK
Wotschack, J
Woudstra, MJ
Wozniak, KW
Wright, M
Wu, M
Wu, SL
Wu, X
Wu, Y
Wulf, E
Wyatt, TR
Wynne, BM
Xella, S
Xiao, M
Xu, D
Xu, L
Yabsley, B
Yacoob, S
Yamada, M
Yamaguchi, H
Yamaguchi, Y
Yamamoto, A
Yamamoto, K
Yamamoto, S
Yamamura, T
Yamanaka, T
Yamauchi, K
Yamazaki, Y
Yan, Z
Yang, H
Yang, H
Yang, UK
Yang, Y
Yanush, S
Yao, L
Yao, WM
Yasu, Y
Yatsenko, E
Wong, KHY
Ye, J
Ye, S
Yen, AL
Yildirim, E
Yilmaz, M
Yoosoofmiya, R
Yorita, K
Yoshida, R
Yoshihara, K
Young, C
Young, CJS
Youssef, S
Yu, DR
Yu, J
Yu, JM
Yu, J
Yuan, L
Yurkewicz, A
Yusuff, I
Zabinski, B
Zaidan, R
Zaitsev, AM
Zaman, A
Zambito, S
Zanello, L
Zanzi, D
Zeitnitz, C
Zeman, M
Zemla, A
Zengel, K
Zenin, O
Zenis, T
Zerwas, D
della Porta, GZ
Zhang, D
Zhang, F
Zhang, H
Zhang, J
Zhang, L
Zhang, X
Zhang, Z
Zhao, Z
Zhemchugov, A
Zhong, J
Zhou, B
Zhou, L
Zhou, N
Zhu, CG
Zhu, H
Zhu, J
Zhu, Y
Zhuang, X
Zhukov, K
Zibell, A
Zieminska, D
Zimine, NI
Zimmermann, C
Zimmermann, R
Zimmermann, S
Zimmermann, S
Zinonos, Z
Ziolkowski, M
Zobernig, G
Zoccoli, A
Nedden, MZ
Zurzolo, G
Zutshi, V
Zwalinski, L
AF Aad, G.
Abbott, B.
Abdallah, J.
Khalek, S. Abdel
Abdinov, O.
Aben, R.
Abi, B.
Abolins, M.
AbouZeid, O. S.
Abramowicz, H.
Abreu, H.
Abreu, R.
Abulaitia, Y.
Acharya, B. S.
Adamczyka, L.
Adams, D. L.
Adelman, J.
Adomeit, S.
Adye, T.
Agatonovic-Jovin, T.
Aguilar-Saavedra, J. A.
Agustoni, M.
Ahlen, S. P.
Ahmadov, F.
Aielli, G.
Akerstedt, H.
Akesson, T. P. A.
Akimoto, G.
Akimov, A. V.
Alberghi, G. L.
Albert, J.
Albrand, S.
Verzini, M. J. Alconada
Aleksa, M.
Aleksandrov, I. N.
Alexa, C.
Alexander, G.
Alexandre, G.
Alexopoulos, T.
Alhroob, M.
Alimonti, G.
Alio, L.
Alison, J.
Allbrooke, B. M. M.
Allison, L. J.
Allport, P. P.
Almond, J.
Aloisio, A.
Alonso, A.
Alonso, F.
Alpigiani, C.
Altheimer, A.
Gonzalez, B. Alvarez
Alviggi, M. G.
Amako, K.
Amaral Coutinho, Y.
Amelung, C.
Amidei, D.
Dos Santos, S. P. Amor
Amorim, A.
Amoroso, S.
Amram, N.
Amundsen, G.
Anastopoulos, C.
Ancu, L. S.
Andari, N.
Andeen, T.
Anders, C. F.
Anders, G.
Anderson, K. J.
Andreazza, A.
Andrei, V.
Anduag, X. S.
Angelidakis, S.
Angelozzi, I.
Anger, P.
Angerami, A.
Anghinolfi, F.
Anisenkov, A. V.
Anjos, N.
Annovi, A.
Antonaki, A.
Antonelli, M.
Antonov, A.
Antos, J.
Anulli, F.
Aoki, M.
Bella, L. Aperio
Apolle, R.
Arabidze, G.
Aracena, I.
Arai, Y.
Araque, J. P.
Arce, A. T. H.
Arguin, J-F.
Argyropoulos, S.
Arik, M.
Armbruster, A. J.
Arnaez, O.
Arnal, V.
Arnold, H.
Arratia, M.
Arslan, O.
Artamonov, A.
Artoni, G.
Asai, S.
Asbah, N.
Ashkenazi, A.
Asmana, B.
Asquith, L.
Assamagan, K.
Astalos, R.
Atkinson, M.
Atlay, N. B.
Auerbach, B.
Augsten, K.
Aurousseau, M.
Avolio, G.
Azuelos, G.
Azuma, Y.
Baak, M. A.
Baas, A.
Bacci, C.
Bachacou, H.
Bachas, K.
Backes, M.
Backhaus, M.
Mayes, J. Backus
Badescu, E.
Bagiacchi, P.
Bagnaia, P.
Bai, Y.
Bain, T.
Baines, J. T.
Baker, O. K.
Balek, P.
Balli, F.
Banas, E.
Banerjee, Sw.
Bannoura, A. A. E.
Bansal, V.
Bansil, H. S.
Barak, L.
Baranov, S. P.
Barberio, E. L.
Barberis, D.
Barbero, M.
Barillari, T.
Barisonzi, M.
Barklow, T.
Barlow, N.
Barnett, B. M.
Barnett, R. M.
Barnovska, Z.
Baroncelli, A.
Barone, G.
Barr, A. J.
Barreiro, F.
da Costa, J. Barreiro Guimaraes
Bartoldus, R.
Barton, A. E.
Bartos, P.
Bartsch, V.
Bassalat, A.
Basye, A.
Bates, R. L.
Batkova, L.
Batley, J. R.
Battaglia, M.
Battistin, M.
Bauer, F.
Bawa, H. S.
Beau, T.
Beauchemin, P. H.
Beccherle, R.
Bechtle, P.
Beck, H. P.
Becker, K.
Becker, S.
Beckingham, M.
Becot, C.
Beddall, A. J.
Beddall, A.
Bedikian, S.
Bednyakov, A.
Bee, C. P.
Beemster, L. J.
Beermann, T. A.
Begel, M.
Behr, K.
Belanger-Champagne, C.
Bell, P. J.
Bell, W. H.
Bella, G.
Bellagamba, L.
Bellerive, A.
Bellomo, M.
Belotskiy, K.
Beltramello, O.
Benary, O.
Benchekroun, D.
Bendtz, K.
Benekos, N.
Benhammou, Y.
Noccioli, E. Benhar
Garcia, J. A. Benitez
Benjamin, D. P.
Bensinger, J. R.
Benslama, K.
Bentvelsen, S.
Berge, D.
Kuutmann, E. Bergeaas
Berger, N.
Berghaus, F.
Beringer, J.
Bernard, C.
Bernat, P.
Bernius, C.
Bernlochner, F. U.
Berry, T.
Berta, P.
Bertella, C.
Bertoli, G.
Bertolucci, F.
Bertsche, D.
Besana, M. I.
Besjes, G. J.
Bessidskaia, O.
Bessner, M. F.
Besson, N.
Betancourt, C.
Bethke, S.
Bhimji, W.
Bianchi, R. M.
Bianchini, L.
Bianco, M.
Biebel, O.
Bieniek, S. P.
Bierwagen, K.
Biesiada, J.
Biglietti, M.
De Mendizabal, J. Bilbao
Bilokon, H.
Bindi, M.
Binet, S.
Bingul, A.
Bini, C.
Black, C. W.
Black, J. E.
Black, K. M.
Blackburn, D.
Blair, R. E.
Blanchard, J. -B.
Blazek, T.
Bloch, I.
Blocker, C.
Blum, W.
Blumenschein, U.
Bobbink, G. J.
Bobrovnikov, V. S.
Bocchetta, S. S.
Bocci, A.
Bock, C.
Boddy, C. R.
Boehler, M.
Boek, T. T.
Bogaerts, J. A.
Bogdanchikov, A. G.
Bogouch, A.
Bohm, C.
Bohm, J.
Boisvert, V.
Bold, T.
Boldea, V.
Boldyrev, A. S.
Bomben, M.
Bona, M.
Boonekamp, M.
Borisov, A.
Borissov, G.
Borri, M.
Borroni, S.
Bortfeldt, J.
Bortolotto, V.
Bos, K.
Boscherini, D.
Bosman, M.
Boterenbrood, H.
Boudreau, J.
Bouffard, J.
Bouhova-Thacker, E. V.
Boumediene, D.
Bourdarios, C.
Bousson, N.
Boutouil, S.
Boveia, A.
Boyd, J.
Boyko, I. R.
Bracinik, J.
Brandt, A.
Brandt, G.
Brandt, O.
Bratzler, U.
Brau, B.
Brau, J. E.
Braun, H. M.
Brazzale, S. F.
Brelier, B.
Brendlinger, K.
Brennan, A. J.
Brenner, R.
Bressler, S.
Bristow, K.
Bristow, T. M.
Britton, D.
Brochu, F. M.
Brock, I.
Brock, R.
Bromberg, C.
Bronner, J.
Brooijmans, G.
Brooks, T.
Brooks, W. K.
Brosamer, J.
Brost, E.
Brown, J.
de Renstrom, P. A. Bruckman
Bruncko, D.
Bruneliere, R.
Brunet, S.
Bruni, A.
Bruni, G.
Bruschi, M.
Bryngemark, L.
Buanes, T.
Buat, Q.
Bucci, F.
Buchholz, P.
Buckingham, R. M.
Buckley, A. G.
Buda, S. I.
Budagov, I. A.
Buehrer, F.
Bugge, L.
Bugge, M. K.
Bulekov, O.
Bundock, A. C.
Burckhart, H.
Burdin, S.
Burghgrave, B.
Burke, S.
Burmeister, I.
Busato, E.
Buscher, D.
Buscher, V.
Bussey, P.
Buszello, C. P.
Butler, B.
Butler, J. M.
Butt, A. I.
Buttar, C. M.
Butterworth, J. M.
Butti, P.
Buttinger, W.
Buzatu, A.
Byszewski, M.
Cabrera Urban, S.
Caforio, D.
Cakir, O.
Calafiura, P.
Calandri, A.
Calderini, G.
Calfayan, P.
Calkins, R.
Caloba, L. P.
Calvet, D.
Calvet, S.
Toro, R. Camacho
Camarda, S.
Cameron, D.
Caminada, L. M.
Armadans, R. Caminal
Campana, S.
Campanelli, M.
Campoverde, A.
Canale, V.
Canepa, A.
Bret, M. Cano
Cantero, J.
Cantrill, R.
Cao, T.
Garrido, M. D. M. Capeans
Caprini, I.
Caprini, M.
Capua, M.
Caputo, R.
Cardarelli, R.
Carli, T.
Carlino, G.
Carminati, L.
Caron, S.
Carquin, E.
Carrillo-Montoya, G. D.
Carter, J. R.
Carvalho, J.
Casadei, D.
Casado, M. P.
Casolino, M.
Castaneda-Miranda, E.
Castelli, A.
Castillo Gimenez, V.
Castro, N. F.
Catastini, P.
Catinaccio, A.
Catmore, J. R.
Cattai, A.
Cattani, G.
Caughron, S.
Cavaliere, V.
Cavalli, D.
Cavalli-Sforza, M.
Cavasinni, V.
Ceradini, F.
Cerio, B.
Cerny, K.
Cerqueira, A. S.
Cerri, A.
Cerrito, L.
Cerutti, F.
Cerv, M.
Cervelli, A.
Cetin, S. A.
Chafaq, A.
Chakraborty, D.
Chalupkova, I.
Chang, P.
Chapleau, B.
Chapman, J. D.
Charfeddine, D.
Charlton, D. G.
Chau, C. C.
Barajas, C. A. Chavez
Cheatham, S.
Chegwidden, A.
Chekanov, S.
Chekulaev, S. V.
Chelkov, G. A.
Chelstowska, M. A.
Chen, C.
Chen, H.
Chen, K.
Chen, L.
Chen, S.
Chen, X.
Chen, Y.
Cheng, H. C.
Cheng, Y.
Cheplakov, A.
El Moursli, R. Cherkaoui
Chernyatin, V.
Cheu, E.
Chevalier, L.
Chiarella, V.
Chiefari, G.
Childers, J. T.
Chilingarov, A.
Chiodini, G.
Chisholm, A. S.
Chislett, R. T.
Chitan, A.
Chizhov, M. V.
Chouridou, S.
Chow, B. K. B.
Chromek-Burckhart, D.
Chu, M. L.
Chudoba, J.
Chwastowski, J. J.
Chytka, L.
Ciapetti, G.
Ciftci, A. K.
Ciftci, R.
Cinca, D.
Cindro, V.
Ciocio, A.
Cirkovic, P.
Citron, Z. H.
Citterio, M.
Ciubancan, M.
Clark, A.
Clark, P. J.
Clarke, R. N.
Cleland, W.
Clemens, J. C.
Clement, C.
Coadou, Y.
Cobal, M.
Coccaro, A.
Cochran, J.
Coffey, L.
Cogan, J. G.
Coggeshall, J.
Cole, B.
Cole, S.
Colijn, A. P.
Collot, J.
Colombo, T.
Colon, G.
Compostella, G.
Muino, P. Conde
Coniavitis, E.
Conidi, M. C.
Connell, S. H.
Connelly, I. A.
Consonni, S. M.
Consorti, V.
Constantinescu, S.
Conta, C.
Conti, G.
Conventi, F.
Cooke, M.
Cooper, B. D.
Cooper-Sarkar, A. M.
Cooper-Smith, N. J.
Copic, K.
Cornelissen, T.
Corradi, M.
Corriveau, F.
Corso-Radu, A.
Cortes-Gonzalez, A.
Cortiana, G.
Costa, G.
Costa, M. J.
Costanzo, D.
Cote, D.
Cottin, G.
Cowan, G.
Cox, B. E.
Cranmer, K.
Cree, G.
Crepe-Renaudin, S.
Crescioli, F.
Cribbs, W. A.
Ortuzar, M. Crispin
Cristinziani, M.
Croft, V.
Crosetti, G.
Cuciuc, C. -M.
Donszelmann, T. Cuhadar
Cummings, J.
Curatolo, M.
Cuthbert, C.
Czirr, H.
Czodrowski, P.
Czyczula, Z.
D'Auria, S.
D'Onofrio, M.
Da Cunha Sargedas De Sousa, M. J.
Da Via, C.
Dabrowski, W.
Dafinca, A.
Dai, T.
Dale, O.
Dallaire, F.
Dallapiccola, C.
Dam, M.
Daniells, A. C.
Hoffmann, M. Dano
Dao, V.
Darbo, G.
Darmora, S.
Dassoulas, J. A.
Dattagupta, A.
Davey, W.
David, C.
Davidek, T.
Davies, E.
Davies, M.
Davignon, O.
Davison, A. R.
Davison, P.
Davygora, Y.
Dawe, E.
Dawson, I.
Daya-Ishmukhametova, R. K.
De, K.
de Asmundis, R.
De Castro, S.
De Cecco, S.
De Groot, N.
de Jong, P.
De la Torre, H.
De Lorenzi, F.
De Nooij, L.
De Pedis, D.
De Salvo, A.
De Sanctis, U.
De Santo, A.
De Regie, J. B. De Vivie
Dearnaley, W. J.
Debbe, R.
Debenedetti, C.
Dechenaux, B.
Dedovich, D. V.
Deigaard, I.
Del Peso, J.
Del Prete, T.
Deliot, F.
Delitzsch, C. M.
Deliyergiyev, M.
Dell'Acqua, A.
Dell'Asta, L.
Dell'Orso, M.
Della Pietra, M.
della Volpe, D.
Delmastro, M.
Delsart, P. A.
Deluca, C.
Demers, S.
Demichev, M.
Demilly, A.
Denisov, S. P.
Derendarz, D.
Derkaoui, J. E.
Derue, F.
Dervan, P.
Desch, K.
Deterre, C.
Deviveiros, P. O.
Dewhurst, A.
Dhaliwal, S.
Di Ciaccio, A.
Di Ciaccio, L.
Di Domenico, A.
Di Donato, C.
Di Girolamo, A.
Di Girolamo, B.
Di Mattia, A.
Di Micco, B.
Di Nardo, R.
Di Simone, A.
Di Sipio, R.
Di Valentino, D.
Dias, F. A.
Diaz, M. A.
Diehl, E. B.
Dietrich, J.
Dietzsch, T. A.
Diglio, S.
Dimitrievska, A.
Dingfelder, J.
Dionisi, C.
Dita, P.
Dita, S.
Dittus, F.
Djama, F.
Djobava, T.
do Vale, M. A. B.
Wemans, A. Do Valle
Doan, T. K. O.
Dobos, D.
Doglioni, C.
Doherty, T.
Dohmae, T.
Dolejsi, J.
Dolezal, Z.
Dolgoshein, B. A.
Donadelli, M.
Donati, S.
Dondero, P.
Donini, J.
Dopke, J.
Doria, A.
Dova
Doyle, A. T.
Dris, M.
Dubbert, J.
Dube, S.
Dubreuil, E.
Duchovni, E.
Duckeck, G.
Ducu, O. A.
Duda, D.
Dudarev, A.
Dudziak, F.
Duflot, L.
Duguid, L.
Duhrssen, M.
Dunford, M.
Yildiz, H. Duran
Duren, M.
Durglishvili, A.
Dwuznik, M.
Dyndal, M.
Ebke, J.
Edson, W.
Edwards, N. C.
Ehrenfeld, W.
Eifert, T.
Eigen, G.
Einsweiler, K.
Ekelof, T.
El Kacimi, M.
Ellert, M.
Elles, S.
Ellinghaus, F.
Ellis, N.
Elmsheuser, J.
Elsing, M.
Emeliyanov, D.
Enari, Y.
Endner, O. C.
Endo, M.
Engelmann, R.
Erdmann, J.
Ereditato, A.
Eriksson, D.
Ernis, G.
Ernst, J.
Ernst, M.
Ernwein, J.
Errede, D.
Errede, S.
Ertel, E.
Escalier, M.
Esch, H.
Escobar, C.
Esposito, B.
Etienvre, A. I.
Etzion, E.
Evans, H.
Ezhilov, A.
Fabbri, L.
Facini, G.
Fakhrutdinov, R. M.
Falciano, S.
Falla, R. J.
Faltova, J.
Fang, Y.
Fanti, M.
Farbin, A.
Farilla, A.
Farooque, T.
Farrell, S.
Farrington, S. M.
Farthouat, P.
Fassie, F.
Fassnacht, P.
Fassouliotis, D.
Favareto, A.
Fayard, L.
Federic, P.
Fedin, O. L.
Fedorko, W.
Fehling-Kaschek, M.
Feigl, S.
Feligioni, L.
Fengd, C.
Feng, E. J.
Feng, H.
Fenyuk, A. B.
Perez, S. Fernandez
Ferrag, S.
Ferrando, J.
Ferrari, A.
Ferrari, P.
Ferrari, R.
de Lima, D. E. Ferreira
Ferrer, A.
Ferrere, D.
Ferretti, C.
Parodi, A. Ferretto
Fiascaris, M.
Fiedler, F.
Filipcic, A.
Filipuzzi, M.
Filthaut, F.
Fincke-Keeler, M.
Finelli, K. D.
Fiolhais, M. C. N.
Fiorini, L.
Firan, A.
Fischer, A.
Fischer, J.
Fisher, W. C.
Fitzgerald, E. A.
Flechl, M.
Fleck, I.
Fleischmann, P.
Fleischmann, S.
Fletcher, G. T.
Fletcher, G.
Flick, T.
Floderus, A.
Castillo, L. R. Flores
Bustos, A. C. Florez
Flowerdew, M. J.
Formica, A.
Forti, A.
Fortin, D.
Fournier, D.
Fox, H.
Fracchia, S.
Francavilla, P.
Franchini, M.
Franchino, S.
Francis, D.
Franklin, M.
Franz, S.
Fraternali, M.
French, T.
Friedrich, C.
Friedrich, F.
Froidevaux
Frost, J. A.
Fukunaga, C.
Torregrosa, E. Fullana
Fulsom, B. G.
Fuster, J.
Gabaldon, C.
Gabizon, O.
Gabrielli, A.
Gabrielli, A.
Gadatsch, S.
Gadomski, S.
Gagliardi, G.
Gagnon, P.
Galea, C.
Galhardo, B.
Gallas, E. J.
Gallo, V.
Gallop, B. J.
Gallus, P.
Galster, G.
Gan, K. K.
Gandrajula, R. P.
Gao, J.
Gao, Y. S.
Walls, F. M. Garay
Garberson, F.
Garcia, C.
Garcia Navarro, J. E.
Garcia-Sciveres, M.
Gardner, R. W.
Garelli, N.
Garonne, V.
Gatti, C.
Gaudio, G.
Gaur, B.
Gauthier, L.
Gauzzi, P.
Gavrilenko, L.
Gay, C.
Gaycken, G.
Gazis, E. N.
Ge, P.
Gecse, Z.
Gee, C. N. P.
Geerts, D. A. A.
Geich-Gimbel, Ch.
Gellerstedt, K.
Gemme, C.
Gemmell, A.
Genest, M. H.
Gentile, S.
George, M.
George, S.
Gerbaudo, D.
Gershon, A.
Ghazlane, H.
Ghodbane, N.
Giacobbe, B.
Giagu, S.
Giangiobbe, V.
Giannetti, P.
Gianotti, F.
Gibbard, B.
Gibson, S. M.
Gilchriese, M.
Gillam, T. P. S.
Gillberg, D.
Gilles, G.
Gingrich, D. M.
Giokaris, N.
Giordani, M. P.
Giordano, R.
Giorgi, F. M.
Giorgi, F. M.
Giraud, P. F.
Giugni, D.
Giuliani, C.
Giulini, M.
Gjelsten, B. K.
Gkaitatzis, S.
Gkialas, I.
Gladilin, L. K.
Glasman, C.
Glatzer, J.
Glaysher, P. C. F.
Glazov, A.
Glonti, G. L.
Goblirsch-Kolb, M.
Goddard, J. R.
Godfrey, J.
Godlewski, J.
Goeringer, C.
Goldfarb, S.
Golling, T.
Golubkov, D.
Gomes, A.
Fajardo, L. S. Gomez
Goncalo, R.
Da Costa, J. Goncalves Pinto Firmino
Gonella, L.
Gonzalez de la Hoz, S.
Parra, G. Gonzalez
Gonzalez-Sevilla, S.
Goossens, L.
Gorbounov, P. A.
Gordon, H. A.
Gorelov, I.
Gorini, B.
Gorini, E.
Gorisek, A.
Gornicki, E.
Goshaw, A. T.
Gossling, C.
Gostkin, M. I.
Gouighri, M.
Goujdami, D.
Goulette, M. P.
Goussiou, A. G.
Goy, C.
Gozpinar, S.
Grabas, H. M. X.
Graber, L.
Grabowska-Bold, I.
Grafstrom, P.
Grahn, K-J.
Gramling, J.
Gramstad, E.
Grancagnolo, S.
Grassi, V.
Gratchev, V.
Gray, H. M.
Graziani, E.
Grebenyuk, O. G.
Greenwood, Z. D.
Gregersen, K.
Gregor, I. M.
Grenier, P.
Griffiths, J.
Grohsjean, A.
Gross, E.
Grosse-Knetter, J.
Grossia, G. C.
Groth-Jensen, J.
Grout, Z. J.
Guan, L.
Guescini, F.
Guest, D.
Gueta, O.
Guicheney, C.
Guido, E.
Guillemin, T.
Guindon, S.
Gul, U.
Gumpert, C.
Gunther, J.
Guo, J.
Gupta, S.
Gutierrez, P.
Ortiz, N. G. Gutierrez
Gutschow, C.
Guttman, N.
Guyot, C.
Gwenlan, C.
Gwilliam, C. B.
Haas, A.
Haber, C.
Hadavand, H. K.
Haddad, N.
Haefner, P.
Hagebock, S.
Hajduk, Z.
Hakobyan, H.
Haleem, M.
Hall, D.
Halladjian, G.
Hamacher, K.
Hamal, P.
Hamano, K.
Hamer, M.
Hamilton, A.
Hamilton, S.
Hamnett, P. G.
Han, L.
Hanagaki, K.
Hanawa, K.
Hance, M.
Hanke, P.
Hanna, R.
Hansen, B.
Hansen, J. D.
Hansen, P. H.
Hara, K.
Hard, A. S.
Harenberg, T.
Hariri, F.
Harkusha, S.
Harper, D.
Harrington, R. D.
Harris, O. M.
Harrison, P. F.
Hartjes, F.
Hasegawa, S.
Hasegawa, Y.
Hasib, A.
Hassani, S.
Haug, S.
Hauschild, M.
Hauser, R.
Havranek, M.
Hawkes, C. M.
Hawkings, R. J.
Hawkins, A. D.
Hayashi, T.
Hayden, D.
Hays, C. P.
Hayward, H. S.
Haywood, S. J.
Head, S. J.
Heck, T.
Hedberg, V.
Heelan, L.
Heim, S.
Heim, T.
Heinemann, B.
Heinrich, L.
Hejbal, J.
Helary, L.
Heller, C.
Heller, M.
Hellman, S.
Hellmich, D.
Helsens, C.
Henderson, J.
Henderson, R. C. W.
Heng, Y.
Hengler, C.
Henrichs, A.
Correia, A. M. Henriques
Henrot-Versille, S.
Hensel, C.
Herbert, G. H.
Hernandez Jimenez, Y.
Herrberg-Schubert, R.
Herten, G.
Hertenberger, R.
Hervas, L.
Hesketh, G. G.
Hessey, N. P.
Hickling, R.
Higon-Rodriguez, E.
Hill, E.
Hill, J. C.
Hiller, K. H.
Hillert, S.
Hillier, S. J.
Hinchliffe, I.
Hines, E.
Hirose, M.
Hirschbuehl, D.
Hobbs, J.
Hod, N.
Hodgkinson, M. C.
Hodgson, P.
Hoecker, A.
Hoeferkamp, M. R.
Hoffman, J.
Hoffmann, D.
Hofmann, J. I.
Hohlfeld, M.
Holmes, T. R.
Hong, T. M.
van Huysduynen, L. Hooft
Hostachy, J-Y.
Hou, S.
Hoummada, A.
Howard, J.
Howarth, J.
Hrabovsky, M.
Hristova, I.
Hrivnac, J.
Hryn'ova, T.
Hsu, C.
Hsu, P. J.
Hsu, S. -C.
Hu, D.
Hu, X.
Huang, Y.
Hubacek, Z.
Hubaut, F.
Huegging, F.
Huffman, T. B.
Hughes, E. W.
Hughes, G.
Huhtinen, M.
Hulsing, T. A.
Hurwitz, M.
Huseynov, N.
Huston, J.
Huth, J.
Iacobucci, G.
Iakovidis, G.
Ibragimov, I.
Iconomidou-Fayard, L.
Ideal, E.
Iengo, P.
Igonkina, O.
Iizawa, T.
Ikegami, Y.
Ikematsu, K.
Ikeno, M.
Ilchenko, Y.
Iliadis, D.
Ilic, N.
Inamaru, Y.
Ince, T.
Ioannou, P.
Iodice, M.
Iordanidou, K.
Ippolito, V.
Quiles, A. Irles
Isaksson, C.
Ishino, M.
Ishitsuka, M.
Ishmukhametov, R.
Issever, C.
Istin, S.
Ponce, J. M. Iturbe
Iuppa, R.
Ivarsson, J.
Iwanski, W.
Iwasaki, H.
Izen, J. M.
Izzo, V.
Jackson, B.
Jackson, M.
Jackson, P.
Jaekel, M. R.
Jain, V.
Jakobs, K.
Jakobsen, S.
Jakoubek, T.
Jakubek, J.
Jamin, D. O.
Jana, K.
Jansen, E.
Jansen, H.
Janssen, J.
Janus, M.
Jarlskog, G.
Javadov, N.
Javurek, T.
Jeanty, L.
Jejelava, J.
Jeng, G. -Y.
Jennens, D.
Jenni, P.
Jentzsch, J.
Jeske, C.
Jezequel, S.
Ji, H.
Ji, W.
Jia, J.
Jiang, Y.
Belenguer, M. Jimenez
Jin, S.
Jinaru, A.
Jinnouchi, O.
Joergensen, M. D.
Johansson, K. E.
Johansson, P.
Johns, K. A.
Jon-And, K.
Jones, G.
Jones, R. W. L.
Jones, T. J.
Jongmanns, J.
Jorge, P. M.
Joshi, K. D.
Jovicevic, J.
Ju, X.
Jung, C. A.
Jungst, R. M.
Jussel, P.
Juste Rozas, A.
Kaci, M.
Kaczmarska, A.
Kado, M.
Kagan, H.
Kagan, M.
Kajomovitz, E.
Kalderon, C. W.
Kama, S.
Kamenshchikov, A.
Kanaya, N.
Kaneda, M.
Kaneti, S.
Kantserov, A.
Kanzaki, J.
Kaplan, B.
Kapliy, A.
Kar, D.
Karakostas, K.
Karastathis, N.
Karnevskiy, M.
Karpov, S. N.
Karpova, Z. M.
Karthik, K.
Kartvelishvili, V.
Karyukhin, A. N.
Kashif, L.
Kasieczka, G.
Kass, R. D.
Kastanas, A.
Kataoka, Y.
Katre, A.
Katzy, J.
Kaushik, V.
Kawagoe, K.
Kawamoto, T.
Kawamura, G.
Kazama, S.
Kazanin, V. F.
Kazarinov, M. Y.
Keeler, R.
Kehoe, R.
Keil, M.
Keller, J. S.
Kempster, J. J.
Keoshkerian, H.
Kepka, O.
Kersevan, B. P.
Kersten, S.
Kessoku, K.
Keung, J.
Khalil-zada, F.
Khandanyan, H.
Khanov, A.
Khodinov, A.
Khomich, A.
Khoo, T. J.
Khoriauli, G.
Khoroshilov, A.
Khovanskiy, V.
Khramov, E.
Khubua, J.
Kim, H. Y.
Kim, H.
Kim, S. H.
Kimura, N.
Kind, O.
King, B. T.
King, M.
King, R. S. B.
King, S. B.
Kirk, J.
Kiryunin, A. E.
Kishimoto, T.
Kisielewska, D.
Kiss, F.
Kittelmann, T.
Kiuchi, K.
Kladiva, E.
Klein, M.
Klein, U.
Kleinknecht, K.
Klimek, P.
Klimentov, A.
Klingenberg, R.
Klinger, J. A.
Klioutchnikova, T.
Klok, P. F.
Kluge, E. -E.
Kluit, P.
Kluth, S.
Kneringer, E.
Knoops, E. B. F. G.
Knue, A.
Kobayashi, D.
Kobayashi, T.
Kobel, M.
Kocian, M.
Kodys, P.
Koevesarki, P.
Koffas, T.
Koffeman, E.
Kogan, L. A.
Kohlmann, S.
Kohout, Z.
Kohriki, T.
Koi, T.
Kolanoski, H.
Koletsou, I.
Koll, J.
Komar, A. A.
Komori, Y.
Kondo, T.
Kondrashova, N.
Koneke, K.
Konig, A. C.
Konig, S.
Kono, T.
Konoplich, R.
Konstantinidis, N.
Kopeliansky, R.
Koperny, S.
Kopke, L.
Kopp, A. K.
Korcyl, K.
Kordas, K.
Korn, A.
Korol, A. A.
Korolkov, I.
Korolkova, E. V.
Korotkov, V. A.
Kortner, O.
Kortner, S.
Kostyukhin, V.
Kotov, V. M.
Kotwal, A.
Kourkoumelis, C.
Kouskoura, V.
Koutsman, A.
Kowalewski, R.
Kowalski, Z.
Kozanecki, W.
Kozhin, A. S.
Kral, V.
Kramarenko, V. A.
Kramberger, G.
Krasnopevtsev, D.
Krasny, M. W.
Krasznahorkay, A.
Kraus, J. K.
Kravchenko, A.
Kreiss, S.
Kretz, M.
Kretzschmar, J.
Kreutzfeldt, K.
Krieger, P.
Kroeninger, K.
Kroha, H.
Kroll, J.
Kroseberg, J.
Krstic, J.
Kruchonak, U.
Kruger, H.
Kruker, T.
Krumnack, N.
Krumshteyn, Z. V.
Kruse, A.
Kruse, M. C.
Kruskal, M.
Kubota, T.
Kuday, S.
Kuehn, S.
Kugel, A.
Kuhl, A.
Kuhl, T.
Kukhtin, V.
Kulchitsky, Y.
Kuleshov, S.
Kuna, M.
Kunkle, J.
Kupco, A.
Kurashige, H.
Kurochkin, Y. A.
Kurumida, R.
Kus, V.
Kuwertz, E. S.
Kuze, M.
Kvita, J.
La Rosa, A.
La Rotonda, L.
Lacasta, C.
Lacava, F.
Lacey, J.
Lacker, H.
Lacour, D.
Lacuesta, V. R.
Ladygin, E.
Lafaye, R.
Laforge, B.
Lagouri, T.
Lai, S.
Laier, H.
Lambourne, L.
Lammers, S.
Lampen, C. L.
Lampl, W.
Lancon, E.
Landgraf, U.
Landon, M. P. J.
Lang, V. S.
Lankford, A. J.
Lanni, F.
Lantzsch, K.
Laplace, S.
Lapoire, C.
Laporte, J. F.
Lari, T.
Lassnig, M.
Laurelli, P.
Lavrijsen, W.
Law, A. T.
Laycock, P.
Le, B. T.
Le Dortz, O.
Le Guirriec, E.
Le Menedeu, E.
LeCompte, T.
Ledroit-Guillon, F.
Lee, C. A.
Lee, H.
Lee, J. S. H.
Lee, S. C.
Lee, L.
Lefebvre, G.
Lefebvre, M.
Legger, F.
Leggett, C.
Lehan, A.
Lehmacher, M.
Miotto, G. Lehmann
Lei, X.
Leight, W. A.
Leisos, A.
Leister, A. G.
Leite, M. A. L.
Leitner, R.
Lellouch, D.
Lemmer, B.
Leney, K. J. C.
Lenz, T.
Lenzen, G.
Lenzi, B.
Leone, R.
Leone, S.
Leonhardt, K.
Leonidopoulos, C.
Leontsinis, S.
Leroy, C.
Lester, C. G.
Lester, C. M.
Levchenko, M.
Leveque, J.
Levin, D.
Levinson, L. J.
Levy, M.
Lewis, A.
Lewis, G. H.
Leyko, A. M.
Leyton, M.
Li, B.
Li, B.
Li, H.
Li, H. L.
Li, L.
Li, L.
Li, S.
Li, Y.
Liang, Z.
Liao, H.
Liberti, B.
Lichard, P.
Lie, K.
Liebal, J.
Liebig, W.
Limbach, C.
Limosani, A.
Lin, S. C.
Lin, T. H.
Linde, F.
Lindquist, E.
Linnemann, J. T.
Lipeles, E.
Lipniacka, A.
Lisovyi, M.
Liss, T. M.
Lissauer, D.
Lister, A.
Litke, A. M.
Liu, B.
Liu, D.
Liu, J. B.
Liu, K.
Liu, L.
Liu, M.
Liu, M.
Liu, Y.
Livan, M.
Livermore, S. S. A.
Lleres, A.
Merino, J. Llorente
Lloyd, S. L.
Lo Sterzo, F.
Lobodzinska, E.
Loch, P.
Lockman, W. S.
Loddenkoetter, T.
Loebinger, F. K.
Loevschall-Jensen, A. E.
Loginov, A.
Loh, C. W.
Lohse, T.
Lohwasser, K.
Lokajicek, M.
Lombardo, V. P.
Long, B. A.
Long, J. D.
Long, R. E.
Lopes, L.
Mateos, D. Lopez
Paredes, B. Lopez
Paz, I. Lopez
Lorenz, J.
Martinez, N. Lorenzo
Losada, M.
Loscutoff, P.
Lou, X.
Lounis, A.
Love, J.
Love, P. A.
Lowe, A. J.
Lu, F.
Lubatti, H. J.
Luci, C.
Lucotte, A.
Luehring, F.
Lukas, W.
Luminari, L.
Lundberg, O.
Lund-Jensen, B.
Lungwitz, M.
Lynn, D.
Lysak, R.
Lytken, E.
Ma, H.
Mad, L. L.
Maccarrone, G.
Macchiolo, A.
Miguens, J. Machado
Macina, D.
