FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Moreno, O Donnelly, TW Van Orden, JW Ford, WP AF Moreno, O. Donnelly, T. W. Van Orden, J. W. Ford, W. P. TI Semi-inclusive charged-current neutrino-nucleus reactions SO PHYSICAL REVIEW D LA English DT Article ID ELECTRON-SCATTERING; POLARIZATION AB The general, universal formalism for semi-inclusive charged-current (anti) neutrino-nucleus reactions is given for studies of any hadronic system, namely, either nuclei or the nucleon itself. The detailed developments are presented with the former in mind and are further specialized to cases where the final-state charged lepton and an ejected nucleon are presumed to be detected. General kinematics for such processes are summarized, and then explicit expressions are developed for the leptonic and hadronic tensors involved and for the corresponding responses according to the usual charge, longitudinal and transverse projections, keeping finite the masses of all particles involved. In the case of the hadronic responses, general symmetry principles are invoked to determine which contributions can occur. Finally, the general leptonic-hadronic tensor contraction is given as well as the cross section for the process. C1 [Moreno, O.; Donnelly, T. W.] MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA. [Moreno, O.; Donnelly, T. W.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Van Orden, J. W.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Van Orden, J. W.] Jefferson Lab, Newport News, VA 23606 USA. [Ford, W. P.] Univ So Mississippi, Dept Phys, Hattiesburg, MS 39406 USA. RP Moreno, O (reprint author), MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA. RI Moreno, Oscar/J-6394-2014; OI Moreno, Oscar/0000-0002-8446-6005; Ford, William/0000-0001-9946-1226 FU Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme; MINECO (Spain) [FIS2011D23565]; U.S. Department of Energy [DE-FC02-94ER40818, DE-AC05-06OR23177, DE-AC05-84ER40150] FX This research was supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme and by MINECO (Spain) under Research Grant No. FIS2011D23565 (O. M.). It was also supported in part by the U.S. Department of Energy under Cooperative Agreement No. DE-FC02-94ER40818 (T. W. D.), and by the U.S. Department of Energy under Contract No. DE-AC05-06OR23177 and the U.S. Department of Energy Cooperative Research Agreement No. DE-AC05-84ER40150 (J. W. V. O.). NR 8 TC 2 Z9 2 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL 17 PY 2014 VL 90 IS 1 AR 013014 DI 10.1103/PhysRevD.90.013014 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AL3YC UT WOS:000339067000004 ER PT J AU Satow, D Yee, HU AF Satow, Daisuke Yee, Ho-Ung TI Chiral magnetic effect at weak coupling with relaxation dynamics SO PHYSICAL REVIEW D LA English DT Article ID QUARK-GLUON PLASMA; HOT GAUGE-THEORIES; FIELD-THEORY; TRANSPORT-COEFFICIENTS; HIGH-TEMPERATURE; WARD IDENTITIES; QUASI-PARTICLES; DAMPING RATE; QED PLASMAS; QCD AB We provide resolution of an old issue in the weak coupling computation of the chiral magnetic effect (CME) current, where free chiral fermion theory gives two different results depending on the order of the two limits, omega -> 0 (frequency) and k -> 0 (spatial momentum). We first argue based on hydrodynamics that in any reasonable interacting theory of chiral fermions the noncommutativity between the two limits should be absent, and we demonstrate this at weak coupling regime in two different frameworks: kinetic theory in the relaxation time approximation and diagrammatic computation with resummation of damping rate. In the latter computation, we also show that the "pinch" singularity, which would make a summation of ladder diagrams necessary, as in the P-even correlation function, is absent in the relevant P-odd correlation function. The correct value of chiral magnetic effect current is reproduced even in the presence of relaxation dynamics in both computations. C1 [Satow, Daisuke] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Satow, Daisuke] RIKEN, Nishina Ctr, Theoret Res Div, Wako, Saitama 3510198, Japan. [Yee, Ho-Ung] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Yee, Ho-Ung] RIKEN, Brookhaven Natl Lab, Res Ctr, Upton, NY 11973 USA. RP Satow, D (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM daisuke.sato@riken.jp; hyee@uic.edu FU JSPS Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation [R2411] FX We thank Dima Kharzeev, Shu Lin, Dam T. Son, Misha Stephanov, and Yi Yin for helpful discussions and comments. D. S. is supported by the JSPS Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation (No. R2411). NR 72 TC 19 Z9 19 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL 17 PY 2014 VL 90 IS 1 AR 014027 DI 10.1103/PhysRevD.90.014027 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AL3YC UT WOS:000339067000005 ER PT J AU Erhart, P Klein, A Aberg, D Sadigh, B AF Erhart, Paul Klein, Andreas Aberg, Daniel Sadigh, Babak TI Efficacy of the DFT plus U formalism for modeling hole polarons in perovskite oxides SO PHYSICAL REVIEW B LA English DT Article ID WAVE BASIS-SET; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; BAND ALIGNMENT; METALS; SRTIO3 AB We investigate the formation of self-trapped holes (STH) in three prototypical perovskites (SrTiO3, BaTiO3, PbTiO3) using a combination of density functional theory (DFT) calculations with local potentials and hybrid functionals. First we construct a local correction potential for polaronic configurations in SrTiO3 that is applied via the DFT + U method and matches the forces from hybrid calculations. We then use the DFT + U potential to search the configuration space and locate the lowest energy STH configuration. It is demonstrated that both the DFT + U potential and the hybrid functional yield a piecewise linear dependence of the total energy on the occupation of the STH level, suggesting that self-interaction effects have been properly removed. The DFT + U model is found to be transferable to BaTiO3 and PbTiO3, and STH formation energies from DFT + U and hybrid calculations are in close agreement for all three materials. STH formation is found to be energetically favorable in SrTiO3 and BaTiO3 but not in PbTiO3, which can be rationalized by considering the alignment of the valence band edges on an absolute energy scale. In the case of PbTiO3 the strong coupling between Pb 6s and O 2p states lifts the valence band minimum (VBM) compared to SrTiO3 and BaTiO3. This reduces the separation between VBM and STH level and renders the STH configuration metastable with respect to delocalization (band hole state). We expect that the present approach can be adapted to study STH formation also in oxides with different crystal structures and chemical compositions. C1 [Erhart, Paul] Chalmers, Dept Appl Phys, S-41296 Gothenburg, Sweden. [Klein, Andreas] Tech Univ Darmstadt, Inst Mat Wissensch, D-64287 Darmstadt, Germany. [Aberg, Daniel; Sadigh, Babak] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94550 USA. RP Erhart, P (reprint author), Chalmers, Dept Appl Phys, S-41296 Gothenburg, Sweden. EM erhart@chalmers.se RI Erhart, Paul/G-6260-2011; Klein, Andreas/E-6081-2010; OI Erhart, Paul/0000-0002-2516-6061; Klein, Andreas/0000-0001-7463-1495; Aberg, Daniel/0000-0003-4364-9419 FU Swedish Research Council; European Research Council; German Science Foundation via the collaborative research center on electrical fatigue of functional materials [SFB 595]; NA-22 agency; Lawrence Livermore National Security, LLC, for the U. S. DOE-NNSA [DE-AC52-07NA27344] FX P.E. acknowledges funding from the Area of Advance Materials Science at Chalmers, the Swedish Research Council in the form of a young researcher grant, and the European Research Council via a Marie Curie career integration grant.; A.K. acknowledges support by the German Science Foundation via the collaborative research center on electrical fatigue of functional materials (SFB 595). D.A. and B.S. acknowledge funding from the NA-22 agency. Parts of this work were prepared at Lawrence Livermore National Laboratory, which is operated by Lawrence Livermore National Security, LLC, for the U. S. DOE-NNSA under Contract No. DE-AC52-07NA27344. Computer time allocations by the Swedish National Infrastructure for Computing at NSC (Linkoping) and C3SE (Gothenburg) are gratefully acknowledged. NR 55 TC 15 Z9 15 U1 10 U2 56 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 17 PY 2014 VL 90 IS 3 AR 035204 DI 10.1103/PhysRevB.90.035204 PG 8 WC Physics, Condensed Matter SC Physics GA AL3XR UT WOS:000339065600005 ER PT J AU Samsonidze, G Ribeiro, FJ Cohen, ML Louie, SG AF Samsonidze, Georgy Ribeiro, Filipe J. Cohen, Marvin L. Louie, Steven G. TI Quasiparticle and optical properties of polythiophene-derived polymers SO PHYSICAL REVIEW B LA English DT Article ID HETEROJUNCTION SOLAR-CELLS; POWER CONVERSION EFFICIENCY; OPEN-CIRCUIT VOLTAGE; ELECTRONIC-STRUCTURE; 1ST PRINCIPLES; EXCITATIONS; SEMICONDUCTORS; FILMS; PSEUDOPOTENTIALS; PHOTOVOLTAICS AB Electron donor conjugated polymers blended with electron acceptor fullerene derivatives is one of the promising technologies for organic photovoltaics. However, with the energy conversion efficiency of only 9% in a single bulk heterojunction device structure, these solar cells are not yet competitive with conventional inorganic semiconductor technology. Some of the limitations are large optical band gaps and small electron affinities of polymers preventing the absorption of infrared radiation and leading to energy losses during charge separation at the donor-acceptor interface, respectively. In this work, we compute from first principles the quasiparticle and optical spectra of several different thiophene-, ethyne-, and vinylene-based copolymers using the GW method and the GW plus Bethe-Salpeter equation approach. One of the polymers is identified which has a preferential alignment of the energy levels at the interface with fullerene molecule compared to the reference case of polythiophene. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Samsonidze, G (reprint author), Robert Bosch LLC, Res & Technol Ctr, Cambridge, MA 02142 USA. RI Samsonidze, Georgy/G-3613-2016; OI Samsonidze, Georgy/0000-0002-3759-1794; Ribeiro, Filipe/0000-0003-3843-7702 FU sp2 Program at the Lawrence Berkeley National Laboratory through the Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [DMR 10-1006184]; Simons Foundation Fellowship in Theoretical Physics FX The authors acknowledge helpful discussions with Professor Michel Cote and Professor Jeffrey C. Grossman. This research was supported by the sp2 Program at the Lawrence Berkeley National Laboratory through the Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-05CH11231 which provided for the excited-state GW and GW-BSE calculations and simulations, and by the National Science Foundation under Grant No. DMR 10-1006184 which provided for the structural determination and interfacial studies. S.G.L. acknowledges support of a Simons Foundation Fellowship in Theoretical Physics. Computational resources have been provided by NSF through TeraGrid resources at NICS and by DOE at Lawrence Berkeley National Laboratory's NERSC facility. NR 57 TC 5 Z9 5 U1 2 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 17 PY 2014 VL 90 IS 3 AR 035123 DI 10.1103/PhysRevB.90.035123 PG 8 WC Physics, Condensed Matter SC Physics GA AL3XR UT WOS:000339065600002 ER PT J AU Krogel, JT Kim, J Reboredo, FA AF Krogel, Jaron T. Kim, Jeongnim Reboredo, Fernando A. TI Energy density matrix formalism for interacting quantum systems: Quantum Monte Carlo study SO PHYSICAL REVIEW B LA English DT Article ID 2-DIMENSIONAL ELECTRON-GAS; COMPLEX SPECTRA; FERMI-LIQUID; EQUATION AB We develop an energy density matrix that parallels the one-body reduced density matrix (1RDM) for many-body quantum systems. Just as the density matrix gives access to the number density and occupation numbers, the energy density matrix yields the energy density and orbital occupation energies. The eigenvectors of the matrix provide a natural orbital partitioning of the energy density while the eigenvalues comprise a single-particle energy spectrum obeying a total energy sum rule. For mean-field systems the energy density matrix recovers the exact spectrum. When correlation becomes important, the occupation energies resemble quasiparticle energies in some respects. We explore the occupation energy spectrum for the finite 3D homogeneous electron gas in the metallic regime and an isolated oxygen atom with ground-state quantum Monte Carlo techniques implemented in the QMCPACK simulation code. The occupation energy spectrum for the homogeneous electron gas can be described by an effective mass below the Fermi level. Above the Fermi level evanescent behavior in the occupation energies is observed in similar fashion to the occupation numbers of the 1RDM. A direct comparison with total energy differences shows a quantitative connection between the occupation energies and electron addition and removal energies for the electron gas. For the oxygen atom, the association between the ground-state occupation energies and particle addition and removal energies becomes only qualitative. The energy density matrix provides an avenue for describing energetics with quantum Monte Carlo methods which have traditionally been limited to total energies. C1 [Krogel, Jaron T.; Kim, Jeongnim; Reboredo, Fernando A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Krogel, JT (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. OI Krogel, Jaron/0000-0002-1859-181X FU Materials Sciences & Engineering Division of the Office of Basic Energy Sciences, U.S. Department of Energy; Basic Energy Science (BES), Department of Energy (DOE) FX The authors (J.T.K., J.K., and F.R.) would like to thank Paul Kent for a thorough reading of the manuscript and useful discussions during the development of this study. The work was supported by the Materials Sciences & Engineering Division of the Office of Basic Energy Sciences, U.S. Department of Energy. One of us (J.K.) was supported through the Predictive Theory and Modeling for Materials and Chemical Science program by the Basic Energy Science (BES), Department of Energy (DOE). NR 32 TC 2 Z9 2 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 17 PY 2014 VL 90 IS 3 AR 035125 DI 10.1103/PhysRevB.90.035125 PG 8 WC Physics, Condensed Matter SC Physics GA AL3XR UT WOS:000339065600004 ER PT J AU Tawfik, AN Magdy, N AF Tawfik, Abdel Nasser Magdy, Niseem TI SU(3) Polyakov linear-sigma model in an external magnetic field SO PHYSICAL REVIEW C LA English DT Article ID JONA-LASINIO MODEL; TEMPERATURE CONFINEMENT TRANSITIONS; CONSTANT ELECTROMAGNETIC-FIELD; CHIRAL-SYMMETRY BREAKING; FINITE-TEMPERATURE; QUARK; LOOP; MASS AB In the present work, we analyze the effects of an external magnetic field on the chiral critical temperature T-c of strongly interacting matter. In doing this, we can characterize the magnetic properties of the quantum chromodynamics (QCD) strongly interacting matter, the quark-gluon plasma (QGP). We investigate this in the framework of the SU(3) Polyakov linear sigma model (PLSM). To this end, we implement two approaches representing two systems, in which the Polyakov-loop potential added to PLSM is either renormalized or non-normalized. The effects of Landau quantization on the strongly interacting matter are conjectured to reduce the electromagnetic interactions between quarks. In this case, the color interactions will be dominant and increasing, which in turn can be achieved by increasing the Polyakov-loop fields. Obviously, each of them equips us with a different understanding about the critical temperature under the effect of an external magnetic field. In both systems, we obtain a paramagnetic response. In one system, we find that T-c increases with increasing magnetic field. In the other one, T-c significantly decreases with increasing magnetic field. C1 [Tawfik, Abdel Nasser] MTI Univ, Egyptian Ctr Theoret Phys, Cairo 11571, Egypt. [Tawfik, Abdel Nasser; Magdy, Niseem] World Lab Cosmol & Particle Phys WLCAPP, Cairo, Egypt. [Magdy, Niseem] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Tawfik, AN (reprint author), MTI Univ, Egyptian Ctr Theoret Phys, Cairo 11571, Egypt. RI Tawfik, Abdel Nasser/M-6220-2013 OI Tawfik, Abdel Nasser/0000-0002-1679-0225 NR 79 TC 12 Z9 12 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUL 17 PY 2014 VL 90 IS 1 AR 015204 DI 10.1103/PhysRevC.90.015204 PG 14 WC Physics, Nuclear SC Physics GA AL3XW UT WOS:000339066200003 ER PT J AU Wang, XB Dobaczewski, J Kortelainen, M Yu, LF Stoitsov, MV AF Wang, X. B. Dobaczewski, J. Kortelainen, M. Yu, L. F. Stoitsov, M. V. TI Lipkin method of particle-number restoration to higher orders SO PHYSICAL REVIEW C LA English DT Article ID MEAN-FIELD MODELS; PAIRING INTERACTION; NUCLEAR-STRUCTURE; EFFECTIVE FORCES; 2-LEVEL MODEL; APPROXIMATION; PROJECTION; EQUATIONS; SYMMETRY; SYSTEMS AB Background: On the mean-field level, pairing correlations are incorporated through the Bogoliubov-Valatin transformation, whereby the particle degrees of freedom are replaced by quasiparticles. This approach leads to a spontaneous breaking of the particle-number symmetry and mixing of states with different particle numbers. In order to restore the particle number, various methods have been employed, which are based on projection approaches before or after variation. Approximate variation-after-projection (VAP) schemes, utilizing the Lipkin method, have mostly been used within the Lipkin-Nogami prescription. Purpose: Without employing the Lipkin-Nogami prescription, and using, instead, states rotated in the gauge space, we derive the Lipkin method of particle-number restoration up to sixth order and we test the convergence and accuracy of the obtained expansion. Methods: We perform self-consistent calculations using the higher-order Lipkin method to restore the particle-number symmetry in the framework of superfluid nuclear energy-density functional theory. We also apply the Lipkin method to a schematic exactly solvable two-level pairing model. Results: Calculations performed in open-shell tin and lead isotopes show that the Lipkin method converges at fourth order and satisfactorily reproduces the VAP ground-state energies and energy kernels. Near closed shells, the higher-order Lipkin method cannot be applied because of a nonanalytic kink in the ground-state energies as a function of the particle number. Conclusions: In open-shell nuclei, the higher-order Lipkin method provides a good approximation to the exact VAP energies. The method is computationally inexpensive, making it particularly suitable, for example, for future optimizations of the nuclear energy density functionals and simultaneous restoration of different symmetries. C1 [Wang, X. B.; Dobaczewski, J.; Kortelainen, M.; Yu, L. F.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Dobaczewski, J.; Kortelainen, M.] Univ Helsinki, Helsinki Inst Phys, FI-00014 Helsinki, Finland. [Stoitsov, M. V.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Stoitsov, M. V.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Wang, XB (reprint author), Univ Jyvaskyla, Dept Phys, POB 35 YFL, FI-40014 Jyvaskyla, Finland. EM jacek.dobaczewski@fuw.edu.pl FU Academy of Finland; University of Jyvaskyla; Polish National Science Center [2012/07/B/ST2/03907]; Academy of Finland under Centre of Excellence Programme; European Union [262010]; U.S. Department of Energy [DE-FC0209ER41583, DE-FG0296ER40963] FX This work was supported in part by the Academy of Finland and University of Jyvaskyla within the FIDIPRO programme, by the Polish National Science Center under Contract No. 2012/07/B/ST2/03907, by the Academy of Finland under Centre of Excellence Programme 2012-2017 (Nuclear and Accelerator Based Physics Programme at JYFL), by the European Union's Seventh Framework Programme ENSAR (THEXO) under Grant No. 262010, and by the U.S. Department of Energy under Contract Nos. DE-FC0209ER41583 (UNEDF SciDAC Collaboration) and DE-FG0296ER40963 (University of Tennessee). We acknowledge the CSC-IT Center for Science Ltd., Finland, for the allocation of computational resources. NR 34 TC 4 Z9 4 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUL 17 PY 2014 VL 90 IS 1 AR 014312 DI 10.1103/PhysRevC.90.014312 PG 11 WC Physics, Nuclear SC Physics GA AL3XW UT WOS:000339066200001 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Agnew, JP Alexeev, GD Alkhazov, G Alton, A Askew, A Atkins, S Augsten, K Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Borysova, M Brandt, A Brandt, O Brock, R Bross, A Brown, D Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Buszello, CP Camacho-Perez, E Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chan, KM Chandra, A Chapon, E Chen, G Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Das, A Davies, G de Jong, SJ De La Cruz-Burelo, E Deliot, F Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dubey, A Dudko, LV Duperrin, A Dutt, S Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, VN Faure, A Feng, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Garbincius, PH Garcia-Bellido, A Garcia-Gonzalez, JA Gavrilov, V Geng, W Gerber, CE Gershtein, Y Ginther, G Gogota, O Golovanov, G Grannis, PD Greder, S Greenlee, H Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunedahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hogan, J Hohlfeld, M Holzbauer, JL Howley, I Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jayasinghe, A Jeong, MS Jesik, R Jiang, P Johns, K Johnson, E Johnson, M Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kajfasz, E Karmanov, D Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kiselevich, I Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Lammers, S Lebrun, P Lee, HS Lee, SW Lee, WM Lei, X Lellouch, J Li, D Li, H Li, L Li, QZ Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, H Liu, Y Lobodenko, A Lokajicek, M de Sa, RL Luna-Garcia, R Lyon, AL Maciel, AKA Madar, R Magana-Villalba, R Malik, S Malyshev, VL Mansour, J Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Mulhearn, M Nagy, E Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nguyen, HT Nunnemann, T Orduna, J Osman, N Osta, J Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Pleier, MA Podstavkov, VM Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Ratoff, PN Razumov, I Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Sajot, G Sanchez-Hernandez, A Sanders, MP Santos, AS Savage, G Savitskyi, M Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shaw, S Shchukin, AA Simak, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stoyanova, DA Strauss, M Suter, L Svoisky, P Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verkheev, AY Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weichert, J Welty-Rieger, L Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, S Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yin, H Yip, K Youn, SW Yu, JM Zennamo, J Zhao, TG Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Agnew, J. P. Alexeev, G. D. Alkhazov, G. Alton, A. Askew, A. Atkins, S. Augsten, K. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Borysova, M. Brandt, A. Brandt, O. Brock, R. Bross, A. Brown, D. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Buszello, C. P. Camacho-Perez, E. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Das, A. Davies, G. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dubey, A. Dudko, L. V. Duperrin, A. Dutt, S. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, V. N. Faure, A. Feng, L. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Garbincius, P. H. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Gavrilov, V. Geng, W. Gerber, C. E. Gershtein, Y. Ginther, G. Gogota, O. Golovanov, G. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenedahl, S. Gruenewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hogan, J. Hohlfeld, M. Holzbauer, J. L. Howley, I. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jayasinghe, A. Jeong, M. S. Jesik, R. Jiang, P. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kajfasz, E. Karmanov, D. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kiselevich, I. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Lammers, S. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, H. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Mansour, J. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Mulhearn, M. Nagy, E. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nguyen, H. T. Nunnemann, T. Orduna, J. Osman, N. Osta, J. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Pleier, M. -A. Podstavkov, V. M. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Ratoff, P. N. Razumov, I. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santos, A. S. Savage, G. Savitskyi, M. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shaw, S. Shchukin, A. A. Simak, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stoyanova, D. A. Strauss, M. Suter, L. Svoisky, P. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verkheev, A. Y. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, S. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. M. Zennamo, J. Zhao, T. G. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA DO Collaboration TI Precision Measurement of the Top Quark Mass in Lepton plus Jets Final States SO PHYSICAL REVIEW LETTERS LA English DT Article ID STANDARD MODEL; D0 DETECTOR; RUN-II; IDENTIFICATION AB We measure the mass of the top quark in lepton + jets final states using the full sample of p (p) over bar collision data collected by the D0 experiment in Run II of the Fermilab Tevatron Collider at root s = 1.96 TeV, corresponding to 9.7 fb(-1) of integrated luminosity. We use a matrix element technique that calculates the probabilities for each event to result from t (t) over bar production or background. The overall jet energy scale is constrained in situ by the mass of theW boson. We measure m(t) = 174.98 +/- 0.76 GeV. This constitutes the most precise single measurement of the top-quark mass. C1 [Hensel, C.; Maciel, A. K. A.; Santos, A. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Han, L.; Jiang, P.; Liu, Y.; Yang, S.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph.] Univ Clermont Ferrand, CNRS, LPC, IN2P3, Clermont, France. [Sajot, G.] Univ Grenoble 1, CNRS, LPSC, Inst Natl Polytech Grenoble,IN2P3, Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Osman, N.] Aix Marseille Univ, CNRS, CPPM, IN2P3, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chapon, E.; Couderc, F.; Deliot, F.; Faure, A.; Grohsjean, A.; Hubacek, Z.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA Irfu, SPP, Saclay, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.; Madar, R.] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. [Brandt, O.; Deterre, C.; Mansour, J.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55122 Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Jeong, M. S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Garcia-Gonzalez, J. A.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] Nikhef, Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Kiselevich, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Juste, A.] Inst Fis Altes Energies, Barcelona, Spain. [Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Borysova, M.; Gogota, O.; Savitskyi, M.] Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Agnew, J. P.; Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Peters, Y.; Petridis, K.; Price, D.; Schwanenberger, C.; Soeldner-Rembold, S.; Suter, L.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Li, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Blessing, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Garbincius, P. H.; Ginther, G.; Greenlee, H.; Gruenedahl, S.; Gutierrez, G.; Herner, K.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Melnitchouk, A.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Savage, G.; Wang, M. H. L. S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Williams, M. R. J.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barberis, E.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Neal, H. A.; Qian, J.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Johnson, E.; Linnemann, J.; Schwienhorst, R.; Shaw, S.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Holzbauer, J. L.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; de Sa, R. Lopes; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Haley, J.; Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Heintz, U.; Narain, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Ilchenko, Y.; Kehoe, R.; Liu, H.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Hogan, J.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Bandurin, D. V.; Hirosky, R.; Li, H.; Mulhearn, M.; Nguyen, H. T.] Univ Virginia, Charlottesville, VA 22904 USA. [Watts, G.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Kozelov, Alexander/J-3812-2014; Dudko, Lev/D-7127-2012; Lokajicek, Milos/G-7800-2014; Lei, Xiaowen/O-4348-2014; Gutierrez, Phillip/C-1161-2011; Sharyy, Viatcheslav/F-9057-2014; Merkin, Mikhail/D-6809-2012; Li, Liang/O-1107-2015; OI Ding, Pengfei/0000-0002-4050-1753; Bassler, Ursula/0000-0002-9041-3057; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Bertram, Iain/0000-0003-4073-4941; Grohsjean, Alexander/0000-0003-0748-8494; Chapon, Emilien/0000-0001-6968-9828; Melnychuk, Oleksandr/0000-0002-2089-8685; Dudko, Lev/0000-0002-4462-3192; Lei, Xiaowen/0000-0002-2564-8351; Sharyy, Viatcheslav/0000-0002-7161-2616; Li, Liang/0000-0001-6411-6107; Williams, Mark/0000-0001-5448-4213 FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); MON (Russia); NRC KI (Russia); RFBR (Russia); FUNDUNESP (Brazil); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS (China); CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, NRC KI, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 39 TC 30 Z9 30 U1 0 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 17 PY 2014 VL 113 IS 3 AR 032002 DI 10.1103/PhysRevLett.113.032002 PG 8 WC Physics, Multidisciplinary SC Physics GA AL3YU UT WOS:000339069200003 PM 25083634 ER PT J AU Ben-Naim, E Krapivsky, PL AF Ben-Naim, E. Krapivsky, P. L. TI Slow Kinetics of Brownian Maxima SO PHYSICAL REVIEW LETTERS LA English DT Article ID SHEAR-FLOW; DIFFUSION; WALKS; PERSISTENCE; EXPONENT; WALLS AB We study extreme-value statistics of Brownian trajectories in one dimension. We define the maximum as the largest position to date and compare maxima of two particles undergoing independent Brownian motion. We focus on the probability P(t) that the two maxima remain ordered up to time t and find the algebraic decay P similar to t(-beta) with exponent beta = 1/4. When the two particles have diffusion constants D-1 and D-2, the exponent depends on the mobilities, beta = (1/pi) arctan root D-2/D-1. We also use numerical simulations to investigate maxima of multiple particles in one dimension and the largest extension of particles in higher dimensions. C1 [Ben-Naim, E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ben-Naim, E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Krapivsky, P. L.] Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Ben-Naim, E (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Ben-Naim, Eli/C-7542-2009; Krapivsky, Pavel/A-4612-2014 OI Ben-Naim, Eli/0000-0002-2444-7304; FU DOE Grant [DE-AC52-06NA25396] FX We acknowledge the DOE Grant No. DE-AC52-06NA25396 for support (E. B.). NR 45 TC 4 Z9 4 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 17 PY 2014 VL 113 IS 3 AR 030604 DI 10.1103/PhysRevLett.113.030604 PG 5 WC Physics, Multidisciplinary SC Physics GA AL3YU UT WOS:000339069200001 PM 25083626 ER PT J AU Denes, P AF Denes, Peter TI Two-dimensional imaging detectors for structural biology with X-ray lasers SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES LA English DT Review DE X-ray lasers; X-ray detectors; structural biology AB Our ability to harness the advances in microelectronics over the past decade(s) for X-ray detection has resulted in significant improvements in the state of the art. Biology with X-ray free-electron lasers present daunting detector challenges: all of the photons arrive at the same time, and individual high peak power pulses must be read out shot-by-shot. Direct X-ray detection in silicon pixel detectors-monolithic or hybrid-are the standard for XFELs today. For structural biology, improvements are needed for today's 10-100 Hz XFELs, and further improvements are required for tomorrow's 10+ kHz XFELs. This article will discuss detector challenges, why they arise and ways to overcome them, along with the current state of the art. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Denes, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM pdenes@lbl.gov NR 9 TC 5 Z9 5 U1 1 U2 13 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 0962-8436 EI 1471-2970 J9 PHILOS T R SOC B JI Philos. Trans. R. Soc. B-Biol. Sci. PD JUL 17 PY 2014 VL 369 IS 1647 AR 20130334 DI 10.1098/rstb.2013.0334 PG 5 WC Biology SC Life Sciences & Biomedicine - Other Topics GA AJ0SZ UT WOS:000337367600018 PM 24914161 ER PT J AU Kern, J Hattne, J Tran, R Alonso-Mori, R Laksmono, H Gul, S Sierra, RG Rehanek, J Erko, A Mitzner, R Wernet, P Bergmann, U Sauter, NK Yachandra, V Yano, J AF Kern, Jan Hattne, Johan Rosalie Tran Alonso-Mori, Roberto Laksmono, Hartawan Gul, Sheraz Sierra, Raymond G. Rehanek, Jens Erko, Alexei Mitzner, Rolf Wernet, Phillip Bergmann, Uwe Sauter, Nicholas K. Yachandra, Vittal Yano, Junko TI Methods development for diffraction and spectroscopy studies of metalloenzymes at X-ray free-electron lasers SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES LA English DT Review DE X-ray crystallography; X-ray emission spectroscopy; X-ray free-electron laser; metalloenzymes; water oxidation; photosystem II ID SERIAL FEMTOSECOND CRYSTALLOGRAPHY; PHOTOSYSTEM-II; CRYSTAL-STRUCTURE; ROOM-TEMPERATURE; DATA-COLLECTION; RESOLUTION; PHOTOSYNTHESIS; MECHANISM; ANGSTROM; COMPLEX AB X-ray free-electron lasers (XFELs) open up new possibilities for X-ray crystallographic and spectroscopic studies of radiation-sensitive biological samples under close to physiological conditions. To facilitate these new X-ray sources, tailored experimental methods and data-processing protocols have to be developed. The highly radiation-sensitive photosystem II (PSII) protein complex is a prime target for XFEL experiments aiming to study the mechanism of light-induced water oxidation taking place at a Mn cluster in this complex. We developed a set of tools for the study of PSII at XFELs, including a new liquid jet based on electrofocusing, an energy dispersive von Hamos X-ray emission spectrometer for the hard X-ray range and a high-throughput soft X-ray spectrometer based on a reflection zone plate. While our immediate focus is on PSII, the methods we describe here are applicable to a wide range of metalloenzymes. These experimental developments were complemented by a new software suite, cctbx.xfel. This software suite allows for near-real-time monitoring of the experimental parameters and detector signals and the detailed analysis of the diffraction and spectroscopy data collected by us at the Linac Coherent Light Source, taking into account the specific characteristics of data measured at an XFEL. C1 [Kern, Jan; Hattne, Johan; Rosalie Tran; Gul, Sheraz; Sauter, Nicholas K.; Yachandra, Vittal; Yano, Junko] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Kern, Jan; Alonso-Mori, Roberto; Bergmann, Uwe] SLAC Natl Accelerator Lab, LCLS, Menlo Pk, CA 94025 USA. [Laksmono, Hartawan; Sierra, Raymond G.] SLAC Natl Accelerator Lab, Stanford PULSE Inst, Menlo Pk, CA 94025 USA. [Rehanek, Jens; Erko, Alexei] Helmholtz Zentrum Berlin Mat & Energie GmbH, Inst Nanometre Opt & Technol, D-12489 Berlin, Germany. [Mitzner, Rolf; Wernet, Phillip] Helmholtz Zentrum Berlin Mat & Energie GmbH, Inst Methods & Instrumentat Synchrotron Radiat Re, D-12489 Berlin, Germany. RP Kern, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM jfkern@lbl.gov RI Kern, Jan/G-2586-2013; Wernet, Philippe/A-7085-2013; Sauter, Nicholas/K-3430-2012 OI Kern, Jan/0000-0002-7272-1603; Wernet, Philippe/0000-0001-7011-9072; FU NIH [GM055302, P41GM103393, GM095887, GM102520]; Office of Science, Office of Basic Energy Sciences (OBES), Division of Chemical Sciences, Geosciences and Biosciences (CSGB) of the Department of Energy (DOE) [DE-AC02-05CH11231]; LBNL Laboratory Directed Research and Development award (DOE) [DE-AC02-05CH11231]; Human Frontier Research grant [RGP0063/2013]; Alexander von Humboldt Foundation; Ruth L. Kirschstein National Research Service Award [F32GM100595]; DOE Office of Basic Energy Sciences, Chemical Sciences Division [DE-AC02-76SF00515]; Human Frontiers Science Project Award [RPG005/2011] FX This work was supported by NIH grant no. GM055302 (V.K.Y.) for PSII biochemistry, structure and mechanism; the Director, Office of Science, Office of Basic Energy Sciences (OBES), Division of Chemical Sciences, Geosciences and Biosciences (CSGB) of the Department of Energy (DOE) under Contract DE-AC02-05CH11231 (J.Y., V.K.Y.) for X-ray methodology and instrumentation, by NIH grant no. P41GM103393 for part of the XES instrumentation and support of U.B.; an LBNL Laboratory Directed Research and Development award (DOE contract DE-AC02-05CH11231) to N.K.S. and NIH grants GM095887 and GM102520 (N.K.S.) for data-processing methods. U. B., P. W. and J.Y. also acknowledge support through a Human Frontier Research grant (no. RGP0063/2013) for spectroscopy on photosystem II. We also acknowledge support through the Alexander von Humboldt Foundation (J.K.) and the Ruth L. Kirschstein National Research Service Award (F32GM100595, R. T.). The injector work was supported by DOE Office of Basic Energy Sciences, Chemical Sciences Division, under Contract DE-AC02-76SF00515 (H. L.), LCLS (R. G. S.) and the Human Frontiers Science Project Award RPG005/2011 (H. L.). Portions of this research were carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the US Department of Energy Office of Science by Stanford University. NR 37 TC 11 Z9 11 U1 1 U2 45 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 0962-8436 EI 1471-2970 J9 PHILOS T R SOC B JI Philos. Trans. R. Soc. B-Biol. Sci. PD JUL 17 PY 2014 VL 369 IS 1647 AR 20130590 DI 10.1098/rstb.2013.0590 PG 7 WC Biology SC Life Sciences & Biomedicine - Other Topics GA AJ0SZ UT WOS:000337367600026 PM 24914169 ER PT J AU Pedrini, B Tsai, CJ Capitani, G Padeste, C Hunter, MS Zatsepin, NA Barty, A Benner, WH Boutet, S Feld, GK Hau-Riege, SP Kirian, RA Kupitz, C Messerschmitt, M Ogren, JI Pardini, T Segelke, B Williams, GJ Spence, JCH Abela, R Coleman, M Evans, JE Schertler, GFX Frank, M Li, XD AF Pedrini, Bill Tsai, Ching-Ju Capitani, Guido Padeste, Celestino Hunter, Mark S. Zatsepin, Nadia A. Barty, Anton Benner, W. Henry Boutet, Sebastien Feld, Geoffrey K. Hau-Riege, Stefan P. Kirian, Richard A. Kupitz, Christopher Messerschmitt, Marc Ogren, John I. Pardini, Tommaso Segelke, Brent Williams, Garth J. Spence, John C. H. Abela, Rafael Coleman, Matthew Evans, James E. Schertler, Gebhard F. X. Frank, Matthias Li, Xiao-Dan TI 7 angstrom resolution in protein two-dimensional-crystal X-ray diffraction at Linac Coherent Light Source SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES LA English DT Article DE two-dimensional protein crystal; X-ray diffraction; X-ray free-electron laser; crystallographic data analysis; bacteriorhodopsin ID PURPLE MEMBRANE; ELECTRON CRYSTALLOGRAPHY; HALOBACTERIUM-HALOBIUM; COUPLED RECEPTORS; MICROSCOPY; CRYSTALS; MODEL; PATTERNS AB Membrane proteins arranged as two-dimensional crystals in the lipid environment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. Previously, X-ray diffraction from individual two-dimensional crystals did not represent a suitable investigational tool because of radiation damage. The recent availability of ultrashort pulses from X-ray free-electron lasers (XFELs) has now provided a means to outrun the damage. Here, we report on measurements performed at the Linac Coherent Light Source XFEL on bacteriorhodopsin two-dimensional crystals mounted on a solid support and kept at room temperature. By merging data from about a dozen single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 angstrom, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase in the resolution. The presented results pave the way for further XFEL studies on two-dimensional crystals, which may include pump-probe experiments at subpicosecond time resolution. C1 [Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Abela, Rafael; Schertler, Gebhard F. X.; Li, Xiao-Dan] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Hunter, Mark S.; Benner, W. Henry; Feld, Geoffrey K.; Hau-Riege, Stefan P.; Pardini, Tommaso; Segelke, Brent; Coleman, Matthew; Frank, Matthias] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Evans, James E.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Zatsepin, Nadia A.; Kupitz, Christopher; Spence, John C. H.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Barty, Anton; Kirian, Richard A.] DESY, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany. [Boutet, Sebastien; Messerschmitt, Marc; Williams, Garth J.] Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Ogren, John I.] Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Pedrini, B (reprint author), Paul Scherrer Inst, CH-5232 Villigen, Switzerland. EM bill.pedrini@psi.ch; frank1@llnl.gov; xiao.li@psi.ch RI Barty, Anton/K-5137-2014; Schertler, Gebhard/M-9512-2014; Frank, Matthias/O-9055-2014 OI Barty, Anton/0000-0003-4751-2727; FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Pacific Northwest National Laboratory [DE-AC05-76RL01830]; UCOP Lab Fee Programme [118036]; NIH [5RC1GM091755, GM095583]; NSF [MCB-1021557]; NSF STC [1231306]; LLNL Lab-Directed Research and Development Project [012-ERD-031]; PNNL Chemical Imaging Initiative; Center for Biophotonics Science and Technology, a designated NSF Science and Technology Center [PHY0120999] FX C.J.T., X. D. L. and G. F. X. S. acknowledge the Femtosecond and Attosecond Science and Technology (ETH-FAST) Initiative in Switzerland. Part of the work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract no. DE-AC52-07NA27344 and Pacific Northwest National Laboratory (operated by Battelle Memorial Institute) under contract no. DE-AC05-76RL01830. Support was provided by the UCOP Lab Fee Programme (award no. 118036), NIH grant numbers 5RC1GM091755 and GM095583, NSF award MCB-1021557 and NSF STC award 1231306, LLNL Lab-Directed Research and Development Project 012-ERD-031 and the PNNL Chemical Imaging Initiative. Part of the work was also supported by the Center for Biophotonics Science and Technology, a designated NSF Science and Technology Center managed by the University of California, Davis, CA under Cooperative agreement no. PHY0120999. NR 24 TC 11 Z9 11 U1 3 U2 25 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 0962-8436 EI 1471-2970 J9 PHILOS T R SOC B JI Philos. Trans. R. Soc. B-Biol. Sci. PD JUL 17 PY 2014 VL 369 IS 1647 AR 20130500 DI 10.1098/rstb.2013.0500 PG 5 WC Biology SC Life Sciences & Biomedicine - Other Topics GA AJ0SZ UT WOS:000337367600023 PM 24914166 ER PT J AU Tran, R Kern, J Hattne, J Koroidov, S Hellmich, J Alonso-Mori, R Sauter, NK Bergmann, U Messinger, J Zouni, A Yano, J Yachandra, VK AF Tran, Rosalie Kern, Jan Hattne, Johan Koroidov, Sergey Hellmich, Julia Alonso-Mori, Roberto Sauter, Nicholas K. Bergmann, Uwe Messinger, Johannes Zouni, Athina Yano, Junko Yachandra, Vittal K. TI The Mn4Ca photosynthetic water-oxidation catalyst studied by simultaneous X-ray spectroscopy and crystallography using an X-ray free-electron laser SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES LA English DT Review DE manganese; oxygen-evolving complex; photosystem II; X-ray crystallography; X-ray emission spectroscopy; X-ray free-electron laser ID SERIAL FEMTOSECOND CRYSTALLOGRAPHY; EVOLVING PHOTOSYSTEM-II; CRYSTAL-STRUCTURE; ROOM-TEMPERATURE; PROTEIN CRYSTALS; RESOLUTION; COMPLEX; DIFFRACTION; TRANSITION; MECHANISM AB The structure of photosystem II and the catalytic intermediate states of the Mn4CaO5 cluster involved in water oxidation have been studied intensively over the past several years. An understanding of the sequential chemistry of light absorption and the mechanism of water oxidation, however, requires a new approach beyond the conventional steady-state crystallography and X-ray spectroscopy at cryogenic temperatures. In this report, we present the preliminary progress using an X-ray free-electron laser to determine simultaneously the light-induced protein dynamics via crystallography and the local chemistry that occurs at the catalytic centre using X-ray spectroscopy under functional conditions at room temperature. C1 [Tran, Rosalie; Kern, Jan; Hattne, Johan; Sauter, Nicholas K.; Yano, Junko; Yachandra, Vittal K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Kern, Jan; Alonso-Mori, Roberto; Bergmann, Uwe] SLAC Natl Accelerator Lab, LCLS, Menlo Pk, CA 94025 USA. [Koroidov, Sergey; Messinger, Johannes] Umea Univ, Kemiskt Biol Ctr, Inst Kemi, Umea, Sweden. [Hellmich, Julia; Zouni, Athina] Humboldt Univ, Inst Biol, D-10099 Berlin, Germany. RP Yachandra, VK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM vkyachandra@lbl.gov RI Kern, Jan/G-2586-2013; Sauter, Nicholas/K-3430-2012 OI Kern, Jan/0000-0002-7272-1603; FU NIH [GM 55302, P41GM103393, GM095887, GM102520]; Office of Science, Office of Basic Energy Sciences (OBES), Division of Chemical Sciences, Geosciences, and Biosciences of the Department of Energy (DOE) [DE-AC02-05CH11231]; LBNL Laboratory Directed Research and Development award (DOE) [DE-AC02-05CH11231]; Human Frontier Research grant [RGP0063/2013]; DFG-Cluster of Excellence 'UniCat'; Alexander von Humboldt Foundation; Ruth L. Kirschstein National Research Service Award [F32GM100595]; Solar Fuels Strong Research Environment (Umea University); Artificial Leaf Project (K&A Wallenberg Foundation), VR; Energimyndigheten; DOE OBES; [Sfb1078] FX The research reviewed here was supported by the NIH grant no. GM 55302 (V.K.Y.) for PSII structure and mechanism and by the Director, Office of Science, Office of Basic Energy Sciences (OBES), Division of Chemical Sciences, Geosciences, and Biosciences of the Department of Energy (DOE) under contract DE-AC02-05CH11231 (J.Y. and V.K.Y.) for X-ray instrumentation, by the NIH grant no. P41GM103393 for part of the XES instrumentation and support of U.B., NIH grant nos. GM095887 and GM102520 (N.K.S.) for data processing methods and by an LBNL Laboratory Directed Research and Development award (DOE contract DE-AC02-05CH11231) to N.K.S. The Human Frontier Research grant no. RGP0063/2013 (U. B., A.Z. and J.Y.); the DFG-Cluster of Excellence 'UniCat' coordinated by the Technische Universitat Berlin and Sfb1078, TP A5 (A.Z., J.Hel.); the Alexander von Humboldt Foundation (J.K.); the Ruth L. Kirschstein National Research Service Award (F32GM100595, R. T.); and the Solar Fuels Strong Research Environment (Umea University), the Artificial Leaf Project (K&A Wallenberg Foundation), VR and Energimyndigheten (J.M.) are acknowledged for supporting this project. The LCLS, and the synchrotron facilities at Stanford Synchrotron Radiation Lightsource (SSRL), the Advanced Light Source (ALS), and the Advanced Photon Source (APS), used in the course of these studies are all supported by DOE OBES. NR 44 TC 5 Z9 5 U1 4 U2 56 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 0962-8436 EI 1471-2970 J9 PHILOS T R SOC B JI Philos. Trans. R. Soc. B-Biol. Sci. PD JUL 17 PY 2014 VL 369 IS 1647 AR 20130324 DI 10.1098/rstb.2013.0324 PG 6 WC Biology SC Life Sciences & Biomedicine - Other Topics GA AJ0SZ UT WOS:000337367600009 PM 24914152 ER PT J AU Song, HS Hora, B Bhattacharya, T Goonetilleke, N Liu, MKP Wiehe, K Li, H Iyer, SS McMichael, AJ Perelson, AS Gao, F AF Song, Hongshuo Hora, Bhavna Bhattacharya, Tanmoy Goonetilleke, Nilu Liu, Michael K. P. Wiehe, Kevin Li, Hui Iyer, Shilpa S. McMichael, Andrew J. Perelson, Alan S. Gao, Feng TI Reversion and T Cell Escape Mutations Compensate the Fitness Loss of a CD8(+) T Cell Escape Mutant in Their Cognate Transmitted/Founder Virus SO PLOS ONE LA English DT Article ID HUMAN-IMMUNODEFICIENCY-VIRUS; VIRAL REPLICATION CAPACITY; SUBTYPE C INFECTION; HIV-1 INFECTION; IN-VIVO; ELITE CONTROLLERS; TYPE-1 INFECTION; P24 GAG; EVOLUTION; HLA AB Immune escape mutations that revert back to the consensus sequence frequently occur in newly HIV-1-infected individuals and have been thought to render the viruses more fit. However, their impact on viral fitness and their interaction with other immune escape mutations have not been evaluated in the background of their cognate transmitted/founder (T/F) viral genomes. To precisely determine the role of reversion mutations, we introduced reversion mutations alone or together with CD8(+) T cell escape mutations in their unmodified cognate T/F viral genome and determined their impact on viral fitness in primary CD4(+) T cells. Two reversion mutations, V247I and I64T, were identified in Gag and Tat, respectively, but neither had measurable effect on the fitness of their cognate T/F virus. The V247I and G248A mutations that were detected before and concurrently with the potent T cell escape mutation T242N, respectively, were selected by early T cell responses. The V247I or the G248A mutation alone partially restored the fitness loss caused by the T242N mutation. Together they could fully restore the fitness of the T242N mutant to the T/F level. These results demonstrate that the fitness loss caused by a T cell escape mutation could be compensated by preexisting or concurrent reversion and other T cell escape mutations. Our findings indicate that the overall viral fitness is modulated by the complex interplay among T cell escape, compensatory and reversion mutations to maintain the balance between immune escape and viral replication capacity. C1 [Song, Hongshuo; Hora, Bhavna; Wiehe, Kevin; Gao, Feng] Duke Univ, Med Ctr, Duke Human Vaccine Inst, Durham, NC 27708 USA. [Bhattacharya, Tanmoy; Perelson, Alan S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Bhattacharya, Tanmoy] Santa Fe Inst, Santa Fe, NM 87501 USA. [Goonetilleke, Nilu; Liu, Michael K. P.; McMichael, Andrew J.] Univ Oxford, Weatherall Inst Mol Med, Oxford, England. [Li, Hui; Iyer, Shilpa S.] Univ Penn, Dept Med, Philadelphia, PA 19104 USA. [Li, Hui; Iyer, Shilpa S.] Univ Penn, Dept Microbiol, Philadelphia, PA 19104 USA. RP Gao, F (reprint author), Duke Univ, Med Ctr, Duke Human Vaccine Inst, Durham, NC 27708 USA. EM fgao@duke.edu RI Bhattacharya, Tanmoy/J-8956-2013 OI Bhattacharya, Tanmoy/0000-0002-1060-652X FU Center for HIV/AIDS Vaccine Immunology [AI067854]; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery [AI100645]; Duke Centers for AIDS Research from the National Institutes of Health (NIH) [AI064518]; United States Department of Energy [DE-AC52-06NA25396]; NIH [AI028433]; National Center for Research Resources and the Office of Research Infrastructure Programs (ORIP) [OD011095] FX The Center for HIV/AIDS Vaccine Immunology (AI067854) and the Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (AI100645) and the Duke Centers for AIDS Research (AI064518) from the National Institutes of Health (NIH). Portions of this work were done under the auspices of the United States Department of Energy under contract DE-AC52-06NA25396 and ASP was also supported by NIH grants AI028433 and the National Center for Research Resources and the Office of Research Infrastructure Programs (ORIP) through grant OD011095. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 49 TC 3 Z9 4 U1 0 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 16 PY 2014 VL 9 IS 7 AR e102734 DI 10.1371/journal.pone.0102734 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO4KM UT WOS:000341306600096 PM 25028937 ER PT J AU de Anna, P Dentz, M Tartakovsky, A Le Borgne, T AF de Anna, Pietro Dentz, Marco Tartakovsky, Alexandre Le Borgne, Tanguy TI The filamentary structure of mixing fronts and its control on reaction kinetics in porousmedia flows SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MEDIA; TRANSPORT; STORAGE; MODEL AB The mixing dynamics resulting from the combined action of diffusion, dispersion, and advective stretching of a reaction front in heterogeneous flows leads to reaction kinetics that can differ by orders of magnitude from those measured in well-mixed batch reactors. The reactive fluid invading a porous medium develops a filamentary or lamellar front structure. Fluid deformation leads to an increase of the front length by stretching and consequently a decrease of its width by compression. This advective front deformation, which sharpens concentration gradients across the interface, is in competition with diffusion, which tends to increase the interface width and thus smooth concentration gradients. The lamella scale dynamics eventually develop into a collective behavior through diffusive coalescence, which leads to a disperse interface whose width is controlled by advective dispersion. We derive a new approach that quantifies the impact of these filament scale processes on the global mixing and reaction kinetics. The proposed reactive filament model, based on the elementary processes of stretching, coalescence, and fluid particle dispersion, provides a new framework for predicting reaction front kinetics in heterogeneous flows. C1 [de Anna, Pietro] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. [Dentz, Marco] IDAEA CSIC, Spanish Natl Res Council, Barcelona, Spain. [Tartakovsky, Alexandre] Univ S Florida, Dept Math & Stat, Sch Geosci, Tampa, FL USA. [Tartakovsky, Alexandre] Pacific NW Natl Lab, Richland, WA 99352 USA. [Le Borgne, Tanguy] Univ Rennes 1, CNRS, UMR 6118, Rennes, France. RP de Anna, P (reprint author), MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM pietrodeanna@gmail.com RI Le Borgne, Tanguy/A-2807-2013; Dentz, Marco/C-1076-2015 OI Dentz, Marco/0000-0002-3940-282X FU European Commission [212298, 230947]; FP7 EU project PANACEA [282900]; Spanish Ministry of Economy and Competitivity [CGL2010- 18450]; Office of Advance Scientific Computational Research of the U.S. Department of Energy FX P. de Anna and T. Le Borgne acknowledge the financial support of the European Commission through FP7 ITN project IMVUL (grant agreement 212298) and Marie Curie ERG grant Reactive Flows (grant agreement 230947). M. Dentz acknowledges the support of the FP7 EU project PANACEA (grant 282900) and the Spanish Ministry of Economy and Competitivity through the project HEART (CGL2010- 18450). A. Tartakovsky was supported by the Office of Advance Scientific Computational Research of the U.S. Department of Energy. E. Villermaux is gratefully acknowledged for stimulating discussions. NR 36 TC 11 Z9 11 U1 2 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 16 PY 2014 VL 41 IS 13 BP 4586 EP 4593 DI 10.1002/2014GL060068 PG 8 WC Geosciences, Multidisciplinary SC Geology GA AN0SW UT WOS:000340295300024 ER PT J AU Kuhn, T Partanen, AI Laakso, A Lu, Z Bergman, T Mikkonen, S Kokkola, H Korhonen, H Raisanen, P Streets, DG Romakkaniemi, S Laaksonen, A AF Kuhn, T. Partanen, A. -I. Laakso, A. Lu, Z. Bergman, T. Mikkonen, S. Kokkola, H. Korhonen, H. Raisanen, P. Streets, D. G. Romakkaniemi, S. Laaksonen, A. TI Climate impacts of changing aerosol emissions since 1996 SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SULFUR-DIOXIDE; BLACK-CARBON; MODEL; SENSITIVITY; RESOLUTION; ECHAM5; TRENDS; CHINA; INDIA; ASIA AB Increases in Asian aerosol emissions have been suggested as one possible reason for the hiatus in global temperature increase during the past 15 years. We study the effect of sulphur and black carbon (BC) emission changes between 1996 and 2010 on the global energy balance. We find that the increased Asian emissions have had very little regional or global effects, while the emission reductions in Europe and the U. S. have caused a positive radiative forcing. In our simulations, the global-mean aerosol direct radiative effect changes by 0.06 W/m(2) during 1996 to 2010, while the effective radiative forcing (ERF) is 0.42 W/m(2). The rather large ERF arises mainly from changes in cloudiness, especially in Europe. In Asia, the BC warming due to sunlight absorption has largely offset the cooling caused by sulphate aerosols. Asian BC concentrations have increased by a nearly constant fraction at all altitudes, and thus, they warm the atmosphere also in cloudy conditions. C1 [Kuhn, T.; Mikkonen, S.; Romakkaniemi, S.; Laaksonen, A.] Univ Eastern Finland, Dept Appl Phys, Kuopio, Finland. [Kuhn, T.; Raisanen, P.; Laaksonen, A.] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland. [Partanen, A. -I.; Laakso, A.; Bergman, T.; Kokkola, H.; Korhonen, H.; Romakkaniemi, S.] Finnish Meteorol Inst, Kuopio, Finland. [Lu, Z.; Streets, D. G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Kuhn, T (reprint author), Univ Eastern Finland, Dept Appl Phys, Kuopio, Finland. EM thomas.h.kuhn@uef.fi RI Raisanen, Petri/I-1954-2012; Mikkonen, Santtu/E-8568-2011; Bergman, Tommi/C-2445-2009; Korhonen, Hannele/E-4489-2011; Partanen, Antti-Ilari/D-7834-2014; Laaksonen, Ari/B-5094-2011; Romakkaniemi, Sami/C-1308-2012; Kokkola, Harri/J-5993-2014 OI Raisanen, Petri/0000-0003-4466-213X; Mikkonen, Santtu/0000-0003-0595-0657; Bergman, Tommi/0000-0002-6133-2231; Korhonen, Hannele/0000-0001-6264-0706; Partanen, Antti-Ilari/0000-0002-0883-8161; Laaksonen, Ari/0000-0002-1657-2383; Romakkaniemi, Sami/0000-0001-9414-3093; FU University of Eastern Finland; Academy of Finland Centre of Excellence Program [1118615]; European Integrated Project Pegasos [FP7-ENV-2010-265148]; CSC-IT Center for Science, Finland [uef1593] FX The research has been supported by the strategic funding of the University of Eastern Finland, the Academy of Finland Centre of Excellence Program (project 1118615), and by the European Integrated Project Pegasos (FP7-ENV-2010-265148). Computational resources have been provided by CSC-IT Center for Science, Finland (project uef1593). H. K. and S. R. acknowledge Academy of Finland for the Academy Research Fellow positions (decisions 250348 and 267514). The ECHAM-HAMMOZ model is developed by a consortium composed of ETH Zurich, Max Planck Institut fur Meteorologie, Forschungszentrum Julich, University of Oxford, and the Finnish Meteorological Institute, and managed by the Center for Climate Systems Modeling (C2SM) at ETH Zurich. The data for this paper are available on request. NR 39 TC 10 Z9 10 U1 0 U2 38 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 16 PY 2014 VL 41 IS 13 BP 4711 EP 4718 DI 10.1002/2014GL060349 PG 8 WC Geosciences, Multidisciplinary SC Geology GA AN0SW UT WOS:000340295300039 ER PT J AU DeFlorio, MJ Ghan, SJ Singh, B Miller, AJ Cayan, DR Russell, LM Somerville, RCJ AF DeFlorio, Michael J. Ghan, Steven J. Singh, Balwinder Miller, Arthur J. Cayan, Daniel R. Russell, Lynn M. Somerville, Richard C. J. TI Semidirect dynamical and radiative effect of North African dust transport on lower tropospheric clouds over the subtropical North Atlantic in CESM 1.0 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID COMMUNITY ATMOSPHERE MODEL; MINERAL DUST; DESERT DUST; OPTICAL-PROPERTIES; STRATIFORM CLOUD; SULFATE AEROSOLS; EARTH SYSTEM; SAHARAN DUST; CLIMATE; IMPACT AB This study uses a century length preindustrial climate simulation by the Community Earth System Model (CESM 1.0) to explore statistical relationships between dust, clouds, and atmospheric circulation and to suggest a semidirect dynamical mechanism linking subtropical North Atlantic lower tropospheric cloud cover with North African dust transport. The length of the run allows us to account for interannual variability of North African dust emissions and transport in the model. CESM's monthly climatology of both aerosol optical depth and surface dust concentration at Cape Verde and Barbados, respectively, agree well with available observations, as does the aerosol size distribution at Cape Verde. In addition, CESM shows strong seasonal cycles of dust burden and lower tropospheric cloud fraction, with maximum values occurring during boreal summer, when a strong correlation between these two variables exists over the subtropical North Atlantic. Calculations of Estimated Inversion Strength (EIS) and composites of EIS on high and low downstream North African dust months during boreal summer reveal that dust is likely increasing inversion strength over this region due to both solar absorption and reflection. We find no evidence for a microphysical link between dust and lower tropospheric clouds in this region. These results yield new insight over an extensive period of time into the complex relationship between North African dust and North Atlantic lower tropospheric clouds, which has previously been hindered by spatiotemporal constraints of observations. Our findings lay a framework for future analyses using different climate models and submonthly data over regions with different underlying dynamics. C1 [DeFlorio, Michael J.; Miller, Arthur J.; Cayan, Daniel R.; Russell, Lynn M.; Somerville, Richard C. J.] Univ Calif San Diego, Scripps Inst Oceanog, San Diego, CA 92103 USA. [Ghan, Steven J.; Singh, Balwinder] Pacific NW Natl Lab, ASGC Div, Richland, WA 99352 USA. [Cayan, Daniel R.] US Geol Survey, Water Resources Discipline, La Jolla, CA USA. RP DeFlorio, MJ (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, San Diego, CA 92103 USA. EM mdeflori@ucsd.edu RI Ghan, Steven/H-4301-2011 OI Ghan, Steven/0000-0001-8355-8699 FU NSF [AGS-1048995]; U.S. Department of Energy, Office of Science, Decadal and Regional Climate Prediction using Earth System Models (EaSM program); DOE [DE-AC06-76RLO 1830] FX This study forms a portion of the Ph.D. dissertation of M.J.D. Funding was provided by NSF (AGS-1048995) and by the U.S. Department of Energy, Office of Science, Decadal and Regional Climate Prediction using Earth System Models (EaSM program). The Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. We are grateful for the contribution made by Joseph M. Prospero (RSMAS, U. Miami), who provided us with the Barbados dust record. Many detailed and insightful comments and suggestions made by the anonymous reviewers have led to significant improvements in this paper. Thanks to Joel Norris and Timothy Myers (SIO) for clarifications and ideas regarding lower tropospheric warm phase clouds, Amato Evan (SIO) for literature references and useful discussions regarding seasonal variability of Saharan dust, Li Xu (SIO) and Dave Erickson (ORNL) for assistance in calculating aerosol size distribution, and Didier Tanre and Joseph M. Prospero for their efforts in establishing and maintaining the Cape Verde and Barbados AERONET sites, respectively, used in this investigation. The CAM5 data used in this study can be accessed via an email inquiry (mdeflori@ucsd.edu). NR 69 TC 2 Z9 2 U1 2 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 16 PY 2014 VL 119 IS 13 AR 2013JD020997 DI 10.1002/2013JD020997 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AN2IK UT WOS:000340408000031 ER PT J AU Irvine, PJ Boucher, O Kravitz, B Alterskjaer, K Cole, JNS Ji, DY Jones, A Lunt, DJ Moore, JC Muri, H Niemeier, U Robock, A Singh, B Tilmes, S Watanabe, S Yang, ST Yoon, JH AF Irvine, Peter J. Boucher, Olivier Kravitz, Ben Alterskjaer, Kari Cole, Jason N. S. Ji, Duoying Jones, Andy Lunt, Daniel J. Moore, John C. Muri, Helene Niemeier, Ulrike Robock, Alan Singh, Balwinder Tilmes, Simone Watanabe, Shingo Yang, Shuting Yoon, Jin-Ho TI Key factors governing uncertainty in the response to sunshade geoengineering from a comparison of the GeoMIP ensemble and a perturbed parameter ensemble SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MODEL INTERCOMPARISON PROJECT; SOLAR-RADIATION MANAGEMENT; CLIMATE-CHANGE SIMULATIONS; COUPLED MODEL; CARBON-DIOXIDE; SEA-ICE; IMPACT; SENSITIVITY; PHYSICS; CO2 AB Climate model studies of the consequences of solar geoengineering are central to evaluating whether such approaches may help to reduce the harmful impacts of global warming. In this study we compare the sunshade solar geoengineering response of a perturbed parameter ensemble (PPE) of the Hadley Centre Coupled Model version 3 (HadCM3) with a multimodel ensemble (MME) by analyzing the G1 experiment from the Geoengineering Model Intercomparison Project (GeoMIP). The PPE only perturbed a small number of parameters and shares a common structure with the unperturbed HadCM3 model, and so the additional weight the PPE adds to the robustness of the common climate response features in the MME is minor. However, analysis of the PPE indicates some of the factors that drive the spread within the MME. We isolate the role of global mean temperature biases for both ensembles and find that these biases have little effect on the ensemble spread in the hydrological response but do reduce the spread in surface air temperature response, particularly at high latitudes. We investigate the role of the preindustrial climatology and find that biases here are likely a key source of ensemble spread at the zonal and grid cell level. The role of vegetation, and its response to elevated CO2 concentrations through the CO2 physiological effect and changes in plant productivity, is also investigated and proves to have a substantial effect on the terrestrial hydrological response to solar geoengineering and to be amajor source of variation within the GeoMIP ensemble. C1 [Irvine, Peter J.] Inst Adv Sustainabil Studies, Potsdam, Germany. [Boucher, Olivier] UPMC, IPSL, Lab Meteorol Dynam, CNRS, Paris, France. [Kravitz, Ben; Singh, Balwinder; Yoon, Jin-Ho] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Alterskjaer, Kari; Muri, Helene] Univ Oslo, Dept Geosci, Oslo, Norway. [Cole, Jason N. S.] Environm Canada, Canadian Ctr Climate Modeling & Anal, Toronto, ON, Canada. [Ji, Duoying; Moore, John C.] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R China. [Jones, Andy] Met Off Hadley Ctr, Exeter, Devon, England. [Lunt, Daniel J.] Univ Bristol, Sch Geog Sci, Bristol, Avon, England. [Niemeier, Ulrike] Max Planck Inst Meteorol, D-20146 Hamburg, Germany. [Robock, Alan] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08903 USA. [Tilmes, Simone] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Watanabe, Shingo] Japan Agcy Marine Earth Sci & Technol, Yokohama, Kanagawa, Japan. [Yang, Shuting] Danish Meteorol Inst, Copenhagen, Denmark. RP Irvine, PJ (reprint author), Inst Adv Sustainabil Studies, Potsdam, Germany. EM p.j.irvine@gmail.com RI YOON, JIN-HO/A-1672-2009; Moore, John/B-2868-2013; Kravitz, Ben/P-7925-2014; Muri, Helene/D-4845-2015; Lunt, Daniel/G-9451-2011; Robock, Alan/B-6385-2016; Watanabe, Shingo/L-9689-2014; OI YOON, JIN-HO/0000-0002-4939-8078; Moore, John/0000-0001-8271-5787; Kravitz, Ben/0000-0001-6318-1150; Muri, Helene/0000-0003-4738-493X; Lunt, Daniel/0000-0003-3585-6928; Watanabe, Shingo/0000-0002-2228-0088; Cole, Jason/0000-0003-0450-2748 FU Fund for Innovative Climate and Energy Research (FICER); U.S. Department of Energy by Battelle Memorial Institute [DE-AC05-76RL01830]; NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center; Joint UK DECC/Defra Met Office Hadley Centre Climate Programme [GA01101]; European Commission [306395]; NSF [AGS-1157525, CBET-1240507]; EU [306395] FX We thank all participants of the Geoengineering Model Intercomparison Project and their model development teams, CLIVAR/WCRP Working Group on Coupled Modeling for endorsing GeoMIP, and the scientists managing the Earth System Grid data nodes who have assisted with making GeoMIP output available. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP, the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Ben Kravitz is supported by the Fund for Innovative Climate and Energy Research (FICER). The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830. Simulations performed by Ben Kravitz were supported by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. A.J. was supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). This study was partly funded by the European Commission's 7th Framework Programme through the EuTRACE project (grant 306395). Alan Robock is supported by NSF grants AGS-1157525 and CBET-1240507. The IPSL-CM5A climate simulations were performed with the HPC resources of [CCRT/TGCC/CINES/IDRIS] under the allocation 2012-t2012012201 made by GENCI (Grand Equipement National de Calcul Intensif), CEA (Commissariat l'Energie Atomique et aux Energies Alternatives), and CNRS (Centre National de la Recherche Scientifique). Helene Muri was funded by the EU 7th Framework Programme grant 306395, EuTRACE. NR 64 TC 7 Z9 7 U1 1 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 16 PY 2014 VL 119 IS 13 AR 2013JD020716 DI 10.1002/2013JD020716 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AN2IK UT WOS:000340408000011 ER PT J AU Park, J Arrowsmith, SJ Hayward, C Stump, BW Blom, P AF Park, Junghyun Arrowsmith, Stephen J. Hayward, Chris Stump, Brian W. Blom, Philip TI Automatic infrasound detection and location of sources in the western United States SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SIGNAL-DETECTION; SURFACE EXPLOSIONS; OKI EARTHQUAKE; PROPAGATION; ARRAYS; EVENTS; ATMOSPHERE; DESIGN AB A catalog that characterizes sources of regional infrasound observed in the western U. S. (1 November 2010 to 31 October 2012) is produced. Data from nine University of Utah Seismograph Stations infrasonic arrays are supplemented by three additional arrays in Nevada, operated by Southern Methodist University. The detection procedure using an adaptive F-detector provides input into the Bayesian Infrasonic Source Location procedure. The catalog consists of 1510 events with indication of repeated events from many locations such as Dugway Testing Ground, Utah Test and Training Range, and New Bomb. We analyzed the relationship between seasonal variations in the event locations and wind conditions using the Ground-to-Space specifications based on publicly available operational numerical weather prediction data analysis products supplement by empirical models above 80 km. There is significant commonality between this study's bulletin and the Western United States Infrasonic Catalog published by Walker et al. (2011). A previous study utilized infrasound signals detected on the USArray Transportable Array seismic stations (2007-2008). Both results document the vast majority of events that occur during working hours, suggesting a human cause. To illustrate the utility of the event bulletin for exploring atmospheric dynamics, propagation paths of an event detected during the equinox period, when the stratospheric wind is low, were generated using a ray-tracing algorithm. We found that the observations contain stratospheric arrivals, not predicted by ray theory, possibly due to gravity waves increasing the effective jet speed. C1 [Park, Junghyun; Hayward, Chris; Stump, Brian W.] So Methodist Univ, Dept Earth Sci, Dallas, TX 75275 USA. [Arrowsmith, Stephen J.; Blom, Philip] Los Alamos Natl Lab, Div Earth & Environm Sci, Geophys Grp, Los Alamos, NM 87545 USA. RP Park, J (reprint author), So Methodist Univ, Dept Earth Sci, Dallas, TX 75275 USA. EM pjh2521920@gmail.com FU Air Force Research Laboratory [FA8718-08-C-0008]; Department of Energy, National Nuclear Security Administration (NNSA) [DE-AC52-09NA293255] FX This work was funded by the Air Force Research Laboratory under contract FA8718-08-C-0008 and the Department of Energy, National Nuclear Security Administration (NNSA), under contract DE-AC52-09NA293255. IRIS PASSCAL supplied equipment for data acquisition, and University of Utah infrasound group provided array information and data. The authors are grateful to Douglas Drob at Naval Research Laboratory (NRL) for support in the utilization of the Ground-to-Space (G2S) atmospheric model. The MERRA/GEOS-5 data utilized in the G2S atmospheric specifications were provided by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center through the online data portal in the NASA Center for Climate Simulation. The NOAA GFS analysis fields, also utilized in the G2S specifications, were obtained from NOAA's National Operational Model Archive and Distribution System (NOMADS), which is maintained at NOAA's National Climatic Data Center (NCDC). We would like to thank the editor and all the reviewers of this paper. Their detailed comments provided a basis for important and critical changes to the paper that improved its structure, focused the discussion of implications, and provided a stronger foundation for the work. NR 87 TC 5 Z9 5 U1 2 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 16 PY 2014 VL 119 IS 13 AR 2013JD021084 DI 10.1002/2013JD021084 PG 26 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AN2IK UT WOS:000340408000001 ER PT J AU Taraphdar, S Mukhopadhyay, P Leung, LR Zhang, FQ Abhilash, S Goswami, BN AF Taraphdar, S. Mukhopadhyay, P. Leung, L. Ruby Zhang, Fuqing Abhilash, S. Goswami, B. N. TI The role of moist processes in the intrinsic predictability of Indian Ocean cyclones SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CLOUD-RESOLVING MODELS; ERROR GROWTH DYNAMICS; MESOSCALE PREDICTABILITY; HURRICANE INTENSITY; CONVECTIVE PARAMETERIZATION; TROPICAL CYCLONES; INITIAL CONDITION; PRECIPITATION; OSCILLATION; WAVES AB The role of moist processes in short-range forecasts of Indian Ocean tropical cyclones (TCs) track and intensity and upscale error cascade from cloud-scale processes affecting the intrinsic predictability of TCs was investigated using the Weather Research and Forecasting model with parameterized and explicitly resolved convection. Comparing the results from simulations of four Indian Ocean TCs at 10 km resolution with parameterized convection and convection-permitting simulations at 1.1 km resolution, both reproduced the observed TC tracks and intensities significantly better than simulations at 30 km resolution with parameterized convection. "Identical twin" experiments were performed by introducing random perturbations to the simulations for each TC. Results show that moist convection plays a major role in intrinsic error growth that ultimately limits the intrinsic predictability of TCs, consistent with past studies of extratropical cyclones. More specifically, model intrinsic errors start to build up from the regions of convection and ultimately affect the larger scales. It is also found that the error at small scale grows faster compared to the larger scales. The gradual increase in error energy in the large scale is a manifestation of upscale cascade of error energy from convective to large scale. Rapid upscale error growth from convective scales limits the intrinsic predictability of the TCs up to 66 h. The intrinsic predictability limit estimated by the 10 km resolution runs is comparable to that estimated by the convection-permitting simulations, suggesting some usefulness of high-resolution (similar to 10 km) models with parameterized convection for TC forecasting and predictability study. C1 [Taraphdar, S.; Leung, L. Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA. [Mukhopadhyay, P.; Abhilash, S.; Goswami, B. N.] Indian Inst Trop Meteorol, Pune, Maharashtra, India. [Zhang, Fuqing] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. RP Leung, LR (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM ruby.leung@pnnl.gov RI Zhang, Fuqing/E-6522-2010 OI Zhang, Fuqing/0000-0003-4860-9985 FU Office of Science of the U.S. Department of Energy through the Regional and Global Climate Modeling Program; U.S. DOE by Battelle Memorial Institute [DE-AC06-76RLO1830]; Ministry of Earth Sciences, Government of India FX This study is support by the Office of Science of the U.S. Department of Energy through the Regional and Global Climate Modeling Program. Pacific Northwest National Laboratory is operated for U.S. DOE by Battelle Memorial Institute under contract DE-AC06-76RLO1830. P. M., S. A., and B.N.G. acknowledge the Ministry of Earth Sciences, Government of India for supporting IITM, Pune. The authors gratefully acknowledge the suggestions and comments of Lakshmivarahan of School of Computer Science, University of Oklahoma, Norman, Oklahoma, for scientific discussions. India Meteorological Department is acknowledged for providing information about the tropical cyclone cases used in this study. NR 56 TC 3 Z9 3 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 16 PY 2014 VL 119 IS 13 AR 2013JD021265 DI 10.1002/2013JD021265 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AN2IK UT WOS:000340408000016 ER PT J AU Worsley, MA Charnvanichborikarn, S Montalvo, E Shin, SJ Tylski, ED Lewicki, JP Nelson, AJ Satcher, JH Biener, J Baumann, TF Kucheyev, SO AF Worsley, Marcus A. Charnvanichborikarn, Supakit Montalvo, Elizabeth Shin, Swanee J. Tylski, Elijah D. Lewicki, James P. Nelson, Art J. Satcher, Joe H., Jr. Biener, Juergen Baumann, Theodore F. Kucheyev, Sergei O. TI Toward Macroscale, Isotropic Carbons with Graphene-Sheet-Like Electrical and Mechanical Properties SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID HIGH-SURFACE-AREA; ORGANIC AEROGELS; OXIDE; CONDUCTIVITY; POLYPYRROLE; COMPRESSION; PERFORMANCE; GRAPHITE; STRENGTH; GELATION AB Realization of macroscale three-dimensional isotropic carbons that retain the exceptional electrical and mechanical properties of graphene sheets remains a challenge. Here, a method for fabricating graphene-derived carbons (GDCs) with isotropic properties approaching those of individual graphene sheets is reported. This synthesis scheme relies on direct cross-linking of graphene sheets via the functional groups in graphene oxide to maximize electronic transport and mechanical reinforcement between sheets and the partial restacking of the sheets to increase the material density to about 1 g cm(-3). These GDCs exhibit properties 3-6 orders of magnitude higher than previously reported 3D graphene assemblies. C1 [Worsley, Marcus A.; Charnvanichborikarn, Supakit; Montalvo, Elizabeth; Shin, Swanee J.; Tylski, Elijah D.; Lewicki, James P.; Nelson, Art J.; Satcher, Joe H., Jr.; Biener, Juergen; Baumann, Theodore F.; Kucheyev, Sergei O.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Worsley, MA (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 East Ave, Livermore, CA 94550 USA. EM worsley1@llnl.gov OI Worsley, Marcus/0000-0002-8012-7727 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE Office of Energy Efficiency and Renewable Energy; Lawrence Livermore National Laboratory Directed Research and Development (LDRD) [12-ERD-035, 13-LW-099] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Funding was provided by the DOE Office of Energy Efficiency and Renewable Energy, and the Lawrence Livermore National Laboratory Directed Research and Development (LDRD) Grant 12-ERD-035 and 13-LW-099. NR 35 TC 21 Z9 21 U1 7 U2 92 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JUL 16 PY 2014 VL 24 IS 27 BP 4259 EP 4264 DI 10.1002/adfm.201400316 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AM2XC UT WOS:000339713500006 ER PT J AU Lee, YS Chua, D Brandt, RE Siah, SC Li, JV Mailoa, JP Lee, SW Gordon, RG Buonassisi, T AF Lee, Yun Seog Chua, Danny Brandt, Riley E. Siah, Sin Cheng Li, Jian V. Mailoa, Jonathan P. Lee, Sang Woon Gordon, Roy G. Buonassisi, Tonio TI Atomic Layer Deposited Gallium Oxide Buffer Layer Enables 1.2 V Open-Circuit Voltage in Cuprous Oxide Solar Cells SO ADVANCED MATERIALS LA English DT Article ID GA2O3 FILMS; PHOTOVOLTAICS; CU2O; RECOMBINATION AB The power conversion efficiency of solar cells based on copper (I) oxide (Cu2O) is enhanced by atomic layer deposition of a thin gallium oxide (Ga2O3) layer. By improving band-alignment and passivating interface defects, the device exhibits an open-circuit voltage of 1.20 V and an efficiency of 3.97%, showing potential of over 7% efficiency. C1 [Lee, Yun Seog; Brandt, Riley E.; Siah, Sin Cheng; Mailoa, Jonathan P.; Buonassisi, Tonio] MIT, Cambridge, MA 02139 USA. [Chua, Danny; Lee, Sang Woon; Gordon, Roy G.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Li, Jian V.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Buonassisi, T (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM gordon@chemistry.harvard.edu; buonassisi@mit.edu RI Li, Jian/B-1627-2016; OI Brandt, Riley/0000-0003-2785-552X FU National Science Foundation (NSF) [CBET-1032955]; NSF CAREER award [ECCS-1150878]; NREL as a part of the Non-Proprietary Partnering Program [De-AC36-08-GO28308]; U.S. Department of Energy; NSF [DMR-0819762, ECS-0335765]; NRF Singapore FX We thank P. Ciszek and K. Emery (NREL) and their team for the certified cell testing. We also thank Prof. J. Heo (Chonnam National Univ., Korea), K. Hartman, and K. Broderick (MIT) for helpful discussions and experimental support. This work was supported by the National Science Foundation (NSF) award CBET-1032955, NSF CAREER award ECCS-1150878, and the NREL as a part of the Non-Proprietary Partnering Program under Contract No. De-AC36-08-GO28308 with the U.S. Department of Energy. This work made use of the Microsystems Technology Laboratories at MIT and the Center for Nanoscale Systems at Harvard University supported by NSF awards DMR-0819762 and ECS-0335765, respectively. An NSF Graduate Research Fellowship (R. E. B.) and a Clean Energy Scholarship from NRF Singapore (S. C. S.) are acknowledged. NR 41 TC 74 Z9 75 U1 8 U2 90 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD JUL 16 PY 2014 VL 26 IS 27 BP 4704 EP + DI 10.1002/adma.201401054 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AM2EE UT WOS:000339661100015 PM 24862543 ER PT J AU Winget, P Schirra, LK Cornil, D Li, H Coropceanu, V Ndione, PF Sigdel, AK Ginley, DS Berry, JJ Shim, J Kim, H Kippelen, B Bredas, JL Monti, OLA AF Winget, Paul Schirra, Laura K. Cornil, David Li, Hong Coropceanu, Veaceslav Ndione, Paul F. Sigdel, Ajaya K. Ginley, David S. Berry, Joseph J. Shim, Jaewon Kim, Hyungchui Kippelen, Bernard Bredas, Jean-Luc Monti, Oliver L. A. TI Defect-Driven Interfacial Electronic Structures at an Organic/Metal-Oxide Semiconductor Heterojunction SO ADVANCED MATERIALS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ZINC-OXIDE; ZNO NANOSTRUCTURES; WORK FUNCTION; POINT-DEFECTS; SOLAR-CELLS; METAL-OXIDE; SURFACES; 10(1)OVER-BAR0 AB The electronic structure of the hybrid interface between ZnO and the prototypical organic semiconductor PTCDI is investigated via a combination of ultraviolet and X-ray photoelectron spectroscopy (UPS/XPS) and density functional theory (DFT) calculations. The interfacial electronic interactions lead to a large interface dipole due to substantial charge transfer from ZnO to 3,4,9,10-perylenetetracarboxylicdiimide (PTCDI), which can be properly described only when accounting for surface defects that confer ZnO its n-type properties. C1 [Winget, Paul; Cornil, David; Li, Hong; Coropceanu, Veaceslav; Bredas, Jean-Luc] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Winget, Paul; Cornil, David; Coropceanu, Veaceslav; Shim, Jaewon; Kim, Hyungchui; Kippelen, Bernard; Bredas, Jean-Luc] Georgia Inst Technol, Ctr Organ Photon & Elect, Atlanta, GA 30332 USA. [Schirra, Laura K.; Monti, Oliver L. A.] Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA. [Ndione, Paul F.; Sigdel, Ajaya K.; Ginley, David S.; Berry, Joseph J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Shim, Jaewon; Kim, Hyungchui; Kippelen, Bernard] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. [Bredas, Jean-Luc] King Abdulaziz Univ, Dept Chem, Jeddah 21413, Saudi Arabia. RP Bredas, JL (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. EM jean-luc.bredas@chemistry.gatech.edu; monti@u.arizona.edu RI Bredas, Jean-Luc/A-3431-2008; Ndione, Paul/O-6152-2015; OI Bredas, Jean-Luc/0000-0001-7278-4471; Ndione, Paul/0000-0003-4444-2938; Cornil, David/0000-0002-9553-1626 FU Center for Interface Science: Solar Electric Materials (CISSEM), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0001084]; NSF CRIF award [CHE0946869]; Georgia Institute of Technology FX This work was supported as part of the Center for Interface Science: Solar Electric Materials (CISSEM), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award Number DE-SC0001084 (PW, LKS, DC, HL, VC, PFN, AKS, DSG, JJB, JS, HK, BK, OLAM, JLB). The computations reported here were performed at the Georgia Tech Center for Computational Molecular Science and Technology, funded through a NSF CRIF award (Grant No. CHE0946869) and by the Georgia Institute of Technology. NR 86 TC 25 Z9 25 U1 13 U2 104 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD JUL 16 PY 2014 VL 26 IS 27 BP 4711 EP + DI 10.1002/adma.201305351 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AM2EE UT WOS:000339661100016 PM 24830796 ER PT J AU Linder, DP Silvernail, NJ Barabanschikov, A Zhao, JY Alp, EE Sturhahn, W Sage, JT Scheidt, WR Rodgers, KR AF Linder, Douglas P. Silvernail, Nathan J. Barabanschikov, Alexander Zhao, Jiyong Alp, E. Ercan Sturhahn, Wolfgang Sage, J. Timothy Scheidt, W. Robert Rodgers, Kenton R. TI The Diagnostic Vibrational Signature of Pentacoordination in Heme Carbonyls SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TRANSCRIPTION ACTIVATOR COOA; SOLUBLE GUANYLATE-CYCLASE; CYTOCHROME-C-OXIDASE; RESONANCE RAMAN; AXIAL LIGAND; PROTEIN; SPECTROSCOPY; MONOXIDE; DOMAIN; IRON AB Heme-carbonyl complexes are widely exploited for the insight they provide into the structural basis of function in heme-based proteins, by revealing the nature of their bonded and nonbonded interactions with the protein. This report presents two novel results which clearly establish a FeCO vibrational signature for crystallographically verified pentacoordination. First, anisotropy in the NRVS density of states for nu(Fe-C) and delta(FeCO) in oriented single crystals of [Fe(OEP)(CO)] clearly reveals that the Fe-C stretch occurs at higher frequency than the FeCO bend and considerably higher than any previously reported heme carbonyl. Second, DFT calculations on a series of heme carbonyls reveal that the frequency crossover occurs near the weak trans O atom donor, furan. AS nu(Fe-C) occurs at lower frequencies than delta(FeCO)in all heme protein carbonyls reported to date, the results reported herein suggest that they are all hexacoordinate. C1 [Linder, Douglas P.; Rodgers, Kenton R.] N Dakota State Univ, Dept Chem & Biochem, Fargo, ND 58105 USA. [Silvernail, Nathan J.; Scheidt, W. Robert] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. [Barabanschikov, Alexander; Sage, J. Timothy] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Zhao, Jiyong; Alp, E. Ercan; Sturhahn, Wolfgang] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Barabanschikov, Alexander] Moscow Inst Phys & Technol, Moscow, Russia. RP Sage, JT (reprint author), Northeastern Univ, Dept Phys, Boston, MA 02115 USA. EM jtsage@neu.edu; scheidt.1@nd.edu; kent.rodgers@ndsu.edu RI Barabanschikov, Alexander/L-3048-2013 FU NIH [AI072719, GM38401]; NSF [CHE-1026369]; U.S. DOE [DE-AC02-06CH11357] FX This work was supported by grants from the NIH; AI072719 (K.R.R.), GM38401 (W.R.S.), and from the NSF; CHE-1026369 (J.T.S.). The Advanced Photon Source is supported by the U.S. DOE under contract no. DE-AC02-06CH11357. NR 44 TC 11 Z9 11 U1 3 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 16 PY 2014 VL 136 IS 28 BP 9818 EP 9821 DI 10.1021/ja503191z PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA AL6FO UT WOS:000339228200006 PM 24950373 ER PT J AU Qian, K Sweeny, BC Johnston-Peck, AC Niu, WX Graham, JO DuChene, JS Qiu, JJ Wang, YC Engelhard, MH Su, D Stach, EA Wei, WD AF Qian, Kun Sweeny, Brendan C. Johnston-Peck, Aaron C. Niu, Wenxin Graham, Jeremy O. DuChene, Joseph S. Qiu, Jingjing Wang, Yi-Chung Engelhard, Mark H. Su, Dong Stach, Eric A. Wei, Wei David TI Surface Plasmon-Driven Water Reduction: Gold Nanoparticle Size Matters SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PHOTOCATALYTIC HYDROGEN-PRODUCTION; VISIBLE-LIGHT; AQUEOUS SUSPENSIONS; ELECTRON-TRANSFER; ROOM-TEMPERATURE; CHARGE-CARRIERS; PARTICLE-SIZE; SOLAR LIGHT; EFFICIENT; METAL AB Water reduction under two different visible-light ranges (lambda > 400 nm and lambda > 435 nm) was investigated in gold-loaded titanium dioxide (Au-TiO2) heterostructures with different sizes of Au nanoparticles (NPs). Our study clearly demonstrates the essential role played by Au NP size in plasmon-driven H2O reduction and reveals two distinct mechanisms to clarify visible-light photocatalytic activity under different excitation conditions. The size of the Au NP governs the efficiency of plasmon-mediated electron transfer and plays a critical role in determining the reduction potentials of the electrons transferred to the TiO2 conduction band. Our discovery provides a facile method of manipulating photocatalytic activity simply by varying the Au NP size and is expected to greatly facilitate the design of suitable plasmonic photocatalysts for solar-to-fuel energy conversion. C1 [Qian, Kun; Sweeny, Brendan C.; Niu, Wenxin; Graham, Jeremy O.; DuChene, Joseph S.; Qiu, Jingjing; Wang, Yi-Chung; Wei, Wei David] Univ Florida, Dept Chem, Gainesville, FL 32611 USA. [Qian, Kun; Sweeny, Brendan C.; Niu, Wenxin; Graham, Jeremy O.; DuChene, Joseph S.; Qiu, Jingjing; Wang, Yi-Chung; Wei, Wei David] Univ Florida, Ctr Nanostruct Elect Mat, Gainesville, FL 32611 USA. [Johnston-Peck, Aaron C.; Su, Dong; Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Engelhard, Mark H.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. RP Wei, WD (reprint author), Univ Florida, Dept Chem, Gainesville, FL 32611 USA. EM wei@chem.ufl.edu RI Stach, Eric/D-8545-2011; Niu, Wenxin/E-7538-2010; Su, Dong/A-8233-2013; OI Stach, Eric/0000-0002-3366-2153; Niu, Wenxin/0000-0002-0835-3295; Su, Dong/0000-0002-1921-6683; Engelhard, Mark/0000-0002-5543-0812; qian, kun/0000-0002-3326-1843 FU NSF [CHE-1308611]; NSF under CCI Center for Nanostructured Electronic Materials [CHE-1038015]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory FX We thank NSF for support under Grant CHE-1308611 and the CCI Center for Nanostructured Electronic Materials (CHE-1038015). EM work was carried out in part at the Center for Functional Nanomaterials at Brookhaven National Laboratory through User Proposal BNL-CFN-31913, supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract DE-AC02-98CH10886. A portion of the research was performed using EMSL (User Proposal 40065), a National Scientific User Facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. NR 46 TC 67 Z9 70 U1 18 U2 240 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 16 PY 2014 VL 136 IS 28 BP 9842 EP 9845 DI 10.1021/ja504097v PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA AL6FO UT WOS:000339228200012 PM 24972055 ER PT J AU Beaumont, SK Alayoglu, S Specht, C Michalak, WD Pushkarev, VV Guo, JH Kruse, N Somorjai, GA AF Beaumont, Simon K. Alayoglu, Selim Specht, Colin Michalak, William D. Pushkarev, Vladimir V. Guo, Jinghua Kruse, Norbert Somorjai, Gabor A. TI Combining in Situ NEXAFS Spectroscopy and CO2 Methanation Kinetics To Study Pt and Co Nanoparticle Catalysts Reveals Key Insights into the Role of Platinum in Promoted Cobalt Catalysis SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FISCHER-TROPSCH SYNTHESIS; SOL/GEL METHOD; HYDROGENATION; REDUCTION AB The mechanistic role of platinum and precious metals in promoting cobalt hydrogenation catalysts of the type used in reactions such as Fischer-Tropsch synthesis is highly debated. Here we use well-defined monometallic Pt and Co nanoparticles (NPs) and CO2 methanation as a probe reaction to show that Pt NPs deposited near Co NPs can enhance the CO2 methanation rate by up to a factor of 6 per Co surface atom. In situ NEXAFS spectroscopy of these same Pt NP plus Co NP systems in hydrogen shows that the presence of nearby Pt NPs is able to significantly enhance reduction of the Co at temperatures relevant to Fischer-Tropsch synthesis and CO2 methanation. The mechanistic role of Pt in these reactions is discussed in light of these findings. C1 [Beaumont, Simon K.; Alayoglu, Selim; Specht, Colin; Michalak, William D.; Pushkarev, Vladimir V.; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Beaumont, Simon K.; Alayoglu, Selim; Specht, Colin; Michalak, William D.; Pushkarev, Vladimir V.; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Beaumont, Simon K.] Univ Durham, Dept Chem, Durham DH1 3LE, England. [Guo, Jinghua] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Kruse, Norbert] Univ Libre Bruxelles, B-1050 Brussels, Belgium. [Kruse, Norbert] Washington State Univ, Dept Chem Engn & Bioengn, Pullman, WA 99164 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Beaumont, Simon/F-5272-2012; Foundry, Molecular/G-9968-2014 OI Beaumont, Simon/0000-0002-1973-9783; FU Division of Chemical Sciences, Geological and Biosciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Total S.A. FX This work was supported by the Director, Office of Basic Energy Sciences, Materials Science and Engineering Division and the Division of Chemical Sciences, Geological and Biosciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors are also grateful to Hui Zhang at Beamline 7.0.1 for practical assistance. SKB and NK gratefully acknowledge financial support by Total S.A. We are also thankful for valuable discussions with Daniel Curulla-Ferre (Total S.A.). NR 25 TC 17 Z9 17 U1 17 U2 165 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 16 PY 2014 VL 136 IS 28 BP 9898 EP 9901 DI 10.1021/ja505286j PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA AL6FO UT WOS:000339228200026 PM 24978060 ER PT J AU Guo, Z Lee, D Schaller, RD Zuo, XB Lee, B Luo, TF Gao, HF Huang, LB AF Guo, Zhi Lee, Doyun Schaller, Richard D. Zuo, Xiaobing Lee, Byeongdu Luo, TengFei Gao, Haifeng Huang, Libai TI Relationship between Interchain Interaction, Exciton Delocalization, and Charge Separation in Low-Bandgap Copolymer Blends SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID POLYMER SOLAR-CELLS; MEH-PPV FILMS; CONJUGATED POLYMERS; ORGANIC SEMICONDUCTORS; NANOSCALE MORPHOLOGY; ENERGY-TRANSFER; DONOR; ACCEPTOR; PHOTOGENERATION; PHOTOVOLTAICS AB We present a systematic study of the roles of crystallinity, interchain interaction, and exciton delocalization on ultrafast charge separation pathways in donor-acceptor copoloymer blends. We characterize the energy levels, excited state structures, and dynamics of the interchain species by combined ultrafast spectroscopy and computational quantum chemistry approaches. The alkyl side chain of a highly efficient donor acceptor copolymer for solar cell applications, PBDTTT (poly(4,8-bis-alkyloxybenzo-[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-(alkylthieno[3,4-b]thiophene- 2-carboxylate)-2,6-diyl), is varied to tune the molecular packing and interchain interaction of the polymers in order to elucidate the charge separation pathways originating from intrachain and interchain species. Polymers with linear side chains result in more crystalline polymer formation of interchain excitons delocalizing over more than one polymer backbone in the solid state that the higher polymer crystallinity leads to slower charge separation due to coarser phase segregation and formation of the interchain excited states that are energetically unfavorable for charge separation. Such energetics of the interchain excitons in low-bandgap copolymers calls for optimized solar cell morphologies that are fundamentally different from those based on homopolymers such as P3HT (poly-3-hexylthiophene). A long-range crystalline polymer domain is detrimental rather than beneficial to solar cell performance for a low-bandgap copolymer which is in direct contrast to the observed behavior in P3HT based devices. C1 [Guo, Zhi; Huang, Libai] Univ Notre Dame, Radiat Lab, Notre Dame, IN 46556 USA. [Guo, Zhi; Luo, TengFei] Univ Notre Dame, Dept Aerosp & Mech Engn, Notre Dame, IN 46556 USA. [Lee, Doyun; Gao, Haifeng] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. [Schaller, Richard D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Zuo, Xiaobing; Lee, Byeongdu] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Schaller, Richard D.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Huang, LB (reprint author), Univ Notre Dame, Radiat Lab, Notre Dame, IN 46556 USA. EM lhuang2@nd.edu RI Gao, Haifeng/C-3286-2008; Guo, Zhi/E-3405-2015; Gao, Haifeng/D-1610-2016; OI Zuo, Xiaobing/0000-0002-0134-4804; Lee, Byeongdu/0000-0003-2514-8805 FU Sustainable Energy Initiative of the University of Notre Dame; Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-FC02-04ER15533]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Z. Guo and D. Lee acknowledge support from the Sustainable Energy Initiative of the University of Notre Dame. The authors thank the Center for Research Computing (CRC) at the University of Notre Dame for providing the computational resources for this work. The authors thank Dr. Ali Khounsary and Dr. Joseph Strzalka from Advanced Photon Sources at Argonne National Laboratory for performing the GIWAXS measurements. L. Huang was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through grant DE-FC02-04ER15533. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This publication is contribution No. NDRL 5019 from the Notre Dame Radiation Laboratory. NR 67 TC 34 Z9 34 U1 4 U2 118 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 16 PY 2014 VL 136 IS 28 BP 10024 EP 10032 DI 10.1021/ja503465s PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA AL6FO UT WOS:000339228200043 PM 24956140 ER PT J AU Laguna-Marco, MA Fabbris, G Souza-Neto, NM Chikara, S Schilling, JS Cao, G Haskel, D AF Laguna-Marco, M. A. Fabbris, G. Souza-Neto, N. M. Chikara, S. Schilling, J. S. Cao, G. Haskel, D. TI Different response of transport and magnetic properties of BaIrO3 to chemical and physical pressure SO PHYSICAL REVIEW B LA English DT Article ID RAY CIRCULAR-DICHROISM; DENSITY-WAVE FORMATION; WEAK FERROMAGNETISM; PHASE; SYSTEM; SUPERCONDUCTIVITY; SPECTROSCOPY; TEMPERATURE; DIFFRACTION; IFEFFIT AB A combination of x-ray absorption, x-ray-diffraction, and transport measurements at high pressure is used to investigate the interplay between the electronic properties of Ir 5d states and lattice degrees of freedom in the weakly ferromagnetic insulator BaIrO3. Although the Ir 5d local magnetic moment is highly stable against lattice compression, remaining nearly unperturbed to at least 30 GPa, the weak ferromagnetism (net ordered moment) is quickly quenched by 4.5 GPa (3% volume reduction). Under chemical pressure, where Sr is substituted for the larger Ba in BaIrO3, the local magnetic moment on Ir remains stable, but the weak ferromagnetism is quenched after only 1.7% volume reduction. The magnetic ordering temperature T-m is also more strongly suppressed by chemical pressure compared to physical pressure. In addition, under similar to 23-at. % Sr doping, BaIrO3 undergoes a transition to a paramagnetic metallic state. Resistivity measurements indicate that BaIrO3 remains an electrical insulator to at least 9 GPa, a much higher pressure than required to quench the weak ferromagnetism (similar to 4.5 GPa). Such a disparate response of transport and magnetic properties to chemical and physical pressure is likely rooted in the different compression rates of the (a, c) lattice parameters with Sr doping and applied pressure and the effect of related lattice distortions on electronic bandwidth and exchange interactions in this strongly spin-orbit-coupled system. C1 [Laguna-Marco, M. A.] Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. [Laguna-Marco, M. A.] Univ Zaragoza, CSIC, Dept Fis Mat Condensada, E-50009 Zaragoza, Spain. [Laguna-Marco, M. A.; Fabbris, G.; Souza-Neto, N. M.; Chikara, S.; Haskel, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Fabbris, G.; Schilling, J. S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Souza-Neto, N. M.] LNLS, BR-13083970 Campinas, SP, Brazil. [Chikara, S.; Cao, G.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. RP Laguna-Marco, MA (reprint author), Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. EM anlaguna@unizar.es; haskel@aps.anl.gov RI Laguna-Marco, M. A./G-8042-2011; Souza-Neto, Narcizo/G-1303-2010; Fabbris, Gilberto/F-3244-2011; Chikara, Shalinee/E-4654-2017 OI Laguna-Marco, M. A./0000-0003-4069-0395; Souza-Neto, Narcizo/0000-0002-7474-8017; Fabbris, Gilberto/0000-0001-8278-4985; FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC-02-06CH11357]; Spanish MICINN; CSIC; National Science Foundation (NSF) [DMR-1104742, DMR-1265162]; Carnegie/DOE Alliance Center (CDAC) through NNSA/DOE [DE-FC52- 08NA28554] FX Work at Argonne is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC-02-06CH11357. M. A. Laguna-Marco acknowledges Spanish MICINN for a postdoctoral grant and CSIC for a JAE-Doc contract. Research at Washington University was supported by the National Science Foundation (NSF) through Grant No. DMR-1104742 and by the Carnegie/DOE Alliance Center (CDAC) through NNSA/DOE Grant No. DE-FC52-08NA28554. Work at the University of Kentucky was supported by the NSF through Grant No. DMR-1265162. The authors are grateful to H.-P. Liermann,Y.-C. Tseng, S. Heald, and M. Balasubramanian for support during HP-XRD, HP-XMCD, and HP-XANES measurements, respectively. We thank J. W. Kim for help with x-ray resonant magnetic scattering measurements. M. A. Laguna-Marco acknowledges M. C. Sanchez for her kind help with FULLPROF. NR 42 TC 4 Z9 4 U1 5 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 16 PY 2014 VL 90 IS 1 AR 014419 DI 10.1103/PhysRevB.90.014419 PG 9 WC Physics, Condensed Matter SC Physics GA AL4HM UT WOS:000339093600001 ER PT J AU Varley, JB Lordi, V Miglio, A Hautier, G AF Varley, J. B. Lordi, V. Miglio, A. Hautier, G. TI Electronic structure and defect properties of B6O from hybrid functional and many-body perturbation theory calculations: A possible ambipolar transparent conductor SO PHYSICAL REVIEW B LA English DT Article ID BORON SUBOXIDE B6O; ELECTRICAL-CONDUCTION; DELAFOSSITE STRUCTURE; RICH SOLIDS; THIN-FILMS; OXIDES; SEMICONDUCTORS; PRINCIPLES; CHEMISTRY; CRYSTAL AB B6O is a member of icosahedral boron-rich solids known for their physical hardness and stability under irradiation bombardment, but it has also recently emerged as a promising high mobility p-type transparent conducting oxide. Using a combination of hybrid functional and many-body perturbation theory calculations, we report on the electronic structure and defect properties of this material. Our calculations identify B6O has a direct band gap in excess of 3.0 eV and possesses largely isotropic and low effective masses for both holes and electrons. Of the native defects, we identify no intrinsic origin to the reported p-type conductivity and confirm that p-type doping is not prevented by intrinsic defects such as oxygen vacancies, which we find act exclusively as neutral defects rather than hole-killing donors. We also investigate a number of common impurities and plausible dopants, finding that isolated acceptor candidates tend to yield deep states within the band gap or act instead as donors, and cannot account for p-type conductivity. Our calculations identify the only shallow acceptor candidate to be a complex consisting of interstitial H bonded to C substituting on the O site (CH)(O). We therefore attribute the origins of p-type conductivity to these complexes formed during growth or more likely via isolated C-O which later binds with H within the crystal. Lastly, we identify Si as a plausible n-type dopant, as it favorably acts as a shallow donor and does not suffer from self-compensation as may the C-related defects. Thus, in addition to the observed p-type conductivity, B6O exhibits promise of n-type dopability if the stoichiometry and both native and extrinsic sources of compensation can be sufficiently controlled. C1 [Varley, J. B.; Lordi, V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Miglio, A.; Hautier, G.] Catholic Univ Louvain, ETSF, IMCN, B-1348 Louvain, Belgium. RP Varley, JB (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. OI Lordi, Vincenzo/0000-0003-2415-4656 FU U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; F.N.R.S.-FRS, European Union Marie Curie Career Integration (CIG) Grant HTforTCOs [PCIG11-GA-2012-321988] FX We gratefully acknowledge useful discussions with T. Ogitsu, X. Gonze, K. E. Morgan, and G. A. Slack. This work was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. G.H. acknowledges the F.N.R.S.-FRS as well as the European Union Marie Curie Career Integration (CIG) Grant HTforTCOs PCIG11-GA-2012-321988 for financial support. NR 53 TC 9 Z9 9 U1 0 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 16 PY 2014 VL 90 IS 4 AR 045205 DI 10.1103/PhysRevB.90.045205 PG 9 WC Physics, Condensed Matter SC Physics GA AL4HR UT WOS:000339094100005 ER PT J AU Pomorski, M Pfutzner, M Dominik, W Grzywacz, R Stolz, A Baumann, T Berryman, JS Czyrkowski, H Dabrowski, R Fijalkowska, A Ginter, T Johnson, J Kaminski, G Larson, N Liddick, SN Madurga, M Mazzocchi, C Mianowski, S Miernik, K Miller, D Paulauskas, S Pereira, J Rykaczewski, KP Suchyta, S AF Pomorski, M. Pfuetzner, M. Dominik, W. Grzywacz, R. Stolz, A. Baumann, T. Berryman, J. S. Czyrkowski, H. Dabrowski, R. Fijalkowska, A. Ginter, T. Johnson, J. Kaminski, G. Larson, N. Liddick, S. N. Madurga, M. Mazzocchi, C. Mianowski, S. Miernik, K. Miller, D. Paulauskas, S. Pereira, J. Rykaczewski, K. P. Suchyta, S. TI Proton spectroscopy of Ni-48, Fe-46, and Cr-44 SO PHYSICAL REVIEW C LA English DT Article ID TIME PROJECTION CHAMBER; PRODUCTION CROSS-SECTIONS; RICH NUCLEI; MOMENTUM DISTRIBUTIONS; DRIP-LINE; DECAY; STABILITY; FRAGMENTATION; SEPARATORS AB Results of decay spectroscopy on nuclei in the vicinity of the doubly magic Ni-48 are presented. The measurements were performed with a time projection chamber with optical readout which records tracks of ions and protons in the gaseous volume. Six decays of Ni-48, including four events of two-proton ground-state radioactivity, were recorded. An advanced reconstruction procedure yielded the 2p decay energy for Ni-48 of Q(2p) = 1.29(4) MeV. In addition, the energy spectra of beta-delayed protons emitted in the decays of Cr-44 and Fe-46, as well as half-lives and branching ratios, were determined. The results were found to be consistent with the previous measurements made with Si detectors. A new proton line in the decay of Cr-44 corresponding to the decay energy of 760 keV is reported. The first evidence for the beta 2p decay of Fe-46, based on one clear event, is shown. C1 [Pomorski, M.; Pfuetzner, M.; Dominik, W.; Czyrkowski, H.; Dabrowski, R.; Fijalkowska, A.; Mazzocchi, C.; Mianowski, S.; Miernik, K.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Grzywacz, R.; Madurga, M.; Miller, D.; Paulauskas, S.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Grzywacz, R.; Johnson, J.; Miernik, K.; Rykaczewski, K. P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Stolz, A.; Baumann, T.; Berryman, J. S.; Ginter, T.; Larson, N.; Liddick, S. N.; Pereira, J.; Suchyta, S.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Kaminski, G.] PAN, Inst Nucl Phys, PL-31342 Krakow, Poland. [Kaminski, G.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Suchyta, S.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. RP Pomorski, M (reprint author), Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. EM pfutzner@fuw.edu.pl RI Miller, David/B-5372-2012; Larson, Nicole/S-5997-2016 OI Miller, David/0000-0002-0426-974X; Larson, Nicole/0000-0003-0292-957X FU U.S. National Science Foundation [PHY-06-06007]; U.S. Department of Energy [DE-AC05-00OR22725, DE-FG02-96ER40983]; ORNL LDRD Wigner Fellowship [WG11-035]; National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE [DE-FG52-08NA28552]; Polish National Science Center [UMO-2011/01/B/ST2/01943] FX We gratefully acknowledge the support of the whole NSCL staff during the experiment and, in particular, the efforts of the Operations Group to provide us with the stable, high-intensity beam. This work was supported by the U.S. National Science Foundation under Grant. No. PHY-06-06007, by the U.S. Department of Energy under Contracts No. DE-AC05-00OR22725 and No. DE-FG02-96ER40983, by the ORNL LDRD Wigner Fellowship WG11-035 (KM), by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement No. DE-FG52-08NA28552, and by the Polish National Science Center under Contract no. UMO-2011/01/B/ST2/01943. NR 40 TC 10 Z9 10 U1 4 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUL 16 PY 2014 VL 90 IS 1 AR 014311 DI 10.1103/PhysRevC.90.014311 PG 12 WC Physics, Nuclear SC Physics GA AL4HT UT WOS:000339094300002 ER PT J AU Huang, P Wagner, CEM AF Huang, Peisi Wagner, Carlos E. M. TI Blind spots for neutralino dark matter in the MSSM with an intermediate m(A) SO PHYSICAL REVIEW D LA English DT Article ID ANOMALOUS MAGNETIC-MOMENT; STANDARD MODEL; MUON; SUPERSYMMETRY; SUPERGRAVITY; SCATTERING; PHYSICS AB We study the spin-independent neutralino dark matter scattering off heavy nuclei in the minimal supersymmetric Standard Model. We identify analytically the blind spots in direct detection for intermediate values of m(A). In the region where mu and M-1,M-2 have opposite signs, there is not only a reduction of the lightest CP-even Higgs coupling to neutralinos, but also a destructive interference between the neutralino scattering through the exchange of the lightest CP-even Higgs and that through the exchange of the heaviest CP-even Higgs. At critical values of m(A), the tree-level contribution from the light Higgs exchange cancels the contribution from the heavy Higgs, so the scattering cross section vanishes. We denote these configurations as blind spots, since they provide a generalization of the ones previously discussed in the literature, which occur at very large values of m(A). We show that the generalized blind spots may occur in regions of parameter space that are consistent with the obtention of the proper neutralino relic density and can be tested by nonstandard Higgs boson searches and EWino searches at the LHC and future linear colliders. C1 [Huang, Peisi; Wagner, Carlos E. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Wagner, Carlos E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Huang, Peisi; Wagner, Carlos E. M.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Huang, P (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. OI Huang, Peisi/0000-0003-3360-2641 FU U.S. Department of Energy [DE-AC02-06CH11357] FX We would like to thank H. Baer, J. Conway, R. Hill, A. Juste, J. Qian and M. Solon for useful discussions. Work at ANL is supported in part by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. We thank J. Conway, A. Juste and J. Qiang for correspondence on this issue. NR 68 TC 31 Z9 31 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL 16 PY 2014 VL 90 IS 1 AR 015018 DI 10.1103/PhysRevD.90.015018 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AL4HV UT WOS:000339094600003 ER PT J AU Lanata, N Strand, HUR Yao, YX Kotliar, G AF Lanata, Nicola Strand, Hugo U. R. Yao, Yongxin Kotliar, Gabriel TI Principle of Maximum Entanglement Entropy and Local Physics of Strongly Correlated Materials SO PHYSICAL REVIEW LETTERS LA English DT Article ID STATISTICAL-MECHANICS; QUANTUM-SYSTEMS; VALENCE AB We argue that, because of quantum entanglement, the local physics of strongly correlated materials at zero temperature is described in a very good approximation by a simple generalized Gibbs distribution, which depends on a relatively small number of local quantum thermodynamical potentials. We demonstrate that our statement is exact in certain limits and present numerical calculations of the iron compounds FeSe and FeTe and of the elemental cerium by employing the Gutzwiller approximation that strongly support our theory in general. C1 [Lanata, Nicola; Kotliar, Gabriel] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08856 USA. [Strand, Hugo U. R.] Univ Gothenburg, Dept Phys, SE-41296 Gothenburg, Sweden. [Strand, Hugo U. R.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Yao, Yongxin] US DOE, Ames Lab, Ames, IA 50011 USA. [Yao, Yongxin] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Lanata, N (reprint author), Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08856 USA. EM lanata@physics.rutgers.edu FU NSF [DMR-1308141]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Iowa State University [DE-AC02-07CH11358]; Swedish National Infrastructure for Computing (SNIC) at Chalmers Centre for Computational Science and Engineering (C3SE) [01-11-297] FX We thank Sheldon Goldstein, Xiaoyu Deng, Luca de' Medici, Giovanni Morchio, Michele Fabrizio, Cai-Zhuang Wang, and Kai-Ming Ho for useful discussions. N. L. and G. K. were supported by NSF Grant No. DMR-1308141. The collaboration was supported by the U.S. Department of Energy through the Computational Materials and Chemical Sciences Network CMSCN. Research at Ames Laboratory is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. H. U. R. S. acknowledges the support of the Mathematics-Physics Platform (MP2) at the University of Gothenburg. Simulations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at Chalmers Centre for Computational Science and Engineering (C3SE) (Project No. 01-11-297). NR 33 TC 4 Z9 4 U1 2 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 16 PY 2014 VL 113 IS 3 AR 036402 DI 10.1103/PhysRevLett.113.036402 PG 5 WC Physics, Multidisciplinary SC Physics GA AL4IO UT WOS:000339096600017 PM 25083657 ER PT J AU Ngo, S Peshkov, A Aranson, IS Bertin, E Ginelli, F Chate, H AF Ngo, Sandrine Peshkov, Anton Aranson, Igor S. Bertin, Eric Ginelli, Francesco Chate, Hugues TI Large-Scale Chaos and Fluctuations in Active Nematics SO PHYSICAL REVIEW LETTERS LA English DT Article ID GIANT NUMBER FLUCTUATIONS; MATTER; MICROTUBULES; SYSTEMS; FLUIDS AB We show that dry active nematics, e.g., collections of shaken elongated granular particles, exhibit large-scale spatiotemporal chaos made of interacting dense, ordered, bandlike structures in a parameter region including the linear onset of nematic order. These results are obtained from the study of both the well-known (deterministic) hydrodynamic equations describing these systems and of the self-propelled particle model they were derived from. We prove, in particular, that the chaos stems from the generic instability of the band solution of the hydrodynamic equations. Revisiting the status of the strong fluctuations and long-range correlations in the particle model, we show that the giant number fluctuations observed in the chaotic phase are a trivial consequence of density segregation. However anomalous, curvature-driven number fluctuations are present in the homogeneous quasiordered nematic phase and characterized by a nontrivial scaling exponent. C1 [Ngo, Sandrine; Peshkov, Anton; Chate, Hugues] CEA Saclay, Serv Phys Etat Condense, CNRS URA 2464, F-91191 Gif Sur Yvette, France. [Ngo, Sandrine; Peshkov, Anton; Aranson, Igor S.; Bertin, Eric; Chate, Hugues] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. [Ngo, Sandrine; Ginelli, Francesco] Univ Aberdeen, Kings Coll, IPAM, Dept Phys,SUPA, Aberdeen AB24 3UE, Scotland. [Ngo, Sandrine; Ginelli, Francesco] Univ Aberdeen, Kings Coll, Inst Complex Syst & Math Biol, Aberdeen AB24 3UE, Scotland. [Peshkov, Anton; Chate, Hugues] Univ Paris 06, LPTMC, CNRS UMR 7600, F-75252 Paris, France. [Aranson, Igor S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Univ Grenoble 1, Lab Interdisciplinaire Phys, CNRS UMR 5588, F-38402 St Martin Dheres, France. [Bertin, Eric] Univ Lyon, Phys Lab, ENS Lyon, CNRS, F-69007 Lyon, France. RP Ngo, S (reprint author), CEA Saclay, Serv Phys Etat Condense, CNRS URA 2464, F-91191 Gif Sur Yvette, France. RI Bertin, Eric/B-9902-2008; Peshkov, Anton/B-6858-2013; Chate, Hugues/D-2156-2015 OI Peshkov, Anton/0000-0003-1209-8132; Chate, Hugues/0000-0002-6098-4094 FU EPSRC [EP/K018450/1]; U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DEAC02-06CH11357] FX We thank the Max Planck Institute for the Physics of Complex Systems, Dresden, for providing the framework of the Advanced Study Group "Statistical Physics of Collective Motion" within which much of this work was conducted. F. G. and S.N. acknowledge support from the EPSRC First Grant No. EP/K018450/1. The work of I. S. A. was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Contract No. DEAC02-06CH11357. NR 46 TC 19 Z9 19 U1 6 U2 61 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 16 PY 2014 VL 113 IS 3 AR 038302 DI 10.1103/PhysRevLett.113.038302 PG 6 WC Physics, Multidisciplinary SC Physics GA AL4IO UT WOS:000339096600022 PM 25083667 ER PT J AU Romero-Redondo, C Quaglioni, S Navratil, P Hupin, G AF Romero-Redondo, Carolina Quaglioni, Sofia Navratil, Petr Hupin, Guillaume TI He-4 + n plus n Continuum within an Ab initio Framework SO PHYSICAL REVIEW LETTERS LA English DT Article ID HALO NUCLEUS HE-6; R-MATRIX METHOD; LAGRANGE MESH; STATES AB The low-lying continuum spectrum of the He-6 nucleus is investigated for the first time within an ab initio framework that encompasses the He-4 + n + n three-cluster dynamics characterizing its lowest decay channel. This is achieved through an extension of the no-core shell model combined with the resonating-group method, in which energy-independent nonlocal interactions among three nuclear fragments can be calculated microscopically, starting from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrodinger equation is solved with three-body scattering boundary conditions by means of the hyperspherical-harmonics method on a Lagrange mesh. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we find the known J(pi) = 2(+) resonance as well as a result consistent with a new low-lying second 2(+) resonance recently observed at GANIL at 2.6 MeV above the He-6 ground state. We also find resonances in the 2(-), 1(+), and 0(-)channels, while no low-lying resonances are present in the 0(+) and 1(-) channels. C1 [Romero-Redondo, Carolina; Navratil, Petr] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Quaglioni, Sofia; Hupin, Guillaume] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Romero-Redondo, C (reprint author), TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. EM cromeroredondo@triumf.ca; quaglioni1@llnl.gov; navratil@triumf.ca; hupin1@llnl.gov FU NSERC [401945-2011]; U.S. DOE/SC/NP [SCW1158]; Canadian National Research Council; Department of Energy FX Computing support for this work came from the LLNL institutional Computing Grand Challenge Program and from an INCITE Award on the Titan supercomputer of the Oak Ridge Leadership Computing Facility (OLCF) at ORNL. We thank the Institute for Nuclear Theory at the University of Washington for its hospitality and the Department of Energy for partial support during the completion of this work. This work was prepared in part by LLNL under Contract No. DE-AC52-07NA27344. Support from the NSERC Grant No. 401945-2011 and U.S. DOE/SC/NP (Work Proposal No. SCW1158) is acknowledged. TRIUMF receives funding via a contribution through the Canadian National Research Council. NR 32 TC 12 Z9 12 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 16 PY 2014 VL 113 IS 3 AR 032503 DI 10.1103/PhysRevLett.113.032503 PG 5 WC Physics, Multidisciplinary SC Physics GA AL4IO UT WOS:000339096600007 PM 25083637 ER PT J AU Swadling, GF Lebedev, SV Harvey-Thompson, AJ Rozmus, W Burdiak, GC Suttle, L Patankar, S Smith, RA Bennett, M Hall, GN Suzuki-Vidal, F Yuan, J AF Swadling, G. F. Lebedev, S. V. Harvey-Thompson, A. J. Rozmus, W. Burdiak, G. C. Suttle, L. Patankar, S. Smith, R. A. Bennett, M. Hall, G. N. Suzuki-Vidal, F. Yuan, J. TI Interpenetration, Deflection, and Stagnation of Cylindrically Convergent Magnetized Supersonic Tungsten Plasma Flows SO PHYSICAL REVIEW LETTERS LA English DT Article ID Z-PINCH EXPERIMENTS; FIELD; STREAMS; LASER AB The interpenetration and interaction of supersonic, magnetized tungsten plasma flows has been directly observed via spatially and temporally resolved measurements of the Thomson scattering ion feature. A novel scattering geometry allows independent measurements of the axial and radial velocity components of the ions. The plasma flows are produced via the pulsed power driven ablation of fine tungsten wires in a cylindrical wire array z pinch. Fits of the data reveal the variations in radial velocity, axial velocity, and temperature of the ion streams as they interpenetrate and interact. A previously unobserved increase in axial velocity is measured near the array axis. This may be the result of (v) over right arrow x (B) over right arrow bending of the ion streams by a toroidal magnetic field, advected to and accumulated about the axis by the streams. C1 [Swadling, G. F.; Lebedev, S. V.; Burdiak, G. C.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Hall, G. N.; Suzuki-Vidal, F.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. [Harvey-Thompson, A. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Rozmus, W.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2J1, Canada. [Yuan, J.] CAE, Inst Fluid Phys, Key Lab Pulsed Power, Mianyang 621900, Peoples R China. RP Swadling, GF (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. RI Hall, Gareth/C-4179-2015; Swadling, George/S-5980-2016 OI Swadling, George/0000-0001-8370-8837 FU EPSRC [EP/G001324/1]; DOE [DE-F03-02NA00057, DE-SC-0001063]; Sandia National Laboratories FX This work was supported in part by EPSRC Grant No. EP/G001324/1, by DOE cooperative agreements No. DE-F03-02NA00057 and No. DE-SC-0001063, and by Sandia National Laboratories. NR 29 TC 11 Z9 11 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 16 PY 2014 VL 113 IS 3 AR 035003 DI 10.1103/PhysRevLett.113.035003 PG 5 WC Physics, Multidisciplinary SC Physics GA AL4IO UT WOS:000339096600014 PM 25083650 ER PT J AU Lin, F Markus, IM Doeff, MM Xin, HLL AF Lin, Feng Markus, Isaac M. Doeff, Marca M. Xin, Huolin L. TI Chemical and Structural Stability of Lithium-Ion Battery Electrode Materials under Electron Beam SO SCIENTIFIC REPORTS LA English DT Article ID CATHODE MATERIALS; RADIATION-DAMAGE; NICKEL-OXIDE; DOSE-RATE; ORIGIN; TEM; PERFORMANCE; MICROSCOPY; LITHIATION; EVOLUTION AB The investigation of chemical and structural dynamics in battery materials is essential to elucidation of structure-property relationships for rational design of advanced battery materials. Spatially resolved techniques, such as scanning/transmission electron microscopy (S/TEM), are widely applied to address this challenge. However, battery materials are susceptible to electron beam damage, complicating the data interpretation. In this study, we demonstrate that, under electron beam irradiation, the surface and bulk of battery materials undergo chemical and structural evolution equivalent to that observed during charge-discharge cycling. In a lithiated NiO nanosheet, a Li2CO3-containing surface reaction layer (SRL) was gradually decomposed during electron energy loss spectroscopy (EELS) acquisition. For cycled LiNi0.4Mn0.4Co0.18Ti0.02O2 particles, repeated electron beam irradiation induced a phase transition from an R (3) over barm layered structure to an Fm (3) over barm rock-salt structure, which is attributed to the stoichiometric lithium and oxygen removal from R (3) over barm 3a and 6c sites, respectively. Nevertheless, it is still feasible to preserve pristine chemical environments by minimizing electron beam damage, for example, using fast electron imaging and spectroscopy. Finally, the present study provides examples of electron beam damage on lithium-ion battery materials and suggests that special attention is necessary to prevent misinterpretation of experimental results. C1 [Lin, Feng; Markus, Isaac M.; Doeff, Marca M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Markus, Isaac M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Xin, Huolin L.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Lin, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM flin@lbl.gov; hxin@bnl.gov RI Xin, Huolin/E-2747-2010; OI Xin, Huolin/0000-0002-6521-868X; Doeff, Marca/0000-0002-2148-8047 FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under the Batteries for Advanced Transportation Technologies (BATT) Program [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; National Center for Electron Microscopy (NCEM) of the Lawrence Berkeley National Laboratory (LBNL); U.S. Department of Energy (DOE) [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 under the Batteries for Advanced Transportation Technologies (BATT) Program. S/TEM experiments were performed at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-98CH10886, and at National Center for Electron Microscopy (NCEM) of the Lawrence Berkeley National Laboratory (LBNL), which is supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. F.L. acknowledges Prof. Ryan Richards for the help with NiO materials. The authors thank Prof. Mark Asta for fruitful discussion. H.L.X. thanks Dr. Haimei Zheng for her full support and cordial advice on this project. NR 30 TC 21 Z9 21 U1 7 U2 93 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUL 16 PY 2014 VL 4 AR 5694 DI 10.1038/srep05694 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AL2YN UT WOS:000338991700001 PM 25027190 ER PT J AU Zhang, JJ Zheng, XL Chen, L Sun, YW AF Zhang, Junjie Zheng, Xilai Chen, Lei Sun, Yunwei TI Effect of residual oil saturation on hydrodynamic properties of porous media SO JOURNAL OF HYDROLOGY LA English DT Article DE Residual oil saturation; Porous medium; Effective porosity; Permeability; Dispersivity ID WETTABILITY LITERATURE SURVEY; RELATIVE PERMEABILITY; SOIL COLUMNS; AROMATIC-HYDROCARBONS; TRANSPORT; REMEDIATION; GROUNDWATER; SYSTEMS; WATER; CONTAMINATION AB To understand the effect of residual oil on hydraulic properties and solute dispersive behavior of porous media, miscible displacement column experiments were conducted using two petroleum products (diesel and engine oil) and a sandy soil. The effective water permeability, effective water-filled porosity, and dispersivity were investigated in two-fluid systems of water and oil as a function of residual oil saturation (ROS). At the end of each experiment, the distribution of ending ROS along the sand column was determined by the method of petroleum ether extraction-ultraviolet spectrophotometry. Darcy's Law was used to determine permeability, while breakthrough curves (BTCs) of a tracer, Cl-, were used to calibrate effective porosity and dispersivity. The experimental results indicate that the maximum saturated zone residual saturation of diesel and engine oil in this study are 16.0% and 45.7%, respectively. Cl- is found to have no sorption on the solid matrix. Generated BTCs are sigmoid in shape with no evidence of tailing. The effective porosity of sand is inversely proportional to ROS. For the same level of ROS, the magnitude of reduction in effective porosity by diesel is close to that by engine oil. The relative permeability of sand to water saturation decreases with increasing amount of trapped oil, and the slope of the relative permeability-saturation curve for water is larger at higher water saturations, indicating that oil first occupies larger pores, which have the most contribution to the conductivity of the water. In addition, the reduction rate of relative permeability by diesel is greater than that by engine oil. The dispersivity increases with increasing ROS, suggesting that the blockage of pore spaces by immobile oil globules may enhance local velocity variations and increase the tortuosity of aqueous-phase flow paths. (C) 2014 Elsevier B.V. All rights reserved. C1 [Zhang, Junjie; Zheng, Xilai; Chen, Lei] Ocean Univ China, Coll Environm Sci & Engn, Qingdao 266100, Shandong, Peoples R China. [Sun, Yunwei] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Zheng, XL (reprint author), Ocean Univ China, Coll Environm Sci & Engn, Qingdao 266100, Shandong, Peoples R China. EM zhxilai@ouc.edu.cn FU National Natural Science Foundation of China [40872150]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors wish to thank David Ortiz-Suslow at the University of Miami and Kayyum Mansoor at Lawrence Livermore National Laboratory for their careful review and helpful comments that led to an improved manuscript. Funding for this research was provided by the National Natural Science Foundation of China under Grant No. 40872150. The calibration work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 62 TC 1 Z9 1 U1 2 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD JUL 16 PY 2014 VL 515 BP 281 EP 291 DI 10.1016/j.jhydrol.2014.04.067 PG 11 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA AK7JZ UT WOS:000338605900025 ER PT J AU Delzanno, GL Tang, XZ AF Delzanno, Gian Luca Tang, Xian-Zhu TI Charging and Heat Collection by a Positively Charged Dust Grain in a Plasma SO PHYSICAL REVIEW LETTERS LA English DT Article ID DYNAMICS; PARTICLES; EMISSION AB Dust particulates immersed in a quasineutral plasma can emit electrons in several important applications. Once electron emission becomes strong enough, the dust enters the positively charged regime where the conventional orbital-motion-limited (OML) theory can break down due to potential-well effects on trapped electrons. A minimal modification of the trapped-passing boundary approximation in the so-called OML+ approach is shown to accurately predict the dust charge and heat collection flux for a wide range of dust size and temperature. C1 [Delzanno, Gian Luca; Tang, Xian-Zhu] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Delzanno, GL (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM delzanno@lanl.gov; xtang@lanl.gov OI Delzanno, Gian Luca/0000-0002-7030-2683 FU Laboratory Directed Research and Development (LDRD) program; U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under the National Nuclear Security Administration of the U.S. Department of Energy by Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was funded by the Laboratory Directed Research and Development (LDRD) program, U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences, under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy by Los Alamos National Laboratory, operated by Los Alamos National Security LLC under contract DE-AC52-06NA25396. NR 33 TC 15 Z9 15 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 15 PY 2014 VL 113 IS 3 AR 035002 DI 10.1103/PhysRevLett.113.035002 PG 5 WC Physics, Multidisciplinary SC Physics GA AO3TZ UT WOS:000341260100005 PM 25083649 ER PT J AU Bera, MK Bray, TH Ellis, RJ Antonio, MR AF Bera, Mrinal K. Bray, Travis H. Ellis, Ross J. Antonio, Mark R. TI Redox Chemistry of Heteropolyacid Microemulsions SO CHEMELECTROCHEM LA English DT Article DE cyclic voltammetry; interfaces; micelles; polyanions; proton transport ID WATER NITROBENZENE INTERFACE; MOLECULAR CLUSTER BATTERIES; ARSENIC AND/OR SILICA; 3RD PHASE-FORMATION; IONIC LIQUIDS; KEGGIN-TYPE; 12-TUNGSTOPHOSPHORIC ACID; POLYOXOMETALATE ANIONS; 3RD-PHASE FORMATION; ELECTRON-TRANSFER AB Insight from electroanalysis studies of dense fluid phases (known as "third" phases) in the Keggin heteropolyacid tri-n-butyl phosphate (TBP) system is provided. The differences between the H3PW12O40 and H4SiW12O40 redox chemistry in the third phases and in bulk aqueous electrolytes reflect the differences in the formal charge of the protonated acid solvates of TBP in the low dielectric organic media and the deprotonated anions in the high dielectric aqueous media. The faradaic W-based redox activity leading to heteropoly blue entities drives concerted proton transfer across the organic-analyte-aqueous-electrolyte phase boundary in both the heteropolyacid microemulsions (formed by solvent extraction) and the molecular liquids (formed by dissolution) to maintain charge neutrality in the organic phases. This study of heteropolyacid third phases complements the emerging field of mesoscale sciences with polyoxometalates and their electrochemical properties. C1 [Bera, Mrinal K.; Bray, Travis H.; Ellis, Ross J.; Antonio, Mark R.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Antonio, MR (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mantonio@anl.gov RI ellis, ross/J-1981-2016; OI ellis, ross/0000-0001-7691-5205; Bera, Mrinal/0000-0003-0698-5253; Antonio, Mark/0000-0002-1208-4534 FU U. S. Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences, Biosciences and Geosciences [DE-AC02-06CH11357] FX We thank S. Skanthakumar and L. Soderholm for the X-ray scattering data as well as Renato Chiarizia and Fanny Jaffrennou for assistance during the initial stages of this work, which is supported by the U. S. Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences, Biosciences and Geosciences, under contract No DE-AC02-06CH11357. NR 103 TC 3 Z9 3 U1 2 U2 51 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 2196-0216 J9 CHEMELECTROCHEM JI ChemElectroChem PD JUL 15 PY 2014 VL 1 IS 7 BP 1173 EP 1181 DI 10.1002/celc.201402037 PG 9 WC Electrochemistry SC Electrochemistry GA AN3XW UT WOS:000340523000010 ER PT J AU Battaglia, C Xu, JS Zheng, M Yin, XT Hettick, M Chen, K Haegel, N Javey, A AF Battaglia, Corsin Xu, Jingsan Zheng, Maxwell Yin, Xingtian Hettick, Mark Chen, Kevin Haegel, Nancy Javey, Ali TI Enhanced Near-Bandgap Response in InP Nanopillar Solar Cells SO ADVANCED ENERGY MATERIALS LA English DT Article ID P-TYPE INP; LOW-COST; EFFICIENCY; PHOTOVOLTAICS; INDIUM; SEMICONDUCTORS; RECOMBINATION; JUNCTIONS; PLASMA; GAAS AB The effect of nanopillar texturing on the performance of InP solar cells is investigated. Maskless, lithography-free reactive ion etching of InP nanopillars improves the open-circuit voltage, reduces reflectance over a broad spectral range, and enhances the near-bandgap response compared to a flat, non-textured cell with comparable reflectance in the infrared. Electron-beam induced current measurements indicate an increased effective minority carrier collection length. The response at short wavelengths decreases due to the formation of a defective surface layer with strong non-radiative recombination. Plasma oxidation and wet etching partially restore the blue response resulting in a power conversion efficiency of 14.4%. C1 [Battaglia, Corsin; Xu, Jingsan; Zheng, Maxwell; Yin, Xingtian; Hettick, Mark; Chen, Kevin; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Battaglia, Corsin; Xu, Jingsan; Zheng, Maxwell; Yin, Xingtian; Hettick, Mark; Chen, Kevin; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Haegel, Nancy] Naval Postgrad Sch, Dept Phys, Monterey, CA 93943 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Javey, Ali/B-4818-2013; Yin, Xingtian/N-1743-2016; Battaglia, Corsin/B-2917-2010; Xu, Jingsan/N-7938-2016 OI Yin, Xingtian/0000-0001-9077-5982; Xu, Jingsan/0000-0003-1172-3864 FU Bay Area Photovoltaics Consortium (BAPVC); Zeno Karl Schindler Foundation FX C.B. and J.X. contributed equally to this work. InP solar cell fabrication and characterization was funded by the Bay Area Photovoltaics Consortium (BAPVC). C. B. acknowledges support from the Zeno Karl Schindler Foundation. NR 25 TC 6 Z9 6 U1 2 U2 36 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD JUL 15 PY 2014 VL 4 IS 10 AR 1400061 DI 10.1002/aenm.201400061 PG 5 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA AM8AK UT WOS:000340091000016 ER PT J AU Huang, Y Liu, XF Wang, C Rogers, JT Su, GM Chabinyc, ML Kramer, EJ Bazan, GC AF Huang, Ye Liu, Xiaofeng Wang, Cheng Rogers, James T. Su, Gregory M. Chabinyc, Michael L. Kramer, Edward J. Bazan, Guillermo C. TI Structural Characterization of a Composition Tolerant Bulk Heterojunction Blend SO ADVANCED ENERGY MATERIALS LA English DT Article ID POLYMER SOLAR-CELLS; X-RAY-SCATTERING; NANOSCALE CHARACTERIZATION; PHOTOVOLTAIC PERFORMANCE; MORPHOLOGY; NANOMORPHOLOGY; EFFICIENCY; TEM AB The ratio of the donor and acceptor components in bulk heterojunction (BHJ) organic solar cells is a key parameter for achieving optimal power conversion efficiency (PCE). However, it has been recently found that a few BHJ blends have compositional tolerance and achieve high performance in a wide range of donor to acceptor ratios. For instance, the X2:PC61BM system, where X2 is a molecular donor of intermediate dimensions, exhibits a PCE of 6.6%. Its PCE is relatively insensitive to the blend ratio over the range from 7:3 to 4:6. The effect of blend ratio of X2/PC61BM on morphology and device performance is therefore systematically investigated by using the structural characterization techniques of energy-filtered transmission energy microscopy (EF-TEM), resonant soft X-ray scattering (R-SoXS) and grazing incidence wide angle X-ray scattering (GIWAXS). Changes in blend ratio do not lead to obvious differences in morphology, as revealed by R-SoXS and EF-TEM. Rather, there is a smooth evolution of a connected structure with decreasing domain spacing from 8:2 to 6:4 blend ratios. Domain spacing remains constant from 6:4 to 4:6 blend ratios, which suggests the presence of continuous phases with proper domain size that may provide access for charge carriers to reach their corresponding electrodes. C1 [Huang, Ye; Liu, Xiaofeng; Rogers, James T.; Bazan, Guillermo C.] Univ Calif Santa Barbara, Dept Mat, Ctr Polymers & Organ Solids, Dept Chem, Santa Barbara, CA 93106 USA. [Huang, Ye; Liu, Xiaofeng; Rogers, James T.; Bazan, Guillermo C.] Univ Calif Santa Barbara, Dept Mat, Ctr Polymers & Organ Solids, Dept Biochem, Santa Barbara, CA 93106 USA. [Wang, Cheng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Su, Gregory M.; Chabinyc, Michael L.; Kramer, Edward J.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RP Kramer, EJ (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. EM edkramer@mrl.ucsb.edu; bazan@chem.ucsb.edu RI Liu, Xiaofeng/B-4271-2011; Bazan, Guillermo/B-7625-2014; Wang, Cheng/A-9815-2014 OI Liu, Xiaofeng/0000-0002-7683-9780; FU Center for Energy Efficient Materials, an Energy Frontier Research Center - Office of Basic Energy Sciences of the US Department of Energy [DE-DC0001009]; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy [DE-AC0205CH11231]; Stanford Synchrotron Radiation Light source (SSRL); U.S. Department of Energy FX This work was supported by the Center for Energy Efficient Materials, an Energy Frontier Research Center funded by the Office of Basic Energy Sciences of the US Department of Energy (DE-DC0001009). Part of the experiments were performed at the National Center for Electron Microscopy and Advanced Light Source, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy under Contract no. DE-AC0205CH11231. The authors acknowledge support of Stanford Synchrotron Radiation Light source (SSRL), which is supported by the U.S. Department of Energy. NR 32 TC 6 Z9 6 U1 2 U2 22 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD JUL 15 PY 2014 VL 4 IS 10 AR 1301886 DI 10.1002/aenm.201301886 PG 8 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA AM8AK UT WOS:000340091000012 ER PT J AU Menendez, D Anderson, CW AF Menendez, Daniel Anderson, Carl W. TI p53 vs. ISG15: Stop, you're killing me SO CELL CYCLE LA English DT Editorial Material C1 [Menendez, Daniel; Anderson, Carl W.] NIEHS, Chromosome Stabil Sect, Lab Mol Genet, Res Triangle Pk, NC 27709 USA. [Anderson, Carl W.] Brookhaven Natl Lab, Biosci Dept, Upton, NY 11973 USA. RP Menendez, D (reprint author), NIEHS, Chromosome Stabil Sect, Lab Mol Genet, POB 12233, Res Triangle Pk, NC 27709 USA. EM cwa@bnl.gov NR 7 TC 2 Z9 2 U1 0 U2 2 PU LANDES BIOSCIENCE PI AUSTIN PA 1806 RIO GRANDE ST, AUSTIN, TX 78702 USA SN 1538-4101 EI 1551-4005 J9 CELL CYCLE JI Cell Cycle PD JUL 15 PY 2014 VL 13 IS 14 BP 2160 EP 2161 DI 10.4161/cc.29466 PG 2 WC Cell Biology SC Cell Biology GA AN0JZ UT WOS:000340272100006 PM 24911913 ER PT J AU Aad, G Abajyan, T Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmad, A Ahmadov, F Aielli, G Aring;kesson, TPA Akimoto, G Akimov, AV Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Ammosov, VV Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Ask, S Aring;sman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, N Auerbach, B Auge, E Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bailey, DC Bain, T Baines, JT Baker, O Baker, S Balek, P Balli, F Banas, E Banerjee, S Banfi, D Bangert, A Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barber, T Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, R Batkova, L Batley, JR Battistin, M Bauer, F Bawa, HS Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belloni, A Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertolucci, F Besana, MI Besjes, GJ Bessidskaia, O Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bolnet, NM Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, G Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, V Bussey, P Buszello, CP Butler, B Butler, J Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, L Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Cantero, J Cantrill, R Cao, T Garrido, MDM Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CA Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, R Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Christidi, IA Chromek-Burckhart, D Chu, ML Chudoba, J Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, A Collins-Tooth, C Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, M Costanzo, D Cote, D Cottin, G Cowan, G Cox, B Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Ortuzar, MC Cristinziani, M Crosetti, G Cuciuc, CM Cuenca Almenar, C Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darlea, GL Darmora, S Dassoulas, JA Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S de Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobos, D Dobson, E Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dos Anjos, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DE Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipi, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, J Fisher, MJ Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gandrajula, RP Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godfrey, J Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Golcalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Goriek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Grybel, K Guan, L Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hageboeck, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Harvey, A Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Heisterkamp, S Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, G Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Hign-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Idarraga, J Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javurek, T Jeanty, L Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Ji, W Jia, J Jiang, Y Belenguer, M Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, A Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Karnevskiy, M Karpov, SN Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Keener, PT Kehoe, R Keil, M Keller, JS Keoshkerian, H Kepka, O Kerevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, V Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Labarga, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Law, AT Laycock, P Le, BT Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leonhardt, K Leontsinis, S Leroy, C Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, S Li, X Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Lorenz, J Martinez, NL Losada, M Loscutoff, P Losty, MJ Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Maek, B Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JA Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matricon, P Matsunaga, H Matsushita, T Mattig, P Mattig, S Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mc Kee, S McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Medinnis, M Meehan, S Meera-Lebbai, R Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Moeller, V Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Herrera, CM Moraes, A Morange, N Morel, J Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newcomer, FM Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, C Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagaova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, E Garcia-Estan, MT Reale, V Perini, L Pernegger, H Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petteni, M Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pizio, C Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V PommSs, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, X Pospelov, GE Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Pueschel, E Puldon, D Purohit, M Puzo, P Pylypchenko, Y Qian, J Qin, G Quadt, A Quarrie, DR Quayle, WB Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reinsch, A Reisin, H Relich, M Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rieck, P Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, E Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Satsounkevitch, I Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaelicke, A Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherwood, P Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidorov, D Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smizanska, M Smolek, K Snesarev, AA Snidero, G Snow, J Snyder, S Sobie, R Socher, F Sodomka, J Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopko, V Sopko, B Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spighi, R Spigo, G Spousta, M Spreitzer, T Spurlock, B St Denis, RD Staerz, S Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steele, G Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoerig, K Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramania, HS Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R Van der Deijl, PC van der Geer, R van der Graaf, H Van Der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vitells, O Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, J Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, W Wagner, P Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigell, P Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zitoun, R Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abajyan, T. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmad, A. Ahmadov, F. Aielli, G. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Alvarez Gonzalez, B. Alviggi, M. G. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Ammosov, V. V. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, S. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Banfi, D. Bangert, A. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. Guimares da Costa, J. Barreiro Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battistin, M. Bauer, F. Bawa, H. S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belloni, A. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertolucci, F. Besana, M. I. Besjes, G. J. Bessidskaia, O. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bolnet, N. M. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, G. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buscher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Christidi, I. A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Compostella, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Ortuzar, M. Crispin Cristinziani, M. Crosetti, G. Cuciuc, C. -M. Cuenca Almenar, C. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. Sargedas De Sousa, M. J. Da Cunha Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darlea, G. L. Darmora, S. Dassoulas, J. A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobos, D. Dobson, E. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duhrssen, M. Dunford, M. Duran Yildiz, H. Dueren, M. Durglishvili, A. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Fernandez Perez, S. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferreira de Lima, D. E. Ferrer, A. Ferrere, D. Ferretti, C. Ferretto Parodi, A. Fiascaris, M. Fiedler, F. Filipi, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, J. Fisher, M. J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Flores Castillo, L. R. Florez Bustos, A. C. Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Fullana Torregrosa, E. Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gandrajula, R. P. Gao, J. Gao, Y. S. Garay Walls, F. M. Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godfrey, J. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Gomez Fajardo, L. S. Golcalo, R. Goncalves Pinto Firmino Da Costa, J. Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Goriek, A. Gornicki, E. Goshaw, A. T. Gossling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstrom, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Groth-Jensen, J. Grout, Z. J. Grybel, K. Guan, L. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Gunther, J. Guo, J. Gupta, S. Gutierrez, P. Gutierrez Ortiz, N. G. Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Harvey, A. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Heisterkamp, S. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Hengler, C. Henrichs, A. Henriques Correia, A. M. Henrot-Versille, S. Hensel, C. Herbert, G. H. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Hign-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javurek, T. Jeanty, L. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Ji, W. Jia, J. Jiang, Y. Jimenez Belenguer, M. Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Karnevskiy, M. Karpov, S. N. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Keller, J. S. Keoshkerian, H. Kepka, O. Kerevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Koneke, K. Koenig, A. C. Konig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Kruger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Labarga, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Law, A. T. Laycock, P. Le, B. T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leonhardt, K. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, S. Li, X. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, J. D. Long, R. E. Lopes, L. Lopez Mateos, D. Lopez Paredes, B. Lorenz, J. Lorenzo Martinez, N. Losada, M. Loscutoff, P. Losty, M. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Maek, B. Machado Miguens, J. Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Manjarres Ramos, J. A. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matricon, P. Matsunaga, H. Matsushita, T. Mattig, P. Mattig, S. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Medinnis, M. Meehan, S. Meera-Lebbai, R. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Mellado Garcia, B. R. Meloni, F. Mendoza Navas, L. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Moya, M. Miano Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Moeller, V. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Mora Herrera, C. Moraes, A. Morange, N. Morel, J. Moreno, D. Moreno Llacer, M. Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Murillo Quijada, J. A. Murray, W. J. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newcomer, F. M. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Nunes Hanninger, G. Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Oropeza Barrera, C. Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagaova, M. Pagan Griso, S. Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panduro Vazquez, J. G. Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Paredes Hernandez, D. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Perez Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perini, L. Pernegger, H. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petteni, M. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pizio, C. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. PommSs, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Portell Bueso, X. Pospelov, G. E. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qin, G. Quadt, A. Quarrie, D. R. Quayle, W. B. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reinsch, A. Reisin, H. Relich, M. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rieck, P. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Romero Adam, E. Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvachua Ferrando, B. M. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Santoyo Castillo, I. Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Satsounkevitch, I. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaelicke, A. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherwood, P. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snow, J. Snyder, S. Sobie, R. Socher, F. Sodomka, J. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopko, V. Sopko, B. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spighi, R. Spigo, G. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Staerz, S. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steele, G. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoerig, K. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramania, H. S. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Teixeira Dias Castanheira, M. Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torr Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Berg, R. Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. Van Der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Vazquez Schroeder, T. Veatch, J. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vitells, O. Vivarelli, I. Vives Vaque, F. Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Vranjes Milosavljevic, M. Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, W. Wagner, P. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigell, P. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zitoun, R. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Electron reconstruction and identification efficiency measurements with the ATLAS detector using the 2011 LHC proton-proton collision data SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID ROOT-S=7 TEV; BOSON AB Many of the interesting physics processes to be measured at the LHC have a signature involving one or more isolated electrons. The electron reconstruction and identification efficiencies of the ATLAS detector at the LHC have been evaluated using proton-proton collision data collected in 2011 at TeV and corresponding to an integrated luminosity of 4.7 fb. Tag-and-probe methods using events with leptonic decays of and bosons and mesons are employed to benchmark these performance parameters. The combination of all measurements results in identification efficiencies determined with an accuracy at the few per mil level for electron transverse energy greater than 30 GeV. C1 [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Chan, K.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Subramania, H. S.; Vives Vaque, F.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Duran Yildiz, H.; Kuday, S.; Sultansoy, S.; Cakir, I. Turk; Yilmaz, M.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Fernando, W.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Salvachua Ferrando, B. M.; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, GR-15773 Athens, Greece. [Abdinov, O.; Ahmadov, F.; Huseynov, N.; Pinamonti, M.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Dimitrievska, A.; Krstic, J.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Agatonovic-Jovin, T.; Bozovic-Jelisavcic, I.; Cirkovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin Dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ovcharova, A.; Pagan Griso, S.; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ovcharova, A.; Pagan Griso, S.; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Ancu, L. S.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Schnellbach, Y. J.; Sciacca, F. G.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Ancu, L. S.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Schnellbach, Y. J.; Sciacca, F. G.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mclaughlan, T.; Mudd, R. D.; Murillo Quijada, J. A.; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Grafstrom, P.; Massa, I.; Mengarelli, A.; Negrini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] INFN Sez Bologna, Bologna, Italy. [Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Massa, I.; Mengarelli, A.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Kruger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, BR-21945 Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Tamsett, M. C.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Romeo, G.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Annovi, A.; Armbruster, A. J.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Banfi, D.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dopke, J.; Dudarev, A.; Duhrssen, M.; Ellis, N.; Elsing, M.; Facini, G.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Fernandez Perez, S.; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Henriques Correia, A. M.; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, J.; PommSs, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Salzburger, A.; Savu, D. O.; Scanlon, T.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.; ATLAS Collaboration] CERN, CH-1211 Geneva 23, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Fiascaris, M.; Gardner, R. W.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Chen, S.; Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing 210008, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China. [Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Paredes Hernandez, D.; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Paredes Hernandez, D.; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Paredes Hernandez, D.; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Photochim Mol & Macromol Lab, CNRS, IN2P3, F-63177 Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Perez Reale, V.; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Gregersen, K.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Joergensen, M. D.; Klinkby, E. B.; Loevschall-Jensen, A. E.; Mehlhase, S.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Grp Coll Cosenza, I-00044 Frascati, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Ferrara, V.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Gomez Fajardo, L. S.; Goncalves Pinto Firmino Da Costa, J.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Jimenez Belenguer, M.; Katzy, J.; Keller, J. S.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Mattig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Ferrara, V.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Gomez Fajardo, L. S.; Goncalves Pinto Firmino Da Costa, J.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Jimenez Belenguer, M.; Katzy, J.; Keller, J. S.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Mattig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Gossling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Rudolph, C.; Schoeffel, L.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dortmund, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Debenedetti, C.; Edwards, N. C.; Garay Walls, F. M.; Glaysher, P. C. F.; Harrington, R. D.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Schaelicke, A.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Barber, T.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Consorti, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagaova, M.; Parzefall, U.; Rave, T. C.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Ungaro, F. C.; Venturi, M.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Winkelmann, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Derue, F.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Mora Herrera, C.; Muenstermann, D.; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Ferretto Parodi, A.; Gagliardi, G.; Gemme, C.; Guido, E.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Ferretto Parodi, A.; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Morettini, P.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; Ferreira de Lima, D. E.; Gemmell, A.; Gul, U.; Gutierrez Ortiz, N. G.; Kar, D.; Knue, A.; Moraes, A.; O'Shea, V.; Oropeza Barrera, C.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Morel, J.; Moreno Llacer, M.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Vazquez Schroeder, T.; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subat & Cosmol, Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Guimares da Costa, J. Barreiro; Belloni, A.; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Lopez Mateos, D.; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Guimares da Costa, J. Barreiro; Belloni, A.; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Lopez Mateos, D.; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Yen, A. L.; della Porta, G. Zevi] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schneider, B.; Schoenrock, B. D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Evans, H.; Gagnon, P.; Lammers, S.; Lorenzo Martinez, N.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Cinca, D.; Gandrajula, R. P.; Limper, M.; Mallik, U.; Mandrysch, R.; Morange, N.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Karpov, S. N.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Inamaru, Y.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Kurumida, R.; Matsushita, T.; Ochi, A.; Shimizu, S.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Lei, X.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Lei, X.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Catmore, J. R.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Grancagnolo, F.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Schnoor, U.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipi, A.; Goriek, A.; Kerevan, B. P.; Kramberger, G.; Maek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipi, A.; Goriek, A.; Kerevan, B. P.; Kramberger, G.; Maek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Carter, A. A.; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Salamanna, G.; Snidero, G.; Teixeira Dias Castanheira, M.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Panduro Vazquez, J. G.; Pastore, Fr.; Rose, M.; Sartisohn, G.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Davison, P.; Dobson, E.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.; Tamsett, M. C.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris 06, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fys Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Arnaez, O.; Blum, W.; Buscher, V.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Fullana Torregrosa, E.; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Ji, W.; Karnevskiy, M.; Kleinknecht, K.; Konig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Robinson, J. E. M.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS IN2P3, Marseille, France. [Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Schram, M.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Diglio, S.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Nunes Hanninger, G.; Nuti, F.; Petersen, B. A.; Rados, P.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Duckeck, G.; Feng, H.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, L.; Long, J. D.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Xu, L.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Alvarez Gonzalez, B.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schorlemmer, A. L. S.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Giugni, D.; Lari, T.; Mandelli, L.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Asbah, N.; Azuelos, G.; Dallaire, F.; Davies, M.; Gauthier, L.; Martin, J. P.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Leroy, C.; Romaniouk, A.; Rud, V. I.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; de Graat, J.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, S.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.; Zibell, A.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Dao, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Koenig, A. C.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vranjes Milosavljevic, M.; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vranjes Milosavljevic, M.; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Hasib, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Auge, E.; Bassalat, A.; Basye, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Matricon, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Auge, E.; Bassalat, A.; Basye, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Matricon, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS IN2P3, Orsay, France. [Agustoni, M.; Endo, M.; Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Degenhardt, J.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Van Berg, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Anjos, N.; Araque, J. P.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Sargedas De Sousa, M. J. Da Cunha; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Golcalo, R.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; Sargedas De Sousa, M. J. Da Cunha; Gomes, A.; Jorge, P. M.; Machado Miguens, J.; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Wemans, A. Do Valle] Univ Nova Lisboa, Dep Fis, Caparica, Portugal. [Wemans, A. Do Valle] Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Apolle, R.; Benslama, K.; Davies, E.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vanadia, M.; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Camillocci, E. Solfaroli; Vanadia, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Marchese, F.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Grabas, H. M. X.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Mijovic, L.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Resende, B.; Royon, C. R.; Schoening, A.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay Commissariat Energie Atom & Energie Al, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France. [Ahmad, A.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Lopez Paredes, B.; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Ibragimov, I.; Ikematsu, K.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Batkova, L.; Blazek, T.; Federic, P.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Chen, X.; Mellado Garcia, B. R.; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Clement, C.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Santo, A.; Grout, Z. J.; Potter, C. J.; Rose, A.; Salvatore, F.; Santoyo Castillo, I.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Florez Bustos, A. C.; Manjarres Ramos, J. A.; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Mendoza Navas, L.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Farrell, S.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Toggerson, B.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] INFN, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Hign-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Miano; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Pastor, E. Torr; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Hign-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Miano; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Pastor, E. Torr; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Hign-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Miano; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Pastor, E. Torr; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Hign-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Miano; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Pastor, E. Torr; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Hign-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Miano; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Pastor, E. Torr; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] CSIC, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Loh, C. W.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Becker, K.; Bressler, S.; Citron, Z. H.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Schaarschmidt, J.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Dos Anjos, A.; Duchovni, E.; Flores Castillo, L. R.; Hard, A. S.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Redelbach, A.; Schreyer, M.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Beermann, T. A.