Madaffari, D.
Madar, R.
Maddocks, H. J.
Mader, W. F.
Madsen, A.
Maeno, M.
Maeno, T.
Magradze, E.
Mahboubi, K.
Mahlstedt, J.
Mahmoud, S.
Maiani, C.
Maidantchik, C.
Maier, A. A.
Maio, A.
Majewski, S.
Makida, Y.
Makovec, N.
Mal, P.
Malaescu, B.
Malecki, Pa.
Maleev, V. P.
Malek, F.
Mallik, U.
Malon, D.
Malone, C.
Maltezos, S.
Malyshev, V. M.
Malyukov, S.
Mamuzic, J.
Mandelli, B.
Mandelli, L.
Mandic, I.
Mandrysch, R.
Maneira, J.
Manfredini, A.
de Andrade Filho, L. Manhaes
Ramos, J. A. Manjarres
Mann, A.
Manning, P. M.
Manousakis-Katsikakis, A.
Mansoulie, B.
Mantifel, R.
Mapelli, L.
March, L.
Marchand, J. F.
Marchiori, G.
Marcisovsky, M.
Marino, C. P.
Marjanovic, M.
Marques, C. N.
Marroquim, F.
Marsden, S. P.
Marshall, Z.
Marti, L. F.
Marti-Garcia, S.
Martin, B.
Martin, B.
Martin, T. A.
Martin, V. J.
Latour, B. Martin dit
Martinez, H.
Martinez, M.
Martin-Haugh, S.
Martyniuk, A. C.
Marx, M.
Marzano, F.
Marzin, A.
Masetti, L.
Mashimo, T.
Mashinistov, R.
Masik, J.
Maslennikov, A. L.
Massa, I.
Massol, N.
Mastrandrea, P.
Mastroberardino, A.
Masubuchi, T.
Mattig, P.
Mattmann, J.
Maurer, J.
Maxfield, S. J.
Maximov, D. A.
Mazini, R.
Mazzaferro, L.
Mc Goldrick, G.
Mc Kee, S. P.
McCarn, A.
McCarthy, R. L.
McCarthy, T. G.
McCubbin, N. A.
McFarlane, K. W.
Mcfayden, J. A.
Mchedlidze, G.
McMahon, S. J.
McPherson, R. A.
Meade, A.
Mechnich, J.
Medinnis, M.
Meehan, S.
Mehlhase, S.
Mehta, A.
Meier, K.
Meineck, C.
Meirose, B.
Melachrinos, C.
Garcia, B. R. Mellado
Meloni, F.
Mengarelli, A.
Menke, S.
Meoni, E.
Mercurio, K. M.
Mergelmeyer, S.
Meric, N.
Mermod, P.
Merola, L.
Meroni, C.
Merritt, F. S.
Merritt, H.
Messina, A.
Metcalfe, J.
Mete, A. S.
Meyer, C.
Meyer, C.
Meyer, J-P.
Meyer, J.
Middleton, R. P.
Migas, S.
Mijovic, L.
Mikenberg, G.
Mikestikova, M.
Mikuz, M.
Milic, A.
Miller, D. W.
Mills, C.
Milov, A.
Milstead, D. A.
Milstein, D.
Minaenko, A. A.
Minashvili, I. A.
Mincer, A. I.
Mindur, B.
Mineev, M.
Ming, Y.
Mir, L. M.
Mirabelli, G.
Mitani, T.
Mitrevski, J.
Mitsou, A.
Mitsui, S.
Miucci, A.
Miyagawa, P. S.
Mjornmark, J. U.
Moa, T.
Mochizuki, K.
Mohapatra, S.
Mohr, W.
Molander, S.
Moles-Valls, R.
Monig, K.
Monini, C.
Monk, J.
Monnier, E.
Berlingen, J. Montejo
Monticelli, F.
Monzani, S.
Moore, R. W.
Moraes, A.
Morange, N.
Moreno, D.
Llacer, M. Moreno
Morettini, P.
Morgenstern, M.
Morii, M.
Moritz, S.
Morley, A. K.
Mornacchi, G.
Morris, J. D.
Morvaj, L.
Moser, H. G.
Mosidzeb, M.
Moss, J.
Motohashi, K.
Mount, R.
Mountricha, E.
Mouraviev, S. V.
Moyse, E. J. W.
Muanza, S.
Mudd, R. D.
Mueller, F.
Mueller, J.
Mueller, K.
Mueller, T.
Mueller, T.
Muenstermann, D.
Munwes, Y.
Quijada, J. A. Murillo
Murray, W. J.
Musheghyan, H.
Musto, E.
Myagkov, A. G.
Myska, M.
Nackenhorst, O.
Nadal, J.
Nagai, K.
Nagai, R.
Nagai, Y.
Nagano, K.
Nagarkar, A.
Nagasaka, Y.
Nagel, M.
Nairz, A. M.
Nakahama, Y.
Nakamura, K.
Nakamura, T.
Nakano, I.
Namasivayam, H.
Nanava, G.
Narayan, R.
Nattermann, T.
Naumann, T.
Navarro, G.
Nayyar, R.
Neal, H. A.
Nechaeva, P. Yu.
Neep, T. J.
Nef, P. D.
Negri, A.
Negri, G.
Negrini, M.
Nektarijevic, S.
Nelson, A.
Nelson, T. K.
Nemecek, S.
Nemethy, P.
Nepomuceno, A. A.
Nessi, M.
Neubauer, M. S.
Neumann, M.
Neves, R. M.
Nevski, P.
Newman, P. R.
Nguyen, D. H.
Nickerson, R. B.
Nicolaidou, R.
Nicquevert, B.
Nielsen, J.
Nikiforou, N.
Nikiforov, A.
Nikolaenko, V.
Nikolic-Audit, I.
Nikolics, K.
Nikolopoulos, K.
Nilsson, P.
Ninomiya, Y.
Nisati, A.
Nisius, R.
Nobe, T.
Nodulman, L.
Nomachi, M.
Nomidis, I.
Norberg, S.
Nordberg, M.
Novgorodova, O.
Nowak, S.
Nozaki, M.
Nozka, L.
Ntekas, K.
Hanninger, G. Nunes
Nunnemann, T.
Nurse, E.
Nuti, F.
O'Brien, B. J.
O'grady, F.
O'Neil, D. C.
O'Shea, V.
Oakham, F. G.
Oberlack, H.
Obermann, T.
Ocariz, J.
Ochi, A.
Ochoa, M. I.
Oda, S.
Odaka, S.
Ogren, H.
Oh, A.
Oh, S. H.
Ohm, C. C.
Ohman, H.
Ohshima, T.
Okamura, W.
Okawa, H.
Okumura, Y.
Okuyama, T.
Olariu, A.
Olchevski, A. G.
Pino, S. A. Olivares
Damazio, D. Oliveira
Garcia, E. Oliver
Olszewski, A.
Olszowska, J.
Onofre, A.
Onyisi, P. U. E.
Oram, C. J.
Oreglia, M. J.
Oren, Y.
Orestano, D.
Orlando, N.
Barrera, C. Oropeza
Orr, R. S.
Osculati, B.
Ospanov, R.
Garzon, G. Otero y
Otono, H.
Ouchrif, M.
Ouellette, E. A.
Ould-Saada, F.
Ouraou, A.
Oussoren, K. P.
Ouyang, Q.
Ovcharova, A.
Owen, M.
Ozcan, V. E.
Ozturk, N.
Pachal, K.
Pages, A. Pacheco
Aranda, C. Padilla
Pagacova, M.
Griso, S. Pagan
Paganis, E.
Pahl, C.
Paige, F.
Pais, P.
Pajchel, K.
Palacino, G.
Palestini, S.
Palka, M.
Pallin, D.
Palma, A.
Palmer, J. D.
Pan, Y. B.
Panagiotopoulou, E.
Vazquez, J. G. Panduro
Pani, P.
Panikashvili, N.
Panitkin, S.
Pantea, D.
Paolozzi, L.
Papadopoulou, Th. D.
Papageorgiou, K.
Paramonov, A.
Hernandez, D. Paredes
Parker, M. A.
Parodi, F.
Parsons, J. A.
Parzefall, U.
Pasqualucci, E.
Passaggio, S.
Passeri, A.
Pastore, F.
Pastore, Fr.
Pasztor, G.
Pataraia, S.
Patel, N. D.
Pater, J. R.
Patricelli, S.
Pauly, T.
Pearce, J.
Pedersen, M.
Lopez, S. Pedraza
Pedro, R.
Peleganchuk, S. V.
Pelikan, D.
Peng, H.
Penning, B.
Penwell, J.
Perepelitsa, D. V.
Codina, E. Perez
Garcia-Estan, M. T. Perez
Reale, V. Perez
Perini, L.
Pernegger, H.
Perrino, R.
Peschke, R.
Peshekhonov, V. D.
Peters, K.
Peters, R. F. Y.
Petersen, B. A.
Petersen, T. C.
Petit, E.
Petridis, A.
Petridou, C.
Petrolo, E.
Petrucci, F.
Pettersson, N. E.
Pezoa, R.
Phillips, P. W.
Piacquadio, G.
Pianori, E.
Picazio, A.
Piccaro, E.
Piccinini, M.
Piegaia, R.
Pignotti, D. T.
Pilcher, J. E.
Pilkington, A. D.
Pina, J.
Pinamonti, M.
Pinder, A.
Pinfold, J. L.
Pingel, A.
Pinto, B.
Pires, S.
Pitt, M.
Pizio, C.
Plazak, L.
Pleier, M. -A.
Pleskot, V.
Plotnikova, E.
Plucinski, P.
Poddar, S.
Podlyski, F.
Poettgen, R.
Poggioli, L.
Pohl, D.
Pohl, M.
Polesello, G.
Policicchio, A.
Polifka, R.
Polini, A.
Pollard, C. S.
Polychronakos, V.
Pommes, K.
Pontecorvo, L.
Pope, B. G.
Popeneciu, G. A.
Popovic, D. S.
Poppleton, A.
Bueso, X. Portell
Pospisil, S.
Potamianos, K.
Potrap, I. N.
Potter, C. J.
Potter, C. T.
Poulard, G.
Poveda, J.
Pozdnyakov, V.
Pralavorio, P.
Pranko, A.
Prasad, S.
Pravahan, R.
Prell, S.
Price, D.
Price, J.
Price, L. E.
Prieur, D.
Primavera, M.
Proissl, M.
Prokofiev, K.
Prokoshin, F.
Protopapadaki, E.
Protopopescu, S.
Proudfoot, J.
Przybycien, M.
Przysiezniak, H.
Ptacek, E.
Puddu, D.
Pueschel, E.
Puldon, D.
Purohit, M.
Puzo, P.
Qian, J.
Qin, G.
Qin, Y.
Quadt, A.
Quarrie, D. R.
Quayle, W. B.
Queitsch-Maitland, M.
Quilty, D.
Qureshi, A.
Radeka, V.
Radescu, V.
Radhakrishnan, S. K.
Radloff, P.
Rados, P.
Ragusa, F.
Rahal, G.
Rajagopalan, S.
Rammensee, M.
Randle-Conde, A. S.
Rangel-Smith, C.
Rao, K.
Rauscher, F.
Rave, T. C.
Ravenscroft, T.
Raymond, M.
Read, A. L.
Readioff, N. P.
Rebuzzi, D. M.
Redelbach, A.
Redlinger, G.
Reece, R.
Reeves, K.
Rehnisch, L.
Reisin, H.
Relich, M.
Rembser, C.
Ren, H.
Ren, Z. L.
Renaud, A.
Rescigno, M.
Resconi, S.
Rezanova, O. L.
Reznicek, P.
Rezvani, R.
Richter, R.
Ridel, M.
Rieck, P.
Rieger, J.
Rijssenbeek, M.
Rimoldi, A.
Rinaldi, L.
Ritsch, E.
Riu, I.
Rizatdinova, F.
Rizvi, E.
Robertson, S. H.
Robichaud-Veronneau, A.
Robinson, D.
Robinson, J. E. M.
Robson, A.
Roda, C.
Rodrigues, L.
Roe, S.
Rohne, O.
Rolli, S.
Romaniouk, A.
Romano, M.
Adam, E. Romero
Rompotis, N.
Roos, L.
Ros, E.
Rosati, S.
Rosbach, K.
Rose, M.
Rosendahl, P. L.
Rosenthal, O.
Rossetti, V.
Rossi, E.
Rossi, L. P.
Rosten, R.
Rotaru, M.
Roth, I.
Rothberg, J.
Rousseau, D.
Royon, C. R.
Rozanov, A.
Rozen, Y.
Ruan, X.
Rubbo, F.
Rubinskiy, I.
Rud, V. I.
Rudolph, C.
Rudolph, M. S.
Ruhr, F.
Ruiz-Martinez, A.
Rurikova, Z.
Rusakovich, N. A.
Ruschke, A.
Rutherfoord, J. P.
Ruthmann, N.
Ryabov, Y. F.
Rybar, M.
Rybkin, G.
Ryder, N. C.
Saavedra, A. F.
Sacerdoti, S.
Saddique, A.
Sadeh, I.
Sadrozinski, H. F-W.
Sadykov, R.
Tehrani, F. Safai
Sakamoto, H.
Sakurai, Y.
Salamanna, G.
Salamon, A.
Saleem, M.
Salek, D.
De Bruin, P. H. Sales
Salihagic, D.
Salnikov, A.
Salt, J.
Ferrando, B. M. Salvachua
Salvatore, D.
Salvatore, F.
Salvucci, A.
Salzburger, A.
Sampsonidis, D.
Sanchez, A.
Sanchez, J.
Martinez, V. Sanchez
Sandaker, H.
Sandbach, R. L.
Sander, H. G.
Sanders, M. P.
Sandhoff, M.
Sandoval
Sandoval
Sandstroem, R.
Sankey, D. P. C.
Sansoni, A.
Santoni, C.
Santonico, R.
Santos, H.
Castillo, I. Santoyo
Sapp, K.
Sapronov, A.
Saraiva, J. G.
Sarrazin, B.
Sartisohn, G.
Sasaki, O.
Sasaki, Y.
Sauvage, G.
Sauvan, E.
Savard, P.
Savu, D. O.
Sawyer, C.
Sawyer, L.
Saxon, D. H.
Saxon, J.
Sbarra, C.
Sbrizzi, A.
Scanlon, T.
Scannicchio, D. A.
Scarcella, M.
Scarfone, V.
Schaarschmidt, J.
Schacht, P.
Schaefer, D.
Schaefer, R.
Schaepe, S.
Schaetzel, S.
Schafer, U.
Schaffer, A. C.
Schaile, D.
Schamberger, R. D.
Scharf, V.
Schegelsky, V. A.
Scheirich, D.
Schernau, M.
Scherzer, M. I.
Schiavi, C.
Schieck, J.
Schillo, C.
Schioppa, M.
Schlenker, S.
Schmidt, E.
Schmieden, K.
Schmitt, C.
Schmitt, C.
Schmitt, S.
Schneider, B.
Schnellbach, J.
Schnoor, U.
Schoeffel, L.
Schoening, A.
Schoenrock, B. D.
Schorlemmer, A. L. S.
Schott, M.
Schouten, D.
Schovancova, J.
Schramm, S.
Schreyer, M.
Schroeder, C.
Schuh, N.
Schultens, M. J.
Schultz-Coulon, H. -C.
Schulz, H.
Schumacher, M.
Schumm, B. A.
Schune, Ph.
Schwanenberger, C.
Schwartzman, A.
Schwegler, Ph.
Schwemling, Ph.
Schwienhorst, R.
Schwindling, J.
Schwindt, T.
Schwoerer, M.
Sciacca, F. G.
Scifo, E.
Sciolla, G.
Scott, W. G.
Scuri, F.
Scutti, F.
Searcy, J.
Sedov, G.
Sedykh, E.
Seidel, S. C.
Seiden, A.
Seifert, F.
Seixas, J. M.
Sekhniaidze, G.
Sekula, S. J.
Selbach, K. E.
Seliverstov, D. M.
Sellers, G.
Semprini-Cesari, N.
Serfon, C.
Serin, L.
Serkin, L.
Serre, T.
Seuster, R.
Severini, H.
Sfiligoj, T.
Sforza, F.
Sfyrla, A.
Shabalina, E.
Shamim, M.
Shan, L. Y.
Shang, R.
Shank, J. T.
Shapiro, M.
Shatalov, P. B.
Shaw, K.
Shehu, C. Y.
Sherwood, P.
Shi, L.
Shimizu, S.
Shimmin, C. O.
Shimojima, M.
Shiyakova, M.
Shmeleva, A.
Shochet, M. J.
Short, D.
Shrestha, S.
Shulga, E.
Shupe, M. A.
Shushkevich, S.
Sicho, P.
Sidiropoulou, O.
Sidorov, D.
Sidoti, A.
Siegert, F.
Sijacki, Dj.
Silva, J.
Silver, Y.
Silverstein, D.
Silverstein, S. B.
Simak, V.
Simard, O.
Simic, Lj.
Simion, S.
Simioni, E.
Simmons, B.
Simoniello, R.
Simonyan, M.
Sinervo, P.
Sinev, N. B.
Sipica, V.
Siragusa, G.
Sircar, A.
Sisakyan, N.
Sivoklokov, S. Yu.
Sjolin, J.
Sjursen, T. B.
Skottowe, H. P.
Skovpen, K. Yu.
Skubic, P.
Slater, M.
Slavicek, T.
Sliwa, K.
Smakhtin, V.
Smart, B. H.
Smestad, L.
Smirnov, S. Yu.
Smirnov, Y.
Smirnova, L. N.
Smirnova, O.
Smith, K. M.
Smizanska, M.
Smolek, K.
Snesarev, A. A.
Snidero, G.
Snyder, S.
Sobie, R.
Socher, F.
Soffer, A.
Soh, D. A.
Solans, C. A.
Solar, M.
Solc, J.
Soldatov, E. Yu.
Soldevila, U.
Camillocci, E. Solfaroli
Solodkov, A. A.
Soloshenko, A.
Solovyanov, O. V.
Solovyev, V.
Sommer, P.
Song, H. Y.
Soni, N.
Sood, A.
Sopczak, A.
Sopko, B.
Sopko, V.
Sorin, V.
Sosebee, M.
Soualah, R.
Soueid, P.
Soukharev, M.
South, D.
Spagnolo, S.
Spano, F.
Spearman, W. R.
Spettel, F.
Spighi, R.
Spigo, G.
Spousta, M.
Spreitzer, T.
Spurlock, B.
Denis, R. D. St.
Staerz, S.
Stahlman, J.
Stamen, R.
Stanecka, E.
Stanek, R. W.
Stanescu, C.
Stanescu-Bellu, M.
Stanitzki, M. M.
Stapnes, S.
Starchenko, E. A.
Stark, J.
Staroba, P.
Starovoitov, P.
Staszewski, R.
Stavina, P.
Steinberg, P.
Stelzer, B.
Stelzer, H. J.
Stelzer-Chilton, O.
Stenzel, H.
Stern, S.
Stewart, G. A.
Stillings, J. A.
Stockton, M. C.
Stoebe, M.
Stoicea, G.
Stolte, P.
Stonjek, S.
Stradling, A. R.
Straessner, A.
Stramaglia, M. E.
Strandberg, J.
Strandberg, S.
Strandlie, A.
Strauss, E.
Strauss, M.
Strizenec, P.
Strohmer, R.
Strom, D. M.
Stroynowski, R.
Stucci, S. A.
Stugu, B.
Styles, N. A.
Su, D.
Su, J.
Subramania, H. S.
Subramaniam, R.
Succurro, A.
Sugaya, Y.
Suhr, C.
Suk, M.
Sulin, V. V.
Sultansoy, S.
Sumida, T.
Sun, X.
Sundermann, J. E.
Suruliz, K.
Susinno, G.
Sutton, M. R.
Suzuki, Y.
Svatos, M.
Swedish, S.
Swiatlowski, M.
Sykora, I.
Sykora, T.
Ta, D.
Taccini, C.
Tackmann, K.
Taenzer, J.
Taffard, A.
Tafirout, R.
Taiblum, N.
Takahashi, Y.
Takai, H.
Takashima, R.
Takeda, H.
Takeshita, T.
Takubo, Y.
Talby, M.
Talyshev, A. A.
Tam, J. Y. C.
Tan, K. G.
Tanaka, J.
Tanaka, R.
Tanaka, S.
Tanaka, S.
Tanasijczuk, A. J.
Tannenwald, B. B.
Tannoury, N.
Tapprogge, S.
Tarem, S.
Tarrade, F.
Tartarelli, G. F.
Tas, P.
Tasevsky, M.
Tashiro, T.
Tassi, E.
Delgado, A. Tavares
Tayalati, Y.
Taylor, F. E.
Taylor, G. N.
Taylor, W.
Teischinger, F. A.
Castanheira, M. Teixeira Dias
Teixeira-Dias, P.
Temming, K. K.
Ten Kate, H.
Teng, P. K.
Teoh, J. J.
Terada, S.
Terashi, K.
Terron, J.
Terzo, S.
Testa, M.
Teuscher, R. J.
Therhaag, J.
Theveneaux-Pelzer, T.
Thomas, J. P.
Thomas-Wilsker, J.
Thompson, E. N.
Thompson, P. D.
Thompson, P. D.
Thompson, A. S.
Thomsen, L. A.
Thomson, E.
Thomson, M.
Thong, W. M.
Thun, R. P.
Tian, F.
Tibbetts, M. J.
Tikhomirov, V. O.
Tikhonov, Yu. A.
Timoshenko, S.
Tiouchichine, E.
Tipton, P.
Tisserant, S.
Todorov, T.
Todorova-Nova, S.
Toggerson, B.
Tojo, J.
Tokar, S.
Tokushuku, K.
Tollefson, K.
Tomlinson, L.
Tomoto, M.
Tompkins, L.
Toms, K.
Topilin, N. D.
Torrence, E.
Torres, H.
Pastor, E. Torro
Toth, J.
Touchard, F.
Tovey, D. R.
Tran, H. L.
Trefzger, T.
Tremblet, L.
Tricoli, A.
Trigger, I. M.
Trincaz-Duvoid, S.
Tripiana, M. F.
Triplett, N.
Trischuk, W.
Trocme, B.
Troncon, C.
Trottier-McDonald, M.
Trovatelli, M.
True, P.
Trzebinski, M.
Trzupek, A.
Tsarouchas, C.
Tseng, J. C-L.
Tsiareshka, P. V.
Tsionou, D.
Tsipolitis, G.
Tsirintanis, N.
Tsiskaridze, S.
Tsiskaridze, V.
Tskhadadze, E. G.
Tsukerman, I. I.
Tsulaia, V.
Tsuno, S.
Tsybychev, D.
Tudorache, A.
Tudorache, V.
Tuna, A. N.
Tupputi, S. A.
Turchikhin, S.
Turecek, D.
Cakir, I. Turk
Turra, R.
Tuts, P. M.
Tykhonov, A.
Tylmad, M.
Tyndel, M.
Uchida, K.
Ueda, I.
Ueno, R.
Ughetto, M.
Ugland, M.
Uhlenbrock, M.
Ukegawa, F.
Unal, G.
Undrus, A.
Unel, G.
Ungaro, F. C.
Unno, Y.
Urbaniec, D.
Urquijo, P.
Usai, G.
Usanova, A.
Vacavant, L.
Vacek, V.
Vachon, B.
Valencic, N.
Valentinetti, S.
Valero, A.
Valery, L.
Valkar, S.
Gallego, E. Valladolid
Vallecorsa, S.
Ferrer, J. A. Valls
Van Den Wollenberg, W.
Van Der Deijl, P. C.
van der Geer, R.
van der Graaf, H.
Van Der Leeuw, R.
van der Ster, D.
van Eldik, N.
van Gemmeren, P.
Van Nieuwkoop, J.
van Vulpen, I.
van Woerden, M. C.
Vanadia, M.
Vandelli, W.
Vanguri, R.
Vaniachine, A.
Vankov, P.
Vannucci, F.
Vardanyan, G.
Vari, R.
Varnes, E. W.
Varol, T.
Varouchas, D.
Vartapetian, A.
Varvell, K. E.
Vazeille, F.
Schroeder, T. Vazquez
Veatch, J.
Veloso, F.
Veneziano, S.
Ventura, A.
Ventura, D.
Venturi, M.
Venturi, N.
Venturini, A.
Vercesi, V.
Verducci, M.
Verkerke, W.
Vermeulen, J. C.
Vest, A.
Vetterli, M. C.
Viazlo, O.
Vichou, I.
Vickey, T.
Boeriu, O. E. Vickey
Viehhauser, G. H. A.
Viel, S.
Vigne, R.
Villa, M.
Perez, M. Villaplana
Vilucchi, E.
Vincter, M. G.
Vinogradov, V. B.
Virzi, J.
Vivarelli, I.
Vaque, F. Vives
Vlachos, S.
Vladoiu, D.
Vlasak, M.
Vogel, A.
Vogel, M.
Vokac, P.
Volpi, G.
Volpi, M.
von der Schmitt, H.
von Radziewski, H.
von Toerne, E.
Vorobel, V.
Vorobev, K.
Vos, M.
Voss, R.
Vossebeld, J. H.
Vranjes, N.
Milosavljevic, M. Vranjes
Vrba, V.
Vreeswijk, M.
Anh, T. Vu
Vuillermet, R.
Vukotic, I.
Vykydal, Z.
Wagner, P.
Wagner, W.
Wahlberg, H.
Wahrmund, S.
Wakabayashi, J.
Walder, J.
Walker, R.
Walkowiak, W.
Wall, R.
Waller, P.
Walsh, B.
Wang, C.
Wang, C.
Wang, F.
Wang, H.
Wang, H.
Wang, J.
Wang, J.
Wang, K.
Wang, R.
Wang, S. M.
Wang, T.
Wang, X.
Wanotayaroj, C.
Warburton, A.
Ward, C. P.
Wardrope, D. R.
Warsinsky, M.
Washbrook, A.
Wasicki, C.
Watkins, P. M.
Watson, A. T.
Watson, I. J.
Watson, M. F.
Watts, G.
Watts, S.
Waugh, B. M.
Webb, S.
Weber, M. S.
Weber, S. W.
Webster, J. S.
Weidberg, A. R.
Weigell, P.
Weinert, B.
Weingarten, J.
Weiser, C.
Weits, H.
Wells, P. S.
Wenaus, T.
Wendland, D.
Weng, Z.
Wengler, T.
Wenig, S.
Wermes, N.
Werner, M.
Werner, P.
Wessels, M.
Wetter, J.
Whalen, K.
White, A.
White, M. J.
White, R.
White, S.
Whiteson, D.
Wicke, D.
Wickens, F. J.
Wiedenmann, W.
Wielers, M.
Wienemann, P.
Wiglesworth, C.
Wiik-Fuchs, L. A. M.
Wijeratne, P. A.
Wildauer, A.
Wildt, M. A.
Wilkens, H. G.
Will, J. Z.
Williams, H. H.
Williams, S.
Willis, C.
Willocq, S.
Wilson, A.
Wilson, J. A.
Wingerter-Seez, I.
Winklmeier, F.
Winter, B. T.
Wittgen, M.
Wittig, T.
Wittkowski, J.
Wollstadt, S. J.
Wolter, M. W.
Wolters, H.
Wosiek, B. K.
Wotschack, J.
Woudstra, M. J.
Wozniak, K. W.
Wright, M.
Wu, M.
Wu, S. L.
Wu, X.
Wu, Y.
Wulf, E.
Wyatt, T. R.
Wynne, B. M.
Xella, S.
Xiao, M.
Xu, D.
Xu, L.
Yabsley, B.
Yacoob, S.
Yamada, M.
Yamaguchi, H.
Yamaguchi, Y.
Yamamoto, A.
Yamamoto, K.
Yamamoto, S.
Yamamura, T.
Yamanaka, T.
Yamauchi, K.
Yamazaki, Y.
Yan, Z.
Yang, H.
Yang, H.
Yang, U. K.
Yang, Y.
Yanush, S.
Yao, L.
Yao, W-M.
Yasu, Y.
Yatsenko, E.
Wong, K. H. Yau
Ye, J.
Ye, S.
Yen, A. L.
Yildirim, E.
Yilmaz, M.
Yoosoofmiya, R.
Yorita, K.
Yoshida, R.
Yoshihara, K.
Young, C.
Young, C. J. S.
Youssef, S.
Yu, D. R.
Yu, J.
Yu, J. M.
Yu, J.
Yuan, L.
Yurkewicz, A.
Yusuff, I.
Zabinski, B.
Zaidan, R.
Zaitsev, A. M.
Zaman, A.
Zambito, S.
Zanello, L.
Zanzi, D.
Zeitnitz, C.
Zeman, M.
Zemla, A.
Zengel, K.
Zenin, O.
Zenis, T.
Zerwas, D.
della Porta, G. Zevi
Zhang, D.
Zhang, F.
Zhang, H.
Zhang, J.
Zhang, L.
Zhang, X.
Zhang, Z.
Zhao, Z.
Zhemchugov, A.
Zhong, J.
Zhou, B.
Zhou, L.
Zhou, N.
Zhu, C. G.
Zhu, H.
Zhu, J.
Zhu, Y.
Zhuang, X.
Zhukov, K.
Zibell, A.
Zieminska, D.
Zimine, N. I.
Zimmermann, C.
Zimmermann, R.
Zimmermann, S.
Zimmermann, S.
Zinonos, Z.
Ziolkowski, M.
Zobernig, G.
Zoccoli, A.
Nedden, M. zur
Zurzolo, G.
Zutshi, V.
Zwalinski, L.
CA ATLAS Collaboration
TI A neural network clustering algorithm for the ATLAS silicon pixel
detector
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article
DE Particle tracking detectors; Particle tracking detectors (Solid-state
detectors)
AB A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.
C1 [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia.
[Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA.
[Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada.
[Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey.
[Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey.
[Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey.
[Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey.
[Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Marshall, Z.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] IN2P3, CNRS, LAPP, Annecy Le Vieux, France.
[Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Marshall, Z.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France.
[Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
[Brandt, A.; Cote, D.; Darmora, S.; De, K.; Facini, G.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA.
[Angelidakis, S.; Antonaki, A.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece.
[Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece.
[Azuelos, G.; Gingrich, D. M.; Khalil-zada, F.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan.
[Bosman, M.; Armadans, R. Caminal; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Agatonovic-Jovin, T.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia.
[Cirkovic, P.; Gauzzi, P.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia.
[Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.; Zaman, A.] Univ Bergen, Dept Phys & Technol, Bergen, Norway.
[Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Javurek, T.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Wilson, J. A.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
[Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Javurek, T.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Wilson, J. A.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Kuutmann, E. Bergeaas; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Wendland, D.; Nedden, M. zur] Humboldt Univ, Dept Phys, Berlin, Germany.
[Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Rossetti, V.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland.
[Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England.
[Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey.
[Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey.
[Bechtle, P.; Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey.
[Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, G.; Bruschi, M.; Caforio, D.; Conta, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Dondero, P.; Fabbri, L.; Ferrari, R.; Franchini, M.; Fraternali, M.; Gabrielli, A.; Gaudio, G.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Livan, M.; Massa, I.; Mengarelli, A.; Negri, A.; Negrini, M.; Piccinini, M.; Polesello, G.; Polini, A.; Rebuzzi, D. M.; Rimoldi, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Vercesi, V.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy.
[Alberghi, G. L.; Bruni, A.; Caforio, D.; Conta, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Massa, I.; Mengarelli, A.; Piccinini, M.; Polini, A.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartmento Fis & Astron, Bologna, Italy.
[Arslan, O.; Brock, R.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hagebock, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V.; Kraus, J. K.; Kroseberg, J.; Kruger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Physikal Inst, Bonn, Germany.
[Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA.
[Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA.
[Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE IF, Rio De Janeiro, Brazil.
[Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Univ Fed Juiz de Fora, Juiz De Fora, Brazil.
[do Vale, M. A. B.] Univ Fed Sao Joao del Rei, Sao Joao Del Rei, Brazil.
[Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Okawa, H.; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania.
[Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania.
Univ Politehn Bucuresti, 26c, Bucharest, Romania.
West Univ Timisoara, 26d, Timisoara, Romania.
[Garzon, G. Otero y; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina.
[Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval; Takai, H.; Thomson, M.; Ward, C. P.; Williams, S.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England.
[Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada.
[Abreu, R.; Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Casolino, M.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Solar, M.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland.
[Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile.
[Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.; White, S.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile.
[Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ren, H.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhu, J.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China.
[Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Hefei, Anhui, Peoples R China.
[Chen, S.; Li, Y.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China.
[Chen, L.; Fengd, C.; Ge, P.; Mad, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China.
[Li, L.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France.
[Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.] Columbia Univ, Nevis Lab, Irvington, NY USA.
[Alonso, A.; Dam, M.; Galster, G.; Hansen, B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
[Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN, Grp Collegato Cosenza, Lab Nazl Frascati, Arcavacata Di Rende, Italy.
[Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy.
[Adamczyka, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, Z.; Kuhl, A.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland.
[Palka, M.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland.
[Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland.
[Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Miyagawa, P. S.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA.
[Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Dallas, TX 75230 USA.
[Argyropoulos, S.; Asbah, N.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Monig, K.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany.
[Argyropoulos, S.; Asbah, N.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Gaur, B.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Monig, K.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany.
[Burmeister, I.; Esch, H.; Gossling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany.
[Anger, P.; Friedrich, F.; Gumpert, C.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany.
[Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA.
[Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA, Sch Phys & Astron, Edinburgh, Midlothian, Scotland.
[Annovi, A.; Antonelli, M.; Bilokon, H.; Chevalier, L.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buscher, D.; Coniavitis, E.; Consorti, V.; Di Simone, A.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Jenni, P.; Kiss, F.; Koneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ruhr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany.
[Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Li, H.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nikolics, K.; Picazio, A.; Pohl, M.; Rosbach, K.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland.
[Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy.
[Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia.
[Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidzeb, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia.
[Duren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany.
[Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, SUPA, Sch Phys & Astron, Glasgow, Lanark, Scotland.
[Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France.
[McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA.
[da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA.
[Andrei, V.; Baas, A.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Hofmann, J. I.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany.
[Anders, C. F.; Giulini, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany.
[Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany.
[Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan.
[Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA.
[Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria.
[Gandrajula, R. P.; Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA.
[Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Shrestha, S.; Tsukerman, I. I.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA.
[Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Mitani, T.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimine, N. I.] Joint Inst Nucl Res, Dubna, Russia.
[Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] Natl Lab High Energy Phys, KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan.
[Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yamazaki, Y.; Yoshida, R.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan.
[Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan.
[Takashima, R.] Kyoto Univ, Kyoto 612, Japan.
[Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan.
[Verzini, M. J. Alconada; Alonso, F.; Anduag, X. S.; Dova; Monticelli, F.; Wahlberg, H.] Natl Univ La Plata, Inst Fis La Plata, RA-1900 La Plata, Argentina.
[Verzini, M. J. Alconada; Alonso, F.; Anduag, X. S.; Dova; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina.
[Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Chouridou, S.; Dearnaley, W. J.; Fox, H.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England.
[Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy.
[Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy.
[Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England.
[Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia.
[Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia.
[Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England.
[Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England.
[Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England.
[Bernius, C.; Greenwood, Z. D.; Jana, K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France.
[Aad, G.; Alio, L.; Barbero, M.; Beau, T.; Bertella, C.; Bomben, M.; Calderini, G.; Chen, L.; Clemens, J. C.; Coadou, Y.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Diglio, S.; Djama, F.; Feligioni, L.; Francavilla, P.; Gao, J.; Hoffmann, D.; Hubaut, F.; Hulsing, T. A.; Knoops, E. B. F. G.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Le Guirriec, E.; Lefebvre, G.; Li, B.; Liu, K.; Madaffari, D.; Malaescu, B.; Marchiori, G.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Pralavorio, P.; Ridel, M.; Roos, L.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Trincaz-Duvoid, S.; Ughetto, M.; Vacavant, L.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France.
[Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Smirnova, O.] Lund Univ, Fysiska Inst, Lund, Sweden.
[Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain.
[Blum, W.; Buscher, V.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Ji, W.; Karnevskiy, M.; Kleinknecht, K.; Konig, S.; Kopke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schafer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
[Almond, J.; Borri, M.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England.
[Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Hulsing, T. A.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France.
[Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA.
[Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada.
[Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia.
[Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Levin, D.; Liu, L.; Long, J. D.; Mc Kee, S. P.; McCarn, A.; Palmer, J. D.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, I.; Bromberg, C.; Caughron, S.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
[Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy.
[Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus.
[Gavrilenko, L.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus.
[Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada.
[Akimov, A. V.; Baranov, S. P.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] PN Lebedev Phys Inst, Acad Sci, Moscow 117924, Russia.
[Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia.
[Boldyrev, A. S.; Gladilin, L. K.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia.
[Adomeit, S.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Mehlhase, S.; Meineck, C.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany.
[Barillari, T.; Bethke, S.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Werner Heisenberg Inst Phys, Max Planck Inst Phys, Munich, Germany.
[Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan.
[Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan.
[Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy.
[Aloisio, A.; Alviggi, M. G.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy.
[Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
[Besjes, G. J.; Caron, S.; Croft, V.; Dao, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Konig, A. C.; Nef, P. D.; Salvucci, A.] Radboud Univ Nijmegen, NIKHEF H, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands.
[Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] NIKHEF H, Natl Inst Subat Phys, NL-1009 DB Amsterdam, Netherlands.
[Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands.
[Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] Univ Illinois, Dept Phys, De Kalb, IL USA.
[Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia.
[Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Mitrevski, J.; Nemethy, P.; Nevski, P.] NYU, Dept Phys, New York, NY 10003 USA.
[Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Macchiolo, A.; Merritt, H.; Moss, J.; Nagarkar, A.; Nakamura, T.; Pignotti, D. T.; Tannenwald, B. B.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan.
[Abbott, B.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA.
[Abi, B.; Bousson, N.; Gauzzi, P.; Khanov, A.; Rizatdinova, F.; Sidorov, D.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA.
[Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic.
[Brau, J. E.; Brost, E.; Majewski, S.; Nef, P. D.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA.
[Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France.
[Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France.
[Endo, M.; Hanagaki, K.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan.
[Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England.
[Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy.
[Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy.
[Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Ospanov, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA.
[Ezhilov, A.; Fedin, O. L.; Fedorko, W.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia.
[Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy.
[Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy.
[Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Anjos, N.; Araque, J. P.; Carvalho, J.; Casado, M. P.; Castro, N. F.; Muino, P. Conde; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIPO, Lisbon, Portugal.
[Amorim, A.; Muino, P. Conde; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal.
[Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal.
[Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal.
Univ Minho, Dept Fis, 125E, Braga, Portugal.
[Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain.
[Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain.
[Wemans, A. Do Valle] Univ Nova Lisboa, Dept Fis, Caparica, Portugal.
[Wemans, A. Do Valle] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal.
[Bohm, J.; Chudoba, J.; Havranek, M.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic.
[Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic.
[Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Mirabelli, G.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia.
[Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Giordano, R.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England.
[Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada.
[Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan.
[Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mjornmark, J. U.; Monini, C.; Monzani, S.; Nisati, A.; Ouyang, Q.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy.
[Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monini, C.; Monzani, S.; Camillocci, E. Solfaroli; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Aielli, G.; Cardarelli, R.; Cattani, G.; Corso-Radu, A.; Di Ciaccio, A.; Grossia, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy.
[Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossia, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy.
[Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy.
[Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy.
[Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco.
[Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco.
[El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA Marrakech, Marrakech, Morocco.
[Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco.
[Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco.
[El Moursli, R. Cherkaoui; Fassie, F.; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco.
[Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Cheu, E.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Grabas, H. M. X.; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Rothberg, J.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France.
[Battaglia, M.; Debenedetti, C.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Paganis, E.; Suruliz, K.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England.
[Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan.
[Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany.
[Buat, Q.; Dawe, E.; Godfrey, J.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada.
[Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nef, P. D.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA.
[Astalos, R.; Bartos, P.; Batkova, L.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia.
[Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia.
[Bristow, K.; Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa.
[Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa.
[Bronner, J.; Carrillo-Montoya, G. D.; Chen, X.; Hsu, C.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg 2050, South Africa.
[Abulaitia, Y.; Akerstedt, H.; Asmana, B.; Bendtz, K.; Bertoli, G.; Bessidskaia, O.; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden.
[Abulaitia, Y.; Akerstedt, H.; Asmana, B.; Bendtz, K.; Bertoli, G.; Bessidskaia, O.; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden.
[Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden.
[Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Lindquist, E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys Astron & Chem, Stony Brook, NY 11794 USA.
[Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England.
[Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
[Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan.
[Abreu, H.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel.
[Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, E.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Nomidis, I.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece.
[Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yang, H.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan.
[Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yang, H.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan.
[Bratzler, U.; Brendlinger, K.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan.
[Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan.
[AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Terashi, K.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada.
[Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Garcia, J. A. Benitez; Bustos, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada.
[Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan.
[Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA.
[Losada, M.; Sandoval] Univ Antonio Narino, Ctr Invest, Bogota, Colombia.
[Farrell, S.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, L.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA.
[Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] INFN, Grp Collegato Udine, Udine, Italy.
[Acharya, B. S.; De Sanctis, U.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy.
[Alhroob, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy.
[Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.
[Cabrera Urban, S.; Casadei, D.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain.
[Cabrera Urban, S.; Casadei, D.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain.
[Cabrera Urban, S.; Casadei, D.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn & Elect, Valencia, Spain.
[Cabrera Urban, S.; Casadei, D.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, IMB CNM, Valencia, Spain.
[Fehling-Kaschek, M.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Loh, C. W.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada.
[Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada.
[Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Iizawa, T.; Kimura, N.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan.
[Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel.
[Redelbach, A.; Siragusa, G.; Strohmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany.
[Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Enari, Y.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Mattig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Schreyer, M.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany.
[Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA.
[Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France.
[Acharya, B. S.] Kings Coll London, Dept Phys, London, England.
[Bawa, H. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA.
[Chelkov, G. A.; Turchikhin, S.] Tomsk State Univ, Tomsk 634050, Russia.
[Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy.
[Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys IPP, Toronto, ON, Canada.
[Fedin, O. L.; Fedorko, W.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia.
[Castillo, L. R. Flores] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China.
[Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece.
[Greenwood, Z. D.; Sawyer, L.; Yacoob, S.] Louisiana Tech Univ, Ruston, LA 71270 USA.
[Juste Rozas, A.; Martinez, M.] ICREA, Barcelona, Spain.
[Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia.
[Jenni, P.] CERN, Geneva, Switzerland.
[Jenni, P.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan.
[Konoplich, R.] Manhattan Coll, New York, NY USA.
[Korol, A. A.; Maximov, D. A.; Rezanova, O. L.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia.
[Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan.
[Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India.
[Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia.
[Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland.
[Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA.
[Pinamonti, M.] SISSA, Int Sch Adv Studies, Trieste, Italy.
[Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA.
[Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China.
[Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia.
[Toth, J.] Inst Particle & Nucl Phys, Wigner Res Ctr Phys, Budapest, Hungary.
[Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China.
[Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany.
[Xu, L.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa.
[Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia.
RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France.
RI Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo,
stefania/A-6359-2012; Ciubancan, Liviu Mihai/L-2412-2015; Zhukov,
Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Tikhomirov,
Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Warburton,
Andreas/N-8028-2013; Gorelov, Igor/J-9010-2015; Gladilin,
Leonid/B-5226-2011; Smirnova, Oxana/A-4401-2013; Moraes,
Arthur/F-6478-2010; Villa, Mauro/C-9883-2009; Bosman,
Martine/J-9917-2014; Joergensen, Morten/E-6847-2015; Riu,
Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Marti-Garcia,
Salvador/F-3085-2011; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza,
Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini,
Matteo/C-8906-2014; Brooks, William/C-8636-2013; de Groot,
Nicolo/A-2675-2009; Wemans, Andre/A-6738-2012; Castro, Nuno/D-5260-2011;
Nemecek, Stanislav/G-5931-2014; Gutierrez, Phillip/C-1161-2011; Ventura,
Andrea/A-9544-2015; Livan, Michele/D-7531-2012; De, Kaushik/N-1953-2013;
Lei, Xiaowen/O-4348-2014; Boyko, Igor/J-3659-2013; Doyle,
Anthony/C-5889-2009; Di Domenico, Antonio/G-6301-2011; Fassi,
Farida/F-3571-2016; Grinstein, Sebastian/N-3988-2014; la rotonda,
laura/B-4028-2016; Juste, Aurelio/I-2531-2015; Capua,
Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016;
Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014;
Monzani, Simone/D-6328-2017; Li, Liang/O-1107-2015; Fullana Torregrosa,
Esteban/A-7305-2016; Korol, Aleksandr/A-6244-2014; Olshevskiy,
Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Solfaroli
Camillocci, Elena/J-1596-2012; Vanadia, Marco/K-5870-2016; Ippolito,
Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; messina,
andrea/C-2753-2013; Prokoshin, Fedor/E-2795-2012; KHODINOV,
ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Goncalo,
Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Solodkov,
Alexander/B-8623-2017; Carvalho, Joao/M-4060-2013; Mashinistov,
Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz,
Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan
Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones,
Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino,
Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva,
Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016;
OI Haas, Andrew/0000-0002-4832-0455; Galhardo, Bruno/0000-0003-0641-301X;
Arratia, Miguel/0000-0001-6877-3315; Della Volpe,
Domenico/0000-0001-8530-7447; Pina, Joao /0000-0001-8959-5044; Hays,
Chris/0000-0003-2371-9723; Ferrer, Antonio/0000-0003-0532-711X;
Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo,
stefania/0000-0001-7482-6348; Ciubancan, Liviu
Mihai/0000-0003-1837-2841; Tikhomirov, Vladimir/0000-0002-9634-0581;
Warburton, Andreas/0000-0002-2298-7315; Gorelov,
Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636;
Smirnova, Oxana/0000-0003-2517-531X; Moraes, Arthur/0000-0002-5157-5686;
Villa, Mauro/0000-0002-9181-8048; Bosman, Martine/0000-0002-7290-643X;
Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582;
Della Pietra, Massimo/0000-0003-4446-3368; Petrucci,
Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963;
Brooks, William/0000-0001-6161-3570; Wemans, Andre/0000-0002-9669-9500;
Castro, Nuno/0000-0001-8491-4376; Ventura, Andrea/0000-0002-3368-3413;
Livan, Michele/0000-0002-5877-0062; De, Kaushik/0000-0002-5647-4489;
Lei, Xiaowen/0000-0002-2564-8351; Boyko, Igor/0000-0002-3355-4662;
Doyle, Anthony/0000-0001-6322-6195; Di Domenico,
Antonio/0000-0001-8078-2759; Fassi, Farida/0000-0002-6423-7213;
Grinstein, Sebastian/0000-0002-6460-8694; la rotonda,
laura/0000-0002-6780-5829; Leonidopoulos, Christos/0000-0002-7241-2114;
Osculati, Bianca Maria/0000-0002-7246-060X; Giorgi, Filippo
Maria/0000-0003-1589-2163; Coccaro, Andrea/0000-0003-2368-4559;
Cristinziani, Markus/0000-0003-3893-9171; Chromek-Burckhart,
Doris/0000-0003-4243-3288; Qian, Jianming/0000-0003-4813-8167; Giordani,
Mario/0000-0002-0792-6039; Juste, Aurelio/0000-0002-1558-3291; Begel,
Michael/0000-0002-1634-4399; Capua, Marcella/0000-0002-2443-6525; Vari,
Riccardo/0000-0002-2814-1337; Di Micco, Biagio/0000-0002-4067-1592;
Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Nisati,
Aleandro/0000-0002-5080-2293; Gray, Heather/0000-0002-5293-4716; Mincer,
Allen/0000-0002-6307-1418; Zaitsev, Alexandre/0000-0002-4961-8368;
Peleganchuk, Sergey/0000-0003-0907-7592; Monzani,
Simone/0000-0002-0479-2207; Li, Liang/0000-0001-6411-6107; Troncon,
Clara/0000-0002-7997-8524; Fullana Torregrosa,
Esteban/0000-0003-3082-621X; Dell'Asta, Lidia/0000-0002-9601-4225; Chen,
Hucheng/0000-0002-9936-0115; Sawyer, Lee/0000-0001-8295-0605; Korol,
Aleksandr/0000-0001-8448-218X; Olshevskiy,
Alexander/0000-0002-8902-1793; Solfaroli Camillocci,
Elena/0000-0002-5347-7764; Vanadia, Marco/0000-0003-2684-276X; Ippolito,
Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738;
Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV,
ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442;
Gauzzi, Paolo/0000-0003-4841-5822; Solodkov,
Alexander/0000-0002-2737-8674; Carvalho, Joao/0000-0002-3015-7821;
Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz,
Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar
Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton,
Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes
Milosavljevic, Marija/0000-0003-4477-9733; Perrino,
Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495;
Vykydal, Zdenek/0000-0003-2329-0672; Vazquez Schroeder,
Tamara/0000-0002-9780-099X; Chen, Chunhui /0000-0003-1589-9955; Price,
Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Terzo,
Stefano/0000-0003-3388-3906; Smirnov, Sergei/0000-0002-6778-073X;
Belanger-Champagne, Camille/0000-0003-2368-2617; Farrington,
Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Weber,
Michele/0000-0002-2770-9031; Wang, Kuhan/0000-0002-6151-0034; Grohsjean,
Alexander/0000-0003-0748-8494; La Rosa, Alessandro/0000-0001-6291-2142;
Beck, Hans Peter/0000-0001-7212-1096; Prokofiev,
Kirill/0000-0002-2177-6401; Veneziano, Stefano/0000-0002-2598-2659;
Lacasta, Carlos/0000-0002-2623-6252
FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF,
Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil;
NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS,
China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech
Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark;
DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union;
ERC, European Union; NSRF, European Union; IN2P3-CNRS, France;
CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF,
Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF,
Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel;
Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST,
Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway;
MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA,
Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia;
MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa;
MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER,
Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of
Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom;
Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE,
United States of America; NSF, United States of America
FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC,
Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq
and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile;
CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and
VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark;
EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France;
GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and
NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel;
INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO,
Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT,
Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian
Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia;
DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation,
Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC,
Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust,
United Kingdom; DOE and NSF, United States of America.
NR 17
TC 3
Z9 3
U1 5
U2 68
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD SEP
PY 2014
VL 9
AR P09009
DI 10.1088/1748-0221/9/09/P09009
PG 34
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA AR0SJ
UT WOS:000343281300046
ER
PT J
AU Abba, A
Bedeschi, F
Citterio, M
Caponio, F
Cusimano, A
Geraci, A
Marino, P
Morello, MJ
Neri, N
Punzi, G
Piucci, A
Ristori, L
Spinella, F
Stracka, S
Tonelli, D
AF Abba, A.
Bedeschi, F.
Citterio, M.
Caponio, F.
Cusimano, A.
Geraci, A.
Marino, P.
Morello, M. J.
Neri, N.
Punzi, G.
Piucci, A.
Ristori, L.
Spinella, F.
Stracka, S.
Tonelli, D.
TI A specialized processor for track reconstruction at the LHC crossing
rate
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article; Proceedings Paper
CT International Conference on Instrumentation for Colliding Beam Physics
CY FEB 24-MAR 01, 2014
CL Budker Inst Nucl Phys, Novosibirsk, RUSSIA
HO Budker Inst Nucl Phys
DE Trigger concepts and systems (hardware and software); Data acquisition
concepts; Digital electronic circuits
AB We present the results of an R&D study of a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel detectors at 40 MHz, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired by studies of the processing of visual images by the brain as it happens in nature. We find that high-quality tracking in large detectors is possible with sub-mu s latencies when this algorithm is implemented in modern, highspeed, high-bandwidth FPGA devices. This opens a possibility of making track reconstruction happen transparently as part of the detector readout.
C1 [Tonelli, D.] CERN, Geneva, Switzerland.
[Abba, A.; Citterio, M.; Caponio, F.; Cusimano, A.; Geraci, A.; Neri, N.] Politecn Milan, I-20133 Milan, Italy.
[Abba, A.; Citterio, M.; Caponio, F.; Cusimano, A.; Geraci, A.; Neri, N.] Ist Nazl Fis Nucl, I-20133 Milan, Italy.
[Bedeschi, F.; Marino, P.; Morello, M. J.; Punzi, G.; Piucci, A.; Ristori, L.; Spinella, F.; Stracka, S.] Univ Pisa, Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[Bedeschi, F.; Marino, P.; Morello, M. J.; Punzi, G.; Piucci, A.; Ristori, L.; Spinella, F.; Stracka, S.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy.
[Ristori, L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
RP Punzi, G (reprint author), Univ Pisa, Scuola Normale Super Pisa, Lgo Pontecorvo 3, I-56127 Pisa, Italy.
EM giovanni.punzi@pi.infn.it
RI Marino, Pietro/N-7030-2015; Stracka, Simone/M-3931-2015
OI Marino, Pietro/0000-0003-0554-3066; Stracka, Simone/0000-0003-0013-4714
NR 7
TC 1
Z9 1
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD SEP
PY 2014
VL 9
AR C09001
DI 10.1088/1748-0221/9/09/C09001
PG 12
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA AR0SJ
UT WOS:000343281300001
ER
PT J
AU Asaadi, J
Conrad, JM
Gollapinni, S
Jones, BJP
Jostlein, H
John, JMS
Strauss, T
Wolbers, S
Zennamo, J
AF Asaadi, J.
Conrad, J. M.
Gollapinni, S.
Jones, B. J. P.
Jostlein, H.
John, J. M. St.
Strauss, T.
Wolbers, S.
Zennamo, J.
TI Testing of high voltage surge protection devices for use in liquid argon
TPC detectors
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article
DE Voltage distributions; Noble liquid detectors (scintillation,
ionization, double-phase); Cryogenic detectors
AB In this paper we demonstrate the capability of high voltage varistors and gas discharge tube arrestors for use as surge protection devices in liquid argon time projection chamber detectors. The insulating and clamping behavior of each type of device is characterized in air (room temperature), and liquid argon (90 K), and their robustness under high voltage and high energy surges in cryogenic conditions is verified. The protection of vulnerable components in liquid argon during a 150 kV high voltage discharge is also demonstrated. Each device is tested for argon contamination and light emission effects, and both are constrained to levels where no significant impact upon liquid argon time projection chamber functionality is expected. Both devices investigated are shown to be suitable for HV surge protection applications in cryogenic detectors.
C1 [Asaadi, J.] Syracuse Univ, Syracuse, NY 13244 USA.
[Conrad, J. M.; Jones, B. J. P.] MIT, Cambridge, MA 02139 USA.
[Gollapinni, S.] Kansas State Univ, Manhattan, KS 66506 USA.
[Jostlein, H.; Wolbers, S.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[John, J. M. St.] Univ Cincinnati, Cincinnati, OH 45220 USA.
[Strauss, T.] Univ Bern, LHEP, Albert Einstein Ctr, CH-3012 Bern, Switzerland.
[Zennamo, J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
RP Jones, BJP (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
EM bjpjones@mit.edu
FU Fermi National Accelerator Laboratory; United States Department of
Energy [De-AC02-07CH11359]; National Science Foundation [PHY-1205175,
PHY-1068553]; Department of Energy [DE-FG03-99ER41093, DE-SC0011784];
Swiss National Science Foundation; University of Chicago
FX This work was supported by the Fermi National Accelerator Laboratory,
which is operated by the Fermi Research Alliance, LLC under Contract No.
De-AC02-07CH11359 with the United States Department of Energy. The surge
protection components under test, and the work by BJPJ and JMC, were
funded by the National Science Foundation grant PHY-1205175. JA is
supported by National Science Foundation grant PHY-1068553. SG is
supported by the Department of Energy through grant DE-FG03-99ER41093
and JMSJ through grant DE-SC0011784. TS acknowledges the support of the
Swiss National Science Foundation. JZ is supported by the University of
Chicago.
NR 34
TC 3
Z9 3
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD SEP
PY 2014
VL 9
AR P09002
DI 10.1088/1748-0221/9/09/P09002
PG 23
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA AR0SJ
UT WOS:000343281300039
ER
PT J
AU Cook, N
Tresca, O
Lefferts, R
AF Cook, N.
Tresca, O.
Lefferts, R.
TI Scintillator diagnostics for the detection of laser accelerated ion
beams
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article
DE Scintillators, scintillation and light emission processes (solid, gas
and liquid scintillators); Scintillators and scintillating fibres and
light guides; Interaction of radiation with matter; Beam-line
instrumentation (beam position and profile monitors; beam-intensity
monitors; bunch length monitors)
ID ORGANIC SCINTILLATORS; PLASTIC SCINTILLATOR; TECHNOLOGY; PROTONS;
SCREEN; CR-39
AB Laser plasma interaction with ultraintense pulses present exciting schemes for accelerating ions. One of the advantages conferred by using a gaseous laser and target is the potential for a fast (several Hz) repetition rate. This requires diagnostics which are not only suited for a single shot configuration, but also for repeated use. We consider several scintillators as candidates for an imaging diagnostic for protons accelerated to MeV energies by a CO2 laser focused on a gas jet target. We have measured the response of chromium-doped alumina (chromox) and polyvinyl toluene (PVT) screens to protons in the 2-8MeV range. We have calibrated the luminescent yield in terms of photons emitted per incident proton for each scintillator. We also discuss how light scattering and material properties affect detector resolution. Furthermore, we consider material damage and the presence of an afterglow under intense exposures. Our analysis reveals a near order of magnitude greater yield from chromox in response to proton beams at >8MeV energies, while scattering effects favor PVT-based scintillators at lower energies.
C1 [Cook, N.; Lefferts, R.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Tresca, O.] Brookhaven Natl Lab, Accelerator Test Facil, Upton, NY 11973 USA.
RP Cook, N (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
EM ncook@bnl.gov
FU Brookhaven Science Associates, LLC [DE-AC02-98CH10886]; U.S. Department
of Energy; BNL/LDRD [12-032]
FX Many thanks are due to M. Babzien, M. Polyanskiy, K. Kusche, A. Lipski,
J. Green, N. Dover and V. Yakimenko for their contributions to this
work. Work supported by Brookhaven Science Associates, LLC under
Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and
BNL/LDRD No. 12-032.
NR 25
TC 1
Z9 1
U1 2
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD SEP
PY 2014
VL 9
AR P09004
DI 10.1088/1748-0221/9/09/P09004
PG 12
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA AR0SJ
UT WOS:000343281300041
ER
PT J
AU Repond, J
AF Repond, J.
CA CALICE Collaboration
TI Resistive Plate Chambers for imaging calorimetry - The DHCAL
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article; Proceedings Paper
CT 12th Workshop on Resistive Plate Chambers and Related Detectors
CY FEB 23-28, 2014
CL Tsinghua Univ, Beijing, PEOPLES R CHINA
HO Tsinghua Univ
DE Resistive-plate chambers; Particle tracking detectors; Calorimeters
AB The DHCAL-the Digital Hadron Calorimeter-is a prototype calorimeter based on Resistive Plate Chambers (RPCs). The design emphasizes the imaging capabilities of the detector in an effort to optimize the calorimeter for the application of Particle Flow Algorithms (PFAs) to the reconstruction of hadronic jet energies in a colliding beam environment. The readout of the chambers is segmented into 1 X 1 cm(2) pads, each read out with a 1-bit (single threshold) resolution. The prototype with approximately 500,000 readout channels underwent extensive testing in both the Fermilab and CERN test beams. This talk presents preliminary findings from the analysis of data collected at the test beams.
C1 [Repond, J.; CALICE Collaboration] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Repond, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM repond@anl.gov
NR 5
TC 2
Z9 2
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD SEP
PY 2014
VL 9
AR C09034
DI 10.1088/1748-0221/9/09/C09034
PG 10
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA AR0SJ
UT WOS:000343281300034
ER
PT J
AU Zastrau, U
Forster, E
AF Zastrau, U.
Foerster, E.
TI Integrated reflectivity measurements of hydrogen phthalate crystals for
high-resolution soft x-ray spectroscopy
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article
DE X-ray monochromators; Plasma diagnostics - interferometry, spectroscopy
and imaging
ID PLASMA; LASER; FLAT
AB The integrated x-ray reflectivity of Potassium Hydrogen Phthalate (KAP) and Rubidium Hydrogen Phthalate (RAP) crystals is studied at a photon energy of (1740 +/- 14) eV using a double-crystal setup. The absolute measured reflectivities are in < 5% agreement with the values predicted by the dynamic diffraction theory for perfect crystals when absorption is included. Within 4% experimental error margins, specimen that were exposed to ambient conditions over many years show identical reflectivity as specimen that were cleaved just before the measurement. No differences are observed between cleaving off a 10 mu m surface layer and splitting the entire crystal bulk of 2mm thickness. We conclude that at 1.7 keV photon energy the penetration depth of similar to 1 mu m is large compared to a potentially deteriorated surface layer of a few 10 nm.
C1 [Zastrau, U.; Foerster, E.] Univ Jena, Ins Opt & Quantenelekt, D-07743 Jena, Germany.
[Zastrau, U.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA.
[Foerster, E.] Helmholtz Inst Jena, D-07743 Jena, Germany.
RP Zastrau, U (reprint author), Univ Jena, Ins Opt & Quantenelekt, Max Wien Pl 1, D-07743 Jena, Germany.
EM ulf.zastrau@uni-jena.de
FU VolkswagenStiftung; German Helmholtz association via Helmholtz Institute
Jena; German Federal Ministry for Education and Research (BMBF) [FSP
302]
FX We would like to thank I. Uschmann and O. Wehrhan for fruitful
discussions about cleaving crystals, and R. Loetzsch for help with the
LabView program. UZ is further grateful to the VolkswagenStiftung for
his Peter-Paul-Ewald Fellowship. This work was partially funded by the
German Helmholtz association via the Helmholtz Institute Jena, and the
German Federal Ministry for Education and Research (BMBF) via priority
programme FSP 302.
NR 18
TC 0
Z9 0
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD SEP
PY 2014
VL 9
AR P09008
DI 10.1088/1748-0221/9/09/P09008
PG 9
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA AR0SJ
UT WOS:000343281300045
ER
PT J
AU Liu, F
Huang, L
Davis, RF
Porter, LM
Schreiber, DK
Kuchibatla, SVNT
Shutthanandan, V
Thevuthasan, S
Preble, EA
Paskova, T
Evans, KR
AF Liu, Fang
Huang, Li
Davis, Robert F.
Porter, Lisa M.
Schreiber, Daniel K.
Kuchibatla, Satyanarayana V. N. T.
Shutthanandan, Vaithiyalingam
Thevuthasan, Suntharampillai
Preble, Edward A.
Paskova, Tania
Evans, Keith R.
TI Composition and interface analysis of InGaN/GaN multiquantum-wells on
GaN substrates using atom probe tomography
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
ID QUANTUM-WELLS
AB In0.20Ga0.80N/GaN multiquantum wells (MQWs) grown on [0001]-oriented GaN substrates with and without an InGaN buffer layer were characterized using three-dimensional atom probe tomography. In all samples, the upper interfaces of the QWs were slightly more diffuse than the lower interfaces. The buffer layers did not affect the roughness of the interfaces within the quantum well structure, a result attributed to planarization of the surface of the first GaN barrier layer, which had an average root-mean-square roughness of 0.18 nm. The In and Ga distributions within the MQWs followed the expected distributions for a random alloy with no indications of In clustering. High resolution Rutherford backscattering characterizations showed the ability to resolve the MQWs, and the resulting compositions and widths corroborated those determined from the atom probe analyses. (C) 2014 American Vacuum Society.
C1 [Liu, Fang; Huang, Li; Davis, Robert F.; Porter, Lisa M.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA.
[Schreiber, Daniel K.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA.
[Kuchibatla, Satyanarayana V. N. T.; Shutthanandan, Vaithiyalingam; Thevuthasan, Suntharampillai] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
[Preble, Edward A.; Paskova, Tania; Evans, Keith R.] Kyma Technol Inc, Raleigh, NC 27617 USA.
RP Liu, F (reprint author), Carnegie Mellon Univ, Dept Mat Sci & Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA.
EM fangliu009@gmail.com
RI Davis, Robert/A-9376-2011
OI Davis, Robert/0000-0002-4437-0885
FU Department of Energy [DOE DEFC2607NT43229]; Department of Energy's
Office of Biological and Environmental Research; PNNL
FX The authors thank the Department of Energy for financial support under
project DOE DEFC2607NT43229. A portion of the research was performed at
the Environmental Molecular Science Laboratory (EMSL), a national
scientific user facility sponsored by the Department of Energy's Office
of Biological and Environmental Research and located at Pacific
Northwest National Laboratory (PNNL). An Alternate Sponsored Fellowship
at PNNL awarded to one of the authors (F.L.) was particularly helpful in
completing this research. The authors also wish to thank Bruce Arey at
EMSL for his help with sample preparation.
NR 23
TC 5
Z9 5
U1 1
U2 15
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD SEP
PY 2014
VL 32
IS 5
AR 051209
DI 10.1116/1.4893976
PG 7
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA AQ7ND
UT WOS:000343003600011
ER
PT J
AU Liu, L
Xi, YY
Ahn, S
Ren, F
Gila, BP
Pearton, SJ
Kravohenko, II
AF Liu, Lu
Xi, Yuyin
Ahn, Shihyun
Ren, Fan
Gila, Brent P.
Pearton, Stephen J.
Kravohenko, Ivan I.
TI Characteristics of gate leakage current and breakdown voltage of
AlGaN/GaN high electron mobility transistors after postprocess annealing
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
ID FIELD-EFFECT TRANSISTORS; SURFACE PASSIVATION; HEMTS; GAN;
HETEROSTRUCTURES; PERFORMANCE; DISPERSION; GANHEMTS; EPITAXY; IMPACT
AB The effects of postprocess annealing on the gate leakage current and breakdown voltage characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) was investigated. The fabricated AlGaN/GaN HEMTs were postannealed at 250, 300, 350, 400, or 450 degrees C under a nitrogen (N-2) atmosphere by using rapid thermal annealing, and both direct current (dc) and pulsed measurements were performed to characterize the changes in device performance. The reverse gate leakage current (I-G) at V-G = -10V was reduced by one order of magnitude and the off-state drain breakdown voltage (V-off) increased by over three-fold after postprocess annealing at 450 degrees C. The reverse gate leakage current was found to be independent of gate-to-drain potential after annealing. The gate pulse measurements revealed the activation of deep traps during the postannealing at elevated temperatures. (C) 2014 American Vacuum Society.
C1 [Liu, Lu; Xi, Yuyin; Ahn, Shihyun; Ren, Fan] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA.
[Gila, Brent P.; Pearton, Stephen J.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA.
[Kravohenko, Ivan I.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA.
RP Liu, L (reprint author), Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA.
EM fren@che.ufl.edu
RI Kravchenko, Ivan/K-3022-2015
OI Kravchenko, Ivan/0000-0003-4999-5822
FU U.S. DOD HDTRA [1-11-1-0020]; Office of Basic Energy Sciences, U.S,
Department of Energy
FX The work performed at UP was supported by an U.S. DOD HDTRA Grant No.
1-11-1-0020 monitored by James Reed. A portion of this research was
conducted at the Center for Nariophase Materials Sciences, which is
sponsored at Oak Ridge National Laboratory by the Office of Basic Energy
Sciences, U.S, Department of Energy.
NR 31
TC 5
Z9 5
U1 1
U2 13
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD SEP
PY 2014
VL 32
IS 5
AR 052201
DI 10.1116/1.4891168
PG 5
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA AQ7ND
UT WOS:000343003600027
ER
PT J
AU Liu, KH
Zhang, LM
Cao, T
Jin, CH
Qiu, DA
Zhou, Q
Zettl, A
Yang, PD
Louie, SG
Wang, F
AF Liu, Kaihui
Zhang, Liming
Cao, Ting
Jin, Chenhao
Qiu, Diana
Zhou, Qin
Zettl, Alex
Yang, Peidong
Louie, Steve G.
Wang, Feng
TI Evolution of interlayer coupling in twisted molybdenum disulfide
bilayers
SO NATURE COMMUNICATIONS
LA English
DT Article
ID MONOLAYER MOS2; VALLEY POLARIZATION; DIRAC FERMIONS; ATOMIC LAYERS;
GRAPHENE; SUPERLATTICES; ELECTRONS; PHASE
AB Van der Waals coupling is emerging as a powerful method to engineer physical properties of atomically thin two-dimensional materials. In coupled graphene-graphene and graphene-boron nitride layers, interesting physical phenomena ranging from Fermi velocity renormalization to Hofstadter's butterfly pattern have been demonstrated. Atomically thin transition metal dichalcogenides, another family of two-dimensional-layered semiconductors, can show distinct coupling phenomena. Here we demonstrate the evolution of interlayer coupling with twist angles in as-grown molybdenum disulfide bilayers. We find that the indirect bandgap size varies appreciably with the stacking configuration: it shows the largest redshift for AA- and AB-stacked bilayers, and a significantly smaller but constant redshift for all other twist angles. Our observations, together with ab initio calculations, reveal that this evolution of interlayer coupling originates from the repulsive steric effects that leads to different interlayer separations between the two molybdenum disulfide layers in different stacking configurations.
C1 [Liu, Kaihui; Cao, Ting; Jin, Chenhao; Qiu, Diana; Zettl, Alex; Louie, Steve G.; Wang, Feng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Liu, Kaihui] Peking Univ, State Key Lab Mesoscop Phys, Sch Phys, Beijing 100871, Peoples R China.
[Liu, Kaihui] Peking Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China.
[Zhang, Liming; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Cao, Ting; Qiu, Diana; Zhou, Qin; Zettl, Alex; Louie, Steve G.; Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Zettl, Alex; Yang, Peidong; Wang, Feng] Univ Calif Berkeley, Kavli Energy NanoSci, Berkeley, CA 94720 USA.
[Zettl, Alex; Yang, Peidong; Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
RP Wang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
EM fengwang76@berkeley.edu
RI Liu, Kaihui/A-9938-2014; Zettl, Alex/O-4925-2016; wang, Feng/I-5727-2015
OI Zettl, Alex/0000-0001-6330-136X;
FU Office of Basic Energy Sciences, US Department of Energy (DOE)
[DE-SC0003949, DE-AC02-05CH11231]; Theory Program at Lawrence Berkeley
National Laboratory through Office of Basic Energy Sciences, US DOE
[DE-AC02-05CH11231]; National Science Foundation [DMR10-1006184]; Simons
Foundation Fellowship in Theoretical Physics; DOE; National Program for
Thousand Young Talents; NSFC of China [11474006]
FX This study was supported by Office of Basic Energy Sciences, US
Department of Energy (DOE) under contract nos. DE-SC0003949 (Early
Career Award) and DE-AC02-05CH11231 (Materials Science Division).
Research supported in part by the Theory Program at Lawrence Berkeley
National Laboratory through the Office of Basic Energy Sciences, US DOE
under contract no. DE-AC02-05CH11231 that provided code developments and
simulations, and by the National Science Foundation under grant no.
DMR10-1006184 that provided structural study and analysis of interlayer
coupling. S.G.L. acknowledges support of a Simons Foundation Fellowship
in Theoretical Physics. Computation resources at National Energy
Research Scientific Computing Center (NERSC) funded by DOE are used. K.
L. acknowledges support from National Program for Thousand Young Talents
and NSFC (No. 11474006) of China.
NR 34
TC 73
Z9 73
U1 32
U2 194
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD SEP
PY 2014
VL 5
AR 4966
DI 10.1038/ncomms5966
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AQ7HZ
UT WOS:000342984800022
PM 25233054
ER
PT J
AU Peterson, EJ
Delariva, AT
Lin, S
Johnson, RS
Guo, H
Miller, JT
Kwak, JH
Peden, CHF
Kiefer, B
Allard, LF
Ribeiro, FH
Datye, AK
AF Peterson, Eric J.
Delariva, Andrew T.
Lin, Sen
Johnson, Ryan S.
Guo, Hua
Miller, Jeffrey T.
Kwak, Ja Hun
Peden, Charles H. F.
Kiefer, Boris
Allard, Lawrence F.
Ribeiro, Fabio H.
Datye, Abhaya K.
TI Low-temperature carbon monoxide oxidation catalysed by regenerable
atomically dispersed palladium on alumina
SO NATURE COMMUNICATIONS
LA English
DT Article
ID RAY PHOTOELECTRON-SPECTROSCOPY; TOTAL-ENERGY CALCULATIONS; WAVE
BASIS-SET; GAMMA-ALUMINA; CO OXIDATION; THETA-AL2O3(010) SURFACE;
SINGLE; ATOMS; PD; ABSORPTION
AB Catalysis by single isolated atoms of precious metals has attracted much recent interest, as it promises the ultimate in atom efficiency. Most previous reports are on reducible oxide supports. Here we show that isolated palladium atoms can be catalytically active on industrially relevant g-alumina supports. The addition of lanthanum oxide to the alumina, long known for its ability to improve alumina stability, is found to also help in the stabilization of isolated palladium atoms. Aberration-corrected scanning transmission electron microscopy and operando X-ray absorption spectroscopy confirm the presence of intermingled palladium and lanthanum on the gamma-alumina surface. Carbon monoxide oxidation reactivity measurements show onset of catalytic activity at 40 degrees C. The catalyst activity can be regenerated by oxidation at 700 degrees C in air. The high-temperature stability and regenerability of these ionic palladium species make this catalyst system of potential interest for low-temperature exhaust treatment catalysts.
C1 [Peterson, Eric J.; Delariva, Andrew T.; Datye, Abhaya K.] Univ New Mexico, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA.
[Peterson, Eric J.; Delariva, Andrew T.; Datye, Abhaya K.] Univ New Mexico, Ctr Microengineered Mat, Albuquerque, NM 87131 USA.
[Lin, Sen] Fuzhou Univ, Res Inst Photocatalysis, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350002, Peoples R China.
[Johnson, Ryan S.; Guo, Hua] Univ New Mexico, Dept Chem & Biol Chem, Albuquerque, NM 87131 USA.
[Miller, Jeffrey T.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Kwak, Ja Hun; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA.
[Kiefer, Boris] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA.
[Allard, Lawrence F.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Ribeiro, Fabio H.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA.
RP Datye, AK (reprint author), Univ New Mexico, Dept Chem & Biol Engn, MSC 01-1120, Albuquerque, NM 87131 USA.
EM datye@unm.edu
RI Guo, Hua/J-2685-2014
OI Guo, Hua/0000-0001-9901-053X
FU U.S. DOE, Office of Science [DE-FG02-05ER15712]; National Natural
Science Foundation of China [21203026]; US National Science Foundation
[CHE-0910828]; Office of Basic Energy Sciences of the U.S. DOE
[W-31-109-Eng-38]; DOE, EERE Office of Vehicle Technologies; U.S.
Department of Energy, Office of Basic Energy Sciences, Chemical Sciences
[DE-AC-02-06CH11357]; Department of Energy, Office of Basic Energy
Sciences, Chemical Sciences [DE-FG02-03ER15408]; U.S. Department of
Energy, Office of Basic Energy Sciences, Division of Chemical Sciences,
Geosciences and Biosciences; U.S. Department of Energy's Office of
Biological and Environmental Research
FX We gratefully acknowledge funding for this work provided by the U.S.
DOE, Office of Science grant DE-FG02-05ER15712. S.L. thanks the National
Natural Science Foundation of China (21203026). R.S.J. and H.G. thank
the US National Science Foundation (CHE-0910828). Use of the Advanced
Photon Source is supported by the Office of Basic Energy Sciences of the
U.S. DOE under contract number W-31-109-Eng-38. Materials Research
Collaborative Access Team (MRCAT, Sector 10 ID-B) operations are
supported by the Department of Energy and the MRCAT member institutions.
STEM imaging was performed at the High Temperature Materials Laboratory,
operated by Oak Ridge National Laboratory and supported by DOE, EERE
Office of Vehicle Technologies. J.T.M. was supported by the U.S.
Department of Energy, Office of Basic Energy Sciences, Chemical Sciences
under contract DE-AC-02-06CH11357. F.H.R. acknowledges support from the
Department of Energy, Office of Basic Energy Sciences, Chemical
Sciences, under Grant DE-FG02-03ER15408. C.H.F.P. and J.H.K. were
supported by the U.S. Department of Energy, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences and Biosciences.
Their studies were performed in the Environmental Molecular Sciences
Laboratory, a national scientific user facility sponsored by the U.S.
Department of Energy's Office of Biological and Environmental Research
and located at Pacific Northwest National Laboratory. E.J.P. thanks
Bruce Ravel and Anatoly Frenkel for discussion and guidance with regard
to the XAS analysis.
NR 37
TC 72
Z9 72
U1 33
U2 250
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD SEP
PY 2014
VL 5
AR 4885
DI 10.1038/ncomms5885
PG 11
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AQ7HM
UT WOS:000342983300012
PM 25222116
ER
PT J
AU Sutter, E
Jungjohann, K
Bliznakov, S
Courty, A
Maisonhaute, E
Tenney, S
Sutter, P
AF Sutter, E.
Jungjohann, K.
Bliznakov, S.
Courty, A.
Maisonhaute, E.
Tenney, S.
Sutter, P.
TI In situ liquid-cell electron microscopy of silver-palladium galvanic
replacement reactions on silver nanoparticles
SO NATURE COMMUNICATIONS
LA English
DT Article
ID OXYGEN REDUCTION; AQUEOUS-SOLUTION; METAL NANOSTRUCTURES; METHANOL
OXIDATION; GOLD NANOCAGES; GLASSY-CARBON; PHOTOACOUSTIC TOMOGRAPHY;
CATALYTIC-PROPERTIES; OPTICAL-PROPERTIES; CONTRAST AGENT
AB Galvanic replacement reactions provide an elegant way of transforming solid nanoparticles into complex hollow morphologies. Conventionally, galvanic replacement is studied by stopping the reaction at different stages and characterizing the products ex situ. In situ observations by liquid-cell electron microscopy can provide insight into mechanisms, rates and possible modifications of galvanic replacement reactions in the native solution environment. Here we use liquid-cell electron microscopy to investigate galvanic replacement reactions between silver nanoparticle templates and aqueous palladium salt solutions. Our in situ observations follow the transformation of the silver nanoparticles into hollow silver-palladium nanostructures. While the silver-palladium nanocages have morphologies similar to those obtained in ex situ control experiments the reaction rates are much higher, indicating that the electron beam strongly affects the galvanic-type process in the liquid-cell. By using scavengers added to the aqueous solution we identify the role of radicals generated via radiolysis by high-energy electrons in modifying galvanic reactions.
C1 [Sutter, E.; Jungjohann, K.; Tenney, S.; Sutter, P.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Bliznakov, S.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
[Courty, A.] Univ Paris 06, Sorbonne Univ, Lab Monaris, CNRS,UMR 8233, F-75005 Paris, France.
[Maisonhaute, E.] Univ Paris 06, Sorbonne Univ, Lab Interfaces & Syst Electrochim, UMR 8235, F-75005 Paris, France.
RP Sutter, E (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
EM esutter@bnl.gov
FU US Department of Energy, Office of Basic Energy Sciences
[DE-AC02-98CH10886]; LabEx MiChem part of French state funds
[ANR-11-IDEX-0004-02]
FX This research has been carried out at the Center for Functional
Nanomaterials, the Brookhaven National Laboratory, which is supported by
the US Department of Energy, the Office of Basic Energy Sciences, under
Contract No. DE-AC02-98CH10886. This work was supported in part (AC and
EM) by the LabEx MiChem part of French state funds managed by the ANR
within the Investissements d'Avenir programme under reference
ANR-11-IDEX-0004-02.
NR 63
TC 41
Z9 43
U1 14
U2 121
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD SEP
PY 2014
VL 5
AR 4946
DI 10.1038/ncomms5946
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AQ7HZ
UT WOS:000342984800002
PM 25208691
ER
PT J
AU Vasudevan, RK
Matsumoto, Y
Cheng, X
Imai, A
Maruyama, S
Xin, HL
Okatan, MB
Jesse, S
Kalinin, SV
Nagarajan, V
AF Vasudevan, R. K.
Matsumoto, Y.
Cheng, Xuan
Imai, A.
Maruyama, S.
Xin, H. L.
Okatan, M. B.
Jesse, S.
Kalinin, S. V.
Nagarajan, V.
TI Deterministic arbitrary switching of polarization in a ferroelectric
thin film
SO NATURE COMMUNICATIONS
LA English
DT Article
ID SOLID-SOLUTIONS; MEMRISTOR; ROTATION; PHASES
AB Ferroelectrics have been used as memory storage devices, with an upper bound on the total possible memory levels generally dictated by the number of degenerate states allowed by the symmetry of the ferroelectric phase. Here, we introduce a new concept for storage wherein the polarization can be rotated arbitrarily, effectively decoupling it from the crystallographic symmetry of the ferroelectric phase on the mesoscale. By using a Bi5Ti3FeO15-CoFe2O4 film and via Band-Excitation Piezoresponse Force Microscopy, we show the ability to arbitrarily rotate polarization, create a spectrum of switched states, and suggest the reason for polarization rotation is an abundance of sub-50 nm nanodomains. Transmission electron microscopy-based strain mapping confirms significant local strain undulations imparted on the matrix by the CoFe2O4 inclusions, which causes significant local disorder. These experiments point to controlled tuning of polarization rotation in a standard ferroelectric, and hence the potential to greatly extend the attainable densities for ferroelectric memories.
C1 [Vasudevan, R. K.; Okatan, M. B.; Jesse, S.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Matsumoto, Y.; Maruyama, S.] Tohoku Univ, Dept Appl Chem, Sch Engn, Aoba Ku, Sendai, Miyagi 9808579, Japan.
[Matsumoto, Y.; Imai, A.] Tokyo Inst Technol, Mat & Struct Lab, Midori Ku, Yokohama, Kanagawa 2268503, Japan.
[Cheng, Xuan; Imai, A.; Nagarajan, V.] Univ New S Wales, Sch Mat Sci & Engn, Kensington, NSW 2052, Australia.
[Xin, H. L.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Nagarajan, V (reprint author), Univ New S Wales, Sch Mat Sci & Engn, Kensington, NSW 2052, Australia.
EM nagarajan@unsw.edu.au
RI Matsumoto, Yuji/H-2056-2011; valanoor, nagarajan/B-4159-2012; Vasudevan,
Rama/Q-2530-2015; Kalinin, Sergei/I-9096-2012; Jesse,
Stephen/D-3975-2016; Okatan, M. Baris/E-1913-2016; Xin,
Huolin/E-2747-2010
OI Vasudevan, Rama/0000-0003-4692-8579; Kalinin,
Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Okatan,
M. Baris/0000-0002-9421-7846; Xin, Huolin/0000-0002-6521-868X
FU Division of Materials Sciences and Engineering of BES, DOE; Scientific
User Facilities Division, Office of Basic Energy Sciences, U.S.
Department of Energy; New Energy and Industrial Technology Development
Organization (NEDO) of Japan; Integrated Doctoral Education Program at
Tokyo Tech; Sumitomo Foundation; U.S. Department of Energy, Office of
Basic Energy Sciences [DE-AC02-98CH10886]
FX This research was sponsored by the Division of Materials Sciences and
Engineering (R.K.V., S.V.K.) of BES, DOE. A portion of this research was
conducted at the Center for Nanophase Materials Sciences, which is
sponsored at Oak Ridge National Laboratory by the Scientific User
Facilities Division, Office of Basic Energy Sciences, U.S. Department of
Energy. V.N., X. C. and A. I. thank the Australian Research Council
Discovery and LIEF projects. We also acknowledge funding partly by
Industrial Technology Research Grant Program in 2007 from New Energy and
Industrial Technology Development Organization (NEDO) of Japan, the
Integrated Doctoral Education Program at Tokyo Tech, and Sumitomo
Foundation. Image processing made use of capabilities at the Center for
Functional Nanomaterials, Brookhaven National Laboratory, which is
supported by the U.S. Department of Energy, Office of Basic Energy
Sciences, under Contract No. DE-AC02-98CH10886.
NR 31
TC 7
Z9 7
U1 8
U2 96
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD SEP
PY 2014
VL 5
AR 4971
DI 10.1038/ncomms5971
PG 8
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AQ7HZ
UT WOS:000342984800027
PM 25233288
ER
PT J
AU Zhang, Q
Li, GY
Liu, XF
Qian, F
Li, Y
Sum, TC
Lieber, CM
Xiong, QH
AF Zhang, Qing
Li, Guangyuan
Liu, Xinfeng
Qian, Fang
Li, Yat
Sum, Tze Chien
Lieber, Charles M.
Xiong, Qihua
TI A room temperature low-threshold ultraviolet plasmonic nanolaser
SO NATURE COMMUNICATIONS
LA English
DT Article
ID NANOWIRE LASERS; WAVE-GUIDES; GAIN
AB Constrained by large ohmic and radiation losses, plasmonic nanolasers operated at visible regime are usually achieved either with a high threshold (10(2)-10(4) MW cm(-2)) or at cryogenic temperatures (4-120 K). Particularly, the bending-back effect of surface plasmon (SP) dispersion at high energy makes the SP lasing below 450 nm more challenging. Here we demonstrate the first strong room temperature ultraviolet (similar to 370 nm) SP polariton laser with an extremely low threshold (similar to 3.5 MW cm(-2)). We find that a closed-contact planar semiconductor-insulator-metal interface greatly lessens the scattering loss, and more importantly, efficiently promotes the exciton-SP energy transfer thus furnishes adequate optical gain to compensate the loss. An excitation polarization-dependent lasing action is observed and interpreted with a microscopic energy-transfer process from excitons to SPs. Our work advances the fundamental understanding of hybrid plasmonic waveguide laser and provides a solution of realizing room temperature UV nanolasers for biological applications and information technologies.
C1 [Zhang, Qing; Li, Guangyuan; Liu, Xinfeng; Sum, Tze Chien; Xiong, Qihua] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore.
[Qian, Fang] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
[Li, Yat] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA.
[Sum, Tze Chien] Singapore Berkeley Res Initiat Sustainable Energy, Singapore 138602, Singapore.
[Lieber, Charles M.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA.
[Xiong, Qihua] Nanyang Technol Univ, Sch Elect & Elect Engn, NOVITAS, Nanoelect Ctr Excellence, Singapore 639798, Singapore.
RP Lieber, CM (reprint author), Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA.
EM cml@cmliris.harvard.edu; Qihua@ntu.edu.sg
RI Xiong, Qihua/A-4979-2011; Liu, Xinfeng/G-2063-2015; Zhang,
Qing/N-6703-2014;
OI Xiong, Qihua/0000-0002-2555-4363; Liu, Xinfeng/0000-0003-1759-9796;
Zhang, Qing/0000-0002-5811-1761; Li, Yat/0000-0002-8058-2084
FU Singapore Ministry of Education [MOE2011-T2-2-051]; Singapore National
Research Foundation [NRF-RF2009-06, NRF-CRP-6-2010-2]; Nanyang
Technological University [M58110061, M58110100]; National Security
Science and Engineering Faculty Fellow (NSSEFF) award, Department of
Defense; United States NSF [DMR-0847786]; NTU [M4080514]; SPMS
collaborative Research Award [M4080536]; Singapore-Berkeley Research
Initiative for Sustainable Energy (Sin-BeRISE) CREATE Programme
FX This work was mainly supported by Singapore Ministry of Education via an
AcRF Tier2 grant (MOE2011-T2-2-051). In addition, Q. X. thanks the
strong support from Singapore National Research Foundation through a
Fellowship grant (NRF-RF2009-06) and a Competitive Research Program
(NRF-CRP-6-2010-2), and support from Nanyang Technological University
via start-up grant (M58110061) and New Initiative Fund (M58110100). Q.
X. thanks Nanyang Nanofabrication Center for the help in e-beam
evaporation. C. M. L. acknowledges support from a National Security
Science and Engineering Faculty Fellow (NSSEFF) award from the
Department of Defense. Y.L. thanks the financial support from United
States NSF (DMR-0847786). T. C. S. acknowledges the financial support
NTU start-up grant M4080514, SPMS collaborative Research Award M4080536
and the Singapore-Berkeley Research Initiative for Sustainable Energy
(Sin-BeRISE) CREATE Programme.
NR 50
TC 46
Z9 46
U1 22
U2 203
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD SEP
PY 2014
VL 5
AR 4953
DI 10.1038/ncomms5953
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AQ7HZ
UT WOS:000342984800009
PM 25247634
ER
PT J
AU Zhang, WT
Hwang, C
Smallwood, CL
Miller, TL
Affeldt, G
Kurashima, K
Jozwiak, C
Eisaki, H
Adachi, T
Koike, Y
Lee, DH
Lanzara, A
AF Zhang, Wentao
Hwang, Choongyu
Smallwood, Christopher L.
Miller, Tristan L.
Affeldt, Gregory
Kurashima, Koshi
Jozwiak, Chris
Eisaki, Hiroshi
Adachi, Tadashi
Koike, Yoji
Lee, Dung-Hai
Lanzara, Alessandra
TI Ultrafast quenching of electron-boson interaction and superconducting
gap in a cuprate superconductor
SO NATURE COMMUNICATIONS
LA English
DT Article
ID ANGLE-RESOLVED PHOTOEMISSION; T-C; ENERGY; TRANSITION; SPECTROSCOPY;
DISPERSION; DYNAMICS
AB Ultrafast spectroscopy is an emerging technique with great promise in the study of quantum materials, as it makes it possible to track similarities and correlations that are not evident near equilibrium. Thus far, however, the way in which these processes modify the electron self-energy-a fundamental quantity describing many-body interactions in a material-has been little discussed. Here we use time-and angle-resolved photoemission to directly measure the ultrafast response of self-energy to near-infrared photoexcitation in high-temperature cuprate superconductor. Below the critical temperature of the superconductor, ultrafast excitations trigger a synchronous decrease of electron self-energy and superconducting gap, culminating in a saturation in the weakening of electron-boson coupling when the superconducting gap is fully quenched. In contrast, electron-boson coupling is unresponsive to ultrafast excitations above the critical temperature of the superconductor and in the metallic state of a related material. These findings open a new pathway for studying transient self-energy and correlation effects in solids.
C1 [Zhang, Wentao; Hwang, Choongyu; Smallwood, Christopher L.; Miller, Tristan L.; Affeldt, Gregory; Lanzara, Alessandra] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Zhang, Wentao; Smallwood, Christopher L.; Miller, Tristan L.; Affeldt, Gregory; Lee, Dung-Hai; Lanzara, Alessandra] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Hwang, Choongyu] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea.
[Kurashima, Koshi; Adachi, Tadashi; Koike, Yoji] Tohoku Univ, Dept Appl Phys, Sendai, Miyagi 9808579, Japan.
[Jozwiak, Chris] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Eisaki, Hiroshi] Natl Inst Adv Ind Sci & Technol, Elect & Photon Res Inst, Tsukuba, Ibaraki 3058568, Japan.
[Adachi, Tadashi] Sophia Univ, Dept Engn & Appl Sci, Tokyo 1028554, Japan.
RP Lanzara, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
EM alanzara@lbl.gov
RI ZHANG, Wentao/B-3626-2011; Smallwood, Christopher/D-4925-2011
OI Smallwood, Christopher/0000-0002-4103-8748
FU Berkeley Lab's programs on "Quantum Materials'' and "Ultrafast
Materials'' - US Department of Energy, Office of Science, Office of
Basic Energy Sciences, Materials Sciences and Engineering Division
[DE-AC02-05CH11231]
FX This work was supported by Berkeley Lab's programs on "Quantum
Materials'' and "Ultrafast Materials'' funded by the US Department of
Energy, Office of Science, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division, under contract no. DE-AC02-05CH11231.
NR 48
TC 18
Z9 18
U1 5
U2 34
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD SEP
PY 2014
VL 5
AR 4959
DI 10.1038/ncomms5959
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AQ7HZ
UT WOS:000342984800015
PM 25222844
ER
PT J
AU Shiltsev, V
Eseev, M
AF Shiltsev, Vladimir
Eseev, Marat
TI Scientific Arkhangelsk and Pomorie: A Walk Through Centuries and
Thousands of Miles
SO PHYSICS IN PERSPECTIVE
LA English
DT Article
DE Arkhangelsk; Russian science; Mikhail Lomonosov; Solovetsky Monastery;
Kholmogory; North Arctic Federal University; Archbishop Afanasy; Ivan
Meshchersky; Boris Rosing; Arkhangelsk Scientific Center
ID LOMONOSOV
AB Even by Russian standards, the country's northwestern territories contouring the White and Barents seas are vast, remote, and sparsely populated. Yet for seven centuries that faraway province has served as a nursery of religious and intellectual freedom and as a primary entry point for Western civilization and trade, containing several scientific landmarks of interest to the physical tourist. This article is intended as a concise guide to the scientifically relevant attractions in the city of Arkhangelsk and in relatively "nearby" locations that can be reached within reasonable time and with reasonable convenience; these include Mikhail Lomonosov's birthplace on Kholmogory and the Solovetsky islands. We will also briefly mention relevant facts for the somewhat more remote-but still within 1000 km-territories of Kola peninsula and the Novaya Zemlya islands.
C1 [Shiltsev, Vladimir] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA.
[Eseev, Marat] Northern Arctic Fed Univ, Arkhangelsk 163002, Russia.
RP Shiltsev, V (reprint author), Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA.
EM shiltsev@fnal.gov
RI Eseev, Marat/A-3887-2013
OI Eseev, Marat/0000-0003-1101-4689
NR 13
TC 0
Z9 0
U1 1
U2 3
PU SPRINGER BASEL AG
PI BASEL
PA PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND
SN 1422-6944
EI 1422-6960
J9 PHYS PERSPECT
JI Phys. Perspect.
PD SEP
PY 2014
VL 16
IS 3
BP 390
EP 405
DI 10.1007/s00016-014-0140-x
PG 16
WC History & Philosophy Of Science
SC History & Philosophy of Science
GA AQ8DF
UT WOS:000343052800005
ER
PT J
AU Behlow, H
Saini, D
Oliveira, L
Durham, L
Simpson, J
Serkiz, SM
Skove, MJ
Rao, AM
AF Behlow, H.
Saini, D.
Oliveira, L.
Durham, L.
Simpson, J.
Serkiz, S. M.
Skove, M. J.
Rao, A. M.
TI Direct measurement of shear properties of microfibers
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID CARBON-FIBER; ENERGY-STORAGE; MODULUS; DEFORMATION; PROSTHESES; STRESS;
KEVLAR; STRAIN
AB As novel fibers with enhanced mechanical properties continue to be synthesized and developed, the ability to easily and accurately characterize these materials becomes increasingly important. Here we present a design for an inexpensive tabletop instrument to measure shear modulus (G) and other longitudinal shear properties of a micrometer-sized monofilament fiber sample, such as nonlinearities and hysteresis. This automated system applies twist to the sample and measures the resulting torque using a sensitive optical detector that tracks a torsion reference. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers, for which G is well known. Two industrially important fibers, IM7 carbon fiber and Kevlar (R) 119, were also characterized with this system and were found to have G = 16.5 +/- 2.1 and 2.42 +/- 0.32 GPa, respectively. (C) 2014 AIP Publishing LLC.
C1 [Behlow, H.; Saini, D.; Durham, L.; Simpson, J.; Serkiz, S. M.; Skove, M. J.; Rao, A. M.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA.
[Behlow, H.; Saini, D.; Durham, L.; Simpson, J.; Serkiz, S. M.; Skove, M. J.; Rao, A. M.] Clemson Univ, Clemson Nanomat Ctr, Clemson, SC 29634 USA.
[Oliveira, L.] Clemson Univ, Sch Mat Sci & Engn, Clemson, SC 29634 USA.
[Serkiz, S. M.] Savannah River Natl Lab, Aiken, SC 29808 USA.
RP Behlow, H (reprint author), Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA.
FU Clemson University TIGER grant
FX Special thanks to Garold J. Goodale, Jr. for helpful discussion during
instrument development. The authors thank the reviewers for their
constructive comments and suggestions that helped improve the quality of
the paper. The authors are grateful to DuPont for providing samples of
Kevlar (R) 119 fiber. The authors acknowledge financial support from the
Clemson University TIGER grant.
NR 20
TC 4
Z9 4
U1 1
U2 13
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD SEP
PY 2014
VL 85
IS 9
AR 095118
DI 10.1063/1.4895679
PG 5
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA AQ6HE
UT WOS:000342910500084
PM 25273783
ER
PT J
AU Flippo, KA
Kline, JL
Doss, FW
Loomis, EN
Emerich, M
Devolder, B
Murphy, TJ
Fournier, KB
Kalantar, DH
Regan, SP
Barrios, MA
Merritt, EC
Perry, TS
Tregillis, IL
Welser-Sherrill, L
Fincke, JR
AF Flippo, K. A.
Kline, J. L.
Doss, F. W.
Loomis, E. N.
Emerich, M.
Devolder, B.
Murphy, T. J.
Fournier, K. B.
Kalantar, D. H.
Regan, S. P.
Barrios, M. A.
Merritt, E. C.
Perry, T. S.
Tregillis, I. L.
Welser-Sherrill, L.
Fincke, J. R.
TI Development of a Big Area BackLighter for high energy density
experiments
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID NATIONAL-IGNITION-FACILITY; TARGETS; RADIOGRAPHY; RESOLUTION; PLASMAS
AB A very large area (7.5 mm(2)) laser-driven x-ray backlighter, termed the Big Area BackLighter (BABL) has been developed for the National Ignition Facility (NIF) to support high energy density experiments. The BABL provides an alternative to Pinhole-Apertured point-projection Backlighting (PABL) for a large field of view. This bypasses the challenges for PABL in the equatorial plane of the NIF target chamber where space is limited because of the unconverted laser light that threatens the diagnostic aperture, the backlighter foil, and the pinhole substrate. A transmission experiment using 132 kJ of NIF laser energy at a maximum intensity of 8.52 x 10(14) W/cm(2) illuminating the BABL demonstrated good conversion efficiency of >3.5% into K-shell emission producing similar to 4.6 kJ of high energy x rays, while yielding high contrast images with a highly uniform background that agree well with 2D simulated spectra and spatial profiles. (c) 2014 AIP Publishing LLC.
C1 [Flippo, K. A.; Kline, J. L.; Doss, F. W.; Loomis, E. N.; Devolder, B.; Murphy, T. J.; Merritt, E. C.; Perry, T. S.; Tregillis, I. L.; Welser-Sherrill, L.; Fincke, J. R.] Los Alamos Natl Lab, Los Alamos, NM 87507 USA.
[Emerich, M.] Gen Atom Co, San Diego, CA 92121 USA.
[Fournier, K. B.; Kalantar, D. H.; Barrios, M. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Regan, S. P.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA.
RP Flippo, KA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87507 USA.
RI Perry, Theodore/K-3333-2014; Flippo, Kirk/C-6872-2009; Murphy,
Thomas/F-3101-2014;
OI Perry, Theodore/0000-0002-8832-2033; Flippo, Kirk/0000-0002-4752-5141;
Murphy, Thomas/0000-0002-6137-9873; Kline, John/0000-0002-2271-9919
FU LANL; U.S. Department of Energy [DE-AC52-06NA25396]; U.S. Department of
Energy - Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
FX The authors would like to thank the NIF laser crew, diagnostics support
and target support, as well as LANL target fabrication: J. Williams, D.
Capelli, C. Blada, K. Obrey, and D. W. Schmidt. K. A. F. would like to
thank S. A. Gaillard and O. L. Landen for proof-reading and technical
comments. This work was supported by LANL, operated by Los Alamos
National Security, LLC, for the National Nuclear Security Administration
of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396.
NIF facility and experimental data shown or discussed reflect facility
development and operations performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under
Contract No. DE-AC52-07NA27344.
NR 37
TC 6
Z9 6
U1 1
U2 13
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD SEP
PY 2014
VL 85
IS 9
AR 093501
DI 10.1063/1.4893349
PG 8
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA AQ6HE
UT WOS:000342910500021
PM 25273720
ER
PT J
AU Fournier, KB
Brown, CG
May, MJ
Compton, S
Walton, OR
Shingleton, N
Kane, JO
Holtmeier, G
Loey, H
Mirkarimi, PB
Dunlop, WH
Guyton, RL
Huffman, E
AF Fournier, K. B.
Brown, C. G., Jr.
May, M. J.
Compton, S.
Walton, O. R.
Shingleton, N.
Kane, J. O.
Holtmeier, G.
Loey, H.
Mirkarimi, P. B.
Dunlop, W. H.
Guyton, R. L.
Huffman, E.
TI A geophysical shock and air blast simulator at the National Ignition
Facility
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID HALFRAUM TARGETS; EXPLOSIONS; CALIBRATION
AB The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismic and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes. (C) 2014 AIP Publishing LLC.
C1 [Fournier, K. B.; Brown, C. G., Jr.; May, M. J.; Compton, S.; Walton, O. R.; Shingleton, N.; Kane, J. O.; Holtmeier, G.; Loey, H.; Mirkarimi, P. B.; Dunlop, W. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Guyton, R. L.; Huffman, E.] Natl Secur Technol, Livermore, CA 94551 USA.
RP Fournier, KB (reprint author), Lawrence Livermore Natl Lab, POB 808,L-481, Livermore, CA 94550 USA.
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; Office of Defense Nuclear Nonproliferation Research
and Development within the U.S. Department of Energy's National Nuclear
Security Administration
FX The EPEC team would like to thank Eric Smith, Dan Kalantar, Tom
McCarville, Chockalingam Kumar, Jim Emig, Reg Wood, George Zimmerman,
and Peter Anninos for excellent technical contributions to this project.
This work was done under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract No.
DE-AC52-07NA27344. This work was funded by the Office of Defense Nuclear
Nonproliferation Research and Development within the U.S. Department of
Energy's National Nuclear Security Administration. We thank Tom Kiess at
NNSA for his steady support of this project.
NR 35
TC 0
Z9 0
U1 0
U2 14
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD SEP
PY 2014
VL 85
IS 9
AR 095119
DI 10.1063/1.4896119
PG 18
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA AQ6HE
UT WOS:000342910500085
PM 25273784
ER
PT J
AU Lambert, PK
Hustedt, CJ
Vecchio, KS
Huskins, EL
Casem, DT
Gruner, SM
Tate, MW
Philipp, HT
Woll, AR
Purohit, P
Weiss, JT
Kannan, V
Ramesh, KT
Kenesei, P
Okasinski, JS
Almer, J
Zhao, M
Ananiadis, AG
Hufnagel, TC
AF Lambert, P. K.
Hustedt, C. J.
Vecchio, K. S.
Huskins, E. L.
Casem, D. T.
Gruner, S. M.
Tate, M. W.
Philipp, H. T.
Woll, A. R.
Purohit, P.
Weiss, J. T.
Kannan, V.
Ramesh, K. T.
Kenesei, P.
Okasinski, J. S.
Almer, J.
Zhao, M.
Ananiadis, A. G.
Hufnagel, T. C.
TI Time-resolved x-ray diffraction techniques for bulk polycrystalline
materials under dynamic loading
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID DEFORMATION; COMPRESSION; TITANIUM; DETECTOR; STRAINS
AB We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of similar to 10(3)-10(4) s(-1) in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10-20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (similar to 40 mu s) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation. (C) 2014 AIP Publishing LLC.
C1 [Lambert, P. K.; Hustedt, C. J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C.] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA.
[Vecchio, K. S.] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA.
[Huskins, E. L.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37830 USA.
[Huskins, E. L.; Casem, D. T.] US Army Res Lab, Aberdeen, MD 21005 USA.
[Gruner, S. M.; Tate, M. W.; Philipp, H. T.; Purohit, P.; Weiss, J. T.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA.
[Gruner, S. M.; Woll, A. R.] Cornell Univ, CHESS, Ithaca, NY 14853 USA.
[Gruner, S. M.] Cornell Univ, Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA.
[Kannan, V.; Ramesh, K. T.] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA.
[Kenesei, P.; Okasinski, J. S.; Almer, J.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
RP Lambert, PK (reprint author), Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA.
RI Hufnagel, Todd/A-3309-2010
OI Hufnagel, Todd/0000-0002-6373-9377
FU Army Research Laboratory; US Navy under MURI Program [ONR MURI
N00014-61007-1-0740]; U.S. DOE [DE-AC02-06CH11357]; OSD-T& E (Office of
Secretary Defense-Test and Evaluation), Defense-Wide National Defense
Education Program (NDEP)/BA-1, Basic Research [PE0601120D8Z]; DOE
[DE-FG02-10ER46693]; Keck Foundation; CHESS; NSF; NIH-NIGMS under NSF
[DMR-0936384]; [W911NF-12-2-0022]
FX The authors would like to acknowledge A. Mashayekhi, L. Zhou, and K.
Goetze for their contributions to this work. This work was sponsored in
part by the Army Research Laboratory and was accomplished under
Cooperative Agreement No. W911NF-12-2-0022. The views and conclusions
contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or
implied, of the Army Research Laboratory or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints for
government purposes notwithstanding any copyright notation herein.
Financial support for this work was also provided by the US Navy under
the MURI Program (Grant ONR MURI N00014-61007-1-0740). Use of the
Advanced Photon Source, an Office of Science User Facility operated for
the U.S. Department of Energy (DOE) Office of Science by Argonne
National Laboratory, was supported by the U.S. DOE under Contract No.
DE-AC02-06CH11357. P. K. L. would like to acknowledge OSD-T& E (Office
of Secretary Defense-Test and Evaluation), Defense-Wide/PE0601120D8Z
National Defense Education Program (NDEP)/BA-1, Basic Research, for
their support. Detector development at Cornell is supported by the DOE
Grant No. DE-FG02-10ER46693, the Keck Foundation, and CHESS. CHESS is
supported by the NSF and NIH-NIGMS under NSF Grant No. DMR-0936384.
NR 28
TC 6
Z9 6
U1 14
U2 49
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD SEP
PY 2014
VL 85
IS 9
AR 093901
DI 10.1063/1.4893881
PG 7
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA AQ6HE
UT WOS:000342910500034
PM 25273733
ER
PT J
AU Selby, NS
Crawford, M
Tracy, L
Reno, JL
Pan, W
AF Selby, N. S.
Crawford, M.
Tracy, L.
Reno, J. L.
Pan, W.
TI In situ biaxial rotation at low-temperatures in high magnetic fields
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID HIGH LANDAU-LEVELS; TRANSPORT; STATE
AB We report the design, construction, and characterization of a biaxial sample rotation stage for use in a cryogenic system for orientation-dependent studies of anisotropic electronic transport phenomena at low temperatures and high magnetic fields. Our apparatus allows for continuous rotation of a sample about two axes, both independently and simultaneously. (C) 2014 AIP Publishing LLC.
C1 [Selby, N. S.; Crawford, M.; Tracy, L.; Reno, J. L.; Pan, W.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Selby, N. S.] Georgia Inst Technol, Atlanta, GA 30332 USA.
[Crawford, M.] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA.
RP Selby, NS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM nselby3@gatech.edu
FU Department of Energy, the Office of Basic Energy Science, Division of
Material Science and Technology; Sandia Student Internship Program; U.S.
Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX This work was supported by the Department of Energy, the Office of Basic
Energy Science, Division of Material Science and Technology. N.S.S. was
supported by Sandia Student Internship Program. The authors would like
to thank D. Barton, D. Huang, B. Vaandrager, X. Shi, and T. Coley for
their help. Sandia National Laboratories is a multiprogram laboratory
managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under Contract No.
DE-AC04-94AL85000.
NR 10
TC 0
Z9 0
U1 1
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD SEP
PY 2014
VL 85
IS 9
AR 095116
DI 10.1063/1.4896100
PG 4
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA AQ6HE
UT WOS:000342910500082
PM 25273781
ER
PT J
AU Shavorskiy, A
Neppl, S
Slaughter, DS
Cryan, JP
Siefermann, KR
Weise, F
Lin, MF
Bacellar, C
Ziemkiewicz, MP
Zegkinoglou, I
Fraund, MW
Khurmi, C
Hertlein, MP
Wright, TW
Huse, N
Schoenlein, RW
Tyliszczak, T
Coslovich, G
Robinson, J
Kaindl, RA
Rude, BS
Olsner, A
Mahl, S
Bluhm, H
Gessner, O
AF Shavorskiy, Andrey
Neppl, Stefan
Slaughter, Daniel S.
Cryan, James P.
Siefermann, Katrin R.
Weise, Fabian
Lin, Ming-Fu
Bacellar, Camila
Ziemkiewicz, Michael P.
Zegkinoglou, Ioannis
Fraund, Matthew W.
Khurmi, Champak
Hertlein, Marcus P.
Wright, Travis W.
Huse, Nils
Schoenlein, Robert W.
Tyliszczak, Tolek
Coslovich, Giacomo
Robinson, Joseph
Kaindl, Robert A.
Rude, Bruce S.
Oelsner, Andreas
Maehl, Sven
Bluhm, Hendrik
Gessner, Oliver
TI Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron
spectroscopy setup for pulsed and constant wave X-ray light sources
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID FREE-ELECTRON LASER; SURFACE PHOTOVOLTAGE TRANSIENTS;
ABSORPTION-SPECTROSCOPY; SYNCHROTRON-RADIATION; PHOTOEMISSION; DYNAMICS;
CELL; MICROSCOPY; INTERFACES; OPERATION
AB An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with similar to 0.1 mm spatial resolution and similar to 150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pumpprobe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 +/- 20) ps (FWHM) is demonstrated for a hemisphere pass energy E-p = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between similar to 9 ns at a pass energy of 50 eV and similar to 1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with the retarding ratio can be well approximated by applying Liouville's theorem of constant emittance to the electron trajectories inside the lens system. The performance of the setup is demonstrated by characterizing the laser fluence-dependent transient surface photovoltage response of a laser-excited Si(100) sample. (c) 2014 AIP Publishing LLC.