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Mattig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cuenca Almenar, C.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London WC2R 2LS, England. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Gkialas, I.; Papageorgiou, K.; Robertson, S. H.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Barcelona, Spain. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Korol, A. A.; Maximov, D. A.; Rezanova, O. L.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Tartarelli, Giuseppe Francesco/A-5629-2016; Fassi, Farida/F-3571-2016; Grinstein, Sebastian/N-3988-2014; la rotonda, laura/B-4028-2016; Fullana Torregrosa, Esteban/A-7305-2016; Korol, Aleksandr/A-6244-2014; Juste, Aurelio/I-2531-2015; Capua, Marcella/A-8549-2015; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; messina, andrea/C-2753-2013; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Gauzzi, Paolo/D-2615-2009; Fabbri, Laura/H-3442-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Monzani, Simone/D-6328-2017; Aguilar Saavedra, Juan Antonio/F-1256-2016; Vranjes Milosavljevic, Marija/F-9847-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Andreazza, Attilio/E-5642-2011; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; White, Ryan/E-2979-2015; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Mir, Lluisa-Maria/G-7212-2015; Garcia, Jose /H-6339-2015; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Ciubancan, Liviu Mihai/L-2412-2015; Castro, Nuno/D-5260-2011; Staroba, Pavel/G-8850-2014; Lei, Xiaowen/O-4348-2014; Doyle, Anthony/C-5889-2009; Di Domenico, Antonio/G-6301-2011; de Groot, Nicolo/A-2675-2009; Wemans, Andre/A-6738-2012; Nemecek, Stanislav/G-5931-2014; Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; De, Kaushik/N-1953-2013; Mitsou, Vasiliki/D-1967-2009; Smirnova, Oxana/A-4401-2013; Warburton, Andreas/N-8028-2013; Lokajicek, Milos/G-7800-2014; Livan, Michele/D-7531-2012; Moraes, Arthur/F-6478-2010; Ferrando, James/A-9192-2012; Bosman, Martine/J-9917-2014; Brooks, William/C-8636-2013; Villa, Mauro/C-9883-2009; Alexa, Calin/F-6345-2010; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013 OI Pina, Joao /0000-0001-8959-5044; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Weber, Michele/0000-0002-2770-9031; Wang, Kuhan/0000-0002-6151-0034; Grohsjean, Alexander/0000-0003-0748-8494; La Rosa, Alessandro/0000-0001-6291-2142; Beck, Hans Peter/0000-0001-7212-1096; Amorim, Antonio/0000-0003-0638-2321; Coccaro, Andrea/0000-0003-2368-4559; Cristinziani, Markus/0000-0003-3893-9171; Chromek-Burckhart, Doris/0000-0003-4243-3288; Qian, Jianming/0000-0003-4813-8167; Haas, Andrew/0000-0002-4832-0455; Galhardo, Bruno/0000-0003-0641-301X; Della Volpe, Domenico/0000-0001-8530-7447; Klinkby, Esben Bryndt/0000-0002-1908-5644; Vari, Riccardo/0000-0002-2814-1337; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Nisati, Aleandro/0000-0002-5080-2293; Gray, Heather/0000-0002-5293-4716; Mincer, Allen/0000-0002-6307-1418; Fassi, Farida/0000-0002-6423-7213; Grinstein, Sebastian/0000-0002-6460-8694; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Bailey, David C/0000-0002-7970-7839; Fullana Torregrosa, Esteban/0000-0003-3082-621X; Dell'Asta, Lidia/0000-0002-9601-4225; Chen, Hucheng/0000-0002-9936-0115; Sawyer, Lee/0000-0001-8295-0605; Korol, Aleksandr/0000-0001-8448-218X; Giordani, Mario/0000-0002-0792-6039; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; Capua, Marcella/0000-0002-2443-6525; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Gauzzi, Paolo/0000-0003-4841-5822; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Monzani, Simone/0000-0002-0479-2207; Troncon, Clara/0000-0002-7997-8524; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Perrino, Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Andreazza, Attilio/0000-0001-5161-5759; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; White, Ryan/0000-0003-3589-5900; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Castro, Nuno/0000-0001-8491-4376; Lei, Xiaowen/0000-0002-2564-8351; Doyle, Anthony/0000-0001-6322-6195; Di Domenico, Antonio/0000-0001-8078-2759; Wemans, Andre/0000-0002-9669-9500; Ventura, Andrea/0000-0002-3368-3413; De, Kaushik/0000-0002-5647-4489; Mitsou, Vasiliki/0000-0002-1533-8886; Smirnova, Oxana/0000-0003-2517-531X; Smirnov, Sergei/0000-0002-6778-073X; Belanger-Champagne, Camille/0000-0003-2368-2617; Prokofiev, Kirill/0000-0002-2177-6401; Veneziano, Stefano/0000-0002-2598-2659; Lacasta, Carlos/0000-0002-2623-6252; Vazquez Schroeder, Tamara/0000-0002-9780-099X; Chen, Chunhui /0000-0003-1589-9955; Walsh, Brian/0000-0003-1689-2309; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Terzo, Stefano/0000-0003-3388-3906; Warburton, Andreas/0000-0002-2298-7315; Livan, Michele/0000-0002-5877-0062; Moraes, Arthur/0000-0002-5157-5686; Ferrando, James/0000-0002-1007-7816; Bosman, Martine/0000-0002-7290-643X; Brooks, William/0000-0001-6161-3570; Villa, Mauro/0000-0002-9181-8048; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF; European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide. NR 31 TC 1 Z9 1 U1 7 U2 103 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL 15 PY 2014 VL 74 IS 7 AR 2941 DI 10.1140/epjc/s10052-014-2941-0 PG 38 WC Physics, Particles & Fields SC Physics GA AM4ZN UT WOS:000339864800001 ER PT J AU Ryu, SY Payne, SH Schaab, C Xiao, WZ AF Ryu, So Young Payne, Samuel H. Schaab, Christoph Xiao, Wenzhong CA MS SIG 2013 Organizers TI Beyond the proteome: Mass Spectrometry Special Interest Group (MS-SIG) at ISMB/ECCB 2013 SO BIOINFORMATICS LA English DT Editorial Material C1 [Ryu, So Young; Xiao, Wenzhong] Stanford Univ, Stanford Genome Technol Ctr, Palo Alto, CA 94304 USA. [Payne, Samuel H.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Schaab, Christoph] Max Planck Inst Biochem, D-82152 Martinsried, Germany. [Schaab, Christoph] Evotec AG, D-82152 Martinsried, Germany. [Xiao, Wenzhong] Massachusetts Gen Hosp, Boston, MA 02114 USA. [Xiao, Wenzhong] Harvard Univ, Sch Med, Boston, MA 02114 USA. RP Xiao, WZ (reprint author), Stanford Univ, Stanford Genome Technol Ctr, Palo Alto, CA 94304 USA. EM wenzhong.xiao@mgh.harvard.edu OI Payne, Samuel/0000-0002-8351-1994 NR 0 TC 0 Z9 0 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 EI 1460-2059 J9 BIOINFORMATICS JI Bioinformatics PD JUL 15 PY 2014 VL 30 IS 14 BP 2089 EP 2090 DI 10.1093/bioinformatics/btu116 PG 2 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA AM4HK UT WOS:000339814300025 ER PT J AU Kogut, JB Sinclair, DK AF Kogut, J. B. Sinclair, D. K. TI Thermodynamics of lattice QCD with 3 flavors of color-sextet quarks. II. N-t=6 and N-t=8 SO PHYSICAL REVIEW D LA English DT Article ID SYMMETRY-BREAKING; HYPERCOLOR; SCALE; MODEL AB We have been studying QCD with two flavors of color-sextet quarks as a candidate walking-technicolor theory using lattice-QCD simulations. The evolution of the coupling constant with lattice spacing is measured at the finite-temperature chiral transition to determine if this theory is asymptotically free and hence QCD-like. The lattice spacing is varied by changing the number of lattice sites, N-t, in the Euclidean time direction. QCD with three flavors is studied for comparison. Since this theory is expected to be conformal, with an infrared fixed point, the coupling constant at the chiral transition should approach a nonzero value as N-t becomes large. Our earlier simulations on lattices with N-t = 4 and N-t = 6 exhibited a significant decrease in coupling at the chiral transition as N-t was increased. We have now extended these simulations to N-t = 8, and performed additional simulations at N-t = 6 to measure the coupling constant at the chiral transition more precisely. These indicate that while there is an appreciable decrease in coupling between N-t = 6 and N-t = 8, this is much smaller than that between N-t = 4 and N-t = 6. Thus we are hopeful that we are approaching the large-N-t limit. However, further simulations at larger N-t(s) are needed. C1 [Kogut, J. B.] Dept Energy, Div High Energy Phys, Washington, DC 20585 USA. [Kogut, J. B.] Univ Maryland, Dept Phys, TQHN, College Pk, MD 20742 USA. [Sinclair, D. K.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Kogut, JB (reprint author), Dept Energy, Div High Energy Phys, Washington, DC 20585 USA. FU U.S. Department of Energy, Division of High Energy Physics [DE-AC02-06CH11357]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX D. K. S. is supported in part by the U.S. Department of Energy, Division of High Energy Physics, Contract No. DE-AC02-06CH11357.; This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. In particular it used the IBM Dataplex, Carver and the Cray XE6, Hopper. In addition this research used the Cray XT5, Kraken at NICS under XSEDE Project No. TG-MCA99S015. Finally, use was made of the Fusion and Blues clusters belonging to Argonne's LCRC. NR 31 TC 2 Z9 2 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL 15 PY 2014 VL 90 IS 1 AR 014506 DI 10.1103/PhysRevD.90.014506 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AM5SV UT WOS:000339921500007 ER PT J AU Gidofalvi, G Brozell, SR Shepard, R AF Gidofalvi, Gergely Brozell, Scott R. Shepard, Ron TI Wave function analysis with Shavitt graph density in the graphically contracted function method SO THEORETICAL CHEMISTRY ACCOUNTS LA English DT Article DE Multifacet graphically contracted function method; Configuration interaction; Graphical unitary group approach; Shavitt graph; Wave function analysis; Graph density; Node density; Arc density ID UNITARY-GROUP-APPROACH; ELECTRON CORRELATION-PROBLEM; COUPLED-CLUSTER THEORY; CONFIGURATION-INTERACTION BENCHMARKS; CORRELATED MOLECULAR CALCULATIONS; POTENTIAL-ENERGY CURVES; FROZEN NATURAL ORBITALS; GAUSSIAN-BASIS SETS; MULTIREFERENCE METHODS; PROGRESS REPORT AB The goals of electronic structure theory are to make quantitative predictions of molecular properties and to provide qualitative insight into bonding as well as features of potential energy surfaces. Oftentimes, the two goals are at odds as an accurate treatment requires a complicated wave function that obscures chemical insight. The multifacet graphically contracted function (MFGCF) method offers a new approach that allows both goals to be addressed simultaneously. The recursive product structure of the MFGCF wave function reduces the exponential scaling of the exact wave function and allows the computation of molecular properties with polynomial scaling with respect to system size. Additionally, the graph density concept provides an intuitive tool for visualizing and analyzing the qualitative features of the wave function. In this work, the graph densities for model systems are examined to demonstrate their utility in analyzing the changes in wave function character along potential energy surfaces and near avoided crossings. Finally, we demonstrate that the graph density exposes the structure of the exact wave function for a system of noninteracting molecules as a product of the fragment wave functions. C1 [Gidofalvi, Gergely] Gonzaga Univ, Dept Chem & Biochem, Spokane, WA 99258 USA. [Brozell, Scott R.; Shepard, Ron] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Gidofalvi, G (reprint author), Gonzaga Univ, Dept Chem & Biochem, 502 E Boone Ave, Spokane, WA 99258 USA. EM gidofalvi@gonzaga.edu; srb@osc.edu; shepard@tcg.anl.gov FU Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy [DE-AC02-06CH11357]; Research Corporation for Science Advancement; Howard Hughes Medical Institute through the Undergraduate Science Education Program FX This work was supported by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy, under contract DE-AC02-06CH11357. G.G. was supported by an award from the Research Corporation for Science Advancement and a grant to Gonzaga University from the Howard Hughes Medical Institute through the Undergraduate Science Education Program. S.R.B. acknowledges the use of computational facilities at the Ohio Supercomputer Center. NR 65 TC 3 Z9 3 U1 2 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1432-881X EI 1432-2234 J9 THEOR CHEM ACC JI Theor. Chem. Acc. PD JUL 15 PY 2014 VL 133 IS 9 AR 1512 DI 10.1007/s00214-014-1512-7 PG 12 WC Chemistry, Physical SC Chemistry GA AM5NE UT WOS:000339905800001 ER PT J AU Wang, ZM Zachara, JM Shang, JY Jeon, C Liu, J Liu, CX AF Wang, Zheming Zachara, John M. Shang, Jianying Jeon, Choong Liu, Juan Liu, Chongxuan TI Investigation of U(VI) Adsorption in Quartz-Chlorite Mineral Mixtures SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID BINARY OXIDE SUSPENSIONS; HANFORD VADOSE ZONE; URANIUM(VI) ADSORPTION; FLUORESCENCE SPECTROSCOPY; BINDING-SITES; SPECIATION; SURFACE; COMPLEXATION; SORPTION; IRON AB A batch and cryogenic laser-induced time-resolved luminescence spectroscopy investigation of U(VI) adsorbed on quartz-chlorite mixtures with variable mass ratios have been performed under field-relevant uranium concentrations (5 x 10(-7) M and 5 x 10(-6) M) in pH 8.1 synthetic groundwater. The U(VI) adsorption K-d values steadily increased as the mass fraction of chlorite increased, indicating preferential sorption to chlorite. For all mineral mixtures, U(VI) adsorption K-d values were lower than that calculated from the assumption of component additivity possibly caused by surface modifications stemming from chlorite dissolution; The largest deviation occurred when the mass fractions of the two minerals were equal. U(VI) adsorbed on quartz and chlorite displayed characteristic individual luminescence spectra that were not affected by mineral mixing. The spectra of U(VI) adsorbed within the mixtures could be simulated by one surface U(VI) species on quartz and two on chlorite. The luminescence intensity decreased in a nonlinear manner as the adsorbed U(VI) concentration increased with increasing chlorite mass fraction likely due to ill-defined luminescence quenching by both structural Fe/Cr in chlorite, and trace amounts of solubilized and reprecipitated Fe/Cr in the aqueous phase. However, the fractional spectral intensities of U(VI) adsorbed on quartz and chlorite followed the same trend of fractional adsorbed U(VI) concentration in each mineral phase with approximate linear correlations, offering a method to estimate of U(VI) concentration distribution between the mineral components with luminescence spectroscopy. C1 [Wang, Zheming; Zachara, John M.; Shang, Jianying; Jeon, Choong; Liu, Juan; Liu, Chongxuan] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, ZM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM zheming.wang@pnnl.gov RI Shang, jianying/E-3787-2013; Liu, Chongxuan/C-5580-2009; Wang, Zheming/E-8244-2010; Liu, Juan/G-6035-2016 OI Shang, jianying/0000-0002-2498-9699; Wang, Zheming/0000-0002-1986-4357; FU Hanford site SFA Program; U.S. Department of Energy by Battelle [DE-AC06-76RLO 1830] FX We thank Dr. James Amonette for providing the chlorite mineral specimen and Mr. Bruce Arey for SEM and EDS sample analysis. We are also indebted to four anonymous reviewers whose insightful comments greatly helped to improve the quality of the manuscript. This project was supported by the Hanford site SFA Program managed by the U.S. DOE Office of Biological and Environmental Research (OBER). Part of this research was performed at EMSL, a national scientific user facility at PNNL managed by the Department of Energy's Office of Biological and Environmental Research. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC06-76RLO 1830. NR 45 TC 3 Z9 3 U1 10 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 15 PY 2014 VL 48 IS 14 BP 7766 EP 7773 DI 10.1021/es500537g PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AL6FH UT WOS:000339227500013 PM 24979668 ER PT J AU Gowda, H Ivanisevic, J Johnson, CH Kurczy, ME Benton, HP Rinehart, D Nguyen, T Ray, J Kuehl, J Arevalo, B Westenskow, PD Wang, JH Arkin, AP Deutschbauer, AM Patti, GJ Siuzdak, G AF Gowda, Harsha Ivanisevic, Julijana Johnson, Caroline H. Kurczy, Michael E. Benton, H. Paul Rinehart, Duane Thomas Nguyen Ray, Jayashree Kuehl, Jennifer Arevalo, Bernardo Westenskow, Peter D. Wang, Junhua Arkin, Adam P. Deutschbauer, Adam M. Patti, Gary J. Siuzdak, Gary TI Interactive XCMS Online: Simplifying Advanced Metabolomic Data Processing and Subsequent Statistical Analyses SO ANALYTICAL CHEMISTRY LA English DT Article ID GENOME-WIDE ASSOCIATION; MASS-SPECTROMETRY DATA; NEOPLASTIC TRANSFORMATION; METAANALYSIS; EXPRESSION; LOCI; IDENTIFICATION; MECHANISM; METLIN AB XCMS Online (xcmsonline.scripps.edu) is a cloud-based informatic platform designed to process and visualize mass-spectrometry-based, untargeted metabolomic data. Initially, the platform was developed for two-group comparisons to match the independent, "control" versus "disease" experimental design. Here, we introduce an enhanced XCMS Online interface that enables users to perform dependent (paired) two-group comparisons, meta-analysis, and multigroup comparisons, with comprehensive statistical output and interactive visualization tools. Newly incorporated statistical tests cover a wide array of trnivariate analyses. Multigroup comparison allows for the identification of differentially expressed metabolite features across multiple classes of data while higher order meta-analysis facilitates the identification of shared metabolic patterns across multiple two-group comparisons. Given the complexity of these data sets, we have developed an interactive platform where users can monitor the statistical output of univariate (cloud plots) and multivariate (PCA plots) data analysis in real time by adjusting the threshold and range of various parameters. On the interactive cloud plot, metabolite features can be filtered out by their significance level (p-value), fold change, mass-to-charge ratio, retention time, and intensity. The variation pattern of each feature can be visualized on both extracted-ion chromatograms and box plots. The interactive principal component analysis includes scores, loadings, and scree plots that can be adjusted depending on scaling criteria. The utility of XCMS fiinctionalities is demonstrated through the metabolomic analysis of bacterial stress response and the comparison of lymphoblastic leukemia cell lines. C1 [Gowda, Harsha; Ivanisevic, Julijana; Johnson, Caroline H.; Kurczy, Michael E.; Benton, H. Paul; Rinehart, Duane; Thomas Nguyen; Arevalo, Bernardo; Wang, Junhua; Siuzdak, Gary] Scripps Res Inst, Scripps Ctr Metabol & Mass Spectrometry, La Jolla, CA 92037 USA. [Westenskow, Peter D.] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA. [Ray, Jayashree; Kuehl, Jennifer; Arkin, Adam P.; Deutschbauer, Adam M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Patti, Gary J.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [Patti, Gary J.] Washington Univ, Dept Genet, St Louis, MO 63130 USA. [Patti, Gary J.] Washington Univ, Dept Med, St Louis, MO 63130 USA. RP Patti, GJ (reprint author), Washington Univ, Dept Chem, One Brookings Dr, St Louis, MO 63130 USA. EM gjpattij@wustl.edu; siuzdak@scripps.edu RI Arkin, Adam/A-6751-2008; Ray, Jayashree/F-9162-2016; OI Arkin, Adam/0000-0002-4999-2931; Kurczy, Michael/0000-0001-6579-9691; Westenskow, Peter/0000-0001-9841-6220; Ivanisevic, Julijana/0000-0001-8267-2705 FU California Institute of Regenerative Medicine [TR1-01219]; US National Institutes of Health [R01 CA170737, R24 EY017540, P30 MH062261, RC1 HL101034, P01 DA026146, R01 ES022181, L30 AG0038036]; U.S. Department of Energy [FG02-07ER64325, DE-AC0205CH11231] FX This work was supported by the California Institute of Regenerative Medicine no. TR1-01219 (G.S.), the US National Institutes of Health grants R01 CA170737 (G.S.), R24 EY017540 (G.S.), P30 MH062261 (G.S.), RC1 HL101034 (G.S.), P01 DA026146 (G.S.), R01 ES022181 (GJP), and L30 AG0038036 (GJP). Financial support was also received from the U.S. Department of Energy grant nos. FG02-07ER64325 and DE-AC0205CH11231 (G.S.). H. G. is a Wellcome Trust-DBT Early Career Fellow. NR 34 TC 62 Z9 62 U1 19 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD JUL 15 PY 2014 VL 86 IS 14 BP 6931 EP 6939 DI 10.1021/ac500734c PG 9 WC Chemistry, Analytical SC Chemistry GA AL6FG UT WOS:000339227400031 PM 24934772 ER PT J AU Hong, L Sharp, MA Poblete, S Bieh, R Zamponi, M Szekely, N Appavou, MS Winkler, RG Nauss, RE Johs, A Parks, JM Yi, Z Cheng, XL Liang, LY Ohl, M Miller, SM Richter, D Gompper, G Smith, JC AF Hong, Liang Sharp, Melissa A. Poblete, Simon Bieh, Ralf Zamponi, Michaele Szekely, Noemi Appavou, Marie-Sousai Winkler, Roland G. Nauss, Rachel E. Johs, Alexander Parks, Jerry M. Yi, Zheng Cheng, Xiaolin Liang, Liyuan Ohl, Michael Miller, Susan M. Richter, Dieter Gompper, Gerhard Smith, Jeremy C. TI Structure and Dynamics of a Compact State of a Multidomain Protein, the Mercuric Ion Reductase SO BIOPHYSICAL JOURNAL LA English DT Article ID MULTIPARTICLE COLLISION DYNAMICS; SPIN-ECHO SPECTROSCOPY; PHOSPHOGLYCERATE KINASE; DOMAIN; SIMULATION; COMPLEX; RESISTANCE; ORIGIN; LENGTH; NMERA AB The functional efficacy of colocalized, linked protein domains is dependent on linker flexibility and system compaction. However, the detailed characterization of these properties in aqueous solution presents an enduring challenge. Here, we employ a novel, to our knowledge, combination of complementary techniques, including small-angle neutron scattering, neutron spin-echo spectroscopy, and all-atom molecular dynamics and coarse-grained simulation, to identify and characterize in detail the structure and dynamics of a compact form of mercuric ion reductase (MerA), an enzyme central to bacterial mercury resistance. MerA possesses metallochaperone-like N-terminal domains (NmerA) tethered to its catalytic core domain by linkers. The NmerA domains are found to interact principally through electrostatic interactions with the core, leashed by the linkers so as to subdiffuse on the surface over an area close to the core C-terminal Hg(II)-binding cysteines. How this compact, dynamical arrangement may facilitate delivery of Hg(II) from NmerA to the core domain is discussed. C1 [Hong, Liang; Parks, Jerry M.; Yi, Zheng; Cheng, Xiaolin; Smith, Jeremy C.] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN USA. [Hong, Liang; Yi, Zheng; Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN USA. [Sharp, Melissa A.] European Spallat Source ESS AB, Lund, Sweden. [Sharp, Melissa A.] Julich Ctr Neutron Sci, Outstn Spallat Neutron Source SNS, Oak Ridge, TN USA. [Poblete, Simon; Bieh, Ralf; Richter, Dieter; Gompper, Gerhard] Forschungszentrum Julich, Inst Complex Syst, D-52425 Julich, Germany. [Poblete, Simon; Gompper, Gerhard] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany. [Bieh, Ralf; Richter, Dieter] Forschungszentrum Julich, Julich Ctr Neutron Sci, D-52425 Julich, Germany. [Zamponi, Michaele; Szekely, Noemi; Appavou, Marie-Sousai; Ohl, Michael] Forschungszentrum Julich GmbH Outstat MLZ, JCNS, Garching, Germany. [Nauss, Rachel E.; Miller, Susan M.] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA. [Johs, Alexander; Liang, Liyuan] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Hong, Liang] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Hong, Liang] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200030, Peoples R China. RP Ohl, M (reprint author), Forschungszentrum Julich GmbH Outstat MLZ, JCNS, Garching, Germany. EM m.ohl@fz-juelich.de; smiller@cgl.ucsf.edu; d.richter@fz-juelich.de; g.gompper@fz-juelich.de; smithjc@ornl.gov RI hong, liang/D-5647-2012; Gompper, Gerhard/I-4886-2012; Parks, Jerry/B-7488-2009; Liang, Liyuan/O-7213-2014; Poblete, Simon/G-9586-2015; Szekely, Noemi Kinga/B-4315-2010; Winkler, Roland/G-4059-2013; Richter, Dieter/H-3701-2013; smith, jeremy/B-7287-2012 OI Gompper, Gerhard/0000-0002-8904-0986; Parks, Jerry/0000-0002-3103-9333; Liang, Liyuan/0000-0003-1338-0324; Szekely, Noemi Kinga/0000-0001-6125-4758; Winkler, Roland/0000-0002-7513-0796; Richter, Dieter/0000-0003-0719-8470; smith, jeremy/0000-0002-2978-3227 FU National Science Foundation (NSF) [MCB-0842871]; Subsurface Biogeochemical Research Program, Office of Biological and Environmental Research, U.S. Department of Energy (DOE) [ER65062, ER65063]; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX We acknowledge support from National Science Foundation (NSF) grant MCB-0842871 and grants ER65062 and ER65063 from the Subsurface Biogeochemical Research Program, Office of Biological and Environmental Research, U.S. Department of Energy (DOE). This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract No. DE-AC05-00OR22725. NR 30 TC 5 Z9 5 U1 5 U2 44 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD JUL 15 PY 2014 VL 107 IS 2 BP 393 EP 400 DI 10.1016/j.bpj.2014.06.013 PG 8 WC Biophysics SC Biophysics GA AL5BM UT WOS:000339148500015 PM 25028881 ER PT J AU Perevozchikova, T Stanley, CB McWilliams-Koeppen, HP Rowe, EL Berthelier, V AF Perevozchikova, Tatiana Stanley, Christopher B. McWilliams-Koeppen, Helen P. Rowe, Erica L. Berthelier, Valerie TI Investigating the Structural Impact of the Glutamine Repeat in Huntingtin Assembly SO BIOPHYSICAL JOURNAL LA English DT Article ID ANGLE NEUTRON-SCATTERING; MUTANT HUNTINGTIN; FIBRIL FORMATION; IN-VITRO; POLYGLUTAMINE; PROTEIN; AGGREGATION; NUCLEUS; FRAGMENTS; OLIGOMERS AB Acquiring detailed structural information about the various aggregation states of the huntingtin-exonl protein (Htt-exon1) is crucial not only for identifying the true nature of the neurotoxic species responsible. for Huntington's disease (HD) but also for designing effective therapeutics. Using time-resolved small-angle neutron scattering (TR-SANS), we followed the conformational changes that occurred during fibrillization of the pathologic form of Htt-exon1 (NtQ(42)P(10)) and compared the results with those obtained for the wild-type (NtQ(22)P(10)). Our results show that the aggregation pathway of NtQ(22)P(10) is very different from that of NtQ(42)P(10), as the initial steps require a monomer to 7-mer transition stage. In contrast, the earliest species identified for NtQ(42)P(10) are monomer and dinner. The divergent pathways ultimately result in NtQ(22)P(10) fibrils that possess a packing arrangement consistent with the common amyloid sterical zipper model, whereas NtQ(42)P(10) fibrils present a better fit to the Perutz beta-helix structural model. The structural details obtained by TR-SANS should help to delineate the key mechanisms that underpin Htt-exon1 aggregation leading to HD. C1 [Perevozchikova, Tatiana; McWilliams-Koeppen, Helen P.; Rowe, Erica L.; Berthelier, Valerie] Univ Tennessee, Hlth Sci Ctr, Grad Sch Med, Dept Med, Knoxville, TN USA. [Stanley, Christopher B.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Biol & Biomed Sci Grp, Oak Ridge, TN 37830 USA. RP Berthelier, V (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, Biol & Biomed Sci Grp, Oak Ridge, TN 37830 USA. EM stanleycb@ornl.gov; vberthel@utmck.edu OI Stanley, Christopher/0000-0002-4226-7710 FU Office of Biological and Environmental Research; U.S. Department of Energy; UT-Battelle, LLC [DE-AC05-00OR22725]; Physicians' Medical Education and Research Foundation; NIH [1R21NS056325-01A1] FX The experiments conducted at Oak Ridge National Laboratory's Center for Structural Molecular Biology were supported by the Office of Biological and Environmental Research using facilities supported by the U.S. Department of Energy, managed by UT-Battelle, LLC under contract No. DE-AC05-00OR22725. This work was also supported in part by The Physicians' Medical Education and Research Foundation (T.P.) and by NIH grant 1R21NS056325-01A1 (V.B.). NR 46 TC 5 Z9 5 U1 1 U2 33 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD JUL 15 PY 2014 VL 107 IS 2 BP 411 EP 421 DI 10.1016/j.bpj.2014.06.002 PG 11 WC Biophysics SC Biophysics GA AL5BM UT WOS:000339148500017 PM 25028883 ER PT J AU Kim, D Xavier, P Maloney, E Wheeler, M Waliser, D Sperber, K Hendon, H Zhang, CD Neale, R Hwang, YT Liu, HB AF Kim, Daehyun Xavier, Prince Maloney, Eric Wheeler, Matthew Waliser, Duane Sperber, Kenneth Hendon, Harry Zhang, Chidong Neale, Richard Hwang, Yen-Ting Liu, Haibo TI Process-Oriented MJO Simulation Diagnostic: Moisture Sensitivity of Simulated Convection SO JOURNAL OF CLIMATE LA English DT Article ID MADDEN-JULIAN OSCILLATION; TROPICAL INTRASEASONAL VARIABILITY; GENERAL-CIRCULATION MODELS; COUPLED EQUATORIAL WAVES; LARGE-SCALE MODELS; CUMULUS PARAMETERIZATION; CLIMATE MODELS; AGCM SIMULATIONS; ARAKAWA-SCHUBERT; CLOUD ENSEMBLE AB Process-oriented diagnostics for Madden-Julian oscillation (MJO) simulations are being developed to facilitate improvements in the representation of the MJO in weather and climate models. These process-oriented diagnostics are intended to provide insights into how parameterizations of physical processes in climate models should be improved for a better MJO simulation. This paper proposes one such process-oriented diagnostic, which is designed to represent sensitivity of simulated convection to environmental moisture: composites of a relative humidity (RH) profile based on precipitation percentiles. The ability of the RH composite diagnostic to represent the diversity of MJO simulation skill is demonstrated using a group of climate model simulations participating in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). A set of scalar process metrics that captures the key physical attributes of the RH diagnostic is derived and their statistical relationship with indices that quantify the fidelity of the MJO simulation is tested. It is found that a process metric that represents the amount of lower-tropospheric humidity increase required for a transition from weak to strong rain regimes has a robust statistical relationship with MJO simulation skill. The results herein suggest that moisture sensitivity of convection is closely related to a GCM's ability to simulate the MJO. C1 [Kim, Daehyun; Liu, Haibo] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Xavier, Prince] Met Off Hadley Ctr, Exeter, Devon, England. [Maloney, Eric] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Wheeler, Matthew; Hendon, Harry] Ctr Australian Weather & Climate Res, Melbourne, Vic, Australia. [Waliser, Duane] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Sperber, Kenneth] Lawrence Livermore Natl Lab, PCMDI, Livermore, CA USA. [Zhang, Chidong] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. [Neale, Richard] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Hwang, Yen-Ting] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. RP Kim, D (reprint author), Columbia Univ, Lamont Doherty Earth Observ, 61 Route 9W, Palisades, NY 10964 USA. EM dkim@ldeo.columbia.edu RI Hwang, Yen-Ting/P-8469-2014; Maloney, Eric/A-9327-2008; Sperber, Kenneth/H-2333-2012 OI Hwang, Yen-Ting/0000-0002-4084-1408; Maloney, Eric/0000-0002-2660-2611; FU NASA [NNX13AM18G, NNX13AQ50G]; Korea Meteorological Administration Research and Development Program [CATER 2013-3142]; Climate and Large-Scale Dynamics Program of the National Science Foundation [ATM-0832868, AGS-1025584]; Science and Technology Center for Multi-Scale Modeling of Atmospheric Processes [ATM-0425247]; National Oceanic and Atmospheric Administration [NA08OAR4320893, NA12OAR4310077]; U.S. Department of Commerce FX We thank anonymous reviewers for their constructive comments. DK is supported by NASA Grant NNX13AM18G and the Korea Meteorological Administration Research and Development Program under Grant CATER 2013-3142. EDM is supported by Climate and Large-Scale Dynamics Program of the National Science Foundation under Grants ATM-0832868 and AGS-1025584 and the Science and Technology Center for Multi-Scale Modeling of Atmospheric Processes, managed by Colorado State University, under Cooperative Agreement ATM-0425247. EDM is also supported by Award NA08OAR4320893 and NA12OAR4310077 from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce, and NASA Grant NNX13AQ50G. The ERA-Interim data used in this study have been provided by the ECMWF data server. NR 76 TC 21 Z9 21 U1 0 U2 13 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUL 15 PY 2014 VL 27 IS 14 BP 5379 EP 5395 DI 10.1175/JCLI-D-13-00497.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AL4WJ UT WOS:000339135200010 ER PT J AU Zarzycki, CM Levy, MN Jablonowski, C Overfelt, JR Taylor, MA Ullrich, PA AF Zarzycki, Colin M. Levy, Michael N. Jablonowski, Christiane Overfelt, James R. Taylor, Mark A. Ullrich, Paul A. TI Aquaplanet Experiments Using CAM's Variable-Resolution Dynamical Core SO JOURNAL OF CLIMATE LA English DT Article ID COMMUNITY ATMOSPHERE MODEL; SHALLOW-WATER EQUATIONS; AQUA-PLANET SIMULATIONS; CLIMATE SIMULATIONS; SPHERICAL GEOMETRY; EQUATORIAL WAVES; STANDARD TEST; PARAMETERIZATION; CONVECTION; APPROXIMATIONS AB A variable-resolution option has been added within the spectral element (SE) dynamical core of the U.S. Department of Energy (DOE)-NCAR Community Atmosphere Model (CAM). CAM-SE allows for static refinement via conforming quadrilateral meshes on the cubed sphere. This paper investigates the effect of mesh refinement in a climate model by running variable-resolution (var-res) simulations on an aquaplanet. The variable-resolution grid is a 2 degrees (similar to 222 km) grid with a refined patch of 0.25 degrees (similar to 28 km) resolution centered at the equator. Climatology statistics from these simulations are compared to globally uniform runs of 2 degrees and 0.25 degrees. A significant resolution dependence exists when using the CAM version 4 (CAM4) subgrid physical parameterization package across scales. Global cloud fraction decreases and equatorial precipitation increases with finer horizontal resolution, resulting in drastically different climates between the uniform grid runs and a physics-induced grid imprinting in the var-res simulation. Using CAM version 5 (CAMS) physics significantly improves cloud scaling at different grid resolutions. Additional precipitation at the equator in the high-resolution mesh results in collocated zonally anomalous divergence in both var-res simulations, although this feature is much weaker in CAMS than CAM4. The equilibrium solution at each grid spacing within the var-res simulations captures the majority of the resolution signal of the corresponding globally uniform grids. The var-res simulation exhibits good performance with respect to wave propagation, including equatorial regions where waves pass through grid transitions. In addition, the increased frequency of high-precipitation events in the refined 0.25 degrees area within the var-res simulations matches that observed in the global 0.25 degrees simulations. C1 [Zarzycki, Colin M.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Levy, Michael N.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Jablonowski, Christiane] Univ Michigan, Ann Arbor, MI 48109 USA. [Overfelt, James R.; Taylor, Mark A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Ullrich, Paul A.] Univ Calif Davis, Davis, CA 95616 USA. RP Zarzycki, CM (reprint author), Univ Michigan, Dept Atmospher Ocean & Space Sci, 2455 Hayward St, Ann Arbor, MI 48109 USA. EM zarzycki@umich.edu RI Jablonowski, Christiane/I-9068-2012; Zarzycki, Colin/E-5691-2014; Ullrich, Paul/E-9350-2015 OI Jablonowski, Christiane/0000-0003-0407-0092; Ullrich, Paul/0000-0003-4118-4590 FU Office of Science, U.S. Department of Energy (DOE) [DE0003990, DE-SC0006684]; DOE Office of Biological and Environmental Research [12-015334, 11-014996]; DOE's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Travis O'Brien and Brian Medeiros for fruitful discussions regarding the model setup for aquaplanet simulations. We also acknowledge two anonymous reviewers for helpful comments in improving this manuscript. C.M.Z. and C.J. were supported by the Office of Science, U.S. Department of Energy (DOE), Awards DE0003990 and DE-SC0006684. In addition, M.N.L., J.R.O., and M.A.T. were supported by the DOE Office of Biological and Environmental Research, work package 12-015334 and 11-014996. Parts of the research and computations were done at Sandia National Laboratories, a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Additional computations were completed using the National Center for Atmospheric Research (NCAR) Computational and Information Systems Laboratory (CISL) computing resources as well as those at the University of California, Davis. NR 53 TC 19 Z9 19 U1 0 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUL 15 PY 2014 VL 27 IS 14 BP 5481 EP 5503 DI 10.1175/JCLI-D-14-00004.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AL4WJ UT WOS:000339135200017 ER PT J AU Koster, RD Walker, GK Collatz, GJ Thornton, PE AF Koster, R. D. Walker, G. K. Collatz, G. J. Thornton, P. E. TI Hydroclimatic Controls on the Means and Variability of Vegetation Phenology and Carbon Uptake SO JOURNAL OF CLIMATE LA English DT Article ID GENERAL-CIRCULATION MODEL; LAND-SURFACE; NORMALIZED DIFFERENCE; NDVI DATA; CLIMATE; ATMOSPHERE; WATER; BIOSPHERE; DATASET; SYSTEM AB Long-term, global offline (land only) simulations with a dynamic vegetation phenology model are used to examine the control of hydroclimate over vegetation-related quantities. First, with a control simulation, the model is shown to capture successfully (though with some bias) key observed relationships between hydroclimate and the spatial and temporal variations of phenological expression. In subsequent simulations, the model shows that (i) the global spatial variation of seasonal phenological maxima is controlled mostly by hydroclimate, irrespective of distributions in vegetation type; (ii) the occurrence of high interannual moisture-related phenological variability in grassland areas is determined by hydroclimate rather than by the specific properties of grassland; and (iii) hydroclimatic means and variability have a corresponding impact on the spatial and temporal distributions of gross primary productivity (GPP). C1 [Koster, R. D.; Walker, G. K.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Walker, G. K.] Sci Syst & Applicat Inc, Lanham, MD USA. [Collatz, G. J.] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. [Thornton, P. E.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Thornton, P. E.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. RP Koster, RD (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Code 610-1, Greenbelt, MD 20771 USA. EM randal.d.koster@nasa.gov RI Koster, Randal/F-5881-2012; collatz, george/D-5381-2012; Thornton, Peter/B-9145-2012 OI Koster, Randal/0000-0001-6418-6383; Thornton, Peter/0000-0002-4759-5158 FU NASA Modeling, Analysis, and Prediction Program FX This research was supported by the NASA Modeling, Analysis, and Prediction Program. NR 46 TC 4 Z9 4 U1 0 U2 23 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUL 15 PY 2014 VL 27 IS 14 BP 5632 EP 5652 DI 10.1175/JCLI-D-13-00477.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AL4WJ UT WOS:000339135200026 ER PT J AU Yefet, S Soutskin, E Tamam, L Sapir, Z Cohen, A Deutsch, M Ocko, BM AF Yefet, Shai Soutskin, Eli Tamam, Lilach Sapir, Zvi Cohen, Asaf Deutsch, Moshe Ocko, Benjamin M. TI Surfactant-induced Phases in Water-Supported Alkane Monolayers: I. Thermodynamics SO LANGMUIR LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; CATIONIC SURFACTANTS; TENSION MEASUREMENTS; NEUTRON REFLECTION; MIXED MONOLAYERS; CHAIN MOLECULES; N-ALKANES; INTERFACE; BROMIDE; TRANSITIONS AB Alkanes longer than n = 6 carbons do not spread on the water surface, but condense in a macroscopic lens. However, adding trimethylammonium-based surfactants, C,TAB, in submillimolar concentrations causes the alkanes to spread and form a single Langmuir-Gibbs (LG) monolayer of mixed alkanes and surfactant tails, which coexists with the alkane lenses. Upon cooling, this LG film surface-freezes at a temperature T-s above the bulk freezing temperature T-b. The thermodynamics of surface freezing (SF) of these LG films is studied by surface tension measurements for a range of alkanes (n = 12-21) and surfactant alkyl lengths (m = 14, 16, 18), at several concentrations c. The surface freezing range T-s-T-b observed is up to 25 degrees C, an order of magnitude larger than the temperature range of SF monolayers on the surface of pure alkane melts. The measured (n,T) surface phase diagram is accounted for well by a model based on mixtures' theory, which includes an interchange energy term omega. omega is found to be negative, implying attraction between unlike species, rather than the repulsion found for SF of binary alkane mixtures. Thus, the surfactant/alkane mixing is a necessary condition for the occurrence of SF in these LG films. The X-ray derived structure of the films is presented in an accompanying paper. C1 [Yefet, Shai; Soutskin, Eli; Tamam, Lilach; Sapir, Zvi; Cohen, Asaf; Deutsch, Moshe] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. [Yefet, Shai; Soutskin, Eli; Tamam, Lilach; Sapir, Zvi; Cohen, Asaf; Deutsch, Moshe] Bar Ilan Univ, Inst Nanotechnol, IL-52900 Ramat Gan, Israel. [Ocko, Benjamin M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Deutsch, M (reprint author), Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. EM deutsch@mail.biu.ac.il; ocko@bnl.gov FU U.S.-Israel Binational Science Foundation, Jerusalem; U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE- AC02-98CH10886] FX Support by the U.S.-Israel Binational Science Foundation, Jerusalem is gratefully acknowledged (M.D.). This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE- AC02-98CH10886 (B.M.O.). NR 52 TC 2 Z9 2 U1 2 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUL 15 PY 2014 VL 30 IS 27 BP 8000 EP 8009 DI 10.1021/la501567s PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AL6FW UT WOS:000339229000010 PM 24918482 ER PT J AU Yefet, S Sloutskin, E Tamam, L Sapir, Z Deutsch, M Ocko, BM AF Yefet, Shai Sloutskin, Eli Tamam, Lilach Sapir, Zvi Deutsch, Moshe Ocko, Benjamin M. TI Surfactant-Induced Phases in Water-Supported Alkane Monolayers: II. Structure SO LANGMUIR LA English DT Article ID DODECANE LAYERS SPREAD; X-RAY; NEUTRON REFLECTION; LANGMUIR FILMS; AIR/WATER INTERFACE; AQUEOUS-SOLUTIONS; CHAIN-LENGTH; BROMIDES; MERCURY; CRYSTALLIZATION AB The structure of the Langmuir-Gibbs films of normal alkanes C-n of length n = 12-21 formed at the surface of aqueous solutions of CTAB surfactants, m = 14, 16, and 18, was studied by surface-specific synchrotron X-ray methods. At high temperatures, a laterally disordered monolayer of mixed alkane molecules and surface-adsorbed surfactant tails is found, having thicknesses well below those of the alkanes' and surfactant tails' extended length. The mixed monolayer undergoes a freezing transition at a temperature T-s(n,m), which forms, for n <= m + 1, a crystalline monolayer of mixed alkane molecules and surfactant tails. For n >= m + 2, a bilayer forms, consisting of an upper pure-alkane, crystalline monolayer and a lower liquidlike monolayer. The crystalline monolayer in both cases consists of hexagonally packed extended, surface-normal-aligned chains. The hexagonal lattice constant is found to decrease with increasing n. The films' structure is discussed in conjunction with their thermodynamic properties presented in an accompanying paper. C1 [Yefet, Shai; Sloutskin, Eli; Tamam, Lilach; Sapir, Zvi; Deutsch, Moshe] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. [Yefet, Shai; Sloutskin, Eli; Tamam, Lilach; Sapir, Zvi; Deutsch, Moshe] Bar Ilan Univ, Inst Nanotechnol, IL-52900 Ramat Gan, Israel. [Ocko, Benjamin M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Deutsch, M (reprint author), Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. EM deutsch@mail.biu.ac.il; ocko@bnl.gov FU U.S.-Israel Binational Science Foundation, Jerusalem (MD); U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-98CH10886] FX Support by the U.S.-Israel Binational Science Foundation, Jerusalem (MD) and beamtime at X22B, NSLS, Brookhaven National Laboratory, are gratefully acknowledged. This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-98CH10886 (BMO). NR 47 TC 2 Z9 2 U1 3 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUL 15 PY 2014 VL 30 IS 27 BP 8010 EP 8019 DI 10.1021/la501589t PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AL6FW UT WOS:000339229000011 PM 24918630 ER PT J AU Zeidler, A Salmon, PS Skinner, LB AF Zeidler, Anita Salmon, Philip Stephen Skinner, Lawrie Basil TI Packing and the structural transformations in liquid and amorphous oxides from ambient to extreme conditions SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE network structures; oxygen packing; oxide ion radius; high pressure; high temperature ID EFFECTIVE IONIC-RADII; HIGH-PRESSURE; SILICATE MELTS; RANGE ORDER; GLASSES; COORDINATION; CHEMISTRY; SPHERES; SUPERCONDUCTORS AB Liquid and glassy oxide materials play a vital role in multiple scientific and technological disciplines, but little is known about the part played by oxygen-oxygen interactions in the structural transformations that change their physical properties. Here we show that the coordination number of network-forming structural motifs, which play a key role in defining the topological ordering, can be rationalized in terms of the oxygen-packing fraction over an extensive pressure and temperature range. The result is a structural map for predicting the likely regimes of topological change for a range of oxide materials. This information can be used to forecast when changes may occur to the transport properties and compressibility of, e. g., fluids in planetary interiors, and is a prerequisite for the preparation of new materials following the principles of rational design. C1 [Zeidler, Anita; Salmon, Philip Stephen] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England. [Skinner, Lawrie Basil] SUNY Stony Brook, Mineral Phys Inst, Stony Brook, NY 11794 USA. [Skinner, Lawrie Basil] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Skinner, Lawrie Basil] Mat Dev Inc, Arlington Hts, IL 60004 USA. RP Zeidler, A (reprint author), Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England. EM a.zeidler@bath.ac.uk; p.s.salmon@bath.ac.uk RI Skinner, Lawrie/I-2603-2012; Salmon, Philip/Q-9512-2016; OI Skinner, Lawrie/0000-0001-7317-1642; Salmon, Philip/0000-0001-8671-1011; Zeidler, Anita/0000-0001-6501-8525 FU Engineering and Physical Sciences Research Council, United Kingdom [EP/J009741/1]; US Department of Energy [BES DE-FG02-09ER46650] FX We thank Mark Wilson for helpful discussions on oxide ions and Paddy Royall for comments on the manuscript. A.Z. and P. S. S. were supported by the Engineering and Physical Sciences Research Council, United Kingdom (Grant EP/J009741/1). Manuscript preparation was supported by US Department of Energy Award BES DE-FG02-09ER46650 (to L.B.S.). NR 41 TC 12 Z9 12 U1 0 U2 34 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 15 PY 2014 VL 111 IS 28 BP 10045 EP 10048 DI 10.1073/pnas.1405660111 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AL2WG UT WOS:000338985700020 PM 24982151 ER PT J AU Savoie, BM Kohlstedt, KL Jackson, NE Chen, LX de la Cruz, MO Schatz, GC Marks, TJ Ratner, MA AF Savoie, Brett M. Kohlstedt, Kevin L. Jackson, Nicholas E. Chen, Lin X. de la Cruz, Monica Olvera Schatz, George C. Marks, Tobin J. Ratner, Mark A. TI Mesoscale molecular network formation in amorphous organic materials SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE soft materials; disordered properties; charge generation ID FIELD-EFFECT TRANSISTORS; POLYMER SOLAR-CELLS; ELECTRON-TRANSFER; THIN-FILMS; CHARGE; MOBILITY; SEMICONDUCTORS; DERIVATIVES; FULLERENES; TRANSPORT AB High-performance solution-processed organic semiconductors maintain macroscopic functionality even in the presence of microscopic disorder. Here we show that the functional robustness of certain organic materials arises from the ability of molecules to create connected mesoscopic electrical networks, even in the absence of periodic order. The hierarchical network structures of two families of important organic photovoltaic acceptors, functionalized fullerenes and perylene diimides, are analyzed using a newly developed graph methodology. The results establish a connection between network robustness and molecular topology, and also demonstrate that solubilizing moieties play a large role in disrupting the molecular networks responsible for charge transport. A clear link is established between the success of mono and bis functionalized fullerene acceptors in organic photovoltaics and their ability to construct mesoscopically connected electrical networks over length scales of 10 nm. C1 [Savoie, Brett M.; Kohlstedt, Kevin L.; Jackson, Nicholas E.; Chen, Lin X.; de la Cruz, Monica Olvera; Schatz, George C.; Marks, Tobin J.; Ratner, Mark A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. RP Savoie, BM (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM brettsavoie@u.northwestern.edu; t-marks@northwestern.edu; ratner@northwestern.edu FU Argonne-Northwestern Solar Energy Research Center, an Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001059]; Air Force Office of Scientific Research Multidisciplinary University Research Initiative [FA9550-11-1-0275]; National Science Foundation (NSF) [NSF DGE-0824162]; Israel-US Binational Science Foundation [2011509]; Northwestern Materials Research Science and Engineering Center [NSF DMR-1121262] FX This work was supported as part of the Argonne-Northwestern Solar Energy Research Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC0001059. K. L. K. and M.O.d.l.C. thank the Air Force Office of Scientific Research Multidisciplinary University Research Initiative Grant FA9550-11-1-0275 for their support. N.E.J. thanks the National Science Foundation (NSF) for the award of a graduate research fellowship (NSF DGE-0824162). M. A. R. acknowledges the Israel-US Binational Science Foundation Grant 2011509 for its support. B. M. S. thanks the Northwestern Materials Research Science and Engineering Center (NSF DMR-1121262) for a graduate research fellowship. NR 49 TC 13 Z9 13 U1 5 U2 61 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 15 PY 2014 VL 111 IS 28 BP 10055 EP 10060 DI 10.1073/pnas.1409514111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AL2WG UT WOS:000338985700022 PM 24982179 ER PT J AU Oliver, TAA Lewis, NHC Fleming, GR AF Oliver, Thomas A. A. Lewis, Nicholas H. C. Fleming, Graham R. TI Correlating the motion of electrons and nuclei with two-dimensional electronic-vibrational spectroscopy SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE photon echo; ultrafast dynamics; electronic-vibrational coupling ID INTRAMOLECULAR CHARGE-TRANSFER; FOURIER-TRANSFORM; 2D-IR SPECTROSCOPY; PULSE-SHAPER; DYE DCM; DYNAMICS; SYSTEMS; PHOTOISOMERIZATION; ISOMERIZATION; RELAXATION AB Multidimensional nonlinear spectroscopy, in the electronic and vibrational regimes, has reached maturity. To date, no experimental technique has combined the advantages of 2D electronic spectroscopy and 2D infrared spectroscopy, monitoring the evolution of the electronic and nuclear degrees of freedom simultaneously. The interplay and coupling between the electronic state and vibrational manifold is fundamental to understanding ensuing nonradiative pathways, especially those that involve conical intersections. We have developed a new experimental technique that is capable of correlating the electronic and vibrational degrees of freedom: 2D electronic-vibrational spectroscopy (2D-EV). We apply this new technique to the study of the 4-(di-cyanomethylene)-2-methyl-6-p-(dimethylamino) styryl-4H-pyran (DCM) laser dye in deuterated dimethyl sulfoxide and its excited state relaxation pathways. From 2D-EV spectra, we elucidate a ballistic mechanism on the excited state potential energy surface whereby molecules are almost instantaneously projected uphill in energy toward a transition state between locally excited and charge-transfer states, as evidenced by a rapid blue shift on the electronic axis of our 2D-EV spectra. The change in minimum energy structure in this excited state nonradiative crossing is evident as the central frequency of a specific vibrational mode changes on a many-picoseconds time-scale. The underlying electronic dynamics, which occur on the hundreds of femtoseconds timescale, drive the far slower ensuing nuclear motions on the excited state potential surface, and serve as a excellent illustration for the unprecedented detail that 2D-EV will afford to photochemical reaction dynamics. C1 [Oliver, Thomas A. A.; Lewis, Nicholas H. C.; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Oliver, Thomas A. A.; Lewis, Nicholas H. C.; Fleming, Graham R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM grfleming@lbl.gov FU National Science Foundation (NSF) [CHE-1012168]; Office of Science, Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05CH11231]; Division of Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences [DE-AC03-76F000098]; NSF [CHE-0840505] FX We thank Vanessa Huxter, Akihito Ishizaki, and Hui Dong for useful discussions. This work was supported by the National Science Foundation (NSF) under Contract CHE-1012168, the Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy under Contract DE-AC02-05CH11231, and the Division of Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences through Grant DE-AC03-76F000098 (at Lawrence Berkeley National Laboratory and University of California, Berkeley). We are also grateful to the College of Chemistry Molecular Graphics facility, which we used to perform our DFT calculations; this facility is funded by NSF under Contract CHE-0840505. NR 41 TC 39 Z9 39 U1 7 U2 68 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 15 PY 2014 VL 111 IS 28 BP 10061 EP 10066 DI 10.1073/pnas.1409207111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AL2WG UT WOS:000338985700023 PM 24927586 ER PT J AU Sigdel, T Salomonis, N Nicora, C Ryu, S He, J DInh, V Orton, D Moore, R Hsieh, S Dai, H Thien-Vu, M Xiao, W Smith, R Qian, W Camp, D Sarwal, M AF Sigdel, T. Salomonis, N. Nicora, C. Ryu, S. He, J. DInh, V. Orton, D. Moore, R. Hsieh, S. Dai, H. Thien-Vu, M. Xiao, W. Smith, R. Qian, W. Camp, D. Sarwal, M. TI Possible Mechanisms and Potential Urine Protein Biomarkers through Quantitative Proteomics and Bioinformatics. SO TRANSPLANTATION LA English DT Meeting Abstract CT World Transplant Congress CY JUL 26-31, 2014 CL San Francisco, CA SP Amer Soc Transplant Surg, Transplantat Soc, Amer Soc Transplantat C1 [Sigdel, T.; Hsieh, S.; Dai, H.; Thien-Vu, M.; Sarwal, M.] Calif Pacific Med Ctr, San Francisco, CA USA. [Salomonis, N.] Cincinnati Childrens Hosp Med Ctr, Cincinnati, OH 45229 USA. [Nicora, C.; He, J.; Orton, D.; Moore, R.; Smith, R.; Qian, W.; Camp, D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ryu, S.; DInh, V.; Xiao, W.] Stanford Univ, Stanford, CA 94305 USA. NR 0 TC 0 Z9 0 U1 2 U2 3 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0041-1337 EI 1534-6080 J9 TRANSPLANTATION JI Transplantation PD JUL 15 PY 2014 VL 98 SU 1 MA A501 BP 885 EP 886 PG 2 WC Immunology; Surgery; Transplantation SC Immunology; Surgery; Transplantation GA AL4LN UT WOS:000339104605457 ER PT J AU Cao, GH Peng, YF Liu, N Li, X Lei, ZS Ren, ZM Gerthsen, D Russell, AM AF Cao, G. H. Peng, Y. F. Liu, N. Li, X. Lei, Z. S. Ren, Z. M. Gerthsen, D. Russell, A. M. TI Formation of a bimodal structure in ultrafine Ti-Fe-Nb alloys with high-strength and enhanced ductility SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Titanium alloys; Nanostructured materials; Eutectics; Mechanical characterization; Plasticity; Electron microscopy ID NANOSTRUCTURE-DENDRITE COMPOSITE; MECHANICAL-PROPERTIES; LARGE PLASTICITY; BULK ALLOYS; SN; MICROSTRUCTURE; METALS; PHASE AB Bulk (Ti(70.5)Fe29.5)(100-x)Nb-x (x=0, 3, 5 and 7 at%) alloys were prepared by cold crucible levitation melting, and their mechanical properties were tested in compression at room temperature. A (Ti70.5Fe29.5)(97)Nb-3 alloy specimen in compression exhibited an ultimate compressive strength of 2.53 GPa and a compressive plastic strain of 15%. Electron microscope observations indicated that lamellar structures present in the eutectic Ti70.5Fe29.5 alloy could be modified by the addition of Nb to obtain a bimodal structure. The improvement of the mechanical properties is attributed to two factors: (1) the bimodal phase size distribution with micrometer-sized primary beta-Ti dendrites embedded inside a matrix of refined ultrafine eutectics (beta-Ti+TiFe), and (2) the larger lattice mismatches between the beta-Ti and TiFe phases in Nb-modified eutectic Ti-Fe alloys that introduce coherency strain at the interface. The orientation relationship of A2 beta-Ti with B2 TiFe in binary and Nb-modified Ti-Fe alloys is TiFe (110)[001] II beta-Ti (110)[001]. (C) 2014 Elsevier B.V. All rights reserved. C1 [Cao, G. H.; Peng, Y. F.; Liu, N.; Li, X.; Lei, Z. S.; Ren, Z. M.] Shanghai Univ, Dept Mat Engn, Shanghai Key Lab Modern Met & Mat Proc, Shanghai 200072, Peoples R China. [Gerthsen, D.] Karlsruher Inst Technol, Lab Elektronenmikroskopie, D-76128 Karlsruhe, Germany. [Russell, A. M.] US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. [Russell, A. M.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Cao, GH (reprint author), Shanghai Univ, Dept Mat Engn, Shanghai Key Lab Modern Met & Mat Proc, 149 Yanchang Rd, Shanghai 200072, Peoples R China. EM ghcao@shu.edu.cn RI Gerthsen, Dagmar/I-4448-2012; OI Russell, Alan/0000-0001-5264-0104 FU Shanghai Committee of Science and Technology, China [11520701200]; Innovation Program of Shanghai Municipal Education Commission [13ZZ077]; National Natural Science Foundation of China (NSFC) [51271107]; Shanghai Key Laboratory of Modern Metallurgy and Materials Processing [SELF-2013-02]; Network for Functional Nanostructures - Baden-Wurttemberg Foundation; US Department of Energy by Iowa State University [DE-AC02-07CH11358] FX This work was supported by the Shanghai Committee of Science and Technology, China, under Grant no. 11520701200, the Innovation Program of Shanghai Municipal Education Commission under Grant no. 13ZZ077, the National Natural Science Foundation of China (NSFC) under Grant No. 51271107, the Open Project of Shanghai Key Laboratory of Modern Metallurgy and Materials Processing under Grant no. SELF-2013-02, and the Network for Functional Nanostructures funded by the Baden-Wurttemberg Foundation. The Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract no. DE-AC02-07CH11358. NR 26 TC 8 Z9 8 U1 0 U2 26 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUL 15 PY 2014 VL 609 BP 60 EP 64 DI 10.1016/j.msea.2014.04.088 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA AL0GU UT WOS:000338806200008 ER PT J AU Gibbs, PJ De Cooman, BC Brown, DW Clausen, B Schroth, JG Merwin, MJ Matlock, DK AF Gibbs, P. J. De Cooman, B. C. Brown, D. W. Clausen, B. Schroth, J. G. Merwin, M. J. Matlock, D. K. TI Strain partitioning in ultra-fine grained medium-manganese transformation induced plasticity steel SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Neutron scattering; Advanced high strength steel; Bulk deformation; Martensitic transformations; Lattice strains ID SITU NEUTRON-DIFFRACTION; ASSISTED MULTIPHASE STEELS; X-RAY-DIFFRACTION; LOW-CARBON; TENSILE BEHAVIOR; TRIP STEELS; MARTENSITIC TRANSFORMATIONS; MECHANICAL-PROPERTIES; AUSTENITE STABILITY; RETAINED AUSTENITE AB A 7.1-Mn 0.1-C transformation-induced plasticity steel was intercritically annealed at 600 degrees C and 650 degrees C for 168 h. Ultra-fine-grained microstructures with annealing temperature dependent retained austenite fractions and tensile properties were produced. in situ neutron diffraction was used to investigate the change in tensile properties via measurement of phase fractions, elastic phase strains, and diffraction peak broadening during deformation. Austenite transformation to martensite controlled initial yielding in the 650 degrees C annealed steel and stress induced transformation was observed. In contrast, yielding after annealing at 600 degrees C was controlled by plastic deformation of ferrite, with austenite transformation initiating only after yield point elongation. The sequence of deformation between constituents was readily apparent in the lattice strain and peak width data. During deformation, compressive lattice strains were always developed in austenite, ferrite plastic deformation initiated around 700 MPa in both steels, and tensile stress was preferentially transferred to deformation-induced martensite. The development of compressive strains in austenite was related to constraint of the volume expansion during austenite transformation to martensite. (C) 2014 Elsevier B.V. All rights reserved. C1 [Gibbs, P. J.; Matlock, D. K.] Colorado Sch Mines, Adv Steel Proc & Prod Res Ctr, Golden, CO 80401 USA. [Gibbs, P. J.; Brown, D. W.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [De Cooman, B. C.] Pohang Univ Sci & Technol, Grad Inst Ferrous Technol, Pohang, South Korea. [Brown, D. W.; Clausen, B.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Schroth, J. G.] Gen Motors Corp, Ctr Res & Dev, Warren, MI USA. [Merwin, M. J.] US Steel Res & Technol Ctr, Munhall, PA USA. RP Gibbs, PJ (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, POB 1663 MS G770, Los Alamos, NM 87545 USA. EM pgibbs@lanl.gov RI Clausen, Bjorn/B-3618-2015 OI Clausen, Bjorn/0000-0003-3906-846X FU National Science Foundation in the US [CMMI-0729114]; Advanced Steel Processing and Products Research Center, an industry/university cooperative research center at the Colorado School of Mines; Office of Basic Energy Sciences (DOE); DOE [DE AC5206NA25396] FX The authors gratefully acknowledge the support of the National Science Foundation in the US for support under award CMMI-0729114 and the sponsors of the Advanced Steel Processing and Products Research Center, an industry/university cooperative research center at the Colorado School of Mines. This work also benefited from use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Office of Basic Energy Sciences (DOE). Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE AC5206NA25396. The authors would also like to thank U.S. Steel for providing the experimental material, T.A. Sisneros at the Lujan Center for his assistance with the neutron experiments, and Professors J.G. Speer and C.J. Van Tyne at the Colorado School of Mines for helpful discussions during the development of the manuscript. NR 50 TC 10 Z9 12 U1 2 U2 37 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUL 15 PY 2014 VL 609 BP 323 EP 333 DI 10.1016/j.msea.2014.03.120 PG 11 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA AL0GU UT WOS:000338806200043 ER PT J AU Dauphas, N Roskosz, M Alp, EE Neuville, DR Hu, MY Sio, CK Tissot, FLH Zhao, J Tissandiere, L Medard, E Cordier, C AF Dauphas, N. Roskosz, M. Alp, E. E. Neuville, D. R. Hu, M. Y. Sio, C. K. Tissot, F. L. H. Zhao, J. Tissandiere, L. Medard, E. Cordier, C. TI Magma redox and structural controls on iron isotope variations in Earth's mantle and crust SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE iron; isotopes; redox; magma; NRIXS; XANES ID NUCLEAR RESONANT SCATTERING; MOSSBAUER SUM-RULES; X-RAY-ABSORPTION; SILICATE MELTS; OXIDATION-STATE; PLANETARY DIFFERENTIATION; FRACTIONATION FACTORS; OXYGEN FUGACITY; EXPERIMENTAL CALIBRATION; SYNCHROTRON-RADIATION AB The heavy iron isotopic composition of Earth's crust relative to chondrites has been explained by vaporization during the Moon-forming impact, equilibrium partitioning between metal and silicate at core-mantle-boundary conditions, or partial melting and magma differentiation. The latter view is supported by the observed difference in the iron isotopic compositions of MORBS and peridotites. However, the precise controls on iron isotope variations in igneous rocks remain unknown. Here, we show that equilibrium iron isotope fractionation is mainly controlled by redox (Fe3+/Fe-tot ratio) and structural (e.g., polymerization) conditions in magmas. We measured, for the first time, the mean force constants of iron bonds in silicate glasses by synchrotron Nuclear Resonant Inelastic X-ray Scattering (NRIXS, also known as Nuclear Resonance Vibrational Spectroscopy - NRVS, or Nuclear Inelastic Scattering - NIS). The same samples were studied by conventional Mossbauer and X-ray Absorption Near Edge Structure (XANES) spectroscopy. The NRIXS results reveal a +0.2 to +0.4 parts per thousand equilibrium fractionation on Fe-56/Fe-54 ratio between Fe2+ and Fe3+ end-members in basalt, andesite, and dacite glasses at magmatic temperatures. These first measurements can already explain similar to 1/3 of the iron isotopic shift measured in MORBs relative to their source. Further work will be required to investigate how pressure, temperature, and structural differences between melts and glasses affect equilibrium fractionation factors. In addition, large fractionation is also found between rhyolitic glass and commonly occurring oxide and silicate minerals. This fractionation reflects mainly changes in the coordination environment of Fe2+ in rhyolites relative to less silicic magmas and mantle minerals, as also seen by XANES. We provide a new calibration of XANES features vs. Fe3+/Fe-tot ratio determinations by Mossbauer to estimate Fe3+/Fe-tot ratio in situ in glasses of basaltic, andesitic, dacitic, and rhyolitic compositions. Modeling of magma differentiation using rhyolite-MELTS shows that iron structural changes in silicic magmas can explain the heavy iron isotopic compositions of granitoids and rhyolites. This study demonstrates that iron stable isotopes can help reveal planetary redox conditions and igneous processes. Other heterovalent elements such as Ti, V. Eu, Cr, Ce, or U may show similar isotopic variations in bulk rocks and individual minerals, which could be used to establish past and present redox condition in the mantles of Earth and other planets. (C) 2014 Elsevier B.V. All rights reserved. C1 [Dauphas, N.; Sio, C. K.; Tissot, F. L. H.] Univ Chicago, Dept Geophys Sci, Origins Lab, Chicago, IL 60637 USA. [Dauphas, N.; Sio, C. K.; Tissot, F. L. H.] Univ Lille 1, CNRS UMR 8207, Unite Mat & Transformat, F-59655 Villeneuve Dascq, France. [Roskosz, M.] Univ Lille 1, CNRS UMR 8207, Unite Mat & Transformat, F-59655 Villeneuve Dascq, France. [Alp, E. E.; Hu, M. Y.; Zhao, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Neuville, D. R.] IPGP CNRS, Sorbonne Paris Cite, F-75005 Paris, France. [Tissandiere, L.] CNRS UPR 2300, Ctr Rech Petrog & Geochim, F-54501 Vandoeuvre Les Nancy, France. [Medard, E.] Univ Clermont Ferrand, CNRS, Lab Magmas & Volcans, IRD, F-63038 Clermont Ferrand, France. RP Dauphas, N (reprint author), Univ Chicago, Dept Geophys Sci, Origins Lab, 5734 South Ellis Ave, Chicago, IL 60637 USA. EM dauphas@uchicago.edu RI Beamline, FAME/G-9313-2012; OI Medard, Etienne/0000-0002-7040-7442 FU NSF [EAR1144429]; NASA [NNX12AH60G]; French ANR program (FrIHIDDA) [2011JS56 004 01]; European Regional Development Fund (ERDF) FX N.D. thanks the NSF Petrology and Geochemistry (EAR1144429) and NASA Cosmochemistry (NNX12AH60G) programs for support. M.R. thanks the support of the French ANR program (2011JS56 004 01, FrIHIDDA). The EPMA facility in Lille is supported by the European Regional Development Fund (ERDF). Constructive criticisms by Elizabeth Cottrell, Sune Nielsen, an anonymous reviewer, and editor Bernard Marty helped improve the manuscript. Discussions with Andrew J. Campbell, Jennifer M. Jackson and Wenli Bi were greatly appreciated. NR 99 TC 42 Z9 44 U1 10 U2 81 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUL 15 PY 2014 VL 398 BP 127 EP 140 DI 10.1016/j.epsl.2014.04.033 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AJ7IM UT WOS:000337870400012 ER PT J AU Garapati, N Anderson, BJ AF Garapati, Nagasree Anderson, Brian J. TI Statistical thermodynamics model and empirical correlations for predicting mixed hydrate phase equilibria SO FLUID PHASE EQUILIBRIA LA English DT Article DE Gas hydrate; Phase equilibria; Structure transitions; Reference parameters; Empirical correlation; Cell potential ID EQUATION-OF-STATE; CARBON-DIOXIDE; GAS HYDRATE; LATTICE DISTORTION; PLUS NITROGEN; METHANE; CLATHRATE; MIXTURES; ETHANE; PROPANE AB Natural gas hydrate deposits contain CH4 along with other hydrocarbon gases like C2H6, C3H8 and non-hydrocarbon gases like CO2 and H2S. If CH4 stored in natural gas hydrates can be recovered, the hydrates would potentially become a cleaner energy resource for the future producing less CO2 when combusted than does coal. The production of CH4 from natural gas hydrate reservoirs has been predicted by reservoir simulators that implement phase equilibrium data in order to predict various production scenarios. In this paper two methods are discussed for calculating the phase equilibria of mixed hydrates. In the first method, the phase equilibrium is predicted using a 'cell potential' code, which is based on van der Waals and Platteeuw statistical mechanics, along with variable reference parameters to account for lattice distortion, and with temperature-dependent Langmuir constants proposed by Bazant and Trout. The method is validated by reproducing the existing phase equilibrium data of simple and mixed hydrates and the structural transitions that are known to occur, without the use of any fitting parameters. A computationally-simple method is to use empirical correlations of gas hydrate dissociation pressure with respect to temperature and gas-phase composition as they are easy to implement into the simulators. The parameters for the empirical expression were determined for the CH4-C2H6 mixed hydrate system by non-linear regression analysis of available experimental data and data obtained from the first method. (C) 2014 Elsevier B.V. All rights reserved. C1 [Garapati, Nagasree; Anderson, Brian J.] Natl Energy Technol Lab, Morgantown, WV 26506 USA. [Garapati, Nagasree; Anderson, Brian J.] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. RP Anderson, BJ (reprint author), W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. EM ngarapat@mix.wvu.edu; brian.anderson@mail.wvu.edu OI garapati, nagasree/0000-0002-0384-161X FU National Energy Technology Laboratory's on-going research in methane hydrates [DE-FE0004000, Subtask 4000.4.605.261.001] FX N.G. and B.A. performed this work under contract DE-FE0004000, Subtask 4000.4.605.261.001 in support of the National Energy Technology Laboratory's on-going research in methane hydrates. NR 61 TC 4 Z9 4 U1 0 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3812 EI 1879-0224 J9 FLUID PHASE EQUILIBR JI Fluid Phase Equilib. PD JUL 15 PY 2014 VL 373 BP 20 EP 28 DI 10.1016/j.fluid.2014.03.010 PG 9 WC Thermodynamics; Chemistry, Physical; Engineering, Chemical SC Thermodynamics; Chemistry; Engineering GA AJ7IY UT WOS:000337871600002 ER PT J AU Kertesz, V Van Berkel, GJ AF Kertesz, Vilmos Van Berkel, Gary J. TI Sampling reliability, spatial resolution, spatial precision, and extraction efficiency in droplet-based liquid microjunction surface sampling SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID AMBIENT MASS-SPECTROMETRY; THIN TISSUE-SECTIONS; ELECTROSPRAY-IONIZATION; LESA-MS; PROBE; SAMPLING/IONIZATION; CHROMATOGRAPHY; METABOLITES; PROTEINS; SYSTEM AB RATIONALEDroplet-based liquid extraction approaches for spatially resolved surface sampling coupled with high-performance liquid chromatography/mass spectrometry (HPLC/MS) provide the ability to deal with complex sample matrices and to identify isomeric compounds not distinguishable by MS methods alone. Improvements in sampling reliability, spatial resolution, spatial precision and extraction efficiency are required to further the analytical utility of such sampling systems. METHODSAn autosampler capable of droplet-based liquid extraction was coupled with an HPLC/MS system. Visual inspection of the junction formation between the probe and a glass surface allowed evaluation of the liquid junction formation reliability, spatial location and size as a function of variable parameters such as solvent composition, probe-to-surface distance and droplet volume during solvent dispense and aspiration. Quantitative analysis of a component from a model surface using a weak extraction solvent was used to evaluate the effect of extraction time and number of extraction cycles on analyte extraction efficiency. RESULTSReliable junction formation, independent of other variable parameters, was realized simply by maintaining a maximum distance of 0.4mm between the probe and the sample surface. The smallest liquid junction diameter (1.6mm) was observed when using a 1L dispensed volume and 90% aqueous extraction solvent with either methanol or acetonitrile. Good sampling precision was always achieved using an extraction solvent with at least 50% methanol or acetonitrile by volume. Quantitative sampling of rhodamine B from a magenta Sharpie ink surface using a weak extraction solvent showed that extraction efficiency could be improved by increasing the extraction time or the number of extraction cycles. CONCLUSIONSA platform employing a commercially available autosampler coupled to HPLC/MS was developed and successfully applied to investigate the effect of different sampling parameters on the reliability, spatial resolution, spatial precision and extraction efficiency of the liquid junction surface sampling process. This article is a U.S. Government work and is in the public domain in the USA. C1 [Kertesz, Vilmos; Van Berkel, Gary J.] Oak Ridge Natl Lab, Organ & Biol Mass Spectrometry Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Kertesz, V (reprint author), Oak Ridge Natl Lab, Organ & Biol Mass Spectrometry Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. EM kerteszv@ornl.gov RI Kertesz, Vilmos/M-8357-2016 OI Kertesz, Vilmos/0000-0003-0186-5797 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division; U.S. Government [DE-AC05-00OR22725]; U. S. Government FX The QTRAP (R) 5500 used in this work was provided on loan from AB Sciex through a Cooperative Research and Development Agreement (CRADA NFE-10-02966). This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. This manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U. S. Government retains a paid-up, nonexclusive, irrevocable, worldwide license to publish or reproduce the published form of this contribution, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, or allow others to do so, for U.S. Government purposes. NR 19 TC 13 Z9 13 U1 4 U2 29 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0951-4198 EI 1097-0231 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD JUL 15 PY 2014 VL 28 IS 13 BP 1553 EP 1560 DI 10.1002/rcm.6931 PG 8 WC Biochemical Research Methods; Chemistry, Analytical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA AJ2YV UT WOS:000337532300018 PM 24861607 ER PT J AU Peterson, MB Barter, GE West, TH Manley, DK AF Peterson, Meghan B. Barter, Garrett E. West, Todd H. Manley, Dawn K. TI A parametric study of light-duty natural gas vehicle competitiveness in the United States through 2050 SO APPLIED ENERGY LA English DT Article DE Natural gas vehicle; Compressed natural gas; Greenhouse gas emission ID CLEAN-FUEL VEHICLES; TRANSPORTATION FUELS; MARKET PENETRATION; DEMAND; CALIFORNIA; CNG AB We modeled and conducted a parametric analysis of the US light-duty vehicle (LDV) stock to examine the impact of natural gas vehicles (NGVs) as they compete with electric vehicles, hybrids, and conventional powertrains. We find that low natural gas prices and sufficient public refueling infrastructure are the key drivers to NGV adoption when matched with availability of compressed natural gas powertrains from automakers. Due to the time and investment required for the build out of infrastructure and the introduction of vehicles by original equipment manufacturers, home natural gas compressor sales and bi-fuel NGVs serve as bridge technologies through 2030. By 2050, however, NGVs could comprise as much as 20% of annual vehicle sales and 10% of the LDV stock fraction. We also find that NGVs may displace electric vehicles, rather than conventional powertrains, as they both compete for consumers that drive enough miles such that fuel cost savings offset higher purchase costs. Due to this dynamic, NGVs in our LDV stock model offer little to no greenhouse gas emissions reduction as they displace lower emission powertrains. This finding is subject to the uncertainty in efficiency technology progression and the set of powertains and fuels considered. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Peterson, Meghan B.; Barter, Garrett E.; West, Todd H.; Manley, Dawn K.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Peterson, MB (reprint author), Sandia Natl Labs, POB 969, Livermore, CA 94551 USA. EM mbpete@sandia.gov FU United States Department of Energy, Vehicle Technologies Office; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Financial support was provided by the United States Department of Energy, Vehicle Technologies Office. The authors would also like to thank Akhil Reddy for his contributions to the analysis and to the reviewers for their helpful comments.; Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 48 TC 11 Z9 12 U1 5 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD JUL 15 PY 2014 VL 125 BP 206 EP 217 DI 10.1016/j.apenergy.2014.03.062 PG 12 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AI3RF UT WOS:000336778900021 ER PT J AU Kopylets, IA Kondratenko, VV Zubarev, EN Voronov, DL Gullikson, EM Vishnyakov, EA Ragozin, EN AF Kopylets, I. A. Kondratenko, V. V. Zubarev, E. N. Voronov, D. L. Gullikson, E. M. Vishnyakov, E. A. Ragozin, E. N. TI Fabrication and characterization of Sb/B4C multilayer mirrors for soft X-rays SO APPLIED SURFACE SCIENCE LA English DT Article DE layer; Antimony Boron carbide; X-ray diffraction; Amorphous Magnetron sputtering ID 6.7 NM WAVELENGTH AB Structure characterization of Sb/B4C multilayers for soft X-ray optics with a layers thickness from 0.5 nm to 7 nm is reported for the first time. Sb/B4C coatings were manufactured via magnetron sputtering. Amorphous and crystalline phases of the layers and the multilayer structure parameters were characterized with the X-ray diffraction data and the TEM data. The Sb/B4C multilayers demonstrated long term stability of their parameters and performances. The reached value of the reflectance of the Sb/B4C multilayers is 19-28% measured at the near-normal incidence in the wavelength range of 6.64-8.5 nm. The influence of reduced Sb density on the reflectivity is discussed. C) 2014 Elsevier B.V. All rights reserved. C1 [Kopylets, I. A.; Kondratenko, V. V.; Zubarev, E. N.] Natl Tech Univ, Kharkiv Polytech Inst, UA-61002 Kharkov, Ukraine. [Voronov, D. L.; Gullikson, E. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Vishnyakov, E. A.; Ragozin, E. N.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia. [Vishnyakov, E. A.; Ragozin, E. N.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia. RP Kopylets, IA (reprint author), Natl Tech Univ, Kharkiv Polytech Inst, Met & Semicond Phys Dept, Frunze St 21, UA-61002 Kharkov, Ukraine. EM kopil@kpi.kharkov.ua RI Vishnyakov, Eugene/M-3106-2015; Ragozin, Eugene/M-3139-2015 NR 20 TC 2 Z9 2 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 EI 1873-5584 J9 APPL SURF SCI JI Appl. Surf. Sci. PD JUL 15 PY 2014 VL 307 BP 360 EP 364 DI 10.1016/j.apsusc.2014.04.038 PG 5 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA AI1FW UT WOS:000336596700051 ER PT J AU Park, JH Buurma, C Sivananthan, S Kodama, R Gao, W Gessert, TA AF Park, J. H. Buurma, C. Sivananthan, S. Kodama, R. Gao, W. Gessert, T. A. TI The effect of post-annealing on Indium Tin Oxide thin films by magnetron sputtering method SO APPLIED SURFACE SCIENCE LA English DT Article DE ITO; Post-annealing; Bandgap ID RAY PHOTOELECTRON-SPECTROSCOPY AB We report effects of post-annealing on Indium Tin Oxide (ITO) thin films by their physical, electrical, optical, and electronic properties. Carrier concentrations increase up to annealing temperatures of 400 C, and then decrease at higher annealing temperatures. Burstein-Moss effect occurs as a function of annealing temperature with the highest optical bandgap of 4.17 eV achieved at 400 C. X-ray photoelectron spectroscopy revealed a 0.3 eV shift in the Fermi level of the annealed ITO films at 400 C, and the shift was reduced for temperatures higher than 400 C. In addition, the results of curve-fitting for the core levels showed a change of ratios of Sn02 and oxygen in the oxygen deficient regions after annealing. This is correlated to the change of carrier concentration and optical bandgap in the ultraviolet and near-infrared regions at different annealing temperatures. (C) 2014 Elsevier B.V. All rights reserved. C1 [Park, J. H.; Buurma, C.; Sivananthan, S.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Kodama, R.; Gao, W.] EPIR Technol Inc, Unit B, Bolingbrook, IL 60440 USA. [Gessert, T. A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Park, JH (reprint author), Univ Illinois, Dept Phys, 845 West Taylor St, Chicago, IL 60607 USA. EM jpark217@uic.edu FU U.S. National Renewable Energy Laboratory, Golden, Colorado [XEU-2-22078-01] FX The authors would like to thank S. Fahey (EPIR Technologies, Inc.) for helpful discussions. This work was partially supported by U.S. National Renewable Energy Laboratory, Golden, Colorado under contract number XEU-2-22078-01. NR 27 TC 4 Z9 5 U1 2 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 EI 1873-5584 J9 APPL SURF SCI JI Appl. Surf. Sci. PD JUL 15 PY 2014 VL 307 BP 388 EP 392 DI 10.1016/j.apsusc.2014.04.042 PG 5 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA AI1FW UT WOS:000336596700055 ER PT J AU Aidhy, DS Zhang, YW Weber, WJ AF Aidhy, Dilpuneet S. Zhang, Yanwen Weber, William J. TI A fast grain-growth mechanism revealed in nanocrystalline ceramic oxides SO SCRIPTA MATERIALIA LA English DT Article DE CeO2; Nanocrystalline ceramic oxide; Grain growth; Molecular dynamics simulation; Radiation damage ID ROTATION; METALS AB Grain growth issues in nanocrystalline ceramic oxides render their highly attractive properties practically unusable due to limited understanding of the underlying grain-growth mechanisms. Two conventional "slow" grain-growth mechanisms, i.e. curvature driven and grain-rotation driven, are shown to be thermally active, and the discovery of a "fast" disorder-driven mechanism is revealed using molecular dynamics simulation on nanocrystalline ceria, in conjunction with experimental observations. We show that this disorder mechanism drives the unexpected fast grain growth observed experimentally during synthesis and irradiation conditions. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Aidhy, Dilpuneet S.; Zhang, Yanwen; Weber, William J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zhang, Yanwen; Weber, William J.] Univ Tennessee, Knoxville, TN 37996 USA. RP Aidhy, DS (reprint author), One Bethel Valley,POB 2008,MS 6138, Oak Ridge, TN 37831 USA. EM aidhyds@ornl.gov RI Weber, William/A-4177-2008 OI Weber, William/0000-0002-9017-7365 FU Materials Science of Actinides, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory FX This work was supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The computer simulations were performed at the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory. NR 8 TC 7 Z9 7 U1 4 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL 15 PY 2014 VL 83 BP 9 EP 12 DI 10.1016/j.scriptamat.2014.03.020 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA AI4IT UT WOS:000336829600003 ER PT J AU Bernal, SA Rose, V Provis, JL AF Bernal, Susan A. Rose, Volker Provis, John L. TI The fate of iron in blast furnace slag particles during alkali-activation SO MATERIALS CHEMISTRY AND PHYSICS LA English DT Article DE Amorphous materials; X-ray microscopy; Microstructure; Electron microscopy (STEM, TEM and SEM) ID HYDRATION; CHEMISTRY; CEMENT; CARBONATION; TECHNOLOGY; MICROSCOPY; EVOLUTION; BINDERS; CALCIUM; MGO AB Synchrotron nanoprobe X-ray fluorescence maps show for the first time discrete iron-rich, titanium-rich and manganese/silicon-rich particles present in blast furnace slag grains, and these particles remain intact when the slag is used as a precursor for alkali-activated slag (AAS) binders. These particles appear to be entrained during slag production, and remain stable under the reducing conditions prevailing during alkali-activation. There is no evidence of chemical interaction between these particles and the AAS binder, which mainly comprises calcium silicate hydrates. These results are important for the understanding of iron chemistry in AAS, and the potential reactivity of metallic and other redox-sensitive species within AAS binders. (C) 2014 Elsevier B.V. All rights reserved. C1 [Bernal, Susan A.; Provis, John L.] Univ Sheffield, Dept Mat Sci & Engn, Sheffield S1 3JD, S Yorkshire, England. [Rose, Volker] Argonne Natl Lab, Argonne, IL 60439 USA. [Rose, Volker] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Provis, JL (reprint author), Univ Sheffield, Dept Mat Sci & Engn, Sheffield S1 3JD, S Yorkshire, England. EM j.provis@sheffield.ac.uk RI Rose, Volker/B-1103-2008; OI Rose, Volker/0000-0002-9027-1052; Bernal, Susan A/0000-0002-9647-3106; Provis, John/0000-0003-3372-8922 FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Advanced Photon Source and the Center for Nano-scale Materials at Argonne National Laboratory were supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We thank the Faculty of Engineering, University of Sheffield for financial support. NR 31 TC 6 Z9 6 U1 4 U2 32 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0254-0584 EI 1879-3312 J9 MATER CHEM PHYS JI Mater. Chem. Phys. PD JUL 15 PY 2014 VL 146 IS 1-2 BP 1 EP 5 DI 10.1016/j.matchemphys.2014.03.017 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA AH9NA UT WOS:000336467900001 ER PT J AU Caballero, FG Miller, MK Garcia-Mateo, C AF Caballero, F. G. Miller, M. K. Garcia-Mateo, C. TI Influence of transformation temperature on carbide precipitation sequence during lower bainite formation SO MATERIALS CHEMISTRY AND PHYSICS LA English DT Article DE Carbides; Precipitation; Tomography; Metals ID ATOM-PROBE TOMOGRAPHY; FIELD-ION MICROSCOPY; CARBON STEELS; SILICON STEEL; MARTENSITE; CEMENTITE; MICROSTRUCTURE; DISLOCATIONS; ELEMENTS; CR AB The nature of different carbides formed during the lower bainite reaction at different transformation temperatures was determined by atom probe tomography in three steels with different carbon and silicon contents. It is known that steel composition and temperature alter the carbide precipitation sequence during low-temperature bainite formation. However, present results confirm that dislocations in lower bainite that are more prominent at the lower the transformation temperature, trap a substantial amount of carbon and hence, can influence the carbide precipitation sequence and, in particular, can determine where epsilon-carbide forms before the growth of cementite. (C) 2014 Elsevier B.V. All rights reserved. C1 [Caballero, F. G.; Garcia-Mateo, C.] CSIC, CENIM, Ctr Nacl Invest Met, E-28040 Madrid, Spain. [Miller, M. K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Caballero, FG (reprint author), CSIC, CENIM, Ctr Nacl Invest Met, Avda Gregorio del Amo 8, E-28040 Madrid, Spain. EM fgc@cenim.csic.es RI Garcia-Mateo, Carlos/A-7752-2008; CABALLERO, FRANCISCA/A-4292-2008; OI Garcia-Mateo, Carlos/0000-0002-4773-5077; Caballero, Francisca/0000-0002-5548-7659 FU ORNL's Shared Research Equipment (ShaRE); Office of Basic Energy Sciences, Scientific User Facilities Division, U.S. Department of Energy; Research Fund for Coal and Steel [RFS-PR-11019]; Spanish Ministry of Science and Innovation [MAT2010-15330, IPT-2012-0320-420000] FX Research was supported by ORNL's Shared Research Equipment (ShaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, Scientific User Facilities Division, U.S. Department of Energy. The authors also gratefully acknowledge the support of the Research Fund for Coal and Steel (contract RFS-PR-11019) and the Spanish Ministry of Science and Innovation (contracts MAT2010-15330 and IPT-2012-0320-420000) for funding this research. NR 42 TC 4 Z9 4 U1 4 U2 27 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0254-0584 EI 1879-3312 J9 MATER CHEM PHYS JI Mater. Chem. Phys. PD JUL 15 PY 2014 VL 146 IS 1-2 BP 50 EP 57 DI 10.1016/j.matchemphys.2014.02.041 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA AH9NA UT WOS:000336467900007 ER PT J AU Kogan, VG Mints, RG AF Kogan, V. G. Mints, R. G. TI Manipulating Josephson junctions in thin-films by nearby vortices SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Josephson junctions; Thin films; vortices ID ABRIKOSOV VORTEX AB It is shown that a vortex trapped in one of the banks of a planar edge-type Josephson junction in a narrow thin-film superconducting strip can change drastically the dependence of the junction critical current on the applied field, I-c(H). When the vortex is placed at certain discrete positions in the strip middle, the pattern I-c(H) has zero at H = 0 instead of the traditional maximum of '0-type' junctions. The number of these positions is equal to the number of vortices trapped at the same location. When the junction-vortex separation exceeds similar to W, the strip width, I-c(H) is no longer sensitive to the vortex presence. The same is true for any separation if the vortex approaches the strip edges. (C) 2014 Elsevier B.V. All rights reserved. C1 [Kogan, V. G.] US DOE, Ames Lab, Ames, IA 50011 USA. [Mints, R. G.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. RP Mints, RG (reprint author), Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. EM kogan@ameslab.gov; mints@post.tau.ac.il FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; U.S. DOE [DE-AC02-07CH11358] FX The authors are grateful to J. Kirtley, I. Sochnikov, A. Ustinov, J. Mannhart, and S. Lin for helpful discussions. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. The work was done at the Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under Contract DE-AC02-07CH11358. NR 10 TC 1 Z9 1 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 EI 1873-2143 J9 PHYSICA C JI Physica C PD JUL 15 PY 2014 VL 502 BP 58 EP 62 DI 10.1016/j.physc.2014.04.039 PG 5 WC Physics, Applied SC Physics GA AH8ZE UT WOS:000336426300011 ER PT J AU Wilson, TB Kochendorfer, J Meyers, TP Heuer, M Sloop, K Miller, J AF Wilson, T. B. Kochendorfer, J. Meyers, T. P. Heuer, M. Sloop, K. Miller, J. TI Leaf litter water content and soil surface CO2 fluxes in a deciduous forest SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE Forest leaf litter; Litter wetness; Soil water content; Soil and litter carbon dioxide flux ID CHOPPED CORN RESIDUE; ENERGY-BALANCE; CARBON; FLOOR; DECOMPOSITION; MODEL; HEAT; TRANSPORT; MOISTURE; BUDGET AB This study has examined the ability of a commercial, miniature soil moisture probe to measure water content within the leaf litter layer found on the floor below a deciduous forest site in Oak Ridge, eastern Tennessee. With its small size and high moisture sensitivity, this probe provides a potential opportunity for monitoring the water content beneath complex vegetation systems within the soil-air interface normally characterized by a large spatial variability and small magnitude of energy, water and carbon fluxes. With its low-cost and low-power, many of these probes can be easily deployed at a much lower cost than the single traditional soil moisture probe that is usually used for monitoring local-site soil moisture and is unsuitable for litter wetness. Miniature probe measurements of litter moisture were compared with gravimetric measurements from litter sample baskets positioned across the forest floor and the change in the magnitude of the probe output correlated linearly to the water content of the litter. Gravimetric measurements of the litter water content ranged from 1 to 3 g (H2O) g(-1) (litter dry weight), and hourly values varied with precipitation, radiation, and wind speed. Measurements of the litter and soil water content were incorporated into empirical models adopted from the literature for estimating the litter and soil components of the CO2 flux. The comparison between the modeled and the measured hourly CO2 flux on the forest floor produced root means square differences (RMSD) of about 1.11 and 1.32 umol m(-2) S-1 for estimates with and without litter layer, respectively, and about 25% of the forest floor CO2 flux was due to direct contributions from the litter layer. The results of the study indicate that the probes performed well in a complex forest environment and can be used to help evaluate the water, energy and CO2 fluxes on the soil surface inside a variety of vegetation stands. Published by Elsevier B.V. C1 [Wilson, T. B.; Kochendorfer, J.; Meyers, T. P.; Heuer, M.; Sloop, K.] NOAA, Atmospher Turbulence & Diffus Div, Oak Ridge, TN 37831 USA. [Wilson, T. B.; Kochendorfer, J.; Meyers, T. P.; Heuer, M.; Sloop, K.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Miller, J.] Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA. RP Wilson, TB (reprint author), NOAA, Atmospher Turbulence & Diffus Div, POB 2456, Oak Ridge, TN 37831 USA. EM tim.wilson@noaa.gov RI Kochendorfer, John/K-2680-2012; Meyers, Tilden/C-6633-2016; Wilson, Timothy/C-9863-2016 OI Kochendorfer, John/0000-0001-8436-2460; Wilson, Timothy/0000-0003-1785-5323 FU NOAA OAR/ARL Climate Research Program FX This work was funded by the NOAA OAR/ARL Climate Research Program. NR 31 TC 7 Z9 7 U1 5 U2 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 EI 1873-2240 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD JUL 15 PY 2014 VL 192 BP 42 EP 50 DI 10.1016/j.agrformet.2014.02.005 PG 9 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA AH0JX UT WOS:000335806300006 ER PT J AU Banks, JW Henshaw, WD Schwendeman, DW AF Banks, J. W. Henshaw, W. D. Schwendeman, D. W. TI An analysis of a new stable partitioned algorithm for FSI problems. Part I: Incompressible flow and elastic solids SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Fluid-structure interaction; Partitioned algorithms; Added mass instability; Incompressible fluid flow; Elastic solids ID FLUID-STRUCTURE INTERACTION; ADDED-MASS; OVERLAPPING GRIDS; NUMERICAL-METHODS; COUPLED SOLUTION; SIMULATION; STABILITY; EQUATIONS; SOLVER AB Stable partitioned algorithms for fluid-structure interaction (FSI) problems are developed and analyzed in this two-part paper. Part I describes an algorithm for incompressible flow coupled with compressible elastic solids, while Part II discusses an algorithm for incompressible flow coupled with structural shells. Importantly, these new added-mass partitioned (AMP) schemes are stable and retain full accuracy with no sub-iterations per time step, even in the presence of strong added-mass effects (e.g. for light solids). The numerical approach described here for bulk compressible solids extends the scheme of Banks et al. [1,2] for inviscid compressible flow, and uses Robin (mixed) boundary conditions with the fluid and solid solvers at the interface. The basic AMP Robin conditions, involving a linear combination of velocity and stress, are determined from the outgoing solid characteristic relation normal to the fluid solid interface combined with the matching conditions on the velocity and traction. Two alternative forms of the AMP conditions are then derived depending on whether the fluid equations are advanced with a fractional-step method or not. The stability and accuracy of the AMP algorithm is evaluated for linearized FSI model problems; the full nonlinear case being left for future consideration. A normal mode analysis is performed to show that the new AMP algorithm is stable for any ratio of the solid and fluid densities, including the case of very light solids when added-mass effects are large. In contrast, it is shown that a traditional partitioned algorithm involving a Dirichlet-Neumann coupling for the same FSI problem is formally unconditionally unstable for any ratio of densities. Exact traveling wave solutions are derived for the FSI model problems, and these solutions are used to verify the stability and accuracy of the corresponding numerical results obtained from the AMP algorithm for the cases of light, medium and heavy solids. (C) 2014 Elsevier Inc. All rights reserved. C1 [Banks, J. W.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. [Henshaw, W. D.; Schwendeman, D. W.] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA. RP Henshaw, WD (reprint author), Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA. EM banks20@llnl.gov; henshw@rpi.edu; schwed@rpi.edu RI Banks, Jeffrey/A-9718-2012 FU U.S. Department of Energy (DOE) [DE-AC52-07NA27344]; Lawrence Livermore National Laboratory [B548468]; National Science Foundation [DMS-1016188] FX This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by DOE contracts from the ASCR Applied Math Program.; This research was supported by Lawrence Livermore National Laboratory under Subcontract B548468, and by the National Science Foundation under Grant DMS-1016188. NR 49 TC 10 Z9 10 U1 0 U2 17 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 15 PY 2014 VL 269 BP 108 EP 137 DI 10.1016/j.jcp.2014.03.006 PG 30 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA AG5DL UT WOS:000335439300007 ER PT J AU Pol, VG Li, Y Dogan, F Secor, E Thackeray, MM Abraham, DP AF Pol, Vilas G. Li, Yan Dogan, Fulya Secor, Ethan Thackeray, Michael M. Abraham, Daniel P. TI Pulsed sonication for alumina coatings on high-capacity oxides: Performance in lithium-ion cells SO JOURNAL OF POWER SOURCES LA English DT Article DE Sonochemistry; Al-27 NMR; H-1 NMR; Electrochemistry; Layered-layered oxides ID LAYERED CATHODE MATERIAL; ELECTROCHEMICAL PRETREATMENT; SONOCHEMICAL DEPOSITION; SIGNIFICANT IMPROVEMENT; ELECTROLYTE ADDITIVES; SECONDARY BATTERIES; POSITIVE ELECTRODE; SURFACE-CHEMISTRY; SILICA SPHERES; LICOO2 AB High-capacity xLi(2)MnO(3)center dot(1 - x)LiMO2 (M = Ni, Mn, Co) oxides show relatively rapid performance degradation when cycled at voltages >4.5 V vs. Li/Li+. Previous research has indicated that modifying the oxide surfaces with coatings, such as alumina, reduces cell impedance rise and improves capacity retention. In this article, we demonstrate pulsed-sonication as a rapid and effective approach for coating alumina on Li(1.2)Ni(0.17)sMn(0.525)Co(0.1)O(2) (0.5Li(2)MnO(3)center dot 0.5LiNi(0.44)Mn(0.31)Co(0.25)O(2)) particles. Oxide integrity and morphology is maintained after the sonochemical process and subsequent heat-treatment. Energy dispersive spectroscopy (EDS) X-ray elemental maps show uniform coating of all secondary particles. Al-27 Magic Angle Spinning (MAS) NMR data confirm the presence of alumina and mainly indicate octahedral aluminum occupancy in a six-coordinate environment with oxygen. Full cells containing electrodes with the alumina-coated particles demonstrate lower initial impedance rise and better capacity retention during extended cycling to high voltages. However, the coating has a negligible effect on the voltage hysteresis and voltage fade behavior displayed by these oxides. The various data indicate that the pulsed sonochemical technique is a viable approach for coating oxide particles. The methodology described herein can easily be extended beyond alumina to include coatings such as AlF3, MgO, and MgF2. (C) 2014 Elsevier B.V. All rights reserved. C1 [Pol, Vilas G.; Li, Yan; Dogan, Fulya; Secor, Ethan; Thackeray, Michael M.; Abraham, Daniel P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Li, Yan] Univ Rochester, Mat Sci Program, Rochester, NY 14627 USA. [Pol, Vilas G.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. RP Abraham, DP (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM abraham@anl.gov RI Li, Yan/H-2957-2012 OI Li, Yan/0000-0002-9801-7243 FU U.S. Department of Energy's (DOE's) Batteries for Advanced Transportation Technologies (BATT) Program; OVT; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX VP, ES and MMT acknowledge support from the U.S. Department of Energy's (DOE's) Batteries for Advanced Transportation Technologies (BATT) Program, and YL, FD and DPA from the Applied Battery Research (ABR) Program in the Office of Vehicle Technologies (OVT). The graphite-based negative electrodes were fabricated in the DOE's Cell Fabrication Facility (CFF), Argonne. The CFF is fully supported by OVT within the core funding of the ABR Program. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We acknowledge valuable discussions with D. Miller, J.G. Wen, M. Bettge, Y. Zhu, S.R. Gowda and B. Key during the course of this work. We are also grateful to S. Trask, B. Polzin, and A.N. Jansen from the DOE-CFF. We thank S.H. Kang who provided the Li1.2Ni0.175Mn0.525Co0.1O2 (0.5Li2MnO3.0.5LiNi0.44Mn0.31Co0.25O2) used in this study. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 71 TC 9 Z9 9 U1 5 U2 122 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD JUL 15 PY 2014 VL 258 BP 46 EP 53 DI 10.1016/j.jpowsour.2014.02.030 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA AF7MN UT WOS:000334899300006 ER PT J AU Lakshminarayana, G Torres, JA Lin, TC Kityk, IV Hehlen, MP AF Lakshminarayana, G. Torres, Joseph A. Lin, Terri C. Kityk, I. V. Hehlen, Markus P. TI Sol-gel synthesis and characterization of fluoride-rich lanthanum-alumino-silicate gels doped with Ce3+ and Ti4+ SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Amorphous materials; Oxyfluoride gels; Sol-gel process; Rare-earth spectroscopy; Scanning electron microscopy; Thermal analysis ID NANO-GLASS-CERAMICS; OPTICAL-PROPERTIES; TRIFLUOROACETIC ACID; UP-CONVERSION; RARE-EARTH; LUMINESCENCE; SCINTILLATORS; ABSORPTION AB A series of lanthanum- alumino- silicate gels doped with Ce3+ (0.5- 10.0 mol%) and Ti4+ were synthesized by a sol-gel process using trifluoroacetic acid (TFA) as a fluorine source. The structural (X- ray diffraction, scanning electron microscopy), thermal (differential scanning calorimetry), and optical (absorption, photoluminescence, photoluminescence-excitation) properties were investigated. A high fluorine content of up to 22.3 at.% was measured in the dried gels, significantly exceeding the 65 at.% fluorine content of earlier studies. The monolithic gels were transparent, amorphous, and stable up to 250- 300 degrees C. However, the gels lost their structural integrity at temperatures above 315 degrees C due to the thermal decomposition of TFA. The sol-gel route using TFA as a fluorine source is therefore not a viable route for the preparation of nanostructured glass ceramics containing a high volume fraction of crystalline LnF(3). All Ce3+ -doped gels showed luminescence in the blue spectral region. Gels containing Ti4+ had an additional strong oxygen-to-metal charge transfer transition that competed with the Ce3+ optical excitation and led to overall lower emission intensity. The measured luminescence intensity of all gel compositions decreased with increasing Ce3+ concentration as a result of increased reabsorption of Ce3+ emission by other Ce3+ ions in the gel as well as energy migration among Ce3+ ions to quenching sites. C1 [Lakshminarayana, G.; Torres, Joseph A.; Lin, Terri C.; Hehlen, Markus P.] Los Alamos Natl Lab, Mat Sci & Technol Div MST 7, Los Alamos, NM 87545 USA. [Kityk, I. V.] Czestochowa Tech Univ, Dept Elect Engn, PL-42201 Czestochowa, Poland. RP Hehlen, MP (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div MST 7, POB 1663, Los Alamos, NM 87545 USA. EM hehlen@lanl.gov RI Kityk, Iwan/M-4032-2015 FU U.S. Department of Energy; Los Alamos Laboratory Directed Research and Development (LDRD) program; U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by the U.S. Department of Energy and the Los Alamos Laboratory Directed Research and Development (LDRD) program. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396. NR 37 TC 5 Z9 5 U1 2 U2 47 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUL 15 PY 2014 VL 601 BP 67 EP 74 DI 10.1016/j.jallcom.2014.02.098 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA AE9GG UT WOS:000334313500012 ER PT J AU Comley, AJ Maddox, BR Rudd, RE Barton, NR Wehrenberg, CE Prisbrey, ST Hawreliak, JA Orlikowski, DA Peterson, SC Satcher, JH Elsholz, AJ Park, HS Remington, BA Bazin, N Foster, JM Graham, P Park, N Rosen, PA Rothman, SD Higginbotham, A Suggit, M Wark, JS AF Comley, A. J. Maddox, B. R. Rudd, R. E. Barton, N. R. Wehrenberg, C. E. Prisbrey, S. T. Hawreliak, J. A. Orlikowski, D. A. Peterson, S. C. Satcher, J. H. Elsholz, A. J. Park, H. -S. Remington, B. A. Bazin, N. Foster, J. M. Graham, P. Park, N. Rosen, P. A. Rothman, S. D. Higginbotham, A. Suggit, M. Wark, J. S. TI Comment on "Strength of Shock-Loaded Single-Crystal Tantalum [100] Determined Using in situ Broadband X-Ray Laue Diffraction" Reply SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material C1 [Comley, A. J.; Maddox, B. R.; Rudd, R. E.; Barton, N. R.; Wehrenberg, C. E.; Prisbrey, S. T.; Hawreliak, J. A.; Orlikowski, D. A.; Peterson, S. C.; Satcher, J. H.; Elsholz, A. J.; Park, H. -S.; Remington, B. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Comley, A. J.; Bazin, N.; Foster, J. M.; Graham, P.; Park, N.; Rosen, P. A.; Rothman, S. D.] Atom Weap Estab, Reading RG7 4PR, Berks, England. [Higginbotham, A.; Suggit, M.; Wark, J. S.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. RP Comley, AJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 9 TC 1 Z9 1 U1 2 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 14 PY 2014 VL 113 IS 3 AR 039602 DI 10.1103/PhysRevLett.113.039602 PG 2 WC Physics, Multidisciplinary SC Physics GA AS3LZ UT WOS:000344180500011 PM 25083670 ER PT J AU Hunter, A Preston, DL AF Hunter, Abigail Preston, Dean L. TI Comment on "Strength of Shock-Loaded Single-Crystal Tantalum [100] Determined Using in situ Broadband X-Ray Laue Diffraction" SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material ID CONSTITUTIVE MODEL C1 [Hunter, Abigail; Preston, Dean L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hunter, A (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM dean@lanl.gov OI Hunter, Abigail/0000-0002-0443-4020 NR 8 TC 2 Z9 2 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 14 PY 2014 VL 113 IS 3 AR 039601 DI 10.1103/PhysRevLett.113.039601 PG 2 WC Physics, Multidisciplinary SC Physics GA AS3LZ UT WOS:000344180500010 PM 25083669 ER PT J AU Langer, C Montes, F Aprahamian, A Bardayan, DW Bazin, D Brown, BA Browne, J Crawford, H Cyburt, RH Domingo-Pardo, C Gade, A George, S Hosmer, P Keek, L Kontos, A Lee, IY Lemasson, A Lunderberg, E Maeda, Y Matos, M Meisel, Z Noji, S Nunes, FM Nystrom, A Perdikakis, G Pereira, J Quinn, SJ Recchia, F Schatz, H Scott, M Siegl, K Simon, A Smith, M Spyrou, A Stevens, J Stroberg, SR Weisshaar, D Wheeler, J Wimmer, K Zegers, RGT AF Langer, C. Montes, F. Aprahamian, A. Bardayan, D. W. Bazin, D. Brown, B. A. Browne, J. Crawford, H. Cyburt, R. H. Domingo-Pardo, C. Gade, A. George, S. Hosmer, P. Keek, L. Kontos, A. Lee, I-Y. Lemasson, A. Lunderberg, E. Maeda, Y. Matos, M. Meisel, Z. Noji, S. Nunes, F. M. Nystrom, A. Perdikakis, G. Pereira, J. Quinn, S. J. Recchia, F. Schatz, H. Scott, M. Siegl, K. Simon, A. Smith, M. Spyrou, A. Stevens, J. Stroberg, S. R. Weisshaar, D. Wheeler, J. Wimmer, K. Zegers, R. G. T. TI Determining the rp-Process Flow through Ni-56: Resonances in Cu-57(p,gamma)Zn-58 Identified with GRETINA SO PHYSICAL REVIEW LETTERS LA English DT Article ID X-RAY-BURSTS; NEUTRON-STAR; MASS; RADIUS; NUCLEOSYNTHESIS; NUCLEI; GS-1826-24; MODELS; RATES; DECAY AB An approach is presented to experimentally constrain previously unreachable (p,gamma) reaction rates on nuclei far from stability in the astrophysical rp process. Energies of all critical resonances in the Cu-57(p,gamma)Zn-58 reaction are deduced by populating states in Zn-58 with a (d, n) reaction in inverse kinematics at 75 MeV/u, and detecting.-ray-recoil coincidences with the state-of-the-art gamma-ray tracking array GRETINA and the S800 spectrograph at the National Superconducting Cyclotron Laboratory. The results reduce the uncertainty in the Cu-57(p,gamma) reaction rate by several orders of magnitude. The effective lifetime of Ni-56, an important waiting point in the rp process in x-ray bursts, can now be determined entirely from experimentally constrained reaction rates. C1 [Langer, C.; Montes, F.; Bazin, D.; Brown, B. A.; Browne, J.; Cyburt, R. H.; Gade, A.; Keek, L.; Kontos, A.; Lemasson, A.; Lunderberg, E.; Meisel, Z.; Noji, S.; Nunes, F. M.; Perdikakis, G.; Pereira, J.; Quinn, S. J.; Recchia, F.; Schatz, H.; Scott, M.; Simon, A.; Spyrou, A.; Stevens, J.; Stroberg, S. R.; Weisshaar, D.; Wheeler, J.; Wimmer, K.; Zegers, R. G. T.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Langer, C.; Montes, F.; Browne, J.; Cyburt, R. H.; Keek, L.; Kontos, A.; Meisel, Z.; Perdikakis, G.; Pereira, J.; Quinn, S. J.; Schatz, H.; Scott, M.; Simon, A.; Spyrou, A.; Stevens, J.; Wheeler, J.; Zegers, R. G. T.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Aprahamian, A.; Nystrom, A.; Siegl, K.; Smith, M.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Aprahamian, A.; Nystrom, A.; Siegl, K.; Smith, M.] Univ Notre Dame, Joint Inst Nucl Astrophys, Notre Dame, IN 46556 USA. [Bardayan, D. W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Brown, B. A.; Browne, J.; Gade, A.; Keek, L.; Lunderberg, E.; Meisel, Z.; Nunes, F. M.; Quinn, S. J.; Schatz, H.; Scott, M.; Spyrou, A.; Stevens, J.; Stroberg, S. R.; Wheeler, J.; Zegers, R. G. T.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Crawford, H.; Lee, I-Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Domingo-Pardo, C.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [George, S.] Ernst Moritz Arndt Univ Greifswald, D-17487 Greifswald, Germany. [Hosmer, P.] Hillsdale Coll, Dept Phys, Hillsdale, MI 49242 USA. [Maeda, Y.] Miyazaki Univ, Dept Appl Phys, Miyazaki 8892192, Japan. [Matos, M.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Perdikakis, G.; Wimmer, K.] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. RP Langer, C (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. EM langer@nscl.msu.edu RI Perdikakis, Georgios/K-4525-2014; Zegers, Remco/A-6847-2008; Gade, Alexandra/A-6850-2008; Scott, Michael/A-1974-2015; LEMASSON, Antoine/B-4089-2009; Langer, Christoph/L-3422-2016 OI Perdikakis, Georgios/0000-0002-8539-8737; Gade, Alexandra/0000-0001-8825-0976; Scott, Michael/0000-0002-3697-7089; LEMASSON, Antoine/0000-0002-9434-8520; FU NSF [PHY11-02511, PHY10-68217, PHY08-22648, NSF1068571]; U.S. DOE Office of Science; DOE [DE-AC02-05CH11231, DE-FG52-08NA28552, DE-SC0004087]; DFG [GE2183/2-1]; MINECO, Spain [FPA2011-29854] FX The authors want to thank the staff and the beam operators at the NSCL for their effort during the experiment. This work is supported by NSF Grants No. PHY11-02511, No. PHY10-68217, and No. PHY08-22648 (Joint Institute for Nuclear Astrophysics). GRETINA was funded by the U.S. DOE Office of Science. Operation of the array at NSCL is supported by NSF under Cooperative Agreement PHY11-02511 (NSCL) and DOE under Grant No. DE-AC02-05CH11231 (LBNL). F. M. N. acknowledges support from NSF under Grant No. NSF1068571, and from DOE under Grants No. DE-FG52-08NA28552 and No. DE-SC0004087. S. G. acknowledges support from the DFG under Contract No. GE2183/2-1. C. D. P. acknowledges support from MINECO, Spain, under Grant No. FPA2011-29854. NR 36 TC 8 Z9 9 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 14 PY 2014 VL 113 IS 3 AR 032502 DI 10.1103/PhysRevLett.113.032502 PG 5 WC Physics, Multidisciplinary SC Physics GA AS3LZ UT WOS:000344180500004 PM 25083636 ER PT J AU Mozer, FS Agapitov, O Krasnoselskikh, V Lejosne, S Reeves, GD Roth, I AF Mozer, F. S. Agapitov, O. Krasnoselskikh, V. Lejosne, S. Reeves, G. D. Roth, I. TI Direct Observation of Radiation-Belt Electron Acceleration from Electron-Volt Energies to Megavolts by Nonlinear Whistlers SO PHYSICAL REVIEW LETTERS LA English DT Article ID RELATIVISTIC ELECTRONS AB The mechanisms for accelerating electrons from thermal to relativistic energies in the terrestrial magnetosphere, on the sun, and in many astrophysical environments have never been verified. We present the first direct observation of two processes that, in a chain, cause this acceleration in Earth's outer radiation belt. The two processes are parallel acceleration from electron-volt to kilovolt energies by parallel electric fields in time-domain structures (TDS), after which the parallel electron velocity becomes sufficiently large for Doppler-shifted upper band whistler frequencies to be in resonance with the electron gyration frequency, even though the electron energies are kilovolts and not hundreds of kilovolts. The electrons are then accelerated by the whistler perpendicular electric field to relativistic energies in several resonant interactions. TDS are packets of electric field spikes, each spike having duration of a few hundred microseconds and containing a local parallel electric field. The TDS of interest resulted from nonlinearity of the parallel electric field component in oblique whistlers and consisted of similar to 0.1 msec pulses superposed on the whistler waveform with each such spike containing a net parallel potential the order of 50 V. Local magnetic field compression from remote activity provided the free energy to drive the two processes. The expected temporal correlations between the compressed magnetic field, the nonlinear whistlers with their parallel electric field spikes, the electron flux and the electron pitch angle distributions were all observed. C1 [Mozer, F. S.; Agapitov, O.; Lejosne, S.; Roth, I.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Krasnoselskikh, V.] CNRS, LPC2E, F-45171 Orleans, France. [Reeves, G. D.] Los Alamos Natl Lab, Space & Atmospher Sci Grp, Los Alamos, NM 87545 USA. [Agapitov, O.] Taras Shevchenko Natl Univ Kyiv, UA-01601 Kiev, Ukraine. RP Mozer, FS (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RI Agapitov, Oleksiy/F-9636-2010; OI Reeves, Geoffrey/0000-0002-7985-8098 FU JHU/APL [922613]; Grant "Modele d'ondes" FX The authors thank the very large numbers of people who built the scientific instruments and the Van Allen probes as well as the spacecraft operators and programmers who developed the data analysis software. We acknowledge LANL for provision of measurements on board geostationary satellites. This work was performed under JHU/APL Contract No. 922613 (RBSP-EFW). V.K. is grateful to CNES for financial support through the Grant "Modele d'ondes." NR 19 TC 28 Z9 28 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 14 PY 2014 VL 113 IS 3 AR 035001 DI 10.1103/PhysRevLett.113.035001 PG 5 WC Physics, Multidisciplinary SC Physics GA AS3LZ UT WOS:000344180500006 PM 25083648 ER PT J AU Wang, CJ Ackerman, DM Slowing, II Evans, JW AF Wang, Chi-Jen Ackerman, David M. Slowing, Igor I. Evans, James W. TI Langevin and Fokker-Planck Analyses of Inhibited Molecular Passing Processes Controlling Transport and Reactivity in Nanoporous Materials SO PHYSICAL REVIEW LETTERS LA English DT Article ID SINGLE-FILE DIFFUSION; TRACER EXCHANGE; CONVERSION; ZEOLITE; SYSTEMS; ALPO4-5 AB Inhibited passing of reactant and product molecules within the linear pores of nanoporous catalytic materials strongly reduces reactivity. The dependence of the passing propensity P on pore radius R is analyzed utilizing Langevin dynamics to account for solvent effects. We find that P similar to (R - R-c)(sigma), where passing is sterically blocked for R <= R-c, with sigma below the transition state theory value. Deeper insight comes from analysis of the corresponding high-dimensional Fokker-Planck equation, which facilitates an effective small-P approximation, and dimensional reduction enabling utilization of conformal mapping ideas. We analyze passing for spherical molecules and also assess the effect of rotational degrees of freedom for elongated molecules. C1 [Wang, Chi-Jen; Ackerman, David M.; Slowing, Igor I.; Evans, James W.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Wang, Chi-Jen] Iowa State Univ, Dept Math, Ames, IA 50011 USA. [Slowing, Igor I.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Evans, James W.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Wang, CJ (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. OI Slowing, Igor/0000-0002-9319-8639 FU U.S. DOE-BES Division of Chemical Sciences, Geosciences, and Biosciences through the Chemical Physics program at Ames Laboratory [DE-AC02-07CH11358] FX This work was supported by the U.S. DOE-BES Division of Chemical Sciences, Geosciences, and Biosciences through the Chemical Physics program at Ames Laboratory (operated for the U.S. DOE by ISU under Contract No. DE-AC02-07CH11358). NR 25 TC 2 Z9 2 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 14 PY 2014 VL 113 IS 3 AR 038301 DI 10.1103/PhysRevLett.113.038301 PG 5 WC Physics, Multidisciplinary SC Physics GA AS3LZ UT WOS:000344180500009 PM 25083666 ER PT J AU Armstrong, MR Crowhurst, JC Bastea, S Zaug, JM Goncharov, AF AF Armstrong, Michael R. Crowhurst, Jonathan C. Bastea, Sorin Zaug, Joseph M. Goncharov, Alexander F. TI Sub-100 ps laser-driven dynamic compression of solid deuterium with a similar to 40 mu J laser pulse SO APPLIED PHYSICS LETTERS LA English DT Article ID FLUID HYDROGEN; HIGH-PRESSURES; HIGH-DENSITY; SHOCK; INTERFEROMETRY; METALLIZATION; CALIBRATION; CHEMISTRY; ALUMINUM; GAUGE AB We dynamically compress solid deuterium over <100 ps from initial pressures of 22 GPa to 55 GPa, to final pressures as high as 71 GPa, with < 40 mu J of pulse energy. At 25 GPa initial pressure, we measure compression wave speeds consistent with quasi-isentropic compression and a 24% increase in density. The laser drive energy per unit density change is 10(9) times smaller than it is for recent longer (similar to 30 ns) time scale compression experiments. This suggests that, for a given final density, dynamic compression of hydrogen might be achieved using orders of magnitude lower laser energy than currently used. (C) 2014 AIP Publishing LLC. C1 [Armstrong, Michael R.; Crowhurst, Jonathan C.; Bastea, Sorin; Zaug, Joseph M.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Goncharov, Alexander F.] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. RP Armstrong, MR (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM armstrong30@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory directed Research and Development [11ERD039]; EFree, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001057] FX We acknowledge useful conversations with L. E. Fried, E. J. Reed, B. W. Reed, W. J. Nails, J. Eggert, G. Collins, R. Smith, M. Howard, B. Militzer, J, Carter, R. Hemley, H. Radousky, and J. Forbes. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with Laboratory directed Research and Development funding (11ERD039), as well as being based on work supported as part of the EFree, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Grant No. DESC0001057. NR 40 TC 3 Z9 3 U1 4 U2 22 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 14 PY 2014 VL 105 IS 2 AR 021904 DI 10.1063/1.4890087 PG 5 WC Physics, Applied SC Physics GA AO2KU UT WOS:000341151400023 ER PT J AU Aytac, Y Olson, BV Kim, JK Shaner, EA Hawkins, SD Klem, JF Flatte, ME Boggess, TF AF Aytac, Y. Olson, B. V. Kim, J. K. Shaner, E. A. Hawkins, S. D. Klem, J. F. Flatte, M. E. Boggess, T. F. TI Effects of layer thickness and alloy composition on carrier lifetimes in mid-wave infrared InAs/InAsSb superlattices SO APPLIED PHYSICS LETTERS LA English DT Article ID RADIATIVE LIFETIME; II SUPERLATTICES; SEMICONDUCTORS; RECOMBINATION; OPTIMIZATION AB Measurements of carrier recombination rates using a time-resolved pump-probe technique are reported for mid-wave infrared InAs/InAs1-xSbx type-2 superlattices (T2SLs). By engineering the layer widths and alloy compositions, a 16 K hand-gap of similar or equal to 235 +/- 10 meV was achieved for all five unintentionally doped T2SLs. Carrier lifetimes were determined by fitting a rate equation model to the density dependent data, Minority carrier lifetimes as long as 10 mu s were measured. On the other hand, the Auger rates for all the InAs/InAsSb T2SLs were significantly larger than those previously measured for InAs/GaSb T2SLs. The minority carrier and Auger lifetimes were observed to generally increase with increasing antimony content and decreasing layer thickness. (C) 2014 AIP Publishing LLC. C1 [Aytac, Y.; Flatte, M. E.; Boggess, T. F.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Aytac, Y.; Flatte, M. E.; Boggess, T. F.] Univ Iowa, Opt Sci & Technol Ctr, Iowa City, IA 52242 USA. [Olson, B. V.; Kim, J. K.; Shaner, E. A.; Hawkins, S. D.; Klem, J. F.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Aytac, Y (reprint author), Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. EM yigit-aytac@uiowa.edu FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; U.S. Government FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No, DE-AC04-94AL85000. This research was funded by the U.S. Government. NR 29 TC 22 Z9 22 U1 2 U2 38 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 14 PY 2014 VL 105 IS 2 AR 022107 DI 10.1063/1.4890578 PG 4 WC Physics, Applied SC Physics GA AO2KU UT WOS:000341151400035 ER PT J AU Li, Y Yi, JH Song, HM Wang, Q Yang, ZQ Kelley, ND Lee, KS AF Li, Ye Yi, Jin-Hak Song, Huimin Wang, Qi Yang, Zhaoqing Kelley, Neil D. Lee, Kwang-Soo TI On the natural frequency of tidal current power systems-A discussion of sea testing SO APPLIED PHYSICS LETTERS LA English DT Article ID CURRENT TURBINE; WAVE-POWER; ENERGY AB To study the wet natural frequency (in water) and dry natural frequency (in air) of a tidal current turbine, we conducted a two-year measurement campaign by deploying a full-scale prototype of the system. In this article, a theoretical model is developed and validated with the frequency measurements. It reveals the measured wet natural frequency of the system could approach half that of the dry one. The measurements also show that inflow turbulence is very important in the excitation of system resonances that can lead to system failure. We also briefly discuss how the wet frequency varies over a long period. (C) 2014 AIP Publishing LLC. C1 [Li, Ye] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, State Key Lab Ocean Engn, Shanghai 200030, Peoples R China. [Yi, Jin-Hak; Lee, Kwang-Soo] Korea Inst Ocean Sci & Technol, Ansan 426744, Gyeonggi, South Korea. [Yi, Jin-Hak] Korea Maritime & Ocean Univ, Ocean Sci & Technol Sch, Dept Convergence Study Ocean Sci & Technol, Pusan, South Korea. [Song, Huimin] Schulumberger, Houston, TX 77073 USA. [Wang, Qi] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Yang, Zhaoqing] Pacific NW Natl Lab, Seattle, WA 98109 USA. RP Li, Y (reprint author), Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, State Key Lab Ocean Engn, 800 Dongchuan Rd, Shanghai 200030, Peoples R China. EM ye.li@sjtu.edu.cn; yijh@kiost.ac OI Yi, Jin-Hak/0000-0001-5569-3885 FU Chinese 1000 Talents Plan; U.S. Department of Energy; Korea Institute of Marine Science and Technology (KIMST); Ministry of Oceans and Fisheries, Korea [20110171] FX We thank the Chinese 1000 Talents Plan, U.S. Department of Energy, the Korea Institute of Marine Science and Technology (KIMST), and Ministry of Oceans and Fisheries, Korea (20110171) for financial support. We also thank our colleague Levi Kilcher for comments and suggestions. NR 24 TC 1 Z9 2 U1 6 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 14 PY 2014 VL 105 IS 2 AR 023902 DI 10.1063/1.4886797 PG 5 WC Physics, Applied SC Physics GA AO2KU UT WOS:000341151400087 ER PT J AU Stratakis, D Sayed, HK Rogers, CT Alekou, A Pasternak, J AF Stratakis, Diktys Sayed, H. Kamal Rogers, Chris T. Alekou, Androula Pasternak, Jaroslaw TI Conceptual design and modeling of particle-matter interaction cooling systems for muon based applications SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB An ionization cooling channel is a tightly spaced lattice containing absorbers for reducing the momentum of the muon beam, rf cavities for restoring the longitudinal momentum, and strong solenoids for focusing. Such a lattice can be an essential feature for fundamental high-energy physics applications. In this paper we design, simulate, and compare four individual cooling schemes that rely on ionization cooling. We establish a scaling characterizing the impact of rf gradient limitations on the overall performance and systematically compare important lattice parameters such as the required magnetic fields and the number of cavities and absorber lengths for each cooling scenario. We discuss approaches for reducing the peak magnetic field inside the rf cavities by either increasing the lattice cell length or adopting a novel bucked-coil configuration. We numerically examine the performance of our proposed channels with two independent codes that fully incorporate all basic particle-matter-interaction physical processes. C1 [Stratakis, Diktys; Sayed, H. Kamal] Brookhaven Natl Lab, Upton, NY 11973 USA. [Rogers, Chris T.; Pasternak, Jaroslaw] STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Alekou, Androula] CERN, CH-1211 Geneva 23, Switzerland. [Pasternak, Jaroslaw] Univ London Imperial Coll Sci Technol & Med, London SW7 2BW, England. RP Stratakis, D (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Kamal Sayed, Hisham/C-8602-2015 OI Kamal Sayed, Hisham/0000-0002-6178-8394 FU U.S. Department of Energy [DE-AC02-98CH10886] FX The authors are grateful to J. S. Berg, X. Ding, H. Kirk, R. B. Palmer, R. Ryne, and H. Witte for many useful discussions. This work is supported by the U.S. Department of Energy, Contract No. DE-AC02-98CH10886. NR 39 TC 0 Z9 0 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL 14 PY 2014 VL 17 IS 7 AR 071001 DI 10.1103/PhysRevSTAB.17.071001 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AO3QR UT WOS:000341249300001 ER PT J AU Horsley, K Beal, RJ Wilks, RG Blum, M Haming, M Hanks, DA Weir, MG Hofmann, T Weinhardt, L Bar, M Potter, BG Heske, C AF Horsley, K. Beal, R. J. Wilks, R. G. Blum, M. Haeming, M. Hanks, D. A. Weir, M. G. Hofmann, T. Weinhardt, L. Baer, M. Potter, B. G., Jr. Heske, C. TI Impact of annealing on the chemical structure and morphology of the thin-film CdTe/ZnO interface SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; ANODIC OXIDE-FILMS; QUANTUM DOTS; SOLAR-CELLS; PHOTOSENSITIZATION; HG0.8CD0.2TE AB To enable an understanding and optimization of the optoelectronic behavior of CdTe-ZnO nanocomposites, the morphological and chemical properties of annealed CdTe/ZnO interface structures were studied. For that purpose, CdTe layers of varying thickness (4-24 nm) were sputter-deposited on 100 nm-thick ZnO films on surface-oxidized Si(100) substrates. The morphological and chemical effects of annealing at 525 degrees C were investigated using X-ray Photoelectron Spectroscopy (XPS), X-ray-excited Auger electron spectroscopy, energy dispersive X-ray spectroscopy, scanning electron microscopy, and atomic force microscopy. We find a decrease of the Cd and Te surface concentration after annealing, parallel to an increase in Zn and O signals. While the as-deposited film surfaces show small grains (100 nm diameter) of CdTe on the ZnO surface, annealing induces a significant growth of these grains and separation into islands (with diameters as large as 1 mu m). The compositional change at the surface is more pronounced for Cd than for Te, as evidenced using component peak fitting of the Cd and Te 3d XPS peaks. The modified Auger parameters of Cd and Te are also calculated to further elucidate the local chemical environment before and after annealing. Together, these results suggest the formation of tellurium and cadmium oxide species at the CdTe/ZnO interface upon annealing, which can create a barrier for charge carrier transport, and might allow for a deliberate modification of interface properties with suitably chosen thermal treatment parameters. (C) 2014 AIP Publishing LLC. C1 [Horsley, K.; Blum, M.; Haeming, M.; Hanks, D. A.; Weir, M. G.; Hofmann, T.; Weinhardt, L.; Baer, M.; Heske, C.] UNLV, Dept Chem, Las Vegas, NV 89154 USA. [Beal, R. J.; Potter, B. G., Jr.] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA. [Wilks, R. G.; Baer, M.] Helmholtz Zentrum Berlin Mat & Energie GmbH HZB, Solar Energy Res, D-14109 Berlin, Germany. [Blum, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, ALS, Berkeley, CA 94720 USA. [Haeming, M.; Weinhardt, L.; Heske, C.] KIT, Inst Photon Sci & Synchrotron Radiat, D-76344 Eggenstein Leopoldshafen, Germany. [Hofmann, T.] Bundeswehr Res Inst Mat Fuels & Lubricants WIWeB, D-85435 Erding, Germany. [Weinhardt, L.; Heske, C.] KIT, ANKA Synchrotron Radiat Facil, D-76344 Eggenstein Leopoldshafen, Germany. [Baer, M.] Brandenburg Tech Univ Cottbus Senftenberg, Inst Chem & Phys, D-03046 Cottbus, Germany. [Potter, B. G., Jr.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. [Heske, C.] KIT, Inst Chem Technol & Polymer Chem, D-76128 Karlsruhe, Germany. RP Horsley, K (reprint author), UNLV, Dept Chem, Las Vegas, NV 89154 USA. EM horsley5@unlv.nevada.edu; bgpotter@email.arizona.edu; heske@unlv.nevada.edu FU Science Foundation Arizona [STI SRG 0408-08]; Office of Naval Research [N00014-11-M-0026]; Helmholtz-Association [VH-NG-423] FX The authors acknowledge Science Foundation Arizona (STI SRG 0408-08) and the Office of Naval Research (N00014-11-M-0026) for their support of the work. R.G.W. and M. B. thank the Helmholtz-Association (VH-NG-423) for financial support. NR 33 TC 1 Z9 1 U1 1 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 14 PY 2014 VL 116 IS 2 AR 024312 DI 10.1063/1.4890235 PG 12 WC Physics, Applied SC Physics GA AN0II UT WOS:000340267600067 ER PT J AU Ohodnicki, PR Andio, M Wang, C AF Ohodnicki, P. R., Jr. Andio, M. Wang, C. TI Optical gas sensing responses in transparent conducting oxides with large free carrier density SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID DOPED ZNO FILMS; HIGH-TEMPERATURE; METAL-OXIDES; ZINC-OXIDE; THIN-FILMS; SENSORS; HYDROGEN AB Inherent advantages of optical-based sensing devices motivate a need for materials with useful optical responses that can be utilized as thin film functional sensor layers. Transparent conducting metal oxides with large electrical conductivities as typified by Al-doped ZnO (AZO) display attractive properties for high temperature optical gas sensing through strong optical transduction of responses conventionally monitored through changes in measured electrical resistivity. An enhanced optical sensing response in the near-infrared and ultraviolet/visible wavelength ranges is demonstrated experimentally and linked with characteristic modifications to the dielectric constant due to a relatively high concentration of free charge carriers. The impact of light scattering on the magnitude and wavelength dependence of the sensing response is also discussed highlighting the potential for tuning the optical sensing response by controlling the surface roughness of a continuous film or the average particle size of a nanoparticle-based film. The physics underpinning the optical sensing response for AZO films on planar substrates yields significant insight into the measured sensing response for optical fiber-based evanescent wave absorption spectroscopy sensors employing an AZO sensing layer. The physics of optical gas sensing discussed here provides a pathway towards development of sensing materials for extreme temperature optical gas sensing applications. As one example, preliminary results are presented for a Nb-doped TiO2 film with sufficient stability and relatively large sensing responses at sensing temperatures greater than 500 degrees C. (C) 2014 AIP Publishing LLC. C1 [Ohodnicki, P. R., Jr.; Andio, M.; Wang, C.] Natl Energy Technol Lab, Electrochem & Magnet Mat Team, Funct Mat Dev Div, Pittsburgh, PA 15236 USA. [Ohodnicki, P. R., Jr.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Wang, C.] URS Corp Inc, South Pk, PA 15219 USA. RP Ohodnicki, PR (reprint author), Natl Energy Technol Lab, Electrochem & Magnet Mat Team, Funct Mat Dev Div, Pittsburgh, PA 15236 USA. FU U.S. DOE Advanced Research/Cross-cutting Technologies program at the National Energy Technology Laboratory; agency of the United States Government FX This work was funded by the U.S. DOE Advanced Research/Cross-cutting Technologies program at the National Energy Technology Laboratory. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 31 TC 16 Z9 16 U1 1 U2 35 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 14 PY 2014 VL 116 IS 2 AR 024309 DI 10.1063/1.4890011 PG 10 WC Physics, Applied SC Physics GA AN0II UT WOS:000340267600064 ER PT J AU Rochepault, E Aubert, G Vedrine, P AF Rochepault, Etienne Aubert, Guy Vedrine, Pierre TI Three-dimensional magnetic optimization of accelerator magnets using an analytic strip model SO JOURNAL OF APPLIED PHYSICS LA English DT Article AB The end design is a critical step in the design of superconducting accelerator magnets. First, the strain energy of the conductors must be minimized, which can be achieved using differential geometry. The end design also requires an optimization of the magnetic field homogeneity. A mechanical and magnetic model for the conductors, using developable strips, is described in this paper. This model can be applied to superconducting Rutherford cables, and it is particularly suitable for High Temperature Superconducting tapes. The great advantage of this approach is analytic simplifications in the field computation, allowing for very fast and accurate computations, which save a considerable computational time during the optimization process. Some 3D designs for dipoles are finally proposed, and it is shown that the harmonic integrals can be easily optimized using this model. (C) 2014 AIP Publishing LLC. C1 [Rochepault, Etienne; Aubert, Guy; Vedrine, Pierre] CEA Saclay, IRFU, SACM, F-91191 Gif Sur Yvette, France. RP Rochepault, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Engn, Supercon Grp, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM etienne.rochepault@gmail.com NR 15 TC 0 Z9 0 U1 2 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 14 PY 2014 VL 116 IS 2 AR 023910 DI 10.1063/1.4890234 PG 7 WC Physics, Applied SC Physics GA AN0II UT WOS:000340267600050 ER PT J AU Shao, S Wang, J Misra, A AF Shao, Shuai Wang, J. Misra, Amit TI Energy minimization mechanisms of semi-coherent interfaces SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS; DISLOCATION NUCLEATION; ATOMISTIC SIMULATIONS; BIMETAL INTERFACES; TWIST BOUNDARIES; CU; NI; FILMS; DEFORMATION; MULTILAYERS AB In this article, we discussed energy minimization mechanisms of semi-coherent interfaces based on atomistic simulations and dislocation theory. For example, of {111} interfaces between two face centered cubic (FCC) crystals, interface comprises of two stable structures (normal FCC stacking structure and intrinsic stacking fault structure), misfit dislocations, and misfit dislocation intersections or nodes (corresponding to the high energy stacking fault (HESF) structure). According to atomistic simulations of four interfaces, we found that (1) greater spacing between misfit dislocations and/or larger slopes of generalized stacking fault energy at the stable interface structures leads to a narrower dislocation core and a higher state of coherency in the stable interfaces; (2) the HESF region is relaxed by the relative rotation and dilation/compression of the two crystals at the node. The crystal rotation is responsible for the spiral feature at the vicinity of a node and the dilation/compression is responsible for the creation of the free volume at a node; (3) the spiral feature is gradually frail and the free volume decreases with decreasing misfit dislocation spacing, which corresponds to an increase in lattice mismatch and/or a decrease in lattice rotation. Finally, the analysis method and energy minimization mechanisms explored in FCC {111} semi-coherent interfaces are also applicable for other semi-coherent interfaces. (C) 2014 AIP Publishing LLC. C1 [Shao, Shuai; Wang, J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Misra, Amit] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA. RP Wang, J (reprint author), Los Alamos Natl Lab, MST 8, Los Alamos, NM 87545 USA. EM wangj6@lanl.gov RI Shao, Shuai/B-2037-2014; Misra, Amit/H-1087-2012; Wang, Jian/F-2669-2012 OI Shao, Shuai/0000-0002-4718-2783; Wang, Jian/0000-0001-5130-300X FU US Department of Energy, Office of Science, Office of Basic Energy Sciences; Los Alamos National Laboratory Directed Research and Development [LDRD-ER20140450] FX The authors acknowledge the support provided by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. J. Wang also acknowledges support provided by the Los Alamos National Laboratory Directed Research and Development (LDRD-ER20140450). The valuable discussion with Professor J. P. Hirth, Richard G. Hoagland, and Robert Pond is appreciated. NR 53 TC 13 Z9 13 U1 4 U2 46 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 14 PY 2014 VL 116 IS 2 AR 023508 DI 10.1063/1.4889927 PG 10 WC Physics, Applied SC Physics GA AN0II UT WOS:000340267600020 ER PT J AU Son, JS Zhang, H Jang, J Poudel, B Waring, A Nally, L Talapin, DV AF Son, Jae Sung Zhang, Hao Jang, Jaeyoung Poudel, Bed Waring, Al Nally, Luke Talapin, Dmitri V. TI All-Inorganic Nanocrystals as a Glue for BiSbTe Grains: Design of Interfaces in Mesostructured Thermoelectric Materials SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE bismuth; interfaces; nanostructures; semiconductors; thermoelectric materials ID BISMUTH-ANTIMONY TELLURIDE; SIZE; PERFORMANCE; FIGURE; MERIT AB Nano- and mesostructuring is widely used in thermoelectric (TE) materials. It introduces numerous interfaces and grain boundaries that scatter phonons and decrease thermal conductivity. A new approach has been developed for the rational design of the interfaces in TE materials by using all-inorganic nanocrystals (NCs) that serve as a "glue" for mesoscopic grains. For example, circa 10 nm Bi NCs capped with (N2H5)(4)Sb2Te7 chalcogenidometallate ligands can be used as an additive to BiSbTe particles. During heat treatment, NCs fill up the voids between particles and act as a "glue", joining grains in hot-pressed pellets or solution-processed films. The chemical design of NC glue allowed the selective enhancement or decrease of the majority-carrier concentration near the grain boundaries, and thus resulted in doped or de-doped interfaces in granular TE material. Chemically engineered interfaces can be used as to optimize power factor and thermal conductivity. C1 [Son, Jae Sung; Zhang, Hao; Jang, Jaeyoung; Talapin, Dmitri V.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Son, Jae Sung; Zhang, Hao; Jang, Jaeyoung; Talapin, Dmitri V.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Poudel, Bed; Waring, Al; Nally, Luke] Evident Technol Inc, Troy, NY USA. [Talapin, Dmitri V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Talapin, DV (reprint author), Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. EM dvtalapin@uchicago.edu RI Son, Jae Sung/C-2903-2014 FU II-VI Foundation; Evident Technologies; NSF MRSEC Program [DMR-0213745]; US Department of Energy [DE-AC02-06CH11357] FX We thank S. G. Kwon for the EDS and DSC measurements. This work was supported by the II-VI Foundation, Evident Technologies, and NSF MRSEC Program under Award Number DMR-0213745. J.S.S. and D.V.T. also thank the University of Chicago Innovation Fund. The work at the Center for Nanoscale Materials (ANL) was supported by the US Department of Energy under Contract No. DE-AC02-06CH11357. NR 26 TC 15 Z9 15 U1 4 U2 77 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD JUL 14 PY 2014 VL 53 IS 29 BP 7466 EP 7470 DI 10.1002/anie.201402026 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA AM0VF UT WOS:000339564800007 PM 24852900 ER PT J AU Chern, GW Chien, CC Di Ventra, M AF Chern, Gia-Wei Chien, Chih-Chun Di Ventra, Massimiliano TI Dynamically generated flat-band phases in optical kagome lattices SO PHYSICAL REVIEW A LA English DT Article ID ULTRACOLD QUANTUM GASES; ANTIFERROMAGNET; STATES; TEMPERATURE; DISORDER; SYSTEMS; ATOMS; ORDER AB Motivated by recent advances in the realization of complex two-dimensional optical lattices, we investigate theoretically the quantum transport of ultracold fermions in an optical kagome lattice. In particular, we focus on its extensively degenerate localized states (flat band). By loading fermions in a partial region of the lattice and depleting the mobile atoms at the far boundary of the initially unoccupied region, we find a dynamically generated flat-band insulator, which is also a population-inverted state. We further show that inclusion of weak repulsion leads to a dynamical stripe phase for two-component fermions in a similar setup. Finally, by preparing a topological insulating state in a partially occupied kagome lattice, we find that the topological chiral current decays but exhibits an interesting oscillating dynamics during the nonequilibrium transport. Given the broad variety of lattice geometries supporting localized or topological states, our work suggests new possibilities for using geometrical effects and their dynamics in atomtronic devices. C1 [Chern, Gia-Wei] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Chern, Gia-Wei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Chien, Chih-Chun] Univ Calif, Sch Nat Sci, Merced, CA 95343 USA. [Di Ventra, Massimiliano] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Chern, GW (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. FU US DOE through the LANL/LDRD Program; DOE [DE-FG02-05ER46204] FX G.W.C and C.C.C. acknowledge the support of the US DOE through the LANL/LDRD Program. M. D. acknowledges support from DOE Grant No. DE-FG02-05ER46204. NR 50 TC 8 Z9 8 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD JUL 14 PY 2014 VL 90 IS 1 AR 013609 DI 10.1103/PhysRevA.90.013609 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA AL9ER UT WOS:000339443300017 ER PT J AU Dougherty, DB Sandin, A Vescovo, E Rowe, JE AF Dougherty, Daniel B. Sandin, Andreas Vescovo, Elio Rowe, J. E. TI Coverage-dependent surface magnetism of iron phthalocyanine on an O-Fe(110) surface SO PHYSICAL REVIEW B LA English DT Article ID ORGANIC SPIN-VALVES; ELECTRONIC-STRUCTURE; MOLECULAR SPINTRONICS; FE(110) SURFACE; INJECTION; SEMICONDUCTORS; PHOTOEMISSION; INTERFACES; TRANSPORT; MAGNETORESISTANCE AB Iron phthalocyanine adsorbed on an oxygen covered Fe(110) surface shows a complex coverage-dependent spin polarization during growth of a molecular monolayer. Spin polarization is modified at low submonolayer coverages, absent at intermediate submonolayer coverages, and reappears in modified form for a complete monolayer. This is attributed to coverage-dependent adsorption configurations from a random adsorption system to a packed monolayer with a well-defined interfacial spin polarization. In addition, we report on the observation of a rotation of the spin direction of photoelectrons in the presence of molecules which is attributed to molecular modifications of surface magnetic anisotropy. C1 [Dougherty, Daniel B.; Sandin, Andreas; Rowe, J. E.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Vescovo, Elio] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Dougherty, DB (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. EM dbdoughe@ncsu.edu FU NSF Center for Chemical Innovation: Center for Molecular Spintronics [CHE-0943975]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was funded by the NSF Center for Chemical Innovation: Center for Molecular Spintronics (CHE-0943975). Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886 NR 48 TC 3 Z9 3 U1 7 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 14 PY 2014 VL 90 IS 4 AR 045406 DI 10.1103/PhysRevB.90.045406 PG 8 WC Physics, Condensed Matter SC Physics GA AL9FK UT WOS:000339445700007 ER PT J AU Basar, G Kharzeev, DE Shuryak, EV AF Basar, Goekce Kharzeev, Dmitri E. Shuryak, Edward V. TI Magneto-sonoluminescence and its signatures in photon and dilepton production in relativistic heavy ion collisions SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; QCD; TRANSPORT; PHYSICS; GLASMA; EVENT AB The matter produced in the early stages of heavy ion collisions consists mostly of gluons, and is penetrated by the coherent magnetic field produced by spectator nucleons. The fluctuations of gluonic matter in an external magnetic field couple to real and virtual photons through virtual quark loops. We study the resulting contributions to photon and dilepton production that stem from the fluctuations of the stress tensor T-mu nu in the background of a coherent magnetic field (B) over right arrow. Our study extends significantly the earlier work [G. Basar, D. E. Kharzeev, and V. Skokov, Phys. Rev. Lett. 109, 202303 (2012)], in which only the fluctuations of the trace of the stress tensor T-mu mu were considered (the coupling of T-mu mu to electromagnetic fields is governed by the scale anomaly). In the present paper we derive more general relations using the operator product expansion (OPE). We also extend the previous study to the case of dileptons, which offers the possibility to discriminate between various productionmechanisms. Among the phenomena that we study are magneto-sonoluminescence [MSL, the interaction of magnetic field (B) over right arrow (x, t) with the sound perturbations of the stress tensor dT (B) over right arrow (x, t) and magneto-thermoluminescence [MTL, the interaction of (B) over right arrow (x, t) with smooth average delta T mu nu(x,t)]. We calculate the rates of these process and find that they can dominate the photon and dilepton production at early stages of heavy ion collisions. We also point out the characteristic signatures of MSL and MTL that can be used to establish their presence and to diagnose the produced matter. C1 [Basar, Goekce; Kharzeev, Dmitri E.; Shuryak, Edward V.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kharzeev, Dmitri E.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Basar, G (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RI Basar, Gokce/O-6277-2016 FU U.S. Department of Energy [DE-FG-88ER40388, DE-AC02-98CH10886] FX This work was supported in part by the U.S. Department of Energy under Contracts No. DE-FG-88ER40388 and No. DE-AC02-98CH10886. NR 50 TC 14 Z9 14 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JUL 14 PY 2014 VL 90 IS 1 AR 014905 DI 10.1103/PhysRevC.90.014905 PG 16 WC Physics, Nuclear SC Physics GA AL9FQ UT WOS:000339446300005 ER PT J AU Shi, Y Ward, DE Carlsson, BG Dobaczewski, J Nazarewicz, W Ragnarsson, I Rudolph, D AF Shi, Yue Ward, D. E. Carlsson, B. G. Dobaczewski, J. Nazarewicz, W. Ragnarsson, I. Rudolph, D. TI Structure of superheavy nuclei along decay chains of element 115 SO PHYSICAL REVIEW C LA English DT Article ID QUASI-PARTICLE STATES; FISSION-BARRIERS; HEAVIEST NUCLEI; SHELL STRUCTURE; HEAVY; STABILITY; REGION AB A recent high-resolution alpha, X-ray, and gamma-ray coincidence-spectroscopy experiment offered the first glimpse of excitation schemes of isotopes along alpha-decay chains of Z = 115. To understand these observations and to make predictions about shell structure of superheavy nuclei below (288)115, we employ two complementary mean-field models: the self-consistent Skyrme energy density functional approach and the macroscopic-microscopic Nilsson model. We discuss the spectroscopic information carried by the new data. In particular, candidates for the experimentally observed E1 transitions in (276)Mt are proposed. We find that the presence and nature of low-energy E1 transitions in well-deformed nuclei around Z = 110, N = 168 strongly depends on the strength of the spin-orbit coupling; hence, it provides an excellent constraint on theoretical models of superheavy nuclei. To clarify competing theoretical scenarios, an experimental search for E1 transitions in odd-A systems (275,277)Mt, (275)Hs, and (277)Ds is strongly recommended. C1 [Shi, Yue; Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Ward, D. E.; Carlsson, B. G.; Ragnarsson, I.] Lund Univ, LTH, Div Math Phys, SE-22100 Lund, Sweden. [Dobaczewski, J.; Nazarewicz, W.] Univ Warsaw, Inst Theoret Phys, Fac Phys, PL-00681 Warsaw, Poland. [Dobaczewski, J.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Rudolph, D.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. RP Shi, Y (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Rudolph, Dirk/D-4259-2009 OI Rudolph, Dirk/0000-0003-1199-3055 FU U.S. Department of Energy (DOE) [DE-FG02-96ER40963, DE-SC0008499, DE-NA0001820]; Academy of Finland; University of Jyvaskyl" a within the FIDIPRO program; PolishNational Science Center [2012/07/B/ST2/03907]; Swedish Research Council FX Discussions with S. Aberg are gratefully acknowledged. This work was supported by the U.S. Department of Energy (DOE) under Contracts No. DE-FG02-96ER40963 (University of Tennessee), No. DE-SC0008499 (NUCLEI SciDAC Collaboration), and No. DE-NA0001820 (the Stewardship Science Academic Alliances program); by the Academy of Finland and University of Jyvaskyl" a within the FIDIPRO program; by the PolishNational Science Center under Contract No. 2012/07/B/ST2/03907; and by the Swedish Research Council. A grant of computer time was provided by the National Institute for Computational Sciences (NICS) and the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program using resources of the OLCF facility. NR 40 TC 9 Z9 9 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JUL 14 PY 2014 VL 90 IS 1 AR 014308 DI 10.1103/PhysRevC.90.014308 PG 9 WC Physics, Nuclear SC Physics GA AL9FQ UT WOS:000339446300002 ER PT J AU Akl, TJ Wilson, MA Ericson, MN Farquhar, E Cote, GL AF Akl, Tony J. Wilson, Mark A. Ericson, M. Nance Farquhar, Ethan Cote, Gerard L. TI Wireless Monitoring of Liver Hemodynamics In Vivo SO PLOS ONE LA English DT Article ID NEAR-INFRARED SPECTROSCOPY; IMPLANTABLE SENSOR; CEREBRAL OXIMETRY; ALLOGRAFT FAILURE; PULSE OXIMETRY; OXYGENATION; PERFUSION; TRANSPLANTATION; NIRS; SIGNALS AB Liver transplants have their highest technical failure rate in the first two weeks following surgery. Currently, there are limited devices for continuous, real-time monitoring of the graft. In this work, a three wavelengths system is presented that combines near-infrared spectroscopy and photoplethysmography with a processing method that can uniquely measure and separate the venous and arterial oxygen contributions. This strategy allows for the quantification of tissue oxygen consumption used to study hepatic metabolic activity and to relate it to tissue stress. The sensor is battery operated and communicates wirelessly with a data acquisition computer which provides the possibility of implantation provided sufficient miniaturization. In two in vivo porcine studies, the sensor tracked perfusion changes in hepatic tissue during vascular occlusions with a root mean square error (RMSE) of 0.135 mL/min/g of tissue. We show the possibility of using the pulsatile wave to measure the arterial oxygen saturation similar to pulse oximetry. The signal is also used to extract the venous oxygen saturation from the direct current (DC) levels. Arterial and venous oxygen saturation changes were measured with an RMSE of 2.19% and 1.39% respectively when no vascular occlusions were induced. This error increased to 2.82% and 3.83% when vascular occlusions were induced during hypoxia. These errors are similar to the resolution of a commercial oximetry catheter used as a reference. This work is the first realization of a wireless optical sensor for continuous monitoring of hepatic hemodynamics. C1 [Akl, Tony J.; Cote, Gerard L.] Texas A&M Univ, Dept Biomed Engn, College Stn, TX 77843 USA. [Wilson, Mark A.] Univ Pittsburgh, Dept Surg, Pittsburgh, PA USA. [Wilson, Mark A.] Vet Affairs Pittsburgh Healthcare Syst, Pittsburgh, PA USA. [Ericson, M. Nance; Farquhar, Ethan] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Akl, TJ (reprint author), Texas A&M Univ, Dept Biomed Engn, College Stn, TX 77843 USA. EM tja161@gmail.com RI Ericson, Milton/H-9880-2016 OI Ericson, Milton/0000-0002-6628-4865 FU National Institutes of Health (NIH) through a Bioengineering Research Partnership (BRP) grant [5R01-GM077150] FX This work was funded by the National Institutes of Health (NIH) through a Bioengineering Research Partnership (BRP) grant (#5R01-GM077150). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 32 TC 3 Z9 3 U1 0 U2 10 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 14 PY 2014 VL 9 IS 7 AR e102396 DI 10.1371/journal.pone.0102396 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AM1PC UT WOS:000339618600076 PM 25019160 ER PT J AU Wolfsgruber, S Wagner, M Schmidtke, K Frolich, L Kurz, A Schulz, S Hampel, H Heuser, I Peters, O Reischies, FM Jahn, H Luckhaus, C Hull, M Gertz, HJ Schroder, J Pantel, J Rienhoff, O Ruther, E Henn, F Wiltfang, J Maier, W Kornhuber, J Jessen, F AF Wolfsgruber, Steffen Wagner, Michael Schmidtke, Klaus Froelich, Lutz Kurz, Alexander Schulz, Stefanie Hampel, Harald Heuser, Isabella Peters, Oliver Reischies, Friedel M. Jahn, Holger Luckhaus, Christian Huell, Michael Gertz, Hermann-Josef Schroeder, Johannes Pantel, Johannes Rienhoff, Otto Ruether, Eckart Henn, Fritz Wiltfang, Jens Maier, Wolfgang Kornhuber, Johannes Jessen, Frank TI Memory Concerns, Memory Performance and Risk of Dementia in Patients with Mild Cognitive Impairment SO PLOS ONE LA English DT Article ID ALZHEIMERS-DISEASE; AMYLOID BURDEN; AMNESTIC MCI; COMPLAINTS; DIAGNOSIS; ASSOCIATION; ANOSOGNOSIA; DEPRESSION; PREDICTION; AWARENESS AB Background: Concerns about worsening memory ("memory concerns"; MC) and impairment in memory performance are both predictors of Alzheimer's dementia (AD). The relationship of both in dementia prediction at the pre-dementia disease stage, however, is not well explored. Refined understanding of the contribution of both MC and memory performance in dementia prediction is crucial for defining at-risk populations. We examined the risk of incident AD by MC and memory performance in patients with mild cognitive impairment (MCI). Methods: We analyzed data of 417 MCI patients from a longitudinal multicenter observational study. Patients were classified based on presence (n = 305) vs. absence (n = 112) of MC. Risk of incident AD was estimated with Cox Proportional-Hazards regression models. Results: Risk of incident AD was increased by MC (HR = 2.55, 95% CI: 1.33-4.89), lower memory performance (HR = 0.63, 95% CI: 0.56-0.71) and ApoE4-genotype (HR = 1.89, 95% CI: 1.18-3.02). An interaction effect between MC and memory performance was observed. The predictive power of MC was greatest for patients with very mild memory impairment and decreased with increasing memory impairment. Conclusions: Our data suggest that the power of MC as a predictor of future dementia at the MCI stage varies with the patients' level of cognitive impairment. While MC are predictive at early stage MCI, their predictive value at more advanced stages of MCI is reduced. This suggests that loss of insight related to AD may occur at the late stage of MCI. C1 [Wolfsgruber, Steffen; Wagner, Michael; Maier, Wolfgang; Jessen, Frank] Univ Bonn, Dept Psychiat, Bonn, Germany. [Wolfsgruber, Steffen; Wagner, Michael; Maier, Wolfgang; Jessen, Frank] German Ctr Neurodegenerat Dis, Bonn, Germany. [Schmidtke, Klaus] Ortenau Klinikum, Ctr Geriatr Med, Offenburg Gengenbach, Germany. [Froelich, Lutz] Cent Inst Mental Hlth, Dept Gerontopsychiat, Mannheim, Germany. [Kurz, Alexander] Tech Univ Munich, Dept Psychiat, D-80290 Munich, Germany. [Schulz, Stefanie] Univ Aachen, Dept Neurol, Aachen, Germany. [Schulz, Stefanie; Ruether, Eckart] Univ Gottingen, Dept Psychiat, D-37073 Gottingen, Germany. [Hampel, Harald] Univ Munich, Dept Psychiat, D-80539 Munich, Germany. [Heuser, Isabella; Peters, Oliver; Reischies, Friedel M.] Charite, Dept Psychiat, Berlin, Germany. [Jahn, Holger] Univ Hamburg, Dept Psychiat, Hamburg, Germany. [Luckhaus, Christian] Univ Dusseldorf, Fac Med, Dept Psychiat & Psychotherapy, Dusseldorf, Germany. [Huell, Michael] Univ Freiburg, Ctr Geriatr Med & Gerontol, D-79106 Freiburg, Germany. [Gertz, Hermann-Josef] Univ Leipzig, Dept Psychiat, D-04109 Leipzig, Germany. [Schroeder, Johannes] Heidelberg Univ, Dept Psychiat, Heidelberg, Germany. [Pantel, Johannes] Goethe Univ Frankfurt, Inst Gen Practice, D-60054 Frankfurt, Germany. [Rienhoff, Otto] Univ Gottingen, Dept Med Informat, D-37073 Gottingen, Germany. [Henn, Fritz] Brookhaven Natl Lab, Upton, NY 11973 USA. [Wiltfang, Jens] Univ Essen Gesamthsch, Dept Psychiat, Essen, Germany. [Kornhuber, Johannes] Univ Erlangen Nurnberg, Dept Psychiat, D-91054 Erlangen, Germany. RP Wolfsgruber, S (reprint author), Univ Bonn, Dept Psychiat, Bonn, Germany. EM Steffen.Wolfsgruber@ukb.uni-bonn.de RI Jahn, Holger/A-9255-2008; Wagner, Michael/E-2325-2011; Fachbereich14, Dekanat/C-8553-2015; OI Jahn, Holger/0000-0003-3607-7651; Wagner, Michael/0000-0003-2589-6440; Kornhuber, Johannes/0000-0002-8096-3987 FU German Federal Ministry of Education and Research (BMBF): Kompetenznetz Demenzen [01GI0420]; Katharina-Hardt-Foundation, Bad Homburg, Germany FX This study has been supported by a grant from the German Federal Ministry of Education and Research (BMBF): Kompetenznetz Demenzen (01GI0420). Harald Hampel was supported by grants of the Katharina-Hardt-Foundation, Bad Homburg, Germany. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 41 TC 12 Z9 12 U1 0 U2 16 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 14 PY 2014 VL 9 IS 7 AR e100812 DI 10.1371/journal.pone.0100812 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AM1PC UT WOS:000339618600007 PM 25019225 ER PT J AU Wanichthanarak, K Nookaew, I Petranovic, D AF Wanichthanarak, Kwanjeera Nookaew, Intawat Petranovic, Dina TI yStreX: yeast stress expression database SO DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION LA English DT Article ID GENE-EXPRESSION; TRANSCRIPTIONAL REGULATION; ENVIRONMENTAL-CHANGES; CELL-DEATH; GENOME; METABOLISM; APOPTOSIS; UPDATE AB Over the past decade genome-wide expression analyses have been often used to study how expression of genes changes in response to various environmental stresses. Many of these studies (such as effects of oxygen concentration, temperature stress, low pH stress, osmotic stress, depletion or limitation of nutrients, addition of different chemical compounds, etc.) have been conducted in the unicellular Eukaryal model, yeast Saccharomyces cerevisiae. However, the lack of a unifying or integrated, bioinformatics platformthat would permit efficient and rapid use of all these existing data remain an important issue. To facilitate research by exploiting existing transcription data in the field of yeast physiology, we have developed the yStreX database. It is an online repository of analyzed gene expression data from curated data sets from different studies that capture genome-wide transcriptional changes in response to diverse environmental transitions. The first aim of this online database is to facilitate comparison of cross-platform and cross-laboratory gene expression data. Additionally, we performed different expression analyses, meta-analyses and gene set enrichment analyses; and the results are also deposited in this database. Lastly, we constructed a user-friendly Web interface with interactive visualization to provide intuitive access and to display the queried data for users with no background in bioinformatics. Database URL: http://www.ystrexdb.com C1 [Wanichthanarak, Kwanjeera; Nookaew, Intawat; Petranovic, Dina] Chalmers, Dept Chem & Biol Engn, S-41296 Gothenburg, Sweden. [Nookaew, Intawat] Oak Ridge Natl Lab, Comparat Genom Grp, Biosci Div, Oak Ridge, TN 37831 USA. RP Petranovic, D (reprint author), Chalmers, Dept Chem & Biol Engn, S-41296 Gothenburg, Sweden. EM dina.petranovic@chalmers.se OI Petranovic, Dina/0000-0001-8724-3942 FU Chalmers Foundation; BILS (Bioinformatics Infrastructure for Life Science); Chalmers Library FX This project was supported by The Chalmers Foundation and BILS (Bioinformatics Infrastructure for Life Science). Funding for open access charge: Chalmers Library. NR 28 TC 2 Z9 2 U1 1 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1758-0463 J9 DATABASE-OXFORD JI Database PD JUL 14 PY 2014 DI 10.1093/database/bau068 PG 7 WC Mathematical & Computational Biology SC Mathematical & Computational Biology GA AL3PL UT WOS:000339040700001 ER PT J AU Kottas, GS Brotin, T Schwab, PFH Gala, K Havlas, Z Kirby, JP Miller, JR Michl, J AF Kottas, Gregg S. Brotin, Thierry Schwab, Peter F. H. Gala, Kamal Havlas, Zdenek Kirby, James P. Miller, John R. Michl, Josef TI Tetraarylcyclobutadienecyclopentadienylcobalt Complexes: Synthesis, Electronic Spectra, Magnetic Circular Dichroism, Linear Dichroism, and TD DFT Calculations SO ORGANOMETALLICS LA English DT Article ID CATALYTIC ASYMMETRIC-SYNTHESIS; ALTITUDINAL MOLECULAR ROTORS; ORGANOMETALLIC PI-COMPLEXES; TETRAGONAL STAR CONNECTORS; PHASE-TRANSFER CATALYSIS; COMPOUND BASED APPROACH; CHIRAL ALLYLIC ESTERS; DIETHYL DICHLOROMETHYLPHOSPHONATE; COBALTACYCLOPENTADIENE MOIETIES; CONVENIENT SYNTHESIS AB The known (tetraphenyl-eta(4)-cyclobutadiene)-eta(5)-cyclopentadienylcobalt (1) and a series of its new substituted derivatives have been prepared. The electronic states of a few representatives have been characterized by absorption and magnetic circular dichroism. Time-dependent density functional theory has been used to arrive at spectral assignments for several prominent low-energy bands. The absorption spectra of the radical ions of 1 have also been recorded. C1 [Kottas, Gregg S.; Brotin, Thierry; Schwab, Peter F. H.; Gala, Kamal; Michl, Josef] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Havlas, Zdenek; Michl, Josef] Acad Sci Czech Republic, Inst Chem & Biochem, Prague 16610 6, Czech Republic. [Kirby, James P.; Miller, John R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Michl, J (reprint author), Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. EM michl@eefus.colorado.edu RI Michl, Josef/G-9376-2014; Havlas, Zdenek/B-2164-2012 OI Havlas, Zdenek/0000-0002-8369-7303 FU National Science Foundation [CHE-1265922]; Institute of Organic Chemistry and Biochemistry [RVO:61388963]; Czech Science Foundation [P208/12/G016]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-98-CH10886] FX This material is based upon work supported by the National Science Foundation under Grant No. CHE-1265922. We thank Drs. Benjamin T. King, Evgueni Pinkhassik, and Darren K. MacFarland for initial synthetic studies. Work in Prague was supported by the Institute of Organic Chemistry and Biochemistry (RVO:61388963) and the Czech Science Foundation (P208/12/G016). The authors gratefully acknowledge support of the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy, through Grant DE-AC02-98-CH10886, and for use of the LEAF Facility of the BNL Accelerator Center for Energy Research. NR 93 TC 6 Z9 6 U1 2 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 EI 1520-6041 J9 ORGANOMETALLICS JI Organometallics PD JUL 14 PY 2014 VL 33 IS 13 BP 3251 EP 3264 DI 10.1021/om400403j PG 14 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA AL4GK UT WOS:000339090700008 ER PT J AU Cordon, AC DeGrand, T Goity, JL AF Cordon, A. Calle DeGrand, T. Goity, J. L. TI N-c dependencies of baryon masses: Analysis with lattice QCD and effective theory SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL PERTURBATION-THEORY; GAUGE-THEORIES; 1/N-C EXPANSION; AXIAL CURRENTS; QUARKS AB Baryon masses at varying values of N-c and light quark masses are studied with lattice QCD and the results are analyzed in a low-energy effective theory based on a combined framework of the 1/N-c and heavy baryon chiral perturbation theory expansions. Lattice QCD results for N-c = 3, 5 and 7 obtained in quenched calculations, as well as results for unquenched calculations for N-c = 3, are used for the analysis. The results are consistent with a previous analysis of N-c = 3 lattice QCD results, and in addition permit the determination of subleading in 1/N-c effects in the spin-flavor singlet component of the baryon masses, as well as in the hyperfine splittings. C1 [Cordon, A. Calle; Goity, J. L.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Cordon, A. Calle] Univ Murcia, Dept Fis, E-30071 Murcia, Spain. [DeGrand, T.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Goity, J. L.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. RP Cordon, AC (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM alvaro.calle@um.es; thomas.degrand@colorado.edu; goity@jlab.org FU U. S. Department of Energy [DE-FG02-04ER41290]; DOE [DE-AC05-06OR23177]; National Science Foundation (USA) [PHY-0855789, PHY-1307413]; EU [227431] FX T. D. thanks JLab, where this project was initiated, for its hospitality. The conversion of the MILC code to an arbitrary number of colors was done by T. D. with Y. Shamir and B. Svetitsky. This work was supported in part by the U. S. Department of Energy under Grant No. DE-FG02-04ER41290 (T. D.), by DOE Contract No. DE-AC05-06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility (A. C. C. and J. L. G.), and by the National Science Foundation (USA) through Grants No. PHY-0855789 and No. PHY-1307413 (J. L. G.). A. C. C. also thanks the financial support from the EU-Research Infrastructure Integrating Activity, "Study of Strongly Interacting Matter," (HadronPhysics2, Grant No. 227431) under the Seventh Framework Program of the EU. NR 47 TC 9 Z9 9 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL 14 PY 2014 VL 90 IS 1 AR 014505 DI 10.1103/PhysRevD.90.014505 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AL9FV UT WOS:000339446800004 ER PT J AU Hemsing, E Stupakov, G Xiang, D Zholents, A AF Hemsing, Erik Stupakov, Gennady Xiang, Dao Zholents, Alexander TI Beam by design: Laser manipulation of electrons in modern accelerators SO REVIEWS OF MODERN PHYSICS LA English DT Article ID X-RAY PULSES; AMPLIFIED SPONTANEOUS EMISSION; EXTREME-ULTRAVIOLET; HARMONIC-GENERATION; STIMULATED-EMISSION; ULTRA-SHORT; SYNCHROTRON-RADIATION; PARTICLE-ACCELERATION; THOMSON SCATTERING; ANGULAR-MOMENTUM AB Accelerator-based light sources such as storage rings and free-electron lasers use relativistic electron beams to produce intense radiation over a wide spectral range for fundamental research in physics, chemistry, materials science, biology, and medicine. More than a dozen such sources operate worldwide, and new sources are being built to deliver radiation that meets with the ever-increasing sophistication and depth of new research. Even so, conventional accelerator techniques often cannot keep pace with new demands and, thus, new approaches continue to emerge. In this article, a variety of recently developed and promising techniques that rely on lasers to manipulate and rearrange the electron distribution in order to tailor the properties of the radiation are reviewed. Basic theories of electron-laser interactions, techniques to create microstructures and nanostructures in electron beams, and techniques to produce radiation with customizable waveforms are reviewed. An overview of laser-based techniques for the generation of fully coherent x rays, mode-locked x-ray pulse trains, light with orbital angular momentum, and attosecond or even zeptosecond long coherent pulses in free-electron lasers is presented. Several methods to generate femtosecond pulses in storage rings are also discussed. Additionally, various schemes designed to enhance the performance of light sources through precision beam preparation including beam conditioning, laser heating, emittance exchange, and various laser-based diagnostics are described. Together these techniques represent a new emerging concept of "beam by design" in modern accelerators, which is the primary focus of this article. C1 [Hemsing, Erik; Stupakov, Gennady; Xiang, Dao] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Zholents, Alexander] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Hemsing, E (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. EM ehemsing@slac.stanford.edu; stupakov@slac.stanford.edu; dxiang@sjtu.edu.cn; azholents@aps.anl.gov RI Xiang, Dao/P-2169-2015 FU U.S. Department of Energy [DE-AC02-76SF00515, DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy Contracts No. DE-AC02-76SF00515 and No. DE-AC02-06CH11357. NR 275 TC 27 Z9 28 U1 4 U2 51 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD JUL 14 PY 2014 VL 86 IS 3 BP 897 EP 941 DI 10.1103/RevModPhys.86.897 PG 45 WC Physics, Multidisciplinary SC Physics GA AL4RX UT WOS:000339121500001 ER PT J AU Muller, A Schippers, S Phaneuf, RA Scully, SWJ Aguilar, A Cisneros, C Gharaibeh, MF Schlachter, AS McLaughlin, BM AF Mueller, A. Schippers, S. Phaneuf, R. A. Scully, S. W. J. Aguilar, A. Cisneros, C. Gharaibeh, M. F. Schlachter, A. S. McLaughlin, B. M. TI K-shell photoionization of Be-like boron (B+) ions: experiment and theory SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article DE K-shell; photoionization; boron ID PHOTOABSORPTION CROSS-SECTIONS; ELECTRON-IMPACT IONIZATION; DOUBLY-EXCITED RESONANCES; RESOLUTION AUGER-SPECTRA; SINGLE GAS COLLISIONS; R-MATRIX THEORY; ATOMIC IONS; IONIZED BORON; SPECTROSCOPY; FLUORESCENCE AB Absolute cross sections for the K-shell photoionization of Be-like boron ions were measured with the ion-photon merged-beams technique at the Advanced Light Source synchrotron radiation facility. High-resolution spectroscopy with E/Delta E up to 8800 (Delta E similar to 22 meV) covered the energy ranges 193.7-194.7 eV and 209-215 eV. Lifetimes of the strongest resonances are determined with relative uncertainties down to approximately 4% for the broadest resonance. The measured resonance strengths are consistent with 60% 1s(2)2s(2) S-1 ground-state and 40% 1s(2)2s2p P-3(o) metastable-state ions in the primary ion beam and confirmed by comparison with independent absolute photo-recombination heavy-ion storage-ring measurements with B2+ ions using the principle of detailed balance. Experimental determination of the line width for the 1s2s(2)2p P-1(o) resonance gives a value of 47 +/- 2 meV and compares favourably to a theoretical estimate of 47 meV from the R-matrix with pseudo-states (RMPS) method. The measured line widths of the 1s2s2p(2) P-3, D-3 resonances are 10.0 +/- 2 meV and 32 +/- 3 meV, respectively, compared to RMPS theoretical estimates of 9 meV and 34 meV. C1 [Mueller, A.; Schippers, S.] Univ Giessen, Inst Atom & Mol Phys, D-35390 Giessen, Germany. [Phaneuf, R. A.; Scully, S. W. J.; Aguilar, A.; Gharaibeh, M. F.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Aguilar, A.; Schlachter, A. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Cisneros, C.] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62131, Morelos, Mexico. [McLaughlin, B. M.] Queens Univ Belfast, Sch Math & Phys, CTAMOP, Belfast BT7 1NN, Antrim, North Ireland. [McLaughlin, B. M.] Harvard Smithsonian Ctr Astrophys, Inst Theoret Atom & Mol Phys, Cambridge, MA 02138 USA. RP Muller, A (reprint author), Univ Giessen, Inst Atom & Mol Phys, D-35390 Giessen, Germany. EM Alfred.Mueller@iamp.physik.uni-giessen.de; b.mclaughlin@qub.ac.uk RI Muller, Alfred/A-3548-2009; Schippers, Stefan/A-7786-2008 OI Muller, Alfred/0000-0002-0030-6929; Schippers, Stefan/0000-0002-6166-7138 FU Deutsche Forschungsgemeinschaft [Mu 1068/10]; NATO [976362]; US Department of Energy (DOE) [DE-AC03-76SF-00098, DE-FG02-03ER15424]; PAPIT-UNAM, Mexico [IN107912-IN102613]; US National Science Foundation; Queen's University Belfast; National Science Foundation [OCI-1053575]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX We acknowledge support by Deutsche Forschungsgemeinschaft under project number Mu 1068/10 and through NATO Collaborative Linkage grant 976362 as well as by the US Department of Energy (DOE) under contract DE-AC03-76SF-00098 and grant DE-FG02-03ER15424. C Cisneros acknowledges support from PAPIT-UNAM IN107912-IN102613, Mexico. B M McLaughlin acknowledges support by the US National Science Foundation through a grant to ITAMP at the Harvard-Smithsonian Center for Astrophysics, a visiting research fellowship from Queen's University Belfast and the hospitality of AM and SS during a recent visit to Giessen. We thank John C Raymond and Randall K Smith from the Harvard Smithsonian Center for Astrophysics for helpful discussions on the astrophysical applications. The computational work was carried out at the National Energy Research Scientific Computing Center in Oakland, CA, USA, the Kraken XT5 facility at the National Institute for Computational Science (NICS) in Knoxville, TN, USA and at the High Performance Computing Center Stuttgart (HLRS) of the University of Stuttgart, Stuttgart, Germany. We thank Stefan Andersson from Cray Research for his assistance and advice with the implementation and optimization of the parallel R-matrix codes on the Cray-XE6 at HLRS. The Kraken XT5 facility is a resource of the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 93 TC 9 Z9 9 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 EI 1361-6455 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JUL 14 PY 2014 VL 47 IS 13 AR 135201 DI 10.1088/0953-4075/47/13/135201 PG 13 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA AK9WU UT WOS:000338780100003 ER PT J AU Pradhan, GB Balakrishnan, N Kendrick, BK AF Pradhan, G. B. Balakrishnan, N. Kendrick, Brian K. TI Quantum dynamics of O(D-1)+D-2 reaction: isotope and vibrational excitation effects SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article DE ultracold chemistry; cold molecules; quantum dynamics ID POTENTIAL-ENERGY SURFACES; SYMMETRIC REPRESENTATION; SCATTERING CALCULATIONS; INSERTION REACTION; BRANCHING RATIOS; ANGULAR-MOMENTUM; 3-BODY PROBLEMS; HD REACTIONS; COLLISIONS; D-2 AB The effect of initial vibrational excitation of the D-2 molecule on the quantum dynamics of the O(D-1)+D-2 reaction is investigated as a function of collision energy. The potential energy surface of Dobbyn and Knowles (1997 Mol. Phys. 91 1107) and a time-independent quantum mechanical method based on hyperspherical coordinates have been adopted for the dynamics calculations. Results for elastic, inelastic, and reactive scattering over collision energies ranging from the ultracold to thermal regimes are reported for total angular momentum quantum number J = 0. Calculations show that the collisional outcome of the O(D-1)+D-2 reaction is not strongly influenced by the initial vibrational excitation of the D-2 molecule similar to its H-2 counterpart. A J-shifting approximation is used to calculate the initial state selected reactive rate coefficients over the temperature range T = 1-500 K. The reactive rate coefficients for D-2(nu = 0) are found to be in excellent agreement with available experimental results. The temperature dependence of the kinetic isotope effect is also investigated and its value at room temperature is found to be in good agreement with available theoretical and experimental results. C1 [Pradhan, G. B.; Balakrishnan, N.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Kendrick, Brian K.] Los Alamos Natl Lab, Theoret Div T1, Los Alamos, NM 87545 USA. RP Pradhan, GB (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. EM naduvala@unlv.nevada.edu FU NSF [PHY-1205838, ATM-0635715]; ARO MURI [W911NF-12-1-0476]; US Department of Energy at Los Alamos National Laboratory; National Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX This work was supported in part by NSF grants PHY-1205838 (NB), ATM-0635715 (NB), and ARO MURI grant no W911NF-12-1-0476. Computational support by National Supercomputing Center for Energy and the Environment at UNLV is gratefully acknowledged. BKK acknowledges that part of this work was done under the auspices of the US Department of Energy at Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. NR 42 TC 3 Z9 3 U1 3 U2 22 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 EI 1361-6455 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JUL 14 PY 2014 VL 47 IS 13 AR 135202 DI 10.1088/0953-4075/47/13/135202 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA AK9WU UT WOS:000338780100004 ER PT J AU Stenfeldt, C Pacheco, JM Borca, MV Rodriguez, LL Arzt, J AF Stenfeldt, Carolina Pacheco, Juan M. Borca, Manuel V. Rodriguez, Luis L. Arzt, Jonathan TI Morphologic and phenotypic characteristics of myocarditis in two pigs infected by foot-and mouth disease virus strains of serotypes O or A SO ACTA VETERINARIA SCANDINAVICA LA English DT Article DE Foot-and-mouth disease; Myocarditis; Virus; Pig; Pathology ID PATHOGENESIS; PIGLETS; CATTLE; SWINE AB Myocarditis is often cited as the cause of fatalities associated with foot-and-mouth disease virus (FMDV) infection. However, the pathogenesis of FMDV-associated myocarditis has not been described in detail. The current report describes substantial quantities of FMDV in association with a marked mononuclear inflammatory reaction, interstitial edema and cardiomyocyte degeneration in the myocardium of two pigs that died during acute infection with either of two different strains of FMDV. Despite similar clinical progression, there was a marked variation in morphological characteristics of myocarditis with a significant difference in intensity of myocardial inflammation between the two cases. Phenotypic characterization of leukocyte populations revealed that in both cases, the inflammatory infiltrate consisted mainly of combinations of CD172a+, CD163+ and CD44+ cells, with a distinct subset of CD8+ cells, but with consistent lack of detection of CD3+ and CD21+ cells. This suggests that the FMDV-associated acute myocardial inflammation in the two observed cases consisted mainly of leukocytes of monocyte lineage, with a distinct population of CD8+ cells which, based on lack of CD3 detection in serial sections, are likely to represent NK cells. C1 [Stenfeldt, Carolina; Pacheco, Juan M.; Borca, Manuel V.; Rodriguez, Luis L.; Arzt, Jonathan] USDA ARS, Plum Isl Anim Dis Ctr, Foreign Anim Dis Res Unit, Greenport, NY 11944 USA. [Stenfeldt, Carolina] Oak Ridge Inst Sci & Educ, PIADC Res Participat Program, Oak Ridge, TN 37831 USA. RP Arzt, J (reprint author), USDA ARS, Plum Isl Anim Dis Ctr, Foreign Anim Dis Res Unit, Greenport, NY 11944 USA. EM Jonathan.Arzt@ars.usda.gov OI Pacheco, Juan/0000-0001-5477-0201; Stenfeldt, Carolina/0000-0002-2074-3886; Borca, Manuel/0000-0002-0888-1178; Arzt, Jonathan/0000-0002-7517-7893 FU Plum Island Animal Disease Center Research Participation Program fellowship; ARS-CRIS Project [1940- 32000-057-00D]; Science and Technology Directorate of the U.S. Department of Homeland Security [HSHQDC-11-X-00189] FX CS is a recipient of a Plum Island Animal Disease Center Research Participation Program fellowship, administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement with the US Department of Energy. This research was funded in part by ARS-CRIS Project 1940- 32000-057-00D and an interagency agreement with the Science and Technology Directorate of the U.S. Department of Homeland Security (award number HSHQDC-11-X-00189). George R Smoliga and Ethan J Hartwig processed samples. The authors acknowledge Erin B Howey for contributing to design of the immunofluorescence assays. NR 17 TC 2 Z9 2 U1 0 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 0044-605X EI 1751-0147 J9 ACTA VET SCAND JI Acta Vet. Scand. PD JUL 12 PY 2014 VL 56 AR 42 DI 10.1186/s13028-014-0042-6 PG 7 WC Veterinary Sciences SC Veterinary Sciences GA AL5VW UT WOS:000339202400001 PM 25015718 ER PT J AU Lu, JX Burton, SD Xu, YS Buchko, GW Shaw, WJ AF Lu, Jun-xia Burton, Sarah D. Xu, Yimin S. Buchko, Garry W. Shaw, Wendy J. TI The flexible structure of the K24S28 region of Leucine-Rich Amelogenin Protein (LRAP) bound to apatites as a function of surface type, calcium, mutation, and ionic strength SO FRONTIERS IN PHYSIOLOGY LA English DT Article DE amelogenin; LRAP; secondary structure; biomineralization protein; solid state NMR ID SOLID-STATE NMR; DYNAMIC LIGHT-SCATTERING; SELF-ASSEMBLY PROPERTIES; DOUBLE-RESONANCE NMR; FORMATION IN-VITRO; RECOMBINANT AMELOGENIN; ENAMEL FORMATION; PHOSPHATE FORMATION; ROTATIONAL-ECHO; HYDROXYAPATITE AB Leucine-Rich Amelogenin Protein (LRAP) is a member of the amelogenin family of biomineralization proteins, proteins which play a critical role in enamel formation. Recent studies have revealed the structure and orientation of the N- and C-terminus of LRAP bound to hydroxyapatite (HAP), a surface used as an analog of enamel. The structure of one region, K24 to S28, was found to be sensitive to phosphorylation of S16, the only naturally observed site of serine phosphorylation in LRAP suggesting that K24S28 may sit at a key region of structural flexibility and play a role in the protein's function. In this work, we investigated the sensitivity of the structure and orientation of this region when bound to HAP as a function of several factors which may vary during enamel formation to influence structure: the ionic strength (0.05, 0.15, 0.2 M), the calcium concentration (0.07 and 0.4 mM), and the surface to which it is binding [HAP and carbonated apatite (CAP), a more direct mimic of enamel]. A naturally occurring mutation found in amelogenin (T21I) was also investigated. The structure in the K24S28 region of the protein was found to be sensitive to these conditions, with the CAP surface and excess Ca2+ (8:1 [Ca2+]:[LRAP-K24S28(+P)]) resulting in a tighter helix, while low ionic strength relaxed the helical structure. Higher ionic strength and the point mutation did not result in any structural change in this region. The distance of the backbone of K24 from the surface was most sensitive to excess Ca2+ and in the T21I-mutation. Collectively, these data suggest that phosphorylated LRAP is able to accommodate structural changes while maintaining its interaction with the surface, and provides further evidence of the structural sensitivity of the K24S28 region, a sensitivity that may contribute to function in biomineralization. C1 [Lu, Jun-xia; Burton, Sarah D.; Xu, Yimin S.; Buchko, Garry W.; Shaw, Wendy J.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Shaw, WJ (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM wendy.shaw@pnnl.gov RI Buchko, Garry/G-6173-2015 OI Buchko, Garry/0000-0002-3639-1061 FU NIH-NIDCR [DE-015347] FX The authors thank Dr. Claude Yoder (Franklin and Marshall College) for supplying the carbonated apatite. This research was supported by NIH-NIDCR Grant DE-015347. The research was performed at the Pacific Northwest National Laboratory (PNNL), a facility operated by Battelle for the US Department of Energy. NR 58 TC 2 Z9 2 U1 2 U2 17 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1664-042X J9 FRONT PHYSIOL JI Front. Physiol. PD JUL 11 PY 2014 VL 5 AR 254 DI 10.3389/fphys.2014.00254 PG 8 WC Physiology SC Physiology GA AX7BL UT WOS:000347071700001 PM 25071599 ER PT J AU Chyzh, A Wu, CY Kwan, E Henderson, RA Bredeweg, TA Haight, RC Hayes-Sterbenz, AC Lee, HY O'Donnell, JM Ullmann, JL AF Chyzh, A. Wu, C. Y. Kwan, E. Henderson, R. A. Bredeweg, T. A. Haight, R. C. Hayes-Sterbenz, A. C. Lee, H. Y. O'Donnell, J. M. Ullmann, J. L. TI Total prompt gamma-ray emission in fission of U-235, Pu-239,Pu-241, and Cf-252 SO PHYSICAL REVIEW C LA English DT Article ID DANCE AB The total prompt gamma-ray energy distributions for the neutron-induced fission of U-235 and Pu-239,Pu-241 in the neutron energy range of 0.025 eV - 100 keV and the spontaneous fission of Cf-252 were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) in coincidence with the detection of fission fragments by a parallel-plate avalanche counter. DANCE is a highly segmented, highly efficient 4 pi gamma-ray calorimeter. Corrections were made to the measured distribution by unfolding the two-dimension spectrum of total gamma-ray energy vs multiplicity using a simulated DANCE response matrix generated with a geometrical model of the detector arrays and validated with the gamma-ray calibration sources. The mean values of the total prompt gamma-ray energy, determined from the unfolded distributions, are similar to 20% higher than those of early measurements for all the fissile nuclei studied. The implication for the gamma heating in nuclear reactors is discussed. C1 [Chyzh, A.; Wu, C. Y.; Kwan, E.; Henderson, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bredeweg, T. A.; Haight, R. C.; Hayes-Sterbenz, A. C.; Lee, H. Y.; O'Donnell, J. M.; Ullmann, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kwan, E.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. RP Chyzh, A (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU U.S. Department of Energy by Lawrence Livermore National Security, LLC [DE-AC52-07NA27344]; Los Alamos National Security, LLC [DE-AC52-06NA25396]; U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development FX This work benefited from the use of the LANSCE accelerator facility and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, under Contract No. DE-AC52-07NA27344 and by Los Alamos National Security, LLC, under Contract No. DE-AC52-06NA25396. Partial funding is gratefully acknowledged from the U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development. All isotopes used in the measurements were obtained from Oak Ridge National Laboratory. NR 21 TC 8 Z9 8 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JUL 11 PY 2014 VL 90 IS 1 AR 014602 DI 10.1103/PhysRevC.90.014602 PG 6 WC Physics, Nuclear SC Physics GA AQ7MQ UT WOS:000343002300004 ER PT J AU Hartley, DJ Janssens, RVF Riedinger, LL Riley, MA Wang, X Miller, S Ayangeakaa, AD Carpenter, MP Carroll, JJ Cavey, J Chiara, CJ Chowdhury, P Garg, U Hota, SS Jackson, EG Kondev, FG Lauritsen, T Litz, M Ma, WC Matta, J Paul, ES Pedicini, EE Simpson, J Vanhoy, JR Zhu, S AF Hartley, D. J. Janssens, R. V. F. Riedinger, L. L. Riley, M. A. Wang, X. Miller, S. Ayangeakaa, A. D. Carpenter, M. P. Carroll, J. J. Cavey, J. Chiara, C. J. Chowdhury, P. Garg, U. Hota, S. S. Jackson, E. G. Kondev, F. G. Lauritsen, T. Litz, M. Ma, W. C. Matta, J. Paul, E. S. Pedicini, E. E. Simpson, J. Vanhoy, J. R. Zhu, S. TI High-spin structure of odd-odd Re-172 SO PHYSICAL REVIEW C LA English DT Article AB A significant extension of the level scheme for the odd-odd nucleus Re-172 was accomplished through the use of the Gammasphere spectrometer. States up to a tentative spin assignment of 39 were observed and two new structures were identified. Configuration assignments are proposed based on alignment properties and observed band crossings. C1 [Hartley, D. J.; Cavey, J.; Pedicini, E. E.; Vanhoy, J. R.] US Naval Acad, Dept Phys, Annapolis, MD 21402 USA. [Janssens, R. V. F.; Carpenter, M. P.; Chiara, C. J.; Lauritsen, T.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Riedinger, L. L.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Riley, M. A.; Wang, X.; Miller, S.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Ayangeakaa, A. D.; Garg, U.; Matta, J.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Carroll, J. J.; Litz, M.] Army Res Lab, Adelphi, MD 20783 USA. [Chiara, C. J.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Chiara, C. J.; Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Chowdhury, P.; Hota, S. S.; Jackson, E. G.] Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. [Ma, W. C.] Mississippi State Univ, Dept Phys, Mississippi State, MS 39762 USA. [Paul, E. S.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. [Simpson, J.] STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England. RP Hartley, DJ (reprint author), US Naval Acad, Dept Phys, Annapolis, MD 21402 USA. RI Carpenter, Michael/E-4287-2015; Ayangeakaa, Akaa/F-3683-2015 OI Carpenter, Michael/0000-0002-3237-5734; Ayangeakaa, Akaa/0000-0003-1679-3175 FU National Science Foundation [PHY-1203100, PHY-0754674, PHY-1068192]; U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-94ER40848, DE-FG02-96ER40983, DE-FG02-94ER40834, DE-FG02-95ER40939]; United Kingdom Science and Technology Facilities Council FX The authors thank the ANL operations staff at Gammasphere and gratefully acknowledge the efforts of J. P. Greene for target preparation. We thank D. C. Radford and H. Q. Jin for their software support. This work is funded by the National Science Foundation under Grants No. PHY-1203100 (USNA), No. PHY-0754674 (FSU), and No. PHY-1068192 (ND), as well as by the U.S. Department of Energy, Office of Nuclear Physics, under Contracts No. DE-AC02-06CH11357 (ANL), No. DE-FG02-94ER40848 (UML), No. DE-FG02-96ER40983 (UT), No. DE-FG02-94ER40834 (UMCP), and No. DE-FG02-95ER40939 (MSU), as well as the United Kingdom Science and Technology Facilities Council. NR 14 TC 2 Z9 2 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JUL 11 PY 2014 VL 90 IS 1 AR 017301 DI 10.1103/PhysRevC.90.017301 PG 5 WC Physics, Nuclear SC Physics GA AQ7MQ UT WOS:000343002300010 ER PT J AU Lu, XY Tam, DW Zhang, CL Luo, HQ Wang, M Zhang, R Harriger, LW Keller, T Keimer, B Regnault, LP Maier, TA Dai, PC AF Lu, Xingye Tam, David W. Zhang, Chenglin Luo, Huiqian Wang, Meng Zhang, Rui Harriger, Leland W. Keller, T. Keimer, B. Regnault, L. -P. Maier, Thomas A. Dai, Pengcheng TI Short-range cluster spin glass near optimal superconductivity in BaFe2-xNixAs2 SO PHYSICAL REVIEW B LA English DT Article ID NEUTRON-SCATTERING; MAGNETISM; FEAS AB High-temperature superconductivity in iron pnictides occurs when electrons are doped into their antiferromagnetic (AF) parent compounds. In addition to inducing superconductivity, electron doping also changes the static commensurate AF order in the undoped parent compounds into short-range incommensurate AF order near optimal superconductivity. Here we use neutron scattering to demonstrate that the incommensurate AF order in BaFe2-xNixAs2 is not a spin-density wave arising from the itinerant electrons in nested Fermi surfaces, but is consistent with a cluster spin glass in the matrix of the superconducting phase. Therefore, optimal superconductivity in iron pnictides coexists and competes with a mesoscopically separated cluster spin glass phase, much different from the homogeneous coexisting AF and superconducting phases in the underdoped regime. C1 [Lu, Xingye; Luo, Huiqian; Wang, Meng; Zhang, Rui; Dai, Pengcheng] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. [Tam, David W.; Zhang, Chenglin; Dai, Pengcheng] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Harriger, Leland W.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Keller, T.; Keimer, B.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Keller, T.] Forsch Neutronenquelle Heinz Maier Leibnitz MLZ, Max Planck Soc Outstn, D-85747 Garching, Germany. [Regnault, L. -P.] UMR E CEA UJF Grenoble 1, INAC, SPSMS MDN, F-38054 Grenoble, France. [Maier, Thomas A.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Maier, Thomas A.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Lu, XY (reprint author), Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. EM pdai@rice.edu RI Dai, Pengcheng /C-9171-2012; WANG, MENG/E-6595-2012; Maier, Thomas/F-6759-2012 OI Dai, Pengcheng /0000-0002-6088-3170; WANG, MENG/0000-0002-8232-2331; Maier, Thomas/0000-0002-1424-9996 FU MOST [2012CB821400, 2011CBA00110]; NSFC [11374011, 91221303]; NPL, CAEP [2013DB03]; US (Rice University) [NSF-DMR-1308603]; US (Oak Ridge National Laboratory) [NSF-DMR-1308603]; Robert A. Welch Foundation at Rice University [C-1839] FX The work at IOP, CAS is supported by MOST (973 Projects No. 2012CB821400 and No. 2011CBA00110) and NSFC (Projects No. 11374011 and No. 91221303). X. L. and H. L. acknowledge Project No. 2013DB03 supported by NPL, CAEP. We also acknowledge support from the US NSF-DMR-1308603 (Rice University and Oak Ridge National Laboratory) and the Robert A. Welch Foundation Grant No. C-1839 at Rice University. NR 45 TC 23 Z9 23 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 11 PY 2014 VL 90 IS 2 AR 024509 DI 10.1103/PhysRevB.90.024509 PG 6 WC Physics, Condensed Matter SC Physics GA AO9FA UT WOS:000341660100003 ER PT J AU Perez, D Vogel, T Uberuaga, BP AF Perez, Danny Vogel, Thomas Uberuaga, Blas P. TI Diffusion and transformation kinetics of small helium clusters in bulk tungsten SO PHYSICAL REVIEW B LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; LOW-ENERGY; BCC IRON; MULTICANONICAL ENSEMBLE; BUBBLE-GROWTH; METALS; HE; NUCLEATION; IRRADIATION; PLASMA AB The production of energy through nuclear fusion poses serious challenges related to the stability and performance of materials in extreme conditions. In particular, the constant bombardment of the walls of the reactor with high doses of He ions is known to lead to deleterious changes in their microstructures. These changes follow from the aggregation of He into bubbles that can grow and blister, potentially leading to the contamination of the plasma, or to the degradation of their mechanical properties. We computationally study the behavior of small clusters of He atoms in W in conditions relevant to fusion energy production. Using a wide range of techniques, we investigate the thermodynamics of the clusters and their kinetics in terms of diffusivity, growth, and breakup, as well as mutation into nanobubbles. Our study provides the essential ingredients to model the early stages of He exposure leading up to the nucleation of He bubbles. C1 [Perez, Danny; Vogel, Thomas] Los Alamos Natl Lab, Theoret Div T1, Los Alamos, NM 87545 USA. [Uberuaga, Blas P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Perez, D (reprint author), Los Alamos Natl Lab, Theoret Div T1, POB 1663, Los Alamos, NM 87545 USA. EM danny_perez@lanl.gov RI Vogel, Thomas/A-7570-2014 OI Vogel, Thomas/0000-0003-0205-3205 FU Scientific Discovery through Advanced Computing (SciDAC) project on Plasma Surface Interactions - U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Fusion Energy Sciences [DE-SC00-08875]; National Nuclear Security Administration of the US DOE [DE-AC52-06NA25396]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Scientific Discovery through Advanced Computing (SciDAC) project on Plasma Surface Interactions, funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Fusion Energy Sciences under Award No. DE-SC00-08875. Thermodynamics calculations were supported by the Department of Energy through the LANL/LDRD program. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US DOE under Contract No. DE-AC52-06NA25396. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 60 TC 17 Z9 17 U1 0 U2 53 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL 11 PY 2014 VL 90 IS 1 AR 014102 DI 10.1103/PhysRevB.90.014102 PG 13 WC Physics, Condensed Matter SC Physics GA AO9ER UT WOS:000341659200001 ER PT J AU Katich, J Qian, X Zhao, YX Allada, K Aniol, K Annand, JRM Averett, T Benmokhtar, F Bertozzi, W Bradshaw, PC Bosted, P Camsonne, A Canan, M Cates, GD Chen, C Chen, JP Chen, W Chirapatpimol, K Chudakov, E Cisbani, E Cornejo, JC Cusanno, F Dalton, MM Deconinck, W de Jager, CW De Leo, R Deng, X Deur, A Ding, H Dolph, PAM Dutta, C Dutta, D El Fassi, L Frullani, S Gao, H Garibaldi, F Gaskell, D Gilad, S Gilman, R Glamazdin, O Golge, S Guo, L Hamilton, D Hansen, O Higinbotham, DW Holmstrom, T Huang, J Huang, M Ibrahim, HF Iodice, M Jiang, X Jin, G Jones, MK Kelleher, A Kim, W Kolarkar, A Korsch, W LeRose, JJ Li, X Li, Y Lindgren, R Liyanage, N Long, E Lu, HJ Margaziotis, DJ Markowitz, P Marrone, S McNulty, D Meziani, ZE Michaels, R Moffit, B Camacho, CM Nanda, S Narayan, A Nelyubin, V Norum, B Oh, Y Osipenko, M Parno, D Peng, JC Phillips, SK Posik, M Puckett, AJR Qiang, Y Rakhman, A Ransome, RD Riordan, S Saha, A Sawatzky, B Schulte, E Shahinyan, A Shabestari, MH Sirca, S Stepanyan, S Subedi, R Sulkosky, V Tang, LG Tobias, A Urciuoli, GM Vilardi, I Wang, K Wang, Y Wojtsekhowski, B Yan, X Yao, H Ye, Y Ye, Z Yuan, L Zhan, X Zhang, Y Zhang, YW Zhao, B Zheng, X Zhu, L Zhu, X Zong, X AF Katich, J. Qian, X. Zhao, Y. X. Allada, K. Aniol, K. Annand, J. R. M. Averett, T. Benmokhtar, F. Bertozzi, W. Bradshaw, P. C. Bosted, P. Camsonne, A. Canan, M. Cates, G. D. Chen, C. Chen, J. -P. Chen, W. Chirapatpimol, K. Chudakov, E. Cisbani, E. Cornejo, J. C. Cusanno, F. Dalton, M. M. Deconinck, W. de Jager, C. W. De Leo, R. Deng, X. Deur, A. Ding, H. Dolph, P. A. M. Dutta, C. Dutta, D. El Fassi, L. Frullani, S. Gao, H. Garibaldi, F. Gaskell, D. Gilad, S. Gilman, R. Glamazdin, O. Golge, S. Guo, L. Hamilton, D. Hansen, O. Higinbotham, D. W. Holmstrom, T. Huang, J. Huang, M. Ibrahim, H. F. Iodice, M. Jiang, X. Jin, G. Jones, M. K. Kelleher, A. Kim, W. Kolarkar, A. Korsch, W. LeRose, J. J. Li, X. Li, Y. Lindgren, R. Liyanage, N. Long, E. Lu, H-J. Margaziotis, D. J. Markowitz, P. Marrone, S. McNulty, D. Meziani, Z-E. Michaels, R. Moffit, B. Camacho, C. Munoz Nanda, S. Narayan, A. Nelyubin, V. Norum, B. Oh, Y. Osipenko, M. Parno, D. Peng, J. C. Phillips, S. K. Posik, M. Puckett, A. J. R. Qiang, Y. Rakhman, A. Ransome, R. D. Riordan, S. Saha, A. Sawatzky, B. Schulte, E. Shahinyan, A. Shabestari, M. H. Sirca, S. Stepanyan, S. Subedi, R. Sulkosky, V. Tang, L. -G. Tobias, A. Urciuoli, G. M. Vilardi, I. Wang, K. Wang, Y. Wojtsekhowski, B. Yan, X. Yao, H. Ye, Y. Ye, Z. Yuan, L. Zhan, X. Zhang, Y. Zhang, Y. -W. Zhao, B. Zheng, X. Zhu, L. Zhu, X. Zong, X. TI Measurement of the Target-Normal Single-Spin Asymmetry in Deep-Inelastic Scattering from the Reaction He-3(up arrow)(e,e ')X SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report the first measurement of the target-normal single-spin asymmetry in deep-inelastic scattering from the inclusive reaction He-3(up arrow)(e, e')X on a polarized He-3 gas target. Assuming time-reversal invariance, this asymmetry is strictly zero in the Born approximation but can be nonzero if two-photon-exchange contributions are included. The experiment, conducted at Jefferson Lab using a 5.89 GeV electron beam, covers a range of 1.7 < W < 2.9 GeV, 1.0 < Q(2) < 4.0 GeV2 and 0.16 < x < 0.65. Neutron asymmetries were extracted using the effective nucleon polarization and measured proton-to-He-3 cross-section ratios. The measured neutron asymmetries are negative with an average value of (-1.09 +/- 0.38) x 10(-2) for invariant mass W > 2 GeV, which is nonzero at the 2.89 sigma level. Our measured asymmetry agrees both in sign and magnitude with a two-photon-exchange model prediction that uses input from the Sivers transverse momentum distribution obtained from semi-inclusive deep-inelastic scattering. C1 [Katich, J.; Averett, T.; Bradshaw, P. C.; Bosted, P.; Kelleher, A.; Zhao, B.] Coll William & Mary, Williamsburg, VA 23187 USA. [Katich, J.] Univ Colorado, Boulder, CO 80309 USA. [Qian, X.; Chen, W.; Gao, H.; Huang, M.; Qiang, Y.; Zhu, X.; Zong, X.] Duke Univ, Durham, NC 27708 USA. [Qian, X.] CALTECH, Kellogg Radiat Lab, Pasadena, CA 91125 USA. [Qian, X.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Zhao, Y. X.; Lu, H-J.; Yan, X.; Ye, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Allada, K.; Dutta, C.; Kolarkar, A.; Korsch, W.] Univ Kentucky, Lexington, KY 40506 USA. [Aniol, K.; Cornejo, J. C.; Margaziotis, D. J.] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. [Annand, J. R. M.; Hamilton, D.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Benmokhtar, F.; Parno, D.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Bertozzi, W.; Deconinck, W.; Gilad, S.; Huang, J.; Moffit, B.; Puckett, A. J. R.; Sulkosky, V.; Zhan, X.] MIT, Cambridge, MA 02139 USA. [Camsonne, A.; Chen, J. -P.; Chudakov, E.; de Jager, C. W.; Deur, A.; Gaskell, D.; Gilman, R.; Hansen, O.; Higinbotham, D. W.; Jones, M. K.; LeRose, J. J.; Michaels, R.; Moffit, B.; Nanda, S.; Qiang, Y.; Saha, A.; Sawatzky, B.; Sulkosky, V.; Wojtsekhowski, B.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Canan, M.; El Fassi, L.; Golge, S.] Old Dominion Univ, Norfolk, VA 23529 USA. [Cates, G. D.; Chirapatpimol, K.; Dalton, M. M.; de Jager, C. W.; Deng, X.; Ding, H.; Dolph, P. A. M.; Jin, G.; Lindgren, R.; Liyanage, N.; Nelyubin, V.; Norum, B.; Riordan, S.; Shabestari, M. H.; Subedi, R.; Tobias, A.; Wang, K.; Zheng, X.] Univ Virginia, Charlottesville, VA 22904 USA. [Chen, C.; Tang, L. -G.; Ye, Z.; Yuan, L.; Zhu, L.] Hampton Univ, Hampton, VA 23187 USA. [Cisbani, E.; Cusanno, F.; Frullani, S.; Garibaldi, F.; Urciuoli, G. M.] Ist Nazl Fis Nucl, Sez Roma, I-00161 Rome, Italy. [Cisbani, E.; Cusanno, F.; Frullani, S.; Garibaldi, F.] Ist Super Sanita, I-00161 Rome, Italy. [De Leo, R.; Marrone, S.; Vilardi, I.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [De Leo, R.; Marrone, S.; Vilardi, I.] Univ Bari, I-70126 Bari, Italy. [Dutta, D.; Narayan, A.] Mississippi State Univ, Mississippi State, MS 39762 USA. [El Fassi, L.; Gilman, R.; Jiang, X.; Ransome, R. D.; Schulte, E.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Glamazdin, O.] Kharkov Inst Phys & Technol, UA-61108 Kharkov, Ukraine. [Guo, L.; Jiang, X.; Puckett, A. J. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Holmstrom, T.] Longwood Univ, Farmville, VA 23909 USA. [Ibrahim, H. F.] Cairo Univ, Giza 12613, Egypt. [Iodice, M.] Ist Nazl Fis Nucl, Sez Roma3, I-00146 Rome, Italy. [Kim, W.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Li, X.; Li, Y.] China Inst Atom Energy, Beijing, Peoples R China. [Long, E.; Phillips, S. K.] Univ New Hampshire, Durham, NH 03824 USA. [Markowitz, P.] Florida Int Univ, Miami, FL 33199 USA. [McNulty, D.] Univ Massachusetts, Amherst, MA 01003 USA. [Meziani, Z-E.; Posik, M.; Sawatzky, B.; Yao, H.] Temple Univ, Philadelphia, PA 19122 USA. [Camacho, C. Munoz] Univ Clermont Ferrand, IN2P3, F-63177 Clermont Ferrand, France. [Oh, Y.] Seoul Natl Univ, Seoul 151747, South Korea. [Osipenko, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Peng, J. C.; Wang, Y.; Zhu, L.] Univ Illinois, Urbana, IL 61801 USA. [Rakhman, A.] Syracuse Univ, Syracuse, NY 13244 USA. [Shahinyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Sirca, S.] Univ Ljubljana, SI-1000 Ljubljana, Slovenia. [Stepanyan, S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Zhang, Y.; Zhang, Y. -W.] Lanzhou Univ, Lanzhou 730000, Gansu, Peoples R China. RP Averett, T (reprint author), Coll William & Mary, Williamsburg, VA 23187 USA. EM tdaver@wm.edu RI Rakhman, Adurahim/K-8146-2012; Osipenko, Mikhail/N-8292-2015; Cisbani, Evaristo/C-9249-2011; Dalton, Mark/B-5380-2016; Narayan, Amrendra/Q-3243-2016; Parno, Diana/B-7546-2017; Ye, Zhihong/E-6651-2017 OI Rakhman, Adurahim/0000-0002-9880-6074; Osipenko, Mikhail/0000-0001-9618-3013; Cisbani, Evaristo/0000-0002-6774-8473; Dalton, Mark/0000-0001-9204-7559; Narayan, Amrendra/0000-0003-3814-9559; Parno, Diana/0000-0002-9363-0401; Ye, Zhihong/0000-0002-1873-2344 FU U.S. National Science Foundation; UK Science and Technology Facilities Council; U.S. Department of Energy; DOE [DE-AC05-06OR23177] FX We acknowledge the outstanding support of the Jefferson Lab Hall A technical staff and Accelerator Division in accomplishing this experiment. We thank A. Afanasev, C. Weiss, and A. Metz for their valuable theoretical guidance. This work was supported in part by the U.S. National Science Foundation, the UK Science and Technology Facilities Council, the U.S. Department of Energy and by DOE Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, operates the Thomas Jefferson National Accelerator Facility. NR 24 TC 14 Z9 14 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 11 PY 2014 VL 113 IS 2 AR 022502 DI 10.1103/PhysRevLett.113.022502 PG 6 WC Physics, Multidisciplinary SC Physics GA AO4MY UT WOS:000341315100006 PM 25062169 ER PT J AU Liu, YY Wang, YM Yakobson, BI Wood, BC AF Liu, Yuanyue Wang, Y. Morris Yakobson, Boris I. Wood, Brandon C. TI Assessing Carbon-Based Anodes for Lithium-Ion Batteries: A Universal Description of Charge-Transfer Binding SO PHYSICAL REVIEW LETTERS LA English DT Article ID BRILLOUIN-ZONE INTEGRATIONS; SINGLE-LAYER GRAPHENE; AUGMENTED-WAVE METHOD; AB-INITIO; ENERGY-STORAGE; LI STORAGE; ELECTRODES; CAPACITY; INTERCALATION; DEPENDENCE AB Many key performance characteristics of carbon-based lithium-ion battery anodes are largely determined by the strength of binding between lithium (Li) and sp(2) carbon (C), which can vary significantly with subtle changes in substrate structure, chemistry, and morphology. Here, we use density functional theory calculations to investigate the interactions of Li with a wide variety of sp(2) C substrates, including pristine, defective, and strained graphene, planar C clusters, nanotubes, C edges, and multilayer stacks. In almost all cases, we find a universal linear relation between the Li-C binding energy and the work required to fill previously unoccupied electronic states within the substrate. This suggests that Li capacity is predominantly determined by two key factors-namely, intrinsic quantum capacitance limitations and the absolute placement of the Fermi level. This simple descriptor allows for straightforward prediction of the Li-C binding energy and related battery characteristics in candidate C materials based solely on the substrate electronic structure. It further suggests specific guidelines for designing more effective C-based anodes. The method should be broadly applicable to charge-transfer adsorption on planar substrates, and provides a phenomenological connection to established principles in supercapacitor and catalyst design. C1 [Liu, Yuanyue; Wood, Brandon C.] Lawrence Livermore Natl Lab, Quantum Simulat Grp, Livermore, CA 94550 USA. [Liu, Yuanyue; Yakobson, Boris I.] Rice Univ, Dept Mat Sci & NanoEngn, Dept Chem, Houston, TX 77005 USA. [Liu, Yuanyue; Yakobson, Boris I.] Rice Univ, Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA. [Wang, Y. Morris] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. RP Liu, YY (reprint author), Lawrence Livermore Natl Lab, Quantum Simulat Grp, Livermore, CA 94550 USA. EM brandonwood@llnl.gov RI Liu, Yuanyue/C-5763-2008; Wang, Yinmin (Morris)/F-2249-2010 OI Liu, Yuanyue/0000-0002-5880-8649; Wang, Yinmin (Morris)/0000-0002-7161-2034 FU LLNL LDRD [12-ERD-053]; U.S. Department of Energy by LLNL [DE-AC52-07NA27344] FX We thank T. Ogitsu, T. W. Heo, Y. An, J. Ye, M. Tang, and V. Artyukhov for valuable discussions. Funding was provided by LLNL LDRD Grant No. 12-ERD-053, with computing support from the LLNL Institutional Computing Grand Challenge program. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344. NR 38 TC 20 Z9 20 U1 2 U2 53 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 11 PY 2014 VL 113 IS 2 AR 028304 DI 10.1103/PhysRevLett.113.028304 PG 5 WC Physics, Multidisciplinary SC Physics GA AO4MY UT WOS:000341315100021 PM 25062244 ER PT J AU Posik, M Flay, D Parno, DS Allada, K Armstrong, W Averett, T Benmokhtar, F Bertozzi, W Camsonne, A Canan, M Cates, GD Chen, C Chen, JP Choi, S Chudakov, E Cusanno, F Dalton, MM Deconinck, W de Jager, CW Deng, X Deur, A Dutta, C El Fassi, L Franklin, GB Friend, M Gao, H Garibaldi, F Gilad, S Gilman, R Glamazdin, O Golge, S Gomez, J Guo, L Hansen, O Higinbotham, DW Holmstrom, T Huang, J Hyde, C Ibrahim, HF Jiang, X Jin, G Katich, J Kelleher, A Kolarkar, A Korsch, W Kumbartzki, G LeRose, JJ Lindgren, R Liyanage, N Long, E Lukhanin, A Mamyan, V McNulty, D Meziani, ZE Michaels, R Mihovilovic, M Moffit, B Muangma, N Nanda, S Narayan, A Nelyubin, V Norum, B Nuruzzaman Oh, Y Peng, JC Qian, X Qiang, Y Rakhman, A Riordan, S Saha, A Sawatzky, B Shabestari, MH Shahinyan, A Sirca, S Solvignon, P Subedi, R Sulkosky, V Tobias, WA Troth, W Wang, D Wang, Y Wojtsekhowski, B Yan, X Yao, H Ye, Y Ye, Z Yuan, L Zhan, X Zhang, Y Zhang, YW Zhao, B Zheng, X AF Posik, M. Flay, D. Parno, D. S. Allada, K. Armstrong, W. Averett, T. Benmokhtar, F. Bertozzi, W. Camsonne, A. Canan, M. Cates, G. D. Chen, C. Chen, J-P. Choi, S. Chudakov, E. Cusanno, F. Dalton, M. M. Deconinck, W. de Jager, C. W. Deng, X. Deur, A. Dutta, C. El Fassi, L. Franklin, G. B. Friend, M. Gao, H. Garibaldi, F. Gilad, S. Gilman, R. Glamazdin, O. Golge, S. Gomez, J. Guo, L. Hansen, O. Higinbotham, D. W. Holmstrom, T. Huang, J. Hyde, C. Ibrahim, H. F. Jiang, X. Jin, G. Katich, J. Kelleher, A. Kolarkar, A. Korsch, W. Kumbartzki, G. LeRose, J. J. Lindgren, R. Liyanage, N. Long, E. Lukhanin, A. Mamyan, V. McNulty, D. Meziani, Z. -E. Michaels, R. Mihovilovic, M. Moffit, B. Muangma, N. Nanda, S. Narayan, A. Nelyubin, V. Norum, B. Nuruzzaman Oh, Y. Peng, J. C. Qian, X. Qiang, Y. Rakhman, A. Riordan, S. Saha, A. Sawatzky, B. Shabestari, M. H. Shahinyan, A. Sirca, S. Solvignon, P. Subedi, R. Sulkosky, V. Tobias, W. A. Troth, W. Wang, D. Wang, Y. Wojtsekhowski, B. Yan, X. Yao, H. Ye, Y. Ye, Z. Yuan, L. Zhan, X. Zhang, Y. Zhang, Y-W. Zhao, B. Zheng, X. CA Jefferson Lab Hall A Collaboration TI Precision Measurement of the Neutron Twist-3 Matrix Element d(2)(n): Probing Color Forces SO PHYSICAL REVIEW LETTERS LA English DT Article ID DEEP-INELASTIC-SCATTERING; POLARIZED PARTON DISTRIBUTIONS; ELECTROMAGNETIC FORM-FACTORS; NUCLEON STRUCTURE FUNCTIONS; STRUCTURE FUNCTIONS G(2); SUM-RULE CALCULATION; SPIN STRUCTURE; RADIATIVE-CORRECTIONS; HALL-A; ASYMMETRIES AB Double-spin asymmetries and absolute cross sections were measured at large Bjorken x (0.25 <= x <= 0.90), in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4.7 and 5.9 GeV from a transversely and longitudinally polarized He-3 target. In this dedicated experiment, the spin structure function g(2)(3He) was determined with precision at large x, and the neutron twist-3 matrix element d(2)(n) was measured at < Q(2)> of 3.21 and 4.32 GeV2/c(2), with an absolute precision of about 10(-5). Our results are found to be in agreement with lattice QCD calculations and resolve the disagreement found with previous data at < Q(2)> = 5 GeV2/c(2). Combining d(2)(n) and a newly extracted twist-4 matrix element f(2)(n), the average neutron color electric and magnetic forces were extracted and found to be of opposite sign and about 30 MeV/fm in magnitude. C1 [Posik, M.; Flay, D.; Armstrong, W.; Lukhanin, A.; Meziani, Z. -E.; Sawatzky, B.; Yao, H.] Temple Univ, Philadelphia, PA 19122 USA. [Parno, D. S.; Benmokhtar, F.; Franklin, G. B.; Friend, M.; Mamyan, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Parno, D. S.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Allada, K.; Dutta, C.; Kolarkar, A.; Korsch, W.] Univ Kentucky, Lexington, KY 40506 USA. [Averett, T.; Katich, J.; Kelleher, A.; Yao, H.; Zhao, B.] Coll William & Mary, Williamsburg, VA 23187 USA. [Benmokhtar, F.] Duquesne Univ, Pittsburgh, PA 15282 USA. [Bertozzi, W.; Deconinck, W.; Gilad, S.; Huang, J.; Moffit, B.; Muangma, N.; Sulkosky, V.; Zhan, X.] MIT, Cambridge, MA 02139 USA. [Camsonne, A.; Chen, J-P.; Chudakov, E.; de Jager, C. W.; Deur, A.; Gilman, R.; Gomez, J.; Hansen, O.; Higinbotham, D. W.; LeRose, J. J.; Michaels, R.; Moffit, B.; Nanda, S.; Qiang, Y.; Saha, A.; Sawatzky, B.; Solvignon, P.; Sulkosky, V.; Wojtsekhowski, B.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Canan, M.; El Fassi, L.; Golge, S.; Hyde, C.] Old Dominion Univ, Norfolk, VA 23529 USA. [Cates, G. D.; Dalton, M. M.; Deng, X.; Jin, G.; Lindgren, R.; Liyanage, N.; Nelyubin, V.; Norum, B.; Riordan, S.; Shabestari, M. H.; Subedi, R.; Tobias, W. A.; Wang, D.; Zheng, X.] Univ Virginia, Charlottesville, VA 22904 USA. [Chen, C.; Ye, Z.; Yuan, L.] Hampton Univ, Hampton, VA 23187 USA. [Choi, S.; Oh, Y.] Seoul Natl Univ, Seoul 151742, South Korea. [Cusanno, F.; Garibaldi, F.] Ist Nazl Fis Nucl, Sez Roma, I-00161 Rome, Italy. [Cusanno, F.] Ist Super Sanita, I-00161 Rome, Italy. [El Fassi, L.; Gilman, R.; Jiang, X.; Kumbartzki, G.; Zhang, Y-W.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gao, H.; Qian, X.; Qiang, Y.] Duke Univ, Durham, NC 27708 USA. [Glamazdin, O.] Kharkov Inst Phys & Technol, UA-61108 Kharkov, Ukraine. [Guo, L.; Jiang, X.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Holmstrom, T.; Troth, W.] Longwood Univ, Farmville, VA 23909 USA. [Hyde, C.] Univ Clermont Ferrand, IN2P3, F-63177 Clermont Ferrand, France. [Ibrahim, H. F.] Cairo Univ, Giza 12613, Egypt. [Long, E.] Kent State Univ, Kent, OH 44242 USA. [McNulty, D.; Riordan, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Mihovilovic, M.; Sirca, S.] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia. [Narayan, A.; Nuruzzaman] Mississippi State Univ, Mississippi State, MS 39762 USA. [Peng, J. C.; Wang, Y.] Univ Illinois, Urbana, IL 61801 USA. [Qian, X.] CALTECH, Kellogg Radiat Lab, Pasadena, CA 91125 USA. [Rakhman, A.] Syracuse Univ, Syracuse, NY 13244 USA. [Shahinyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Sirca, S.] Univ Ljubljana, SI-1000 Ljubljana, Slovenia. [Solvignon, P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Yan, X.; Ye, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Zhang, Y.; Zhang, Y-W.] Lanzhou Univ, Lanzhou 730000, Gansu, Peoples R China. RP Posik, M (reprint author), Temple Univ, Philadelphia, PA 19122 USA. EM posik@temple.edu; meziani@temple.edu RI Franklin, Gregg/N-7743-2014; Rakhman, Adurahim/K-8146-2012; Dalton, Mark/B-5380-2016; Narayan, Amrendra/Q-3243-2016; Parno, Diana/B-7546-2017; Ye, Zhihong/E-6651-2017; Higinbotham, Douglas/J-9394-2014; OI Franklin, Gregg/0000-0003-4176-1378; Rakhman, Adurahim/0000-0002-9880-6074; Dalton, Mark/0000-0001-9204-7559; Narayan, Amrendra/0000-0003-3814-9559; Parno, Diana/0000-0002-9363-0401; Ye, Zhihong/0000-0002-1873-2344; Higinbotham, Douglas/0000-0003-2758-6526; Deconinck, Wouter/0000-0003-4033-6716 FU DOE from Temple University [DE-FG02-87ER40315, DE-FG02-94ER40844]; DOE [DE-AC05-060R23177] FX We would like to thank the JLab Hall A technical staff and Accelerator Division for their outstanding support, as well as M. Burkardt, L. P. Gamberg, W. Melnitchouk, A. Metz, and J. Soffer for their useful discussions. One of us (Z.-E. M.) would like to particularly thank X.-D. Ji for his encouragement to propose and perform this measurement since 1995. This work was supported in part by DOE Grants No. DE-FG02-87ER40315 and No. DE-FG02-94ER40844 (from Temple University). Jefferson Lab is operated by the Jefferson Science Associates, LLC, under DOE Grant No. DE-AC05-060R23177. NR 66 TC 10 Z9 10 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 11 PY 2014 VL 113 IS 2 AR 022002 DI 10.1103/PhysRevLett.113.022002 PG 7 WC Physics, Multidisciplinary SC Physics GA AO4MY UT WOS:000341315100005 PM 25062166 ER PT J AU Gao, DY Abernathy, B Rohksar, D Schmutz, J Jackson, SA AF Gao, Dongying Abernathy, Brian Rohksar, Daniel Schmutz, Jeremy Jackson, Scott A. TI Annotation and sequence diversity of transposable elements in common bean (Phaseolus vulgaris) SO FRONTIERS IN PLANT SCIENCE LA English DT Article DE transposon; common bean; transposon database; evolution; ORF2 ID GENOME-WIDE ANALYSIS; LTR-RETROTRANSPOSONS; IDENTIFICATION; EVOLUTION; PLANTS; MAIZE; CLASSIFICATION; RESOURCE; FAMILY AB Common bean (Phaseolus vulgaris) is an important legume crop grown and consumed worldwide. With the availability of the common bean genome sequence, the next challenge is to annotate the genome and characterize functional DNA elements. Transposable elements (TEs) are the most abundant component of plant genomes and can dramatically affect genome evolution and genetic variation. Thus, it is pivotal to identify TEs in the common bean genome. In this study, we performed a genome-wide transposon annotation in common bean using a combination of homology and sequence structure-based methods. We developed a 2.12-Mb transposon database which includes 791 representative transposon sequences and is available upon request or from www.phytozome.org. Of note, nearly all transposons in the database are previously unrecognized TEs. More than 5,000 transposon-related expressed sequence tags (ESTs) were detected which indicates that some transposons may be transcriptionally active. Two Ty1-copia retrotransposon families were found to encode the envelope-like protein which has rarely been identified in plant genomes. Also, we identified an extra open reading frame (ORE) termed ORF2 from 15 Ty3-gypsy families that was located between the ORE encoding the retrotransposase and the 3'LTR. The ORF2 was in opposite transcriptional orientation to retrotransposase. Sequence homology searches and phylogenetic analysis suggested that the ORF2 may have an ancient origin, but its function is not clear. These transposon data provide a useful resource for understanding the genome organization and evolution and may be used to identify active TEs for developing transposon-tagging system in common bean and other related genomes. C1 [Gao, Dongying; Abernathy, Brian; Jackson, Scott A.] Univ Georgia, Ctr Appl Genet Technol, Athens, GA 30602 USA. [Rohksar, Daniel; Schmutz, Jeremy] Energy Joint Genome Inst, US Dept, Walnut Creek, CA USA. [Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, Huntsville, AL USA. RP Jackson, SA (reprint author), Univ Georgia, Ctr Appl Genet Technol, 111 Riverbend Rd, Athens, GA 30602 USA. EM sjackson@uga.edu FU National Science Foundation [DBI 0822258]; United States Department of Agriculture CSREES [2009-01860]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was funded by the National Science Foundation (DBI 0822258) and United States Department of Agriculture CSREES (2009-01860) to Scott A. Jackson. The work conducted by the U.S. Department of Energy Joint Cenome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 42 TC 3 Z9 3 U1 3 U2 29 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1664-462X J9 FRONT PLANT SCI JI Front. Plant Sci. PD JUL 11 PY 2014 VL 5 AR 339 DI 10.3389/fpls.2014.00339 PG 9 WC Plant Sciences SC Plant Sciences GA AM0BM UT WOS:000339507700001 PM 25071814 ER PT J AU Gudmundsson, M Kim, S Wu, M Ishida, T Momeni, MH Vaaje-Kolstad, G Lundberg, D Royant, A Stahlberg, J Eijsink, VGH Beckham, GT Sandgren, M AF Gudmundsson, Mikael Kim, Seonah Wu, Miao Ishida, Takuya Momeni, Majid Hadadd Vaaje-Kolstad, Gustav Lundberg, Daniel Royant, Antoine Stahlberg, Jerry Eijsink, Vincent G. H. Beckham, Gregg T. Sandgren, Mats TI Structural and Electronic Snapshots during the Transition from a Cu(II) to Cu(I) Metal Center of a Lytic Polysaccharide Monooxygenase by X-ray Photoreduction SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID ENTEROCOCCUS-FAECALIS V583; GLYCOSIDE HYDROLASE FAMILY; BINDING PROTEIN CBP21; ACTIVE-SITE; LIGNOCELLULOSIC BIOMASS; MACROMOLECULAR CRYSTALS; DENSITY FUNCTIONALS; SERRATIA-MARCESCENS; CELLULOSE; MODEL AB Lytic polysaccharide monooxygenases (LPMOs) are a recently discovered class of enzymes that employ a copper-mediated, oxidative mechanism to cleave glycosidic bonds. The LPMO catalytic mechanism likely requires that molecular oxygen first binds to Cu(I), but the oxidation state in many reported LPMO structures is ambiguous, and the changes in the LPMO active site required to accommodate both oxidation states of copper have not been fully elucidated. Here, a diffraction data collection strategy minimizing the deposited x-ray dose was used to solve the crystal structure of a chitin-specific LPMO from Enterococcus faecalis (EfaCBM33A) in the Cu(II)-bound form. Subsequently, the crystalline protein was photoreduced in the x-ray beam, which revealed structural changes associated with the conversion from the initial Cu(II)-oxidized form with two coordinated water molecules, which adopts a trigonal bipyramidal geometry, to a reduced Cu(I) form in a T-shaped geometry with no coordinated water molecules. A comprehensive survey of Cu(II) and Cu(I) structures in the Cambridge Structural Database unambiguously shows that the geometries observed in the least and most reduced structures reflect binding of Cu(II) and Cu(I), respectively. Quantum mechanical calculations of the oxidized and reduced active sites reveal little change in the electronic structure of the active site measured by the active site partial charges. Together with a previous theoretical investigation of a fungal LPMO, this suggests significant functional plasticity in LPMO active sites. Overall, this study provides molecular snapshots along the reduction process to activate the LPMO catalytic machinery and provides a general method for solving LPMO structures in both copper oxidation states. C1 [Gudmundsson, Mikael; Wu, Miao; Ishida, Takuya; Momeni, Majid Hadadd; Lundberg, Daniel; Stahlberg, Jerry; Sandgren, Mats] Swedish Univ Agr Sci, Dept Chem & Biotechnol, SE-75007 Uppsala, Sweden. [Kim, Seonah; Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Ishida, Takuya] Univ Tokyo, Grad Sch Agr & Life Sci, Dept Biomat Sci, Tokyo 1138657, Japan. [Vaaje-Kolstad, Gustav; Stahlberg, Jerry; Eijsink, Vincent G. H.] Norwegian Univ Life Sci, Dept Chem Biotechnol & Food Sci, NO-1432 As, Norway. [Royant, Antoine] Univ Grenoble Alpes, CNRS, CEA, Inst Biol Struct, F-38042 Grenoble, France. [Royant, Antoine] European Synchrotron Radiat Facil, F-38000 Grenoble, France. RP Beckham, GT (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy,MS 3322, Golden, CO 80401 USA. EM gregg.beckham@nrel.gov; mats.sandgren@slu.se RI Stahlberg, Jerry/D-4163-2013; Lundberg, Daniel/K-2263-2015; Royant, Antoine/G-3684-2012; OI Stahlberg, Jerry/0000-0003-4059-8580; Royant, Antoine/0000-0002-1919-8649; Vaaje-Kolstad, Gustav/0000-0002-3077-8003; Gudmundsson, Mikael/0000-0002-8095-4423 FU Faculty for Natural Resources and Agriculture; Swedish University of Agricultural Sciences; research program MicroDrivE-Microbially Derived Energy; U.S. Department of Energy BioEnergy Technologies Office; National Science Foundation XSEDE Grant through the Texas Advanced Computing Center [MCB090159]; Norwegian Research Council [214138, 214613] FX This work was supported by the Faculty for Natural Resources and Agriculture, Swedish University of Agricultural Sciences, the research program MicroDrivE-Microbially Derived Energy, U.S. Department of Energy BioEnergy Technologies Office and National Science Foundation XSEDE Grant MCB090159 (to G. T. B. and S. K.) (through the Texas Advanced Computing Center), and Grants 214138 and 214613 from the Norwegian Research Council (to G. V.-K. and V. G. H. E.). NR 59 TC 28 Z9 28 U1 5 U2 53 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 EI 1083-351X J9 J BIOL CHEM JI J. Biol. Chem. PD JUL 11 PY 2014 VL 289 IS 27 BP 18782 EP 18792 DI 10.1074/jbc.M114.563494 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AL3WV UT WOS:000339062900014 PM 24828494 ER PT J AU McTernan, PM Chandrayan, SK Wu, CH Vaccaro, BJ Lancaster, WA Yang, QY Fu, D Hura, GL Tainer, JA Adams, MWW AF McTernan, Patrick M. Chandrayan, Sanjeev K. Wu, Chang-Hao Vaccaro, Brian J. Lancaster, W. Andrew Yang, Qingyuan Fu, Dax Hura, Greg L. Tainer, John A. Adams, Michael W. W. TI Intact Functional Fourteen-subunit Respiratory Membrane-bound [NiFe]-Hydrogenase Complex of the Hyperthermophilic Archaeon Pyrococcus furiosus SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID CONVERTING NIFE HYDROGENASES; SMALL-ANGLE SCATTERING; CRYSTAL-STRUCTURE; ESCHERICHIA-COLI; METHANOSARCINA-BARKERI; CATALYTIC-PROPERTIES; BIOLOGICAL FUNCTION; ATP SYNTHASE; ACTIVE-SITE; PURIFICATION AB The archaeon Pyrococcus furiosus grows optimally at 100 degrees C by converting carbohydrates to acetate, CO2, and H-2, obtaining energy from a respiratory membrane-bound hydrogenase (MBH). This conserves energy by coupling H-2 production to oxidation of reduced ferredoxin with generation of a sodium ion gradient. MBH is encoded by a 14-gene operon with both hydrogenase and Na+/H+ antiporter modules. Herein a His-tagged MBH was expressed in P. furiosus and the detergent-solubilized complex purified under anaerobic conditions by affinity chromatography. Purified MBH contains all 14 subunits by electrophoretic analysis (13 subunits were also identified by mass spectrometry) and had a measured iron: nickel ratio of 15:1, resembling the predicted value of 13:1. The as-purified enzyme exhibited a rhombic EPR signal characteristic of the ready nickel-boron state. The purified and membrane-bound forms of MBH both preferentially evolved H-2 with the physiological donor (reduced ferredoxin) as well as with standard dyes. The O-2 sensitivities of the two forms were similar (half-lives of similar to 15 h in air), but the purified enzyme was more thermolabile (half-lives at 90 degrees C of 1 and 25 h, respectively). Structural analysis of purified MBH by small angle x-ray scattering indicated a Z-shaped structure with a mass of 310 kDa, resembling the predicted value (298 kDa). The angle x-ray scattering analyses reinforce and extend the conserved sequence relationships of group 4 enzymes and complex I (NADH quinone oxidoreductase). This is the first report on the properties of a solubilized form of an intact respiratory MBH complex that is proposed to evolve H-2 and pump Na+ ions. C1 [McTernan, Patrick M.; Chandrayan, Sanjeev K.; Wu, Chang-Hao; Vaccaro, Brian J.; Lancaster, W. Andrew; Adams, Michael W. W.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Yang, Qingyuan; Fu, Dax] Johns Hopkins Univ, Dept Physiol, Sch Med, Baltimore, MD 21205 USA. [Hura, Greg L.; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Adams, MWW (reprint author), Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. EM adams@bmb.uga.edu RI CHANDRAYAN, SANJEEV /M-1662-2016 OI CHANDRAYAN, SANJEEV /0000-0003-2219-4654 FU National Institutes of Health [GM105404]; Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the Department of Energy [DE-FG05-95ER20175]; Department of Energy project Integrated Diffraction Analysis Technologies FX This work was supported, in whole or in part, by National Institutes of Health Grant GM105404 (to J. A. T.). This work was also supported by Grant DE-FG05-95ER20175 (to M. W. W. A.) from the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the Department of Energy. SAXS analyses were supported by Department of Energy project Integrated Diffraction Analysis Technologies. NR 44 TC 11 Z9 13 U1 0 U2 19 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 EI 1083-351X J9 J BIOL CHEM JI J. Biol. Chem. PD JUL 11 PY 2014 VL 289 IS 28 BP 19364 EP 19372 DI 10.1074/jbc.M114.567255 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AL7PL UT WOS:000339326800013 PM 24860091 ER PT J AU Kim, YK Krupin, O Denlinger, JD Bostwick, A Rotenberg, E Zhao, Q Mitchell, JF Allen, JW Kim, BJ AF Kim, Y. K. Krupin, O. Denlinger, J. D. Bostwick, A. Rotenberg, E. Zhao, Q. Mitchell, J. F. Allen, J. W. Kim, B. J. TI Fermi arcs in a doped pseudospin-1/2 Heisenberg antiferromagnet SO SCIENCE LA English DT Article ID SUPERCONDUCTORS; CA2-XNAXCUO2CL2; PSEUDOGAP; SR2IRO4; STATE; PHASE AB High-temperature superconductivity in cuprates arises from an electronic state that remains poorly understood. We report the observation of a related electronic state in a noncuprate material, strontium iridate (Sr2IrO4), in which the distinct cuprate fermiology is largely reproduced. Upon surface electron doping through in situ deposition of alkali-metal atoms, angle-resolved photoemission spectra of Sr2IrO4 display disconnected segments of zero-energy states, known as Fermi arcs, and a gap as large as 80 millielectron volts. Its evolution toward a normal metal phase with a closed Fermi surface as a function of doping and temperature parallels that in the cuprates. Our result suggests that Sr2IrO4 is a useful model system for comparison to the cuprates. C1 [Kim, Y. K.; Krupin, O.; Denlinger, J. D.; Bostwick, A.; Rotenberg, E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Zhao, Q.; Mitchell, J. F.; Kim, B. J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Allen, J. W.; Kim, B. J.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. [Kim, B. J.] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. RP Kim, BJ (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM bjkim@fkf.mpg.de RI Rotenberg, Eli/B-3700-2009; Kim, Yeong Kwan/L-8207-2016 OI Rotenberg, Eli/0000-0002-3979-8844; FU U.S. NSF [DMR-07-04480]; Institute for Complex Adaptive Matter; U.S. Department of Energy (DOE) Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; Office of Science, Office of Basic Energy Sciences of the U.S. DOE [DE-AC02-05CH11231]; National Research Foundation [20100018092] FX We thank J. H. Shim, K. Haule, G. Kotliar, C. Kim, M. Norman, and G. Khaliullin for helpful discussions. Work at the University of Michigan was supported by the U.S. NSF under grant no. DMR-07-04480. B. J. K. acknowledges the Institute for Complex Adaptive Matter for a travel grant that enabled a visit and helpful discussions at Rutgers University. Work in the Materials Science Division of Argonne National Laboratory (sample preparation and characterization) was supported by the U.S. Department of Energy (DOE) Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. DOE under contract no. DE-AC02-05CH11231. Y.K.K. is supported through the National Research Foundation (grant no. 20100018092). NR 32 TC 66 Z9 66 U1 21 U2 141 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD JUL 11 PY 2014 VL 345 IS 6193 BP 187 EP 190 DI 10.1126/science.1251151 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AL8SS UT WOS:000339409900046 PM 24925913 ER PT J AU Aab, A Abreu, P Aglietta, M Ahlers, M Ahn, EJ Al Samarai, I Albuquerque, IFM Allekotte, I Allen, J Allison, P Almela, A Castillo, JA Alvarez-Muniz, J Batista, RA Ambrosio, M Aminaei, A Anchordoqui, L Andringa, S Aramo, C Arqueros, F Asorey, H Assis, P Aublin, J Ave, M Avenier, M Avila, G Badescu, AM Barber, KB Baumel, J Baus, C Beatty, JJ Becker, KH Bellido, JA Berat, C Bertou, X Biermann, PL Billoir, P Blanco, F Blanco, M Bleve, C Blumer, H Boiiacova, M Boncioli, D Bonifazi, C Bonino, R Borodai, N Brack, J Brancus, I Brogueira, P Brown, WC Buchholz, P Bueno, A Buscemi, M Caballero-Mora, KS Caccianiga, B Caccianiga, L Candusso, M Caramete, L Caruso, R Castellina, A Cataldi, G Cazon, L Cester, R Chavez, AG Cheng, SH Chiavassa, A Chinellato, JA Chudoba, J Cilmo, M Clay, RW Cocciolo, G Colalillo, R Collica, L Coluccia, MR Conceicao, R Contreras, F Cooper, MJ Coutu, S Covault, CE Criss, A Cronin, J Curutiu, A Dallier, R Daniel, B Dasso, S Daumiller, K Dawson, BR De Almeida, RM De Domenico, M De Jong, SJ Neto, JRTD De Mitri, I De Oliveira, J De Souza, V Del Peral, L Deligny, O Dembinski, H Dhital, N Di Giulio, C Di Matteo, A Diaz, JC Castro, MLD Diep, PN Diogo, F Dobrigkeit, C Docters, W D'Olivo, JC Dong, PN Dorofeev, A Dova, MT Ebr, J Engel, R Erdmann, M Erfani, M Escobar, CO Espadanal, J Etchegoyen, A Luis, PFS Falcke, H Fang, K Farrar, G Fauth, AC Fazzini, N Ferguson, AP Fernandes, M Fick, B Figueira, JM Filevich, A Filipcic, A Fox, BD Fratu, O Frohlich, U Fuchs, B Fuji, T Gaior, R Garia, B Roca, STG Garcia-Gamez, D Garcia-Pinto, D Garilli, G Bravo, AG Gate, F Gemmeke, H Ghia, PL Giaccari, U Giammarchi, M Giller, M Glaser, C Glass, H Albarracin, FG Berisso, MG Vitale, PFG Goncalves, P Gonzalez, JG Gookin, B Gorgi, A Gorham, P Gouffon, P Grebe, S Griffith, N Grillo, AF Grubb, TD Guardincerri, Y Guarino, F Guedes, GP Hansen, P Harari, D Harrison, TA Harton, JL Hasankiadeh, QD Haungs, A Hebbeker, T Heck, D Heimann, P Herve, AE Hill, GC Hojvat, C Hollon, N Holt, E Homola, P Horandel, JR Horvath, P Hrabovsky, M Huber, D Huege, T Insolia, A Isar, PG Islo, K Jandt, I Jansen, S Jarne, C Josebachuili, M Kaapa, A Kambeitz, O Kampert, KH Kasper, P Katkov, I Kegl, B Keilhauer, B Keivani, A Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Krause, R Krohm, N Kromer, O Kruppke-Hansen, D Kuempel, D Kunka, N La Rosa, G LaHurd, D Latronico, L Lauer, R Lauscher, M Lautridou, P Le Coz, S Leao, MSAB Lebrun, D Lebrun, P De Oliveira, MAL Letessier-Selvon, A Lhenry-Yvon, I Link, K Lopez, R Aguera, AL Louedec, K Bahilo, JL Lu, L Lucero, A Ludwig, M Lyberis, H Maccarone, MC Malacari, M Maldera, S Maller, J Mandat, D Mantsch, P Mariazzi, AG Marin, V Maris, IC Marsella, G Martello, D Martin, L Martinez, H Bravo, OM Martraire, D Meza, JJM Mathes, HJ Mathys, S Matthews, AJ Matthews, J Matthiae, G Maurel, D Maurizio, D Mayotte, E Mazur, PO Medina, C Medina-Tanco, G Melissas, M Melo, D Menichetti, E Menshikov, A Messina, S Meyhandan, R Micanovic, S Micheletti, MI Middendorf, L Minaya, IA Miramonti, L Mitrica, B Molina-Bueno, L Mollerach, S Monasor, M Ragaigne, DM Montanet, F Morello, C Moreno, JC Mostafa, M Moura, CA Muller, MA Muller, G Munchmeyer, M Mussa, R Navarra, G Navas, S Necesal, P Nellen, L Nelles, A Neuser, J Niechciol, M Niemietz, L Niggemann, T Nitz, D Nosek, D Novotny, V Nozka, L Ochilo, L Olinto, A Oliveira, M Ortiz, M Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Palmieri, N Papenbreer, P Parente, G Parra, A Pastor, S Paul, T Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Pesce, R Petermann, E Peters, C Petrera, S Petrolini, A Petrov, Y Piegaia, R Pierog, T Pieroni, P Pimenta, M Pirronello, V Platino, M Plum, M Porcelli, A Porowski, C Privitera, P Prouza, M Purrello, V Quel, EJ Querchfeld, S Quinn, S Rautenberg, J Ravel, O Ravignani, D Revenu, B Ridky, J Riggi, S Risse, M Ristori, P Rizi, V Roberts, J De Carvalho, WR Cabo, IR Fernandez, GR Rojo, JR Rodriguez-Frias, MD Ros, G Rosado, J Rossler, T Roth, M Roulet, E Rovero, AC Ruhle, C Saffi, SJ Saftoiu, A Salamida, F Salazar, H Greus, FS Salina, G Sanchaz, F Sanchez-Lucas, P Santo, CE Santos, E Santos, EM Sarazin, F Sarkar, B Sarmento, R Sato, R Scharf, N Scherini, V Schieler, H Schiffer, P Schmidt, A Scholten, O Schoorlemmer, H Schovanek, P Schulz, A Schulz, J Sciutto, SJ Segreto, A Settimo, M Shadkam, A Shellard, RC Sidelnik, I Sigl, G Sima, O Smialkowski, A Smida, R Snow, GR Sommers, P Sorokin, J Squartini, R Srivastava, YN Stanic, S Stapleton, J Stasielak, J Stephan, M Stutz, A Suarez, F Suomijarvi, T Supanitsky, AD Sutherland, MS Swain, J Szadkowski, Z Szuba, M Taborda, OA Tapia, A Tartare, M Thao, NT Theodoro, VM Tiffenberg, J Timmermans, C Peixoto, CJT Toma, G Tomankova, L Tome, B Tonachini, A Elipe, GT Machado, DT Travnicek, P Trovato, E Tueros, M Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L Van Aar, G Van den Berg, AM Van Velzen, S Van Vliet, A Varela, E Cardenas, BV Varner, G Vazquez, JR Vazquez, RA Veberic, D Verzi, V Vicha, J Videla, M Villasenor, L Vlcek, B Wahlberg, H Wainberg, O Walz, D Watson, AA Weber, M Weidenhaupt, K Weindl, A Werner, F Whelan, BJ Widom, A Wiencke, L Wilczynska, B Wilczynski, H Will, M Williams, C Winchen, T Wittkowski, D Wundheiler, B Wykes, S Yamamoto, T Yapici, T Younk, P Yuan, G Yushkov, A Zamorano, B Zas, E Zavrtanik, D Zavrtanik, M Zaw, I Zepeda, A Zhou, J Zhu, Y Silva, MZ Ziolkowski, M AF Aab, A. Abreu, P. Aglietta, M. Ahlers, M. Ahn, E. J. Al Samarai, I. Albuquerque, I. F. M. Allekotte, I. Allen, J. Allison, P. Almela, A. Castillo, J. Alvarez Alvarez-Muniz, J. Batista, R. Alves Ambrosio, M. Aminaei, A. Anchordoqui, L. Andringa, S. Aramo, C. Arqueros, F. Asorey, H. Assis, P. Aublin, J. Ave, M. Avenier, M. Avila, G. Badescu, A. M. Barber, K. B. Baumel, J. Baus, C. Beatty, J. J. Becker, K. H. Bellido, J. A. Berat, C. Bertou, X. Biermann, P. L. Billoir, P. Blanco, F. Blanco, M. Bleve, C. Blumer, H. Boiiacova, M. Boncioli, D. Bonifazi, C. Bonino, R. Borodai, N. Brack, J. Brancus, I. Brogueira, P. Brown, W. C. Buchholz, P. Bueno, A. Buscemi, M. Caballero-Mora, K. S. Caccianiga, B. Caccianiga, L. Candusso, M. Caramete, L. Caruso, R. Castellina, A. Cataldi, G. Cazon, L. Cester, R. Chavez, A. G. Cheng, S. H. Chiavassa, A. Chinellato, J. A. Chudoba, J. Cilmo, M. Clay, R. W. Cocciolo, G. Colalillo, R. Collica, L. Coluccia, M. R. Conceicao, R. Contreras, F. Cooper, M. J. Coutu, S. Covault, C. E. Criss, A. Cronin, J. Curutiu, A. Dallier, R. Daniel, B. Dasso, S. Daumiller, K. Dawson, B. R. De Almeida, R. M. De Domenico, M. De Jong, S. J. De Mello Neto, J. R. T. De Mitri, I. De Oliveira, J. De Souza, V. Del Peral, L. Deligny, O. Dembinski, H. Dhital, N. Di Giulio, C. Di Matteo, A. Diaz, J. C. Castro, M. L. Diaz Diep, P. N. Diogo, F. Dobrigkeit, C. Docters, W. D'Olivo, J. C. Dong, P. N. Dorofeev, A. Dova, M. T. Ebr, J. Engel, R. Erdmann, M. Erfani, M. Escobar, C. O. Espadanal, J. Etchegoyen, A. Luis, P. Facal San Falcke, H. Fang, K. Farrar, G. Fauth, A. C. Fazzini, N. Ferguson, A. P. Fernandes, M. Fick, B. Figueira, J. M. Filevich, A. Filipcic, A. Fox, B. D. Fratu, O. Frohlich, U. Fuchs, B. Fuji, T. Gaior, R. Garia, B. Roca, S. T. Garcia Garcia-Gamez, D. Garcia-Pinto, D. Garilli, G. Bravo, A. Gascon Gate, F. Gemmeke, H. Ghia, P. L. Giaccari, U. Giammarchi, M. Giller, M. Glaser, C. Glass, H. Albarracin, F. Gomez Berisso, M. Gomez Vitale, P. F. Gomez Goncalves, P. Gonzalez, J. G. Gookin, B. Gorgi, A. Gorham, P. Gouffon, P. Grebe, S. Griffith, N. Grillo, A. F. Grubb, T. D. Guardincerri, Y. Guarino, F. Guedes, G. P. Hansen, P. Harari, D. Harrison, T. A. Harton, J. L. Hasankiadeh, Q. D. Haungs, A. Hebbeker, T. Heck, D. Heimann, P. Herve, A. E. Hill, G. C. Hojvat, C. Hollon, N. Holt, E. Homola, P. Horandel, J. R. Horvath, P. Hrabovsky, M. Huber, D. Huege, T. Insolia, A. Isar, P. G. Islo, K. Jandt, I. Jansen, S. Jarne, C. Josebachuili, M. Kaapa, A. Kambeitz, O. Kampert, K. H. Kasper, P. Katkov, I. Kegl, B. Keilhauer, B. Keivani, A. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Krause, R. Krohm, N. Kromer, O. Kruppke-Hansen, D. Kuempel, D. Kunka, N. La Rosa, G. LaHurd, D. Latronico, L. Lauer, R. Lauscher, M. Lautridou, P. Le Coz, S. Leao, M. S. A. B. Lebrun, D. Lebrun, P. De Oliveira, M. A. Leigui Letessier-Selvon, A. Lhenry-Yvon, I. Link, K. Lopez, R. Aguera, A. Lopez Louedec, K. Bahilo, J. Lozano Lu, L. Lucero, A. Ludwig, M. Lyberis, H. Maccarone, M. C. Malacari, M. Maldera, S. Maller, J. Mandat, D. Mantsch, P. Mariazzi, A. G. Marin, V. Maris, I. C. Marsella, G. Martello, D. Martin, L. Martinez, H. Bravo, O. Martinez Martraire, D. Meza, J. J. Masia Mathes, H. J. Mathys, S. Matthews, A. J. Matthews, J. Matthiae, G. Maurel, D. Maurizio, D. Mayotte, E. Mazur, P. O. Medina, C. Medina-Tanco, G. Melissas, M. Melo, D. Menichetti, E. Menshikov, A. Messina, S. Meyhandan, R. Micanovic, S. Micheletti, M. I. Middendorf, L. Minaya, I. A. Miramonti, L. Mitrica, B. Molina-Bueno, L. Mollerach, S. Monasor, M. Ragaigne, D. Monnier Montanet, F. Morello, C. Moreno, J. C. Mostafa, M. Moura, C. A. Muller, M. A. Muller, G. Munchmeyer, M. Mussa, R. Navarra, G. Navas, S. Necesal, P. Nellen, L. Nelles, A. Neuser, J. Niechciol, M. Niemietz, L. Niggemann, T. Nitz, D. Nosek, D. Novotny, V. Nozka, L. Ochilo, L. Olinto, A. Oliveira, M. Ortiz, M. Pacheco, N. Selmi-Dei, D. Pakk Palatka, M. Pallotta, J. Palmieri, N. Papenbreer, P. Parente, G. Parra, A. Pastor, S. Paul, T. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Pesce, R. Petermann, E. Peters, C. Petrera, S. Petrolini, A. Petrov, Y. Piegaia, R. Pierog, T. Pieroni, P. Pimenta, M. Pirronello, V. Platino, M. Plum, M. Porcelli, A. Porowski, C. Privitera, P. Prouza, M. Purrello, V. Quel, E. J. Querchfeld, S. Quinn, S. Rautenberg, J. Ravel, O. Ravignani, D. Revenu, B. Ridky, J. Riggi, S. Risse, M. Ristori, P. Rizi, V. Roberts, J. De Carvalho, W. Rodrigues Cabo, I. Rodriguez Fernandez, G. Rodriguez Rojo, J. Rodriguez Rodriguez-Frias, M. D. Ros, G. Rosado, J. Rossler, T. Roth, M. Roulet, E. Rovero, A. C. Ruhle, C. Saffi, S. J. Saftoiu, A. Salamida, F. Salazar, H. Greus, F. Salesa Salina, G. Sanchaz, F. Sanchez-Lucas, P. Santo, C. E. Santos, E. Santos, E. M. Sarazin, F. Sarkar, B. Sarmento, R. Sato, R. Scharf, N. Scherini, V. Schieler, H. Schiffer, P. Schmidt, A. Scholten, O. Schoorlemmer, H. Schovanek, P. Schulz, A. Schulz, J. Sciutto, S. J. Segreto, A. Settimo, M. Shadkam, A. Shellard, R. C. Sidelnik, I. Sigl, G. Sima, O. Smialkowski, A. Smida, R. Snow, G. R. Sommers, P. Sorokin, J. Squartini, R. Srivastava, Y. N. Stanic, S. Stapleton, J. Stasielak, J. Stephan, M. Stutz, A. Suarez, F. Suomijarvi, T. Supanitsky, A. D. Sutherland, M. S. Swain, J. Szadkowski, Z. Szuba, M. Taborda, O. A. Tapia, A. Tartare, M. Thao, N. T. Theodoro, V. M. Tiffenberg, J. Timmermans, C. Peixoto, C. J. Todero Toma, G. Tomankova, L. Tome, B. Tonachini, A. Elipe, G. Torralba Machado, D. Torres Travnicek, P. Trovato, E. Tueros, M. Ulrich, R. Unger, M. Urban, M. Galicia, J. F. Valdes Valino, I. Valore, L. Van Aar, G. Van den Berg, A. M. Van Velzen, S. Van Vliet, A. Varela, E. Cardenas, B. Vargas Varner, G. Vazquez, J. R. Vazquez, R. A. Veberic, D. Verzi, V. Vicha, J. Videla, M. Villasenor, L. Vlcek, B. Wahlberg, H. Wainberg, O. Walz, D. Watson, A. A. Weber, M. Weidenhaupt, K. Weindl, A. Werner, F. Whelan, B. J. Widom, A. Wiencke, L. Wilczynska, B. Wilczynski, H. Will, M. Williams, C. Winchen, T. Wittkowski, D. Wundheiler, B. Wykes, S. Yamamoto, T. Yapici, T. Younk, P. Yuan, G. Yushkov, A. Zamorano, B. Zas, E. Zavrtanik, D. Zavrtanik, M. Zaw, I. Zepeda, A. Zhou, J. Zhu, Y. Silva, M. Zimbres Ziolkowski, M. CA Pierre Auger Collaboration TI A TARGETED SEARCH FOR POINT SOURCES OF EeV NEUTRONS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmic rays; Galaxy: disk; methods: data analysis ID COSMIC-RAYS; CATALOG; ORIGIN AB A flux of neutrons from an astrophysical source in the Galaxy can be detected in the Pierre Auger Observatory as an excess of cosmic-ray air showers arriving from the direction of the source. To avoid the statistical penalty for making many trials, classes of objects are tested in combinations as nine "target sets," in addition to the search for a neutron flux from the Galactic center or from the Galactic plane. Within a target set, each candidate source is weighted in proportion to its electromagnetic flux, its exposure to the Auger Observatory, and its flux attenuation factor due to neutron decay. These searches do not find evidence for a neutron flux from any class of candidate sources. Tabulated results give the combined p-value for each class, with and without the weights, and also the flux upper limit for the most significant candidate source within each class. These limits on fluxes of neutrons significantly constrain models of EeV proton emission from non-transient discrete sources in the Galaxy. C1 [Aab, A.; Buchholz, P.; Erfani, M.; Frohlich, U.; Heimann, P.; Homola, P.; Niechciol, M.; Ochilo, L.; Risse, M.; Yushkov, A.; Ziolkowski, M.] Univ Siegen, D-57068 Siegen, Germany. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Oliveira, M.; Pimenta, M.; Santo, C. E.; Santos, E.; Sarmento, R.; Tome, B.] UL, LIP, Lisbon, Portugal. [Abreu, P.; Assis, P.; Brogueira, P.; Cazon, L.; Diogo, F.; Espadanal, J.; Goncalves, P.; Oliveira, M.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] UL, IST, Lisbon, Portugal. [Aglietta, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; Gorgi, A.; Latronico, L.; Maldera, S.; Morello, C.; Navarra, G.] Univ Turin, Osservatorio Astrofis Torino INAF, Turin, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; Gorgi, A.; Latronico, L.; Maldera, S.; Morello, C.; Navarra, G.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Ahlers, M.] Univ Wisconsin, Madison, WI USA. [Ahn, E. J.; Escobar, C. O.; Fazzini, N.; Glass, H.; Hojvat, C.; Kasper, P.; Lebrun, P.; Mantsch, P.; Mazur, P. O.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Al Samarai, I.; Deligny, O.; Dong, P. N.; Lhenry-Yvon, I.; Martraire, D.; Salamida, F.; Suomijarvi, T.] Univ Paris 11, IPNO, CNRS IN2P3, Orsay, France. [Albuquerque, I. F. M.; Gouffon, P.; Santos, E. M.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Allekotte, I.; Asorey, H.; Bertou, X.; Berisso, M. Gomez; Harari, D.; Mollerach, S.; Purrello, V.; Roulet, E.; Sidelnik, I.; Taborda, O. A.] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. [Allekotte, I.; Asorey, H.; Berisso, M. Gomez; Harari, D.; Roulet, E.; Sidelnik, I.; Taborda, O. A.] Inst Balseiro CNEA UNCuyo CONICET, San Carlos De Bariloche, Rio Negro, Argentina. [Allen, J.; Farrar, G.; Roberts, J.; Zaw, I.] NYU, New York, NY USA. [Allison, P.; Beatty, J. J.; Griffith, N.; Stapleton, J.; Zepeda, A.] Ohio State Univ, Columbus, OH 43210 USA. [Almela, A.; Etchegoyen, A.; Wainberg, O.] Univ Tecnol Nacl, Fac Reg Buenos Aires, Buenos Aires, DF, Argentina. [Almela, A.; Chiavassa, A.; Etchegoyen, A.; Figueira, J. M.; Filevich, A.; Josebachuili, M.; Lucero, A.; Melo, D.; Platino, M.; Ravignani, D.; Sanchaz, F.; Suarez, F.; Tapia, A.; Videla, M.; Wainberg, O.; Wundheiler, B.] CNEA CONICET UNSAM, Inst Tecnol Detect & Astroparticulas, Buenos Aires, DF, Argentina. [Castillo, J. Alvarez; D'Olivo, J. C.; Medina-Tanco, G.; Nellen, L.; Galicia, J. F. Valdes; Cardenas, B. Vargas] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Aab, A.; Almela, A.; Alvarez-Muniz, J.; Ave, M.; Caballero-Mora, K. S.; Roca, S. T. Garcia; Aguera, A. Lopez; Parente, G.; Parra, A.; Riggi, S.; De Carvalho, W. Rodrigues; Cabo, I. Rodriguez; Fernandez, G. Rodriguez; Elipe, G. Torralba; Tueros, M.; Valino, I.; Vazquez, R. A.; Zas, E.] Univ Santiago Compostela, Santiago De Compostela, Spain. [Batista, R. Alves; Schiffer, P.; Sigl, G.; Van Vliet, A.] Univ Hamburg, Hamburg, Germany. [Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; Guarino, F.; Valore, L.] Univ Naples Federico II, Naples, Italy. [Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; Guarino, F.; Valore, L.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Aminaei, A.; De Jong, S. J.; Falcke, H.; Grebe, S.; Horandel, J. R.; Jansen, S.; Nelles, A.; Schoorlemmer, H.; Schulz, J.; Timmermans, C.; Van Aar, G.; Van Velzen, S.; Wykes, S.] Radboud Univ Nijmegen, IMAPP, Nijmegen, Netherlands. [Anchordoqui, L.; Islo, K.; Paul, T.; Vlcek, B.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Arqueros, F.; Blanco, F.; Garcia-Pinto, D.; Minaya, I. A.; Ortiz, M.; Rosado, J.; Vazquez, J. R.] Univ Complutense Madrid, Madrid, Spain. [Aublin, J.; Billoir, P.; Blanco, M.; Caccianiga, L.; Gaior, R.; Ghia, P. L.; Letessier-Selvon, A.; Maris, I. C.; Munchmeyer, M.; Settimo, M.] Univ Paris 06, LPNHE, CNRS IN2P3, Paris, France. [Avenier, M.; Berat, C.; Le Coz, S.; Lebrun, D.; Louedec, K.; Montanet, F.; Stutz, A.; Tartare, M.] Univ Grenoble Alpes, LPSC, CNRS IN2P3, Grenoble, France. [Avila, G.; Vitale, P. F. Gomez] Observatorio Pierre Auger & Comis Nacl Energia At, Malargue, Argentina. [Badescu, A. M.; Fratu, O.] Univ Politehn Bucuresti, Bucharest, Romania. [Barber, K. B.; Bellido, J. A.; Clay, R. W.; Cooper, M. J.; Dawson, B. R.; Grubb, T. D.; Harrison, T. A.; Hill, G. C.; Malacari, M.; Saffi, S. J.; Sorokin, J.] Univ Adelaide, Adelaide, SA, Australia. [Baumel, J.; Baus, C.; Blumer, H.; Fuchs, B.; Gonzalez, J. G.; Huber, D.; Katkov, I.; Link, K.; Ludwig, M.; Maurel, D.; Melissas, M.; Werner, F.] Karlsruhe Inst Technol, IEKP, Karlsruhe, Germany. [Becker, K. H.; Bleve, C.; Jandt, I.; Kaapa, A.; Kampert, K. H.; Krohm, N.; Kruppke-Hansen, D.; Lu, L.; Neuser, J.; Niemietz, L.; Rautenberg, J.; Sarkar, B.; Wittkowski, D.] Berg Univ Wuppertal, Wuppertal, Germany. [Biermann, P. L.; Caramete, L.; Curutiu, A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Aab, A.; Almela, A.; Aminaei, A.; Blumer, H.; Bueno, A.; Castellina, A.; Daumiller, K.; Dembinski, H.; Engel, R.; Hasankiadeh, Q. D.; Haungs, A.; Heck, D.; Herve, A. E.; Holt, E.; Huege, T.; Keilhauer, B.; Klages, H. O.; Mathes, H. J.; Pierog, T.; Porcelli, A.; Roth, M.; Schieler, H.; Schulz, A.; Smida, R.; Szuba, M.; Tomankova, L.; Ulrich, R.; Unger, M.; Weindl, A.; Will, M.] Karlsruhe Inst Technol, Inst Kernphys, Karlsruhe, Germany. [Boiiacova, M.; Chudoba, J.; Ebr, J.; Hrabovsky, M.; Mandat, D.; Necesal, P.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovanek, P.; Travnicek, P.; Vicha, J.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Boncioli, D.; Grillo, A. F.] INFN, Lab Nazl Gran Sasso, Laquila, Italy. [Bonifazi, C.; De Mello Neto, J. R. T.; Fernandes, M.; Giaccari, U.; Lyberis, H.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, Brazil. [Borodai, N.; Homola, P.; Pekala, J.; Porowski, C.; Stasielak, J.; Wilczynska, B.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Brack, J.; Dorofeev, A.; Gookin, B.; Harton, J. L.; Petrov, Y.] Colorado State Univ, Ft Collins, CO 80523 USA. [Mitrica, B.; Saftoiu, A.; Toma, G.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Brown, W. C.] Colorado State Univ, Pueblo, CO USA. [Bueno, A.; Bravo, A. Gascon; Bahilo, J. Lozano; Molina-Bueno, L.; Navas, S.; Sanchez-Lucas, P.; Zamorano, B.] Univ Granada, Granada, Spain. [Bueno, A.; Bravo, A. Gascon; Bahilo, J. Lozano; Molina-Bueno, L.; Navas, S.; Sanchez-Lucas, P.; Zamorano, B.] CAFPE, Granada, Spain. [Caballero-Mora, K. S.; Martinez, H.; Zepeda, A.] CINVESTAV, Mexico City, DF, Mexico. [Caballero-Mora, K. S.; Cheng, S. H.; Coutu, S.; Criss, A.; Mostafa, M.; Greus, F. Salesa; Sommers, P.; Whelan, B. J.] Penn State Univ, University Pk, PA 16802 USA. [Caccianiga, B.; Collica, L.; Giammarchi, M.; Miramonti, L.] Univ Milan, Milan, Italy. [Caccianiga, B.; Collica, L.; Giammarchi, M.; Miramonti, L.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [Candusso, M.; Di Giulio, C.; Matthiae, G.; Fernandez, G. Rodriguez; Salina, G.; Verzi, V.] Univ Roma Tor Vergata, Rome, Italy. [Candusso, M.; Di Giulio, C.; Matthiae, G.; Fernandez, G. Rodriguez; Salina, G.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Caruso, R.; De Domenico, M.; Garilli, G.; Insolia, A.; Pirronello, V.; Trovato, E.] Catania Univ, Catania, Italy. [Caruso, R.; De Domenico, M.; Garilli, G.; Insolia, A.; Pirronello, V.; Trovato, E.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Cataldi, G.; Cocciolo, G.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, Lecce, Italy. [Cataldi, G.; Cocciolo, G.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [Cester, R.; Menichetti, E.; Mussa, R.; Tonachini, A.] Univ Turin, Turin, Italy. [Cester, R.; Menichetti, E.; Mussa, R.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Chavez, A. G.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Chinellato, J. A.; Daniel, B.; Castro, M. L. Diaz; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Selmi-Dei, D. Pakk; Silva, M. Zimbres] Univ Estadual Campinas, Campinas, SP, Brazil. [Contreras, F.; Kleinfeller, J.; Rojo, J. Rodriguez; Sato, R.; Squartini, R.] Observ Pierre Auger, Malargue, Argentina. [Covault, C. E.; Ferguson, A. P.; LaHurd, D.; Quinn, S.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Cronin, J.; Luis, P. Facal San; Fang, K.; Fuji, T.; Hollon, N.; Monasor, M.; Olinto, A.; Privitera, P.; Williams, C.; Yamamoto, T.; Zhou, J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Dallier, R.; Gate, F.; Lautridou, P.; Maller, J.; Marin, V.; Martin, L.; Ravel, O.; Revenu, B.; Machado, D. Torres] Univ Nantes, CNRS IN2P3, Ecole Mines Nantes, SUBATECH, Nantes, France. [Dallier, R.; Martin, L.] CNRS INSU, Observ Paris, Stn Radioastron Nacy, Paris, France. [Dasso, S.; Rovero, A. C.; Supanitsky, A. D.] CONICET UBA, Inst Astron & Fis Espacio, Buenos Aires, DF, Argentina. [Dasso, S.; Guardincerri, Y.; Meza, J. J. Masia; Piegaia, R.; Pieroni, P.; Tiffenberg, J.] Univ Buenos Aires, FCEyN, Dept Fis, Buenos Aires, DF, Argentina. [Dasso, S.; Guardincerri, Y.; Meza, J. J. Masia; Piegaia, R.; Pieroni, P.; Tiffenberg, J.] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina. [Aab, A.; De Almeida, R. M.; De Oliveira, J.] Univ Fed Fluminense, EEIMVR, Volta Redonda, RJ, Brazil. [De Jong, S. J.; Falcke, H.; Grebe, S.; Horandel, J. R.; Jansen, S.; Nelles, A.; Schoorlemmer, H.; Timmermans, C.] Nikhef, Amsterdam, Netherlands. [De Souza, V.] Univ Sao Paulo, Inst Fis, Sao Carlos, SP, Brazil. [Del Peral, L.; Pacheco, N.; Rodriguez-Frias, M. D.; Ros, G.] Univ Alcala De Henares, Madrid, Spain. [Dhital, N.; Diaz, J. C.; Fick, B.; Kieckhafer, R. M.; Nitz, D.; Yapici, T.] Michigan Technol Univ, Houghton, MI 49931 USA. [Di Matteo, A.; Petrera, S.; Rizi, V.] Univ Aquila, Dipartimento Sci Fis & Chim, I-67100 Laquila, Italy. [Diep, P. N.; Dong, P. N.; Thao, N. T.] INST, Hanoi, Vietnam. [Docters, W.; Glaser, C.; Messina, S.; Scholten, O.; Van den Berg, A. M.] Univ Groningen, KVI Ctr Adv Radiat Technol, Groningen, Netherlands. [Dova, M. T.; Albarracin, F. Gomez; Hansen, P.; Jarne, C.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Wahlberg, H.] Univ Nacl Plata, IFLP, La Plata, Argentina. [Dova, M. T.; Albarracin, F. Gomez; Hansen, P.; Jarne, C.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Erdmann, M.; Hebbeker, T.; Krause, R.; Kuempel, D.; Lauscher, M.; Middendorf, L.; Muller, G.; Niggemann, T.; Peters, C.; Plum, M.; Scharf, N.; Stephan, M.; Urban, M.; Walz, D.; Weidenhaupt, K.; Winchen, T.] Rhein Westfal TH Aachen, Phys Inst A, Aachen, Germany. [Falcke, H.] ASTRON, Dwingeloo, Netherlands. [Filipcic, A.; Zavrtanik, D.; Zavrtanik, M.] J Stefan Inst, Ljubljana, Slovenia. [Filipcic, A.; Stanic, S.