C1 [Shavorskiy, Andrey; Slaughter, Daniel S.; Zegkinoglou, Ioannis; Rude, Bruce S.; Bluhm, Hendrik] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Neppl, Stefan; Cryan, James P.; Siefermann, Katrin R.; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P.; Fraund, Matthew W.; Khurmi, Champak; Wright, Travis W.; Huse, Nils; Schoenlein, Robert W.; Gessner, Oliver] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA.
[Hertlein, Marcus P.; Tyliszczak, Tolek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Huse, Nils] Univ Hamburg, Dept Phys, D-22761 Hamburg, Germany.
[Huse, Nils] Max Planck Inst Struct & Dynam Matter, D-22761 Hamburg, Germany.
[Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Robinson, Joseph] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Oelsner, Andreas] Surface Concept GmbH, D-55124 Mainz, Germany.
[Maehl, Sven] SPECS Surface Nano Anal GmbH, D-13355 Berlin, Germany.
RP Gessner, O (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA.
EM ogessner@lbl.gov
RI Zegkinoglou, Ioannis/H-2343-2013; Huse, Nils/A-5712-2017
OI Huse, Nils/0000-0002-3281-7600
FU U.S. Department of Energy, Office of Basic Energy Sciences, Chemical
Sciences, Geosciences and Biosciences Division [DE-AC02-05CH11231]; U.S.
Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering; Department of Energy Office of
Science Early Career Research Program
FX This work was supported by the U.S. Department of Energy, Office of
Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences
Division, through Contract No. DE-AC02-05CH11231. G. C., J.R., and R. A.
K were supported by the U.S. Department of Energy, Office of Basic
Energy Sciences, Division of Materials Sciences and Engineering under
the same contract. O.G., S.N., and M. W. F. were supported by the
Department of Energy Office of Science Early Career Research Program.
The authors would like to thank Alan Fry and Wayne Polzin from SLAC
National Accelerator Laboratory for their laser support.
NR 38
TC 5
Z9 5
U1 6
U2 35
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD SEP
PY 2014
VL 85
IS 9
AR 093102
DI 10.1063/1.4894208
PG 8
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA AQ6HE
UT WOS:000342910500003
PM 25273702
ER
PT J
AU Stevenson, BA
Knowlton, SF
Hartwell, GJ
Hanson, JD
Maurer, DA
AF Stevenson, B. A.
Knowlton, S. F.
Hartwell, G. J.
Hanson, J. D.
Maurer, D. A.
TI Hall probe measurements of the poloidal magnetic field in Compact
Toroidal Hybrid plasmas
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID TOKAMAK; STOCHASTICITY; ARRAY
AB A linear array of 16 Hall effect sensors has been developed to directly measure the poloidal magnetic field inside the boundary of a non-axisymmetric hybrid torsatron/tokamak plasma. The array consists of miniature gallium arsenide Hall sensor elements mounted 8 mm apart on a narrow, rotatable printed circuit board inserted into a re-entrant stainless steel tube sheathed in boron nitride. The sensors are calibrated on the bench and in situ to provide accurate local measurements of the magnetic field to aid in reconstructing the equilibrium plasma current density profiles in fully three-dimensional plasmas. Calibrations show that the sensor sensitivities agree with the nominal manufacturers specifications of 1.46 V/T. Poloidal fields measured with the Hall sensor array are found to be within 5% of poloidal fields modeled with a Biot-Savart code. (c) 2014 AIP Publishing LLC.
C1 [Stevenson, B. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Knowlton, S. F.; Hartwell, G. J.; Hanson, J. D.; Maurer, D. A.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA.
[Stevenson, B. A.] Auburn Univ, Auburn, AL 36849 USA.
RP Stevenson, BA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
EM hartwell@physics.auburn.edu
OI Stevenson, Benjamin/0000-0001-9918-1240
FU (U.S.) Department of Energy (DOE) [DE-FG02-00ER54610]
FX Discussions with M. Bongard of the Pegasus group at the University of
Wisconsin are gratefully acknowledged. We also thank John Dawson for his
technical assistance with this project. This work is supported by (U.S.)
Department of Energy (DOE) Grant No. DE-FG02-00ER54610.
NR 13
TC 0
Z9 0
U1 1
U2 6
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD SEP
PY 2014
VL 85
IS 9
AR 093502
DI 10.1063/1.4894209
PG 6
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA AQ6HE
UT WOS:000342910500022
PM 25273721
ER
PT J
AU Twelker, K
Kravitz, S
Diez, MM
Gratta, G
Fairbank, W
Albert, JB
Auty, DJ
Barbeau, PS
Beck, D
Benitez-Medina, C
Breidenbach, M
Brunner, T
Cao, GF
Chambers, C
Cleveland, B
Coon, M
Craycraft, A
Daniels, T
Daugherty, SJ
Davis, CG
Devoe, R
Delaquis, S
Didberidze, T
Dilling, J
Dolinski, MJ
Dunford, M
Fabris, L
Farine, J
Feldmeier, W
Fierlinger, P
Fudenberg, D
Giroux, G
Gornea, R
Graham, K
Hall, C
Heffner, M
Herrin, S
Hughes, M
Jiang, XS
Johnson, TN
Johnston, S
Karelin, A
Kaufman, LJ
Killick, R
Koffas, T
Kruecken, R
Kuchenkov, A
Kumar, KS
Leonard, DS
Leonard, F
Licciardi, C
Lin, YH
MacLellan, R
Marino, MG
Mong, B
Moore, D
Odian, A
Ostrovskiy, I
Ouellet, C
Piepke, A
Pocar, A
Retiere, F
Rowson, PC
Rozo, MP
Schubert, A
Sinclair, D
Smith, E
Stekhanov, V
Tarka, M
Tolba, T
Tosi, D
Vuilleumier, JL
Walton, J
Walton, T
Weber, M
Wen, LJ
Wichoski, U
Yang, L
Yen, YR
Zhao, YB
AF Twelker, K.
Kravitz, S.
Montero Diez, M.
Gratta, G.
Fairbank, W., Jr.
Albert, J. B.
Auty, D. J.
Barbeau, P. S.
Beck, D.
Benitez-Medina, C.
Breidenbach, M.
Brunner, T.
Cao, G. F.
Chambers, C.
Cleveland, B.
Coon, M.
Craycraft, A.
Daniels, T.
Daugherty, S. J.
Davis, C. G.
Devoe, R.
Delaquis, S.
Didberidze, T.
Dilling, J.
Dolinski, M. J.
Dunford, M.
Fabris, L.
Farine, J.
Feldmeier, W.
Fierlinger, P.
Fudenberg, D.
Giroux, G.
Gornea, R.
Graham, K.
Hall, C.
Heffner, M.
Herrin, S.
Hughes, M.
Jiang, X. S.
Johnson, T. N.
Johnston, S.
Karelin, A.
Kaufman, L. J.
Killick, R.
Koffas, T.
Kruecken, R.
Kuchenkov, A.
Kumar, K. S.
Leonard, D. S.
Leonard, F.
Licciardi, C.
Lin, Y. H.
MacLellan, R.
Marino, M. G.
Mong, B.
Moore, D.
Odian, A.
Ostrovskiy, I.
Ouellet, C.
Piepke, A.
Pocar, A.
Retiere, F.
Rowson, P. C.
Rozo, M. P.
Schubert, A.
Sinclair, D.
Smith, E.
Stekhanov, V.
Tarka, M.
Tolba, T.
Tosi, D.
Vuilleumier, J. -L.
Walton, J.
Walton, T.
Weber, M.
Wen, L. J.
Wichoski, U.
Yang, L.
Yen, Y. -R.
Zhao, Y. B.
TI An apparatus to manipulate and identify individual Ba ions from bulk
liquid Xe
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID DOUBLE-BETA DECAY; MAJORANA NEUTRINOS; SPECTROSCOPY; PHASE
AB We describe a system to transport and identify barium ions produced in liquid xenon, as part of R&D towards the second phase of a double beta decay experiment, nEXO. The goal is to identify the Ba ion resulting from an extremely rare nuclear decay of the isotope Xe-136, hence providing a confirmation of the occurrence of the decay. This is achieved through Resonance Ionization Spectroscopy (RIS). In the test setup described here, Ba ions can be produced in liquid xenon or vacuum and collected on a clean substrate. This substrate is then removed to an analysis chamber under vacuum, where laser-induced thermal desorption and RIS are used with time-of-flight mass spectroscopy for positive identification of the barium decay product. (C) 2014 AIP Publishing LLC.
C1 [Twelker, K.; Kravitz, S.; Montero Diez, M.; Gratta, G.; Brunner, T.; Devoe, R.; Fudenberg, D.; Moore, D.; Ostrovskiy, I.; Schubert, A.; Tosi, D.; Weber, M.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Fairbank, W., Jr.; Benitez-Medina, C.; Chambers, C.; Craycraft, A.; Walton, T.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA.
[Albert, J. B.; Daugherty, S. J.; Johnson, T. N.; Kaufman, L. J.] Indiana Univ, Phys Dept, Bloomington, IN 47405 USA.
[Albert, J. B.; Daugherty, S. J.; Johnson, T. N.; Kaufman, L. J.] Indiana Univ, CEEM, Bloomington, IN 47405 USA.
[Auty, D. J.; Didberidze, T.; Hughes, M.; Piepke, A.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
[Barbeau, P. S.] Duke Univ, Dept Phys, Durham, NC 27708 USA.
[Barbeau, P. S.] TUNL, Durham, NC 27708 USA.
[Beck, D.; Coon, M.; Tarka, M.; Walton, J.; Yang, L.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Breidenbach, M.; Herrin, S.; MacLellan, R.; Odian, A.; Rowson, P. C.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Cao, G. F.; Jiang, X. S.; Wen, L. J.; Zhao, Y. B.] Inst High Energy Phys, Beijing 100039, Peoples R China.
[Cleveland, B.; Farine, J.; Mong, B.; Wichoski, U.] Laurentian Univ, Dept Phys, Sudbury, ON P3E 2C6, Canada.
[Daniels, T.; Johnston, S.; Kumar, K. S.; Pocar, A.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA.
[Davis, C. G.; Hall, C.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Delaquis, S.; Giroux, G.; Gornea, R.; Tolba, T.; Vuilleumier, J. -L.] Univ Bern, LHEP, Albert Einstein Ctr, Bern, Switzerland.
[Dilling, J.; Kruecken, R.; Retiere, F.; Sinclair, D.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Dolinski, M. J.; Lin, Y. H.; Smith, E.; Yen, Y. -R.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA.
[Dunford, M.; Graham, K.; Killick, R.; Koffas, T.; Leonard, F.; Licciardi, C.; Ouellet, C.; Rozo, M. P.; Sinclair, D.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada.
[Fabris, L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Feldmeier, W.; Fierlinger, P.; Marino, M. G.] Tech Univ Munich, Dept Phys, Garching, Germany.
[Feldmeier, W.; Fierlinger, P.; Marino, M. G.] Tech Univ Munich, Excellence Cluster Universe, Garching, Germany.
[Heffner, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Karelin, A.; Kuchenkov, A.; Stekhanov, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Leonard, D. S.] Univ Seoul, Dept Phys, Seoul, South Korea.
RP Twelker, K (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
RI Fabris, Lorenzo/E-4653-2013; Kruecken, Reiner/A-1640-2013;
OI Fabris, Lorenzo/0000-0001-5605-5615; Kruecken,
Reiner/0000-0002-2755-8042; Ostrovskiy, Igor/0000-0003-4939-0225;
Brunner, Thomas/0000-0002-3131-8148
FU National Science Foundation [PHY-1132382-001]
FX This work is supported by the National Science Foundation, Award No.
PHY-1132382-001. We thank R. Conley (SLAC), K. Merkle, and the Stanford
Physics Machine shop for their help in constructing of the apparatus. We
thank H. Manoharan (Stanford), J. Schwede (Stanford), and P. Vogel
(Caltech) for many useful discussions.
NR 22
TC 3
Z9 3
U1 1
U2 10
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD SEP
PY 2014
VL 85
IS 9
AR 095114
DI 10.1063/1.4895646
PG 9
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA AQ6HE
UT WOS:000342910500080
PM 25273779
ER
PT J
AU Yoder, J
Malone, MW
Espy, MA
Sevanto, S
AF Yoder, Jacob
Malone, Michael W.
Espy, Michelle A.
Sevanto, Sanna
TI Low-field nuclear magnetic resonance for the in vivo study of water
content in trees
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID STEM DIAMETER VARIATIONS; SAP FLOW; XYLEM; MRI; PHLOEM; WOOD; DYNAMICS;
DROUGHT; TOMATO; PLANTS
AB Nuclear magnetic resonance (NMR) and magnetic resonance imaging have long been used to study water content in plants. Approaches have been primarily based on systems using large magnetic fields (similar to 1 T) to obtain NMR signals with good signal-to-noise. This is because the NMR signal scales approximately with the magnetic field strength squared. However, there are also limits to this approach in terms of realistic physiological configuration or those imposed by the size and cost of the magnet. Here we have taken a different approach - keeping the magnetic field low to produce a very light and inexpensive system, suitable for bulk water measurements on trees less than 5 cm in diameter, which could easily be duplicated to measure on many trees or from multiple parts of the same tree. Using this system we have shown sensitivity to water content in trees and their cuttings and observed a diurnal signal variation in tree water content in a greenhouse. We also demonstrate that, with calibration and modeling of the thermal polarization, the system is reliable under significant temperature variation. (C) 2014 AIP Publishing LLC.
C1 [Yoder, Jacob; Malone, Michael W.; Espy, Michelle A.; Sevanto, Sanna] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Yoder, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM jlyoder@lanl.gov
FU LDRD program [20130442ER]
FX The authors wish to thank the LDRD program for its generous support via
Grant No. 20130442ER, as well as Igor Savukov for the loan of most of
the equipment used in the in vivo system, Jesse Resnick for his initial
prototyping and investigations, and Nathan McDowell for many beneficial
conversations.
NR 24
TC 1
Z9 1
U1 3
U2 31
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD SEP
PY 2014
VL 85
IS 9
AR 095110
DI 10.1063/1.4895648
PG 8
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA AQ6HE
UT WOS:000342910500076
PM 25273775
ER
PT J
AU Kuhn, JH
Andersen, KG
Bao, YM
Bavari, S
Becker, S
Bennett, RS
Bergman, NH
Blinkova, O
Bradfute, S
Brister, JR
Bukreyev, A
Chandran, K
Chepurnov, AA
Davey, RA
Dietzgen, RG
Doggett, NA
Dolnik, O
Dye, JM
Enterlein, S
Fenimore, PW
Formenty, P
Freiberg, AN
Garry, RF
Garza, NL
Gire, SK
Gonzalez, JP
Griffiths, A
Happi, CT
Hensley, LE
Herbert, AS
Hevey, MC
Hoenen, T
Honko, AN
Ignatyev, GM
Jahrling, PB
Johnson, JC
Johnson, KM
Kindrachuk, J
Klenk, HD
Kobinger, G
Kochel, TJ
Lackemeyer, MG
Lackner, DF
Leroy, EM
Lever, MS
Muhlberger, E
Netesov, SV
Olinger, GG
Omilabu, SA
Palacios, G
Panchal, RG
Park, DJ
Patterson, JL
Paweska, JT
Peters, CJ
Pettitt, J
Pitt, L
Radoshitzky, SR
Ryabchikova, EI
Saphire, EO
Sabeti, PC
Sealfon, R
Shestopalov, AM
Smither, SJ
Sullivan, NJ
Swanepoel, R
Takada, A
Towner, JS
van der Groen, G
Volchkov, VE
Volchkova, VA
Wahl-Jensen, V
Warren, TK
Warfield, KL
Weidmann, M
Nichol, ST
AF Kuhn, Jens H.
Andersen, Kristian G.
Bao, Yiming
Bavari, Sina
Becker, Stephan
Bennett, Richard S.
Bergman, Nicholas H.
Blinkova, Olga
Bradfute, Steven
Brister, J. Rodney
Bukreyev, Alexander
Chandran, Kartik
Chepurnov, Alexander A.
Davey, Robert A.
Dietzgen, Ralf G.
Doggett, Norman A.
Dolnik, Olga
Dye, John M.
Enterlein, Sven
Fenimore, Paul W.
Formenty, Pierre
Freiberg, Alexander N.
Garry, Robert F.
Garza, Nicole L.
Gire, Stephen K.
Gonzalez, Jean-Paul
Griffiths, Anthony
Happi, Christian T.
Hensley, Lisa E.
Herbert, Andrew S.
Hevey, Michael C.
Hoenen, Thomas
Honko, Anna N.
Ignatyev, Georgy M.
Jahrling, Peter B.
Johnson, Joshua C.
Johnson, Karl M.
Kindrachuk, Jason
Klenk, Hans-Dieter
Kobinger, Gary
Kochel, Tadeusz J.
Lackemeyer, Matthew G.
Lackner, Daniel F.
Leroy, Eric M.
Lever, Mark S.
Muehlberger, Elke
Netesov, Sergey V.
Olinger, Gene G.
Omilabu, Sunday A.
Palacios, Gustavo
Panchal, Rekha G.
Park, Daniel J.
Patterson, Jean L.
Paweska, Janusz T.
Peters, Clarence J.
Pettitt, James
Pitt, Louise
Radoshitzky, Sheli R.
Ryabchikova, Elena I.
Saphire, Erica Ollmann
Sabeti, Pardis C.
Sealfon, Rachel
Shestopalov, Aleksandr M.
Smither, Sophie J.
Sullivan, Nancy J.
Swanepoel, Robert
Takada, Ayato
Towner, Jonathan S.
van der Groen, Guido
Volchkov, Viktor E.
Volchkova, Valentina A.
Wahl-Jensen, Victoria
Warren, Travis K.
Warfield, Kelly L.
Weidmann, Manfred
Nichol, Stuart T.
TI Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type
Variants, Type Sequences, and Names
SO VIRUSES-BASEL
LA English
DT Letter
DE Bundibugyo virus; cDNA clone; cuevavirus; Ebola; Ebola virus;
ebolavirus; filovirid; Filoviridae; filovirus; genome annotation; ICTV;
International Committee on Taxonomy of Viruses; Lloviu virus; Marburg
virus; marburgvirus; mononegavirad; Mononegavirales; mononegavirus; Ravn
virus; RefSeq; Reston virus; reverse genetics; Sudan virus; Tai Forest
virus; virus classification; virus isolate; virus nomenclature; virus
strain; virus taxonomy; virus variant
ID INTERFERON INHIBITORY DOMAIN; DOUBLE-STRANDED-RNA; C-TERMINAL DOMAIN;
EBOLA-VIRUS VP35; STANDARDIZED NOMENCLATURE; FAMILY FILOVIRIDAE; SPECIES
LEVEL; INTERNATIONAL COMMITTEE; ENVELOPE GLYCOPROTEIN; TAXONOMIC
PROPOSALS
AB Sequence determination of complete or coding-complete genomes of viruses is becoming common practice for supporting the work of epidemiologists, ecologists, virologists, and taxonomists. Sequencing duration and costs are rapidly decreasing, sequencing hardware is under modification for use by non-experts, and software is constantly being improved to simplify sequence data management and analysis. Thus, analysis of virus disease outbreaks on the molecular level is now feasible, including characterization of the evolution of individual virus populations in single patients over time. The increasing accumulation of sequencing data creates a management problem for the curators of commonly used sequence databases and an entry retrieval problem for end users. Therefore, utilizing the data to their fullest potential will require setting nomenclature and annotation standards for virus isolates and associated genomic sequences. The National Center for Biotechnology Information's (NCBI's) RefSeq is a non-redundant, curated database for reference (or type) nucleotide sequence records that supplies source data to numerous other databases. Building on recently proposed templates for filovirus variant naming [ ()////-], we report consensus decisions from a majority of past and currently active filovirus experts on the eight filovirus type variants and isolates to be represented in RefSeq, their final designations, and their associated sequences.
C1 [Kuhn, Jens H.; Hensley, Lisa E.; Honko, Anna N.; Jahrling, Peter B.; Johnson, Joshua C.; Kindrachuk, Jason; Lackemeyer, Matthew G.; Olinger, Gene G.; Pettitt, James] NIAID, Integrated Res Facil Ft Detrick, NIH, Frederick, MD 21702 USA.
[Andersen, Kristian G.; Gire, Stephen K.; Sabeti, Pardis C.] Harvard Univ, FAS Ctr Syst Biol, Cambridge, MA 02138 USA.
[Bao, Yiming; Blinkova, Olga; Brister, J. Rodney] Natl Lib Med, Informat Engn Branch, Natl Ctr Biotechnol Informat, NIH, Bethesda, MD 20894 USA.
[Bavari, Sina; Dye, John M.; Garza, Nicole L.; Herbert, Andrew S.; Palacios, Gustavo; Panchal, Rekha G.; Pitt, Louise; Radoshitzky, Sheli R.; Warren, Travis K.] US Army, Med Res Inst Infect Dis, Frederick, MD 21702 USA.
[Becker, Stephan; Dolnik, Olga; Klenk, Hans-Dieter] Univ Marburg, Inst Virol, D-35043 Marburg, Germany.
[Bennett, Richard S.; Bergman, Nicholas H.; Hevey, Michael C.; Kochel, Tadeusz J.; Lackner, Daniel F.; Wahl-Jensen, Victoria] Natl Biodef Anal & Countermeasures Ctr, Frederick, MD 21702 USA.
[Bradfute, Steven] Univ New Mexico, Albuquerque, NM 87131 USA.
[Bukreyev, Alexander; Freiberg, Alexander N.; Peters, Clarence J.] Univ Texas Med Branch, Dept Pathol, Galveston, TX 77555 USA.
[Bukreyev, Alexander; Freiberg, Alexander N.; Peters, Clarence J.] Univ Texas Med Branch, Galveston Natl Lab, Galveston, TX 77555 USA.
[Chandran, Kartik] Albert Einstein Coll Med, Dept Microbiol & Immunol, Bronx, NY 10461 USA.
[Chepurnov, Alexander A.] Russian Acad Sci, Siberian Branch, Inst Clin Immunol, Novosibirsk 630091, Novosibirsk Obl, Russia.
[Davey, Robert A.; Griffiths, Anthony; Patterson, Jean L.] Texas Biomed Res Inst, Dept Virol & Immunol, San Antonio, TX 78227 USA.
[Dietzgen, Ralf G.] Univ Queensland, Queensland Alliance Agr & Food Innovat, St Lucia, Qld 4072, Australia.
[Doggett, Norman A.; Fenimore, Paul W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Enterlein, Sven] Integrated BioTherapeut Inc, Gaithersburg, MD 20878 USA.
[Formenty, Pierre] WHO, CH-1211 Geneva, Switzerland.
[Gonzalez, Jean-Paul] Metabiota Inc, San Francisco, CA 94104 USA.
[Garry, Robert F.] Tulane Univ, Sch Med, Dept Microbiol & Immunol, New Orleans, LA 70112 USA.
[Happi, Christian T.] Redeemers Univ, Dept Biol Sci, Coll Nat Sci, Lagos, Ogun State, Nigeria.
[Happi, Christian T.] Redeemers Univ, African Ctr Excellence Genom Infect Dis, Lagos, Ogun State, Nigeria.
[Hoenen, Thomas] NIAID, Virol Lab, Div Intramural Res, NIH, Hamilton, MT 59840 USA.
[Ignatyev, Georgy M.] Minist Hlth Russian Federat, Microgen Sci Ind Co Immunobiol Med, Fed State Unitary Co, Moscow 115088, Russia.
[Kobinger, Gary] Publ Hlth Agcy Canada, Natl Microbiol Lab, Special Pathogens Program, Winnipeg, MB R3E 3R2, Canada.
[Leroy, Eric M.] Ctr Int Rech Med Franceville, Franceville, Gabon.
[Lever, Mark S.; Smither, Sophie J.] Dstl, Dept Biomed Sci, Salisbury SP4 0JQ, Wilts, England.
[Muehlberger, Elke] Boston Univ, Sch Med, Dept Microbiol, Boston, MA 02118 USA.
[Muehlberger, Elke] Boston Univ, Sch Med, Natl Emerging Infect Dis Lab, Boston, MA 02118 USA.
[Netesov, Sergey V.; Shestopalov, Aleksandr M.] Novosibirsk State Univ, Novosibirsk 630090, Novosibirsk Reg, Russia.
[Omilabu, Sunday A.] Univ Lagos, Coll Med, Dept Med Microbiol & Parasitol, Lagos, Nigeria.
[Park, Daniel J.] Broad Inst, Cambridge, MA 02142 USA.
[Paweska, Janusz T.] Natl Hlth Lab Serv, Ctr Emerging & Zoonot Dis, Natl Inst Communicable Dis, ZA-2192 Sandringham Johannesburg, Gauteng, South Africa.
[Ryabchikova, Elena I.] Russian Acad Sci, Siberian Branch, Inst Chem Biol & Fundamental Med, Novosibirsk 630090, Novosibirsk Reg, Russia.
[Saphire, Erica Ollmann] Scripps Res Inst, Dept Immunol & Microbial Sci, La Jolla, CA 92037 USA.
[Saphire, Erica Ollmann] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA.
[Sealfon, Rachel] MIT, Cambridge, MA 02139 USA.
[Sealfon, Rachel] MIT, Artificial Intelligence Lab, Cambridge, MA 02139 USA.
[Sullivan, Nancy J.] NIAID, Vaccine Res Ctr, NIH, Bethesda, MD 20892 USA.
[Swanepoel, Robert] Univ Pretoria, Zoonoses Res Unit, ZA-0028 Pretoria, South Africa.
[Takada, Ayato] Hokkaido Univ, Res Ctr Zoonosis Control, Div Global Epidemiol, Kita Ku, Sapporo, Hokkaido, Japan.
[Towner, Jonathan S.; Nichol, Stuart T.] Ctr Dis Control & Prevent, Viral Special Pathogens Branch, Div High Consequence Pathogens Pathol, Natl Ctr Emerging & Zoonot Infect Dis, Atlanta, GA 30333 USA.
[van der Groen, Guido] Prins Leopold Inst Trop Geneeskunde, B-2000 Antwerp, Belgium.
[Volchkov, Viktor E.; Volchkova, Valentina A.] Univ Lyon 1, INSERM, U1111, Lab Mol Basis Viral Pathogen,CIRI,Ecole Normale S, F-69365 Lyon 07, France.
[Warfield, Kelly L.] Unither Virol LLC, Silver Spring, MD 20910 USA.
[Weidmann, Manfred] Univ Stirling, Inst Aquaculture, Stirling FK9 4LA, Scotland.
RP Kuhn, JH (reprint author), NIAID, Integrated Res Facil Ft Detrick, NIH, Frederick, MD 21702 USA.
EM kuhnjens@mail.nih.gov; kandersen@oeb.harvard.edu; bao@ncbi.nlm.nih.gov;
sina.bavari.civ@mail.mil; becker@staff.uni-marburg.de;
richard.bennett@nbacc.dhs.gov; nicholas.bergman@nbacc.dhs.gov;
olga.blinkova@nih.gov; steven_bradfute@yahoo.com;
jamesbr@ncbi.nlm.nih.gov; alexander.bukreyev@utmb.edu;
kartik.chandran@einstein.yu.edu; alexa.che.purnov@gmail.com;
rdavey@txbiomed.org; r.dietzgen@uq.edu.au; doggett@lanl.gov;
Dolnik@staff.uni-marburg.de; john.m.dye1.civ@mail.mil;
sven.enterlein@gmail.com; paulf@lanl.gov; formentyp@who.int;
anfreibe@utmb.edu; rfgarry@tulane.edu; Nicole.l.lackemeyer.ctr@mail.mil;
sgire@oeb.harvard.edu; jpgonzalez@metabiota.com;
agriffiths@txbiomed.org; chappi@hsph.harvard.edu; lisa.hensley@nih.gov;
anderw.s.herbert.ctr@mail.mil; michael.hevey@nbacc.dhs.gov;
thomas.hoenen@nih.gov; anna.honko@nih.gov; g.m.ignatyev@microgen.ru;
jahrlingp@niaid.nih.gov; joshua.johnson@nih.gov; microcaddis@gmail.com;
kindrachuk.kenneth@nih.gov; klenk@mailer.uni-marburg.de;
gary.kobinger@phac-aspc.gc.ca; tadeusz.kochel@nbacc.dhs.gov;
matthew.lackemeyer@nih.gov; daniel.lackner@nbacc.dhs.gov;
eric.leroy@ird.fr; mslever@mail.dstl.gov.uk; muehlber@bu.edu;
nauka@nsu.ru; gene.olinger@nih.gov; omilabusa@yahoo.com;
gustavo.f.palacios.ctr@us.army.mil; rekha.g.panchal.civ@mail.mil;
dpark@broadinstitute.org; jpatters@txbiomed.org; januszp@nicd.ac.za;
cjpeters@UTMB.EDU; james.pettitt@nih.gov; louise.pitt@us.army.mil;
sheli.r.radoshitzky.ctr@mail.mil; lenryab@yandex.com; erica@scripps.edu;
pardis@broadinstitute.org; sealfon@gmail.com; shestopalov2@mail.ru;
SJSMITHER@mail.dstl.gov.uk; njsull@mail.nih.gov; bobswanepoel@gmail.com;
atakada@czc.hokudai.ac.jp; jit8@cdc.gov; gvdgroen@scarlet.be;
viktor.volchkov@inserm.fr; valentina.volchkova@inserm.fr;
victoria.jensen@nbacc.dhs.gov; travis.k.warren.ctr@mail.mil;
kellylynwarfield@gmail.com; m.w.weidmann@stir.ac.uk; stn1@cdc.gov
RI Weidmann, Manfred/G-1817-2015; LEROY, Eric/I-4347-2016; Volchkov,
Viktor/M-7846-2014; Kuhn, Jens H./B-7615-2011; Ryabchikova, Elena
/G-3089-2013; Netesov, Sergey/A-3751-2013; Becker, Stephan/A-1065-2010;
Palacios, Gustavo/I-7773-2015
OI Honko, Anna/0000-0001-9165-148X; Bennett, Richard/0000-0002-7227-4831;
Weidmann, Manfred/0000-0002-7063-7491; Johnson,
Joshua/0000-0002-5677-3841; LEROY, Eric/0000-0003-0022-0890; Volchkov,
Viktor/0000-0001-7896-8706; Kindrachuk, Jason/0000-0002-3305-7084;
Hoenen, Thomas/0000-0002-5829-6305; Kuhn, Jens H./0000-0002-7800-6045;
Ryabchikova, Elena /0000-0003-4714-1524; Netesov,
Sergey/0000-0002-7786-2464; Becker, Stephan/0000-0002-2794-5659;
Palacios, Gustavo/0000-0001-5062-1938
FU Intramural NIH HHS; NIAID NIH HHS [U19 AI115589, HHSN272200700016I, R01
AI104621, UC7 AI094660]; World Health Organization [001]
NR 49
TC 20
Z9 20
U1 3
U2 33
PU MDPI AG
PI BASEL
PA POSTFACH, CH-4005 BASEL, SWITZERLAND
SN 1999-4915
J9 VIRUSES-BASEL
JI Viruses-Basel
PD SEP
PY 2014
VL 6
IS 9
BP 3663
EP 3682
DI 10.3390/v6093663
PG 20
WC Virology
SC Virology
GA AQ8TW
UT WOS:000343107100020
PM 25256396
ER
PT J
AU Nishitani, J
Detert, D
Beeman, J
Yu, KM
Walukiewicz, W
AF Nishitani, Junichi
Detert, Douglas
Beeman, Jeffrey
Yu, Kin Man
Walukiewicz, Wladek
TI Surface hole accumulation and Fermi level stabilization energy in SnTe
SO APPLIED PHYSICS EXPRESS
LA English
DT Article
ID TOPOLOGICAL CRYSTALLINE INSULATOR; VALENCE-BAND STRUCTURE;
ELECTRONIC-PROPERTIES; NATIVE DEFECTS; SEMICONDUCTORS; PBTE; LASERS;
GETE
AB SnTe films were deposited by RF magnetron sputtering. The thickness dependence of the sheet hole concentration indicated the presence of a high hole density surface accumulation layer. Irradiation of SnTe by Ne+ ions led to the saturation of the hole concentration corresponding to a Fermi energy that is 0.5 eV below the valence band edge. The stabilized Fermi energy on the surface and in the heavily damaged bulk is in agreement with the amphoteric native defect model. These results show that SnTe is a unique semiconductor with an extremely high valence band edge located at 4.4 eV below the vacuum level. (C) 2014 The Japan Society of Applied Physics
C1 [Nishitani, Junichi] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan.
[Nishitani, Junichi; Detert, Douglas; Beeman, Jeffrey; Yu, Kin Man; Walukiewicz, Wladek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Detert, Douglas] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
RP Nishitani, J (reprint author), Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan.
EM jnishitani@issp.u-tokyo.ac.jp
OI Yu, Kin Man/0000-0003-1350-9642
FU Office of Science, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division, of the U.S. Department of Energy
[DE-AC02-05CH11231]; Murata Science Foundation
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, Materials Sciences and Engineering Division, of
the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. J.
Nishitani acknowledges the support of The Murata Science Foundation.
NR 35
TC 4
Z9 4
U1 4
U2 38
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1882-0778
EI 1882-0786
J9 APPL PHYS EXPRESS
JI Appl. Phys. Express
PD SEP
PY 2014
VL 7
IS 9
AR 091201
DI 10.7567/APEX.7.091201
PG 3
WC Physics, Applied
SC Physics
GA AQ5QK
UT WOS:000342863500004
ER
PT J
AU Tyson, TA
Yu, T
Croft, M
Scofield, ME
Bobb-Semple, D
Tao, J
Jaye, C
Fischer, D
Wong, SS
AF Tyson, Trevor A.
Yu, Tian
Croft, Mark
Scofield, Megan E.
Bobb-Semple, Dara
Tao, Jing
Jaye, Cherno
Fischer, Daniel
Wong, Stanislaus S.
TI Polar state in freestanding strontium titanate nanoparticles
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID RAY-ABSORPTION SPECTROSCOPY; SRTIO3 THIN-FILMS; X-RAY;
RAMAN-SPECTROSCOPY; PHASE-TRANSITION; FINE-STRUCTURE; PEROVSKITE;
FERROELECTRICITY; DISORDER; SILICON
AB Monodispersed strontium titanate nanoparticles were prepared and studied in detail. It is found that similar to 10 nm as-prepared stoichiometric nanoparticles are in a polar structural state (possibly with ferroelectric properties) over a broad temperature range. A tetragonal structure, with possible reduction of the electronic hybridization, is found as the particle size is reduced. In the 10 nm particles, no change in the local Ti-off centering is seen between 20 and 300 K. The results indicate that nanoscale motifs of SrTiO3 may be utilized in data storage as assembled nano-particle arrays in applications where chemical stability, temperature stability, and low toxicity are critical issues. (C) 2014 AIP Publishing LLC.
C1 [Tyson, Trevor A.; Yu, Tian] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA.
[Croft, Mark] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
[Scofield, Megan E.; Bobb-Semple, Dara; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Tao, Jing; Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
[Jaye, Cherno; Fischer, Daniel] Natl Inst Stand & Technol, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA.
RP Tyson, TA (reprint author), New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA.
EM tyson@njit.edu; sswong@bnl.gov
FU U.S. Department of Energy (DOE) [DE-FG02-07ER46402]; DOE, Basic Energy
Sciences [DE-AC02-98CH10886]; DOE
FX This work is supported in part by U.S. Department of Energy (DOE) Grant
DE-FG02-07ER46402 (TAT, TY) and research by MES and SSW was supported by
the DOE, Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.
Synchrotron powder x-ray diffraction and spectroscopy data acquisition
was performed at Brookhaven National Laboratory's National Synchrotron
Light Source which is funded by DOE. We thank Dr. Yuqin Zhang (NJIT) for
conducting the Raman measurements on the samples.
NR 56
TC 1
Z9 1
U1 3
U2 37
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD SEP 1
PY 2014
VL 105
IS 9
AR 091901
DI 10.1063/1.4894253
PG 5
WC Physics, Applied
SC Physics
GA AQ4FX
UT WOS:000342749800015
ER
PT J
AU Wu, SM
Hoffman, J
Pearson, JE
Bhattacharya, A
AF Wu, Stephen M.
Hoffman, Jason
Pearson, John E.