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gorica, Lab Astroparticle Phys, Pristava, Slovenia. [Fox, B. D.; Gorham, P.; Meyhandan, R.; Schoorlemmer, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Garia, B.] CNEA CONICET UNSAM, Inst Tecnol Detect & Astrparticulas, Mendoza, Argentina. [Garia, B.] Natl Technol Univ, CONICET CNEA, Fac Mendoza, Mendoza, Argentina. [Garcia-Gamez, D.; Kegl, B.; Ragaigne, D. Monnier; Veberic, D.; Zhu, Y.] Univ Paris 11, LAL, Paris, France. [Gemmeke, H.; Kleifges, M.; Kromer, O.; Kunka, N.; Menshikov, A.; Ruhle, C.; Schmidt, A.; Weber, M.] Karlsruhe Inst Technol, North Inst Prozessdatenverarbeirung &Elect, Karlsruhe, Germany. [Guedes, G. P.] Univ Lodz, PL-90131 Lodz, Poland. [Guedes, G. P.] Univ Estadual Feira de Santana, Feira De Santana, BA, Brazil. [Horvath, P.; Hrabovsky, M.; Nozka, L.; Rossler, T.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Isar, P. G.] Inst Space Sci, Bucharest, Romania. [Keivani, A.; Matthews, J.; Shadkam, A.; Sutherland, M. S.; Yuan, G.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [La Rosa, G.; Maccarone, M. C.; Riggi, S.; Segreto, A.] INAF, Palermo, Italy. [Lauer, R.; Matthews, A. J.] Univ New Mexico, Albuquerque, NM 87131 USA. [Leao, M. S. A. B.] Fac Independente Nordeste, Vitoria Da Conquista, Brazil. [De Oliveira, M. A. Leigui; Moura, C. A.] Univ Fed ABC, Sante Andre, SP, Brazil. [Lopez, R.; Bravo, O. Martinez; Pelayo, R.; Salazar, H.; Varela, E.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Lu, L.; Watson, A. A.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Maurizio, D.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, RJ, Brazil. [Mayotte, E.; Medina, C.; Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Micanovic, S.] Rudjer Boskovic Inst, Zagreb 10000, Croatia. [Micheletti, M. I.] Consejo Nacl Invest Cient & Tecn, IFIR, UNR, Rosario, Argentina. [Aab, A.; Micheletti, M. I.] Fac Ciencias Bioquim & Farmaceut UNR, Rosario, Argentina. [Muller, M. A.] Univ Fed Pelotas, Pelotas, RS, Brazil. [Nosek, D.; Novotny, V.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, Prague, Czech Republic. [Pallotta, J.; Quel, E. J.; Ristori, P.] CITEDEF, Ctr Invest Laseres & Aplicac, Buenos Aires, DF, Argentina. [Pallotta, J.; Quel, E. J.; Ristori, P.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [Pesce, R.; Petrolini, A.] Dipartimento Fis Univ, Genoa, Italy. [Pesce, R.; Petrolini, A.] INFN, Genoa, Italy. [Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Petrera, S.] Gran Sasso Sci Inst INFN, Laquila, Italy. [Sima, O.] Univ Bucharest, Dept Phys, Bucharest, Romania. [Srivastava, Y. N.; Swain, J.; Widom, A.] Northeastern Univ, Boston, MA 02115 USA. [Peixoto, C. J. Todero] Univ Sao Paulo, Escola Engn Lorena, BR-05508 Sao Paulo, Brazil. [Younk, P.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Aab, A (reprint author), Univ Siegen, D-57068 Siegen, Germany. RI de souza, Vitor/D-1381-2012; Valino, Ines/J-8324-2012; Navas, Sergio/N-4649-2014; Espadanal, Joao/I-6618-2015; Martello, Daniele/J-3131-2012; Insolia, Antonio/M-3447-2015; Petrolini, Alessandro/H-3782-2011; de Mello Neto, Joao/C-5822-2013; zas, enrique/I-5556-2015; Moura Santos, Edivaldo/K-5313-2016; Gouffon, Philippe/I-4549-2012; de Almeida, Rogerio/L-4584-2016; Caramete, Laurentiu/C-2328-2011; Horvath, Pavel/G-6334-2014; Sima, Octavian/C-3565-2011; Torralba Elipe, Guillermo/A-9524-2015; Di Giulio, Claudio/B-3319-2015; Chinellato, Jose Augusto/I-7972-2012; Pech, Miroslav/G-5760-2014; Albuquerque, Ivone/H-4645-2012; Parente, Gonzalo/G-8264-2015; dos Santos, Eva/N-6351-2013; Alvarez-Muniz, Jaime/H-1857-2015; Garcia Pinto, Diego/J-6724-2014; Pastor, Sergio/J-6902-2014; Tome, Bernardo/J-4410-2013; Rosado, Jaime/K-9109-2014; Arqueros, Fernando/K-9460-2014; Espirito Santo, Maria Catarina/L-2341-2014; Pimenta, Mario/M-1741-2013; Chinellato, Carola Dobrigkeit /F-2540-2011; Badescu, Alina/B-6087-2012; Ros, German/L-4764-2014; Brogueira, Pedro/K-3868-2012; Fauth, Anderson/F-9570-2012; De Domenico, Manlio/B-5826-2014; Abreu, Pedro/L-2220-2014; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Assis, Pedro/D-9062-2013; Blanco, Francisco/F-1131-2015; Cazon, Lorenzo/G-6921-2014; Conceicao, Ruben/L-2971-2014; Bueno, Antonio/F-3875-2015; Beatty, James/D-9310-2011; Guarino, Fausto/I-3166-2012; Lozano Bahilo, Julio/F-4881-2016; Ridky, Jan/H-6184-2014; Colalillo, Roberta/R-5088-2016; Buscemi, Mario/R-5071-2016; Bonino, Raffaella/S-2367-2016; Rodriguez Frias, Maria /A-7608-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; De Mitri, Ivan/C-1728-2017; Mitrica, Bogdan/D-5201-2009; Alves Batista, Rafael/K-6642-2012; Rodriguez Fernandez, Gonzalo/C-1432-2014; Nosek, Dalibor/F-1129-2017; OI Rizi, Vincenzo/0000-0002-5277-6527; Ulrich, Ralf/0000-0002-2535-402X; Novotny, Vladimir/0000-0002-4319-4541; Garcia, Beatriz/0000-0003-0919-2734; Erdmann, Martin/0000-0002-1653-1303; Zamorano, Bruno/0000-0002-4286-2835; Petrera, Sergio/0000-0002-6029-1255; Bonino, Raffaella/0000-0002-4264-1215; Valino, Ines/0000-0001-7823-0154; Navas, Sergio/0000-0003-1688-5758; Espadanal, Joao/0000-0002-1301-8061; Martello, Daniele/0000-0003-2046-3910; Insolia, Antonio/0000-0002-9040-1566; Petrolini, Alessandro/0000-0003-0222-7594; de Mello Neto, Joao/0000-0002-3234-6634; zas, enrique/0000-0002-4430-8117; Moura Santos, Edivaldo/0000-0002-2818-8813; Gouffon, Philippe/0000-0001-7511-4115; de Almeida, Rogerio/0000-0003-3104-2724; Horvath, Pavel/0000-0002-6710-5339; Torralba Elipe, Guillermo/0000-0001-8738-194X; Di Giulio, Claudio/0000-0002-0597-4547; Chinellato, Jose Augusto/0000-0002-3240-6270; Albuquerque, Ivone/0000-0001-7328-0136; Parente, Gonzalo/0000-0003-2847-0461; dos Santos, Eva/0000-0002-0474-8863; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Garcia Pinto, Diego/0000-0003-1348-6735; Tome, Bernardo/0000-0002-7564-8392; Rosado, Jaime/0000-0001-8208-9480; Arqueros, Fernando/0000-0002-4930-9282; Espirito Santo, Maria Catarina/0000-0003-1286-7288; Pimenta, Mario/0000-0002-2590-0908; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Ros, German/0000-0001-6623-1483; Brogueira, Pedro/0000-0001-6069-4073; de Jong, Sijbrand/0000-0002-3120-3367; Marsella, Giovanni/0000-0002-3152-8874; La Rosa, Giovanni/0000-0002-3931-2269; Sarmento, Raul/0000-0002-5018-5467; Aramo, Carla/0000-0002-8412-3846; Aglietta, Marco/0000-0001-8354-5388; Maccarone, Maria Concetta/0000-0001-8722-0361; Kothandan, Divay/0000-0001-9048-7518; Castellina, Antonella/0000-0002-0045-2467; maldera, simone/0000-0002-0698-4421; Matthews, James/0000-0002-1832-4420; Yuan, Guofeng/0000-0002-1907-8815; Fauth, Anderson/0000-0001-7239-0288; De Domenico, Manlio/0000-0001-5158-8594; Abreu, Pedro/0000-0002-9973-7314; Assis, Pedro/0000-0001-7765-3606; Blanco, Francisco/0000-0003-4332-434X; Cazon, Lorenzo/0000-0001-6748-8395; Conceicao, Ruben/0000-0003-4945-5340; Bueno, Antonio/0000-0002-7439-4247; Beatty, James/0000-0003-0481-4952; Guarino, Fausto/0000-0003-1427-9885; Dembinski, Hans/0000-0003-3337-3850; Lauer, Robert/0000-0003-1933-7861; Del Peral, Luis/0000-0003-2580-5668; Coutu, Stephane/0000-0003-2923-2246; Cataldi, Gabriella/0000-0001-8066-7718; Navarro Quirante, Jose Luis/0000-0002-9915-1735; Lozano Bahilo, Julio/0000-0003-0613-140X; Mantsch, Paul/0000-0002-8382-7745; Salamida, Francesco/0000-0002-9306-8447; Ridky, Jan/0000-0001-6697-1393; Ravignani, Diego/0000-0001-7410-8522; Segreto, Alberto/0000-0001-7341-6603; Colalillo, Roberta/0000-0002-4179-9352; Buscemi, Mario/0000-0003-2123-5434; Rodriguez Frias, Maria /0000-0002-2550-4462; De Mitri, Ivan/0000-0002-8665-1730; Alves Batista, Rafael/0000-0003-2656-064X; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X; Nosek, Dalibor/0000-0001-6219-200X; Sigl, Guenter/0000-0002-4396-645X FU Comision Nacional de Energia Atomica; Fundacion Antorchas; Gobierno De La Provincia de Mendoza; Municipalidad de Malargue; NDM Holdings; Valle Las Lenas; Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ); Sao Paulo Research Foundation (FAPESP) [2010/07359-6, 1999/05404-3]; Ministerio de Ciencia e Tecnologia (MCT), Brazil; Czech Science Foundation [14-17501S]; Czech Republic; Centre de Calcul [IN2P3/CNRS]; Centre National de la Recherche Scientifique (CNRS); Conseil Regional Ile-de-France; Departement Physique Nucleaire et Corpusculaire [PNC-IN2P3/CNRS]; Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Finanzministerium Baden-Wurttemberg; Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF); Ministerium fur Wissenschaft und Forschung; Nordrhein West-falen; Ministerium fur Wissenschaft; Forschung und Kunst; Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN); Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR); Gran Sasso Center for Astroparticle Physics (CFA); CETEMPS Center of Excellence, Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs; Cultuur en Wetenschap; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO); Stichting voor Fundamenteel Onderzoek der Materie (FOM), The Netherlands; National Centre for Research and Development [ERA-NET-ASPERA/01/11, ERA-NET-ASPERA/02/11]; National Science Centre, Poland [2013/08/M/ST9/00322, 2013/08/M/ST9/00728, 2013/10/M/ST9/00062]; Portuguese national funds and FEDER funds within COMPETE-Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI [20/2012, 194/2012, 1/ASPERA2/2012 ERA-NET, PN-II-RU-PD-2011-3-0145-17, PN-II-RU-PD-2011-3-0062]; Minister of National Education, Programme for research-Space Technology and Advanced Research-STAR, Romania [83/2013]; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds; Ministerio de Educacion y Ciencia, Xunta de Galicia, Spain; Leverhulme Foundation, Science and Technology Facilities Council, United Kingdom; Department of Energy [DE-AC02-07CH11359, DE-FR02-04ER41300, DE-FG02-99ER41107]; National Science Foundation [0450696]; Grainger Foundation, USA; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program [PIRSES-2009-GA-246806]; UNESCO; [MSMT-CR LG13007]; [7AMB14AR005]; [CZ.1.05/2.1.00/03.0058] FX We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Sao Paulo Research Foundation (FAPESP) grant Nos. 2010/07359-6, 1999/05404-3, Ministerio de Ciencia e Tecnologia (MCT), Brazil; MSMT-CR LG13007, 7AMB14AR005, CZ.1.05/2.1.00/03.0058 and the Czech Science Foundation grant 14-17501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein West-falen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), The Netherlands; National Centre for Research and Development, grant Nos. ERA-NET-ASPERA/01/11 and ERA-NET-ASPERA/02/11, National Science Centre, Grant Nos. 2013/08/M/ST9/00322, 2013/08/M/ST9/00728, and 2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds within COMPETE-Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects nr. 20/2012 and nr. 194/2012, project nr. 1/ASPERA2/2012 ERA-NET, PN-II-RU-PD-2011-3-0145-17, and PN-II-RU-PD-2011-3-0062, the Minister of National Education, Programme for research-Space Technology and Advanced Research-STAR, project number 83/2013, Romania; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Educacion y Ciencia, Xunta de Galicia, Spain; The Leverhulme Foundation, Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract No. DE-AC02-07CH11359, DE-FR02-04ER41300, and DE-FG02-99ER41107, National Science Foundation, grant No. 0450696, The Grainger Foundation, USA; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, grant No. PIRSES-2009-GA-246806; and UNESCO. NR 13 TC 5 Z9 5 U1 1 U2 47 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 10 PY 2014 VL 789 IS 2 AR L34 DI 10.1088/2041-8205/789/2/L34 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AM5DS UT WOS:000339876800009 ER PT J AU Krueger, WS Hilborn, ED Converse, RR Wade, TJ AF Krueger, Whitney S. Hilborn, Elizabeth D. Converse, Reagan R. Wade, Timothy J. TI Drinking water source and human Toxoplasma gondii infection in the United States: a cross-sectional analysis of NHANES data SO BMC PUBLIC HEALTH LA English DT Article DE Nutrition surveys; Toxoplasma; Drinking water; Water wells; Cross-sectional studies ID ACQUIRED TOXOPLASMOSIS; RISK-FACTORS; DISORDERS; OOCYSTS; HEALTH; SEROPREVALENCE; TRANSMISSION; OUTBREAK; BEHAVIOR; DISEASES AB Background: Toxoplasma gondii imparts a considerable burden to public health. Human toxoplasmosis can be life-threatening in immunocompromised individuals, has been associated with psychiatric disorders, and can cause severe congenital pathologies, spontaneous abortion, or stillbirth. Environmental modes of transmission contributing to the incidence of human toxoplasmosis are poorly understood. We sought to examine National Health and Nutrition Examination Survey (NHANES) data for risk factors associated with T. gondii seroprevalence. Methods: T. gondii serology results reported for Continuous NHANES survey years 1999-2004 and 2009-10 were examined. To explore associations with toxoplasmosis seropositivity, covariates of interest were selected a priori, including source and home treatment of tap water. Associations between potential risk factors and evidence of IgG antibodies against T. gondii were assessed using multivariable logistic regression. Results: Among 23,030 participants with available T. gondii serology across 8 years of continuous NHANES survey data (1999-2004; 2009-2010), persons born outside the United States were significantly more likely to be seropositive, and seropositivity was inversely associated with years spent in the United States. Among US-born participants, participants with homes on well water ( both those who used at-home water treatment devices and those who did not), as well as participants with public/private company-provided tap water who did not use at-home water treatment devices, were significantly more likely to be seropositive compared to participants who used home treatment devices on tap water provided by a private or public water company. A comparative subpopulation analysis revealed age-adjusted seroprevalence among US-born persons 12-49 yrs old significantly declined to 6.6% (95% CI, 5.2-8.0) (P <0.0001) in 2009-10, compared to previously published reports for NHANES data from 1988-1994 (14.1%) and 1999-2004 (9.0%). Conclusions: Data suggests that T. gondii infections continue to decline in the United States, but the overall infection rate remains substantial at nearly 7%. Despite the limitations in the Continuous NHANES cross-sectional survey, the association between well water use and T. gondii infection warrants further research. C1 [Krueger, Whitney S.; Converse, Reagan R.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Krueger, Whitney S.; Hilborn, Elizabeth D.; Converse, Reagan R.; Wade, Timothy J.] US EPA, Environm Publ Hlth Div, Off Res & Dev, Chapel Hill, NC 27599 USA. RP Wade, TJ (reprint author), US EPA, Environm Publ Hlth Div, Off Res & Dev, 104 Mason Farm Rd, Chapel Hill, NC 27599 USA. EM wade.tim@epa.gov FU Internship/Research Participation Program at the Office of Research and Development; U.S. Environmental Protection Agency; Oak Ridge Institute for Science and Education through an interagency agreement between the U. S. Department of Energy and EPA FX This project was supported in part by an appointment to the Internship/Research Participation Program at the Office of Research and Development, U.S. Environmental Protection Agency, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U. S. Department of Energy and EPA. NR 39 TC 7 Z9 7 U1 1 U2 15 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2458 J9 BMC PUBLIC HEALTH JI BMC Public Health PD JUL 10 PY 2014 VL 14 AR 711 DI 10.1186/1471-2458-14-711 PG 10 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA AL7EP UT WOS:000339296300003 PM 25012250 ER PT J AU Taylor, DE Strawhecker, KE Shanholtz, ER Sorescu, DC Sausa, RC AF Taylor, D. E. Strawhecker, K. E. Shanholtz, E. R. Sorescu, D. C. Sausa, R. C. TI Investigations of the Intermolecular Forces between RDX and Polyethylene by Force-Distance Spectroscopy and Molecular Dynamics Simulations SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID PLASTIC-BONDED EXPLOSIVES; SURFACE-ENERGY; CRYSTAL-STRUCTURE; CYCLOTRIMETHYLENE-TRINITRAMINE; DENSITY POLYETHYLENE; ADHESION; MICROSCOPE; PARTICLES; PHASE; HMX AB The development of novel nanoenergetic materials with enhanced bulk properties requires an understanding of the intermolecular interactions occurring between molecular components. We investigate the surface interactions between 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and polyethylene (PE) crystals on the basis of combined use of molecular dynamics (MD) simulations and force-distance spectroscopy, in conjunction with Lifshitz macroscopic theory of van der Waals forces between continuous materials. The binding energy in the RDX-PE system depends both on the degree of PE crystallinity and on the RDX crystal face. Our MD simulations yield binding energies of approximately 132 and 120 mJ/m(2) for 100% amorphous and 100% crystalline PE on RDX (210), respectively. The average value is about 36% greater than our experimental value of 81 +/- 15 mJ/m(2) for PE (similar to 48% amorphous) on RDX (210). By comparison, Liftshitz theory predicts a value of about 79 mJ/m(2) for PE interacting with RDX. Our MD simulations also predict larger binding energies for both amorphous and crystalline PE on RDX (210) compared to the RDX (001) surface. Analysis of the interaction potential indicates that about 60% of the binding energy in the PE-RDX system is due to attractive interactions between H-PE-O-RDX and C-PE-N-RDX pairs of atoms. Further, amorphous PE shows a much longer interaction distance than crystalline PE with the (210) and (001) RDX surfaces due to the possibility of larger polymer elongations in the case of amorphous PE as strain is applied. Also, we report estimates of the binding energies of energetic materials RDX and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) with PE, propylene, polystyrene, and several fluorine-containing polymers using Lifshitz theory and compare these with reported MD calculations. C1 [Taylor, D. E.; Sausa, R. C.] Army Res Lab, ARL RDL WML B, Aberdeen Proving Ground, MD 21005 USA. [Strawhecker, K. E.] Army Res Lab, ARL RDL WMM EG, Aberdeen Proving Ground, MD 21005 USA. [Shanholtz, E. R.] Army Res Lab, ARL RDL WMM EUS, Aberdeen Proving Ground, MD 21005 USA. [Sorescu, D. C.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Sorescu, D. C.] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. RP Sausa, RC (reprint author), Army Res Lab, ARL RDL WML B, Aberdeen Proving Ground, MD 21005 USA. EM rosario.c.sausa.civ@mail.mil FU ARL Multiscale Response of Energetic Materials Program; ARL-Oak Ridge Institute for Science and Education Program FX We thank Drs. R. Pesce-Rodriquez of the Army Research Laboratory (ARL) and K. Behler of ARL-Bowhead Science & Technology for many helpful discussions, and Dr. K. Ramos of the Los Alamos National Laboratory for providing us with the RDX crystals. Support from the ARL Multiscale Response of Energetic Materials Program and the ARL-Oak Ridge Institute for Science and Education Program is gratefully acknowledged. We also acknowledge with thanks a supercomputing challenge grant at several DOD Supercomputing Resource Centers (DSRCs). NR 69 TC 1 Z9 1 U1 5 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 10 PY 2014 VL 118 IS 27 BP 5083 EP 5097 DI 10.1021/jp5039317 PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AL2UK UT WOS:000338980800024 PM 24922563 ER PT J AU Shi, FF Zhao, H Liu, G Ross, PN Somorjai, GA Komvopoulos, K AF Shi, Feifei Zhao, Hui Liu, Gao Ross, Philip N. Somorjai, Gabor A. Komvopoulos, Kyriakos TI Identification of Diethyl 2,5-Dioxahexane Dicarboxylate and Polyethylene Carbonate as Decomposition Products of Ethylene Carbonate Based Electrolytes by Fourier Transform Infrared Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SURFACE-FILM FORMATION; LI-ION; PROPYLENE CARBONATE; ELECTROCHEMICAL REDUCTION; LITHIUM BATTERIES; FTIR; MECHANISM; GRAPHITE; SYSTEMS; CELLS AB The formation of passive films on electrodes due to electrolyte decomposition significantly affects the reversibility of Li-ion batteries (LIBs); however, understanding of the electrolyte decomposition process is still lacking. The decomposition products of ethylene carbonate (EC)-based electrolytes on Sn and Ni electrodes are investigated in this study by Fourier transform infrared (FTIR) spectroscopy. The reference compounds, diethyl 2,5-dioxahexane dicarboxylate (DEDOHC) and polyethylene carbonate (poly-EC), were synthesized, and their chemical structures were characterized by FTIR spectroscopy and nuclear magnetic resonance (NMR). Assignment of the vibration frequencies of these compounds was assisted by quantum chemical (Hartree-Fock) calculations. The effect of Li-ion solvation on the FTIR spectra was studied by introducing the synthesized reference compounds into the electrolyte. EC decomposition products formed on Sn and Ni electrodes were identified as DEDOHC and poly-EC by matching the features of surface species formed on the electrodes with reference spectra. The results of this study demonstrate the importance of accounting for the salvation effect in FTIR analysis of the decomposition products forming on LIB electrodes. C1 [Shi, Feifei; Komvopoulos, Kyriakos] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Shi, Feifei; Ross, Philip N.; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhao, Hui; Liu, Gao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu; kyriakos@me.berkeley.edu FU Office of Freedom CAR and Vehicle Technologies of the U.S. Department of Energy [DE-AC02 O5CH1123]; UCB-KAUST Academic Excellence Alliance (AEA) Program; Office of Basic Energy Sciences, Materials Science and Engineering Division of the U.S. Department of Energy FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Freedom CAR and Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02 O5CH1123 and the UCB-KAUST Academic Excellence Alliance (AEA) Program. The IR instrumentation was purchased with funding from the Director, Office of Basic Energy Sciences, Materials Science and Engineering Division of the U.S. Department of Energy. NR 32 TC 11 Z9 11 U1 6 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 10 PY 2014 VL 118 IS 27 BP 14732 EP 14738 DI 10.1021/jp500558x PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AL2UG UT WOS:000338980400003 ER PT J AU Poonyayant, N Stavila, V Majzoub, EH Klebanoff, LE Behrens, R Angboonpong, N Ulutagay-Kartin, M Pakawatpanurut, P Hecht, ES Breit, JS AF Poonyayant, Natchapol Stavila, Vitalie Majzoub, Eric H. Klebanoff, Leonard E. Behrens, Richard Angboonpong, Natee Ulutagay-Kartin, Mutlu Pakawatpanurut, Pasit Hecht, Ethan S. Breit, Joseph S. TI An Investigation into the Hydrogen Storage Characteristics of Ca(BH4)(2)/LiNH2 and Ca(BH4)(2)/NaNH2: Evidence of Intramolecular Destabilization SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID AUGMENTED-WAVE METHOD; CALCIUM BOROHYDRIDE; CRYSTAL-STRUCTURE; DEHYDROGENATION PROPERTIES; LITHIUM BOROHYDRIDE; METAL AMIDES; SYSTEM; LI4BN3H10; COMPLEX; DECOMPOSITION AB We report a study of the hydrogen storage properties of materials that result from ball milling Ca(BH4)(2) and MNH2 (M = Li or Na) in a 1:1 molar ratio. The reaction products were examined experimentally by powder X-ray diffraction, thermogravimetric analysis and differential scanning calorimetry (TGA/DSC), simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS), and temperature-programmed desorption (TPD). The Ca(BH4)/LiNH2 system produces a single crystalline compound assigned to LiCa-(BH4)(2)(NH2). In contrast, ball milling of the Ca(BH4)/NaNH2 system leads to a mixture of NaBH4 and Ca(NH2)(2) produced by a metathesis reaction and another phase we assign to NaCa(BH4)(2)(NH2). Hydrogen desorption from the LiCa(BH4)(2)(NH2) compound starts around 150 degrees C, which is more than 160 degrees C lower than that from pure Ca(BH4)(2). Hydrogen is the major gaseous species released from these materials; however various amounts of ammonia form as well. A comparison of the TGA/DSC, STMBMS, and TPD data suggests that the amount of NH3 released is lower when the desorption reaction is performed in a closed vessel. There is no evidence for diborane (B2H6) release from LiCa(BH4)(2)(NH2), but traces of other volatile boron-nitrogen species (B2N2H4 and BN3H3) are observed at 0.3 mol % of hydrogen released. Theoretical investigations of the possible crystal structures and detailed phase diagrams of the Li-Ca-B-N-H system were conducted using the prototype electrostatic ground state (PEGS) method and multiple gas canonical linear programming (MGCLP) approaches. The theory is in qualitative agreement with the experiments and explains how ammonia desorption in a closed volume can be suppressed. The reduced hydrogen desorption temperature of LiCa(BH4)(2)(NH2) relative to Ca(BH4)(2) is believed to originate from intramolecular destabilization. C1 [Poonyayant, Natchapol; Angboonpong, Natee; Pakawatpanurut, Pasit] Mahidol Univ, Ctr Alternat Energy, Dept Chem, Bangkok 10400, Thailand. [Poonyayant, Natchapol; Angboonpong, Natee; Pakawatpanurut, Pasit] Mahidol Univ, Ctr Excellence Innovat Chem, Fac Sci, Bangkok 10400, Thailand. [Poonyayant, Natchapol; Stavila, Vitalie; Klebanoff, Leonard E.; Behrens, Richard; Angboonpong, Natee; Ulutagay-Kartin, Mutlu; Hecht, Ethan S.] Sandia Natl Labs, Livermore, CA 94551 USA. [Majzoub, Eric H.] Univ Missouri, Dept Phys, Ctr Nanosci, St Louis, MO 63121 USA. [Majzoub, Eric H.] Univ Missouri, Dept Astron, St Louis, MO 63121 USA. [Majzoub, Eric H.] Univ Missouri, Dept Chem & Biochem, St Louis, MO 63121 USA. [Breit, Joseph S.] Boeing Commercial Airplanes, Everett, WA 98203 USA. RP Stavila, V (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM vnstavi@sandia.gov RI Pakawatpanurut, Pasit/E-5419-2010 OI Pakawatpanurut, Pasit/0000-0002-7657-4161 FU Development and Promotion of Science and Technology Talents project; Center of Excellence for Innovation in Chemistry (PERCH-CIC); Distinction Program, Faculty of Science, Mahidol University; U.S. Department of Energy, Office of Efficiency and Renewable Energy; Boeing Company; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge George Sartor, Aaron Highley, and Ken Stewart (Sandia National Laboratories) for their technical assistance. N. Poonyayant, N. Angboonpong, and P. Pakawatpanurut acknowledge support from the Development and Promotion of Science and Technology Talents project, the Center of Excellence for Innovation in Chemistry (PERCH-CIC), and the Distinction Program, Faculty of Science, Mahidol University. This work was supported by the U.S. Department of Energy, Office of Efficiency and Renewable Energy. Partial support for this work from The Boeing Company is also greatly appreciated. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 56 TC 5 Z9 5 U1 4 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 10 PY 2014 VL 118 IS 27 BP 14759 EP 14769 DI 10.1021/jp5025169 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AL2UG UT WOS:000338980400006 ER PT J AU Spencer, S Cody, J Misture, S Cona, B Heaphy, P Rumbles, G Andersen, J Collison, C AF Spencer, Susan Cody, Jeremy Misture, Scott Cona, Brandon Heaphy, Patrick Rumbles, Garry Andersen, John Collison, Christopher TI Critical Electron Transfer Rates for Exciton Dissociation Governed by Extent of Crystallinity in Small Molecule Organic Photovoltaics SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID POLYMER SOLAR-CELLS; TO-ROLL FABRICATION; SQUARAINE DYES; EFFICIENCY; AGGREGATION; CHARGE; ELEMENTS; FUTURE; ENERGY AB Solution-processed bulk heterojunction organic solar cells fabricated with 1,3-bis[4-(N,N-diisopentylamino)-2,6-dihydroxyphenyl]squaraine and phenyl-C61-butyric acid methyl ester were found to exhibit unexpectedly low external quantum efficiency in the squaraine regions upon annealing. X-ray diffraction (XRD), spectral response, and time-resolved microwave absorption were all used to characterize the materials used and the devices prepared from them. An explanation for the drop in efficiency is proposed using Marcus-Hush theory to tie together the changes in coherent crystal domain size found by XRD and the external quantum efficiency results. Exciton dissociation at the interface was determined to be the rate-limiting step in efficient current generation for these devices. C1 [Spencer, Susan; Cody, Jeremy; Cona, Brandon; Heaphy, Patrick; Andersen, John; Collison, Christopher] Rochester Inst Technol, Rochester, NY 14623 USA. [Misture, Scott] Alfred Univ, Inamori Sch Engn, Alfred, NY 14802 USA. [Rumbles, Garry] Natl Renewable Energy Lab, Renewable & Sustainable Energy Inst, Golden, CO 80401 USA. RP Collison, C (reprint author), Rochester Inst Technol, 1 Lomb Mem Dr, Rochester, NY 14623 USA. EM cjcscha@rit.edu OI Rumbles, Garry/0000-0003-0776-1462 FU Department of Energy (DOE) [DE-FG36-08GO88110]; Department of Education; National Science Foundation [CBET-1236372] FX We acknowledge our funding from the Department of Energy (DOE DE-FG36-08GO88110), Department of Education, and the National Science Foundation (CBET-1236372). We thank Dr. Obadiah Reid for fruitful discussions and assistance with data analysis. NR 49 TC 11 Z9 12 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 10 PY 2014 VL 118 IS 27 BP 14840 EP 14847 DI 10.1021/jp504377r PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AL2UG UT WOS:000338980400014 ER PT J AU Wolff-Fabris, F Lei, HC Wosnitza, J Petrovic, C AF Wolff-Fabris, F. Lei, Hechang Wosnitza, J. Petrovic, C. TI Evolution of the Pauli spin-paramagnetic effect on the upper critical fields of single-crystalline KxFe2-ySe2-zSz SO PHYSICAL REVIEW B LA English DT Article ID CRITICAL MAGNETIC-FIELD; PHASE-SEPARATION; SUPERCONDUCTORS; BA0.68K0.32FE2AS2; ANISOTROPY; ORDER AB We have studied the temperature dependence of the upper critical fields mu H-0(c2) of KxFe2-ySe2-zSz single crystals up to 60 T. The mu H-0(c2) for H parallel to ab and H parallel to c decrease with increasing sulfur content. The detailed analysis using Werthamer-Helfand-Hohenberg theory including the Pauli spin-paramagnetic effect shows that mu H-0(c2) for H parallel to ab is dominated by the spin-paramagnetic effect, which diminishes with higher S content, whereas mu H-0(c2) for H parallel to c shows a linear temperature dependence with an upturn at high fields. The latter observation can be ascribed to multiband effects that become weaker for higher S content. This results in an enhanced anisotropy of mu H-0(c2) for high S content due to the different trends of the spin-paramagnetic and multiband effect for H parallel to ab and H parallel to c, respectively. C1 [Wolff-Fabris, F.; Wosnitza, J.] HLD, Helmholtz Zentrum Dresden Rossendorf, D-01314 Dresden, Germany. [Lei, Hechang; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Wosnitza, J.] Tech Univ Dresden, Inst Festkorperphys, D-01062 Dresden, Germany. RP Wolff-Fabris, F (reprint author), European XFEL GmbH, Notkestr 85, D-22607 Hamburg, Germany. EM hlei@lucid.msl.titech.ac.jp; petrovic@bnl.gov RI Petrovic, Cedomir/A-8789-2009; LEI, Hechang/H-3278-2016 OI Petrovic, Cedomir/0000-0001-6063-1881; FU Center for Emergent Superconductivity, an Energy Frontier Research Center - U.S. DOE, Office for Basic Energy Science; HLD at HZDR, member of the European Magnetic Field Laboratory (EMFL); Alexander von Humboldt Foundation FX Work at Brookhaven is supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. DOE, Office for Basic Energy Science (H. L. and C. P.). We acknowledge the support of HLD at HZDR, member of the European Magnetic Field Laboratory (EMFL). C. P. acknowledges support by the Alexander von Humboldt Foundation. NR 37 TC 1 Z9 1 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 10 PY 2014 VL 90 IS 2 AR 024505 DI 10.1103/PhysRevB.90.024505 PG 5 WC Physics, Condensed Matter SC Physics GA AL5IQ UT WOS:000339167600004 ER PT J AU Hughes, RO Beausang, CW Ross, TJ Burke, JT Casperson, RJ Cooper, N Escher, JE Gell, K Good, E Humby, P McCleskey, M Saastimoinen, A Tarlow, TD Thompson, IJ AF Hughes, R. O. Beausang, C. W. Ross, T. J. Burke, J. T. Casperson, R. J. Cooper, N. Escher, J. E. Gell, K. Good, E. Humby, P. McCleskey, M. Saastimoinen, A. Tarlow, T. D. Thompson, I. J. TI Pu-236(n,f), Pu-237(n,f), and Pu-238(n,f) cross sections deduced from (p,t), (p,d), and (p,p ') surrogate reactions SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA; ACTINIDE NUCLEI; FISSION AB The Pu-236(n, f), Pu-237(n, f) and Pu-238(n, f) cross sections have been inferred by utilizing the surrogate ratio method. Targets of Pu-239 and U-235 were bombarded with 28.5-MeV protons, and the light ion recoils, as well as fission fragments, were detected using the STARS detector array at the K150 Cyclotron at the Texas A&M cyclotron facility. The (p, t f) reaction on Pu-239 and U-235 targets was used to deduce the sigma (Pu-236(n, f))/sigma(U-232(n, f)) ratio, and the Pu-236(n, f) cross section was subsequently determined for E-n = 0.5-7.5 MeV. Similarly, the (p, df) reaction on the same two targets was used to deduce the sigma(Pu-237(n, f))/sigma(U-233(n, f)) ratio, and the Pu-237(n, f) cross section was extracted in the energy range E-n = 0.5-7 MeV. The Pu-238(n, f) cross section was also deduced by utilizing the (p, p') reaction channel on the same targets. There is good agreement with the recent ENDF/B-VII. 1 evaluated cross section data for Pu-238(n, f) in the range E-n = 0.5-10.5 MeV and for Pu-237(n, f) in the range E-n = 0.5-7 MeV; however, the Pu-236(n, f) cross section deduced in the present work is higher than the evaluation between 2 and 7 MeV. C1 [Hughes, R. O.; Beausang, C. W.; Ross, T. J.; Gell, K.; Good, E.; Tarlow, T. D.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA. [Hughes, R. O.; Burke, J. T.; Casperson, R. J.; Escher, J. E.; Thompson, I. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Cooper, N.; Humby, P.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06511 USA. [McCleskey, M.; Saastimoinen, A.] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. RP Hughes, RO (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Burke, Jason/I-4580-2012 FU US Department of Energy [DE-FG02-05 ER41379, DE-FG52-06 NA26206, DE-AC52-07NA27344]; Department of Energy's NNSA Office of Defense Nuclear Nonproliferation Research and Development (LLNL); NNSA [DE-FG52-09NA29467]; DOE Office of Nuclear Physics (TAMU) [DE-FG02-93ER40773] FX The authors are grateful for the efforts of the Texas A&M Cyclotron Institute's operations and facilities staff. This work was performed under the auspices of the US Department of Energy under Contracts No. DE-FG02-05 ER41379 and No. DE-FG52-06 NA26206 (University of Richmond), No. DE-AC52-07NA27344 and the Department of Energy's NNSA Office of Defense Nuclear Nonproliferation Research and Development (LLNL), and No. DE-FG52-09NA29467 from NNSA and No. DE-FG02-93ER40773 from the DOE Office of Nuclear Physics (TAMU). NR 35 TC 3 Z9 3 U1 3 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUL 10 PY 2014 VL 90 IS 1 AR 014304 DI 10.1103/PhysRevC.90.014304 PG 9 WC Physics, Nuclear SC Physics GA AL5IZ UT WOS:000339168500003 ER PT J AU Moller, P Randrup, J Iwamoto, A Ichikawa, T AF Moeller, Peter Randrup, Jorgen Iwamoto, Akira Ichikawa, Takatoshi TI Fission-fragment charge yields: Variation of odd-even staggering with element number, energy, and charge asymmetry SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-FISSION; MASS AB Background: Fission-fragment charge-yield distributions exhibit a pronounced odd-even staggering. For actinide nuclei the staggering decreases with increasing proton number and with increasing excitation energy. In our calculations of fission yields [Phys. Rev. Lett. 106, 132503 (2011)] we obtained charge-yield distributions for a number of actinide nuclides by means of random walks on tabulated five-dimensional potential-energy surfaces. However, because the potential-energy model treats the system as a single, compound system during all stages of the fission process, in which individual fragment properties do not appear, no odd-even staggering appeared in the calculated yield curves. Purpose: We have recently become aware that in the experimental data displayed in Fig. 1 in the above paper, there is a remarkable similarity in the odd-even staggering in fission of Pu-240 at thermal neutron energy and fission of U-234 in photon-induced fission at around 11 MeV. We discuss how this similarity and how the variation in the magnitude of the odd-even staggering for three Th isotopes with charge asymmetry and isotope can be qualitatively understood based on strongly damped shape evolution on our calculated five-dimensional potential-energy surfaces. Methods: We conduct random walks on our tabulated five-dimensional potential-energy surfaces and study the difference between the total compound-nucleus energy and the potential energy for the different systems from saddle to scission. Under the strong-damping assumption this difference is the internal excitation energy. We also determine this quantity for different charge splits, symmetric and asymmetric. Results: We find that the magnitude of the odd-even staggering in the charge distribution in the several cases studied here correlates well, inversely, with the excitation energy above the potential-energy surface in the postsaddle region. Conclusions: Because the observed magnitude of the odd-even staggering correlates well with excitation energy over the region where the individual character of the fission fragments emerges, the Brownian shape-motion method can be expected to reproduce this feature, provided a potential-energy model is developed that accounts for how the nascent fragment properties are expressed in the calculated potential-energy surfaces. C1 [Moeller, Peter] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Randrup, Jorgen] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Iwamoto, Akira] JAEA, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Ichikawa, Takatoshi] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. RP Moller, P (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM moller@lanl.gov OI Moller, Peter/0000-0002-5848-3565 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; Office of Nuclear Physics in the U.S. Department of Energy's Office of Science [DE-AC02-05CH11231]; MEXT SPIRE; MEXT JICFuS; JSPS KAKENHI [25287065]; [DE-FG02-06ER41407] FX We are grateful to A. J. Sierk for stimulating discussions and comments. This work was supported by travel grants for P. M. to JUSTIPEN (Japan-U.S. Theory Institute for Physics with Exotic Nuclei) under Grant No. DE-FG02-06ER41407 (U. Tennessee). This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. J. R. was supported by the Office of Nuclear Physics in the U.S. Department of Energy's Office of Science under Contract No. DE-AC02-05CH11231. T. I. was supported in part by MEXT SPIRE and JICFuS and JSPS KAKENHI Grant No. 25287065. NR 12 TC 3 Z9 3 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JUL 10 PY 2014 VL 90 IS 1 AR 014601 DI 10.1103/PhysRevC.90.014601 PG 5 WC Physics, Nuclear SC Physics GA AL5IZ UT WOS:000339168500004 ER PT J AU Aad, G Abajyan, T Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmad, A Ahmadov, F Aielli, G Akesson, TP Akimoto, G Akimov, AV Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Ammosov, VV Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Ask, S Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Auge, E Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, S Balek, P Balli, F Banas, E Banerjee, S Banfi, D Bangert, A Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barber, T Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batkova, L Batley, JR Battistin, M Bauer, F Bawa, HS Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belloni, A Beloborodova, OL Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertolucci, F Besana, MI Besjes, GJ Bessidskaia, O Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bolnet, NM Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, G Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, RC Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Christidi, IA Chromek-Burckhart, D Chu, ML Chudoba, J Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collins-Tooth, C Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Ortuzar, MC Cristinziani, M Crosetti, G Cuciuc, CM Almenar, CC Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darlea, GL Darmora, S Dassoulas, JA Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S de Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Deigaard, I Del Peso, J Del Prete, T Deliot, F Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobos, D Dobson, E Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, J Fisher, MJ Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gandrajula, RP Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gillman, AR Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giunta, M Gjelsten, BK Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godfrey, J Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Grybel, K Guan, L Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hageboeck, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Heisterkamp, S Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Idarraga, J Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javurek, T Jeanty, L Jeng, GY Plante, IJL Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Joffe, D Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Karnevskiy, M Karpov, SN Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Keener, PT Kehoe, R Keil, M Keller, JS Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Labarga, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Le, BT Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leonhardt, K Leontsinis, S Leroy, C Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Lorenz, J Martinez, NL Losada, M Loscutoff, P Losty, MJ Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matricon, P Matsunaga, H Matsushita, T Mattig, P Mattig, S Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meehan, S Meera-Lebbai, R Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Moeller, V Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Herrera, CM Moraes, A Morange, N Morel, J Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, SG Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neusiedl, A Neves, RM Nevski, P Newcomer, FM Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novakova, J Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Pedr, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petteni, M Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pizio, C Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Pueschel, E Puldon, D Purohit, M Puzo, P Pylypchenko, Y Qian, J Qin, G Quadt, A Quarrie, DR Quayle, WB Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reinsch, A Reisin, H Relich, M Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, S Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ruzicka, P Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Satsounkevitch, I Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaelicke, A Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherwood, P Shimizu, S Shimmin, CO Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidorov, D Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snow, J Snyder, S Sobie, R Socher, F Sodomka, J Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopko, V Sopko, B Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spighi, R Spigo, G Spousta, M Spreitzer, T Spurlock, B Denis, RDS Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steele, G Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoerig, K Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Stucci, SA Stugu, B Stumer, I Styles, NA Su, D Su, J Subramania, HS Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R Van der Deijl, PC Van der Geer, R van der Graaf, H Van der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Veatch, J Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vitells, O Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, W Wagner, P Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigell, P Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zitoun, R Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abajyan, T. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmad, A. Ahmadov, F. Aielli, G. Akesson, T. P. Akimoto, G. Akimov, A. V. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amaral Coutinho, Y. Amelung, C. Ammosov, V. V. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, S. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Banfi, D. Bangert, A. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battistin, M. Bauer, F. Bawa, H. S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belloni, A. Beloborodova, O. L. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertolucci, F. Besana, M. I. Besjes, G. J. Bessidskaia, O. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bolnet, N. M. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, G. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Christidi, I. A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Ortuzar, M. Crispin Cristinziani, M. Crosetti, G. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darlea, G. L. Darmora, S. Dassoulas, J. A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobos, D. Dobson, E. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, J. Fisher, M. J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gandrajula, R. P. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gillman, A. R. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giunta, M. Gjelsten, B. K. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godfrey, J. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Groth-Jensen, J. Grout, Z. J. Grybel, K. Guan, L. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Gunther, J. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Heisterkamp, S. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javurek, T. Jeanty, L. Jeng, G. -Y. Plante, I. Jen-La Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Karnevskiy, M. Karpov, S. N. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Keller, J. S. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Koeneke, K. Konig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Labarga, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Le, B. T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leonhardt, K. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Losty, M. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. de Andrade Filho, L. Manhaes Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matricon, P. Matsunaga, H. Matsushita, T. Maettig, P. Maettig, S. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meehan, S. Meera-Lebbai, R. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Navas, L. Mendoza Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano Moya, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Moeller, V. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. G. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neusiedl, A. Neves, R. M. Nevski, P. Newcomer, F. M. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novakova, J. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petteni, M. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pizio, C. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Portell Bueso, X. Pospelov, G. E. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qin, G. Quadt, A. Quarrie, D. R. Quayle, W. B. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reinsch, A. Reisin, H. Relich, M. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Romero Adam, E. Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ruzicka, P. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Satsounkevitch, I. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaelicke, A. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherwood, P. Shimizu, S. Shimmin, C. O. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snow, J. Snyder, S. Sobie, R. Socher, F. Sodomka, J. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spighi, R. Spigo, G. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steele, G. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoerig, K. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Stucci, S. A. Stugu, B. Stumer, I. Styles, N. A. Su, D. Su, J. Subramania, H. S. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Berg, R. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vitells, O. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, W. Wagner, P. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigell, P. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zitoun, R. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for dark matter in events with a Z boson and missing transverse momentum in pp collisions at root s=8 TeV with the ATLAS detector SO PHYSICAL REVIEW D LA English DT Article ID CONSTRAINTS; LHC AB A search is presented for production of dark-matter particles recoiling against a leptonically decaying Z boson in 20.3 fb(-1) of pp collisions at root s = 8 TeV with the ATLAS detector at the Large Hadron Collider. Events with large missing transverse momentum and two oppositely charged electrons or muons consistent with the decay of a Z boson are analyzed. No excess above the Standard Model prediction is observed. Limits are set on the mass scale of the contact interaction as a function of the dark-matter particle mass using an effective field theory description of the interaction of dark matter with quarks or with Z bosons. Limits are also set on the coupling and mediator mass of a model in which the interaction is mediated by a scalar particle. C1 [Adelman, J.; Jackson, P.; Papageorgiou, K.; Soni, N.; White, M. J.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Chan, K.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Fernando, W.; Goshaw, A. T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Ruehr, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Ahmadov, F.; Huseynov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Caminal Armadans, R.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bosman, M.; Caminal Armadans, R.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Dimitrievska, A.; Krstic, J.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Agatonovic-Jovin, T.; Bozovic-Jelisavcic, I.; Cirkovic, P.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Ancu, L. S.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Schneider, B.; Sciacca, F. G.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Ancu, L. S.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Schneider, B.; Sciacca, F. G.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mclaughlan, T.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] INFN Sez Bologna, Bologna, Italy. [Bindi, M.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Abajyan, T.; Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Univ Fed Juiz de Fora, Juiz de Fora, Brazil. [do Vale, M. A. B.] Univ Fed Sao Joao del Rei, Sao Joao del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Stumer, I.; Tamsett, M. C.; Triplett, N.; Undrus, A.; Vetterli, M. C.; Wenaus, T.; Ye, S.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Romeo, G.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Andari, N.; Anghinolfi, F.; Baak, M. A.; Backes, M.; Backhaus, M.; Banfi, D.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Barajas, C. A. Chavez; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Facini, G.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Fiascaris, M.; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jansen, H.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, J.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Salzburger, A.; Savu, D. O.; Scanlon, T.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Gardner, R. W.; Plante, I. Jen-La; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Perepelitsa, D. V.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, New York, NY USA. [Alonso, A.; Avolio, G.; Dam, M.; Hoffmann, M. Dano; Galster, G.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Joergensen, M. D.; Klinkby, E. B.; Loevschall-Jensen, A. E.; Mehlhase, S.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Coll Cosenza, Lab Nazl Frascati, Cosenza, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Annovi, A.; Cao, T.; Firan, A.; Hoffman, J.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Ferrara, V.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Ferrara, V.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Debenedetti, C.; Edwards, N. C.; Walls, F. M. Garay; Harrington, R. D.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Schaelicke, A.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] INFN Lab Nazl Frascati, Frascati, Italy. [Amoroso, S.; Barber, T.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Consorti, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Ungaro, F. C.; Venturi, M.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Winkelmann, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Iacobucci, G.; Katre, A.; La Rosa, A.; Latour, B. Martin Dit; Mermod, P.; Miucci, A.; Herrera, C. Mora; Muenstermann, D.; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] INFN Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Morel, J.; Llacer, M. Moreno; Nackenhorst, O.; Nadal, J.; Quadt, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Brown, J.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.] CNRS IN2P3, Grenoble, France. [Albrand, S.; Brown, J.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Butler, B.; Conti, G.; Franklin, M.; Huth, J.; Mateos, D. Lopez; Mercurio, K. M.; Skottowe, H. P.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Hofmann, J. I.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Heidelberg, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Evans, H.; Gagnon, P.; Lammers, S.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Cinca, D.; Gandrajula, R. P.; Limper, M.; Mallik, U.; Mandrysch, R.; Morange, N.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Karpov, S. N.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Delsart, P. A.; Inamaru, Y.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Kurumida, R.; Matsushita, T.; Ochi, A.; Shimizu, S.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Catmore, J. R.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Grancagnolo, F.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Carter, A. A.; Cerrito, L.; Ellis, K.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Salamanna, G.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Goncalo, R.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Davison, P.; Dobson, E.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.; Tamsett, M. C.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS IN2P3, Paris, France. [Akesson, T. P.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.; Wielers, M.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Arnaez, O.; Blum, W.; Buescher, V.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Ji, W.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Neusiedl, A.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Robinson, J. E. M.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Maurer, J.; Mochizuki, K.; Monnier, E.; Muanza, S. G.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Maurer, J.; Mochizuki, K.; Monnier, E.; Muanza, S. G.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS IN2P3, Marseille, France. [Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Schram, M.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Diglio, S.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Petersen, B. A.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, L.; Long, J. D.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Xu, L.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Chegwidden, A.; Fisher, W. C.; Ge, P.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.] INFN Sez Milano, Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Asbah, N.; Azuelos, G.; Dallaire, F.; Davies, M.; Gauthier, L.; Giunta, M.; Leroy, C.; Martin, J. P.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.; Zibell, A.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] INFN Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Dao, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Konig, A. C.; Salvucci, A.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Beloborodova, O. L.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Auge, E.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Matricon, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Auge, E.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Matricon, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS IN2P3, Orsay, France. [Endo, M.; Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Rijssenbeek, M.; Robichaud-Veronneau, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] INFN Sez Pavia, Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Degenhardt, J.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Van Berg, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Donati, S.; Dotti, A.; Giannetti, P.; Roda, C.; Scuri, F.; White, S.] INFN Sez Pisa, Pisa, Italy. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Donati, S.; Dotti, A.; Giannetti, P.; Roda, C.; Scuri, F.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Araque, J. P.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] Lab Instrumentacao Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Machado Miguens, J.; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Wemans, A. Do Valle] Univ Nova Lisboa, Dep Fis, Caparica, Portugal. [Wemans, A. Do Valle] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Ruzicka, P.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vanadia, M.; Vari, R.; Veneziano, S.; Zanello, L.] INFN Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Camillocci, E. Solfaroli; Vanadia, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, Rome, Italy. [Camarri, P.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.; Trovatelli, M.] INFN Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA, Fac Sci Semlalia, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Haddad, N.] Univ Mohammed V Agdal, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Grabas, H. M. X.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Mijovic, L.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Resende, B.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] DSM IRFU Inst Rech Lois Fondament Univers, CEA Saclay Commissariat Energie Atom & Energie, Gif Sur Yvette, France. [Grillo, A. A.; Kuhl, A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Kirk, J.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Ibragimov, I.; Ikematsu, K.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Batkova, L.; Blazek, T.; Federic, P.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Chen, X.; Huang, Y.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Clement, C.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Rose, A.; Salvatore, F.; Castillo, I. Santoyo; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Amram, N.; Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Chernyatin, V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Losty, M. J.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Navas, L. Mendoza; Navarro, G.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Farrell, S.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Toggerson, B.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Sandoval, C.; Shaw, K.; Soualah, R.] INFN Grp Coll Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Sandoval, C.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Qin, G.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Pastor, E. Torro; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Qin, G.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Pastor, E. Torro; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Qin, G.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Pastor, E. Torro; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Qin, G.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Pastor, E. Torro; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Qin, G.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Pastor, E. Torro; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] CSIC, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Loh, C. W.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Schaarschmidt, J.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Dos Anjos, A.; Castillo, L. R. Flores; Hard, A. S.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Redelbach, A.; Schreyer, M.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Mechtel, M.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] IPP, Ottawa, ON, Canada. [Gkialas, I.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Barcelona, Spain. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Beloborodova, O. L.; Maximov, D. A.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Pinamonti, M.] SISSA, I-34014 Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Fassi, Farida/F-3571-2016; la rotonda, laura/B-4028-2016; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Gauzzi, Paolo/D-2615-2009; Fabbri, Laura/H-3442-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Solfaroli Camillocci, Elena/J-1596-2012; BESSON, NATHALIE/L-6250-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; messina, andrea/C-2753-2013; Gladilin, Leonid/B-5226-2011; Andreazza, Attilio/E-5642-2011; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Ciubancan, Liviu Mihai/L-2412-2015; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; De, Kaushik/N-1953-2013; Mitsou, Vasiliki/D-1967-2009; Smirnova, Oxana/A-4401-2013; White, Ryan/E-2979-2015; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Kuleshov, Sergey/D-9940-2013; Gabrielli, Alessandro/H-4931-2012; Lokajicek, Milos/G-7800-2014; Castro, Nuno/D-5260-2011; Staroba, Pavel/G-8850-2014; Lei, Xiaowen/O-4348-2014; Doyle, Anthony/C-5889-2009; Di Domenico, Antonio/G-6301-2011; de Groot, Nicolo/A-2675-2009; Wemans, Andre/A-6738-2012; Nemecek, Stanislav/G-5931-2014; Gutierrez, Phillip/C-1161-2011; Kuday, Sinan/C-8528-2014; Alexa, Calin/F-6345-2010; Turchikhin, Semen/O-1929-2013; Boldyrev, Alexey/K-6303-2012; Moraes, Arthur/F-6478-2010; Boyko, Igor/J-3659-2013; Peleganchuk, Sergey/J-6722-2014; Warburton, Andreas/N-8028-2013; Ferrando, James/A-9192-2012; Bosman, Martine/J-9917-2014; Brooks, William/C-8636-2013; Villa, Mauro/C-9883-2009; OI Smestad, Lillian/0000-0002-0244-8736; Giordani, Mario/0000-0002-0792-6039; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Fassi, Farida/0000-0002-6423-7213; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Coccaro, Andrea/0000-0003-2368-4559; Della Volpe, Domenico/0000-0001-8530-7447; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Gauzzi, Paolo/0000-0003-4841-5822; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Grancagnolo, Francesco/0000-0002-9367-3380; Korol, Aleksandr/0000-0001-8448-218X; Karyukhin, Andrey/0000-0001-9087-4315; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Gladilin, Leonid/0000-0001-9422-8636; Andreazza, Attilio/0000-0001-5161-5759; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Camarri, Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; De, Kaushik/0000-0002-5647-4489; Mitsou, Vasiliki/0000-0002-1533-8886; Smirnova, Oxana/0000-0003-2517-531X; White, Ryan/0000-0003-3589-5900; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Della Pietra, Massimo/0000-0003-4446-3368; Kuleshov, Sergey/0000-0002-3065-326X; Gabrielli, Alessandro/0000-0001-5346-7841; Castro, Nuno/0000-0001-8491-4376; Lei, Xiaowen/0000-0002-2564-8351; Doyle, Anthony/0000-0001-6322-6195; Di Domenico, Antonio/0000-0001-8078-2759; Wemans, Andre/0000-0002-9669-9500; Kuday, Sinan/0000-0002-0116-5494; Turchikhin, Semen/0000-0001-6506-3123; Moraes, Arthur/0000-0002-5157-5686; Boyko, Igor/0000-0002-3355-4662; Peleganchuk, Sergey/0000-0003-0907-7592; Warburton, Andreas/0000-0002-2298-7315; Ferrando, James/0000-0002-1007-7816; Bosman, Martine/0000-0002-7290-643X; Brooks, William/0000-0001-6161-3570; Villa, Mauro/0000-0002-9181-8048; Mendes Saraiva, Joao Gentil/0000-0002-7006-0864; Pina, Joao /0000-0001-8959-5044; Salamanna, Giuseppe/0000-0002-0861-0052; Veneziano, Stefano/0000-0002-2598-2659; Lacasta, Carlos/0000-0002-2623-6252; Price, Darren/0000-0003-2750-9977; Belanger-Champagne, Camille/0000-0003-2368-2617 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (United Kingdom) and BNL (USA) and in the Tier-2 facilities worldwide. NR 47 TC 22 Z9 22 U1 8 U2 117 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL 10 PY 2014 VL 90 IS 1 AR 012004 DI 10.1103/PhysRevD.90.012004 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AL5JK UT WOS:000339169600002 ER PT J AU Fazio, S Fiore, R Jenkovszky, L Salii, A AF Fazio, S. Fiore, R. Jenkovszky, L. Salii, A. TI Unifying "soft" and "hard" diffractive exclusive vector meson production and deeply virtual Compton scattering SO PHYSICAL REVIEW D LA English DT Article ID PROTON ELASTIC-SCATTERING; TOTAL CROSS-SECTION; INTERSECTING STORAGE-RINGS; ANGLE ANTIPROTON-PROTON; J/PSI MESONS; RHO(0) PHOTOPRODUCTION; MOMENTUM-TRANSFER; T-DEPENDENCE; PHI-MESONS; ROOT-S AB A Pomeron model applicable to both " soft" and " hard" processes is suggested and tested against the high-energy data from virtual photon-induced reactions. The Pomeron is universal, containing two terms, a soft and a hard one, whose relative weight varies with (Q) over tilde (2) = Q(2) + M-V(2), where Q(2) is the virtuality of the incoming photon and M-V is the mass of the produced vector particle. With a small number of adjustable parameters, the model fits all available data on vector meson production and deeply virtual Compton scattering from HERA. Furthermore, we attempt to apply the model to hadron-induced reactions, by using high-energy data on proton-proton scattering. C1 [Fazio, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Fiore, R.] Univ Calabria, Dipartimento Fis, I-87036 Cosenza, Italy. [Fiore, R.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, I-87036 Cosenza, Italy. [Jenkovszky, L.; Salii, A.] Natl Acad Sci Ukraine, Bogolyubov Inst Theoret Phys, UA-03680 Kiev, Ukraine. RP Fazio, S (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM sfazio@bnl.gov; roberto.fiore@cs.infn.it; jenk@bitp.kiev.ua; saliy.andriy@gmail.com RI Fazio, Salvatore /G-5156-2010 FU Dipartimento di Fisica dell'Universita della Calabria; Istituto Nazionale di Fisica Nucleare-Gruppo Collegato di Cosenza; National Academy of Sciences of Ukraine, Dept. of Astronomy and Physics; DOMUS Curatorium of the Hungarian Academy of Sciences FX L. J. thanks the Dipartimento di Fisica dell'Universita della Calabria and the Istituto Nazionale di Fisica Nucleare-Gruppo Collegato di Cosenza, where part of this work was done, for their hospitality and support. He was supported partly also by the grant "Matter under extreme conditions" of the National Academy of Sciences of Ukraine, Dept. of Astronomy and Physics, and by the DOMUS Curatorium of the Hungarian Academy of Sciences. NR 79 TC 6 Z9 7 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 10 PY 2014 VL 90 IS 1 AR 016007 DI 10.1103/PhysRevD.90.016007 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AL5JK UT WOS:000339169600012 ER PT J AU Kim, J Lee, W Leem, J Sharpe, SR Yoon, B AF Kim, Jongjeong Lee, Weonjong Leem, Jaehoon Sharpe, Stephen R. Yoon, Boram CA SWME Collaboration TI Toolkit for staggered Delta S=2 matrix elements SO PHYSICAL REVIEW D LA English DT Article ID PERTURBATIVE CORRECTIONS; 4-FERMION OPERATORS; STANDARD MODEL; QCD; FERMIONS AB A recent numerical lattice calculation of the kaon mixing matrix elements of general Delta S = 2 four-fermion operators using staggered fermions relied on two auxiliary theoretical calculations. Here we describe the methodology and present the results of these two calculations. The first concerns one-loop matching coefficients between staggered lattice operators and the corresponding continuum operators. Previous calculations with staggered fermions have used a nonstandard regularization scheme for the continuum operators, and here we provide the additional matching factors needed to connect to the standard regularization scheme. This is the scheme in which two-loop anomalous dimensions are known. We also observe that all previous calculations of this operator matching using staggered fermions have overlooked one matching step in the continuum. This extra step turns out to have no impact on three of the five operators (including that relevant for B-K), but it does affect the other two operators. The second auxiliary calculation concerns the two-loop renormalization group (RG) evolution equations for the B parameters of the Delta S = 2 operators. For one pair of operators, the standard analytic solution to the two-loop RG equations fails due to a spurious singularity introduced by the approximations made in the calculation. We give a nonsingular expression derived using analytic continuation and check the result using a numerical solution to the RG equations. We also describe the RG evolution for "golden" combinations of B parameters and give numerical results for RG evolution matrices needed in the companion lattice calculation. C1 [Kim, Jongjeong; Lee, Weonjong; Leem, Jaehoon] Seoul Natl Univ, FPRD, Lattice Gauge Theory Res Ctr, Seoul 151747, South Korea. [Kim, Jongjeong; Lee, Weonjong; Leem, Jaehoon] Seoul Natl Univ, CTP, Dept Phys & Astron, Seoul 151747, South Korea. [Sharpe, Stephen R.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Yoon, Boram] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kim, J (reprint author), Seoul Natl Univ, FPRD, Lattice Gauge Theory Res Ctr, Seoul 151747, South Korea. EM wlee@snu.ac.kr; srsharpe@uw.edu FU NRF - Korean government (MSIP) [2013-003454]; KISTI supercomputing center [KSC-2013-G3-01]; U.S. DOE [DE-FG02-96ER40956] FX The research of W. L. is supported by the Creative Research Initiatives Program (No. 2013-003454) of the NRF grant funded by the Korean government (MSIP). W. L. would like to acknowledge the support from KISTI supercomputing center through the strategic support program for the supercomputing application research (No. KSC-2013-G3-01). The work of S. S. is supported in part by the U.S. DOE Grant No. DE-FG02-96ER40956. NR 27 TC 1 Z9 1 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL 10 PY 2014 VL 90 IS 1 AR 014504 DI 10.1103/PhysRevD.90.014504 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AL5JK UT WOS:000339169600009 ER PT J AU Yoo, J Zaldarriaga, M AF Yoo, Jaiyul Zaldarriaga, Matias TI Beyond the linear-order relativistic effect in galaxy clustering: Second-order gauge-invariant formalism SO PHYSICAL REVIEW D LA English DT Article ID COSMOLOGICAL PERTURBATIONS; NON-GAUSSIANITY; INFLATION AB We present the second-order general relativistic description of the observed galaxy number density in a cosmological framework. The observed galaxy number density is affected by the volume and the source effects, both of which arise due to the mismatch between physical and observationally inferred quantities such as the redshift, the angular position, the volume, and the luminosity of the observed galaxies. These effects are computed to the second order in metric perturbations without choosing a gauge condition or adopting any restrictions on vector and tensor perturbations, extending the previous linear-order calculations. Paying particular attention to the second-order gauge transformation, we explicitly isolate unphysical gauge modes and construct second-order gauge-invariant variables. Moreover, by constructing second-order tetrads in the observer's rest frame, we clarify the relation between the physical and the parametrized photon wave vectors. Our second-order relativistic description will provide an essential tool for going beyond the power spectrum in the era of precision measurements of galaxy clustering. We discuss potential applications and extensions of the second-order relativistic description of galaxy clustering. C1 [Yoo, Jaiyul] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Yoo, Jaiyul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Zaldarriaga, Matias] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. RP Yoo, J (reprint author), Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. EM jyoo@physik.uzh.ch FU Swiss National Science Foundation; Tomalla foundation; NSF [PHY-0855425, AST-0907969, PHY-1213563]; David and Lucile Packard Foundation FX We acknowledge useful discussions with Jinn-Ouk Gong and Jai-chan Hwang. J. Y. is supported by the Swiss National Science Foundation and the Tomalla foundation grants. M. Z. is supported in part by NSF Grants No. PHY-0855425, and No. AST-0907969, PHY-1213563 and by the David and Lucile Packard Foundation. During the review process of this paper, we acknowledge communication with Daniele Bertacca on the recent submission [51] on the same subject. NR 60 TC 25 Z9 25 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 10 PY 2014 VL 90 IS 2 AR 023513 DI 10.1103/PhysRevD.90.023513 PG 30 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AL5JN UT WOS:000339169900005 ER PT J AU Yu, F AF Yu, Felix TI Anatomizing exotic production of the Higgs boson SO PHYSICAL REVIEW D LA English DT Article ID CHARGINO-NEUTRALINO PRODUCTION; SUPERSYMMETRIC PARTICLES; FORTRAN CODE; DARK-MATTER; DECAYS; LHC; PROGRAM; MSSM; COUPLINGS; RATIOS AB We discuss exotic production modes of the Higgs boson and how their phenomenology can be probed in current Higgs analyses. We highlight the importance of differential distributions in disentangling standard production mechanisms from exotic modes. We present two model benchmarks for exotic Higgs production arising from chargino-neutralino production and study their impact on the current Higgs data set. As a corollary, we emphasize that current Higgs coupling fits do not fully explore the space of new physics deviations possible in Higgs data. C1 Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Yu, F (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. EM felixyu@fnal.gov FU United States Department of Energy [De-AC02-07CH11359] FX The author is grateful to Prateek Agrawal, Wolfgang Altmannshofer, Bogdan Dobrescu, Paddy Fox, Claudia Frugiuele, Roni Harnik, and Joe Lykken for useful discussions. Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. De-AC02-07CH11359 with the United States Department of Energy. NR 133 TC 7 Z9 7 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 10 PY 2014 VL 90 IS 1 AR 015009 DI 10.1103/PhysRevD.90.015009 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AL5JK UT WOS:000339169600010 ER PT J AU Ackerman, PJ Trivedi, RP Senyuk, B de Lagemaat, JV Smalyukh, II AF Ackerman, Paul J. Trivedi, Rahul P. Senyuk, Bohdan de lagemaat, Jao van Smalyukh, Ivan I. TI Two-dimensional skyrmions and other solitonic structures in confinement-frustrated chiral nematics SO PHYSICAL REVIEW E LA English DT Article ID CHOLESTERIC LIQUID-CRYSTALS; BUBBLE-DOMAIN TEXTURE; HEXAGONAL BLUE PHASE; DIELECTRIC ANISOTROPY; SPHERULITIC DOMAINS; MOLECULAR ALIGNMENT; FORMING PROCESS; ELECTRIC-FIELD; MIXTURES; LATTICE AB We explore spatially localized solitonic configurations of a director field, generated using optical realignment and laser-induced heating, in frustrated chiral nematic liquid crystals confined between substrates with perpendicular surface anchoring. We demonstrate that, in addition to recently studied torons and Hopf-fibration solitonic structures (hopfions), one can generate a host of other axially symmetric stable and metastable director field configurations where local twist is matched to the surface boundary conditions through introduction of point defects and loops of singular and nonsingular disclinations. The experimentally demonstrated structures include the so-called "baby-skyrmions" in the form of double twist cylinders oriented perpendicular to the confining substrates where their double twist field configuration is matched to the perpendicular boundary conditions by loops of twist disclinations. We also generate complex textures with arbitrarily large skyrmion numbers. A simple back-of-the-envelope theoretical analysis based on free energy considerations and the nonpolar nature of chiral nematics provides insights into the long-term stability and diversity of these inter-related solitonic field configurations, including different types of torons, cholestric-finger loops, two-dimensional skyrmions, and more complex structures comprised of torons, hopfions, and various disclination loops that are experimentally observed in a confinement-frustrated chiral nematic system. C1 [Ackerman, Paul J.; Trivedi, Rahul P.; Senyuk, Bohdan; de lagemaat, Jao van; Smalyukh, Ivan I.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Ackerman, Paul J.; Trivedi, Rahul P.; Smalyukh, Ivan I.] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA. [de lagemaat, Jao van] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Smalyukh, Ivan I.] Univ Colorado, Liquid Crystal Mat Res Ctr, Boulder, CO 80309 USA. [Smalyukh, Ivan I.] Univ Colorado, Mat Sci & Engn Program, Boulder, CO 80309 USA. [de lagemaat, Jao van; Smalyukh, Ivan I.] Renewable & Sustainable Energy Inst, Natl Renewable Energy Lab, Boulder, CO 80309 USA. [de lagemaat, Jao van; Smalyukh, Ivan I.] Univ Colorado, Boulder, CO 80309 USA. RP Ackerman, PJ (reprint author), Univ Colorado, Dept Phys, Boulder, CO 80309 USA. EM ivan.smalyukh@colorado.edu RI Smalyukh, Ivan/C-2955-2011; van de Lagemaat, Jao/J-9431-2012; Senyuk, Bohdan/M-3185-2014 OI Smalyukh, Ivan/0000-0003-3444-1966; Senyuk, Bohdan/0000-0002-0004-3161 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; NSF [DMR-0820579, DMR-0847782] FX This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory (J.v.d.L. and P.J.A.) and the NSF Grants No. DMR-0820579 (R.P.T and I.I.S.) and No. DMR-0847782 (B.S. and I.I.S.). We also thank A. Bogdanov, N. Clark, S. Copar, J. Evans, J. Fukuda, T. Porenta, C. Twombly, and S. Zumer for discussions. NR 55 TC 20 Z9 20 U1 5 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD JUL 10 PY 2014 VL 90 IS 1 AR 012505 DI 10.1103/PhysRevE.90.012505 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA AL5JT UT WOS:000339170500001 PM 25122322 ER PT J AU Heuser, BJ Trinkle, DR Jalarvo, N Serio, J Schiavone, EJ Mamontov, E Tyagi, M AF Heuser, Brent J. Trinkle, Dallas R. Jalarvo, Niina Serio, Joseph Schiavone, Emily J. Mamontov, Eugene Tyagi, Madhusudan TI Direct Measurement of Hydrogen Dislocation Pipe Diffusion in Deformed Polycrystalline Pd Using Quasielastic Neutron Scattering SO PHYSICAL REVIEW LETTERS LA English DT Article ID KINETIC THEORY; PALLADIUM; CLIMB; CORES; EDGE AB The temperature-dependent diffusivity D(T) of hydrogen solute atoms trapped at dislocations-dislocation pipe diffusion of hydrogen-in deformed polycrystalline PdHx (x similar to 10(-3) [H]/[Pd]) has been quantified with quasielastic neutron scattering between 150 and 400 K. We observe diffusion coefficients for trapped hydrogen elevated by one to two orders of magnitude above bulk diffusion. Arrhenius diffusion behavior has been observed for dislocation pipe diffusion and regular bulk diffusion, the latter in well-annealed polycrystalline Pd. For regular bulk diffusion of hydrogen in Pd we find D(T) = D(0)exp(-E-a/kT) = 0.005exp(-0.23 eV/kT) cm(2)/s, in agreement with the known diffusivity of hydrogen in Pd. For hydrogen dislocation pipe diffusion we find D(T) similar or equal to 10(-5)exp(-E-a/kT) cm(2)/s, where E-a = 0.042 and 0.083 eV for concentrations of 0.52 x 10(-3) and 1.13 x 10(-3) [H]/[Pd], respectively. Ab initio computations provide a physical basis for the pipe diffusion pathway and confirm the reduced barrier height. C1 [Heuser, Brent J.; Serio, Joseph] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. [Trinkle, Dallas R.; Schiavone, Emily J.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Jalarvo, Niina; Mamontov, Eugene] Oak Ridge Natl Lab, Chem & Engn Mat Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Jalarvo, Niina] Oak Ridge Natl Lab, Juelich Ctr Neutron Sci, Outstn Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Tyagi, Madhusudan] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Tyagi, Madhusudan] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Heuser, BJ (reprint author), Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. EM bheuser@illinois.edu RI Tyagi, Madhu Sudan/M-4693-2014; Mamontov, Eugene/Q-1003-2015; Jalarvo, Niina/Q-1320-2015; OI Tyagi, Madhu Sudan/0000-0002-4364-7176; Mamontov, Eugene/0000-0002-5684-2675; Jalarvo, Niina/0000-0003-0644-6866; Serio, Joseph/0000-0002-0300-0431 FU NSF [DMR-1207102]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This work was supported by the NSF under Grant No. DMR-1207102, and in part by the NSF through the XSede resources provided by NCSA and TACC. Part of the research presented here was conducted at Spallation Neutron Source, was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0944772. Identification of commercial products does not imply endorsement by the National Institute of Standards and Technology nor does it imply that these are the best for the purpose. Finally, we are grateful to Y. Zhang (University of Illinois) for useful discussions regarding QENS analysis. NR 31 TC 4 Z9 4 U1 2 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 10 PY 2014 VL 113 IS 2 AR 025504 DI 10.1103/PhysRevLett.113.025504 PG 5 WC Physics, Multidisciplinary SC Physics GA AL5KA UT WOS:000339171300020 PM 25062206 ER PT J AU Jiang, CL Stefanini, AM Esbensen, H Rehm, KE Almaraz-Calderon, S Back, BB Corradi, L Fioretto, E Montagnoli, G Scarlassara, F Montanari, D Courtin, S Bourgin, D Haas, F Goasduff, A Szilner, S Mijatovic, T AF Jiang, C. L. Stefanini, A. M. Esbensen, H. Rehm, K. E. Almaraz-Calderon, S. Back, B. B. Corradi, L. Fioretto, E. Montagnoli, G. Scarlassara, F. Montanari, D. Courtin, S. Bourgin, D. Haas, F. Goasduff, A. Szilner, S. Mijatovic, T. TI Fusion Hindrance for a Positive-Q-Value System Mg-24+Si-30 SO PHYSICAL REVIEW LETTERS LA English DT Article AB Measurements of the excitation function for the fusion of Mg-24 + Si-30 (Q = 17.89 MeV)have been extended toward lower energies with respect to previous experimental data. The S-factor maximum observed in this large, positive-Q-value system is the most pronounced among such systems studied thus far. The significance and the systematics of an S-factor maximum in systems with positive fusion Q values are discussed. This result would strongly impact the extrapolated cross sections and reaction rates in the carbon and oxygen burnings and, thus, the study of the history of stellar evolution. C1 [Jiang, C. L.; Esbensen, H.; Rehm, K. E.; Almaraz-Calderon, S.; Back, B. B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Stefanini, A. M.; Corradi, L.; Fioretto, E.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Padova, Italy. [Montagnoli, G.; Scarlassara, F.; Montanari, D.] Univ Padua, Dipartimento Fis & Astron, IT-35131 Padua, Italy. [Montagnoli, G.; Scarlassara, F.; Montanari, D.] INFN, Sez Padova, IT-35131 Padua, Italy. [Courtin, S.; Bourgin, D.; Haas, F.] IPHC, F-67037 Strasbourg, France. [Courtin, S.; Bourgin, D.; Haas, F.] Univ Strasbourg, CNRS, IN2P3, F-67037 Strasbourg, France. [Goasduff, A.] IN2P3, CNRS, CSNSM, F-91405 Orsay, France. [Goasduff, A.] Univ Paris 11, F-91405 Orsay, France. [Szilner, S.; Mijatovic, T.] Rudjer Boskovic Inst, HR-10002 Zagreb, Croatia. RP Jiang, CL (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM jiang@phy.anl.gov RI Goasduff, Alain/F-1749-2016 OI Goasduff, Alain/0000-0003-3453-3297 FU U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; European Union [262010-ENSAR]; P210 Excellence Laboratory FX This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357, and the European Union Seventh Framework Programme FP7/2007-2013 under Grant Agreement No. 262010-ENSAR. A. G. was partially supported by the P210 Excellence Laboratory. NR 28 TC 4 Z9 4 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 10 PY 2014 VL 113 IS 2 AR 022701 DI 10.1103/PhysRevLett.113.022701 PG 5 WC Physics, Multidisciplinary SC Physics GA AL5KA UT WOS:000339171300009 PM 25062170 ER PT J AU Marcus, G Penn, G Zholents, AA AF Marcus, G. Penn, G. Zholents, A. A. TI Free-Electron Laser Design for Four-Wave Mixing Experiments with Soft-X-Ray Pulses SO PHYSICAL REVIEW LETTERS LA English DT Article ID EXTREME-ULTRAVIOLET; GAIN; OPERATION; MOLECULES AB We present the design of a single-pass free-electron laser amplifier suitable for enabling four-wave mixing x-ray spectroscopic investigations. The production of longitudinally coherent, single-spike pulses of light from a single electron beam in this scenario relies on a process of selective amplification where a strong undulator taper compensates for a large energy chirp only for a short region of the electron beam. This proposed scheme offers improved flexibility of operation and allows for independent control of the color, timing, and angle of incidence of the individual pulses of light at an end user station. Detailed numerical simulations are used to illustrate the more impressive characteristics of this scheme. C1 [Marcus, G.; Penn, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Marcus, G.