Bhattacharya, Anand
TI Unambiguous separation of the inverse spin Hall and anomalous Nernst
effects within a ferromagnetic metal using the spin Seebeck effect
SO APPLIED PHYSICS LETTERS
LA English
DT Article
AB The longitudinal spin Seebeck effect is measured on the ferromagnetic insulator Fe3O4 with the ferromagnetic metal Co0.2Fe0.6B0.2 (CoFeB) as the spin detector. By using a non-magnetic spacer material between the two materials (Ti), it is possible to decouple the two ferromagnetic materials and directly observe pure spin flow from Fe3O4 into CoFeB. It is shown that in a single ferromagnetic metal, the inverse spin Hall effect (ISHE) and anomalous Nernst effect (ANE) can occur simultaneously with opposite polarity. Using this and the large difference in the coercive fields between the two magnets, it is possible to unambiguously separate the contributions of the spin Seebeck effect from the ANE and observe the degree to which each effect contributes to the total response. These experiments show conclusively that the ISHE and ANE in CoFeB are separate phenomena with different origins and can coexist in the same material with opposite response to a thermal gradient. (C) 2014 AIP Publishing LLC.
C1 [Wu, Stephen M.; Hoffman, Jason; Pearson, John E.; Bhattacharya, Anand] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Wu, SM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM swu@anl.gov
RI Bhattacharya, Anand/G-1645-2011
OI Bhattacharya, Anand/0000-0002-6839-6860
FU U.S. Department of Energy (DOE), Office of Science, Basic Energy
Sciences (BES), Materials Sciences and Engineering Division; U.S. DOE,
BES [DE-AC02-06CH11357]
FX All authors acknowledge support of the U.S. Department of Energy (DOE),
Office of Science, Basic Energy Sciences (BES), Materials Sciences and
Engineering Division. The use of facilities at the Center for Nanoscale
Materials was supported by the U.S. DOE, BES under Contract No.
DE-AC02-06CH11357. The authors also thank Axel Hoffmann for valuable
discussion and insight.
NR 24
TC 13
Z9 13
U1 4
U2 44
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD SEP 1
PY 2014
VL 105
IS 9
AR 092409
DI 10.1063/1.4895034
PG 4
WC Physics, Applied
SC Physics
GA AQ4FX
UT WOS:000342749800036
ER
PT J
AU Oates, CJ
Dondelinger, F
Bayani, N
Korkola, J
Gray, JW
Mukherjee, S
AF Oates, Chris J.
Dondelinger, Frank
Bayani, Nora
Korkola, James
Gray, Joe W.
Mukherjee, Sach
TI Causal network inference using biochemical kinetics
SO BIOINFORMATICS
LA English
DT Article; Proceedings Paper
CT 13th European Conference on Computational Biology (ECCB)
CY SEP 07-10, 2014
CL Strasbourg, FRANCE
SP BioBase, Sbv IMPROVER, Koriscale, Totalinux, Genom, Proteom & Bioinformat
ID GENE REGULATORY NETWORKS; BAYESIAN-INFERENCE; GAUSSIAN MODELS;
COMPOUND-MODE; DYNAMICS; OUTPUT; TIME
AB Motivation: Networks are widely used as structural summaries of biochemical systems. Statistical estimation of networks is usually based on linear or discrete models. However, the dynamics of biochemical systems are generally non-linear, suggesting that suitable non-linear formulations may offer gains with respect to causal network inference and aid in associated prediction problems.
Results: We present a general framework for network inference and dynamical prediction using time course data that is rooted in nonlinear biochemical kinetics. This is achieved by considering a dynamical system based on a chemical reaction graph with associated kinetic parameters. Both the graph and kinetic parameters are treated as unknown; inference is carried out within a Bayesian framework. This allows prediction of dynamical behavior even when the underlying reaction graph itself is unknown or uncertain. Results, based on (i) data simulated from a mechanistic model of mitogen-activated protein kinase signaling and (ii) phosphoproteomic data from cancer cell lines, demonstrate that non-linear formulations can yield gains in causal network inference and permit dynamical prediction and uncertainty quantification in the challenging setting where the reaction graph is unknown.
C1 [Oates, Chris J.] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England.
[Dondelinger, Frank; Mukherjee, Sach] MRC, Biostat Unit, Cambridge CB2 0SR, England.
[Bayani, Nora] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94710 USA.
[Korkola, James; Gray, Joe W.] Oregon Hlth & Sci Univ, Knight Canc Inst, Dept Biomed Engn, Portland, OR 97239 USA.
[Mukherjee, Sach] Univ Cambridge, Sch Clin Med, Cambridge CB2 0SP, England.
RP Mukherjee, S (reprint author), MRC, Biostat Unit, Cambridge CB2 0SR, England.
FU US Department of Energy [DE-AC02-05CH11231]; US National Institute of
Health, National Cancer Institute [U54 CA 112970, P50 CA 58207]; UK
Engineering and Physical Sciences Research Council [EP/E501311/1];
Netherlands Organisation for Scientific Research [Cancer Systems Biology
Center]
FX US Department of Energy (DE-AC02-05CH11231); US National Institute of
Health, National Cancer Institute (U54 CA 112970, P50 CA 58207); UK
Engineering and Physical Sciences Research Council (EP/E501311/1); and
Netherlands Organisation for Scientific Research [Cancer Systems Biology
Center].
NR 35
TC 5
Z9 5
U1 0
U2 7
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1367-4803
EI 1460-2059
J9 BIOINFORMATICS
JI Bioinformatics
PD SEP 1
PY 2014
VL 30
IS 17
BP I468
EP I474
DI 10.1093/bioinformatics/btu452
PG 7
WC Biochemical Research Methods; Biotechnology & Applied Microbiology;
Computer Science, Interdisciplinary Applications; Mathematical &
Computational Biology; Statistics & Probability
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Computer Science; Mathematical & Computational Biology; Mathematics
GA AQ6HW
UT WOS:000342912400018
PM 25161235
ER
PT J
AU O'Neill, BJ
Miller, JT
Dietrich, PJ
Sollberger, FG
Ribeiro, FH
Dumesic, JA
AF O'Neill, Brandon J.
Miller, Jeffrey T.
Dietrich, Paul J.
Sollberger, Fred G.
Ribeiro, Fabio H.
Dumesic, James A.
TI Operando X-ray Absorption Spectroscopy Studies of Sintering for
Supported Copper Catalysts during Liquid-phase Reaction
SO CHEMCATCHEM
LA English
DT Article
DE atomic layer deposition; biomass; catalyst stability; copper; operando
X-ray absorption spectroscopy
ID ATOMIC LAYER DEPOSITION; STABILIZATION; NANOPARTICLES; HYDROGENATION;
CHEMICALS; SIZE
AB Operando X-ray absorption spectroscopy is used to measure simultaneous changes in catalyst structure and changes in catalytic activity versus time during the liquid phase hydrogenation of furfural over supported copper catalysts. This approach allows the size of the copper nanoparticles to be monitored continuously versus time-on-stream, such that these changes in dispersion can be accounted for in the calculation of turnover frequency. It is shown that sintering of the copper nanoparticles is the predominant mode of catalyst deactivation for a Cu/-Al2O3 catalyst throughout its time-on-stream, leading to irreversible loss of catalytic activity. In contrast, this mode of deactivation is eliminated by atomic layer deposition of an alumina overcoat; however, deposition of carbonaceous deposits in the small pores of the overcoat leads to deactivation that is reversible upon calcination of the catalyst.
C1 [O'Neill, Brandon J.; Dumesic, James A.] Univ Wisconsin Madison, Madison, WI 53705 USA.
[Miller, Jeffrey T.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Dietrich, Paul J.; Sollberger, Fred G.; Ribeiro, Fabio H.] Purdue Univ, W Lafayette, IN 47907 USA.
RP Dumesic, JA (reprint author), Univ Wisconsin Madison, Madison, WI 53705 USA.
EM dumesic@engr.wisc.edu
FU Institute for Atom-efficient Chemical Transformations (IACT), an Energy
Frontier Research Center - U.S. DOE, Office of Science, Office of Basic
Energy Sciences; U. S. DOE [DE-AC02-06CH11357]
FX This material is based upon work supported as part of the Institute for
Atom-efficient Chemical Transformations (IACT), an Energy Frontier
Research Center funded by the U.S. DOE, Office of Science, Office of
Basic Energy Sciences. Use of the Advanced Photon Source was supported
by the U. S. DOE under Contract No. DE-AC02-06CH11357. MRCAT operations
are supported by U.S. DOE and the MRCAT member institutions.
NR 16
TC 7
Z9 7
U1 6
U2 53
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1867-3880
EI 1867-3899
J9 CHEMCATCHEM
JI ChemCatChem
PD SEP
PY 2014
VL 6
IS 9
BP 2493
EP 2496
DI 10.1002/cctc.201402356
PG 4
WC Chemistry, Physical
SC Chemistry
GA AQ4CR
UT WOS:000342740300006
ER
PT J
AU Chen, WF
Schneider, JM
Sasaki, K
Wang, CH
Schneider, J
Iyer, S
Iyer, S
Zhu, YM
Muckerman, JT
Fujita, E
AF Chen, Wei-Fu
Schneider, Jonathan M.
Sasaki, Kotaro
Wang, Chiu-Hui
Schneider, Jacob
Iyer, Shilpa
Iyer, Shweta
Zhu, Yimei
Muckerman, James T.
Fujita, Etsuko
TI Tungsten Carbide-Nitride on Graphene Nanoplatelets as a Durable Hydrogen
Evolution Electrocatalyst
SO CHEMSUSCHEM
LA English
DT Article
DE carbides; electrochemistry; graphene; hydrogen evolution; nitrides
ID TRANSITION-METAL CARBIDES; EFFICIENT; NANOPARTICLES; WATER; COCATALYSTS;
NANOSHEETS; CATALYSTS; PHOSPHIDE; MOS2; WC
AB Alternatives to platinum-based catalysts are required to sustainably produce hydrogen from water at low overpotentials. Progress has been made in utilizing tungsten carbide-based catalysts, however, their performance is currently limited by the density and reactivity of active sites, and insufficient stability in acidic electrolytes. We report highly active graphene nanoplatelet-supported tungsten carbide-nitride nanocomposites prepared via an in situ solid-state approach. This nano-composite catalyzes the hydrogen evolution reaction with very low overpotential and is stable operating for at least 300 h in harsh acidic conditions. The synthetic approach offers a great advantage in terms of structural control and kinetics improvement.
C1 [Chen, Wei-Fu; Schneider, Jonathan M.; Sasaki, Kotaro; Wang, Chiu-Hui; Schneider, Jacob; Iyer, Shilpa; Iyer, Shweta; Muckerman, James T.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
[Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
RP Chen, WF (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
EM wfchen@bnl.gov; ksasaki@bnl.gov; fujita@bnl.gov
FU U.S. Department of Energy (DOE) [DE-AC02-98CH10886]; Division of
Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy
Sciences; BNL Technology Maturation Funding [TM 12-008]; DOE Science
Undergraduate Laboratory Internships Program; Synchrotron Catalysis
Consortium, US Department of Energy [DE-FG02-05ER15688]
FX This work was carried out at Brookhaven National Laboratory (BNL) with
the U.S. Department of Energy (DOE) under contract number
DE-AC02-98CH10886 and supported by its Division of Chemical Sciences,
Geosciences and Biosciences, Office of Basic Energy Sciences. J.M.S.,
C.H.W., and K.S. acknowledge support by BNL Technology Maturation
Funding TM 12-008. J.M.S. acknowledges support by the DOE Science
Undergraduate Laboratory Internships Program. Beamline X18B at the NSLS
is supported in part by the Synchrotron Catalysis Consortium, US
Department of Energy Grant No DE-FG02-05ER15688.
NR 37
TC 20
Z9 20
U1 24
U2 165
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1864-5631
EI 1864-564X
J9 CHEMSUSCHEM
JI ChemSusChem
PD SEP
PY 2014
VL 7
IS 9
BP 2414
EP 2418
DI 10.1002/cssc.201402454
PG 5
WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
SC Chemistry; Science & Technology - Other Topics
GA AQ5AE
UT WOS:000342813300003
PM 25059477
ER
PT J
AU Cao, RG
Walter, ED
Xu, W
Nasybulin, EN
Bhattacharya, P
Bowden, ME
Engelhard, MH
Zhang, JG
AF Cao, Ruiguo
Walter, Eric D.
Xu, Wu
Nasybulin, Eduard N.
Bhattacharya, Priyanka
Bowden, Mark E.
Engelhard, Mark H.
Zhang, Ji-Guang
TI The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous
Lithium-Oxygen Batteries
SO CHEMSUSCHEM
LA English
DT Article
DE batteries; electrochemistry; lithium; oxygen; radicals
ID METAL-AIR BATTERIES; LI-O-2 BATTERIES; LI-AIR; KINETIC OVERPOTENTIALS;
DISCHARGE PRODUCT; ORGANIC-SOLVENTS; X-RAY; ELECTROLYTE;
ELECTROCHEMISTRY; CATALYSTS
AB A fundamental understanding of the mechanisms of both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in nonaqueous lithium-oxygen (Li-O-2) batteries is essential for the further development of these batteries. In this work, we systematically investigate the mechanisms of the ORR/OER reactions in nonaqueous Li-O-2 batteries by using electron paramagnetic resonance (EPR) spectroscopy, using 5,5-dimethyl-pyrroline N-oxide as a spin trap. The study provides direct verification of the formation of the superoxide radical anion (O-2(center dot-)) as an intermediate in the ORR during the discharge process, while no O2(center dot-) was detected in the OER during the charge process. These findings provide insight into, and an understanding of, the fundamental reaction mechanisms involving oxygen and guide the further development of this field.
C1 [Cao, Ruiguo; Xu, Wu; Nasybulin, Eduard N.; Bhattacharya, Priyanka; Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA.
[Walter, Eric D.; Bowden, Mark E.; Engelhard, Mark H.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA.
RP Xu, W (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA.
EM wu.xu@pnnl.gov; jiguang.zhang@pnnl.gov
RI Bhattacharya, Priyanka/E-1652-2011; Cao, Ruiguo/O-7354-2016; Walter,
Eric/P-9329-2016;
OI Bhattacharya, Priyanka/0000-0003-0368-8480; Engelhard,
Mark/0000-0002-5543-0812; Xu, Wu/0000-0002-2685-8684
FU Joint Center for Energy Storage Research, an Energy Innovation Hub -
U.S. Department of Energy, Office of Science, Basic Energy Sciences;
U.S. Department of Energy's Office of Biological and Environmental
Research; Linus Pauling Distinguished Postdoctoral Fellowship at PNNL
FX This work was supported by the Joint Center for Energy Storage Research,
an Energy Innovation Hub funded by the U.S. Department of Energy, Office
of Science, Basic Energy Sciences. The EPR, micro-XRD, XPS, and SEM
analyses were performed in the Environmental Molecular Sciences
Laboratory, a national scientific user facility sponsored by the U.S.
Department of Energy's Office of Biological and Environmental Research
and located at Pacific Northwest National Laboratory (PNNL). P.B. is
grateful for support from a Linus Pauling Distinguished Postdoctoral
Fellowship at PNNL.
NR 43
TC 20
Z9 21
U1 12
U2 146
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1864-5631
EI 1864-564X
J9 CHEMSUSCHEM
JI ChemSusChem
PD SEP
PY 2014
VL 7
IS 9
BP 2436
EP 2440
DI 10.1002/cssc.201402315
PG 5
WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
SC Chemistry; Science & Technology - Other Topics
GA AQ5AE
UT WOS:000342813300008
PM 25045007
ER
PT J
AU Sreekumar, S
Baer, ZC
Gross, E
Padmanaban, S
Goulas, K
Gunbas, G
Alayoglu, S
Blanch, HW
Clark, DS
Toste, FD
AF Sreekumar, Sanil
Baer, Zachary C.
Gross, Elad
Padmanaban, Sasisanker
Goulas, Konstantinos
Gunbas, Gorkem
Alayoglu, Selim
Blanch, Harvey W.
Clark, Douglas S.
Toste, F. Dean
TI Chemocatalytic Upgrading of Tailored Fermentation Products Toward
Biodiesel
SO CHEMSUSCHEM
LA English
DT Article
DE acetone-butanol-ethanol; biodiesel; biomass; Clostridium beijerinckii;
hydrotalcite; isopropanol-butanol-ethanol
ID CLOSTRIDIUM-ACETOBUTYLICUM; EXTRACTIVE FERMENTATION; ETHANOL
FERMENTATION; HIGHER ALCOHOLS; BIOMASS; BUTANOL; CATALYST; HYDROTALCITE;
HYDROCARBONS; PATHWAY
AB Biological and chemocatalytic processes are tailored in order to maximize the production of sustainable biodiesel from lignocellulosic sugar. Thus, the combination of hydrotalcite-supported copper(II) and palladium(0) catalysts with a modification of the fermentation from acetone-butanol-ethanol to isopropanol-butanol-ethanol predictably produces higher concentrations of diesel-range components in the alkylation reaction.
C1 [Sreekumar, Sanil; Gunbas, Gorkem; Toste, F. Dean] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Sreekumar, Sanil; Baer, Zachary C.; Padmanaban, Sasisanker; Goulas, Konstantinos; Blanch, Harvey W.; Clark, Douglas S.; Toste, F. Dean] Univ Calif Berkeley, Energy Biosci Inst, Berkeley, CA 94720 USA.
[Baer, Zachary C.; Goulas, Konstantinos; Gunbas, Gorkem; Blanch, Harvey W.; Clark, Douglas S.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Gross, Elad; Alayoglu, Selim] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Div Chem Sci, Berkeley, CA 94720 USA.
RP Goulas, K (reprint author), Univ Calif Berkeley, Energy Biosci Inst, Berkeley, CA 94720 USA.
EM blanch@berkeley.edu; clark@berkeley.edu; fdtoste@berkeley.edu
RI gunbas, gorkem/I-8975-2016; Padmanabhan, Sasisanker/E-8502-2012;
OI Padmanabhan, Sasisanker/0000-0003-2292-889X; Goulas,
Konstantinos/0000-0001-8306-2888; Toste, F. Dean/0000-0001-8018-2198
FU Energy Biosciences Institute (EBI)
FX This work was financially supported by Energy Biosciences Institute
(EBI).
NR 25
TC 23
Z9 23
U1 5
U2 33
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1864-5631
EI 1864-564X
J9 CHEMSUSCHEM
JI ChemSusChem
PD SEP
PY 2014
VL 7
IS 9
BP 2445
EP 2448
DI 10.1002/cssc.201402244
PG 4
WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
SC Chemistry; Science & Technology - Other Topics
GA AQ5AE
UT WOS:000342813300010
PM 25044817
ER
PT J
AU Xu, R
Zhang, XF
Yu, C
Ren, Y
Li, JCM
Belharouak, I
AF Xu, Rui
Zhang, Xiaofeng
Yu, Cun
Ren, Yang
Li, James C. M.
Belharouak, Ilias
TI Paving the Way for Using Li2S Batteries
SO CHEMSUSCHEM
LA English
DT Article
DE electrolyte; energy storage; lithium disulfide; lithium polysulfide;
lithium sulfur batteries
ID RECHARGEABLE LITHIUM BATTERIES; CATHODE MATERIALS; SULFUR BATTERIES; ION
BATTERIES; ELECTRODE; PERFORMANCE; ENERGY; COMPOSITES; PARTICLES; CELL
AB In this work, a novel lithium-sulfur battery was developed comprising Li2S as the cathode, lithium metal as the anode and polysulfide-based solution as the electrolyte. The electrochemical performances of these Li2S-based cells strongly depended upon the nature of the electrolytes. In the presence of the conventional electrolyte that consisted of lithium bis(trifluoromethanesulfonyl)- imide (LiTFSI) salt dissolved in a solvent combination of dimethoxyethane (DME)/1,3-dioxolane (DOL), the Li/Li2S cells showed sluggish kinetics, which translated into poor cycling and capacity retention. However, when using small amounts of polysulfides in the electrolyte along with a shuttle inhibitor the Li2S cathode was efficiently activated in the cell with the generation of over 1000 mAhg(-1) capacity and good cycle life.
C1 [Xu, Rui; Zhang, Xiaofeng; Belharouak, Ilias] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Belharouak, Ilias] Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar.
[Xu, Rui; Li, James C. M.] Univ Rochester, Dept Mech Engn, Mat Sci Program, Rochester, NY 14627 USA.
[Yu, Cun; Ren, Yang] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Belharouak, I (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM ibelharouak@qf.org.qa
OI Belharouak, Ilias/0000-0002-3985-0278; Yu, Cun/0000-0003-0084-6746
FU U.S. Department of Energy; Freedom CAR; Vehicle Technologies Office;
Electron Microscopy Center for Materials Research at Argonne National
Laboratory, a U.S. Department of Energy Office of Science Laboratory
[DE-AC02-06CH11357]
FX This research was funded by the U.S. Department of Energy, Freedom CAR,
and Vehicle Technologies Office. The electron microscopy was
accomplished at the Electron Microscopy Center for Materials Research at
Argonne National Laboratory, a U.S. Department of Energy Office of
Science Laboratory operated under Contract No. DE-AC02-06CH11357 by
UChicago Argonne, LLC.
NR 28
TC 11
Z9 11
U1 8
U2 69
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1864-5631
EI 1864-564X
J9 CHEMSUSCHEM
JI ChemSusChem
PD SEP
PY 2014
VL 7
IS 9
BP 2457
EP 2460
DI 10.1002/cssc.201402177
PG 4
WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
SC Chemistry; Science & Technology - Other Topics
GA AQ5AE
UT WOS:000342813300013
PM 25044568
ER
PT J
AU Archambault-Leger, V
Shao, XJ
Lynd, LR
AF Archambault-Leger, Veronique
Shao, Xiongjun
Lynd, Lee R.
TI Simulated Performance of Reactor Configurations for Hot-Water
Pretreatment of Sugarcane Bagasse
SO CHEMSUSCHEM
LA English
DT Article
DE biomass; computational chemistry; energy conversion; kinetics; renewable
resources
ID DILUTE SULFURIC-ACID; TOTAL MASS REMOVAL; CORN STOVER; HEMICELLULOSE
HYDROLYSIS; ENZYMATIC DIGESTIBILITY; LIGNOCELLULOSIC BIOMASS; CANE
BAGASSE; WHEAT-STRAW; FLOW-RATE; LIGNIN
AB During the pretreatment of cellulosic biomass for subsequent microbial or enzymatic processing, the fiber reactivity typically increases with increasing severity but so does sugar degradation. Experimental results with sugarcane bagasse show that this tradeoff can be mitigated substantially by pretreatment in a flow-through (FT) mode. A model that incorporates both kinetics and mass transfer was developed to simulate the performance of pretreatment in plug flow, counter-current flow, cross flow, discrete counter-current and partial FT configurations. The simulated results compare well to the literature for bagasse pretreated in both batch and FT configurations. A variety of FT configurations result in sugar degradation that is very low (1-5%) and 5-20-fold less than a conventional plug flow configuration. The performance exhibits strong sensitivity to the extent of hemicellulose solubilization, particularly for a conventional plug flow configuration.
C1 [Archambault-Leger, Veronique; Shao, Xiongjun; Lynd, Lee R.] Dartmouth Coll, Hanover, NH 03755 USA.
[Archambault-Leger, Veronique; Shao, Xiongjun; Lynd, Lee R.] Oak Ridge Natl Lab, DOE BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA.
[Lynd, Lee R.] Mascoma Corp, Lebanon, NH 03766 USA.
RP Lynd, LR (reprint author), Dartmouth Coll, Hanover, NH 03755 USA.
EM Lee.R.Lynd@Dartmouth.edu
FU Link Energy Foundation; BioEnergy Science Center (BESC), a U.S.
Department of Energy (DOE) Research Center by Office of Biological and
Environmental Research in the DOE Office of Science, Oak Ridge National
Laboratory; Mascoma Corporation; Department of Energy
[DE-AC05-00OR22725]
FX The authors are grateful for the support provided by funding grants from
the Link Energy Foundation, the BioEnergy Science Center (BESC), a U.S.
Department of Energy (DOE) Research Center supported by the Office of
Biological and Environmental Research in the DOE Office of Science, Oak
Ridge National Laboratory, and Mascoma Corporation. Oak Ridge National
Laboratory is managed by University of Tennessee UT-Battelle LLC for the
Department of Energy under Contract No. DE-AC05-00OR22725.
NR 34
TC 1
Z9 1
U1 0
U2 12
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1864-5631
EI 1864-564X
J9 CHEMSUSCHEM
JI ChemSusChem
PD SEP
PY 2014
VL 7
IS 9
BP 2721
EP 2727
DI 10.1002/cssc.201402087
PG 7
WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
SC Chemistry; Science & Technology - Other Topics
GA AQ5AE
UT WOS:000342813300047
PM 25088298
ER
PT J
AU Fu, L
Zhang, Y
Wei, ZH
Wang, HF
AF Fu, Li
Zhang, Yun
Wei, Zhe-Hao
Wang, Hong-Fei
TI Intrinsic Chirality and Prochirality at Air/R-(+)- and S-(-)-Limonene
Interfaces: Spectral Signatures With Interference Chiral Sum-Frequency
Generation Vibrational Spectroscopy
SO CHIRALITY
LA English
DT Article
DE intrinsic chirality; prochirality; limonene interfaces; spectral
signatures
ID MOLECULAR CHIRALITY; OPTICAL-ACTIVITY; IN-SITU; SFG-VS; SURFACE
CHIRALITY; UNIFIED TREATMENT; NONLINEAR OPTICS; PROBE; ORIENTATION;
SENSITIVITY
AB We report in this work detailed measurements of the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050 cm(-1)) of the air/liquid interfaces of R-(+)-limonene and S-(-)-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the RS racemic mixture (50/50 equal amount mixture), show that the corresponding molecular groups of the R and S enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit a spectral signature from the chiral response of the C alpha-H stretching mode, and a spectral signature from the prochiral response of the CH2 asymmetric stretching mode, respectively. The chiral spectral feature of the C alpha-H stretching mode changes sign from R-(+)-limonene to S-(-)-limonene surfaces, and disappears for the RS racemic mixture surface. While the prochiral spectral feature of the CH2 asymmetric stretching mode is the same for R-(+)-limonene and S-(-)-limonene surfaces, and also surprisingly remains the same for the RS racemic mixture surface. Therefore, the structures of the R-(+)-limonene and the S-(-)-limonene at the liquid interfaces are nevertheless not mirror images to each other, even though the corresponding groups have the same tilt angle from the interfacial normal, i. e., the R-(+)-limonene and the S-(-)-limonene at the surface are diastereomeric instead of enantiomeric. These results provide detailed information in understanding the structure and chirality of molecular interfaces and demonstrate the sensitivity and potential of SFG-VS as a unique spectroscopic tool or chirality characterization and chiral recognition at the molecular interface. (C) 2014 Wiley Periodicals, Inc.
C1 [Fu, Li; Zhang, Yun; Wei, Zhe-Hao; Wang, Hong-Fei] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Wang, HF (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA.
EM hongfei.wang@pnnl.gov
RI Wang, Hongfei/B-1263-2010; Wei, Zhehao/L-2801-2013
OI Wang, Hongfei/0000-0001-8238-1641; Wei, Zhehao/0000-0002-9670-4752
FU Department of Energy's Office of Biological and Environmental Research
(DOE-BER); PNNL
FX H.F.W. thanks Garth J. Simpson for invaluable discussion and
suggestions, especially in clarifying the theoretical framework of
chiral SFG. L. F. thanks Luis Velarde and Patrick El-Khoury for their
help with the SFG experiment laser setup and discussion. This work was
conducted at the William R. Wiley Environmental Molecular Sciences
Laboratory (EMSL), a national scientific user facility located at the
Pacific Northwest National Laboratory (PNNL) and sponsored by the
Department of Energy's Office of Biological and Environmental Research
(DOE-BER). Y.Z. is an Alternate Sponsored Fellow at PNNL and a graduate
student from Beijing Institute of Technology. Z.H.W. is a graduate
intern at EMSL and a graduate student from Washington State University.
NR 63
TC 10
Z9 10
U1 11
U2 44
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0899-0042
EI 1520-636X
J9 CHIRALITY
JI Chirality
PD SEP
PY 2014
VL 26
IS 9
SI SI
BP 509
EP 520
DI 10.1002/chir.22337
PG 12
WC Chemistry, Medicinal; Chemistry, Analytical; Chemistry, Organic;
Pharmacology & Pharmacy
SC Pharmacology & Pharmacy; Chemistry
GA AR0WY
UT WOS:000343295600013
PM 24895322
ER
PT J
AU Wu, YQ
Allahar, KN
Burns, J
Jaques, B
Charit, I
Butt, DP
Cole, JI
AF Wu, Y. Q.
Allahar, K. N.
Burns, J.
Jaques, B.
Charit, I.
Butt, D. P.
Cole, J. I.
TI Fe-Cr-Mo based ODS alloys via spark plasma sintering: A combinational
characterization study by TEM and APT
SO CRYSTAL RESEARCH AND TECHNOLOGY
LA English
DT Article
DE ODS; segregation; TEM; APT; SPS
ID FERRITIC ALLOYS; STEELS; MICROSTRUCTURE; IRRADIATION; PARTICLES
AB Nanoscale oxides play an important role in oxide dispersion strengthened (ODS) alloys for improved high temperature creep resistance and enhanced radiation damage tolerance. In this study, transmission electron microscopy (TEM) and atom probe tomography (APT) were combined to investigate two novel Fe-16Cr-3Mo (wt.%) based ODS alloys. Spark plasma sintering (SPS) was used to consolidate the ODS alloys from powders that were milled with 0.5 wt.% Y2O3 powder only or with Y2O3 powder and 1 wt.% Ti. TEM characterization revealed that both alloys have a bimodal structure of nanometer-size (similar to 100 - 500 nm) and micron-size grains with nanostructured oxide precipitates formed along and close to grain boundaries with diameters ranging from five to tens of nanometers. APT provides further quantitative analyses of the oxide precipitates, and also reveals Mo segregation at grain boundaries next to oxide precipitates. The alloys with and without Ti are compared based on their microstructures.
C1 [Wu, Y. Q.; Allahar, K. N.; Burns, J.; Jaques, B.; Butt, D. P.] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA.
[Wu, Y. Q.; Allahar, K. N.; Burns, J.; Charit, I.; Butt, D. P.; Cole, J. I.] Ctr Adv Energy Studies, Idaho Falls, ID 83401 USA.
[Charit, I.] Univ Idaho, Dept Chem & Mat Engn, Moscow, ID 83844 USA.
[Cole, J. I.] Idaho Natl Lab, ATR Natl Sci User Facil, Idaho Falls, ID 83415 USA.
RP Wu, YQ (reprint author), Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA.
EM yaqiaowu@boisestate.edu
OI Cole, James/0000-0003-1178-5846; Jaques, Brian/0000-0002-5324-555X
FU Laboratory Directed Research and Development Office of the Idaho
National Laboratory; US Government under DOE [DE-AC07-05ID14517]
FX The authors gratefully acknowledge financial support from the Laboratory
Directed Research and Development Office of the Idaho National
Laboratory. This submitted manuscript was authored by a contractor of
the US Government under DOE Contract No. DE-AC07-05ID14517.
NR 21
TC 4
Z9 4
U1 2
U2 38
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0232-1300
EI 1521-4079
J9 CRYST RES TECHNOL
JI Cryst. Res. Technol.
PD SEP
PY 2014
VL 49
IS 9
SI SI
BP 645
EP 652
DI 10.1002/crat.201300173
PG 8
WC Crystallography
SC Crystallography
GA AQ4MK
UT WOS:000342771300002
ER
PT J
AU Moeck, P
York, BW
Browning, ND
AF Moeck, Peter
York, Bryant W.
Browning, Nigel D.
TI Symmetries of migration-related segments of all [001] coincidence site
lattice tilt boundaries in (001) projection for all holohedral cubic
materials
SO CRYSTAL RESEARCH AND TECHNOLOGY
LA English
DT Article
DE grain boundaries; frieze symmetries; projected layer symmetries;
bicrystallography
ID GRAIN-BOUNDARIES; ATOMIC-STRUCTURE; INTERFACES
AB Utilizing bicrystallography in two dimensions (2D), the symmetries of migration related segments of Coincidence Site Lattice (CSL) boundaries are predicted for projections along their [001] tilt axis in grain boundaries of crystalline materials that possess the holohedral point symmetry of the cubic system (i.e. m (3) over barm). These kinds of "edge-on" projections are typical for atomic resolution imaging of such tilt boundaries with Transmission Electron Microscopes (TEM). Such images from a recently published aberration-corrected Z-contrast scanning TEM investigation [H. Yang et al., Phil. Mag. 93 (2013) 1219] and other studies facilitate the direct visual confirmation of our frieze symmetry predictions with experimental results.
C1 [Moeck, Peter] Portland State Univ, Dept Phys, Nanocrystallog Grp, Portland, OR 97207 USA.
[York, Bryant W.] Portland State Univ, Dept Comp Sci, Portland, OR 97207 USA.
[Browning, Nigel D.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA.
RP Moeck, P (reprint author), Portland State Univ, Dept Phys, Nanocrystallog Grp, Portland, OR 97207 USA.
EM pmoeck@pdx.edu
OI Browning, Nigel/0000-0003-0491-251X
FU United States Department of Energy (DOE) [DE-FG02-03ER46057]; DOE
[DE-AC05-76RL01830]; Department of Energy's Office of Biological and
Environmental Research and located at PNNL
FX NDB acknowledges support from the United States Department of Energy
(DOE), Grant No. DE-FG02-03ER46057. A portion of this work is part of
the Chemical Imaging Initiative at Pacific Northwest National Laboratory
(PNNL) under Contract DE-AC05-76RL01830 operated for DOE by Battelle. It
was conducted under the Laboratory Directed Research and Development
Program at PNNL. A portion of the research was performed using EMSL, a
national scientific user facility sponsored by the Department of
Energy's Office of Biological and Environmental Research and located at
PNNL.
NR 38
TC 2
Z9 2
U1 0
U2 9
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0232-1300
EI 1521-4079
J9 CRYST RES TECHNOL
JI Cryst. Res. Technol.
PD SEP
PY 2014
VL 49
IS 9
SI SI
BP 708
EP 720
DI 10.1002/crat.201400071
PG 13
WC Crystallography
SC Crystallography
GA AQ4MK
UT WOS:000342771300008
ER
PT J
AU Ibanez, E
Magee, T
Clement, M
Brinkman, G
Milligan, M
Zagona, E
AF Ibanez, Eduardo
Magee, Timothy
Clement, Mitch
Brinkman, Gregory
Milligan, Michael
Zagona, Edith
TI Enhancing hydropower modeling in variable generation integration studies
SO ENERGY
LA English
DT Article; Proceedings Paper
CT 26th International Conference on Efficiency, Cost, Optimization,
Simulation and Environmental Impact of Energy Systems (ECOS)
CY JUL 16-19, 2013
CL Guilin, PEOPLES R CHINA
SP Chinese Soc Engn Thermophys
DE Hydroelectric power generation; Optimization; Power system modeling;
Renewable energy sources; Reservoirs
ID WIND POWER-GENERATION; CONGESTION PROBLEMS; SYSTEM; COORDINATION;
SIMULATION; OPERATION; AREAS; SPOT
AB The integration of large amounts of variable renewable generation can increase the demand on flexible resources in the power system. Conventional hydropower can be an important asset for managing variability and uncertainty in the power system, but multi-purpose reservoirs are often limited by non-power constraints. Previous large-scale variable generation integration studies have simulated the operation of the electric system under different penetration levels but often with simplified representations of hydropower to avoid complex non-power constraints. This paper illustrates the value of bridging the gap between power system models and detailed hydropower models with a demonstration case. The United States Western Interconnection is modeled with PLEXUS, and ten large reservoirs on the Columbia River are modeled with RiverWare. The results show the effect of detailed hydropower modeling on the power system and its benefits to the power system, such as the decrease in overall production cost and the reduction of variable generation curtailment. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Ibanez, Eduardo; Brinkman, Gregory; Milligan, Michael] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Magee, Timothy; Clement, Mitch; Zagona, Edith] Univ Colorado, Ctr Adv Decis Support Water & Environm Syst, Boulder, CO 80309 USA.
RP Ibanez, E (reprint author), Natl Renewable Energy Lab, 16253 Denver West Pkwy, Golden, CO 80401 USA.
EM eduardo.ibanez@nrel.gov; magee@colorado.edu; mitch.clement@colorado.edu;
gregory.brinkman@nrel.gov; michael.milligan@nrel.gov;
zagona@colorado.edu
NR 37
TC 5
Z9 5
U1 2
U2 8
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-5442
EI 1873-6785
J9 ENERGY
JI Energy
PD SEP 1
PY 2014
VL 74
BP 518
EP 528
DI 10.1016/j.energy.2014.07.017
PG 11
WC Thermodynamics; Energy & Fuels
SC Thermodynamics; Energy & Fuels
GA AQ5PW
UT WOS:000342862100056
ER
PT J
AU Poineau, F
Forster, PM
Todorova, TK
Johnstone, EV
Kerlin, WM
Gagliardi, L
Czerwinski, KR
Sattelberger, AP
AF Poineau, Frederic
Forster, Paul M.
Todorova, Tanya K.
Johnstone, Erik V.
Kerlin, William M.
Gagliardi, Laura
Czerwinski, Kenneth R.
Sattelberger, Alfred P.
TI A Decade of Dinuclear Technetium Complexes with Multiple Metal-Metal
Bonds
SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY
LA English
DT Review
DE Technetium; Metal-metal interactions; Structure elucidation; Electronic
structure
ID STRUCTURAL-CHARACTERIZATION; ELECTRONIC-STRUCTURE; TERTIARY PHOSPHINES;
TRANSITION-METALS; CHEMISTRY; CLUSTERS; DIMERS; BR; TC; CL
AB Transition metal complexes with multiple metal-metal bonds exhibit interesting catalytic and biological properties. One element whose metal-metal bond chemistry has been poorly studied is technetium. Currently, only 25 technetium complexes with multiple metal-metal bonds have been structurally characterized. The nature of metal-metal interactions in these complexes, as well as the influence of ligands on the bonding in the Tc-2(n+) unit (n = 6, 5, 4) are not well understood. In order to better understand the influence of ligands on the Tc-Tc bonding, a study of the solid-state and electronic structure of dinuclear complexes with the Tc-2(n+) unit (n = 6, 5, 4) has been performed. Dinuclear technetium complexes (nBu(4)N)(2)Tc2X8, Tc-2(O2CCH3)(4)X-2, Tc-2(O2CCH3)(2)Cl-4, cesium salts of Tc2X83-, and Tc2X4(PMe3)(4) (X = Cl, Br) were synthesized; their molecular and electronic structures, as well as their electronic absorption spectra, were studied by a number of physical and computational techniques. The structure and bonding in these systems have been investigated by using multiconfigurational quantum calculations. For all these complexes, the calculated geometries are in very good agreement with those determined experimentally. Bond order analysis demonstrates that all these complexes exhibit a total bond order of approximately 3. Analysis of individual effective bond order (EBO) components shows that these complexes have similar s components, while the strength of their p components follows the order Tc2X4(PMe3)(4) > Tc2X83- > Tc-2(O2CCH3)(2)Cl-4 > Tc2X82-. Calculations indicate that the delta components are the weakest bond in Tc2X8n- (n = 2, 3) and Tc-2(O2CCH3)(2)Cl-4. Further analysis of Tc2X83- and Tc2X4(PMe3)(4) (X = Cl, Br) indicates that the electronic structure of the Tc-2(5+) and Tc-2(4+) units is insensitive to the nature of the coordinating ligands. The electronic absorption spectra of Tc2X8n- (n = 2, 3), Tc-2(O2CCH3)(2)Cl-4, and Tc2X4(PMe3)(4) (X = Cl, Br) were studied in solution, and assignment of the transitions was performed by multiconfigurational quantum chemical calculations. For the Tc2X8n-(n = 2, 3; X = Cl, Br) anions and Tc-2(O2CCH3)(2)Cl-4, the lowest-energy band is attributed to the delta ->delta* transition. For Tc2X4(PMe3)(4), the assignment of the transitions follow the following order in energy: delta* -> sigma* < delta* -> pi* < delta -> sigma* < delta -> pi*.
C1 [Poineau, Frederic; Forster, Paul M.; Johnstone, Erik V.; Kerlin, William M.; Czerwinski, Kenneth R.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA.
[Todorova, Tanya K.] Univ Geneva, Dept Phys Chem, CH-1211 Geneva, Switzerland.
[Gagliardi, Laura] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA.
[Gagliardi, Laura] Univ Minnesota, Supercomp Inst, Minneapolis, MN 55455 USA.
[Sattelberger, Alfred P.] Argonne Natl Lab, Energy Engn & Syst Anal Directorate, Argonne, IL 60439 USA.
RP Poineau, F (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA.
EM poineauf@unlv.nevada.edu
RI Todorova, Tanya/M-1849-2013
OI Todorova, Tanya/0000-0002-7731-6498
FU Nuclear Energy University Programs (NEUP) grant from the U.S. Department
of Energy, Office of Nuclear Energy, through INL/BEA, LLC [00129169,
DE-AC07-05ID14517]; U. S. Department of Energy, Office of Science,
Office of Basic Energy Sciences [DE-AC02-06CH11357]; Chemical Sciences,
Geosciences, and Biosciences Division, Office of Basic Energy Sciences,
Office of Science, Heavy Elements Chemistry Program, U.S. Department of
Energy [DE-SC002183]
FX Funding for this research was provided by an Nuclear Energy University
Programs (NEUP) grant from the U.S. Department of Energy, Office of
Nuclear Energy, through INL/BEA, LLC, 00129169, agreement No.
DE-AC07-05ID14517. Use of the Advanced Photon Source at Argonne was
supported by the U. S. Department of Energy, Office of Science, Office
of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The
computational part of this study was supported by the Chemical Sciences,
Geosciences, and Biosciences Division, Office of Basic Energy Sciences,
Office of Science, Heavy Elements Chemistry Program, U.S. Department of
Energy, under grant DE-SC002183. The authors thank Dr. Tom O'Dou, Mr.
Trevor Low, and Ms. Julie Bertoia for outstanding health physics
support.
NR 51
TC 1
Z9 1
U1 5
U2 33
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1434-1948
EI 1099-0682
J9 EUR J INORG CHEM
JI Eur. J. Inorg. Chem.
PD SEP
PY 2014
IS 27
SI SI
BP 4484
EP 4495
DI 10.1002/ejic.201402340
PG 12
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA AQ6HB
UT WOS:000342910200006
ER
PT J
AU Das, P
Stolley, RM
van der Eide, EF
Helm, ML
AF Das, Parthapratim
Stolley, Ryan M.
van der Eide, Edwin F.
Helm, Monte L.
TI A Ni-II-Bis(diphosphine)-Hydride Complex Containing Proton Relays -
Structural Characterization and Electrocatalytic Studies
SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY
LA English
DT Article
DE Homogeneous catalysis; Hydrogen; Proton transport; Nickel; Diphosphine
ID HYDROGEN-PRODUCTION; MOLECULAR ELECTROCATALYSTS; METAL-COMPLEXES; RECENT
PROGRESS; PENDANT AMINES; H-2 PRODUCTION; OXIDATION; CATALYSTS; LIGANDS;
NI
AB The synthesis of the 1,5-diphenyl-3,7-diisopropyl-1,5-diaza3,7- diphosphacyclooctane ligand, (P2N2Ph)-N-iPr, is reported. Two equivalents of the ligand react with [Ni(CH3CN)(6)](BF4)(2) to form the bis(diphosphine)-Ni-II complex [Ni((P2N2Ph)-N-iPr)(2)]-(BF4)(2), which acts as a proton reduction electrocatalyst. In addition to [Ni((P2N2Ph)-N-iPr)(2)](2+), we report the synthesis and structural characterization of the Ni-0 complex Ni((P2N2Ph)-N-iPr)(2) and the Ni-II-hydride complex [HNi((P2N2Ph)-N-iPr)(2)]BF4. The [HNi((P2N2Ph)-N-iPr)(2)]BF4 complex represents the first Ni-II-hydride in the [Ni((P2N2R')-N-R)(2)](2+) family of compounds to be structurally characterized. In addition to the experimental data, the mechanism of electrocatalysis facilitated by [Ni-((P2N2Ph)-N-iPr)(2)](2+) is analyzed by using linear free energy relationships recently established for the [Ni((P2N2R')-N-R)(2)](2+) family.
C1 [Das, Parthapratim; Stolley, Ryan M.; van der Eide, Edwin F.; Helm, Monte L.] Pacific NW Natl Lab, Ctr Mol Electrocatalysis, Div Phys Sci, Richland, WA 99352 USA.
RP Helm, ML (reprint author), Pacific NW Natl Lab, Ctr Mol Electrocatalysis, Div Phys Sci, POB 999,K2-57, Richland, WA 99352 USA.
EM monte.helm@pnnl.com
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences; Department of Energy's office of Biological and Environmental
Research located at Pacific Northwest National Laboratory
FX We thank Dr. Aaron Appel, Dr. Simone Raugei and Dr. Eric Wiedner for
helpful discussions. This research was supported as part of the work at
the Center for Molecular Electrocatalysis, an Energy Frontier Research
Center funded by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences. Mass spectrometry was provided at W. R.
Wiley Environmental Molecular Sciences Laboratory (EMSL), a national
scientific user facility sponsored by the Department of Energy's office
of Biological and Environmental Research located at Pacific Northwest
National Laboratory. Pacific Northwest National Laboratory is operated
by Battelle for the U.S. Department of Energy.
NR 27
TC 6
Z9 6
U1 1
U2 12
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1434-1948
EI 1099-0682
J9 EUR J INORG CHEM
JI Eur. J. Inorg. Chem.
PD SEP
PY 2014
IS 27
SI SI
BP 4611
EP 4618
DI 10.1002/ejic.201402250
PG 8
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA AQ6HB
UT WOS:000342910200020
ER
PT J
AU McManamay, RA
Utz, RM
AF McManamay, Ryan A.
Utz, Ryan M.
TI Open-Access Databases as Unprecedented Resources and Drivers of Cultural
Change in Fisheries Science
SO FISHERIES
LA English
DT Article
ID FRESH-WATER FISHES; BIODIVERSITY LOSS; UNITED-STATES; BIG DATA; IMPACT;
OCEAN
AB Open-access databases with utility in fisheries science have grown exponentially in quantity and scope over the past decade, with profound impacts to our discipline. The management, distillation, and sharing of an exponentially growing stream of open-access data represents several fundamental challenges in fisheries science. Many of the currently available open-access resources may not be universally known among fisheries scientists. We therefore introduce many national- and global-scale open-access databases with applications in fisheries science and provide an example of how they can be harnessed to perform valuable analyses without additional field efforts. We also discuss how the development, maintenance, and utilization of open-access data are likely to pose technical, financial, and educational challenges to fisheries scientists. Such cultural implications that will coincide with the rapidly increasing availability of free data should compel the American Fisheries Society to actively address these problems now to help ease the forthcoming cultural transition. RESUMENen la ultima decada, el numero de bases de datos de acceso abierto con utilidad para la ciencia pesquera ha crecido exponencialmente en cantidad y alcance y su impacto ha sido considerado como muy importante en esta disciplina. El manejo, depuracion e intercambio de datos de acceso abierto representa retos fundamentales en la ciencia pesquera. Muchos de los recursos actualmente disponibles de acceso abierto pueden no ser conocidos por los cientificos pesqueros. Por lo tanto, aqui se presentan varias bases de datos a nivel nacional e internacional de libre acceso con aplicacion en las ciencias pesqueras y se da un ejemplo de como pueden ser aprovechadas para realizar valiosos analisis sin hacer esfuerzos adicionales de trabajo de campo. Tambien se discute como el desarrollo, mantenimiento y uso de las base de datos de libre acceso muy posiblemente representaran retos importantes para los cientificos de la pesca en cuanto a las dimensiones tecnica, financiera y educativa. Tales implicaciones culturales, que coincidiran con la disponibilidad cada vez mayor de datos gratuitos, debieran servir de impulso a la Sociedad Americana de Pesquerias a que volcara activamente su atencion sobre estos problemas con el fin de facilitar la transicion cultural que se avecina.
C1 [McManamay, Ryan A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Utz, Ryan M.] Natl Ecol Observ Network, Boulder, CO 80301 USA.
RP McManamay, RA (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA.
EM utz.ryan@gmail.com
FU United States Department of Energy's (DOE) Office of Energy Efficiency
and Renewable Energy, Wind and Water Power Technologies Program; U.S.
Department of Energy [DE-AC05-00OR22725]; National Science Foundation
[EF1138160]
FX This research was sponsored by the United States Department of Energy's
(DOE) Office of Energy Efficiency and Renewable Energy, Wind and Water
Power Technologies Program. This article has been authored by an
employee of Oak Ridge National Laboratory, managed by UT Battelle, LLC,
under contract DE-AC05-00OR22725 with the U.S. Department of Energy. R.
Utz is supported by National Science Foundation cooperative agreement #
EF1138160.
NR 50
TC 3
Z9 3
U1 4
U2 18
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 0363-2415
EI 1548-8446
J9 FISHERIES
JI Fisheries
PD SEP
PY 2014
VL 39
IS 9
BP 417
EP 425
DI 10.1080/03632415.2014.946128
PG 9
WC Fisheries
SC Fisheries
GA AQ6GA
UT WOS:000342907000008
ER
PT J
AU Blaschke, DN
AF Blaschke, Daniel N.
TI Gauge fields on non-commutative spaces and renormalization
SO FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS
LA English
DT Article; Proceedings Paper
CT Workshop on Noncommutative Field Theory and Gravity (CORFU)
CY SEP 08-15, 2013
CL GREECE
DE Non-commutative geometry; gauge field theory
ID MODEL
AB Constructing renormalizable models on non-commutative spaces constitutes a big challenge. Only few examples of renormalizable theories are known, such as the scalar Grosse-Wulkenhaar model. Gauge fields are even more difficult, since new renormalization techniques are required which are compatible with the inherently non-local setting on the one hand, and also allow to properly treat the gauge symmetry on the other hand. In this proceeding (which is based on my talk given at the "Workshop on Noncommutative Field Theory and Gravity" in Corfu/Greece, September 8-15, 2013), I focus on this last point and present new extensions to existing renormalization schemes (which are known to work for gauge field theories in commutative space) adapted to non-commutative Moyal space. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA.
RP Blaschke, DN (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA.
EM dblaschke@lanl.gov
NR 26
TC 0
Z9 0
U1 1
U2 1
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0015-8208
EI 1521-3978
J9 FORTSCHR PHYS
JI Fortschritte Phys.-Prog. Phys.
PD SEP
PY 2014
VL 62
IS 9-10
SI SI
BP 820
EP 824
DI 10.1002/prop.201400009
PG 5
WC Physics, Multidisciplinary
SC Physics
GA AQ4XU
UT WOS:000342805600015
ER
PT J
AU Fardad, M
Lin, F
Jovanovic, MR
AF Fardad, Makan
Lin, Fu
Jovanovic, Mihailo R.
TI Design of Optimal Sparse Interconnection Graphs for Synchronization of
Oscillator Networks
SO IEEE TRANSACTIONS ON AUTOMATIC CONTROL
LA English
DT Article
DE Consensus; convex relaxation; optimization; oscillator synchronization;
reweighted l(1) minimization; semidefinite programming; sparse graph
ID SPATIALLY INVARIANT-SYSTEMS; DISTRIBUTED CONTROL DESIGN; KURAMOTO;
CONTROLLERS; STABILITY
AB We study the optimal design of a conductance network as a means for synchronizing a given set of oscillators. Synchronization is achieved when all oscillator voltages reach consensus, and performance is quantified by the mean-square deviation from the consensus value. We formulate optimization problems that address the tradeoff between synchronization performance and the number and strength of oscillator couplings. We promote the sparsity of the coupling network by penalizing the number of interconnection links. For identical oscillators, we establish convexity of the optimization problem and demonstrate that the design problem can be formulated as a semidefinite program. Finally, for special classes of oscillator networks we derive explicit analytical expressions for the optimal conductance values.
C1 [Fardad, Makan] Syracuse Univ, Dept Elect Engn & Comp Sci, Syracuse, NY 13244 USA.
[Lin, Fu] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA.
[Jovanovic, Mihailo R.] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA.
RP Fardad, M (reprint author), Syracuse Univ, Dept Elect Engn & Comp Sci, Syracuse, NY 13244 USA.
EM makan@syr.edu; fulin@mcs.anl.gov; mi-hailo@umn.edu
FU National Science Foundation [CMMI-0927509, CMMI-0927720, CMMI-0644793]
FX This work was supported by the National Science Foundation under awards
CMMI-0927509 and CMMI-0927720 and under CAREER Award CMMI-0644793.
Recommended by Associate Editor S. Zampieri.
NR 32
TC 19
Z9 19
U1 1
U2 13
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9286
EI 1558-2523
J9 IEEE T AUTOMAT CONTR
JI IEEE Trans. Autom. Control
PD SEP
PY 2014
VL 59
IS 9
BP 2457
EP 2462
DI 10.1109/TAC.2014.2301577
PG 6
WC Automation & Control Systems; Engineering, Electrical & Electronic
SC Automation & Control Systems; Engineering
GA AQ6LO
UT WOS:000342924100011
ER
PT J
AU Sanii, B
Martinez-Avila, O
Simpliciano, C
Zuckermann, RN
Habelitz, S
AF Sanii, B.
Martinez-Avila, O.
Simpliciano, C.
Zuckermann, R. N.
Habelitz, S.
TI Matching 4.7-angstrom XRD Spacing in Amelogenin Nanoribbons and Enamel
Matrix
SO JOURNAL OF DENTAL RESEARCH
LA English
DT Article
DE self-assembly; structure; development; powder diffraction; Fourier
transform infrared spectroscopy; secondary protein structure
ID X-RAY-DIFFRACTION; BETA-SHEET STRUCTURE; TOOTH ENAMEL; PROTEIN;
SPECTROSCOPY; PEPTIDES; FIBRILS; DRIVEN; CD
AB The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 angstrom is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of -sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-angstrom XRD spacing confirms the presence of -sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel.
C1 [Sanii, B.; Zuckermann, R. N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
[Sanii, B.] Claremont Mckenna Coll, Keck Sci Dept, Claremont, CA 91711 USA.
[Sanii, B.] Scripps Coll, Keck Sci Dept, Claremont, CA 91711 USA.
[Sanii, B.] Pitzer Coll, Keck Sci Dept, Claremont, CA 91711 USA.
[Martinez-Avila, O.; Simpliciano, C.; Habelitz, S.] Univ Calif San Francisco, Dept Prevent & Restorat Dent Sci, San Francisco, CA 94143 USA.
RP Habelitz, S (reprint author), Univ Calif San Francisco, Dept Prevent & Restorat Dent Sci, San Francisco, CA 94143 USA.
EM stefan.habelitz@ucsf.edu
RI Foundry, Molecular/G-9968-2014
FU National Institutes of Health (NIH)/National Institute of Dental and
Craniofacial Research (NIDCR) grant [R21-023422]; Office of Science,
Office of Basic Energy Sciences, of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX We thank Drs. Feroz Khan and Wu Li (UCSF) for providing us with
amelogenin protein rH174, Dr. Sebnem Inceoglu (UCB) for support of FTIR
analysis, and James Holton for support of XRD analysis. This study was
funded by National Institutes of Health (NIH)/National Institute of
Dental and Craniofacial Research (NIDCR) grant R21-023422. Portions of
this work were performed at the Molecular Foundry and the Advanced Light
Source, both of which are supported by the Office of Science, Office of
Basic Energy Sciences, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. The authors declare no potential conflicts of
interest with respect to the authorship and/or publication of this
article.
NR 30
TC 1
Z9 3
U1 1
U2 6
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 0022-0345
EI 1544-0591
J9 J DENT RES
JI J. Dent. Res.
PD SEP
PY 2014
VL 93
IS 9
BP 918
EP 922
DI 10.1177/0022034514544216
PG 5
WC Dentistry, Oral Surgery & Medicine
SC Dentistry, Oral Surgery & Medicine
GA AQ4MD
UT WOS:000342770400013
PM 25048248
ER
PT J
AU Westphal, AJ
Anderson, D
Butterworth, AL
Frank, DR
Lettieri, R
Marchant, W
Von Korff, J
Zevin, D
Ardizzone, A
Campanile, A
Capraro, M
Courtney, K
Criswell, MN
Crumpler, D
Cwik, R
Gray, FJ
Hudson, B
Imada, G
Karr, J
Wah, LLW
Mazzucato, M
Motta, PG
Rigamonti, C
Spencer, RC
Woodrough, SB
Santoni, IC
Sperry, G
Terry, JN
Wordsworth, N
Yahnke, T
Allen, C
Ansari, A
Bajt, S
Bastien, RK
Bassim, N
Bechtel, HA
Borg, J
Brenker, FE
Bridges, J
Brownlee, DE
Burchell, M
Burghammer, M
Changela, H
Cloetens, P
Davis, AM
Doll, R
Floss, C
Flynn, G
Gainsforth, Z
Grun, E
Heck, PR
Hillier, JK
Hoppe, P
Huth, J
Hvide, B
Kearsley, A
King, AJ
Lai, B
Leitner, J
Lemelle, L
Leroux, H
Leonard, A
Nittler, LR
Ogliore, R
Ong, WJ
Postberg, F
Price, MC
Sandford, SA
Tresseras, JAS
Schmitz, S
Schoonjans, T
Silversmit, G
Simionovici, AS
Sole, VA
Srama, R
Stephan, T
Sterken, VJ
Stodolna, J
Stroud, RM
Sutton, S
Trieloff, M
Tsou, P
Tsuchiyama, A
Tyliszczak, T
Vekemans, B
Vincze, L
Zolensky, ME
AF Westphal, Andrew J.
Anderson, David
Butterworth, Anna L.
Frank, David R.
Lettieri, Robert
Marchant, William
Von Korff, Joshua
Zevin, Daniel
Ardizzone, Augusto
Campanile, Antonella
Capraro, Michael
Courtney, Kevin
Criswell, Mitchell N., III
Crumpler, Dixon
Cwik, Robert
Gray, Fred Jacob
Hudson, Bruce
Imada, Guy
Karr, Joel
Wah, Lily Lau Wan
Mazzucato, Michele
Motta, Pier Giorgio
Rigamonti, Carlo
Spencer, Ronald C.
Woodrough, Stephens B.
Santoni, Irene Cimmino
Sperry, Gerry
Terry, Jean-Noel
Wordsworth, Naomi
Yahnke, Tom, Sr.
Allen, Carlton
Ansari, Asna
Bajt, Sasa
Bastien, Ron K.
Bassim, Nabil
Bechtel, Hans A.
Borg, Janet
Brenker, Frank E.
Bridges, John
Brownlee, Donald E.
Burchell, Mark
Burghammer, Manfred
Changela, Hitesh
Cloetens, Peter
Davis, Andrew M.
Doll, Ryan
Floss, Christine
Flynn, George
Gainsforth, Zack
Gruen, Eberhard
Heck, Philipp R.
Hillier, Jon K.
Hoppe, Peter
Huth, Joachim
Hvide, Brit
Kearsley, Anton
King, Ashley J.
Lai, Barry
Leitner, Jan
Lemelle, Laurence
Leroux, Hugues
Leonard, Ariel
Nittler, Larry R.
Ogliore, Ryan
Ong, Wei Ja
Postberg, Frank
Price, Mark C.
Sandford, Scott A.
Tresseras, Juan-Angel Sans
Schmitz, Sylvia
Schoonjans, Tom
Silversmit, Geert
Simionovici, Alexandre S.
Sole, Vicente A.
Srama, Ralf
Stephan, Thomas
Sterken, Veerle J.
Stodolna, Julien
Stroud, Rhonda M.
Sutton, Steven
Trieloff, Mario
Tsou, Peter
Tsuchiyama, Akira
Tyliszczak, Tolek
Vekemans, Bart
Vincze, Laszlo
Zolensky, Michael E.
TI Stardust Interstellar Preliminary Examination I: Identification of
tracks in aerogel
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Article
AB Here, we report the identification of 69 tracks in approximately 250 cm(2) of aerogel collectors of the Stardust Interstellar Dust Collector. We identified these tracks through Stardust@home, a distributed internet-based virtual microscope and search engine, in which > 30,000 amateur scientists collectively performed >9 x 10(7) searches on approximately 10(6) fields of view. Using calibration images, we measured individual detection efficiency, and found that the individual detection efficiency for tracks > 2.5 mu m in diameter was >0.6, and was >0.75 for tracks >3 mu m in diameter. Because most fields of view were searched >30 times, these results could be combined to yield a theoretical detection efficiency near unity. The initial expectation was that interstellar dust would be captured at very high speed. The actual tracks discovered in the Stardust collector, however, were due to low-speed impacts, and were morphologically strongly distinct from the calibration images. As a result, the detection efficiency of these tracks was lower than detection efficiency of calibrations presented in training, testing, and ongoing calibration. Nevertheless, as calibration images based on low-speed impacts were added later in the project, detection efficiencies for low-speed tracks rose dramatically. We conclude that a massively distributed, calibrated search, with amateur collaborators, is an effective approach to the challenging problem of identification of tracks of hypervelocity projectiles captured in aerogel.
C1 [Westphal, Andrew J.; Anderson, David; Butterworth, Anna L.; Lettieri, Robert; Marchant, William; Von Korff, Joshua; Zevin, Daniel; Gainsforth, Zack; Stodolna, Julien] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Frank, David R.; Bastien, Ron K.] NASA JSC, ESCG, Houston, TX USA.
[Ardizzone, Augusto] Red Team, Palermo, Italy.
[Campanile, Antonella] Red Team, Reggio Emilia, Italy.
[Capraro, Michael] Red Team, Riverview, MI USA.
[Courtney, Kevin] Red Team, Ballwin, MO USA.
[Criswell, Mitchell N., III] Dog Star Observ, Red Team, Pearce, AZ USA.
[Crumpler, Dixon] Red Team, Durham, NC USA.
[Cwik, Robert] Red Team, Silver City, NM USA.
[Gray, Fred Jacob] Red Team, Hampton, SC USA.
[Hudson, Bruce] Red Team, Montreal, PQ, Canada.
[Imada, Guy] Red Team, Brookings, OR USA.
[Karr, Joel] Red Team, Kansas City, MO USA.
[Wah, Lily Lau Wan] Red Team, Singapore, Singapore.
[Mazzucato, Michele; Motta, Pier Giorgio] Red Team, Florence, Italy.
[Rigamonti, Carlo] Red Team, Moncalieri, Italy.
[Spencer, Ronald C.] Red Team, Leominster, MA USA.
[Woodrough, Stephens B.] Red Team, St Petersburg, FL USA.
[Santoni, Irene Cimmino] Red Team, Upper Saddle River, NJ USA.
[Sperry, Gerry] Red Team, Tacoma, WA USA.
[Terry, Jean-Noel] Red Team, Tarentaise, France.
[Wordsworth, Naomi] Red Team, Wycombe, South Buckingha, England.
[Yahnke, Tom, Sr.] Red Team, Louis, MO USA.
[Allen, Carlton; Zolensky, Michael E.] NASA JSC, ARES, Houston, TX USA.
[Ansari, Asna; Hvide, Brit] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA.
[Bajt, Sasa] DESY, Hamburg, Germany.
[Bassim, Nabil; Stroud, Rhonda M.] Naval Res Lab, Mat Sci & Technol Div, Washington, DC USA.
[Bechtel, Hans A.; Tyliszczak, Tolek] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA USA.
[Borg, Janet] IAS Orsay, Orsay, France.
[Brenker, Frank E.; Schmitz, Sylvia] Goethe Univ, Geosci Inst, Frankfurt, Germany.
[Bridges, John] Univ Leicester, Space Res Ctr, Leicester, Leics, England.
[Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA.
[Burchell, Mark; Price, Mark C.] Univ Kent, Canterbury, Kent, England.
[Burghammer, Manfred; Cloetens, Peter; Tresseras, Juan-Angel Sans; Sole, Vicente A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France.
[Changela, Hitesh] George Washington Univ, Washington, DC 20052 USA.
[Davis, Andrew M.; Stephan, Thomas] Univ Chicago, Chicago, IL 60637 USA.
[Doll, Ryan; Leonard, Ariel; Nittler, Larry R.; Ong, Wei Ja] Washington Univ, St Louis, MO USA.
[Flynn, George] SUNY Coll Plattsburgh, Plattsburgh, NY 12901 USA.
[Gruen, Eberhard] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany.
[Heck, Philipp R.] Field Museum Nat Hist, Chicago, IL 60605 USA.
[Hillier, Jon K.; Postberg, Frank; Trieloff, Mario] Heidelberg Univ, Inst Geowissensch, Heidelberg, Germany.
[Hoppe, Peter; Huth, Joachim; Leitner, Jan] Max Planck Inst Chem, D-55128 Mainz, Germany.
[Kearsley, Anton] Nat Hist Museum, London SW7 5BD, England.
[King, Ashley J.] Univ Chicago, Chicago, IL 60637 USA.
[King, Ashley J.] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA.
[Lai, Barry; Sutton, Steven] Argonne Natl Lab, Adv Photon Source, Chicago, IL USA.
[Lemelle, Laurence] Ecole Normale Super Lyon, F-69364 Lyon, France.
[Leroux, Hugues] Univ Lyon 1, F-69622 Villeurbanne, France.
[Nittler, Larry R.] Carnegie Inst Sci, Washington, DC USA.
[Ogliore, Ryan] Univ Hawaii Manoa, Honolulu, HI 96822 USA.
[Sandford, Scott A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart; Vincze, Laszlo] Univ Ghent, B-9000 Ghent, Belgium.
[Simionovici, Alexandre S.] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France.
[Srama, Ralf; Sterken, Veerle J.] Univ Stuttgart, IRS, D-70174 Stuttgart, Germany.
[Sterken, Veerle J.] TU Braunschweig, IGEP, Braunschweig, Germany.
[Sterken, Veerle J.] MPIK, Heidelberg, Germany.
[Tsou, Peter] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Tsuchiyama, Akira] Osaka Univ, Osaka, Japan.
RP Westphal, AJ (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
EM westphal@ssl.berkeley.edu
RI Leitner, Jan/A-7391-2015; Hoppe, Peter/B-3032-2015; Bajt,
Sasa/G-2228-2010; Sans Tresserras, Juan Angel/J-9362-2014; Stroud,
Rhonda/C-5503-2008;
OI Leitner, Jan/0000-0003-3655-6273; Hoppe, Peter/0000-0003-3681-050X; Sans
Tresserras, Juan Angel/0000-0001-9047-3992; Stroud,
Rhonda/0000-0001-5242-8015; Burchell, Mark/0000-0002-2680-8943
FU NASA [NNX09AC36G, NNH11AQ61I]; Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-98CH10886]
FX We thank Sean Brennan and Giles Graham for thoughtful comments, and John
Bradley for editorial handling. The ISPE consortium gratefully
acknowledges the NASA Discovery Program for Stardust, the fourth NASA
Discovery mission. AJW, ALB, ZG, RL, DZ, WM, and JVK were supported by
NASA grant NNX09AC36G. We thank Steve Boggs for astrophysical soft X-ray
spectra. RMS, HCG, and NDB were supported by NASA grant NNH11AQ61I. The
Advanced Light Source is supported by the Director, Office of Science,
Office of Basic Energy Sciences, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231. Use of the National Synchrotron Light
Source, Brookhaven National Laboratory, was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-98CH10886.
NR 8
TC 12
Z9 12
U1 4
U2 32
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1086-9379
EI 1945-5100
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD SEP
PY 2014
VL 49
IS 9
SI SI
BP 1509
EP 1521
DI 10.1111/maps.12168
PG 13
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AQ6HT
UT WOS:000342912100001
ER
PT J
AU Frank, DR
Westphal, AJ
Zolensky, ME
Gainsforth, Z
Butterworth, AL
Bastien, RK
Allen, C
Anderson, D
Ansari, A
Bajt, S
Bassim, N
Bechtel, HA
Borg, J
Brenker, FE
Bridges, J
Brownlee, DE
Burchell, M
Burghammer, M
Changela, H
Cloetens, P
Davis, AM
Doll, R
Floss, C
Flynn, G
Grun, E
Heck, PR
Hillier, JK
Hoppe, P
Hudson, B
Huth, J
Hvide, B
Kearsley, A
King, AJ
Lai, B
Leitner, J
Lemelle, L
Leroux, H
Leonard, A
Lettieri, R
Marchant, W
Nittler, LR
Ogliore, R
Ong, WJ
Postberg, F
Price, MC
Sandford, SA
Tresseras, JAS
Schmitz, S
Schoonjans, T
Silversmit, G
Simionovici, AS
Sole, VA
Srama, R
Stephan, T
Sterken, VJ
Stodolna, J
Stroud, RM
Sutton, S
Trieloff, M
Tsou, P
Tsuchiyama, A
Tyliszczak, T
Vekemans, B
Vincze, L
Von Korff, J
Wordsworth, N
Zevin, D
AF Frank, David R.
Westphal, Andrew J.
Zolensky, Michael E.
Gainsforth, Zack
Butterworth, Anna L.
Bastien, Ronald K.
Allen, Carlton
Anderson, David
Ansari, Asna
Bajt, Sasa
Bassim, Nabil
Bechtel, Hans A.
Borg, Janet
Brenker, Frank E.
Bridges, John
Brownlee, Donald E.
Burchell, Mark
Burghammer, Manfred
Changela, Hitesh
Cloetens, Peter
Davis, Andrew M.
Doll, Ryan
Floss, Christine
Flynn, George
Gruen, Eberhard
Heck, Philipp R.
Hillier, Jon K.
Hoppe, Peter
Hudson, Bruce
Huth, Joachim
Hvide, Brit
Kearsley, Anton
King, Ashley J.
Lai, Barry
Leitner, Jan
Lemelle, Laurence
Leroux, Hugues
Leonard, Ariel
Lettieri, Robert
Marchant, William
Nittler, Larry R.
Ogliore, Ryan
Ong, Wei Ja
Postberg, Frank
Price, Mark C.
Sandford, Scott A.
Tresseras, Juan-Angel Sans
Schmitz, Sylvia
Schoonjans, Tom
Silversmit, Geert
Simionovici, Alexandre S.
Sole, Vicente A.
Srama, Ralf
Stephan, Thomas
Sterken, Veerle J.
Stodolna, Julien
Stroud, Rhonda M.
Sutton, Steven
Trieloff, Mario
Tsou, Peter
Tsuchiyama, Akira
Tyliszczak, Tolek
Vekemans, Bart
Vincze, Laszlo
Von Korff, Joshua
Wordsworth, Naomi
Zevin, Daniel
TI Stardust Interstellar Preliminary Examination II: Curating the
interstellar dust collector, picokeystones, and sources of impact tracks
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Article
ID IRON-NICKEL SULFIDES; RADIATION PRESSURE; COMETARY DUST; AEROGEL;
PARTICLES; MISSION; FEATURES; GRAINS; DISKS; FOIL
AB We discuss the inherent difficulties that arise during "ground truth" characterization of the Stardust interstellar dust collector. The challenge of identifying contemporary interstellar dust impact tracks in aerogel is described within the context of background spacecraft secondaries and possible interplanetary dust particles and beta-meteoroids. In addition, the extraction of microscopic dust embedded in aerogel is technically challenging. Specifically, we provide a detailed description of the sample preparation techniques developed to address the unique goals and restrictions of the Interstellar Preliminary Exam. These sample preparation requirements and the scarcity of candidate interstellar impact tracks exacerbate the difficulties. We also illustrate the role of initial optical imaging with critically important examples, and summarize the overall processing of the collection to date.
C1 [Frank, David R.; Bastien, Ronald K.] NASA Johnson Space Ctr, ESCG, Houston, TX 77058 USA.
[Westphal, Andrew J.; Gainsforth, Zack; Butterworth, Anna L.; Anderson, David; Lettieri, Robert; Marchant, William; Stodolna, Julien; Von Korff, Joshua; Zevin, Daniel] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA USA.
[Zolensky, Michael E.; Allen, Carlton] NASA Johnson Space Ctr, ARES, Houston, TX USA.
[Ansari, Asna; Davis, Andrew M.; Heck, Philipp R.; Hvide, Brit] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA.
[Bajt, Sasa] DESY, Hamburg, Germany.
[Bassim, Nabil; Stroud, Rhonda M.] Naval Res Lab, Mat Sci & Technol Div, Washington, DC USA.
[Bechtel, Hans A.; Tyliszczak, Tolek] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA USA.
[Borg, Janet] IAS Orsay, Orsay, France.
[Brenker, Frank E.; Schmitz, Sylvia] Goethe Univ Frankfurt, Inst Geosci, Frankfurt, Germany.
[Bridges, John] Univ Leicester, Space Res Ctr, Leicester, Leics, England.
[Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA.
[Burchell, Mark; Price, Mark C.] Univ Kent, Canterbury CT2 7NZ, Kent, England.
[Burghammer, Manfred; Cloetens, Peter; Tresseras, Juan-Angel Sans; Sole, Vicente A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France.