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Zholents, A. A.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Marcus, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357, DE-AC02-76SF00515] FX The authors would like to thank Y. Ding and Z. Huang for many helpful and insightful discussions. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contracts No. DE-AC02-05CH11231, No. DE-AC02-06CH11357, and No. DE-AC02-76SF00515. NR 43 TC 12 Z9 12 U1 4 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 10 PY 2014 VL 113 IS 2 AR 024801 DI 10.1103/PhysRevLett.113.024801 PG 5 WC Physics, Multidisciplinary SC Physics GA AL5KA UT WOS:000339171300016 PM 25062194 ER PT J AU Squire, J Bhattacharjee, A AF Squire, J. Bhattacharjee, A. TI Nonmodal Growth of the Magnetorotational Instability SO PHYSICAL REVIEW LETTERS LA English DT Article ID WEAKLY MAGNETIZED DISKS; LOCAL SHEAR INSTABILITY; ACCRETION DISKS; STABILITY THEORY; FLOWS; SIMULATIONS; PERTURBATIONS; DYNAMOS; BOX AB We analyze the linear growth of the magnetorotational instability (MRI) in the short-time limit using nonmodal methods. Our findings are quite different from standard results, illustrating that shearing wave energy can grow at the maximum MRI rate -d Omega/d ln r for any choice of azimuthal and vertical wavelengths. In addition, by comparing the growth of shearing waves with static structures, we show that over short time scales shearing waves will always be dynamically more important than static structures in the ideal limit. By demonstrating that fast linear growth is possible at all wavelengths, these results suggest that nonmodal linear physics could play a fundamental role in MRI turbulence. C1 [Squire, J.; Bhattacharjee, A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08543 USA. [Squire, J.; Bhattacharjee, A.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Bhattacharjee, A.] Princeton Univ, Max Planck Princeton Ctr Plasma Phys, Princeton, NJ 08543 USA. RP Squire, J (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08543 USA. FU Max Planck/Princeton Center for Plasma Physics; U.S. DOE [DE-AC02-09CH11466] FX We extend thanks to Dr. Jeremy Goodman for enlightening discussion. This work was supported by Max Planck/Princeton Center for Plasma Physics and U.S. DOE (DE-AC02-09CH11466). NR 32 TC 10 Z9 10 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 10 PY 2014 VL 113 IS 2 AR 025006 DI 10.1103/PhysRevLett.113.025006 PG 5 WC Physics, Multidisciplinary SC Physics GA AL5KA UT WOS:000339171300019 PM 25062200 ER PT J AU Eletsky, A Michalska, K Houliston, S Zhang, Q Daily, MD Xu, XH Cui, H Yee, A Lemak, A Wu, B Garcia, M Burnet, MC Meyer, KM Aryal, UK Sanchez, O Ansong, C Xiao, R Acton, TB Adkins, JN Montelione, GT Joachimiak, A Arrowsmith, CH Savchenko, A Szyperski, T Cort, JR AF Eletsky, Alexander Michalska, Karolina Houliston, Scott Zhang, Qi Daily, Michael D. Xu, Xiaohui Cui, Hong Yee, Adelinda Lemak, Alexander Wu, Bin Garcia, Maite Burnet, Meagan C. Meyer, Kristen M. Aryal, Uma K. Sanchez, Octavio Ansong, Charles Xiao, Rong Acton, Thomas B. Adkins, Joshua N. Montelione, Gaetano T. Joachimiak, Andrzej Arrowsmith, Cheryl H. Savchenko, Alexei Szyperski, Thomas Cort, John R. TI Structural and Functional Characterization of DUF1471 Domains of Salmonella Proteins SrfN, YdgH/SssB, and YahO SO PLOS ONE LA English DT Article ID ENTERICA SEROVAR TYPHIMURIUM; ESCHERICHIA-COLI O157H7; SOLUTION NMR STRUCTURE; TOP-DOWN PROTEOMICS; VIRULENCE FACTORS; RESONANCE ASSIGNMENTS; MULTIDIMENSIONAL NMR; 3-WAY DECOMPOSITION; QUALITY ASSESSMENT; BIOFILM FORMATION AB Bacterial species in the Enterobacteriaceae typically contain multiple paralogues of a small domain of unknown function (DUF1471) from a family of conserved proteins also known as YhcN or BhsA/McbA. Proteins containing DUF1471 may have a single or three copies of this domain. Representatives of this family have been demonstrated to play roles in several cellular processes including stress response, biofilm formation, and pathogenesis. We have conducted NMR and X-ray crystallographic studies of four DUF1471 domains from Salmonella representing three different paralogous DUF1471 subfamilies: SrfN, YahO, and SssB/YdgH (two of its three DUF1471 domains: the N-terminal domain I (residues 21-91), and the C-terminal domain III (residues 244-314)). Notably, SrfN has been shown to have a role in intracellular infection by Salmonella Typhimurium. These domains share less than 35% pairwise sequence identity. Structures of all four domains show a mixed alpha+beta fold that is most similar to that of bacterial lipoprotein RcsF. However, all four DUF1471 sequences lack the redox sensitive cysteine residues essential for RcsF activity in a phospho-relay pathway, suggesting that DUF1471 domains perform a different function(s). SrfN forms a dimer in contrast to YahO and SssB domains I and III, which are monomers in solution. A putative binding site for oxyanions such as phosphate and sulfate was identified in SrfN, and an interaction between the SrfN dimer and sulfated polysaccharides was demonstrated, suggesting a direct role for this DUF1471 domain at the host-pathogen interface. C1 [Eletsky, Alexander; Zhang, Qi; Szyperski, Thomas] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. [Michalska, Karolina; Joachimiak, Andrzej] Argonne Natl Lab, Biosci Div, Struct Biol Ctr, Argonne, IL 60439 USA. [Houliston, Scott; Xu, Xiaohui; Cui, Hong; Yee, Adelinda; Lemak, Alexander; Wu, Bin; Garcia, Maite; Arrowsmith, Cheryl H.] Univ Toronto, Princess Margaret Canc Ctr, Toronto, ON, Canada. [Houliston, Scott; Xu, Xiaohui; Cui, Hong; Yee, Adelinda; Lemak, Alexander; Wu, Bin; Garcia, Maite; Arrowsmith, Cheryl H.] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada. [Daily, Michael D.; Burnet, Meagan C.; Meyer, Kristen M.; Aryal, Uma K.; Sanchez, Octavio; Ansong, Charles; Adkins, Joshua N.; Cort, John R.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Xiao, Rong; Acton, Thomas B.; Montelione, Gaetano T.] Rutgers State Univ, Dept Mol Biol & Biochem, Ctr Adv Biotechnol & Med, Piscataway, NJ 08855 USA. [Xiao, Rong; Acton, Thomas B.; Montelione, Gaetano T.] Rutgers State Univ, Robert Wood Johnson Med Sch, Dept Biochem & Mol Biol, Piscataway, NJ 08854 USA. [Savchenko, Alexei] Univ Toronto, Banting & Best Dept Med Res, Dept Chem Engn & Appl Chem, Toronto, ON, Canada. [Michalska, Karolina; Xu, Xiaohui; Cui, Hong; Joachimiak, Andrzej; Savchenko, Alexei] Argonne Natl Lab, Biosci Div, Midwest Ctr Struct Genom, Argonne, IL 60439 USA. [Eletsky, Alexander; Houliston, Scott; Zhang, Qi; Yee, Adelinda; Lemak, Alexander; Wu, Bin; Garcia, Maite; Xiao, Rong; Acton, Thomas B.; Montelione, Gaetano T.; Arrowsmith, Cheryl H.; Szyperski, Thomas] Northeast Struct Genom Consortium, Piscataway, NJ USA. RP Cort, JR (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM john.cort@pnnl.gov FU US National Institutes of Health [NIAID Y1-AI-8401, NIGMS PSI-Biology GM094623, GM094597, GM094585]; Natural Sciences and Engineering Research Council of Canada [372475-10]; U.S. Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357] FX We acknowledge support from the US National Institutes of Health (nih.gov) grants NIAID Y1-AI-8401 (J.N.A.) and NIGMS PSI-Biology GM094623 (J.N.A.), GM094597 (G.T.M. and T.S., NESG), and GM094585 (A.J., MCSG), the Natural Sciences and Engineering Research Council of Canada (www.nserc-crsng.gc.ca) grant 372475-10 (C.H.A), and the U.S. Department of Energy, Office of Biological and Environmental Research (science.energy.gov), contract DE-AC02-06CH11357. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 74 TC 0 Z9 0 U1 2 U2 18 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 10 PY 2014 VL 9 IS 7 AR e101787 DI 10.1371/journal.pone.0101787 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AK9RG UT WOS:000338763800039 PM 25010333 ER PT J AU Yang, L Cui, XD Zhang, JY Wang, K Shen, M Zeng, SS Dayeh, SA Feng, L Xiang, B AF Yang, Lei Cui, Xudong Zhang, Jingyu Wang, Kan Shen, Meng Zeng, Shuangshuang Dayeh, Shadi A. Feng, Liang Xiang, Bin TI Lattice strain effects on the optical properties of MoS2 nanosheets SO SCIENTIFIC REPORTS LA English DT Article DE ELECTRICAL AND ELECTRONIC ENGINEERING; TWO-DIMENSIONAL MATERIALS ID TRANSITION-METAL DICHALCOGENIDES; ATOMICALLY THIN MOS2; SINGLE-LAYER MOS2; MONOLAYER MOS2; TRANSISTORS; BATTERIES; EVOLUTION; BANDGAP; PLASMA; ENERGY AB "Strain engineering'' in functional materials has been widely explored to tailor the physical properties of electronic materials and improve their electrical and/or optical properties. Here, we exploit both in plane and out of plane uniaxial tensile strains in MoS2 to modulate its band gap and engineer its optical properties. We utilize X-ray diffraction and cross-sectional transmission electron microscopy to quantify the strains in the as-synthesized MoS2 nanosheets and apply measured shifts of Raman-active modes to confirm lattice strain modification of both the out-of-plane and in-plane phonon vibrations of the MoS2 nanosheets. The induced band gap evolution due to in-plane and out-of-plane tensile stresses is validated by photoluminescence (PL) measurements, promising a potential route for unprecedented manipulation of the physical, electrical and optical properties of MoS2. C1 [Yang, Lei; Shen, Meng; Zeng, Shuangshuang; Xiang, Bin] Univ Sci & Technol China, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China. [Cui, Xudong; Wang, Kan] CAEP, Res Ctr Laser Fus, Sci & Technol Plasma Phys Lab, Mianyang 621900, Sichuan, Peoples R China. [Zhang, Jingyu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Dayeh, Shadi A.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [Feng, Liang] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14228 USA. RP Xiang, B (reprint author), Univ Sci & Technol China, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China. EM binxiang@ustc.edu.cn RI Xiang, Bin/C-9192-2012; Foundry, Molecular/G-9968-2014 FU National Natural Science Foundation of China (NSFC) [21373196]; Recruitment Program of Global Experts; Fundamental Research Funds for the Central Universities [WK2060140014, WK2340000050]; University of California San Diego FX This work was supported by National Natural Science Foundation of China (NSFC) (21373196), the Recruitment Program of Global Experts, the Fundamental Research Funds for the Central Universities (WK2060140014, WK2340000050), and a faculty start-up grant for S. A. D. at the University of California San Diego. NR 39 TC 41 Z9 41 U1 6 U2 191 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUL 10 PY 2014 VL 4 AR 5649 DI 10.1038/srep05649 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AK9RJ UT WOS:000338764100004 PM 25008782 ER PT J AU Aab, A Abreu, P Aglietta, M Ahlers, M Ahn, EJ Al Samarai, I Albuquerque, IFM Allekotte, I Allen, J Allison, P Almela, A Castillo, JA Alvarez-Muniz, J Batista, RA Ambrosio, M Aminaei, A Anchordoqui, L Andringa, S Aramo, C Arqueros, F Asorey, H Assis, P Aublin, J Ave, M Avenier, M Avila, G Badescu, AM Barber, KB Bauml, J Baus, C Beatty, JJ Becker, KH Bellido, JA Berat, C Bertou, X Biermann, PL Billoir, P Blanco, F Blanco, M Bleve, C Blumer, H Bohacova, M Boncioli, D Bonifazi, C Bonino, R Borodai, N Brack, J Brancus, I Brogueira, P Brown, WC Buchholz, P Bueno, A Buscemi, M Caballero-Mora, KS Caccianiga, B Caccianiga, L Candusso, M Caramete, L Caruso, R Castellina, A Cataldi, G Cazon, L Cester, R Chavez, AG Cheng, SH Chiavassa, A Chinellato, JA Chudoba, J Cilmo, M Clay, RW Cocciolo, G Colalillo, R Collica, L Coluccia, MR Conceicao, R Contreras, F Cooper, MJ Coutu, S Covault, CE Criss, A Cronin, J Curutiu, A Dallier, R Daniel, B Dasso, S Daumiller, K Dawson, BR de Almeida, RM De Domenico, M de Jong, SJ Neto, JRTDM De Mitri, I de Oliveira, J de Souza, V del Peral, L Deligny, O Dembinski, H Dhital, N Di Giulio, C Di Matteo, A Diaz, JC Castro, MLD Diep, PN Diogo, F Dobrigkeit, C Docters, W D'Olivo, JC Dong, PN Dorofeev, A Hasankiadeh, QD Dova, MT Ebr, J Engel, R Erdmann, M Erfani, M Escobar, CO Espadanal, J Etchegoyen, A Luis, PFS Falcke, H Fang, K Farrar, G Fauth, AC Fazzini, N Ferguson, AP Fernandes, M Fick, B Figueira, JM Filevich, A Filipcic, A Fox, BD Fratu, O Frohlich, U Fuchs, B Fuji, T Gaior, R Garcia, B Roca, STG Garcia-Gamez, D Garcia-Pinto, D Garilli, G Bravo, AG Gate, F Gemmeke, H Ghia, PL Giaccari, U Giammarchi, M Giller, M Glaser, C Glass, H Albarracin, FG Berisso, MG Vitale, PFG Goncalves, P Gonzalez, JG Gookin, B Gorgi, A Gorham, P Gouffon, P Grebe, S Griffith, N Grillo, AF Grubb, TD Guardincerri, Y Guarino, F Guedes, GP Hansen, P Harari, D Harrison, TA Harton, JL Haungs, A Hebbeker, T Heck, D Heimann, P Herve, AE Hill, GC Hojvat, C Hollon, N Holt, E Homola, P Horandel, JR Horvath, P Hrabovsky, M Huber, D Huege, T Insolia, A Isar, PG Islo, K Jandt, I Jansen, S Jarne, C Josebachuili, M Kaapa, A Kambeitz, O Kampert, KH Kasper, P Katkov, I Kegl, B Keilhauer, B Keivani, A Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Krause, R Krohm, N Kromer, O Kruppke-Hansen, D Kuempel, D Kunka, N La Rosa, G LaHurd, D Latronico, L Lauer, R Lauscher, M Lautridou, P Le Coz, S Leao, MSAB Lebrun, D Lebrun, P de Oliveira, MAL Letessier-Selvon, A Lhenry-Yvon, I Link, K Lopez, R Aguera, AL Louedec, K Bahilo, JL Lu, L Lucero, A Ludwig, M Lyberis, H Maccarone, MC Malacari, M Maldera, S Maller, J Mandat, D Mantsch, P Mariazzi, AG Marin, V Maris, IC Marsella, G Martello, D Martin, L Martinez, H Bravo, OM Martraire, D Meza, JJM Mathes, HJ Mathys, S Matthews, AJ Matthews, J Matthiae, G Maurel, D Maurizio, D Mayotte, E Mazur, PO Medina, C Medina-Tanco, G Melissas, M Melo, D Menichetti, E Menshikov, A Messina, S Meyhandan, R Micanovic, S Micheletti, MI Middendorf, L Minaya, IA Miramonti, L Mitrica, B Molina-Bueno, L Mollerach, S Monasor, M Ragaigne, DM Montanet, F Morello, C Moreno, JC Mostafa, M Moura, CA Muller, MA Muller, G Munchmeyer, M Mussa, R Navarra, G Navas, S Necesal, P Nellen, L Nelles, A Neuser, J Niechciol, M Niemietz, L Niggemann, T Nitz, D Nosek, D Novotny, V Nozka, L Ochilo, L Olinto, A Oliveira, M Ortiz, M Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Palmieri, N Papenbreer, P Parente, G Parra, A Pastor, S Paul, T Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Pesce, R Petermann, E Peters, C Petrera, S Petrolini, A Petrov, Y Piegaia, R Pierog, T Pieroni, P Pimenta, M Pirronello, V Platino, M Plum, M Porcelli, A Porowski, C Privitera, P Prouza, M Purrello, V Quel, EJ Querchfeld, S Quinn, S Rautenberg, J Ravel, O Ravignani, D Revenu, B Ridky, J Riggi, S Risse, M Ristori, P Rizi, V Roberts, J de Carvalho, WR Cabo, IR Fernandez, GR Rojo, JR Rodriguez-Frias, MD Ros, G Rosado, J Rossler, T Roth, M Roulet, E Rovero, AC Ruhle, C Saffi, SJ Saftoiu, A Salamida, F Salazar, H Greus, FS Salina, G Sanchez, F Sanchez-Lucas, P Santo, CE Santos, E Santos, EM Sarazin, F Sarkar, B Sarmento, R Sato, R Scharf, N Scherini, V Schieler, H Schiffer, P Schmidt, A Scholten, O Schoorlemmer, H Schovanek, P Schulz, A Schulz, J Sciutto, SJ Segreto, A Settimo, M Shadkam, A Shellard, RC Sidelnik, I Sigl, G Sima, O Smialkowski, A Smida, R Snow, GR Sommers, P Sorokin, J Squartini, R Srivastava, YN Stanic, S Stapleton, J Stasielak, J Stephan, M Stutz, A Suarez, F Suomijarvi, T Supanitsky, AD Sutherland, MS Swain, J Szadkowski, Z Szuba, M Taborda, OA Tapia, A Tartare, M Thao, NT Theodoro, VM Tiffenberg, J Timmermans, C Peixoto, CJT Toma, G Tomankova, L Tome, B Tonachini, A Elipe, GT Machado, DT Travnicek, P Trovato, E Tueros, M Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L van Aar, G van den Berg, AM van Velzen, S van Vliet, A Varela, E Cardenas, BV Varner, G Vazquez, JR Vazquez, RA Veberic, D Verzi, V Vicha, J Videla, M Villasenor, L Vlcek, B Vorobiov, S Wahlberg, H Wainberg, O Walz, D Watson, AA Weber, M Weidenhaupt, K Weindl, A Werner, F Whelan, BJ Widom, A Wiencke, L Wilczynska, B Wilczynski, H Will, M Williams, C Winchen, T Wittkowski, D Wundheiler, B Wykes, S Yamamoto, T Yapici, T Younk, P Yuan, G Yushkov, A Zamorano, B Zas, E Zavrtanik, D Zavrtanik, M Zaw, I Zepeda, A Zhou, J Zhu, Y Silva, MZ Ziolkowski, M AF Aab, A. Abreu, P. Aglietta, M. Ahlers, M. Ahn, E. J. Al Samarai, I. Albuquerque, I. F. M. Allekotte, I. Allen, J. Allison, P. Almela, A. Castillo, J. Alvarez Alvarez-Muniz, J. Batista, R. Alves Ambrosio, M. Aminaei, A. Anchordoqui, L. Andringa, S. Aramo, C. Arqueros, F. Asorey, H. Assis, P. Aublin, J. Ave, M. Avenier, M. Avila, G. Badescu, A. M. Barber, K. B. Baeuml, J. Baus, C. Beatty, J. J. Becker, K. H. Bellido, J. A. Berat, C. Bertou, X. Biermann, P. L. Billoir, P. Blanco, F. Blanco, M. Bleve, C. Bluemer, H. Bohacova, M. Boncioli, D. Bonifazi, C. Bonino, R. Borodai, N. Brack, J. Brancus, I. Brogueira, P. Brown, W. C. Buchholz, P. Bueno, A. Buscemi, M. Caballero-Mora, K. S. Caccianiga, B. Caccianiga, L. Candusso, M. Caramete, L. Caruso, R. Castellina, A. Cataldi, G. Cazon, L. Cester, R. Chavez, A. G. Cheng, S. H. Chiavassa, A. Chinellato, J. A. Chudoba, J. Cilmo, M. Clay, R. W. Cocciolo, G. Colalillo, R. Collica, L. Coluccia, M. R. Conceicao, R. Contreras, F. Cooper, M. J. Coutu, S. Covault, C. E. Criss, A. Cronin, J. Curutiu, A. Dallier, R. Daniel, B. Dasso, S. Daumiller, K. Dawson, B. R. de Almeida, R. M. De Domenico, M. de Jong, S. J. Neto, J. R. T. de Mello De Mitri, I. de Oliveira, J. de Souza, V. del Peral, L. Deligny, O. Dembinski, H. Dhital, N. Di Giulio, C. Di Matteo, A. Diaz, J. C. Castro, M. L. Diaz Diep, P. N. Diogo, F. Dobrigkeit, C. Docters, W. D'Olivo, J. C. Dong, P. N. Dorofeev, A. Hasankiadeh, Q. Dorosti Dova, M. T. Ebr, J. Engel, R. Erdmann, M. Erfani, M. Escobar, C. O. Espadanal, J. Etchegoyen, A. Luis, P. Facal San Falcke, H. Fang, K. Farrar, G. Fauth, A. C. Fazzini, N. Ferguson, A. P. Fernandes, M. Fick, B. Figueira, J. M. Filevich, A. Filipcic, A. Fox, B. D. Fratu, O. Froehlich, U. Fuchs, B. Fuji, T. Gaior, R. Garcia, B. Garcia Roca, S. T. Garcia-Gamez, D. Garcia-Pinto, D. Garilli, G. Bravo, A. Gascon Gate, F. Gemmeke, H. Ghia, P. L. Giaccari, U. Giammarchi, M. Giller, M. Glaser, C. Glass, H. Albarracin, F. Gomez Gomez Berisso, M. Gomez Vitale, P. F. Goncalves, P. Gonzalez, J. G. Gookin, B. Gorgi, A. Gorham, P. Gouffon, P. Grebe, S. Griffith, N. Grillo, A. F. Grubb, T. D. Guardincerri, Y. Guarino, F. Guedes, G. P. Hansen, P. Harari, D. Harrison, T. A. Harton, J. L. Haungs, A. Hebbeker, T. Heck, D. Heimann, P. Herve, A. E. Hill, G. C. Hojvat, C. Hollon, N. Holt, E. Homola, P. Hoerandel, J. R. Horvath, P. Hrabovsky, M. Huber, D. Huege, T. Insolia, A. Isar, P. G. Islo, K. Jandt, I. Jansen, S. Jarne, C. Josebachuili, M. Kaeaepae, A. Kambeitz, O. Kampert, K. H. Kasper, P. Katkov, I. Kegl, B. Keilhauer, B. Keivani, A. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Krause, R. Krohm, N. Kroemer, O. Kruppke-Hansen, D. Kuempel, D. Kunka, N. La Rosa, G. LaHurd, D. Latronico, L. Lauer, R. Lauscher, M. Lautridou, P. Le Coz, S. Leao, M. S. A. B. Lebrun, D. Lebrun, P. de Oliveira, M. A. Leigui Letessier-Selvon, A. Lhenry-Yvon, I. Link, K. Lopez, R. Aguera, A. Lopez Louedec, K. Bahilo, J. Lozano Lu, L. Lucero, A. Ludwig, M. Lyberis, H. Maccarone, M. C. Malacari, M. Maldera, S. Maller, J. Mandat, D. Mantsch, P. Mariazzi, A. G. Marin, V. Maris, I. C. Marsella, G. Martello, D. Martin, L. Martinez, H. Bravo, O. Martinez Martraire, D. Meza, J. J. Masias Mathes, H. J. Mathys, S. Matthews, A. J. Matthews, J. Matthiae, G. Maurel, D. Maurizio, D. Mayotte, E. Mazur, P. O. Medina, C. Medina-Tanco, G. Melissas, M. Melo, D. Menichetti, E. Menshikov, A. Messina, S. Meyhandan, R. Micanovic, S. Micheletti, M. I. Middendorf, L. Minaya, I. A. Miramonti, L. Mitrica, B. Molina-Bueno, L. Mollerach, S. Monasor, M. Ragaigne, D. Monnier Montanet, F. Morello, C. Moreno, J. C. Mostafa, M. Moura, C. A. Muller, M. A. Mueller, G. Muenchmeyer, M. Mussa, R. Navarra, G. Navas, S. Necesal, P. Nellen, L. Nelles, A. Neuser, J. Niechciol, M. Niemietz, L. Niggemann, T. Nitz, D. Nosek, D. Novotny, V. Nozka, L. Ochilo, L. Olinto, A. Oliveira, M. Ortiz, M. Pacheco, N. Selmi-Dei, D. Pakk Palatka, M. Pallotta, J. Palmieri, N. Papenbreer, P. Parente, G. Parra, A. Pastor, S. Paul, T. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Pesce, R. Petermann, E. Peters, C. Petrera, S. Petrolini, A. Petrov, Y. Piegaia, R. Pierog, T. Pieroni, P. Pimenta, M. Pirronello, V. Platino, M. Plum, M. Porcelli, A. Porowski, C. Privitera, P. Prouza, M. Purrello, V. Quel, E. J. Querchfeld, S. Quinn, S. Rautenberg, J. Ravel, O. Ravignani, D. Revenu, B. Ridky, J. Riggi, S. Risse, M. Ristori, P. Rizi, V. Roberts, J. de Carvalho, W. Rodrigues Cabo, I. Rodriguez Fernandez, G. Rodriguez Rojo, J. Rodriguez Rodriguez-Frias, M. D. Ros, G. Rosado, J. Rossler, T. Roth, M. Roulet, E. Rovero, A. C. Ruehle, C. Saffi, S. J. Saftoiu, A. Salamida, F. Salazar, H. Greus, F. Salesa Salina, G. Sanchez, F. Sanchez-Lucas, P. Santo, C. E. Santos, E. Santos, E. M. Sarazin, F. Sarkar, B. Sarmento, R. Sato, R. Scharf, N. Scherini, V. Schieler, H. Schiffer, P. Schmidt, A. Scholten, O. Schoorlemmer, H. Schovanek, P. Schulz, A. Schulz, J. Sciutto, S. J. Segreto, A. Settimo, M. Shadkam, A. Shellard, R. C. Sidelnik, I. Sigl, G. Sima, O. Smialkowski, A. Smida, R. Snow, G. R. Sommers, P. Sorokin, J. Squartini, R. Srivastava, Y. N. Stanic, S. Stapleton, J. Stasielak, J. Stephan, M. Stutz, A. Suarez, F. Suomijaervi, T. Supanitsky, A. D. Sutherland, M. S. Swain, J. Szadkowski, Z. Szuba, M. Taborda, O. A. Tapia, A. Tartare, M. Thao, N. T. Theodoro, V. M. Tiffenberg, J. Timmermans, C. Peixoto, C. J. Todero Toma, G. Tomankova, L. Tome, B. Tonachini, A. Elipe, G. Torralba Machado, D. Torres Travnicek, P. Trovato, E. Tueros, M. Ulrich, R. Unger, M. Urban, M. Valdes Galicia, J. F. Valino, I. Valore, L. van Aar, G. van den Berg, A. M. van Velzen, S. van Vliet, A. Varela, E. Cardenas, B. Vargas Varner, G. Vazquez, J. R. Vazquez, R. A. Veberic, D. Verzi, V. Vicha, J. Videla, M. Villasenor, L. Vlcek, B. Vorobiov, S. Wahlberg, H. Wainberg, O. Walz, D. Watson, A. A. Weber, M. Weidenhaupt, K. Weindl, A. Werner, F. Whelan, B. J. Widom, A. Wiencke, L. Wilczynska, B. Wilczynski, H. Will, M. Williams, C. Winchen, T. Wittkowski, D. Wundheiler, B. Wykes, S. Yamamoto, T. Yapici, T. Younk, P. Yuan, G. Yushkov, A. Zamorano, B. Zas, E. Zavrtanik, D. Zavrtanik, M. Zaw, I. Zepeda, A. Zhou, J. Zhu, Y. Silva, M. Zimbres Ziolkowski, M. CA Pierre Auger Collaborat TI A SEARCH FOR POINT SOURCES OF EeV PHOTONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE astroparticle physics; cosmic rays; methods: data analysis ID ENERGY COSMIC-RAYS; GAMMA-RAYS; GALACTIC-CENTER; ASTRONOMY; FRAMEWORK; SPECTRUM AB Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85 degrees to +20 degrees, in an energy range from 10(17.3) eV to 10(18.5) eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm(-2) s(-1), and no celestial direction exceeds 0.25 eV cm(-2) s(-1). These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy. C1 [Aab, A.; Buchholz, P.; Erfani, M.; Froehlich, U.; Heimann, P.; Homola, P.; Kuempel, D.; Niechciol, M.; Ochilo, L.; Risse, M.; Yushkov, A.; Ziolkowski, M.] Univ Siegen, D-57068 Siegen, Germany. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Oliveira, M.; Pimenta, M.; Santo, C. E.; Santos, E.; Sarmento, R.; Tome, B.] Univ Lisbon, Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Oliveira, M.; Pimenta, M.; Santo, C. E.; Santos, E.; Sarmento, R.; Tome, B.] Univ Lisbon, Inst Super Tecn, Lisbon, Portugal. [Aglietta, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; Gorgi, A.; Latronico, L.; Maldera, S.; Morello, C.] Univ Turin, Osservatorio Astronfis Torino INAF, Turin, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; Gorgi, A.; Latronico, L.; Maldera, S.; Morello, C.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Ahlers, M.] Univ Wisconsin, Madison, WI USA. [Ahn, E. J.; Escobar, C. O.; Fazzini, N.; Glass, H.; Hojvat, C.; Kasper, P.; Lebrun, P.; Mantsch, P.; Mazur, P. O.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Al Samarai, I.; Deligny, O.; Dong, P. N.; Lhenry-Yvon, I.; Martraire, D.; Salamida, F.; Suomijaervi, T.] Univ Paris 11, CNRS, Inst Phys Nucl Orsay, IN2P3, F-91405 Orsay, France. [Albuquerque, I. F. M.; Gouffon, P.; Santos, E. M.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Allekotte, I.; Asorey, H.; Bertou, X.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Purrello, V.; Roulet, E.; Sidelnik, I.; Taborda, O. A.] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. [Allekotte, I.; Asorey, H.; Bertou, X.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Purrello, V.; Roulet, E.; Sidelnik, I.; Taborda, O. A.] Inst Balseiro CNEA UNCuyo CONICET, San Carlos De Bariloche, Rio Negro, Argentina. [Allen, J.; Farrar, G.; Roberts, J.; Zaw, I.] NYU, New York, NY USA. [Allison, P.; Beatty, J. J.; Griffith, N.; Stapleton, J.] Ohio State Univ, Columbus, OH 43210 USA. [Almela, A.; Etchegoyen, A.; Wainberg, O.] Univ Tecnol Nacl, Fac Reg Buenos Aires, Buenos Aires, DF, Argentina. [Almela, A.; Etchegoyen, A.; Figueira, J. M.; Filevich, A.; Josebachuili, M.; Lucero, A.; Melo, D.; Platino, M.; Ravignani, D.; Sanchez, F.; Suarez, F.; Tapia, A.; Videla, M.; Wainberg, O.; Wundheiler, B.] Consejo Nacl Invest Cient & Tecn, Inst Tecnol Detecc & Astroparticulas, CNEA, CNEA,UNSAM, RA-1033 Buenos Aires, DF, Argentina. [Castillo, J. Alvarez; D'Olivo, J. C.; Medina-Tanco, G.; Nellen, L.; Valdes Galicia, J. F.; Cardenas, B. Vargas] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Alvarez-Muniz, J.; Ave, M.; Caballero-Mora, K. S.; Garcia Roca, S. T.; Aguera, A. Lopez; Parente, G.; Parra, A.; Riggi, S.; de Carvalho, W. Rodrigues; Cabo, I. Rodriguez; Fernandez, G. Rodriguez; Elipe, G. Torralba; Tueros, M.; Valino, I.; Vazquez, R. A.; Zas, E.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Batista, R. Alves; Schiffer, P.; Sigl, G.; van Vliet, A.] Univ Hamburg, Hamburg, Germany. [Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; Guarino, F.; Valore, L.] Univ Naples Federico II, Naples, Italy. [Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; Guarino, F.; Valore, L.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Aminaei, A.; de Jong, S. J.; Falcke, H.; Grebe, S.; Hoerandel, J. R.; Jansen, S.; Nelles, A.; Schoorlemmer, H.; Schulz, J.; Timmermans, C.; van Aar, G.; van Velzen, S.; Wykes, S.] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands. [Anchordoqui, L.; Islo, K.; Paul, T.; Vlcek, B.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Anchordoqui, L.] CUNY, Lehman Coll, Dept Phys & Astron, New York, NY USA. [Arqueros, F.; Blanco, F.; Garcia-Pinto, D.; Minaya, I. A.; Ortiz, M.; Rosado, J.; Vazquez, J. R.] Univ Complutense Madrid, Madrid, Spain. [Aublin, J.; Billoir, P.; Blanco, M.; Caccianiga, L.; Gaior, R.; Ghia, P. L.; Letessier-Selvon, A.; Muenchmeyer, M.; Settimo, M.] Univ Paris 06, Lab Phys Nucl & Hautes Energies LPNHE, Paris, France. [Aublin, J.; Billoir, P.; Blanco, M.; Caccianiga, L.; Gaior, R.; Ghia, P. L.; Letessier-Selvon, A.; Muenchmeyer, M.; Settimo, M.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Avenier, M.; Berat, C.; Le Coz, S.; Lebrun, D.; Louedec, K.; Montanet, F.; Stutz, A.; Tartare, M.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol LPSC, CNRS, IN2P3, Grenoble, France. [Avila, G.; Gomez Vitale, P. F.] Observ Pierre Auger, Malargue, Argentina. [Avila, G.; Gomez Vitale, P. F.] Comis Nacl Energia Atom, Malargue, Argentina. [Badescu, A. M.; Fratu, O.] Univ Politehn Bucuresti, Bucharest, Romania. [Barber, K. B.; Bellido, J. A.; Clay, R. W.; Cooper, M. J.; Dawson, B. R.; Grubb, T. D.; Harrison, T. A.; Hill, G. C.; Malacari, M.; Saffi, S. J.; Sorokin, J.] Univ Adelaide, Adelaide, SA, Australia. [Baeuml, J.; Baus, C.; Bluemer, H.; Fuchs, B.; Gonzalez, J. G.; Huber, D.; Kambeitz, O.; Katkov, I.; Link, K.; Ludwig, M.; Maurel, D.; Melissas, M.; Palmieri, N.; Werner, F.] Karlsruhe Inst Technol, Inst Expt Kernphys IEKP, D-76021 Karlsruhe, Germany. [Becker, K. H.; Bleve, C.; Jandt, I.; Kaeaepae, A.; Kampert, K. H.; Krohm, N.; Kruppke-Hansen, D.; Kuempel, D.; Lu, L.; Mathys, S.; Neuser, J.; Niemietz, L.; Papenbreer, P.; Querchfeld, S.; Rautenberg, J.; Sarkar, B.; Wittkowski, D.] Berg Univ Wuppertal, Wuppertal, Germany. [Biermann, P. L.; Caramete, L.; Curutiu, A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Bluemer, H.; Daumiller, K.; Dembinski, H.; Hasankiadeh, Q. Dorosti; Engel, R.; Haungs, A.; Heck, D.; Herve, A. E.; Holt, E.; Huege, T.; Keilhauer, B.; Klages, H. O.; Mathes, H. J.; Pierog, T.; Porcelli, A.; Roth, M.; Schieler, H.; Schulz, A.; Smida, R.; Szuba, M.; Tomankova, L.; Ulrich, R.; Unger, M.; Weindl, A.; Will, M.] Karlsruhe Inst Technol, Inst Kernphys, D-76021 Karlsruhe, Germany. [Bohacova, M.; Chudoba, J.; Ebr, J.; Hrabovsky, M.; Mandat, D.; Necesal, P.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovanek, P.; Travnicek, P.; Vicha, J.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Boncioli, D.; Grillo, A. F.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Laquila, Italy. [Bonifazi, C.; Neto, J. R. T. de Mello; Fernandes, M.; Giaccari, U.; Lyberis, H.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, Brazil. [Borodai, N.; Homola, P.; Pekala, J.; Porowski, C.; Stasielak, J.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Brack, J.; Dorofeev, A.; Gookin, B.; Harton, J. L.; Petrov, Y.] Colorado State Univ, Ft Collins, CO 80523 USA. [Brancus, I.; Mitrica, B.; Saftoiu, A.; Toma, G.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Brown, W. C.] Colorado State Univ, Pueblo, CO USA. [Bueno, A.; Bravo, A. Gascon; Bahilo, J. Lozano; Maris, I. C.; Molina-Bueno, L.; Navas, S.; Sanchez-Lucas, P.; Zamorano, B.] Univ Granada, Granada, Spain. [Bueno, A.; Bravo, A. Gascon; Bahilo, J. Lozano; Maris, I. C.; Molina-Bueno, L.; Navas, S.; Sanchez-Lucas, P.; Zamorano, B.] CAFPE, Granada, Spain. [Caballero-Mora, K. S.; Martinez, H.; Zepeda, A.] Ctr Invest & Estudios Avanzados, IPN, CINVESTAV, Mexico City, DF, Mexico. [Caballero-Mora, K. S.; Cheng, S. H.; Coutu, S.; Criss, A.; Mostafa, M.; Greus, F. Salesa; Sommers, P.; Whelan, B. J.] Penn State Univ, University Pk, PA 16802 USA. [Caccianiga, B.; Collica, L.; Giammarchi, M.; Miramonti, L.] Univ Milan, Milan, Italy. [Caccianiga, B.; Collica, L.; Giammarchi, M.; Miramonti, L.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [Candusso, M.; Di Giulio, C.; Matthiae, G.; Fernandez, G. Rodriguez; Salina, G.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy. [Candusso, M.; Di Giulio, C.; Matthiae, G.; Fernandez, G. Rodriguez; Salina, G.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Caruso, R.; De Domenico, M.; Garilli, G.; Insolia, A.; Pirronello, V.; Trovato, E.] Univ Catania, Catania, Italy. [Caruso, R.; De Domenico, M.; Garilli, G.; Insolia, A.; Pirronello, V.; Trovato, E.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Cataldi, G.; Cocciolo, G.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, Lecce, Italy. [Cataldi, G.; Cocciolo, G.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [Cester, R.; Menichetti, E.; Mussa, R.; Tonachini, A.] Univ Turin, Turin, Italy. [Cester, R.; Menichetti, E.; Mussa, R.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Chavez, A. G.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Chinellato, J. A.; Daniel, B.; Castro, M. L. Diaz; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Selmi-Dei, D. Pakk; Theodoro, V. M.; Silva, M. Zimbres] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Contreras, F.; Kleinfeller, J.; Rojo, J. Rodriguez; Sato, R.; Squartini, R.] Observ Pierre Auger, Malargue, Argentina. [Covault, C. E.; Ferguson, A. P.; LaHurd, D.; Quinn, S.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Cronin, J.; Luis, P. Facal San; Fang, K.; Fuji, T.; Hollon, N.; Monasor, M.; Olinto, A.; Privitera, P.; Williams, C.; Yamamoto, T.; Zhou, J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Dallier, R.; Gate, F.; Lautridou, P.; Maller, J.; Marin, V.; Martin, L.; Ravel, O.; Revenu, B.; Machado, D. Torres] Univ Nantes, Ecole Mines Nantes, CNRS, SUBATECH,IN2P3, F-44035 Nantes, France. [Dallier, R.; Martin, L.] Observ Paris, CNRS, INSU, Stn Radioastron Nancay, Paris, France. [Dasso, S.; Rovero, A. C.; Supanitsky, A. D.] Inst Astron & Fis Espacio, CONICET UBA, RA-1428 Buenos Aires, DF, Argentina. [Dasso, S.; Guardincerri, Y.; Meza, J. J. Masias; Piegaia, R.; Pieroni, P.; Tiffenberg, J.] Univ Buenos Aires, Dept Fis, FCEyN, RA-1053 Buenos Aires, DF, Argentina. [Dasso, S.; Guardincerri, Y.; Meza, J. J. Masias; Piegaia, R.; Pieroni, P.; Tiffenberg, J.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [de Almeida, R. M.; de Oliveira, J.; Navarra, G.] Univ Fed Fluminense, EEIMVR, Volta Redonda, RJ, Brazil. [de Jong, S. J.; Falcke, H.; Grebe, S.; Hoerandel, J. R.; Jansen, S.; Nelles, A.; Schoorlemmer, H.; Timmermans, C.] Nikhef, Amsterdam, Netherlands. [de Souza, V.] Univ Sao Paulo, Inst Fis, Sao Carlos, SP, Brazil. [Dhital, N.; Diaz, J. C.; Fick, B.; Kieckhafer, R. M.; Nitz, D.; Yapici, T.] Michigan Technol Univ, Houghton, MI 49931 USA. [Di Matteo, A.; Petrera, S.; Rizi, V.] Univ Aquila, Dipartimento Sci & Fis Chim, I-67100 Laquila, Italy. [Di Matteo, A.; Petrera, S.; Rizi, V.] Ist Nazl Fis Nucl, Milan, Italy. [Diep, P. N.; Dong, P. N.; Thao, N. T.] Inst Nucl Sci & Technol, Hanoi, Vietnam. [Docters, W.; Messina, S.; Scholten, O.; van den Berg, A. M.] Univ Groningen, KVI Ctr Adv Radiat Technol, NL-9700 AB Groningen, Netherlands. [Dova, M. T.; Albarracin, F. Gomez; Hansen, P.; Jarne, C.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Wahlberg, H.] Univ Nacl La Plata, IFLP, La Plata, Buenos Aires, Argentina. [Dova, M. T.; Albarracin, F. Gomez; Hansen, P.; Jarne, C.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Erdmann, M.; Glaser, C.; Hebbeker, T.; Krause, R.; Kuempel, D.; Lauscher, M.; Middendorf, L.; Mueller, G.; Niggemann, T.; Peters, C.; Plum, M.; Scharf, N.; Stephan, M.; Urban, M.; Walz, D.; Weidenhaupt, K.; Wilczynska, B.; Winchen, T.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Falcke, H.] ASTRON, Dwingeloo, Netherlands. [Filipcic, A.; Zavrtanik, D.; Zavrtanik, M.] J Stefan Inst, Expt Particle Phys Dept, Ljubljana, Slovenia. [Filipcic, A.; Stanic, S.; Vorobiov, S.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gor, Lab Astroparticle Phys, Pristava, Slovenia. [Fox, B. D.; Gorham, P.; Meyhandan, R.; Schoorlemmer, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Garcia, B.] Consejo Nacl Invest Cient & Tecn, Inst Tecnol Detecc & Astroparticulas, CNEA, UNSAM, Mendoza, Argentina. [Garcia, B.] Natl Technol Univ, Fac Mendoza, CONICET, CNEA, Mendoza, Argentina. [Garcia-Gamez, D.; Kegl, B.; Ragaigne, D. Monnier; Veberic, D.] Univ Paris 11, Lab Accelerateur Lineaire, CNRS, IN2P3, Paris, France. [Gemmeke, H.; Kleifges, M.; Kroemer, O.; Kunka, N.; Menshikov, A.; Ruehle, C.; Schmidt, A.; Weber, M.; Zhu, Y.] Karlsruhe Inst Technol, Inst Prozessdatenverarbeitung & Elekt, D-76021 Karlsruhe, Germany. [Giller, M.; Smialkowski, A.; Szadkowski, Z.] Univ Lodz, PL-90131 Lodz, Poland. [Guedes, G. P.] Univ Estadual Feira de Santana, Feira De Santana, Brazil. [Horvath, P.; Hrabovsky, M.; Nozka, L.; Rossler, T.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Isar, P. G.] Inst Space Sci, Bucharest, Romania. [Keivani, A.; Matthews, J.; Shadkam, A.; Sutherland, M. S.; Yuan, G.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [La Rosa, G.; Maccarone, M. C.; Riggi, S.; Segreto, A.] Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Palermo, Italy. [Lauer, R.; Matthews, A. J.] Univ New Mexico, Albuquerque, NM 87131 USA. [Leao, M. S. A. B.] Fac Independente Nordeste, Vitoria Da Conquista, Brazil. [de Oliveira, M. A. Leigui; Moura, C. A.] Univ Fed ABC, Santo Andre, SP, Brazil. [Lopez, R.; Bravo, O. Martinez; Pelayo, R.; Salazar, H.; Varela, E.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Lu, L.; Watson, A. A.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Maurizio, D.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Mayotte, E.; Medina, C.; Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Micanovic, S.] Rudjer Boskovic Inst, Zagreb 10000, Croatia. [Micheletti, M. I.] CONICET UNR, Inst Fis Rosario IFIR, Rosario, Santa Fe, Argentina. [Micheletti, M. I.] Fac Ciencias Bioquim & Farmaceut UNR, Rosario, Santa Fe, Argentina. [Muller, M. A.] Univ Fed Pelotas, Pelotas, RS, Brazil. [Nosek, D.; Novotny, V.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, Prague, Czech Republic. [Pallotta, J.; Quel, E. J.; Ristori, P.] CITEDEF, Ctr Invest Laseres & Aplicac, Buenos Aires, DF, Argentina. [Pallotta, J.; Quel, E. J.; Ristori, P.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. [Paul, T.; Srivastava, Y. N.; Swain, J.; Widom, A.] Northeastern Univ, Boston, MA 02115 USA. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [Pesce, R.; Petrolini, A.] Dipartimento Fis Univ, Genoa, Italy. [Pesce, R.; Petrolini, A.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Petrera, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Laquila, Italy. [Sima, O.] Univ Bucharest, Dept Phys, Bucharest, Romania. [Peixoto, C. J. Todero] Univ Sao Paulo, Escola Engn Lorena, Lorena, SP, Brazil. [Younk, P.] Los Alamos Natl Lab, Los Alamos, NM USA. [Pierre Auger Collaborat] Pierre Auger Collaborat, RA-5613 Mendoza, Argentina. RP Aab, A (reprint author), Univ Siegen, D-57068 Siegen, Germany. RI Nosek, Dalibor/F-1129-2017; Lozano Bahilo, Julio/F-4881-2016; Ridky, Jan/H-6184-2014; Gouffon, Philippe/I-4549-2012; de Almeida, Rogerio/L-4584-2016; Fauth, Anderson/F-9570-2012; De Domenico, Manlio/B-5826-2014; Abreu, Pedro/L-2220-2014; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Assis, Pedro/D-9062-2013; Blanco, Francisco/F-1131-2015; Cazon, Lorenzo/G-6921-2014; Conceicao, Ruben/L-2971-2014; Bueno, Antonio/F-3875-2015; de souza, Vitor/D-1381-2012; Valino, Ines/J-8324-2012; Navas, Sergio/N-4649-2014; Espadanal, Joao/I-6618-2015; Vazquez, Jose Ramon/K-2272-2015; Martello, Daniele/J-3131-2012; Insolia, Antonio/M-3447-2015; Petrolini, Alessandro/H-3782-2011; de Mello Neto, Joao/C-5822-2013; zas, enrique/I-5556-2015; Goncalves, Patricia /D-8229-2013; Moura Santos, Edivaldo/K-5313-2016; Caramete, Laurentiu/C-2328-2011; Horvath, Pavel/G-6334-2014; Sima, Octavian/C-3565-2011; Torralba Elipe, Guillermo/A-9524-2015; Di Giulio, Claudio/B-3319-2015; Chinellato, Jose Augusto/I-7972-2012; Pech, Miroslav/G-5760-2014; Albuquerque, Ivone/H-4645-2012; Parente, Gonzalo/G-8264-2015; dos Santos, Eva/N-6351-2013; Alvarez-Muniz, Jaime/H-1857-2015; Brogueira, Pedro/K-3868-2012; Badescu, Alina/B-6087-2012; Garcia Pinto, Diego/J-6724-2014; Pastor, Sergio/J-6902-2014; Tome, Bernardo/J-4410-2013; Rosado, Jaime/K-9109-2014; Arqueros, Fernando/K-9460-2014; Espirito Santo, Maria Catarina/L-2341-2014; Pimenta, Mario/M-1741-2013; Chinellato, Carola Dobrigkeit /F-2540-2011; Ros, German/L-4764-2014; Beatty, James/D-9310-2011; Guarino, Fausto/I-3166-2012; Colalillo, Roberta/R-5088-2016; Buscemi, Mario/R-5071-2016; Bonino, Raffaella/S-2367-2016; Rodriguez Frias, Maria /A-7608-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; De Mitri, Ivan/C-1728-2017; Mitrica, Bogdan/D-5201-2009; Alves Batista, Rafael/K-6642-2012; Rodriguez Fernandez, Gonzalo/C-1432-2014 OI Coutu, Stephane/0000-0003-2923-2246; La Rosa, Giovanni/0000-0002-3931-2269; Erdmann, Martin/0000-0002-1653-1303; Zamorano, Bruno/0000-0002-4286-2835; Petrera, Sergio/0000-0002-6029-1255; Yuan, Guofeng/0000-0002-1907-8815; de Jong, Sijbrand/0000-0002-3120-3367; Marsella, Giovanni/0000-0002-3152-8874; Asorey, Hernan/0000-0002-4559-8785; Sarmento, Raul/0000-0002-5018-5467; Aramo, Carla/0000-0002-8412-3846; Aglietta, Marco/0000-0001-8354-5388; Maccarone, Maria Concetta/0000-0001-8722-0361; Kothandan, Divay/0000-0001-9048-7518; Castellina, Antonella/0000-0002-0045-2467; maldera, simone/0000-0002-0698-4421; Matthews, James/0000-0002-1832-4420; Nosek, Dalibor/0000-0001-6219-200X; Sigl, Guenter/0000-0002-4396-645X; Cataldi, Gabriella/0000-0001-8066-7718; Lozano Bahilo, Julio/0000-0003-0613-140X; Mantsch, Paul/0000-0002-8382-7745; Salamida, Francesco/0000-0002-9306-8447; Ridky, Jan/0000-0001-6697-1393; Ravignani, Diego/0000-0001-7410-8522; Segreto, Alberto/0000-0001-7341-6603; Gouffon, Philippe/0000-0001-7511-4115; de Almeida, Rogerio/0000-0003-3104-2724; Fauth, Anderson/0000-0001-7239-0288; De Domenico, Manlio/0000-0001-5158-8594; Abreu, Pedro/0000-0002-9973-7314; Assis, Pedro/0000-0001-7765-3606; Blanco, Francisco/0000-0003-4332-434X; Cazon, Lorenzo/0000-0001-6748-8395; Conceicao, Ruben/0000-0003-4945-5340; Bueno, Antonio/0000-0002-7439-4247; Valino, Ines/0000-0001-7823-0154; Navas, Sergio/0000-0003-1688-5758; Espadanal, Joao/0000-0002-1301-8061; Vazquez, Jose Ramon/0000-0001-9217-5219; Martello, Daniele/0000-0003-2046-3910; Insolia, Antonio/0000-0002-9040-1566; Petrolini, Alessandro/0000-0003-0222-7594; de Mello Neto, Joao/0000-0002-3234-6634; zas, enrique/0000-0002-4430-8117; Goncalves, Patricia /0000-0003-2042-3759; Moura Santos, Edivaldo/0000-0002-2818-8813; Horvath, Pavel/0000-0002-6710-5339; Torralba Elipe, Guillermo/0000-0001-8738-194X; Di Giulio, Claudio/0000-0002-0597-4547; Chinellato, Jose Augusto/0000-0002-3240-6270; Albuquerque, Ivone/0000-0001-7328-0136; Parente, Gonzalo/0000-0003-2847-0461; dos Santos, Eva/0000-0002-0474-8863; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Brogueira, Pedro/0000-0001-6069-4073; Garcia Pinto, Diego/0000-0003-1348-6735; Tome, Bernardo/0000-0002-7564-8392; Rosado, Jaime/0000-0001-8208-9480; Arqueros, Fernando/0000-0002-4930-9282; Espirito Santo, Maria Catarina/0000-0003-1286-7288; Pimenta, Mario/0000-0002-2590-0908; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Ros, German/0000-0001-6623-1483; Garcia, Beatriz/0000-0003-0919-2734; Dembinski, Hans/0000-0003-3337-3850; Lauer, Robert/0000-0003-1933-7861; Del Peral, Luis/0000-0003-2580-5668; Bonino, Raffaella/0000-0002-4264-1215; Rizi, Vincenzo/0000-0002-5277-6527; Ulrich, Ralf/0000-0002-2535-402X; Novotny, Vladimir/0000-0002-4319-4541; Beatty, James/0000-0003-0481-4952; Guarino, Fausto/0000-0003-1427-9885; Colalillo, Roberta/0000-0002-4179-9352; Buscemi, Mario/0000-0003-2123-5434; Rodriguez Frias, Maria /0000-0002-2550-4462; De Mitri, Ivan/0000-0002-8665-1730; Alves Batista, Rafael/0000-0003-2656-064X; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X FU Comision Nacional de Energia Atomica; Fundacion Antorchas; Gobierno De La Provincia de Mendoza; Municipalidad de Malargue; NDM Holdings and Valle Las Lenas; Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparoa Pesquisa do Estado de Rio de Janeiro (FAPERJ); Sao Paulo Research Foundation (FAPESP) [2010/07359-6, 1999/05404-3]; Ministerio de Ciencia e Tecnologia (MCT), Brazil [MSMT-CR LG13007, 7AMB14AR005, CZ.1.05/2.1.00/03.0058] FX We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparoa Pesquisa do Estado de Rio de Janeiro (FAPERJ), Sao Paulo Research Foundation (FAPESP) grant Nos. 2010/07359-6, 1999/05404-3, Ministerio de Ciencia e Tecnologia (MCT), Brazil; MSMT-CR LG13007, 7AMB14AR005, CZ.1.05/2.1.00/03.0058 and the Czech Science Foundation grant 1417501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique(CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium fur Wissenschaft, Forschung undKunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universit` a e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, grant Nos. ERA-NET-ASPERA/01/11 and ERA-NET-ASPERA/02/11, National Science Centre, grant Nos. 2013/08/M/ST9/00322 and 2013/08/M/ST9/00728, Poland; Portuguese national funds and FEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects nr.20/2012 and nr.194/2012, project nr.1/ASPERA2/2012 ERA-NET, PN-II-RU-PD-2011-3-0145-17, and PN-II-RU-PD-2011-3-0062, the Minister of National Education, Programme for research-Space Technology and Advanced Research-STAR, project number 83/2013, Romania; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Educacion y Ciencia, Xunta de Galicia, Spain; The Leverhulme Foundation, Science and Technology Facilities Council, UK; Department of Energy, Contract No. DE-AC02-07CH11359, DE-FR02-04ER41300, and DE-FG02-99ER41107, National Science Foundation, grant No. 0450696, The Grainger Foundation, USA; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, grant No. PIRSES-2009-GA-246806; and UNESCO. NR 55 TC 9 Z9 9 U1 1 U2 51 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2014 VL 789 IS 2 AR 160 DI 10.1088/0004-637X/789/2/160 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AK8JY UT WOS:000338674900069 ER PT J AU Belczynski, K Buonanno, A Cantiello, M Fryer, CL Holz, DE Mandel, I Miller, MC Walczak, M AF Belczynski, Krzysztof Buonanno, Alessandra Cantiello, Matteo Fryer, Chris L. Holz, Daniel E. Mandel, Ilya Miller, M. Coleman Walczak, Marek TI THE FORMATION AND GRAVITATIONAL-WAVE DETECTION OF MASSIVE STELLAR BLACK HOLE BINARIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: general; black hole physics; gravitational waves; stars: early-type ID PAIR-INSTABILITY SUPERNOVAE; COMMON ENVELOPE EVOLUTION; BINDING-ENERGY PARAMETER; CYGNUS OB2 ASSOCIATION; GAMMA-RAY TRANSIENTS; M-CIRCLE-DOT; EXPLOSION MECHANISM; NEUTRINO OSCILLATIONS; LUMINOUS SUPERNOVAE; CLOSE BINARIES AB If binaries consisting of two similar to 100M(circle dot) black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z similar to 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several greater than or similar to 150 M-circle dot stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars. C1 [Belczynski, Krzysztof; Walczak, Marek] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Belczynski, Krzysztof] Univ Texas Brownsville, Ctr Gravitat Wave Astron, Brownsville, TX 78520 USA. [Buonanno, Alessandra] Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Buonanno, Alessandra] Univ Maryland, Joint Space Sci Inst, Dept Phys, College Pk, MD 20742 USA. [Cantiello, Matteo] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Fryer, Chris L.] Los Alamos Natl Lab, Computat Comp Sci Div, Los Alamos, NM 87545 USA. [Holz, Daniel E.] Univ Chicago, Enrico Fermi Inst, Dept Phys, Chicago, IL 60637 USA. [Holz, Daniel E.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Holz, Daniel E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Mandel, Ilya] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Miller, M. Coleman] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Miller, M. Coleman] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. RP Belczynski, K (reprint author), Warsaw Univ, Astron Observ, Al Ujazdowskie 4, PL-00478 Warsaw, Poland. EM kbelczyn@astrouw.edu.pl OI Cantiello, Matteo/0000-0002-8171-8596; Mandel, Ilya/0000-0002-6134-8946 FU Polish Science Foundation; NASA [NNX09AV06A, NNX12AN10G, NNX12AG29G]; NSF [HRD1242090, PHY-1208881, PHY11-25915]; NSF CAREER [PHY-1151836]; STFC; Simons Foundation [230349]; Polish NCN [SONATA BIS 2.K.B]; ET R&D grant funded within the ASPERA-2 FX The authors thank Mirek Giersz, Duncan Brown, and especially Vicky Kalogera for useful comments. K.B. and M.W. acknowledge support from Polish Science Foundation "Master2013" Subsidy, by Polish NCN grant SONATA BIS 2.K.B. also acknowledges NASA grant No. NNX09AV06A and NSF grant No. HRD1242090 awarded to the Center for Gravitational Wave Astronomy, UTB. A.B. acknowledges support from NSF grant No. PHY-1208881 and NASA grant NNX12AN10G. D.E.H. acknowledges support from NSF CAREER grant PHY-1151836. I.M. was partly supported by STFC, including an ET R&D grant funded within the ASPERA-2 framework. M.C.M. acknowledges NASA grant NNX12AG29G, and a grant from the Simons Foundation (grant No. 230349). M.C.M. thanks the Department of Physics and Astronomy at Johns Hopkins University for hosting him during his sabbatical. The authors thank the Kavli Institute for Theoretical Physics (supported by the NSF grant No. PHY11-25915) for hospitality during the genesis of this project. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing computational resources used for this study. NR 122 TC 36 Z9 36 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2014 VL 789 IS 2 AR 120 DI 10.1088/0004-637X/789/2/120 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AK8JY UT WOS:000338674900029 ER PT J AU Colgate, SA Fowler, TK Li, H Pino, J AF Colgate, Stirling A. Fowler, T. Kenneth Li, Hui Pino, Jesse TI QUASI-STATIC MODEL OF COLLIMATED JETS AND RADIO LOBES. I. ACCRETION DISK AND JETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion; accretion disks; magnetic fields; magnetohydrodynamics (MHD); galaxies: active; galaxies: jets ID SCALE B-FIELD; VERTICAL STRUCTURE; MAGNETIC-FIELD; EJECTION STRUCTURES; ASTROPHYSICAL JETS; BLACK-HOLES; RECONNECTION; TRANSPORT; HELICITY; ACCELERATION AB This is the first of a series of papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetic helix that could explain both the observed radio jet/lobe structures on very large scales and ultimately the enormous power inferred from the observed ultra-high-energy cosmic rays. In this work, we solve a set of one-dimensional equations similar to the steady-state standard accretion disk model, but now including the large-scale magnetic fields giving rises to jets. We find that the frequently made assumption that large-scale fields are frozen into the disk is fundamentally incorrect, due to the necessity for current and the accreting mass to flow perpendicular to magnetic flux surfaces. A correct treatment greatly simplifies the calculations, yielding fields that leave the disk nearly vertically with magnetic profiles uniquely determined by disk angular momentum conservation. Representative solutions of the magnetic fields in different radial regions of the disk surface are given, and they determine the overall key features in the jet structure and its dissipation, which will be the subjects of later papers. C1 [Colgate, Stirling A.; Li, Hui] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Fowler, T. Kenneth] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Pino, Jesse] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Colgate, SA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU U. S. Department of Energy Office of Science through Center for Magnetic Self-Organization; LLNL under U. S. Department of Energy [DE-AC52-07NA27344] FX T.K.F., H.L., and J.P. report with sadness that our coauthor Stirling Colgate, who instigated this work and contributed seminal ideas, passed away 2013 December 1. We thank the referees for their comments that improved the clarity of the paper. T.K.F. acknowledges many useful conversations with Roger Blandford and Jonathan McKinney. We thank R. H. Bulmer for the use of Figure 1 adapted from Fowler et al. (2011). We gratefully acknowledge the support of the U.S. Department of Energy Office of Science through the Center for Magnetic Self-Organization and through the LANL/LDRD Program for this work. J.P. acknowledges support at LLNL under U.S. Department of Energy contract DE-AC52-07NA27344. NR 52 TC 4 Z9 4 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2014 VL 789 IS 2 AR 144 DI 10.1088/0004-637X/789/2/144 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AK8JY UT WOS:000338674900053 ER PT J AU Long, M Jordan, GC van Rossum, DR Diemer, B Graziani, C Kessler, R Meyer, B Rich, P Lamb, DQ AF Long, Min Jordan, George C. van Rossum, Daniel R. Diemer, Benedikt Graziani, Carlo Kessler, Richard Meyer, Bradley Rich, Paul Lamb, Don Q. TI THREE-DIMENSIONAL SIMULATIONS OF PURE DEFLAGRATION MODELS FOR THERMONUCLEAR SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; methods: numerical; nuclear reactions, nucleosynthesis, abundances; supernovae: general; white dwarfs ID GRAVITATIONALLY CONFINED DETONATION; FLUID DYNAMICAL SIMULATIONS; SUBGRID SCALE-MODEL; IA-SUPERNOVAE; RADIATIVE-TRANSFER; LIGHT CURVES; OPERATOR PERTURBATION; EXPLOSION MODELS; PHASE; EVOLUTION AB We present a systematic study of the pure deflagration model of Type Ia supernovae (SNe Ia) using three-dimensional, high-resolution, full-star hydrodynamical simulations, nucleosynthetic yields calculated using Lagrangian tracer particles, and light curves calculated using radiation transport. We evaluate the simulations by comparing their predicted light curves with many observed SNe Ia using the SALT2 data-driven model and find that the simulations may correspond to under-luminous SNe Iax. We explore the effects of the initial conditions on our results by varying the number of randomly selected ignition points from 63 to 3500, and the radius of the centered sphere they are confined in from 128 to 384 km. We find that the rate of nuclear burning depends on the number of ignition points at early times, the density of ignition points at intermediate times, and the radius of the confining sphere at late times. The results depend primarily on the number of ignition points, but we do not expect this to be the case in general. The simulations with few ignition points release more nuclear energy E-nuc, have larger kinetic energies E-K, and produce more Ni-56 than those with many ignition points, and differ in the distribution of Ni-56, Si, and C/O in the ejecta. For these reasons, the simulations with few ignition points exhibit higher peak B-band absolute magnitudes M-B and light curves that rise and decline more quickly; their M-B and light curves resemble those of under-luminous SNe Iax, while those for simulations with many ignition points are not. C1 [Long, Min; Jordan, George C.; van Rossum, Daniel R.; Diemer, Benedikt; Graziani, Carlo; Kessler, Richard; Rich, Paul; Lamb, Don Q.] Univ Chicago, Flash Ctr Computat Sci, Chicago, IL 60637 USA. [Long, Min; Jordan, George C.; van Rossum, Daniel R.; Diemer, Benedikt; Graziani, Carlo; Kessler, Richard; Rich, Paul; Lamb, Don Q.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Diemer, Benedikt; Kessler, Richard] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Meyer, Bradley] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Rich, Paul] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. [Lamb, Don Q.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Long, M (reprint author), Univ Chicago, Flash Ctr Computat Sci, Chicago, IL 60637 USA. EM long@flash.uchicago.edu OI Diemer, Benedikt/0000-0001-9568-7287 FU U.S. Department of Energy [B523820]; National Science Foundation [AST-0909132]; National Science Foundation for the Physics Frontier Center "Joint Institute for Nuclear Astrophysics" (JINA) at the University of Chicago [PHY-0822648]; Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357] FX We thank Klaus Weide, Norbert Flocke, and Christopher Daley for the great help they provided during this work, and Brad Gallagher for creating the images in Figure 6. We thank Katherine Riley, Mike Papka, and the staff at the Argonne Leadership Computing Facility at Argonne National Laboratory for help running our large simulations on Intrepid at ANL. We also thank the referee for valuable comments and suggestions that led to significant improvements in the paper. This work is supported in part by the U.S. Department of Energy under Contract No. B523820, the National Science Foundation under grant No. AST-0909132 to the Flash Center for Computational Sciences, and the National Science Foundation under grant No. PHY-0822648 for the Physics Frontier Center "Joint Institute for Nuclear Astrophysics" (JINA) at the University of Chicago. This work used computational resources at ALCF at the Argonne National Laboratory supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 64 TC 8 Z9 8 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2014 VL 789 IS 2 AR 103 DI 10.1088/0004-637X/789/2/103 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AK8JY UT WOS:000338674900012 ER PT J AU Ofek, EO Sullivan, M Shaviv, NJ Steinbok, A Arcavi, I Gal-Yam, A Tal, D Kulkarni, SR Nugent, PE Ben-Ami, S Kasliwal, MM Cenko, SB Laher, R Surace, J Bloom, JS Filippenko, AV Silverman, JM Yaron, O AF Ofek, Eran O. Sullivan, Mark Shaviv, Nir J. Steinbok, Aviram Arcavi, Iair Gal-Yam, Avishay Tal, David Kulkarni, Shrinivas R. Nugent, Peter E. Ben-Ami, Sagi Kasliwal, Mansi M. Cenko, S. Bradley Laher, Russ Surace, Jason Bloom, Joshua S. Filippenko, Alexei V. Silverman, Jeffrey M. Yaron, Ofer TI PRECURSORS PRIOR TO TYPE IIn SUPERNOVA EXPLOSIONS ARE COMMON: PRECURSOR RATES, PROPERTIES, AND CORRELATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: mass-loss; supernovae: general; supernovae: individual (SN 2010mc, PTF 10bjb, SN 2011ht, PTF 10weh, PTF 12cxj, SN 2009ip) ID RICH CIRCUMSTELLAR MEDIUM; DENSE MASS-LOSS; SN 2009IP; SHOCK-BREAKOUT; LUMINOUS SUPERNOVAE; CORE-COLLAPSE; STAR; PROGENITOR; EVOLUTION; 2010JL AB There is a growing number of Type IIn supernovae (SNe) which present an outburst prior to their presumably final explosion. These precursors may affect the SN display, and are likely related to poorly charted phenomena in the final stages of stellar evolution. By coadding Palomar Transient Factory (PTF) images taken prior to the explosion, here we present a search for precursors in a sample of 16 Type IIn SNe. We find five SNe IIn that likely have at least one possible precursor event (PTF 10bjb, SN 2010mc, PTF 10weh, SN 2011ht, and PTF 12cxj), three of which are reported here for the first time. For each SN we calculate the control time. We find that precursor events among SNe IIn are common: at the one-sided 99% confidence level, >50% of SNe IIn have at least one pre-explosion outburst that is brighter than 3 x 10(7) L-circle dot taking place up to 1/3 yr prior to the SN explosion. The average rate of such precursor events during the year prior to the SN explosion is likely greater than or similar to 1 yr(-1), and fainter precursors are possibly even more common. Ignoring the two weakest precursors in our sample, the precursors rate we find is still on the order of one per year. We also find possible correlations between the integrated luminosity of the precursor and the SN total radiated energy, peak luminosity, and rise time. These correlations are expected if the precursors are mass-ejection events, and the early-time light curve of these SNe is powered by interaction of the SN shock and ejecta with optically thick circumstellar material. C1 [Ofek, Eran O.; Steinbok, Aviram; Arcavi, Iair; Gal-Yam, Avishay; Tal, David; Ben-Ami, Sagi; Yaron, Ofer] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Sullivan, Mark] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Shaviv, Nir J.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Kulkarni, Shrinivas R.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Nugent, Peter E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Nugent, Peter E.; Bloom, Joshua S.; Filippenko, Alexei V.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Kasliwal, Mansi M.] Observ Carnegie Inst Sci, Pasadena, CA 91101 USA. [Cenko, S. Bradley] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Laher, Russ; Surace, Jason] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Silverman, Jeffrey M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. RP Ofek, EO (reprint author), Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. OI Sullivan, Mark/0000-0001-9053-4820; Gal-Yam, Avishay/0000-0002-3653-5598 FU W. M. Keck Foundation; Israeli Ministry of Science, ISF, Minerva, Weizmann-UK; I-CORE Program of the Planning and Budgeting Committee; Israel Science Foundation [1829/12]; Gary and Cynthia Bengier; Christopher R. Redlich Fund; Richard and Rhoda Goldman Fund; TABASGO Foundation; NSF [AST-1211916] FX E.O.O. thanks Orly Gnat and Ehud Nakar for many discussions. This paper is based on observations obtained with the Samuel Oschin Telescope as part of the Palomar Transient Factory project, a scientific collaboration between the California Institute of Technology, Columbia University, Las Cumbres Observatory, the Lawrence Berkeley National Laboratory, the National Energy Research Scientific Computing Center, the University of Oxford, and the Weizmann Institute of Science. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the Observatory was made possible by the generous financial support of the W. M. Keck Foundation. We are grateful for excellent staff assistance at Palomar, Lick, and Keck Observatories. E.O.O. is incumbent of the Arye Dissentshik career development chair and is grateful for support by a grant from the Israeli Ministry of Science, ISF, Minerva, Weizmann-UK and the I-CORE Program of the Planning and Budgeting Committee and The Israel Science Foundation (grant no 1829/12). A.V.F.'s group at UC Berkeley has received generous financial assistance from Gary and Cynthia Bengier, the Christopher R. Redlich Fund, the Richard and Rhoda Goldman Fund, the TABASGO Foundation, and NSF grant AST-1211916. NR 85 TC 40 Z9 40 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2014 VL 789 IS 2 AR 104 DI 10.1088/0004-637X/789/2/104 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AK8JY UT WOS:000338674900013 ER PT J AU Mickel, PR Lohn, AJ James, CD Marinella, MJ AF Mickel, Patrick R. Lohn, Andrew J. James, Conrad D. Marinella, Matthew J. TI Isothermal Switching and Detailed Filament Evolution in Memristive Systems SO ADVANCED MATERIALS LA English DT Article ID MEMORIES; DEVICE; RRAM; MECHANISM AB The steady-state solution of filamentary memristive switching may be derived directly from the heat equation, modelling vertical and radial heat flow. This solution is shown to provide a continuous and accurate description of the evolution of the filament radius, composition, heat flow, and temperature during switching, and is shown to apply to a large range of switching materials and experimental time-scales. C1 [Mickel, Patrick R.; Lohn, Andrew J.; James, Conrad D.; Marinella, Matthew J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Mickel, PR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM prmicke@sandia.gov FU Sandia's Laboratory Directed Research and Development program; Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We would like to acknowledge James E. Stevens and the Sandia MESA Fab for device fabrication. We also like to thank Robert M. Fleming and Edward I. Cole for their valuable feedback. We also like to acknowledge J.J. Yang and R. S. Williams for providing additional test samples and valuable discussions. This work was funded by Sandia's Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 27 TC 20 Z9 20 U1 5 U2 72 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD JUL 9 PY 2014 VL 26 IS 26 BP 4486 EP + DI 10.1002/adma.201306182 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AM0VI UT WOS:000339565100011 PM 24782402 ER PT J AU Li, JC Dudney, NJ Nanda, J Liang, CD AF Li, Juchuan Dudney, Nancy J. Nanda, Jagjit Liang, Chengdu TI Artificial Solid Electrolyte Interphase To Address the Electrochemical Degradation of Silicon Electrodes SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE silicon anodes; artificial solid electrolyte interphase; electrochemical degradation; solid electrolyte; lithium-ion batteries ID LITHIUM-ION BATTERIES; HIGH-PERFORMANCE; NEGATIVE ELECTRODES; PHOTOELECTRON-SPECTROSCOPY; NANOSILICON ELECTRODES; HIGH-CAPACITY; FILM ANODE; COATINGS; CONDUCTION; INTERFACES AB Electrochemical degradation on silicon (Si) anodes prevents them from being successfully used in lithium (Li)-ion battery full cells. Unlike the case of graphite anodes, the natural solid electrolyte interphase (SE!) films generated from carbonate electrolytes do not self-passivate on Si, causing continuous electrolyte decomposition and loss of Li ions. In this work, we aim at solving the issue of electrochemical degradation by fabricating artificial SEI films using a solid electrolyte material, lithium phosphorus oxynitride (Lipon), which conducts Li ions and blocks electrons. For Si anodes coated with Lipon of 50 nm or thicker, a significant effect is observed in suppressing electrolyte decomposition, while Lipon of thinner than 40 nm has a limited effect. Ionic and electronic conductivity measurements reveal that the artificial SEI is effective when it is a pure ionic conductor, but electrolyte decomposition is only partially suppressed when the artificial SEI is a mixed electronic-ionic conductor. The critical thickness for this transition in conducting behavior is found to be 40-50 nm. This work provides guidance for designing artificial SEI films for high-capacity Li-ion battery electrodes using solid electrolyte materials. C1 [Li, Juchuan; Dudney, Nancy J.; Nanda, Jagjit] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Liang, Chengdu] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Li, JC (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM lij2@ornl.gov; dudneynj@ornl.gov RI Li, Juchuan/A-2992-2009; Dudney, Nancy/I-6361-2016 OI Li, Juchuan/0000-0002-6587-5591; Dudney, Nancy/0000-0001-7729-6178 FU U.S. Department of Energy, Basic Energy Science (BES), Materials Science and Engineering Division FX This work is supported by the U.S. Department of Energy, Basic Energy Science (BES), Materials Science and Engineering Division. The authors thank Dr. Frank Delnick and Dr. Sergiy Kalnaus for helpful discussions. NR 49 TC 27 Z9 28 U1 19 U2 184 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD JUL 9 PY 2014 VL 6 IS 13 BP 10083 EP 10088 DI 10.1021/am5009419 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA AL2UB UT WOS:000338979900022 PM 24926882 ER PT J AU Gardner, SN Slezak, T AF Gardner, Shea N. Slezak, Tom TI Simulate_PCR for amplicon prediction and annotation from multiplex, degenerate primers and probes SO BMC BIOINFORMATICS LA English DT Article DE PCR target prediction software; HIV 1; Coronaviridae; Multiplex PCR; Amplicon prediction; Degenerate PCR; Consensus PCR ID TOOLS AB Background: Pairing up primers to amplify desired targets and avoid undesired cross reactions can be a combinatorial challenge. Effective prediction of specificity and inclusivity from multiplexed primers and TaqMan (R)/Luminex (R) probes is a critical step in PCR design. Results: Code is described to identify all primer and probe combinations from a list of unpaired, unordered candidates that should produce a product. It predicts and extracts all amplicon sequences in a large sequence database from a list of primers and probes, allowing degenerate bases and user-specified levels of primer-target mismatch tolerance. Amplicons hit by TaqMan (R)/Luminex (R) probes are indicated, and products may be annotated with gene information from NCBI. Fragment length distributions are calculated to predict electrophoretic gel banding patterns. Conclusions: Simulate_PCR is the only freely available software that can be run from the command line for high throughput applications which can calculate all products from large lists of primers and probes compared to a large sequence database such as nt. It requires no prior knowledge of how primers should be paired. Degenerate bases are allowed and entire amplicon sequences are extracted and annotated with gene information. Examples are provided for sets of TaqMan (R)/Luminex (R) PCR signatures predicted to amplify all HIV-1 genomes, all Coronaviridae genomes, and a group of antibiotic resistance genes. The software is a command line perl script freely available as open source. C1 [Gardner, Shea N.; Slezak, Tom] Lawrence Livermore Natl Lab, Computat Global Secur, Livermore, CA 94550 USA. RP Gardner, SN (reprint author), Lawrence Livermore Natl Lab, Computat Global Secur, Livermore, CA 94550 USA. EM gardner26@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 14 TC 1 Z9 2 U1 0 U2 10 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD JUL 9 PY 2014 VL 15 AR 237 DI 10.1186/1471-2105-15-237 PG 6 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA AL4SD UT WOS:000339122100001 PM 25005023 ER PT J AU Obermeyer, AC Jarman, JB Francis, MB AF Obermeyer, Allie C. Jarman, John B. Francis, Matthew B. TI N-Terminal Modification of Proteins with o-Aminophenols SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TOBACCO-MOSAIC-VIRUS; BIOMIMETIC TRANSAMINATION REACTION; SMALL-MOLECULE PROBES; BOVINE SERUM ALBUMIN; CYTOCHROME OXIDASE; RECOMBINANT PROTEINS; OXIDATION PRODUCTS; CHEMICAL LIGATION; BIOCONJUGATION; SURFACE AB The synthetic modification of proteins plays an important role in chemical biology and biomaterials science. These fields provide a constant need for chemical tools that can introduce new functionality in specific locations on protein surfaces. In this work, an oxidative strategy is demonstrated for the efficient modification of N-terminal residues on peptides and N-terminal proline residues on proteins. The strategy uses o-aminophenols or o-catechols that are oxidized to active coupling species in situ using potassium ferricyanide. Peptide screening results have revealed that many N-terminal amino acids can participate in this reaction, and that proline residues are particularly reactive. When applied to protein substrates, the reaction shows a stronger requirement for the proline group. Key advantages of the reaction include its fast second-order kinetics and ability to achieve site-selective modification in a single step using low concentrations of reagent. Although free cysteines are also modified by the coupling reaction, they can be protected through disulfide formation and then liberated after N-terminal coupling is complete. This allows access to doubly functionalized bioconjugates that can be difficult to access using other methods. C1 [Obermeyer, Allie C.; Jarman, John B.; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Francis, Matthew B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM mbfrancis@berkeley.edu FU NSF [CHE 1059083]; UC Berkeley Chemical Biology Program (NRSA Training Grant) [1 T32 GMO66698] FX We would like to acknowledge the NSF (CHE 1059083) for funding. A.C.O. was supported by an NSF graduate research fellowship and the UC Berkeley Chemical Biology Program (NRSA Training Grant 1 T32 GMO66698). We would like to acknowledge Leah Witus for the proline terminal GFP and Michel Dedeo for the construction of plasmids that produce well-behaved TMV mutants. NR 72 TC 24 Z9 24 U1 8 U2 85 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 9 PY 2014 VL 136 IS 27 BP 9572 EP 9579 DI 10.1021/ja500728c PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA AL2UH UT WOS:000338980500014 PM 24963951 ER PT J AU Brower, RC Cheng, M Fleming, GT Lin, MF Neil, ET Osborn, JC Rebbi, C Rinaldi, E Schaich, D Schroeder, C Voronov, G Vranas, P Weinberg, E Witzel, O AF Brower, R. C. Cheng, M. Fleming, G. T. Lin, M. F. Neil, E. T. Osborn, J. C. Rebbi, C. Rinaldi, E. Schaich, D. Schroeder, C. Voronov, G. Vranas, P. Weinberg, E. Witzel, O. TI Maximum-likelihood approach to topological charge fluctuations in lattice gauge theory SO PHYSICAL REVIEW D LA English DT Article ID QCD; MODES AB We present a novel technique for the determination of the topological susceptibility (related to the variance of the distribution of global topological charge) from lattice gauge theory simulations, based on maximum-likelihood analysis of the Markov-chain Monte Carlo time series. This technique is expected to be particularly useful in situations where relatively few tunneling events are observed. Restriction to a lattice subvolume on which topological charge is not quantized is explored, and may lead to further improvement when the global topology is poorly sampled. We test our proposed method on a set of lattice data, and compare it to traditional methods. C1 [Brower, R. C.; Rebbi, C.; Weinberg, E.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Brower, R. C.; Cheng, M.; Fleming, G. T.; Lin, M. F.; Neil, E. T.; Schaich, D.] Aspen Ctr Phys, Aspen, CO 81611 USA. [Cheng, M.; Witzel, O.] Boston Univ, Ctr Computat Sci, Boston, MA 02215 USA. [Fleming, G. T.; Voronov, G.] Yale Univ, Sloane Lab, Dept Phys, New Haven, CT 06520 USA. [Lin, M. F.; Osborn, J. C.] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. [Lin, M. F.] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. [Neil, E. T.; Schaich, D.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Neil, E. T.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Rinaldi, E.; Schroeder, C.; Vranas, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Schaich, D.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. RP Brower, RC (reprint author), Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. RI Schaich, David/J-6644-2013; OI Schaich, David/0000-0002-9826-2951; Rinaldi, Enrico/0000-0003-4134-809X FU National Science Foundation [PHYS1066293]; hospitality of the Aspen Center for Physics; SciDAC-3 and Argonne Leadership Computing Facility at Argonne National Laboratory [DE-AC0206CH11357]; Brookhaven National Laboratory Program Development [PD13-003]; DOE [DE-SC0010005, DE-SC0008669, DE-SC0009998, DESC0010025]; NSF [OCI-0749300, PHY11-00905]; U. S. Department of Energy [. DE-AC52-07NA27344] FX We thank the RBC/UKQCD collaboration for the use of their lattice configurations, first published in Ref. [ 26], and we also thank Tom Blum and Philippe de Forcrand for useful discussions. This work was supported in part by the National Science Foundation under Grant No. PHYS1066293 and the hospitality of the Aspen Center for Physics. M. L. was partially supported by SciDAC-3 and Argonne Leadership Computing Facility at Argonne National Laboratory under Contract No. DE-AC0206CH11357, and the Brookhaven National Laboratory Program Development under Grant No. PD13-003. D. S. was supported by DOE Awards No. DE-SC0010005, No. DE-SC0008669, and No. DE-SC0009998. R. C. B., C. R., and E. W. were supported by DOE Award No. DESC0010025. In addition, R. C. B., C. R., M. C., and O. W. acknowledge the support of NSF Grant No. OCI-0749300, and G. F. and G. V. were supported by NSF Grant No. PHY11-00905. We thank LLNL for funding from Grant No. LDRD13-ERD-023, and E. R., C. S., and P. V. acknowledge the support of the U. S. Department of Energy under Award No. DE-AC52-07NA27344 ( LLNL). NR 25 TC 6 Z9 6 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 9 PY 2014 VL 90 IS 1 AR 014503 DI 10.1103/PhysRevD.90.014503 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AK9IM UT WOS:000338740800006 ER PT J AU Chobanova, V Dalseno, J Kiesling, C Adachi, I Aihara, H Asner, DM Aulchenko, V Aushev, T Aziz, T Bakich, AM Bala, A Ban, Y Belous, K Bhuyan, B Bobrov, A Bonvicini, G Bozek, A Bracko, M Browder, TE Cervenkov, D Chekelian, V Chen, A Cheon, BG Chilikin, K Chistov, R Cho, K Choi, Y Cinabro, D Danilov, M Dolezal, Z Drasal, Z Dutta, D Dutta, K Eidelman, S Esen, S Farhat, H Fast, JE Ferber, T Gaur, V Gabyshev, N Ganguly, S Garmash, A Gillard, R Goh, YM Golob, B Haba, J Hayasaka, K He, XH Horii, Y Hoshi, Y Hou, WS Hsiung, YB Hyun, HJ Iijima, T Inami, K Ishikawa, A Iwasaki, Y Iwashita, T Jaegle, I Julius, T Kang, JH Kato, E Kawai, H Kawasaki, T Kim, DY Kim, HJ Kim, JB Kim, JH Kim, MJ Kim, YJ Kinoshita, K Klucar, J Ko, BR Kodys, P Korpar, S Krokovny, P Kronenbitter, B Kuhr, T Kumita, T Kuzmin, A Lange, JS Lee, SH Li, J Li, Y Gioi, LL Libby, J Liventsev, D Lukin, P Matvienko, D Miyabayashi, K Miyake, H Miyata, H Mizuk, R Mohanty, GB Moll, A Muramatsu, N Mussa, R Nakano, E Nakao, M Natkaniec, Z Nayak, M Nedelkovska, E Ng, C Nisar, NK Nishida, S Nitoh, O Ogawa, S Okuno, S Pakhlov, P Pakhlova, G Park, CW Park, H Park, HK Pedlar, TK Peng, T Ogawa, S Okuno, S Pakhlov, P Pakhlova, G Park, CW Park, H Park, HK Pedlar, TK Peng, T Pestotnik, R Petric, M Piilonen, LE Ritter, M Rohrken, M Rostomyan, A Sahoo, H Saito, T Sakai, Y Santelj, L Sanuki, T Savinov, V Schneider, O Schwartz, AJ Semmler, D Senyo, K Seon, O Sevior, ME Shapkin, M Shibata, TA Shiu, JG Shwartz, B Sibidanov, A Simon, F Sohn, YS Stanic, S Staric, M Steder, M Sumisawa, K Sumiyoshi, T Tamponi, U Tatishvili, G Teramoto, Y Trabelsi, K Uchida, M Uglov, T Unno, Y Uno, S Van Hulse, C Vanhoefer, P Varner, G Varvell, KE Vinokurova, A Vorobyev, V Wagner, MN Wang, CH Wang, MZ Wang, P Watanabe, M Watanabe, Y Williams, KM Won, E Yamamoto, H Yamashita, Y Yashchenko, S Zhang, ZP Zhilich, V Zhulanov, V Zupanc, A AF Chobanova, V. Dalseno, J. Kiesling, C. Adachi, I. Aihara, H. Asner, D. M. Aulchenko, V. Aushev, T. Aziz, T. Bakich, A. M. Bala, A. Ban, Y. Belous, K. Bhuyan, B. Bobrov, A. Bonvicini, G. Bozek, A. Bracko, M. Browder, T. E. Cervenkov, D. Chekelian, V. Chen, A. Cheon, B. G. Chilikin, K. Chistov, R. Cho, K. Choi, Y. Cinabro, D. Danilov, M. Dolezal, Z. Drasal, Z. Dutta, D. Dutta, K. Eidelman, S. Esen, S. Farhat, H. Fast, J. E. Ferber, T. Gaur, V. Gabyshev, N. Ganguly, S. Garmash, A. Gillard, R. Goh, Y. M. Golob, B. Haba, J. Hayasaka, K. He, X. H. Horii, Y. Hoshi, Y. Hou, W. -S. Hsiung, Y. B. Hyun, H. J. Iijima, T. Inami, K. Ishikawa, A. Iwasaki, Y. Iwashita, T. Jaegle, I. Julius, T. Kang, J. H. Kato, E. Kawai, H. Kawasaki, T. Kim, D. Y. Kim, H. J. Kim, J. B. Kim, J. H. Kim, M. J. Kim, Y. J. Kinoshita, K. Klucar, J. Ko, B. R. Kodys, P. Korpar, S. Krokovny, P. Kronenbitter, B. Kuhr, T. Kumita, T. Kuzmin, A. Lange, J. S. Lee, S. -H. Li, J. Li, Y. Gioi, L. Li Libby, J. Liventsev, D. Lukin, P. Matvienko, D. Miyabayashi, K. Miyake, H. Miyata, H. Mizuk, R. Mohanty, G. B. Moll, A. Muramatsu, N. Mussa, R. Nakano, E. Nakao, M. Natkaniec, Z. Nayak, M. Nedelkovska, E. Ng, C. Nisar, N. K. Nishida, S. Nitoh, O. Ogawa, S. Okuno, S. Pakhlov, P. Pakhlova, G. Park, C. W. Park, H. Park, H. K. Pedlar, T. K. Peng, T. Ogawa, S. Okuno, S. Pakhlov, P. Pakhlova, G. Park, C. W. Park, H. Park, H. K. Pedlar, T. K. Peng, T. Pestotnik, R. Petric, M. Piilonen, L. E. Ritter, M. Roehrken, M. Rostomyan, A. Sahoo, H. Saito, T. Sakai, Y. Santelj, L. Sanuki, T. Savinov, V. Schneider, O. Schwartz, A. J. Semmler, D. Senyo, K. Seon, O. Sevior, M. E. Shapkin, M. Shibata, T. -A. Shiu, J. -G. Shwartz, B. Sibidanov, A. Simon, F. Sohn, Y. -S. Stanic, S. Staric, M. Steder, M. Sumisawa, K. Sumiyoshi, T. Tamponi, U. Tatishvili, G. Teramoto, Y. Trabelsi, K. Uchida, M. Uglov, T. Unno, Y. Uno, S. Van Hulse, C. Vanhoefer, P. Varner, G. Varvell, K. E. Vinokurova, A. Vorobyev, V. Wagner, M. N. Wang, C. H. Wang, M. -Z. Wang, P. Watanabe, M. Watanabe, Y. Williams, K. M. Won, E. Yamamoto, H. Yamashita, Y. Yashchenko, S. Zhang, Z. P. Zhilich, V. Zhulanov, V. Zupanc, A. CA Belle Collaboration TI Measurement of branching fractions and CP violation parameters in B -> omega K decays with first evidence of CP violation in B-0 -> omega K-s(0) SO PHYSICAL REVIEW D LA English DT Article ID BELLE; DETECTOR AB We present a measurement of the branching fractions and charge- parity-( CP-) violating parameters in B..K decays. The results are obtained from the final data sample containing 772 x 10(6) BB _ pairs collected at the.d4S_ resonance with the Belle detector at the KEKB asymmetric- energy e_e- collider. We obtain the branching fractions BdB0 0 _d4.5 0.4dstat_ 0.3dsyst_x10- 6; BdB_..K__ d6.80.4dstat_ 0.4dsyst__x10- 6 which are in agreement with their respective current world averages. For the CP- violating parameters, we obtain A.K0 S - 0.36 +/- 0.19dstat_ 0.05dsyst_; S.K0 S _0.91 0.32dstat_ 0.05dsyst_; A.K_ - 0.03 +/- 0.04dstat_ 0.01dsyst_; where A and S represent the direct and mixing- induced CP asymmetry, respectively. We find no evidence of CP violation in the decay channel B_..K_; however, we obtain the first evidence of CP violation in the B0..K0 S decay channel at the level of 3.1 standard deviations. C1 [Van Hulse, C.] Univ Basque Country, UPV EHU, Bilbao 48080, Spain. [Aulchenko, V.; Bobrov, A.; Eidelman, S.; Gabyshev, N.; Garmash, A.; Krokovny, P.; Kuzmin, A.; Shwartz, B.; Vinokurova, A.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] SB RAS, Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Aulchenko, V.; Bobrov, A.; Eidelman, S.; Gabyshev, N.; Garmash, A.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Shwartz, B.; Vinokurova, A.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Cervenkov, D.; Dolezal, Z.; Drasal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague, Czech Republic. [Kawai, H.] Chiba Univ, Chiba 2638522, Japan. [Esen, S.; Kinoshita, K.; Schwartz, A. J.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Ferber, T.; Rostomyan, A.; Steder, M.; Yashchenko, S.] Deutsches Elektronen Synchrotron, D-22607 Hamburg, Germany. [Lange, J. S.; Semmler, D.; Wagner, M. N.] Univ Giessen, D-35392 Giessen, Germany. [Cheon, B. G.; Goh, Y. M.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Jaegle, I.; Sahoo, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Haba, J.; Iwasaki, Y.; Liventsev, D.; Miyake, H.; Nakao, M.; Nishida, S.; Sakai, Y.; Sumisawa, K.; Trabelsi, K.; Uno, S.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Bhuyan, B.; Dutta, D.; Dutta, K.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Libby, J.; Nayak, M.] Indian Inst Technol, Madras 600036, Tamil Nadu, India. [Wang, P.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Belous, K.; Shapkin, M.] Inst High Energy Phys, Protvino 142281, Russia. [Mussa, R.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Aushev, T.; Chilikin, K.; Chistov, R.; Danilov, M.; Mizuk, R.; Pakhlov, P.; Pakhlova, G.; Uglov, T.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Bracko, M.; Golob, B.; Klucar, J.; Korpar, S.; Pestotnik, R.; Petric, M.; Santelj, L.; Staric, M.] J Stefan Inst, Ljubljana 1000, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan. [Kronenbitter, B.; Kuhr, T.; Roehrken, M.; Zupanc, A.] Karlsruher Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Kim, J. H.; Kim, Y. J.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kim, J. B.; Ko, B. R.; Lee, S. -H.; Won, E.] Korea Univ, Seoul 136713, South Korea. [Hyun, H. J.; Kim, H. J.; Kim, M. J.; Park, H.; Park, H. K.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Golob, B.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA. [Bracko, M.; Korpar, S.] Univ Maribor, SLO-2000 Maribor, Slovenia. [Chobanova, V.; Dalseno, J.; Kiesling, C.; Chekelian, V.; Gioi, L. Li; Moll, A.; Nedelkovska, E.; Ritter, M.; Simon, F.; Vanhoefer, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Julius, T.; Sevior, M. E.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Danilov, M.; Mizuk, R.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Uglov, T.] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia. [Iijima, T.; Inami, K.; Seon, O.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan. [Hayasaka, K.; Horii, Y.; Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan. [Iwashita, T.; Miyabayashi, K.] Nara Womens Univ, Nara 6308506, Japan. [Chen, A.] Natl Cent Univ, Chungli 32054, Taiwan. [Wang, C. H.] Natl United Univ, Miaoli 36003, Taiwan. [Hou, W. -S.; Hsiung, Y. B.; Shiu, J. -G.; Wang, M. -Z.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Bozek, A.; Natkaniec, Z.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Yamashita, Y.] Nippon Dent Univ, Niigata 9518580, Japan. [Kawasaki, T.; Miyata, H.; Watanabe, M.] Niigata Univ, Niigata 9502181, Japan. [Stanic, S.] Univ Nova Gor, Nova Gorica 5000, Slovenia. [Nakano, E.; Teramoto, Y.] Osaka City Univ, Osaka 5588585, Japan. [Asner, D. M.; Fast, J. E.; Tatishvili, G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bala, A.] Panjab Univ, Chandigarh 160014, India. [Ban, Y.; He, X. H.] Peking Univ, Beijing 100871, Peoples R China. [Savinov, V.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Muramatsu, N.] Tohoku Univ, Res Ctr Elect Photon Sci, Sendai, Miyagi 9808578, Japan. [Peng, T.