[Changela, Hitesh] George Washington Univ, Washington, DC USA.
[Davis, Andrew M.; King, Ashley J.; Stephan, Thomas] Univ Chicago, Chicago, IL 60637 USA.
[Doll, Ryan; Floss, Christine; Leonard, Ariel; Ong, Wei Ja] Washington Univ, St Louis, MO USA.
[Flynn, George] SUNY Coll Plattsburgh, Plattsburgh, NY 12901 USA.
[Gruen, Eberhard; Sterken, Veerle J.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany.
[Hillier, Jon K.; Postberg, Frank; Trieloff, Mario] Heidelberg Univ, Inst Geowissensch, Heidelberg, Germany.
[Hoppe, Peter; Huth, Joachim; Leitner, Jan] Max Planck Inst Chem, D-55128 Mainz, Germany.
[Kearsley, Anton] Nat Hist Museum, London SW7 5BD, England.
[Lai, Barry; Sutton, Steven] Argonne Natl Lab, Adv Photon Source, Chicago, IL USA.
[Lemelle, Laurence] Ecole Normale Super Lyon, F-69364 Lyon, France.
[Leroux, Hugues] Univ Lille 1, Lille, France.
[Nittler, Larry R.] Carnegie Inst Sci, Washington, DC USA.
[Ogliore, Ryan] Univ Hawaii Manoa, Honolulu, HI 96822 USA.
[Sandford, Scott A.] NASA Ames Res Ctr, Moffett Field, CA USA.
[Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart; Vincze, Laszlo] Univ Ghent, B-9000 Ghent, Belgium.
[Simionovici, Alexandre S.] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France.
[Srama, Ralf] Univ Stuttgart, IRS, D-70174 Stuttgart, Germany.
[Sterken, Veerle J.] TU Braunschweig, IGEP, Braunschweig, Germany.
[Tsou, Peter] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Tsuchiyama, Akira] Osaka Univ, Osaka, Japan.
RP Frank, DR (reprint author), NASA Johnson Space Ctr, ESCG, Houston, TX 77058 USA.
EM david.r.frank@nasa.gov
RI Bajt, Sasa/G-2228-2010; Stroud, Rhonda/C-5503-2008; Sans Tresserras,
Juan Angel/J-9362-2014; Leitner, Jan/A-7391-2015; Hoppe,
Peter/B-3032-2015
OI Stroud, Rhonda/0000-0001-5242-8015; Burchell, Mark/0000-0002-2680-8943;
Sans Tresserras, Juan Angel/0000-0001-9047-3992; Leitner,
Jan/0000-0003-3655-6273; Hoppe, Peter/0000-0003-3681-050X
FU NASA [NNX09AC36G, NNH11AQ61I]; Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-98CH10886]
FX We thank P. Wozniekiewicz and C. Engrand for their thoughtful reviews
that greatly improved this manuscript. We also thank the AE John Bradley
for his critical input and time and effort spent reviewing the ISPE
manuscripts. The ISPE consortium gratefully acknowledges the NASA
Discovery Program for Stardust, the fourth NASA Discovery mission. We
are thankful for having the privilege of looking after the collection
and are gratefully indebted to the 30,000+ dusters who made this
possible. AJW, ALB, ZG, RL, DZ, WM and JVK were supported by NASA grant
NNX09AC36G. RMS, HCG and NDB were supported by NASA grant NNH11AQ61I.
The Advanced Light Source is supported by the Director, Office of
Science, Office of Basic Energy Sciences, of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231. Use of the National
Synchrotron Light Source, Brookhaven National Laboratory, was supported
by the U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences, under Contract No. DE-AC02-98CH10886.
NR 40
TC 13
Z9 13
U1 2
U2 19
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1086-9379
EI 1945-5100
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD SEP
PY 2014
VL 49
IS 9
SI SI
BP 1522
EP 1547
DI 10.1111/maps.12147
PG 26
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AQ6HT
UT WOS:000342912100002
ER
PT J
AU Bechtel, HA
Flynn, GJ
Allen, C
Anderson, D
Ansari, A
Bajt, S
Bastien, RK
Bassim, N
Borg, J
Brenker, FE
Bridges, J
Brownlee, DE
Burchell, M
Burghammer, M
Butterworth, AL
Changela, H
Cloetens, P
Davis, AM
Doll, R
Floss, C
Frank, DR
Gainsforth, Z
Grun, E
Heck, PR
Hillier, JK
Hoppe, P
Hudson, B
Huth, J
Hvide, B
Kearsley, A
King, AJ
Lai, B
Leitner, J
Lemelle, L
Leroux, H
Leonard, A
Lettieri, R
Marchant, W
Nittler, LR
Ogliore, R
Ong, WJ
Postberg, F
Price, MC
Sandford, SA
Tresseras, JAS
Schmitz, S
Schoonjans, T
Silversmit, G
Simionovici, AS
Sole, VA
Srama, R
Stadermann, FJ
Stephan, T
Sterken, VJ
Stodolna, J
Stroud, RM
Sutton, S
Trieloff, M
Tsou, P
Tsuchiyama, A
Tyliszczak, T
Vekemans, B
Vincze, L
Von Korff, J
Westphal, AJ
Wordsworth, N
Zevin, D
Zolensky, ME
AF Bechtel, Hans A.
Flynn, George J.
Allen, Carlton
Anderson, David
Ansari, Asna
Bajt, Sasa
Bastien, Ron K.
Bassim, Nabil
Borg, Janet
Brenker, Frank E.
Bridges, John
Brownlee, Donald E.
Burchell, Mark
Burghammer, Manfred
Butterworth, Anna L.
Changela, Hitesh
Cloetens, Peter
Davis, Andrew M.
Doll, Ryan
Floss, Christine
Frank, David R.
Gainsforth, Zack
Gruen, Eberhard
Heck, Philipp R.
Hillier, Jon K.
Hoppe, Peter
Hudson, Bruce
Huth, Joachim
Hvide, Brit
Kearsley, Anton
King, Ashley J.
Lai, Barry
Leitner, Jan
Lemelle, Laurence
Leroux, Hugues
Leonard, Ariel
Lettieri, Robert
Marchant, William
Nittler, Larry R.
Ogliore, Ryan
Ong, Wei Ja
Postberg, Frank
Price, Mark C.
Sandford, Scott A.
Tresseras, Juan-Angel Sans
Schmitz, Sylvia
Schoonjans, Tom
Silversmit, Geert
Simionovici, Alexandre S.
Sole, Vicente A.
Srama, Ralf
Stadermann, Frank J.
Stephan, Thomas
Sterken, Veerle J.
Stodolna, Julien
Stroud, Rhonda M.
Sutton, Steven
Trieloff, Mario
Tsou, Peter
Tsuchiyama, Akira
Tyliszczak, Tolek
Vekemans, Bart
Vincze, Laszlo
Von Korff, Joshua
Westphal, Andrew J.
Wordsworth, Naomi
Zevin, Daniel
Zolensky, Michael E.
TI Stardust Interstellar Preliminary Examination III: Infrared
spectroscopic analysis of interstellar dust candidates
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Article
ID COMET 81P/WILD 2; CONSTRAINTS; ORGANICS; RETURN; LIGHT
AB Under the auspices of the Stardust Interstellar Preliminary Examination, picokeystones extracted from the Stardust Interstellar Dust Collector were examined with synchrotron Fourier transform infrared (FTIR) microscopy to establish whether they contained extraterrestrial organic material. The picokeystones were found to be contaminated with varying concentrations and speciation of organics in the native aerogel, which hindered the search for organics in the interstellar dust candidates. Furthermore, examination of the picokeystones prior to and post X-ray microprobe analyses yielded evidence of beam damage in the form of organic deposition or modification, particularly with hard X-ray synchrotron X-ray fluorescence. From these results, it is clear that considerable care must be taken to interpret any organics that might be in interstellar dust particles. For the interstellar candidates examined thus far, however, there is no clear evidence of extraterrestrial organics associated with the track and/or terminal particles. However, we detected organic matter associated with the terminal particle in Track 37, likely a secondary impact from the Al-deck of the sample return capsule, demonstrating the ability of synchrotron FTIR to detect organic matter in small particles within picokeystones from the Stardust interstellar dust collector.
C1 [Bechtel, Hans A.; Tyliszczak, Tolek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Flynn, George J.] SUNY Coll Plattsburgh, Plattsburgh, NY 12901 USA.
[Allen, Carlton; Zolensky, Michael E.] NASA Johnson Space Ctr, ARES, Houston, TX USA.
[Anderson, David; Butterworth, Anna L.; Gainsforth, Zack; Lettieri, Robert; Marchant, William; Stodolna, Julien; Von Korff, Joshua; Westphal, Andrew J.; Zevin, Daniel] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA USA.
[Ansari, Asna; Heck, Philipp R.; Hvide, Brit; King, Ashley J.] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA.
[Bajt, Sasa] DESY, Hamburg, Germany.
[Bastien, Ron K.; Frank, David R.] NASA Johnson Space Ctr, ESCG, Houston, TX USA.
[Bassim, Nabil; Stroud, Rhonda M.] Naval Res Lab, Mat Sci & Technol Div, Washington, DC USA.
[Borg, Janet] IAS Orsay, Orsay, France.
[Brenker, Frank E.; Schmitz, Sylvia] Goethe Univ Frankfurt, Inst Geosci, Frankfurt, Germany.
[Bridges, John] Univ Leicester, Space Res Ctr, Leicester, Leics, England.
[Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA.
[Burchell, Mark; Price, Mark C.] Univ Kent, Canterbury, Kent, England.
[Burghammer, Manfred; Cloetens, Peter; Tresseras, Juan-Angel Sans; Sole, Vicente A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France.
[Changela, Hitesh] George Washington Univ, Washington, DC USA.
[Davis, Andrew M.; King, Ashley J.; Stephan, Thomas] Univ Chicago, Chicago, IL 60637 USA.
[Doll, Ryan; Floss, Christine; Leonard, Ariel; Ong, Wei Ja; Stadermann, Frank J.] Washington Univ, St Louis, MO USA.
[Gruen, Eberhard; Sterken, Veerle J.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany.
[Hillier, Jon K.; Postberg, Frank; Trieloff, Mario] Heidelberg Univ, Inst Geowissensch, Heidelberg, Germany.
[Hoppe, Peter; Huth, Joachim; Leitner, Jan] Max Planck Inst Chem, D-55128 Mainz, Germany.
[Kearsley, Anton] Nat Hist Museum, London SW7 5BD, England.
[Lai, Barry; Sutton, Steven] Argonne Natl Lab, Adv Photon Source, Chicago, IL USA.
[Lemelle, Laurence] Ecole Normale Super Lyon, F-69364 Lyon, France.
[Leroux, Hugues] Univ Lille 1, Lille 1, France.
[Nittler, Larry R.] Carnegie Inst Sci, Washington, DC USA.
[Ogliore, Ryan] Univ Hawaii Manoa, Honolulu, HI 96822 USA.
[Postberg, Frank; Srama, Ralf; Sterken, Veerle J.] Univ Stuttgart, Inst Raumfahrtsyst, Stuttgart, Germany.
[Sandford, Scott A.] NASA Ames Res Ctr, Moffett Field, CA USA.
[Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart; Vincze, Laszlo] Univ Ghent, B-9000 Ghent, Belgium.
[Simionovici, Alexandre S.] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France.
[Sterken, Veerle J.] TU Braunschweig, Inst Geophys & Extraterrestr Phys, Braunschweig, Germany.
[Tsou, Peter] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Tsuchiyama, Akira] Osaka Univ, Osaka, Japan.
RP Bechtel, HA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
EM habechtel@lbl.gov
RI Bajt, Sasa/G-2228-2010; Stroud, Rhonda/C-5503-2008; Sans Tresserras,
Juan Angel/J-9362-2014; Leitner, Jan/A-7391-2015; Hoppe,
Peter/B-3032-2015
OI Stroud, Rhonda/0000-0001-5242-8015; Burchell, Mark/0000-0002-2680-8943;
Sans Tresserras, Juan Angel/0000-0001-9047-3992; Leitner,
Jan/0000-0003-3655-6273; Hoppe, Peter/0000-0003-3681-050X
FU NASA Laboratory Analysis of Returned Samples research grant
[NNX11AE15G]; NASA [NNX09AC36G, NNH11AQ61I]; Office of Science, Office
of Basic Energy Sciences, of the U.S. Department of Energy
[DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences [DE-AC02-98CH10886]
FX The ISPE consortium gratefully acknowledges the NASA Discovery Program
for Stardust, the fourth NASA Discovery mission. GJF was supported by a
NASA Laboratory Analysis of Returned Samples research grant NNX11AE15G.
AJW, ALB, ZG, RL, DZ, WM, and JVK were supported by NASA grant
NNX09AC36G. RMS, HCG, and NDB were supported by NASA grant NNH11AQ61I.
The ALS is supported by the Director, Office of Science, Office of Basic
Energy Sciences, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. Use of the NSLS, BNL, was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-98CH10886.
NR 30
TC 6
Z9 6
U1 3
U2 15
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1086-9379
EI 1945-5100
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD SEP
PY 2014
VL 49
IS 9
SI SI
BP 1548
EP 1561
DI 10.1111/maps.12125
PG 14
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AQ6HT
UT WOS:000342912100003
ER
PT J
AU Butterworth, AL
Westphal, AJ
Tyliszczak, T
Gainsforth, Z
Stodolna, J
Frank, DR
Allen, C
Anderson, D
Ansari, A
Bajt, S
Bastien, RK
Bassim, N
Bechtel, HA
Borg, J
Brenker, FE
Bridges, J
Brownlee, DE
Burchell, M
Burghammer, M
Changela, H
Cloetens, P
Davis, AM
Doll, R
Floss, C
Flynn, G
Grun, E
Heck, PR
Hillier, JK
Hoppe, P
Hudson, B
Huth, J
Hvide, B
Kearsley, A
King, AJ
Lai, B
Leitner, J
Lemelle, L
Leroux, H
Leonard, A
Lettieri, R
Marchant, W
Nittler, LR
Ogliore, R
Ong, WJ
Postberg, F
Price, MC
Sandford, SA
Tresseras, JAS
Schmitz, S
Schoonjans, T
Silversmit, G
Simionovici, AS
Sole, VA
Srama, R
Stadermann, FJ
Stephan, T
Sterken, VJ
Stroud, RM
Sutton, S
Trieloff, M
Tsou, P
Tsuchiyama, A
Vekemans, B
Vincze, L
Von Korff, J
Wordsworth, N
Zevin, D
Zolensky, ME
AF Butterworth, Anna L.
Westphal, Andrew J.
Tyliszczak, Tolek
Gainsforth, Zack
Stodolna, Julien
Frank, David R.
Allen, Carlton
Anderson, David
Ansari, Asna
Bajt, Sasa
Bastien, Ron K.
Bassim, Nabil
Bechtel, Hans A.
Borg, Janet
Brenker, Frank E.
Bridges, John
Brownlee, Donald E.
Burchell, Mark
Burghammer, Manfred
Changela, Hitesh
Cloetens, Peter
Davis, Andrew M.
Doll, Ryan
Floss, Christine
Flynn, George
Gruen, Eberhard
Heck, Philipp R.
Hillier, Jon K.
Hoppe, Peter
Hudson, Bruce
Huth, Joachim
Hvide, Brit
Kearsley, Anton
King, Ashley J.
Lai, Barry
Leitner, Jan
Lemelle, Laurence
Leroux, Hugues
Leonard, Ariel
Lettieri, Robert
Marchant, William
Nittler, Larry R.
Ogliore, Ryan
Ong, Wei Ja
Postberg, Frank
Price, Mark C.
Sandford, Scott A.
Tresseras, Juan-Angel Sans
Schmitz, Sylvia
Schoonjans, Tom
Silversmit, Geert
Simionovici, Alexandre S.
Sole, Vicente A.
Srama, Ralf
Stadermann, Frank J.
Stephan, Thomas
Sterken, Veerle J.
Stroud, Rhonda M.
Sutton, Steven
Trieloff, Mario
Tsou, Peter
Tsuchiyama, Akira
Vekemans, Bart
Vincze, Laszlo
Von Korff, Joshua
Wordsworth, Naomi
Zevin, Daniel
Zolensky, Michael E.
TI Stardust Interstellar Preliminary Examination IV: Scanning transmission
X-ray microscopy analyses of impact features in the Stardust
Interstellar Dust Collector
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Article
ID NEAR-EDGE STRUCTURE; K-EDGE; ABSORPTION SPECTROSCOPY; MINERALS; AL;
XANES; TEMPERATURE; MAGNESIUM; RANGE; MG
AB We report the quantitative characterization by synchrotron soft X-ray spectroscopy of 31 potential impact features in the aerogel capture medium of the Stardust Interstellar Dust Collector. Samples were analyzed in aerogel by acquiring high spatial resolution maps and high energy-resolution spectra of major rock-forming elements Mg, Al, Si, Fe, and others. We developed diagnostic screening tests to reject spacecraft secondary ejecta and terrestrial contaminants from further consideration as interstellar dust candidates. The results support an extraterrestrial origin for three interstellar candidates: I1043,1,30 (Orion) is a 3 pg particle with Mg-spinel, forsterite, and an iron-bearing phase. I1047,1,34 (Hylabrook) is a 4 pg particle comprising an olivine core surrounded by low-density, amorphous Mg-silicate and amorphous Fe, Cr, and Mn phases. I1003,1,40 (Sorok) has the track morphology of a high-speed impact, but contains no detectable residue that is convincingly distinguishable from the background aerogel. Twenty-two samples with an anthropogenic origin were rejected, including four secondary ejecta from impacts on the Stardust spacecraft aft solar panels, nine ejecta from secondary impacts on the Stardust Sample Return Capsule, and nine contaminants lacking evidence of an impact. Other samples in the collection included I1029,1,6, which contained surviving solar system impactor material. Four samples remained ambiguous: I1006,2,18, I1044,2,32, and I1092,2,38 were too dense for analysis, and we did not detect an intact projectile in I1044,3,33. We detected no radiation effects from the synchrotron soft X-ray analyses; however, we recorded the effects of synchrotron hard X-ray radiation on I1043,1,30 and I1047,1,34.
C1 [Butterworth, Anna L.; Westphal, Andrew J.; Gainsforth, Zack; Stodolna, Julien; Anderson, David; Lettieri, Robert; Marchant, William; Von Korff, Joshua; Zevin, Daniel] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Tyliszczak, Tolek; Bechtel, Hans A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Frank, David R.; Bastien, Ron K.] NASA JSC, ESCG, Houston, TX USA.
[Allen, Carlton; Zolensky, Michael E.] NASA JSC, ARES, Houston, TX USA.
[Ansari, Asna; Heck, Philipp R.; Hvide, Brit] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA.
[Bajt, Sasa] DESY, Hamburg, Germany.
[Bassim, Nabil; Stroud, Rhonda M.] Naval Res Lab, Mat Sci & Technol Div, Washington, DC USA.
[Borg, Janet] Inst Astrophys Spatiale, Orsay, France.
[Brenker, Frank E.; Schmitz, Sylvia] Goethe Univ Frankfurt, Inst Geosci, Frankfurt, Germany.
[Bridges, John] Univ Leicester, Space Res Ctr, Leicester, Leics, England.
[Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA.
[Burchell, Mark; Price, Mark C.] Univ Kent, Canterbury, Kent, England.
[Burghammer, Manfred; Cloetens, Peter; Tresseras, Juan-Angel Sans; Sole, Vicente A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France.
[Changela, Hitesh] George Washington Univ, Washington, DC USA.
[Davis, Andrew M.; King, Ashley J.; Stephan, Thomas] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA.
[Doll, Ryan; Floss, Christine; Leonard, Ariel; Ong, Wei Ja; Stadermann, Frank J.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
[Flynn, George] SUNY Coll Plattsburgh, Dept Phys, Plattsburgh, NY 12901 USA.
[Gruen, Eberhard; Sterken, Veerle J.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany.
[Hillier, Jon K.; Postberg, Frank; Trieloff, Mario] Heidelberg Univ, Inst Geowissensch, Heidelberg, Germany.
[Hoppe, Peter; Huth, Joachim; Leitner, Jan] Max Planck Inst Chem, D-55128 Mainz, Germany.
[Kearsley, Anton] Nat Hist Museum, London SW7 5BD, England.
[Lai, Barry; Sutton, Steven] Argonne Natl Lab, Adv Photon Source, Chicago, IL USA.
[Lemelle, Laurence] Ecole Normale Super Lyon, F-69364 Lyon, France.
[Leroux, Hugues] Univ Lille, Lille, France.
[Nittler, Larry R.] Carnegie Inst Sci, Washington, DC USA.
[Ogliore, Ryan] Univ Hawaii Manoa, Honolulu, HI 96822 USA.
[Sandford, Scott A.] NASA Ames Res Ctr, Moffett Field, CA USA.
[Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart; Vincze, Laszlo] Univ Ghent, B-9000 Ghent, Belgium.
[Simionovici, Alexandre S.] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France.
[Srama, Ralf; Sterken, Veerle J.] Univ Stuttgart, Inst Raumfahrtsyst, D-70174 Stuttgart, Germany.
[Sterken, Veerle J.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterrestr Phys, D-38106 Braunschweig, Germany.
[Tsou, Peter] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Tsuchiyama, Akira] Osaka Univ, Osaka, Japan.
RP Butterworth, AL (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
EM annab@ssl.berkeley.edu
RI Bajt, Sasa/G-2228-2010; Stroud, Rhonda/C-5503-2008; Sans Tresserras,
Juan Angel/J-9362-2014; Leitner, Jan/A-7391-2015; Hoppe,
Peter/B-3032-2015
OI Stroud, Rhonda/0000-0001-5242-8015; Burchell, Mark/0000-0002-2680-8943;
Sans Tresserras, Juan Angel/0000-0001-9047-3992; Leitner,
Jan/0000-0003-3655-6273; Hoppe, Peter/0000-0003-3681-050X
FU NASA [NNX09AC36G, NNH11AQ61I]; Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-98CH10886]
FX The ISPE consortium gratefully acknowledges the NASA Discovery Program
for Stardust, the fourth NASA Discovery mission. AJW, ALB, ZG, RL, DZ,
WM, and JVK were supported by NASA grant NNX09AC36G. RMS, HCG, and NDB
were supported by NASA grant NNH11AQ61I. The ALS is supported by the
Director, Office of Science, Office of Basic Energy Sciences, of the
U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. Use of
the National Synchrotron Light Source, Brookhaven National Laboratory,
was supported by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.
We appreciate greatly the thorough reviews by one anonymous reviewer,
John Bradley, and associate editor, Christian Koeberl. Their
contributions improved the manuscript and helped to clarify key
findings. We thank Steve Boggs for helpful discussions regarding X-ray
dose estimates in the Interstellar Medium, and for providing diffuse
X-ray data. We thank the Natural History Museum, London, for providing
most of the standards used for acquiring the XANES spectra library in
this work.
NR 33
TC 12
Z9 12
U1 0
U2 15
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1086-9379
EI 1945-5100
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD SEP
PY 2014
VL 49
IS 9
SI SI
BP 1562
EP 1593
DI 10.1111/maps.12220
PG 32
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AQ6HT
UT WOS:000342912100004
ER
PT J
AU Brenker, FE
Westphal, AJ
Vincze, L
Burghammer, M
Schmitz, S
Schoonjans, T
Silversmit, G
Vekemans, B
Allen, C
Anderson, D
Ansari, A
Bajt, S
Bastien, RK
Bassim, N
Bechtel, HA
Borg, J
Bridges, J
Brownlee, DE
Burchell, M
Butterworth, AL
Changela, H
Cloetens, P
Davis, AM
Doll, R
Floss, C
Flynn, G
Fougeray, P
Frank, DR
Gainsforth, Z
Grun, E
Heck, PR
Hillier, JK
Hoppe, P
Hudson, B
Huth, J
Hvide, B
Kearsley, A
King, AJ
Lai, B
Leitner, J
Lemelle, L
Leroux, H
Leonard, A
Lettieri, R
Marchant, W
Nittler, LR
Ogliore, R
Ong, WJ
Postberg, F
Price, MC
Sandford, SA
Tresseras, JAS
Simionovici, AS
Sole, VA
Srama, R
Stadermann, F
Stephan, T
Sterken, VJ
Stodolna, J
Stroud, RM
Sutton, S
Trieloff, M
Tsou, P
Tsuchiyama, A
Tyliszczak, T
Von Korff, J
Wordsworth, N
Zevin, D
Zolensky, ME
AF Brenker, Frank E.
Westphal, Andrew J.
Vincze, Laszlo
Burghammer, Manfred
Schmitz, Sylvia
Schoonjans, Tom
Silversmit, Geert
Vekemans, Bart
Allen, Carlton
Anderson, David
Ansari, Asna
Bajt, Sasa
Bastien, Ron K.
Bassim, Nabil
Bechtel, Hans A.
Borg, Janet
Bridges, John
Brownlee, Donald E.
Burchell, Mark
Butterworth, Anna L.
Changela, Hitesh
Cloetens, Peter
Davis, Andrew M.
Doll, Ryan
Floss, Christine
Flynn, George
Fougeray, Patrick
Frank, David R.
Gainsforth, Zack
Gruen, Eberhard
Heck, Philipp R.
Hillier, Jon K.
Hoppe, Peter
Hudson, Bruce
Huth, Joachim
Hvide, Brit
Kearsley, Anton
King, Ashley J.
Lai, Barry
Leitner, Jan
Lemelle, Laurence
Leroux, Hugues
Leonard, Ariel
Lettieri, Robert
Marchant, William
Nittler, Larry R.
Ogliore, Ryan
Ong, Wei Ja
Postberg, Frank
Price, Mark C.
Sandford, Scott A.
Tresseras, Juan-Angel Sans
Simionovici, Alexandre S.
Sole, Vicente A.
Srama, Ralf
Stadermann, Frank
Stephan, Thomas
Sterken, Veerle J.
Stodolna, Julien
Stroud, Rhonda M.
Sutton, Steven
Trieloff, Mario
Tsou, Peter
Tsuchiyama, Akira
Tyliszczak, Tolek
Von Korff, Joshua
Wordsworth, Naomi
Zevin, Daniel
Zolensky, Michael E.
TI Stardust Interstellar Preliminary Examination V: XRF analyses of
interstellar dust candidates at ESRF ID13
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Article
ID INTERPLANETARY DUST; AEROGEL; OLIVINE
AB Here, we report analyses by synchrotron X-ray fluorescence microscopy of the elemental composition of eight candidate impact features extracted from the Stardust Interstellar Dust Collector (SIDC). Six of the features were unambiguous tracks, and two were crater-like features. Five of the tracks are so-called "midnight" tracks-that is, they had trajectories consistent with an origin either in the interstellar dust stream or as secondaries from impacts on the Sample Return Capsule (SRC). In a companion paper reporting synchrotron X-ray diffraction analyses of ISPE candidates, we show that two of these particles contain natural crystalline materials: the terminal particle of track 30 contains olivine and spinel, and the terminal particle of track 34 contains olivine. Here, we show that the terminal particle of track 30, Orion, shows elemental abundances, normalized to Fe, that are close to CI values, and a complex, fine-grained structure. The terminal particle of track 34, Hylabrook, shows abundances that deviate strongly from CI, but shows little fine structure and is nearly homogenous. The terminal particles of other midnight tracks, 29 and 37, had heavy element abundances below detection threshold. A third, track 28, showed a composition inconsistent with an extraterrestrial origin, but also inconsistent with known spacecraft materials. A sixth track, with a trajectory consistent with secondary ejecta from an impact on one of the spacecraft solar panels, contains abundant Ce and Zn. This is consistent with the known composition of the glass covering the solar panel. Neither crater-like feature is likely to be associated with extraterrestrial materials. We also analyzed blank aerogel samples to characterize background and variability between aerogel tiles. We found significant differences in contamination levels and compositions, emphasizing the need for local background subtraction for accurate quantification.
C1 [Brenker, Frank E.; Schmitz, Sylvia] Goethe Univ Frankfurt, D-60438 Frankfurt, Germany.
[Westphal, Andrew J.; Anderson, David; Butterworth, Anna L.; Gainsforth, Zack; Lettieri, Robert; Marchant, William; Stodolna, Julien; Von Korff, Joshua; Zevin, Daniel] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Vincze, Laszlo; Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart] Univ Ghent, Dept Analyt Chem, B-9000 Ghent, Belgium.
[Burghammer, Manfred; Cloetens, Peter; Tresseras, Juan-Angel Sans; Sole, Vicente A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France.
[Ansari, Asna; Hvide, Brit; King, Ashley J.] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA.
[Bajt, Sasa] DESY, D-22607 Hamburg, Germany.
[Bastien, Ron K.; Frank, David R.] NASA, Lyndon B Johnson Space Ctr, ESCG, Houston, TX 77058 USA.
[Bassim, Nabil; Stroud, Rhonda M.] Naval Res Lab, Nanoscale Mat Sect, Washington, DC 20375 USA.
[Bechtel, Hans A.; Tyliszczak, Tolek] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Borg, Janet] IAS Orsay, Orsay, France.
[Bridges, John] Univ Leicester, Space Res Ctr, Dept Phys & Astron, Leicester LE1 7RH, Leics, England.
[Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA.
[Burchell, Mark; Price, Mark C.] Univ Kent, Canterbury CT2 7NR, Kent, England.
[Changela, Hitesh] George Washington Univ, Washington, DC 20052 USA.
[Davis, Andrew M.; Stephan, Thomas] Univ Chicago, Chicago, IL 60637 USA.
[Doll, Ryan; Floss, Christine; Leonard, Ariel; Ong, Wei Ja; Stadermann, Frank] Washington Univ, St Louis, MO 63130 USA.
[Flynn, George] SUNY Coll Plattsburgh, Dept Phys, Plattsburgh, NY 12901 USA.
[Fougeray, Patrick] Chigy, Burgundy, Chigy, France.
[Gruen, Eberhard] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany.
[Heck, Philipp R.; Hillier, Jon K.; Postberg, Frank] Inst Geowissensch, D-69120 Heidelberg, Germany.
[Hoppe, Peter; Huth, Joachim; Leitner, Jan] Max Planck Inst Chem, D-55128 Mainz, Germany.
[Kearsley, Anton] Nat Hist Museum, London SW7 5BD, England.
[Lai, Barry; Sutton, Steven] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Lemelle, Laurence] Ecole Normale Super Lyon, F-69364 Lyon, France.
[Leroux, Hugues] Univ Lille 1, Unite Mat & Transformat UMR 8207, F-59655 Villeneuve Dascq, France.
[Nittler, Larry R.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA.
[Ogliore, Ryan] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetary Sci, Honolulu, HI 96822 USA.
[Sandford, Scott A.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA.
[Simionovici, Alexandre S.] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France.
[Srama, Ralf; Sterken, Veerle J.] Univ Stuttgart, Inst Raumfahrtsyst, D-70569 Stuttgart, Germany.
[Trieloff, Mario] Inst Geowissensch, D-69120 Heidelberg, Germany.
[Tsou, Peter] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Tsuchiyama, Akira] Osaka Univ, Grad Sch Sci, Dept Earth & Planetary Sci, Osaka, Japan.
RP Westphal, AJ (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
EM westphal@ssl.berkeley.edu
RI Bajt, Sasa/G-2228-2010; Stroud, Rhonda/C-5503-2008; Sans Tresserras,
Juan Angel/J-9362-2014; Leitner, Jan/A-7391-2015; Hoppe,
Peter/B-3032-2015
OI Stroud, Rhonda/0000-0001-5242-8015; Burchell, Mark/0000-0002-2680-8943;
Sans Tresserras, Juan Angel/0000-0001-9047-3992; Leitner,
Jan/0000-0003-3655-6273; Hoppe, Peter/0000-0003-3681-050X
FU NASA [NNX09AC36G, NNH11AQ61I]; Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-98CH10886]; German Science Foundation (DFG)
FX This manuscript was improved due to the thoughtful comments of John
Bradley. The ISPE consortium gratefully acknowledge the NASA Discovery
Program for Stardust, the fourth NASA Discovery mission. AJW, ALB, ZG,
RL, DZ, WM, and JVK were supported by NASA grant NNX09AC36G. We thank
Steve Boggs for astrophysical soft X-ray spectra. RMS, HCG, and NDB were
supported by NASA grant NNH11AQ61I. The Advanced Light Source is
supported by the Director, Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. Use of the National Synchrotron Light Source,
Brookhaven National Laboratory, was supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract no. DE-AC02-98CH10886. We like to thank the ESRF for the
allocated beamtime at ID13, instrumental and technical support. FEB and
SS were supported by funding of the German Science Foundation (DFG).
NR 28
TC 9
Z9 9
U1 1
U2 16
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1086-9379
EI 1945-5100
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD SEP
PY 2014
VL 49
IS 9
SI SI
BP 1594
EP 1611
DI 10.1111/maps.12206
PG 18
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AQ6HT
UT WOS:000342912100005
ER
PT J
AU Simionovici, AS
Lemelle, L
Cloetens, P
Sole, VA
Tresseras, JAS
Butterworth, AL
Westphal, AJ
Gainsforth, Z
Stodolna, J
Allen, C
Anderson, D
Ansari, A
Bajt, S
Bassim, N
Bastien, RK
Bechtel, HA
Borg, J
Brenker, FE
Bridges, J
Brownlee, DE
Burchell, M
Burghammer, M
Changela, H
Davis, AM
Doll, R
Floss, C
Flynn, G
Frank, DR
Grun, E
Heck, PR
Hillier, JK
Hoppe, P
Hudson, B
Huth, J
Hvide, B
Kearsley, A
King, AJ
Lai, B
Leitner, J
Leonard, A
Leroux, H
Lettieri, R
Marchant, W
Nittler, LR
Ogliore, R
Ong, WJ
Postberg, F
Price, MC
Sandford, SA
Schmitz, S
Schoonjans, T
Silversmit, G
Srama, R
Stadermann, FJ
Stephan, T
Sterken, VJ
Stroud, RM
Sutton, S
Trieloff, M
Tsou, P
Tsuchiyama, A
Tyliszczak, T
Vekemans, B
Vincze, L
Von Korff, J
Wordsworth, N
Zevin, D
Zolensky, ME
AF Simionovici, Alexandre S.
Lemelle, Laurence
Cloetens, Peter
Sole, Vicente A.
Tresseras, Juan-Angel Sans
Butterworth, Anna L.
Westphal, Andrew J.
Gainsforth, Zack
Stodolna, Julien
Allen, Carlton
Anderson, David
Ansari, Asna
Bajt, Sasa
Bassim, Nabil
Bastien, Ron K.
Bechtel, Hans A.
Borg, Janet
Brenker, Frank E.
Bridges, John
Brownlee, Donald E.
Burchell, Mark
Burghammer, Manfred
Changela, Hitesh
Davis, Andrew M.
Doll, Ryan
Floss, Christine
Flynn, George
Frank, David R.
Gruen, Eberhard
Heck, Philipp R.
Hillier, Jon K.
Hoppe, Peter
Hudson, Bruce
Huth, Joachim
Hvide, Brit
Kearsley, Anton
King, Ashley J.
Lai, Barry
Leitner, Jan
Leonard, Ariel
Leroux, Hugues
Lettieri, Robert
Marchant, William
Nittler, Larry R.
Ogliore, Ryan
Ong, Wei Ja
Postberg, Frank
Price, Mark C.
Sandford, Scott A.
Schmitz, Sylvia
Schoonjans, Tom
Silversmit, Geert
Srama, Ralf
Stadermann, Frank J.
Stephan, Thomas
Sterken, Veerle J.
Stroud, Rhonda M.
Sutton, Steven
Trieloff, Mario
Tsou, Peter
Tsuchiyama, Akira
Tyliszczak, Tolek
Vekemans, Bart
Vincze, Laszlo
Von Korff, Joshua
Wordsworth, Naomi
Zevin, Daniel
Zolensky, Michael E.
TI Stardust Interstellar Preliminary Examination VI: Quantitative elemental
analysis by synchrotron X-ray fluorescence nanoimaging of eight impact
features in aerogel
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Article
ID COMET 81P/WILD-2; SOLAR-SYSTEM; DUST; GRAINS; CLOUD; GAS
AB Hard X-ray, quantitative, fluorescence elemental imaging was performed on the ID22NI nanoprobe and ID22 microprobe beam lines of the European Synchrotron Research facility (ESRF) in Grenoble, France, on eight interstellar candidate impact features in the framework of the NASA Stardust Interstellar Preliminary Examination (ISPE). Three features were unambiguous tracks, and the other five were identified as possible, but not definite, impact features. Overall, we produced an absolute quantification of elemental abundances in the 15 <= Z <= 30 range by m