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Li, J.] Seoul Natl Univ, Seoul 151742, South Korea. [Kim, D. Y.] Soongsil Univ, Seoul 156743, South Korea. [Choi, Y.; Park, C. W.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bakich, A. M.; Sibidanov, A.; Varvell, K. E.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Aziz, T.; Gaur, V.; Mohanty, G. B.; Nisar, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Dalseno, J.; Moll, A.; Simon, F.] Tech Univ Munich, Excellence Cluster Univ, D-85748 Garching, Germany. [Ogawa, S.] Toho Univ, Funabashi, Chiba 2748510, Japan. [Hoshi, Y.] Tohoku Gakuin Univ, Tagajo, Miyagi 9858537, Japan. [Ishikawa, A.; Kato, E.; Saito, T.; Sanuki, T.; Yamamoto, H.] Tohoku Univ, Sendai, Miyagi 9808578, Japan. [Aihara, H.; Ng, C.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Kumita, T.; Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Nitoh, O.] Tokyo Univ Agr & Technol, Tokyo 1848588, Japan. [Tamponi, U.] Univ Turin, I-10124 Turin, Italy. [Li, Y.; Piilonen, L. E.; Williams, K. M.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA. [Bonvicini, G.; Cinabro, D.; Farhat, H.; Ganguly, S.; Gillard, R.] Wayne State Univ, Detroit, MI 48202 USA. [Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan. Yonsei Univ, Seoul 120749, South Korea. RP Chobanova, V (reprint author), Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. RI Aihara, Hiroaki/F-3854-2010; Uglov, Timofey/B-2406-2014; Pakhlov, Pavel/K-2158-2013; Krokovny, Pavel/G-4421-2016; Danilov, Mikhail/C-5380-2014; Chilikin, Kirill/B-4402-2014; EPFL, Physics/O-6514-2016; Chistov, Ruslan/B-4893-2014; Pakhlova, Galina/C-5378-2014; Cervenkov, Daniel/D-2884-2017; Mizuk, Roman/B-3751-2014 OI Aihara, Hiroaki/0000-0002-1907-5964; Uglov, Timofey/0000-0002-4944-1830; Pakhlov, Pavel/0000-0001-7426-4824; Krokovny, Pavel/0000-0002-1236-4667; Danilov, Mikhail/0000-0001-9227-5164; Chilikin, Kirill/0000-0001-7620-2053; Chistov, Ruslan/0000-0003-1439-8390; Pakhlova, Galina/0000-0001-7518-3022; Cervenkov, Daniel/0000-0002-1865-741X; FU Australian Department of Industry, Innovation, Science and Research; Austrian Science Fund [P 22742-N16]; National Natural Science Foundation of China [10575109, 10775142, 10825524, 10875115, 10935008, 11175187]; Ministry of Education, Youth and Sports of the Czech Republic [MSM0021620859]; Carl Zeiss Foundation; Deutsche Forschungsgemeinschaft; VolkswagenStiftung; Department of Science and Technology of India; Istituto Nazionale di Fisica Nucleare of Italy; WCU program of the Ministry of Education, Science and Technology; National Research Foundation of Korea [2011-0029457, 2012-0008143, 2012R1A1A2008330, 2013R1A1A3007772]; BRL program under NRF [KRF-2011-0020333, KRF-2011-0021196,]; BK21Plus program; GSDCof theKorea Institute of Science and Technology Information FX We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the PNNL/EMSL computing group for valuable computing and SINET4 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council and the Australian Department of Industry, Innovation, Science and Research; Austrian Science Fund under Grant No. P 22742-N16; the National Natural Science Foundation of China under Contract No. 10575109, No. 10775142, No. 10825524, No. 10875115, No. 10935008, and No. 11175187; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. MSM0021620859; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, and theVolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; the WCU program of the Ministry of Education, Science and Technology; National Research Foundation of Korea Grants No. 2011-0029457, No. 2012-0008143, No. 2012R1A1A2008330, and No. 2013R1A1A3007772; the BRL program under NRF Grant No. KRF-2011-0020333, No. KRF-2011-0021196, the BK21Plus program, and the GSDCof theKorea Institute of Science and Technology Information; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Education and Science of the Russian Federation and the Russian Federal Agency for Atomic Energy; the Slovenian Research Agency; the Basque Foundation for Science (IKERBASQUE) and the UPV/EHU under Program No. UFI 11/55; the Swiss National Science Foundation; the National Science Council and the Ministry of Education of Taiwan; and the U. S. Department of Energy and the National Science Foundation. This work is supported by a Grant-in-Aid from MEXT for Science Research in a Priority Area (" New Development of Flavor Physics") and from JSPS for Creative Scientific Research (" Evolution of Tau-lepton Physics"). NR 40 TC 5 Z9 5 U1 0 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 9 PY 2014 VL 90 IS 1 AR 012002 DI 10.1103/PhysRevD.90.012002 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AK9IM UT WOS:000338740800002 ER PT J AU Dovega, R Tsutakawa, S Quistgaard, EM Anandapadamanaban, M Low, C Nordlund, P AF Dovega, Rebecca Tsutakawa, Susan Quistgaard, Esben M. Anandapadamanaban, Madhanagopal Low, Christian Nordlund, Par TI Structural and Biochemical Characterization of Human PR70 in Isolation and in Complex with the Scaffolding Subunit of Protein Phosphatase 2A SO PLOS ONE LA English DT Article ID X-RAY-SCATTERING; CALCIUM-BINDING PROTEIN; SMALL-ANGLE SCATTERING; EF-HAND MOTIFS; REGULATORY SUBUNIT; SERINE/THREONINE PHOSPHATASES; ANGSTROM RESOLUTION; B''/PR72 SUBUNIT; NAKED CUTICLE; PP2A AB Protein Phosphatase 2A (PP2A) is a major Ser/Thr phosphatase involved in the regulation of various cellular processes. PP2A assembles into diverse trimeric holoenzymes, which consist of a scaffolding (A) subunit, a catalytic (C) subunit and various regulatory (B) subunits. Here we report a 2.0 angstrom crystal structure of the free B ''/PR70 subunit and a SAXS model of an A/PR70 complex. The crystal structure of B ''/PR70 reveals a two domain elongated structure with two Ca2+ binding EF-hands. Furthermore, we have characterized the interaction of both binding partner and their calcium dependency using biophysical techniques. Ca2+ biophysical studies with Circular Dichroism showed that the two EF-hands display different affinities to Ca2+. In the absence of the catalytic C-subunit, the scaffolding A-subunit remains highly mobile and flexible even in the presence of the B ''/PR70 subunit as judged by SAXS. Isothermal Titration Calorimetry studies and SAXS data support that PR70 and the A-subunit have high affinity to each other. This study provides additional knowledge about the structural basis for the function of B '' containing holoenzymes. C1 [Dovega, Rebecca; Quistgaard, Esben M.; Anandapadamanaban, Madhanagopal; Low, Christian; Nordlund, Par] Karolinska Inst, Dept Med Biochem & Biophys, Stockholm, Sweden. [Tsutakawa, Susan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Anandapadamanaban, Madhanagopal] Linkoping Univ, Dept Phys Chem & Biol, Linkoping, Sweden. [Nordlund, Par] Nanyang Technol Univ, Sch Biol Sci, Singapore 639798, Singapore. RP Nordlund, P (reprint author), Karolinska Inst, Dept Med Biochem & Biophys, Stockholm, Sweden. EM par.nordlund@ki.se RI Anandapadamanaban, Madhanagopal/F-3702-2014; OI Quistgaard, Esben/0000-0002-1381-3364; Anandapadamanaban, Madhanagopal/0000-0002-4237-0048; Loew, Christian/0000-0003-0764-7483 FU Danish Council for Independent Research (Medical Sciences) [271-09-0187]; European Molecular Biology Organization (EMBO); Swedish Research council; European Community under BioStruct-X [783]; Swedish Cancer Society FX The authors thank their group members for suggestions and comments on the manuscript. E.M.Q. was supported by The Danish Council for Independent Research (Medical Sciences; grant 271-09-0187). C.L. was supported by a European Molecular Biology Organization (EMBO) postdoctoral fellowship. This research was further supported by grants from the Swedish Research council and Swedish Cancer Society. The authors thank Diamond Light Source for access to beamline 104 (MX5873 and MX6603) that contributed to the results presented here. The authors acknowledge the Protein Science Facility at the Karolinska Institutet for providing crystallization infrastructure. The research leading to these results has furthermore received funding from the European Community's Seventh Framework Program (FP7/2007-2013) under BioStruct-X (grant agreement No783). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 59 TC 5 Z9 5 U1 1 U2 10 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 9 PY 2014 VL 9 IS 7 AR e101846 DI 10.1371/journal.pone.0101846 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AL3PK UT WOS:000339040600073 PM 25007185 ER PT J AU Onoa, B Schneider, AR Brooks, MD Grob, P Nogales, E Geissler, PL Niyogi, KK Bustamante, C AF Onoa, Bibiana Schneider, Anna R. Brooks, Matthew D. Grob, Patricia Nogales, Eva Geissler, Phillip L. Niyogi, Krishna K. Bustamante, Carlos TI Atomic Force Microscopy of Photosystem II and Its Unit Cell Clustering Quantitatively Delineate the Mesoscale Variability in Arabidopsis Thylakoids SO PLOS ONE LA English DT Article ID HIGHER-PLANT CHLOROPLASTS; GRANA MEMBRANES; MACRO-ORGANIZATION; SUPRAMOLECULAR ORGANIZATION; PHOTOSYNTHETIC MEMBRANES; ELECTRON-MICROSCOPY; GREEN PLANTS; PROTEINS; COMPLEXES; SPINACH AB Photoautotrophic organisms efficiently regulate absorption of light energy to sustain photochemistry while promoting photoprotection. Photoprotection is achieved in part by triggering a series of dissipative processes termed non-photochemical quenching (NPQ), which depend on the re-organization of photosystem (PS) II supercomplexes in thylakoid membranes. Using atomic force microscopy, we characterized the structural attributes of grana thylakoids from Arabidopsis thaliana to correlate differences in PSII organization with the role of SOQ1, a recently discovered thylakoid protein that prevents formation of a slowly reversible NPQ state. We developed a statistical image analysis suite to discriminate disordered from crystalline particles and classify crystalline arrays according to their unit cell properties. Through detailed analysis of the local organization of PSII supercomplexes in ordered and disordered phases, we found evidence that interactions among light-harvesting antenna complexes are weakened in the absence of SOQ1, inducing protein rearrangements that favor larger separations between PSII complexes in the majority (disordered) phase and reshaping the PSII crystallization landscape. The features we observe are distinct from known protein rearrangements associated with NPQ, providing further support for a role of SOQ1 in a novel NPQ pathway. The particle clustering and unit cell methodology developed here is generalizable to multiple types of microscopy and will enable unbiased analysis and comparison of large data sets. C1 [Onoa, Bibiana; Nogales, Eva; Geissler, Phillip L.; Bustamante, Carlos] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Schneider, Anna R.; Geissler, Phillip L.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Brooks, Matthew D.; Niyogi, Krishna K.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Brooks, Matthew D.; Grob, Patricia; Nogales, Eva; Niyogi, Krishna K.; Bustamante, Carlos] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Brooks, Matthew D.; Geissler, Phillip L.; Niyogi, Krishna K.; Bustamante, Carlos] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Nogales, Eva; Bustamante, Carlos] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Geissler, Phillip L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bustamante, Carlos] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bustamante, Carlos] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Bustamante, Carlos] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Bustamante, C (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. EM carlosb@berkeley.edu FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, Office of Science, US Department of Energy; National Science Foundation Graduate Research Fellowship; Howard Hughes Medical; Institute and the Gordon and Betty Moore Foundation [GBMF3070]; National Science Foundation [MCB-1158555, CHE-7178966] FX BO MDB KKN CB EN and PLG were supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, Office of Science, US Department of Energy (Field work proposal SISGRKN). ARS was supported by National Science Foundation Graduate Research Fellowship. KKN CB EN PG were supported by Howard Hughes Medical. KKN was supported by the Institute and the Gordon and Betty Moore Foundation Grant GBMF3070. PLG was supported by National Science Foundation grants No. MCB-1158555 and CHE-7178966 "Functional Significance of Ultrastructural Changes in Photosynthesis Membranes for the Repair of Damaged Photosystem II". The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 42 TC 7 Z9 7 U1 1 U2 26 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 9 PY 2014 VL 9 IS 7 AR e101470 DI 10.1371/journal.pone.0101470 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AL3PK UT WOS:000339040600038 PM 25007326 ER PT J AU Ekuma, CE Terletska, H Meng, ZY Moreno, J Jarrell, M Mahmoudian, S Dobrosavljevic, V AF Ekuma, Chinedu E. Terletska, Hanna Meng, Zi Yang Moreno, Juana Jarrell, Mark Mahmoudian, Samiyeh Dobrosavljevic, Vladimir TI Effective cluster typical medium theory for the diagonal Anderson disorder model in one- and two-dimensions SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID METAL-INSULATOR-TRANSITION; 2 DIMENSIONS; AMORPHOUS GERMANIUM; ELECTRON-SYSTEMS; SCALING THEORY; LOCALIZATION; ABSENCE; DIFFUSION; LATTICES; COHERENT AB We develop a cluster typical medium theory to study localization in disordered electronic systems. Our formalism is able to incorporate non-local correlations beyond the local typical medium theory in a systematic way. The cluster typical medium theory utilizes the momentum-resolved typical density of states and hybridization function to characterize the localization transition. We apply the formalism to the Anderson model of localization in one-and two-dimensions. In one-dimension, we find that the critical disorder strength scales inversely with the linear cluster size with a power law, W-c similar to (1/Lc)(1/nu), whereas in two-dimensions, the critical disorder strength decreases logarithmically with the linear cluster size. Our results are consistent with previous numerical work and are in agreement with the one-parameter scaling theory. C1 [Ekuma, Chinedu E.; Terletska, Hanna; Meng, Zi Yang; Moreno, Juana; Jarrell, Mark] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Ekuma, Chinedu E.; Meng, Zi Yang; Moreno, Juana; Jarrell, Mark] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA. [Terletska, Hanna] Brookhaven Natl Lab, Upton, NY 11973 USA. [Mahmoudian, Samiyeh; Dobrosavljevic, Vladimir] Florida State Univ, Dept Phys, Tallahassee, FL 32301 USA. RP Ekuma, CE (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. EM cekuma1@lsu.edu; jarrellphysics@gmail.com RI Meng, Zi Yang/F-5212-2012; Moreno, Juana/D-5882-2012 OI Meng, Zi Yang/0000-0001-9771-7494; FU National Science Foundation LA-SiGMA [EPS-1003897]; US Department of Energy (DOE) [DE-AC02-98CH10886]; National High Magnetic Field Laboratory; NSF [DMR-1005751] FX We thank K M Tam and S X Yang for useful discussions. Work at LSU is funded by the National Science Foundation LA-SiGMA award: EPS-1003897. Work at BNL is supported by the US Department of Energy (DOE) under contract DE-AC02-98CH10886. High performance computational resources are provided by the Louisiana Optical Network Initiative (LONI) and HPC @ LSU computing resources. Work at FSU is supported by the National High Magnetic Field Laboratory and NSF Grant No. DMR-1005751. NR 53 TC 6 Z9 6 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 9 PY 2014 VL 26 IS 27 AR 274209 DI 10.1088/0953-8984/26/27/274209 PG 7 WC Physics, Condensed Matter SC Physics GA AK8UA UT WOS:000338702600012 PM 24934293 ER PT J AU Wang, Y Stocks, GM Faulkner, JS AF Wang, Yang Stocks, G. Malcolm Faulkner, J. S. TI The single-site Green's function and Krein's theorem SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE correlation; disorder; electronic structure; multiple scattering theory ID COHERENT-POTENTIAL APPROXIMATION; MULTIPLE-SCATTERING APPROACH; ELECTRONIC-STRUCTURE; ALLOYS; STATES; ORDER AB An important step in electronic structure calculations using multiple-scattering theory is obtaining the density of states for the central site from the Green's function for that site. We have found that the Krein's spectral displacement function for the central site contributes significantly to the understanding of these calculations. We argue that these insights can lead to improvements in the robustness of MST electronic structure codes without negatively impacting their performance. C1 [Wang, Yang] Carnegie Mellon Univ, Pittsburgh Supercomp Ctr, Pittsburgh, PA 15213 USA. [Stocks, G. Malcolm] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Faulkner, J. S.] Florida Atlantic Univ, Dept Phys, Boca Raton, FL 33486 USA. RP Wang, Y (reprint author), Carnegie Mellon Univ, Pittsburgh Supercomp Ctr, Pittsburgh, PA 15213 USA. EM faulkner@fau.edu RI Stocks, George Malcollm/Q-1251-2016 OI Stocks, George Malcollm/0000-0002-9013-260X FU US Department of Energy, Office of Basic Energy Sciences (DOE-BES) through the Center for Defect Physics; DOE-BES Energy Frontier Research Center (EFRC) FX Work supported by US Department of Energy, Office of Basic Energy Sciences (DOE-BES) through the Center for Defect Physics, a DOE-BES Energy Frontier Research Center (EFRC). NR 21 TC 2 Z9 2 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 9 PY 2014 VL 26 IS 27 AR 274208 DI 10.1088/0953-8984/26/27/274208 PG 10 WC Physics, Condensed Matter SC Physics GA AK8UA UT WOS:000338702600011 PM 24934202 ER PT J AU Fang, L Stoumpos, CC Jia, Y Glatz, A Chung, DY Claus, H Welp, U Kwok, WK Kanatzidis, MG AF Fang, L. Stoumpos, C. C. Jia, Y. Glatz, A. Chung, D. Y. Claus, H. Welp, U. Kwok, W. -K. Kanatzidis, M. G. TI Dirac fermions and superconductivity in the homologous structures (AgxPb1-xSe)(5)(Bi2Se3)(3m) (m=1,2) SO PHYSICAL REVIEW B LA English DT Article ID TOPOLOGICAL INSULATOR NANORIBBONS; SURFACE-STATES; WEAK-LOCALIZATION; SPIN; BI2SE3; BI2TE3; LIMIT AB A newly discovered topological insulator (TI) (AgxPb1-xSe)(5)(Bi2Se3)(3m) (m = 2) has a band gap of 0.5 eV, the largest value reported in topological insulators. We present a magnetotransport study of the Dirac electrons of this compound in the quantum diffusion regime. Two-dimensional weak antilocalization due to the destructive interference of the Dirac electrons was observed. The phase coherence length of the Dirac electrons is independent of doping and disorder levels. This provides an indication of the backscattering immunity under the protection of time reversal invariance of the TI. We further report that the homologous compound (AgxPb1-xSe)(5)(Bi2Se3)(3m) (m = 1) is a superconductor with a transition temperature T-C = 1.7 K. The related structures of these two phases allow lateral intergrowth of crystals to occur naturally, offering a potential platform to observe the Majorana fermion state at the boundary of two intergrown crystals. C1 [Fang, L.; Kanatzidis, M. G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Stoumpos, C. C.; Glatz, A.; Chung, D. Y.; Claus, H.; Welp, U.; Kwok, W. -K.; Kanatzidis, M. G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Jia, Y.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Glatz, A.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Fang, L (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM lei.fang@northwestern.edu; m-kanatzidis@northwestern.edu OI Stoumpos, Constantinos/0000-0001-8396-9578 FU Defense Advanced Research Project Agency (DARPA) [N66001-12-1-4034]; Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We are grateful to L. Bouchard and Kang L. Wang for useful discussions.This research was supported by the Defense Advanced Research Project Agency (DARPA), Award No. N66001-12-1-4034. Transport and magnetization measurements were supported by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 (D.Y., C.C.S., Y.J., H.C., A.G., U.W., W.K.K.). NR 33 TC 13 Z9 13 U1 4 U2 43 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 9 PY 2014 VL 90 IS 2 AR 020504 DI 10.1103/PhysRevB.90.020504 PG 5 WC Physics, Condensed Matter SC Physics GA AK9HH UT WOS:000338737700002 ER PT J AU Seman, TF Liu, X Hill, JP van Veenendaal, M Ahn, KH AF Seman, T. F. Liu, X. Hill, J. P. van Veenendaal, M. Ahn, K. H. TI Momentum dependence in K-edge resonant inelastic x-ray scattering and its application to screening dynamics in CE-phase La0.5Sr1.5MnO4 SO PHYSICAL REVIEW B LA English DT Article ID CHARGE; EXCITATIONS; OXIDES; LA1/2SR3/2MNO4; PHOTOEMISSION; SOLIDS AB We present a formula for the calculation of K-edge resonant inelastic x-ray scattering on transition-metal compounds, based on a local interaction between the valence shell electrons and the 1s core hole. Extending a previous result, we include explicit momentum dependence and a basis with multiple core-hole sites. We apply this formula to a single-layered charge-, orbital-, and spin-ordered manganite, La0.5Sr1.5MnO4, and obtain good agreement with experimental data, in particular with regards to the large variation of the intensity with momentum. We find that the screening in La0.5Sr1.5MnO4 is highly localized around the core-hole site and demonstrate the potential of K-edge resonant inelastic x-ray scattering as a probe of screening dynamics in materials. C1 [Seman, T. F.; Ahn, K. H.] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. [Liu, X.; Hill, J. P.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Liu, X.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Liu, X.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Liu, X.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [van Veenendaal, M.] Univ Illinois, Dept Phys, De Kalb, IL 60115 USA. [van Veenendaal, M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Seman, TF (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. EM veenendaal@niu.edu; kenahn@njit.edu FU Computational Materials and Chemical Science Network [DE-FG02-08ER46540, DE-SC0007091]; Argonne X-ray Science Division Visitor Program; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-03ER46097]; NIU Institute for Nanoscience, Engineering, and Technology; US Department of Energy, Division of Materials Science [DE-AC02-98CH10886]; US DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank D. Casa, D. Prabhakaran, A. T. Boothroyd, and H. Ding for their invaluable support in experiments. We also thank B. Barbiellini, R. S. Markiewicz, and A. Bansil for useful discussions during CMCSN Workshops. The collaborations between T.F.S., K.H.A., and M.v.V. were supported by the Computational Materials and Chemical Science Network under Grants Nos. DE-FG02-08ER46540 and DE-SC0007091. K.H.A. was further supported by 2012 and 2013 Argonne X-ray Science Division Visitor Program. M.v.V. was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-03ER46097 and NIU Institute for Nanoscience, Engineering, and Technology. The work at Brookhaven was supported by the US Department of Energy, Division of Materials Science, under Contract No. DE-AC02-98CH10886. Work at Argonne National Laboratory and use of the Advanced Photon Source was supported by the US DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 42 TC 0 Z9 0 U1 2 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 9 PY 2014 VL 90 IS 4 AR 045111 DI 10.1103/PhysRevB.90.045111 PG 17 WC Physics, Condensed Matter SC Physics GA AK9HQ UT WOS:000338738600008 ER PT J AU Agakishiev, G Arnold, O Belver, D Belyaev, A Berger-Chen, JC Blanco, A Bohmer, M Boyard, JL Cabanelas, P Chernenko, S Dybczak, A Epple, E Fabbietti, L Fateev, O Finocchiaro, P Fonte, P Friese, J Frohlich, I Galatyuk, T Garzon, JA Gernhauser, R Gobel, K Golubeva, M Gonzalez-Diaz, D Guber, F Gumberidze, M Heinz, T Hennino, T Holzmann, R Ierusalimov, A Iori, I Ivashkin, A Jurkovic, M Kampfer, B Karavicheva, T Koenig, I Koenig, W Kolb, BW Korcyl, G Kornakov, G Kotte, R Krasa, A Krizek, F Krucken, R Kuc, H Kuhn, W Kugler, A Kunz, T Kurepin, A Ladygin, V Lalik, R Lapidus, K Lebedev, A Lopes, L Lorenz, M Maier, L Mangiarotti, A Markert, J Metag, V Michel, J Muntz, C Munzer, R Naumann, L Pachmayer, YC Palka, M Parpottas, Y Pechenov, V Pechenova, O Pietraszko, J Przygoda, W Ramstein, B Reshetin, A Rustamov, A Sadovsky, A Salabura, P Schmah, A Schwab, E Siebenson, J Sobolev, YG Spruck, B Strobele, H Stroth, J Sturm, C Tarantola, A Teilab, K Tlusty, P Traxler, M Tsertos, H Vasiliev, T Wagner, V Weber, M Wendisch, C Wustenfeld, J Yurevich, S Zanevsky, Y AF Agakishiev, G. Arnold, O. Belver, D. Belyaev, A. Berger-Chen, J. C. Blanco, A. Boehmer, M. Boyard, J. L. Cabanelas, P. Chernenko, S. Dybczak, A. Epple, E. Fabbietti, L. Fateev, O. Finocchiaro, P. Fonte, P. Friese, J. Froehlich, I. Galatyuk, T. Garzon, J. A. Gernhaeuser, R. Goebel, K. Golubeva, M. Gonzalez-Diaz, D. Guber, F. Gumberidze, M. Heinz, T. Hennino, T. Holzmann, R. Ierusalimov, A. Iori, I. Ivashkin, A. Jurkovic, M. Kaempfer, B. Karavicheva, T. Koenig, I. Koenig, W. Kolb, B. W. Korcyl, G. Kornakov, G. Kotte, R. Krasa, A. Krizek, F. Kruecken, R. Kuc, H. Kuehn, W. Kugler, A. Kunz, T. Kurepin, A. Ladygin, V. Lalik, R. Lapidus, K. Lebedev, A. Lopes, L. Lorenz, M. Maier, L. Mangiarotti, A. Markert, J. Metag, V. Michel, J. Muentz, C. Muenzer, R. Naumann, L. Pachmayer, Y. C. Palka, M. Parpottas, Y. Pechenov, V. Pechenova, O. Pietraszko, J. Przygoda, W. Ramstein, B. Reshetin, A. Rustamov, A. Sadovsky, A. Salabura, P. Schmah, A. Schwab, E. Siebenson, J. Sobolev, Yu. G. Spruck, B. Stroebele, H. Stroth, J. Sturm, C. Tarantola, A. Teilab, K. Tlusty, P. Traxler, M. Tsertos, H. Vasiliev, T. Wagner, V. Weber, M. Wendisch, C. Wuestenfeld, J. Yurevich, S. Zanevsky, Y. CA HADES Collaboration TI Associate K-0 production in p plus p collisions at 3.5 GeV: The role of Delta(1232)(++) SO PHYSICAL REVIEW C LA English DT Article ID STRANGE-PARTICLE PRODUCTION; PROTON-PROTON INTERACTIONS; KAON PRODUCTION; BEAM ENERGY; LAMBDA; SEARCH AB An exclusive analysis of the four-body final states Lambda + p + pi(+) + K-0 and Sigma(0) + p + pi(+) + K-0 measured with HADES for p + p collisions at a beam kinetic energy of 3.5 GeV is presented. The analysis uses various phase space variables, such as missing mass and invariant mass distributions, in the four-particle event selection (p,pi(+),pi(+),pi(-)) to find cross sections of the different production channels, contributions of the intermediate resonances Delta(++) and Sigma(1385)(+), and corresponding angular distributions. A dominant resonant production is seen, where the reaction Lambda + Delta(++) + K-0 has a cross section about ten times higher (29.45 +/- 0.08(-1.46)(+1.67) +/- 2.06 mu b) than the analogous nonresonant reaction (2.57 +/- 0.02(-1.98)(+0.21) +/- 0.18 mu b). A similar result is obtained in the corresponding Sigma(0) channels with 9.26 +/- 0.05(-0.31)(+1.41) +/- 0.65 mu b in the resonant and 1.35 +/- 0.02(-1.35)(+0.10) +/- 0.09 mu b in the nonresonant reactions. C1 [Agakishiev, G.; Belyaev, A.; Chernenko, S.; Fateev, O.; Ierusalimov, A.; Ladygin, V.; Vasiliev, T.; Zanevsky, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Arnold, O.; Berger-Chen, J. C.; Epple, E.; Fabbietti, L.; Muenzer, R.] Excellence Cluster Origin & Struct Universe, D-85748 Garching, Germany. [Arnold, O.; Berger-Chen, J. C.; Boehmer, M.; Epple, E.; Fabbietti, L.; Friese, J.; Gernhaeuser, R.; Jurkovic, M.; Kruecken, R.; Lalik, R.; Lapidus, K.; Maier, L.; Muenzer, R.] Tech Univ Munich, Phys Dept E12, D-85748 Garching, Germany. [Belver, D.; Cabanelas, P.; Garzon, J. A.] Univ Santiago de Compostela, LabCAF F Fis, Santiago De Compostela 15706, Spain. [Blanco, A.; Mangiarotti, A.] LIP Lab Instrumentacao & Fis Expt Particulas, P-3004516 Coimbra, Portugal. [Boyard, J. L.; Hennino, T.; Kuc, H.; Ramstein, B.] Univ Paris 11, CNRS, IN2P3, Inst Phys Nucl UMR 8608, F-91406 Orsay, France. [Dybczak, A.; Kuc, H.; Przygoda, W.; Salabura, P.] Jagiellonian Univ, Smoluchowski Inst Phys, PL-30059 Krakow, Poland. [Finocchiaro, P.] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95125 Catania, Italy. [Fonte, P.] ISEC Coimbra, Coimbra, Portugal. [Froehlich, I.; Goebel, K.; Lorenz, M.; Markert, J.; Michel, J.; Muentz, C.; Pachmayer, Y. C.; Pechenova, O.; Rustamov, A.; Stroebele, H.; Stroth, J.; Tarantola, A.; Teilab, K.] Goethe Univ Frankfurt, Inst Kernphys, D-60438 Frankfurt, Germany. [Galatyuk, T.; Gonzalez-Diaz, D.; Gumberidze, M.; Kornakov, G.] Tech Univ Darmstadt, D-64289 Darmstadt, Germany. [Galatyuk, T.; Gumberidze, M.] ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Golubeva, M.; Guber, F.; Ivashkin, A.; Karavicheva, T.; Sadovsky, A.] Russian Acad Sci, Nucl Res Inst, Moscow 117312, Russia. [Heinz, T.; Holzmann, R.; Koenig, I.; Koenig, W.; Kolb, B. W.; Pechenov, V.; Pietraszko, J.; Schwab, E.; Stroth, J.; Sturm, C.; Traxler, M.; Yurevich, S.] GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany. [Iori, I.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Iori, I.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Kaempfer, B.; Kotte, R.; Wendisch, C.; Wuestenfeld, J.] Helmholtz Zentrum Dresden Rossendorf, Inst Strahlenphys, D-01314 Dresden, Germany. [Kaempfer, B.; Wendisch, C.] Tech Univ Dresden, D-01062 Dresden, Germany. [Krasa, A.; Krizek, F.; Sobolev, Yu. G.; Tlusty, P.; Wagner, V.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Kuehn, W.; Metag, V.; Spruck, B.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Lebedev, A.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Parpottas, Y.; Tsertos, H.] Univ Cyprus, Dept Phys, CY-1678 Nicosia, Cyprus. [Parpottas, Y.] Frederick Univ, CY-1036 Nicosia, Cyprus. [Schmah, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Agakishiev, G (reprint author), Joint Inst Nucl Res, Dubna 141980, Russia. EM jia-chii.chen@tum.de; kirill.lapidus@ph.tum.de RI Kruecken, Reiner/A-1640-2013; Fonte, Paulo/B-1842-2008; Gonzalez Diaz, Diego/K-7265-2014; Blanco, Alberto/L-2520-2014; Krizek, Filip/G-8967-2014; Wagner, Vladimir/G-5650-2014; Mangiarotti, Alessio/I-1072-2012; Guber, Fedor/I-4271-2013; Cabanelas, Pablo/B-2034-2016; Gobel, Kathrin/B-8531-2016; Kurepin, Alexey/H-4852-2013 OI Kruecken, Reiner/0000-0002-2755-8042; Fonte, Paulo/0000-0002-2275-9099; Gonzalez Diaz, Diego/0000-0002-6809-5996; Mangiarotti, Alessio/0000-0001-7837-6057; Guber, Fedor/0000-0001-8790-3218; Cabanelas, Pablo/0000-0002-5416-4647; Gobel, Kathrin/0000-0003-2832-8465; Kurepin, Alexey/0000-0002-1851-4136 FU LIP Coimbra, Coimbra (Portugal); SIP JUC Cracow, Cracow (Poland) [PTDC/FIS/113339/2009]; HZ Dresden-Rossendorf (HZDR), Dresden (Germany) [NN202 286038 28-JAN-2010, NN202198639 01-OCT-2010]; BMBF, TU Munchen, Garching (Germany) MLL Munchen [06DR9059D]; DFG [EClust 153, VH-NG-330]; BMBF [06MT9156 TP5]; GSI [TMKrue 1012]; NPI AS CR, Rez, Rez (Czech Republic); MSMT [LC07050 GAASCR IAA100480803]; USC-S. de Compostela, Santiago de Compostela (Spain); Goethe University, Frankfurt (Germany) [CPAN:CSD2007-00042]; HIC for FAIR (LOEWE) [HA216/EMMI]; GSI FE [BMBF:06FY9100I] FX The authors are grateful to J. Aichelin and E. Bratkovskaya for the stimulating discussions. The HADES Collaboration gratefully acknowledges the support by the grants LIP Coimbra, Coimbra (Portugal); PTDC/FIS/113339/2009, SIP JUC Cracow, Cracow (Poland); NN202 286038 28-JAN-2010, NN202198639 01-OCT-2010, HZ Dresden-Rossendorf (HZDR), Dresden (Germany); BMBF 06DR9059D, TU Munchen, Garching (Germany) MLL Munchen; DFG EClust 153, VH-NG-330, BMBF 06MT9156 TP5, GSI TMKrue 1012, NPI AS CR, Rez, Rez (Czech Republic); MSMT LC07050 GAASCR IAA100480803, USC-S. de Compostela, Santiago de Compostela (Spain); CPAN:CSD2007-00042, Goethe University, Frankfurt (Germany); and HA216/EMMI HIC for FAIR (LOEWE) BMBF:06FY9100I GSI F&E. NR 27 TC 8 Z9 8 U1 0 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JUL 9 PY 2014 VL 90 IS 1 AR 015202 DI 10.1103/PhysRevC.90.015202 PG 11 WC Physics, Nuclear SC Physics GA AK9HY UT WOS:000338739400001 ER PT J AU Adamczyk, L Adkins, JK Agakishiev, G Aggarwal, MM Ahammed, Z Alekseev, I Alford, J Anson, CD Aparin, A Arkhipkin, D Aschenauer, EC Averichev, GS Banerjee, A Barnovska, Z Beavis, DR Bellwied, R Bhasin, A Bhati, AK Bhattarai, P Bichsel, H Bielcik, J Bielcikova, J Bland, LC Bordyuzhin, IG Borowski, W Bouchet, J Brandin, AV Brovko, SG Bultmann, S Bunzarov, I Burton, TP Butterworth, J Caines, H Sanchez, MCD Cebra, D Cendejas, R Cervantes, MC Chaloupka, P Chang, Z Chattopadhyay, S Chen, HF Chen, JH Chen, L Cheng, J Cherney, M Chikanian, A Christie, W Chwastowski, J Codrington, MJM Cramer, JG Crawford, HJ Cui, X Das, S Leyva, AD De Silva, LC Debbe, RR Dedovich, TG Deng, J Derevschikov, AA de Souza, RD Dhamija, S di Ruzza, B Didenko, L Dilks, C Ding, F Djawotho, P Dong, X Drachenberg, JL Draper, JE Du, CM Dunkelberger, LE Dunlop, JC Efimov, LG Engelage, J Engle, KS Eppley, G Eun, L Evdokimov, O Fatemi, R Fazio, S Fedorisin, J Filip, P Finch, E Fisyak, Y Flores, CE Gagliardi, CA Gangadharan, DR Garand, D Geurts, F Gibson, A Girard, M Gliske, S Grosnick, D Guo, Y Gupta, A Gupta, S Guryn, W Haag, B Hajkova, O Hamed, A Han, LX Haque, R Harris, JW Heppelmann, S Hirsch, A Hoffmann, GW Hofman, DJ Horvat, S Huang, B Huang, HZ Huang, X Huck, P Humanic, TJ Igo, G Jacobs, WW Jang, H Judd, EG Kabana, S Kalinkin, D Kang, K Kauder, K Ke, HW Keane, D Kechechyan, A Kesich, A Khan, ZH Kikola, DP Kisel, I Kisiel, A Koetke, DD Kollegger, T Konzer, J Koralt, I Korsch, W Kotchenda, L Kravtsov, P Krueger, K Kulakov, I Kumar, L Kycia, RA Lamont, MAC Landgraf, JM Landry, KD Lauret, J Lebedev, A Lednicky, R Lee, JH LeVine, MJ Li, C Li, W Li, X Li, X Li, Y Li, ZM Lima, LM Lisa, MA Liu, F Ljubicic, T Llope, WJ Longacre, RS Luo, X Ma, GL Ma, YG Don, DMMDM Mahapatra, DP Majka, R Margetis, S Markert, C Masui, H Matis, HS McDonald, D McShane, TS Minaev, NG Mioduszewski, S Mohanty, B Mondal, MM Morozov, DA Munhoz, MG Mustafa, MK Nandi, BK Nasim, M Nayak, TK Nelson, JM Nogach, LV Noh, SY Novak, J Nurushev, SB Odyniec, G Ogawa, A Oh, K Ohlson, A Okorokov, V Oldag, EW Oliveira, RAN Pachr, M Page, BS Pal, SK Pan, YX Pandit, Y Panebratsev, Y Pawlak, T Pawlik, B Pei, H Perkins, C Peryt, W Pile, P Planinic, M Pluta, J Plyku, D Poljak, N Porter, J Poskanzer, AM Pruthi, NK Przybycien, M Pujahari, PR Qiu, H Quintero, A Ramachandran, S Raniwala, R Raniwala, S Ray, RL Riley, CK Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Ross, JF Roy, A Ruan, L Rusnak, J Sahoo, NR Sahu, PK Sakrejda, I Salur, S Sandacz, A Sandweiss, J Sangaline, E Sarkar, A Schambach, J Scharenberg, RP Schmah, AM Schmidke, WB Schmitz, N Seger, J Seyboth, P Shah, N Shahaliev, E Shanmuganathan, PV Shao, M Sharma, B Shen, WQ Shi, SS Shou, QY Sichtermann, EP Singaraju, RN Skoby, MJ Smirnov, D Smirnov, N Solanki, D Sorensen, P Desouza, UG Spinka, HM Srivastava, B Stanislaus, TDS Stevens, JR Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Sumbera, M Sun, X Sun, XM Sun, Y Sun, Z Surrow, B Svirida, DN Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarnowsky, T Thomas, JH Timmins, AR Tlusty, D Tokarev, M Trentalange, S Tribble, RE Tribedy, P Trzeciak, BA Tsai, OD Turnau, J Ullrich, T Underwood, DG Van Buren, G van Nieuwenhuizen, G Vanfossen, JA Varma, R Vasconcelos, GMS Vasiliev, AN Vertesi, R Videbk, F Viyogi, YP Vokal, S Vossen, A Wada, M Wang, F Wang, G Wang, H Wang, JS Wang, XL Wang, Y Wang, Y Webb, G Webb, JC Westfall, GD Wieman, H Wissink, SW Witt, R Wu, YF Xiao, Z Xie, W Xin, K Xu, H Xu, N Xu, QH Xu, Y Xu, Z Yan, W Yang, C Yang, Y Yang, Y Ye, Z Yepes, P Yi, L Yip, K Yoo, IK Zawisza, Y Zbroszczyk, H Zha, W Zhang, JB Zhang, JL Zhang, S Zhang, XP Zhang, Y Zhang, ZP Zhao, F Zhao, J Zhong, C Zhu, X Zhu, YH Zoulkarneeva, Y Zyzak, M AF Adamczyk, L. Adkins, J. K. Agakishiev, G. Aggarwal, M. M. Ahammed, Z. Alekseev, I. Alford, J. Anson, C. D. Aparin, A. Arkhipkin, D. Aschenauer, E. C. Averichev, G. S. Banerjee, A. Barnovska, Z. Beavis, D. R. Bellwied, R. Bhasin, A. Bhati, A. K. Bhattarai, P. Bichsel, H. Bielcik, J. Bielcikova, J. Bland, L. C. Bordyuzhin, I. G. Borowski, W. Bouchet, J. Brandin, A. V. Brovko, S. G. Bueltmann, S. Bunzarov, I. Burton, T. P. Butterworth, J. Caines, H. Sanchez, M. Calderon de la Barca Cebra, D. Cendejas, R. Cervantes, M. C. Chaloupka, P. Chang, Z. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, L. Cheng, J. Cherney, M. Chikanian, A. Christie, W. Chwastowski, J. Codrington, M. J. M. Cramer, J. G. Crawford, H. J. Cui, X. Das, S. Leyva, A. Davila De Silva, L. C. Debbe, R. R. Dedovich, T. G. Deng, J. Derevschikov, A. A. Derradi de Souza, R. Dhamija, S. di Ruzza, B. Didenko, L. Dilks, C. Ding, F. Djawotho, P. Dong, X. Drachenberg, J. L. Draper, J. E. Du, C. M. Dunkelberger, L. E. Dunlop, J. C. Efimov, L. G. Engelage, J. Engle, K. S. Eppley, G. Eun, L. Evdokimov, O. Fatemi, R. Fazio, S. Fedorisin, J. Filip, P. Finch, E. Fisyak, Y. Flores, C. E. Gagliardi, C. A. Gangadharan, D. R. Garand, D. Geurts, F. Gibson, A. Girard, M. Gliske, S. Grosnick, D. Guo, Y. Gupta, A. Gupta, S. Guryn, W. Haag, B. Hajkova, O. Hamed, A. Han, L. -X. Haque, R. Harris, J. W. Heppelmann, S. Hirsch, A. Hoffmann, G. W. Hofman, D. J. Horvat, S. Huang, B. Huang, H. Z. Huang, X. Huck, P. Humanic, T. J. Igo, G. Jacobs, W. W. Jang, H. Judd, E. G. Kabana, S. Kalinkin, D. Kang, K. Kauder, K. Ke, H. W. Keane, D. Kechechyan, A. Kesich, A. Khan, Z. H. Kikola, D. P. Kisel, I. Kisiel, A. Koetke, D. D. Kollegger, T. Konzer, J. Koralt, I. Korsch, W. Kotchenda, L. Kravtsov, P. Krueger, K. Kulakov, I. Kumar, L. Kycia, R. A. Lamont, M. A. C. Landgraf, J. M. Landry, K. D. Lauret, J. Lebedev, A. Lednicky, R. Lee, J. H. LeVine, M. J. Li, C. Li, W. Li, X. Li, X. Li, Y. Li, Z. M. Lima, L. M. Lisa, M. A. Liu, F. Ljubicic, T. Llope, W. J. Longacre, R. S. Luo, X. Ma, G. L. Ma, Y. G. Don, D. M. M. D. Madagodagettige Mahapatra, D. P. Majka, R. Margetis, S. Markert, C. Masui, H. Matis, H. S. McDonald, D. McShane, T. S. Minaev, N. G. Mioduszewski, S. Mohanty, B. Mondal, M. M. Morozov, D. A. Munhoz, M. G. Mustafa, M. K. Nandi, B. K. Nasim, Md. Nayak, T. K. Nelson, J. M. Nogach, L. V. Noh, S. Y. Novak, J. Nurushev, S. B. Odyniec, G. Ogawa, A. Oh, K. Ohlson, A. Okorokov, V. Oldag, E. W. Oliveira, R. A. N. Pachr, M. Page, B. S. Pal, S. K. Pan, Y. X. Pandit, Y. Panebratsev, Y. Pawlak, T. Pawlik, B. Pei, H. Perkins, C. Peryt, W. Pile, P. Planinic, M. Pluta, J. Plyku, D. Poljak, N. Porter, J. Poskanzer, A. M. Pruthi, N. K. Przybycien, M. Pujahari, P. R. Qiu, H. Quintero, A. Ramachandran, S. Raniwala, R. Raniwala, S. Ray, R. L. Riley, C. K. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Ross, J. F. Roy, A. Ruan, L. Rusnak, J. Sahoo, N. R. Sahu, P. K. Sakrejda, I. Salur, S. Sandacz, A. Sandweiss, J. Sangaline, E. Sarkar, A. Schambach, J. Scharenberg, R. P. Schmah, A. M. Schmidke, W. B. Schmitz, N. Seger, J. Seyboth, P. Shah, N. Shahaliev, E. Shanmuganathan, P. V. Shao, M. Sharma, B. Shen, W. Q. Shi, S. S. Shou, Q. Y. Sichtermann, E. P. Singaraju, R. N. Skoby, M. J. Smirnov, D. Smirnov, N. Solanki, D. Sorensen, P. Desouza, U. G. Spinka, H. M. Srivastava, B. Stanislaus, T. D. S. Stevens, J. R. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Sumbera, M. Sun, X. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Svirida, D. N. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarnowsky, T. Thomas, J. H. Timmins, A. R. Tlusty, D. Tokarev, M. Trentalange, S. Tribble, R. E. Tribedy, P. Trzeciak, B. A. Tsai, O. D. Turnau, J. Ullrich, T. Underwood, D. G. Van Buren, G. van Nieuwenhuizen, G. Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vasiliev, A. N. Vertesi, R. Videbk, F. Viyogi, Y. P. Vokal, S. Vossen, A. Wada, M. Wang, F. Wang, G. Wang, H. Wang, J. S. Wang, X. L. Wang, Y. Wang, Y. Webb, G. Webb, J. C. Westfall, G. D. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. F. Xiao, Z. Xie, W. Xin, K. Xu, H. Xu, N. Xu, Q. H. Xu, Y. Xu, Z. Yan, W. Yang, C. Yang, Y. Yang, Y. Ye, Z. Yepes, P. Yi, L. Yip, K. Yoo, I. -K. Zawisza, Y. Zbroszczyk, H. Zha, W. Zhang, J. B. Zhang, J. L. Zhang, S. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhao, F. Zhao, J. Zhong, C. Zhu, X. Zhu, Y. H. Zoulkarneeva, Y. Zyzak, M. CA STAR Collaboration TI Dielectron Mass Spectra from Au plus Au Collisions at root s(NN)=200 Ge V SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; COLLABORATION; RESTORATION; PERSPECTIVE; DILEPTONS; MATTER AB We report the STAR measurements of dielectron (e(+)e(-)) production at midrapidity (vertical bar y(ee)vertical bar < 1) in Au + Au collisions at root s(NN) = 200 GeV. The measurements are evaluated in different invariant mass regions with a focus on 0.30-0.76 (rho-like), 0.76-0.80 (omega-like), and 0.98-1.05 (phi-like) GeV/c(2). The spectrum in the omega-like and phi-like regions can be well described by the hadronic cocktail simulation. In the rho-like region, however, the vacuum rho spectral function cannot describe the shape of the dielectron excess. In this range, an enhancement of 1.77 +/- 0.11(stat) +/- 0.24(syst) +/- 0.33(cocktail) is determined with respect to the hadronic cocktail simulation that excludes the rho meson. The excess yield in the rho-like region increases with the number of collision participants faster than the omega and phi yields. Theoretical models with broadened rho contributions through interactions with constituents in the hot QCD medium provide a consistent description of the dilepton mass spectra for the measurement presented here and the earlier data at the Super Proton Synchrotron energies. C1 [Adamczyk, L.; Przybycien, M.] AGH Univ Sci & Technol, Krakow, Poland. [Gliske, S.; Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Nelson, J. M.] Univ Birmingham, Birmingham, W Midlands, England. [Arkhipkin, D.; Aschenauer, E. C.; Beavis, D. R.; Bland, L. C.; Burton, T. P.; Christie, W.; Debbe, R. R.; di Ruzza, B.; Didenko, L.; Dunlop, J. C.; Fazio, S.; Fisyak, Y.; Guryn, W.; Huang, B.; Ke, H. W.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Ogawa, A.; Pile, P.; Ruan, L.; Schmidke, W. B.; Smirnov, D.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbk, F.; Wang, H.; Webb, J. C.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Perkins, C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Brovko, S. G.; Sanchez, M. Calderon de la Barca; Cebra, D.; Ding, F.; Draper, J. E.; Flores, C. E.; Haag, B.; Kesich, A.; Romero, J. L.; Sangaline, E.] Univ Calif Davis, Davis, CA 95616 USA. [Dunkelberger, L. E.; Huang, H. Z.; Igo, G.; Landry, K. D.; Pan, Y. X.; Shah, N.; Trentalange, S.; Tsai, O. D.; Wang, G.; Zhao, F.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Derradi de Souza, R.; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Chen, L.; Huck, P.; Li, Z. M.; Liu, F.; Luo, X.; Pei, H.; Wu, Y. F.; Yang, Y.; Zhang, J. B.; Zhao, J.] Cent China Normal Univ HZNU, Wuhan 430079, Peoples R China. [Evdokimov, O.; Hofman, D. J.; Kauder, K.; Khan, Z. H.; Pandit, Y.; Wang, Y.; Ye, Z.] Univ Illinois, Chicago, IL 60607 USA. [Chwastowski, J.; Kycia, R. A.] Cracow Univ Technol, Krakow, Poland. [Cherney, M.; Don, D. M. M. D. Madagodagettige; McShane, T. S.; Ross, J. F.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Chaloupka, P.; Hajkova, O.; Pachr, M.] Czech Tech Univ, FNSPE, Prague 11519, Czech Republic. [Barnovska, Z.; Bielcikova, J.; Rusnak, J.; Sumbera, M.; Tlusty, D.; Vertesi, R.] Nucl Phys Inst AS CR, Prague 108793, Czech Republic. [Kisel, I.; Kollegger, T.; Kulakov, I.; Stock, R.; Zyzak, M.] Frankfurt Inst Adv Studies, Frankfurt, Germany. [Das, S.; Mahapatra, D. P.; Sahu, P. K.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Pujahari, P. R.; Sarkar, A.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Dhamija, S.; Jacobs, W. W.; Page, B. S.; Skoby, M. J.; Vossen, A.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Alekseev, I.; Bordyuzhin, I. G.; Kalinkin, D.; Svirida, D. N.] Alikhanov Inst Theoret & Expt Phys, Moscow, Russia. [Bhasin, A.; Gupta, A.; Gupta, S.] Univ Jammu, Jammu 180001, India. [Agakishiev, G.; Aparin, A.; Averichev, G. S.; Bunzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneeva, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Alford, J.; Bouchet, J.; Keane, D.; Margetis, S.; Quintero, A.; Shanmuganathan, P. V.; Vanfossen, J. A., Jr.] Kent State Univ, Kent, OH 44242 USA. [Adkins, J. K.; Fatemi, R.; Korsch, W.; Ramachandran, S.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Jang, H.; Noh, S. Y.] Korea Inst Sci & Technol Informat, Taejon, South Korea. [Du, C. M.; Sun, Z.; Wang, J. S.; Xu, H.; Yang, Y.] Inst Modern Phys, Lanzhou, Peoples R China. [Dong, X.; Eun, L.; Masui, H.; Matis, H. S.; Mustafa, M. K.; Odyniec, G.; Porter, J.; Poskanzer, A. M.; Qiu, H.; Ritter, H. G.; Sakrejda, I.; Salur, S.; Schmah, A. M.; Shi, S. S.; Sichtermann, E. P.; Sun, X.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Wieman, H.; Xu, N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Stevens, J. R.; van Nieuwenhuizen, G.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Novak, J.; Tarnowsky, T.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Strikhanov, M.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Haque, R.; Kumar, L.; Mohanty, B.; Nasim, Md.] Natl Inst Sci Educ & Res, Bhubaneswar 751005, Orissa, India. [Anson, C. D.; Gangadharan, D. R.; Humanic, T. J.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.; Koralt, I.; Plyku, D.] Old Dominion Univ, Norfolk, VA 23529 USA. [Pawlik, B.; Turnau, J.] Inst Nucl Phys PAN, Krakow, Poland. [Aggarwal, M. M.; Bhati, A. K.; Pruthi, N. K.; Sharma, B.] Panjab Univ, Chandigarh 160014, India. [Cendejas, R.; Dilks, C.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Garand, D.; Hirsch, A.; Konzer, J.; Li, X.; Scharenberg, R. P.; Srivastava, B.; Stringfellow, B.; Wang, F.; Xie, W.; Yi, L.] Purdue Univ, W Lafayette, IN 47907 USA. [Oh, K.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Raniwala, R.; Raniwala, S.; Solanki, D.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Butterworth, J.; Eppley, G.; Geurts, F.; Llope, W. J.; Roberts, J. B.; Xin, K.; Yepes, P.] Rice Univ, Houston, TX 77251 USA. [Lima, L. M.; Munhoz, M. G.; Oliveira, R. A. N.; Desouza, U. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Cui, X.; Guo, Y.; Li, C.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Yang, C.; Zawisza, Y.; Zha, W.; Zhang, Y.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Deng, J.; Xu, Q. H.; Zhang, J. L.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Chen, J. H.; Han, L. -X.; Li, W.; Ma, G. L.; Ma, Y. G.; Shen, W. Q.; Shou, Q. Y.; Zhang, S.; Zhao, J.; Zhong, C.; Zhu, Y. H.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Borowski, W.; Kabana, S.] SUBATECH, Nantes, France. [Li, X.; Surrow, B.] Temple Univ, Philadelphia, PA 19122 USA. [Cervantes, M. C.; Chang, Z.; Djawotho, P.; Gagliardi, C. A.; Hamed, A.; Mioduszewski, S.; Mondal, M. M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Bhattarai, P.; Codrington, M. J. M.; Leyva, A. Davila; Hoffmann, G. W.; Markert, C.; Oldag, E. W.; Ray, R. L.; Schambach, J.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Bellwied, R.; De Silva, L. C.; McDonald, D.; Timmins, A. R.] Univ Houston, Houston, TX 77204 USA. [Cheng, J.; Huang, X.; Kang, K.; Li, Y.; Wang, Y.; Xiao, Z.; Yan, W.; Zhang, X. P.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Engle, K. S.; Witt, R.] US Naval Acad, Annapolis, MD 21402 USA. [Drachenberg, J. L.; Gibson, A.; Grosnick, D.; Koetke, D. D.; Stanislaus, T. D. S.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Banerjee, A.; Chattopadhyay, S.; Nayak, T. K.; Pal, S. K.; Roy, A.; Sahoo, N. R.; Singaraju, R. N.; Tribedy, P.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. [Girard, M.; Kisiel, A.; Pawlak, T.; Peryt, W.; Pluta, J.; Sandacz, A.; Trzeciak, B. A.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.] Univ Washington, Seattle, WA 98195 USA. [Caines, H.; Chikanian, A.; Finch, E.; Harris, J. W.; Horvat, S.; Majka, R.; Ohlson, A.; Riley, C. K.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Adamczyk, L (reprint author), AGH Univ Sci & Technol, Krakow, Poland. RI Suaide, Alexandre/L-6239-2016; Xin, Kefeng/O-9195-2016; Yi, Li/Q-1705-2016; Svirida, Dmitry/R-4909-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; XIAO, Zhigang/C-3788-2015; Kumar, Lokesh/A-6154-2010; Alekseev, Igor/J-8070-2014; Aparecido Negrao de Oliveira, Renato/G-9133-2015; Kycia, Radoslaw/J-4397-2015; Dong, Xin/G-1799-2014; Fazio, Salvatore /G-5156-2010; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Takahashi, Jun/B-2946-2012; Chaloupka, Petr/E-5965-2012; Huang, Bingchu/H-6343-2015; Rusnak, Jan/G-8462-2014 OI Suaide, Alexandre/0000-0003-2847-6556; Xin, Kefeng/0000-0003-4853-9219; Yi, Li/0000-0002-7512-2657; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Kumar, Lokesh/0000-0002-2746-9840; Alekseev, Igor/0000-0003-3358-9635; Kycia, Radoslaw/0000-0002-6390-4627; Dong, Xin/0000-0001-9083-5906; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Takahashi, Jun/0000-0002-4091-1779; Huang, Bingchu/0000-0002-3253-3210; FU RHIC Operations Group and RCF at BNL; NERSC Center at LBNL; KISTI Center in Korea; Open Science Grid consortium; Offices of NP; HEP within the U.S. DOE Office of Science; U.S. NSF; CNRS/IN2P3; FAPESP CNPq of Brazil; Ministry of Education and Science of the Russian Federation; NNSFC; MoST of China (973 Program) [2014CB845400]; CAS; Korean Research Foundation; GA and MSMT of the Czech Republic; FIAS of Germany; DAE; DST; CSIR of India; National Science Centre of Poland; National Research Foundation [NRF-2012004024]; Ministry of Science, Education and Sports of the Republic of Croatia; RosAtom of Russia; MoE of China FX We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, the KISTI Center in Korea, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Offices of NP and HEP within the U.S. DOE Office of Science, the U.S. NSF, CNRS/IN2P3, FAPESP CNPq of Brazil, the Ministry of Education and Science of the Russian Federation, the NNSFC, the MoST of China (973 Program No. 2014CB845400), CAS, the MoE of China, the Korean Research Foundation, GA and MSMT of the Czech Republic, FIAS of Germany, DAE, DST, and CSIR of India, the National Science Centre of Poland, National Research Foundation (Grant No. NRF-2012004024), the Ministry of Science, Education and Sports of the Republic of Croatia, and RosAtom of Russia. NR 44 TC 32 Z9 32 U1 2 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 9 PY 2014 VL 113 IS 2 AR 022301 DI 10.1103/PhysRevLett.113.022301 PG 7 WC Physics, Multidisciplinary SC Physics GA AK9JM UT WOS:000338743400004 ER PT J AU Ade, PAR Akiba, Y Anthony, AE Arnold, K Atlas, M Barron, D Boettger, D Borrill, J Chapman, S Chinone, Y Dobbs, M Elleflot, T Errard, J Fabbian, G Feng, C Flanigan, D Gilbert, A Grainger, W Halverson, NW Hasegawa, M Hattori, K Hazumi, M Holzapfel, WL Hori, Y Howard, J Hyland, P Inoue, Y Jaehnig, GC Jaffe, A Keating, B Kermish, Z Keskitalo, R Kisner, T Le Jeune, M Lee, AT Linder, E Leitch, EM Lungu, M Matsuda, F Matsumura, T Meng, X Miller, NJ Morii, H Moyerman, S Myers, MJ Navaroli, M Nishino, H Paar, H Peloton, J Quealy, E Rebeiz, G Reichardt, CL Richards, PL Ross, C Schanning, I Schenck, DE Sherwin, B Shimizu, A Shimmin, C Shimon, M Siritanasak, P Smecher, G Spieler, H Stebor, N Steinbach, B Stompor, R Suzuki, A Takakura, S Tomaru, T Wilson, B Yadav, A Zahn, O AF Ade, P. A. R. Akiba, Y. Anthony, A. E. Arnold, K. Atlas, M. Barron, D. Boettger, D. Borrill, J. Chapman, S. Chinone, Y. Dobbs, M. Elleflot, T. Errard, J. Fabbian, G. Feng, C. Flanigan, D. Gilbert, A. Grainger, W. Halverson, N. W. Hasegawa, M. Hattori, K. Hazumi, M. Holzapfel, W. L. Hori, Y. Howard, J. Hyland, P. Inoue, Y. Jaehnig, G. C. Jaffe, A. Keating, B. Kermish, Z. Keskitalo, R. Kisner, T. Le Jeune, M. Lee, A. T. Linder, E. Leitch, E. M. Lungu, M. Matsuda, F. Matsumura, T. Meng, X. Miller, N. J. Morii, H. Moyerman, S. Myers, M. J. Navaroli, M. Nishino, H. Paar, H. Peloton, J. Quealy, E. Rebeiz, G. Reichardt, C. L. Richards, P. L. Ross, C. Schanning, I. Schenck, D. E. Sherwin, B. Shimizu, A. Shimmin, C. Shimon, M. Siritanasak, P. Smecher, G. Spieler, H. Stebor, N. Steinbach, B. Stompor, R. Suzuki, A. Takakura, S. Tomaru, T. Wilson, B. Yadav, A. Zahn, O. CA POLARBEAR Collaboration TI Measurement of the Cosmic Microwave Background Polarization Lensing Power Spectrum with the POLARBEAR Experiment SO PHYSICAL REVIEW LETTERS LA English DT Article ID SOUTH-POLE TELESCOPE; DAMPING TAIL; 20 GHZ; ANISOTROPIES AB Gravitational lensing due to the large-scale distribution of matter in the cosmos distorts the primordial cosmic microwave background (CMB) and thereby induces new, small-scale B-mode polarization. This signal carries detailed information about the distribution of all the gravitating matter between the observer and CMB last scattering surface. We report the first direct evidence for polarization lensing based on purely CMB information, from using the four-point correlations of even- and odd-parity E- and B-mode polarization mapped over similar to 30 square degrees of the sky measured by the POLARBEAR experiment. These data were analyzed using a blind analysis framework and checked for spurious systematic contamination using null tests and simulations. Evidence for the signal of polarization lensing and lensing B modes is found at 4.2 sigma(stat + sys) significance. The amplitude of matter fluctuations is measured with a precision of 27%, and is found to be consistent with the Lambda cold dark matter cosmological model. This measurement demonstrates a new technique, capable of mapping all gravitating matter in the Universe, sensitive to the sum of neutrino masses, and essential for cleaning the lensing B-mode signal in searches for primordial gravitational waves. C1 [Ade, P. A. R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF10 3XQ, S Glam, Wales. [Akiba, Y.; Hasegawa, M.; Hazumi, M.; Inoue, Y.; Shimizu, A.] Grad Univ Adv Studies, Miura Dist, Kanagawa 2400115, Japan. [Anthony, A. E.; Halverson, N. W.; Jaehnig, G. C.; Schenck, D. E.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Arnold, K.; Atlas, M.; Barron, D.; Boettger, D.; Elleflot, T.; Feng, C.; Keating, B.; Matsuda, F.; Moyerman, S.; Navaroli, M.; Paar, H.; Schanning, I.; Shimon, M.; Siritanasak, P.; Stebor, N.; Wilson, B.; Yadav, A.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Borrill, J.; Errard, J.; Keskitalo, R.; Kisner, T.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 92093 USA. [Borrill, J.; Errard, J.; Kisner, T.; Linder, E.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Chapman, S.; Ross, C.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada. [Chinone, Y.; Hasegawa, M.; Hattori, K.; Hazumi, M.; Hori, Y.; Matsumura, T.; Morii, H.; Takakura, S.; Tomaru, T.] KEK, High Energy Accelerator Org, Tsukuba, Ibaraki 3050801, Japan. [Chinone, Y.; Flanigan, D.; Holzapfel, W. L.; Howard, J.; Lee, A. T.; Lungu, M.; Meng, X.; Myers, M. J.; Quealy, E.; Reichardt, C. L.; Richards, P. L.; Sherwin, B.; Shimmin, C.; Steinbach, B.; Suzuki, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Dobbs, M.; Gilbert, A.] McGill Univ, Dept Phys, Montreal, PQ H3A 0G4, Canada. [Fabbian, G.; Le Jeune, M.; Peloton, J.; Stompor, R.] Univ Paris Diderot, CNRS, IN2P3, CEA Irfu,Obs Paris,Sorbonne Paris Cite, Paris, France. [Fabbian, G.] SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy. [Flanigan, D.] Columbia Univ, New York, NY 10027 USA. [Grainger, W.] STFC, Rutherford Appleton Lab, Swindon SN2 1SZ, Wilts, England. [Halverson, N. W.; Schenck, D. E.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.; Jaehnig, G. C.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Hazumi, M.; Nishino, H.] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan. [Howard, J.] Univ Oxford, Dept Phys, Oxford OX1 2JD, England. [Hyland, P.] Austin Coll, Dept Phys, Sherman, TX 75090 USA. [Jaffe, A.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [Kermish, Z.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lee, A. T.; Linder, E.; Spieler, H.; Zahn, O.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 92093 USA. [Leitch, E. M.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Leitch, E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Miller, N. J.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Quealy, E.] Napa Valley Coll, Dept Phys, Napa, CA 94558 USA. [Rebeiz, G.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [Sherwin, B.] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA. [Shimon, M.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Smecher, G.] Three Speed Log Inc, Vancouver, BC V6A 2J8, Canada. [Takakura, S.] Osaka Univ, Toyonaka, Osaka 5600043, Japan. RP Feng, C (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. EM cfeng@physics.ucsd.edu RI Holzapfel, William/I-4836-2015; OI Fabbian, Giulio/0000-0002-3255-4695; Reichardt, Christian/0000-0003-2226-9169; Chinone, Yuji/0000-0002-3266-857X FU Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC0205CH11231]; Department of Energy [DE-AC0205-CH11231]; National Science Foundation [AST-0618398, AST-1212230]; MEXT KAKENHI [21111002]; KEK Cryogenics Science Center; Natural Sciences and Engineering Research Council; Canadian Institute for Advanced Research; Miller Institute for Basic Research in Science; NASA Postdoctoral Program; Simons Foundation; Joan and Irwin Jacobs FX This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC0205CH11231. The computational resources required for this work were accessed via the GlideinWMS [36] on the Open Science Grid [37]. This project used the CAMB and FFTW software packages. Calculations were performed on the Department of Energy Open Science Grid at the University of California, San Diego, the Central Computing System, owned and operated by the Computing Research Center at KEK, and the National Energy Research Scientific Computing Center, which is supported by the Department of Energy under Contract No. DE-AC0205-CH11231. The POLARBEAR project is funded by the National Science Foundation under Grants No. AST-0618398 and No. AST-1212230. The KEK authors were supported by MEXT KAKENHI Grant No. 21111002, and acknowledge support from KEK Cryogenics Science Center. The McGill authors acknowledge funding from the Natural Sciences and Engineering Research Council and Canadian Institute for Advanced Research. We thank Marc Kamionkowski and Kim Griest for useful discussions and comments. B. D. S. acknowledges support from the Miller Institute for Basic Research in Science, N. M. acknowledges support from the NASA Postdoctoral Program, and K. A. acknowledges support from the Simons Foundation. M. S. gratefully acknowledges support from Joan and Irwin Jacobs. All silicon wafer-based technology for POLARBEAR was fabricated at the UC Berkeley Nanolab. We are indebted to our Chilean team members, Nolberto Oyarce and Jose Cortes. The James Ax Observatory operates in the Parque Astronomico Atacama in Northern Chile under the auspices of the Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT). Finally, we would like to acknowledge the tremendous contributions by Huan Tran to the POLARBEAR project. NR 37 TC 40 Z9 40 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 9 PY 2014 VL 113 IS 2 AR 021301 DI 10.1103/PhysRevLett.113.021301 PG 7 WC Physics, Multidisciplinary SC Physics GA AK9JM UT WOS:000338743400002 PM 25062161 ER PT J AU Choi, S Park, CH Louie, SG AF Choi, SangKook Park, Cheol-Hwan Louie, Steven G. TI Electron Supercollimation in Graphene and Dirac Fermion Materials Using One-Dimensional Disorder Potentials SO PHYSICAL REVIEW LETTERS LA English DT Article ID CARBON NANOTUBES; CRYSTALS AB Electron supercollimation, in which a wave packet is guided to move undistorted along a selected direction, is a highly desirable property that has yet to be realized experimentally. Disorder in general is expected to inhibit supercollimation. Here we report a counterintuitive phenomenon of electron supercollimation by disorder in graphene and related Dirac fermion materials. We show that one can use one-dimensional disorder potentials to control electron wave packet transport. This is distinct from known systems where an electron wave packet would be further spread by disorder and hindered in the potential fluctuating direction. The predicted phenomenon has significant implications in the understanding and applications of electron transport in Dirac fermion materials. C1 [Choi, SangKook; Park, Cheol-Hwan; Louie, Steven G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Choi, SangKook; Park, Cheol-Hwan; Louie, Steven G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Park, Cheol-Hwan] Seoul Natl Univ, Dept Phys, Seoul 151747, South Korea. [Park, Cheol-Hwan] Seoul Natl Univ, Ctr Theoret Phys, Seoul 151747, South Korea. RP Choi, S (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM sglouie@berkeley.edu RI Park, Cheol-Hwan/A-1543-2009 OI Park, Cheol-Hwan/0000-0003-1584-6896 FU National Science Foundation [DMR10-1006184]; Theory Program at the Lawrence Berkeley National Lab funded by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy [DE-AC02-05CH11231]; Simons Foundation Fellowship in Theoretical Physics; Korean NRF - MSIP [NRF-2013R1A1A1076141] FX We wish to thank M. L. Cohen and G. Y. Cho for discussions. Analytical calculations were supported by National Science Foundation Grant No. DMR10-1006184. Numerical calculation was supported by the Theory Program at the Lawrence Berkeley National Lab funded by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by the DOE at Lawrence Berkeley National Laboratory's NERSC facility. S. G. L. acknowledges support by a Simons Foundation Fellowship in Theoretical Physics and C. -H. P. by Korean NRF funded by MSIP (Grant No. NRF-2013R1A1A1076141). NR 30 TC 7 Z9 7 U1 3 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 9 PY 2014 VL 113 IS 2 AR 026802 DI 10.1103/PhysRevLett.113.026802 PG 5 WC Physics, Multidisciplinary SC Physics GA AK9JM UT WOS:000338743400011 PM 25062218 ER PT J AU Korover, I Muangma, N Hen, O Shneor, R Sulkosky, V Kelleher, A Gilad, S Higinbotham, DW Piasetzky, E Watson, JW Wood, SA Aguilera, P Ahmed, Z Albataineh, H Allada, K Anderson, B Anez, D Aniol, K Annand, J Armstrong, W Arrington, J Averett, T Badman, T Baghdasaryan, H Bai, X Beck, A Beck, S Bellini, V Benmokhtar, F Bertozzi, W Bittner, J Boeglin, W Camsonne, A Chen, C Chen, JP Chirapatpimol, K Cisbani, E Dalton, MM Daniel, A Day, D de Jager, CW De Leo, R Deconinck, W Defurne, M Flay, D Fomin, N Friend, M Frullani, S Fuchey, E Garibaldi, F Gaskell, D Gilman, R Glamazdin, O Gu, C Gueye, P Hamilton, D Hanretty, C Hansen, JO Shabestari, MH Holmstrom, T Huang, M Iqbal, S Jin, G Kalantarians, N Kang, H Khandaker, M LeRose, J Leckey, J Lindgren, R Long, E Mammei, J Margaziotis, DJ Markowitz, P Jimenez-Arguello, AM Meekins, D Meziani, Z Michaels, R Mihovilovic, M Monaghan, P Camacho, CM Norum, B Pan, K Phillips, S Pomerantz, I Posik, M Punjabi, V Qian, X Qiang, Y Qiu, X Rakhman, A Reimer, PE Riordan, S Ron, G Rondon-Aramayo, O Saha, A Schulte, E Selvy, L Shahinyan, A Sirca, S Sjoegren, J Slifer, K Solvignon, P Sparveris, N Subedi, R Tireman, W Wang, D Weinstein, LB Wojtsekhowski, B Yan, W Yaron, I Ye, Z Zhan, X Zhang, J Zhang, Y Zhao, B Zhao, Z Zheng, X Zhu, P Zielinski, R AF Korover, I. Muangma, N. Hen, O. Shneor, R. Sulkosky, V. Kelleher, A. Gilad, S. Higinbotham, D. W. Piasetzky, E. Watson, J. W. Wood, S. A. Aguilera, P. Ahmed, Z. Albataineh, H. Allada, K. Anderson, B. Anez, D. Aniol, K. Annand, J. Armstrong, W. Arrington, J. Averett, T. Badman, T. Baghdasaryan, H. Bai, X. Beck, A. Beck, S. Bellini, V. Benmokhtar, F. Bertozzi, W. Bittner, J. Boeglin, W. Camsonne, A. Chen, C. Chen, J. -P. Chirapatpimol, K. Cisbani, E. Dalton, M. M. Daniel, A. Day, D. de Jager, C. W. De Leo, R. Deconinck, W. Defurne, M. Flay, D. Fomin, N. Friend, M. Frullani, S. Fuchey, E. Garibaldi, F. Gaskell, D. Gilman, R. Glamazdin, O. Gu, C. Gueye, P. Hamilton, D. Hanretty, C. Hansen, J. -O. Shabestari, M. Hashemi Holmstrom, T. Huang, M. Iqbal, S. Jin, G. Kalantarians, N. Kang, H. Khandaker, M. LeRose, J. Leckey, J. Lindgren, R. Long, E. Mammei, J. Margaziotis, D. J. Markowitz, P. Jimenez-Arguello, A. Marti Meekins, D. Meziani, Z. Michaels, R. Mihovilovic, M. Monaghan, P. Camacho, C. Munoz Norum, B. Pan, K. Phillips, S. Pomerantz, I. Posik, M. Punjabi, V. Qian, X. Qiang, Y. Qiu, X. Rakhman, A. Reimer, P. E. Riordan, S. Ron, G. Rondon-Aramayo, O. Saha, A. Schulte, E. Selvy, L. Shahinyan, A. Sirca, S. Sjoegren, J. Slifer, K. Solvignon, P. Sparveris, N. Subedi, R. Tireman, W. Wang, D. Weinstein, L. B. Wojtsekhowski, B. Yan, W. Yaron, I. Ye, Z. Zhan, X. Zhang, J. Zhang, Y. Zhao, B. Zhao, Z. Zheng, X. Zhu, P. Zielinski, R. CA Jefferson Lab Hall A Collaborat TI Probing the Repulsive Core of the Nucleon-Nucleon Interaction via the He-4(e,e'pN) Triple-Coincidence Reaction SO PHYSICAL REVIEW LETTERS LA English DT Article AB We studied simultaneously the He-4(e,e'p), He-4(e,e'pp), and He-4(e,e'pn) reactions at Q(2) 2(GeV/c)(2) and x(B) > 1, for an (e,e'p) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A = 2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum, in a region where the nucleon-nucleon (NN) force is expected to change from predominantly tensor to repulsive. The abundance of neutron- proton pairs is reduced as the nucleon momentum increases beyond similar to 500 MeV/c. The extracted fraction of proton-proton pairs is small and almost independent of the missing momentum. Our data are compared with calculations of two-nucleon momentum distributions in He-4 and discussed in the context of probing the elusive repulsive component of the NN force. C1 [Korover, I.; Hen, O.; Shneor, R.; Piasetzky, E.; Pomerantz, I.; Yaron, I.] Tel Aviv Univ, IL-69978 Tel Aviv, Israel. [Muangma, N.; Sulkosky, V.; Kelleher, A.; Gilad, S.; Bertozzi, W.; Deconinck, W.; Monaghan, P.; Pan, K.; Zhan, X.] MIT, Cambridge, MA 02139 USA. [Sulkosky, V.; Bittner, J.; Holmstrom, T.] Longwood Univ, Farmville, VA 23909 USA. [Higinbotham, D. W.; Wood, S. A.; Camsonne, A.; Chen, J. -P.; de Jager, C. W.; Gaskell, D.; Gilman, R.; Hansen, J. -O.; Khandaker, M.; LeRose, J.; Meekins, D.; Michaels, R.; Rondon-Aramayo, O.; Saha, A.; Solvignon, P.; Wojtsekhowski, B.; Zhang, J.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Watson, J. W.; Anderson, B.; Selvy, L.] Kent State Univ, Kent, OH 44242 USA. [Ahmed, Z.; Rakhman, A.] Syracuse Univ, Syracuse, NY 13244 USA. [Aguilera, P.] Univ Paris 11, CNRS IN2P3, Inst Nucl Phys, UMR 8608, F-91406 Orsay, France. [Albataineh, H.; Weinstein, L. B.] Old Dominion Univ, Norfolk, VA 23529 USA. [Allada, K.] Univ Kentucky, Lexington, KY 40506 USA. [Anez, D.] St Marys Univ, Halifax, NS, Canada. [Aniol, K.; Iqbal, S.; Margaziotis, D. J.] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. [Annand, J.; Hamilton, D.; Sjoegren, J.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Armstrong, W.; Flay, D.; Fuchey, E.; Meziani, Z.; Posik, M.; Sparveris, N.] Temple Univ, Philadelphia, PA 19122 USA. [Arrington, J.; Reimer, P. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Averett, T.; Zhao, B.] Coll William & Mary, Williamsburg, VA 23187 USA. [Badman, T.; Long, E.; Phillips, S.; Slifer, K.; Zielinski, R.] Univ New Hampshire, Durham, NH 03824 USA. [Baghdasaryan, H.; Chirapatpimol, K.; Dalton, M. M.; Day, D.; de Jager, C. W.; Shabestari, M. Hashemi; Jin, G.; Lindgren, R.; Norum, B.; Riordan, S.; Subedi, R.; Wang, D.; Ye, Z.; Zhao, Z.; Zheng, X.] Univ Virginia, Charlottesville, VA 22904 USA. [Bai, X.] China Inst Atom Energy, Beijing, Peoples R China. [Beck, A.; Beck, S.] Nucl Res Ctr Negev, IL-84190 Beer Sheva, Israel. [Bellini, V.] Univ Catania, Catania, Italy. [Benmokhtar, F.; Friend, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boeglin, W.; Markowitz, P.] Florida Int Univ, Miami, FL 33199 USA. [Chen, C.; Gueye, P.; Monaghan, P.] Hampton Univ, Hampton, VA 23668 USA. [Cisbani, E.; Frullani, S.; Garibaldi, F.] Ist Nazl Fis Nucl, Sez Sanita, I-00161 Rome, Italy. [Cisbani, E.; Frullani, S.; Garibaldi, F.] Ist Super Sanita, I-00161 Rome, Italy. [Daniel, A.] Ohio Univ, Athens, OH 45701 USA. [De Leo, R.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [De Leo, R.] Univ Bari, I-70126 Bari, Italy. [Defurne, M.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Fomin, N.] Univ Tennessee, Knoxville, TN 37996 USA. [Gilman, R.; Schulte, E.; Zhang, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Glamazdin, O.] Kharkov Phys & Technol Inst, UA-61108 Kharkov, Ukraine. [Gu, C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hanretty, C.] Florida State Univ, Tallahassee, FL 32306 USA. [Huang, M.; Qian, X.; Qiang, Y.] Duke Univ, Durham, NC 27708 USA. [Kalantarians, N.] Univ Texas Houston, Houston, TX 77030 USA. [Kang, H.] Seoul Natl Univ, Seoul, South Korea. [Leckey, J.] Indiana Univ, Bloomington, IN 47405 USA. [Mammei, J.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Jimenez-Arguello, A. Marti; Camacho, C. Munoz] Univ Clermont Ferrand, IN2P3, F-63177 Aubiere, France. [Mihovilovic, M.] Jozef Stefan Inst, Ljubljana, Slovenia. [Norum, B.] Mississippi State Univ, Mississippi State, MS 39762 USA. [Pomerantz, I.] Univ Texas Austin, Austin, TX 78712 USA. [Punjabi, V.] Norfolk State Univ, Norfolk, VA 23504 USA. [Qiu, X.] Lanzhou Univ, Lanzhou 730000, Peoples R China. [Riordan, S.] Univ Massachusetts, Amherst, MA 01006 USA. [Ron, G.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Shahinyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Sirca, S.] Univ Ljubljana, Ljubljana, Slovenia. [Tireman, W.] No Michigan Univ, Marquette, MI 49855 USA. [Yan, W.; Zhu, P.] Univers Sci & Technol, Hefei, Peoples R China. RP Korover, I (reprint author), Tel Aviv Univ, IL-69978 Tel Aviv, Israel. RI Higinbotham, Douglas/J-9394-2014; Day, Donal/C-5020-2015; Arrington, John/D-1116-2012; Cisbani, Evaristo/C-9249-2011; Rakhman, Adurahim/K-8146-2012; Zhang, Jixie/A-1461-2016; Dalton, Mark/B-5380-2016; Pan, Kai/D-4241-2016; BELLINI, Vincenzo/B-1239-2012; Ye, Zhihong/E-6651-2017 OI Qian, Xin/0000-0002-7903-7935; Higinbotham, Douglas/0000-0003-2758-6526; Day, Donal/0000-0001-7126-8934; Arrington, John/0000-0002-0702-1328; Cisbani, Evaristo/0000-0002-6774-8473; Rakhman, Adurahim/0000-0002-9880-6074; Dalton, Mark/0000-0001-9204-7559; Pan, Kai/0000-0001-9930-5063; BELLINI, Vincenzo/0000-0001-6906-7463; Ye, Zhihong/0000-0002-1873-2344 FU Israel Science Foundation; U.S. National Science Foundation; U.S. Department of Energy [DE-AC02-06CH11357, DE-FG02-94ER40818]; U.S. DOE [DE-AC05-060R23177] FX We acknowledge the contribution of the Hall A Collaboration and technical staff. We thank C. Colle, W. Cosyn, and J. Ryckebusch for the Glauber calculations. We also want to thank R. B. Wiringa, R. Schiavilla, S. Steven, and J. Carlson for the calculations presented in Ref. [10] that were provided specifically for this paper. Useful discussions with J. Alster, C. Ciofi degli Atti, W. Cosyn, A. Gal, L. Frankfurt, J. Ryckebusch, M. Strikman, and M. Sargsian are gratefully acknowledged. This work was supported by the Israel Science Foundation, the U.S. National Science Foundation, the U.S. Department of Energy Grants No. DE-AC02-06CH11357, No. DE-FG02-94ER40818, and U.S. DOE Contract No. DE-AC05-060R23177 under which Jefferson Science Associates operates the Thomas Jefferson National Accelerator Facility. NR 21 TC 24 Z9 24 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 9 PY 2014 VL 113 IS 2 AR 022501 DI 10.1103/PhysRevLett.113.022501 PG 6 WC Physics, Multidisciplinary SC Physics GA AK9JM UT WOS:000338743400005 PM 25062168 ER PT J AU Foyevtsova, K Krogel, JT Kim, J Kent, PRC Dagotto, E Reboredo, FA AF Foyevtsova, Kateryna Krogel, Jaron T. Kim, Jeongnim Kent, P. R. C. Dagotto, Elbio Reboredo, Fernando A. TI Ab initio Quantum Monte Carlo Calculations of Spin Superexchange in Cuprates: The Benchmarking Case of Ca2CuO3 SO PHYSICAL REVIEW X LA English DT Article ID HEISENBERG ANTIFERROMAGNETIC CHAIN; MAGNETIC-SUSCEPTIBILITY; SR2CUO3; SEPARATION; EXCHANGE; DYNAMICS; SOLIDS; STATE AB In view of the continuous theoretical efforts aimed at an accurate microscopic description of the strongly correlated transition metal oxides and related materials, we show that with continuum quantumMonte Carlo (QMC) calculations it is possible to obtain the value of the spin superexchange coupling constant of a copper oxide in a quantitatively excellent agreement with experiment. The variational nature of the QMC total energy allows us to identify the best trial wave function out of the available pool of wave functions, which makes the approach essentially free from adjustable parameters and thus truly ab initio. The present results on magnetic interactions suggest that QMC is capable of accurately describing ground-state properties of strongly correlated materials. C1 [Foyevtsova, Kateryna; Krogel, Jaron T.; Kim, Jeongnim; Dagotto, Elbio; Reboredo, Fernando A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Kent, P. R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kent, P. R. C.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Dagotto, Elbio] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Foyevtsova, K (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Kent, Paul/A-6756-2008; OI Kent, Paul/0000-0001-5539-4017; Krogel, Jaron/0000-0002-1859-181X FU Materials Sciences and Engineering Division of the Office of Basic Energy Sciences, U.S. Department of Energy; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX The authors thank L. Shulenburger for sharing expertise in pseudopotential construction and for providing access to pseudopotential data sets prior to publication. This work was supported by the Materials Sciences and Engineering Division of the Office of Basic Energy Sciences, U.S. Department of Energy. P. R. C. K. was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Computational time used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 39 TC 28 Z9 28 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2160-3308 J9 PHYS REV X JI Phys. Rev. X PD JUL 8 PY 2014 VL 4 IS 3 AR 031003 DI 10.1103/PhysRevX.4.031003 PG 7 WC Physics, Multidisciplinary SC Physics GA AP0TI UT WOS:000341777000002 ER PT J AU Kung, Y McAndrew, RP Xie, XK Liu, CC Pereira, JH Adams, PD Keasling, JD AF Kung, Yan McAndrew, Ryan P. Xie, Xinkai Liu, Charlie C. Pereira, Jose H. Adams, Paul D. Keasling, Jay D. TI Constructing Tailored Isoprenoid Products by Structure-Guided Modification of Geranylgeranyl Reductase SO STRUCTURE LA English DT Article ID ARCHAEAL MEMBRANE-LIPIDS; ESCHERICHIA-COLI; DIGERANYLGERANYLGLYCEROPHOSPHOLIPID REDUCTASE; BIOSYNTHESIS; REFINEMENT; ENZYME AB The archaeal enzyme geranylgeranyl reductase (GGR) catalyzes hydrogenation of carbon-carbon double bonds to produce the saturated alkyl chains of the organism's unusual isoprenoid-derived cell membrane. Enzymatic reduction of isoprenoid double bonds is of considerable interest both to natural products researchers and to synthetic biologists interested in the microbial production of isoprenoid drug or biofuel molecules. Here we present crystal structures of GGR from Sulfolobus acidocaldarius, including the structure of GGR bound to geranylgeranyl pyrophosphate (GGPP). The structures are presented alongside activity data that depict the sequential reduction of GGPP to H(6)GGPP via the intermediates H(2)GGPP and H(4)GGPP. We then modified the enzyme to generate sequence variants that display increased rates of H(6)GGPP production or are able to halt the extent of reduction at H(2)GGPP and H(4)GGPP. Crystal structures of these variants not only reveal the structural bases for their altered activities; they also shed light onto the catalytic mechanism employed. C1 [Kung, Yan; McAndrew, Ryan P.; Xie, Xinkai; Pereira, Jose H.; Adams, Paul D.; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Kung, Yan; McAndrew, Ryan P.; Xie, Xinkai; Pereira, Jose H.; Adams, Paul D.; Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Kung, Yan] Bryn Mawr Coll, Dept Chem, Bryn Mawr, PA 19010 USA. [Liu, Charlie C.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Adams, Paul D.; Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jdkeasling@lbl.gov RI Keasling, Jay/J-9162-2012; Adams, Paul/A-1977-2013 OI Keasling, Jay/0000-0003-4170-6088; Adams, Paul/0000-0001-9333-8219 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; NIH; National Institute of General Medical Sciences; Howard Hughes Medical Institute; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Edward Baidoo for his help with LC-TOF MS data collection, Sharon Borglin for fatty acid methyl ester analysis, and Hanbin Liu for computer simulation. This work was part of the Department of Energy Joint BioEnergy Institute, which is funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. The Berkeley Center for Structural Biology is supported in part by NIH, National Institute of General Medical Sciences, and Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract DE-AC02-05CH11231. J.D.K. has financial interests in Amyris and LS9. NR 21 TC 6 Z9 6 U1 2 U2 17 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 EI 1878-4186 J9 STRUCTURE JI Structure PD JUL 8 PY 2014 VL 22 IS 7 BP 1028 EP 1036 DI 10.1016/j.str.2014.05.007 PG 9 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA AN3KQ UT WOS:000340487000014 PM 24954619 ER PT J AU Carlson, J Gandolfi, S AF Carlson, J. Gandolfi, S. TI Predicting energies of small clusters from the inhomogeneous unitary Fermi gas SO PHYSICAL REVIEW A LA English DT Article ID BOSE-EINSTEIN CONDENSATION; DENSITY-FUNCTIONAL THEORY; SUPERFLUID; PHYSICS AB We investigate the inhomogeneous unitary Fermi gas and use the long-wavelength properties to predict the energies of small clusters of unitary fermions trapped in harmonic potentials. The large pairing gap and scale invariance place severe restrictions on the form of the density functional. We determine the relevant universal constants needed to constrain the functional from calculations of the bulk in oscillating external potentials. Comparing with exact quantum Monte Carlo calculations, we find that the same functional correctly predicts the lack of shell closures for small clusters of fermions trapped in harmonic wells as well as their absolute energies. A rapid convergence to the bulk limit in three dimensions, where the surface-to-volume ratio is quite large, is demonstrated. The resulting functional can be tested experimentally, and is a key ingredient in predicting possible polarized superfluid phases and the properties of the unitary Fermi gas in optical lattices. C1 [Carlson, J.; Gandolfi, S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Carlson, J (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Gandolfi, Stefano/0000-0002-0430-9035 FU Office of Science of the US Department of Energy [DE-AC02-05CH11231]; Department of Energy Nuclear Physics Office; NUCLEI SciDAC program; Los Alamos LDRD early career grant FX We would like to thank Kevin E. Schmidt, Shiwei Zhang, and Sebastiano Pilati for stimulating discussions. Computer time was provided by an INCITE allocation and by Los Alamos Institutional Computing. This research also used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. The work of J.C. and S.G. was supported by the Department of Energy Nuclear Physics Office, and by the NUCLEI SciDAC program. The work of S.G. was also supported by a Los Alamos LDRD early career grant. NR 43 TC 9 Z9 9 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD JUL 8 PY 2014 VL 90 IS 1 AR 011601 DI 10.1103/PhysRevA.90.011601 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA AL4SC UT WOS:000339122000003 ER PT J AU Chandra, R Jacobson, NT Moussa, JE Frankel, SH Kais, S AF Chandra, Rishabh Jacobson, N. Tobias Moussa, Jonathan E. Frankel, Steven H. Kais, Sabre TI Quadratic constrained mixed discrete optimization with an adiabatic quantum optimizer SO PHYSICAL REVIEW A LA English DT Article ID MODELS; COMBINATORIAL AB We extend the family of problems that may be implemented on an adiabatic quantum optimizer (AQO). When a quadratic optimization problem has at least one set of discrete controls and the constraints are linear, we call this a quadratic constrained mixed discrete optimization (QCMDO) problem. QCMDO problems are NP-hard, and no efficient classical algorithm for their solution is known. Included in the class of QCMDO problems are combinatorial optimization problems constrained by a linear partial differential equation (PDE) or system of linear PDEs. An essential complication commonly encountered in solving this type of problem is that the linear constraint may introduce many intermediate continuous variables into the optimization while the computational cost grows exponentially with problem size. We resolve this difficulty by developing a constructive mapping from QCMDO to quadratic unconstrained binary optimization (QUBO) such that the size of the QUBO problem depends only on the number of discrete control variables. With a suitable embedding, taking into account the physical constraints of the realizable coupling graph, the resulting QUBO problem can be implemented on an existing AQO. The mapping itself is efficient, scaling cubically with the number of continuous variables in the general case and linearly in the PDE case if an efficient preconditioner is available. C1 [Chandra, Rishabh; Frankel, Steven H.] Purdue Univ, Dept Mech Engn, W Lafayette, IN 47907 USA. [Jacobson, N. Tobias; Moussa, Jonathan E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Kais, Sabre] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. [Kais, Sabre] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Kais, Sabre] Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar. RP Jacobson, NT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ntjacob@sandia.gov FU Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Ojas Parekh and Denis Ridzal for informative discussions. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 26 TC 0 Z9 0 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD JUL 8 PY 2014 VL 90 IS 1 AR 012308 DI 10.1103/PhysRevA.90.012308 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA AL4SC UT WOS:000339122000007 ER PT J AU Moon, SJ Lee, YS Schafgans, AA Chubukov, AV Kasahara, S Shibauchi, T Terashima, T Matsuda, Y Tanatar, MA Prozorov, R Thaler, A Canfield, PC Bud'ko, SL Sefat, AS Mandrus, D Segawa, K Ando, Y Basov, DN AF Moon, S. J. Lee, Y. S. Schafgans, A. A. Chubukov, A. V. Kasahara, S. Shibauchi, T. Terashima, T. Matsuda, Y. Tanatar, M. A. Prozorov, R. Thaler, A. Canfield, P. C. Bud'ko, S. L. Sefat, A. S. Mandrus, D. Segawa, K. Ando, Y. Basov, D. N. TI Infrared pseudogap in cuprate and pnictide high-temperature superconductors SO PHYSICAL REVIEW B LA English DT Article ID HIGH-T-C; DENSITY-WAVE ORDER; CHARGE DYNAMICS; IRON PNICTIDES; OPTICAL CONDUCTIVITY; DETWINNED BA(FE1-XCOX)(2)AS-2; ELECTRONIC NEMATICITY; SPIN DYNAMICS; AXIS RESPONSE; CUO2 PLANES AB We investigate infrared manifestations of the pseudogap in the prototypical cuprate and pnictide superconductors, YBa2Cu3Oy and BaFe2As2 (Ba122) systems. We find remarkable similarities between the spectroscopic features attributable to the pseudogap in these two classes of superconductors. The hallmarks of the pseudogap state in both systems include a weak absorption feature at about 500 cm(-1) followed by a featureless continuum between 500 and 1500 cm(-1) in the conductivity data and a significant suppression in the scattering rate below 700-900 cm(-1). The latter result allows us to identify the energy scale associated with the pseudogap Delta PG. We find that in the Ba122-based materials the superconductivity-induced changes of the infrared spectra occur in the frequency region below 100-200 cm(-1), which is much lower than the energy scale of the pseudogap. We performed theoretical analysis of the scattering rate data of the two compounds using the same model, which accounts for the effects of the pseudogap and electron-boson coupling. We find that the scattering rate suppression in Ba122-based compounds below Delta PG is solely due to the pseudogap formation, whereas the impact of the electron-boson coupling effects is limited to lower frequencies. The magnetic resonance modes used as inputs in our modeling are found to evolve with the development of the pseudogap, suggesting an intimate correlation between the pseudogap and magnetism. C1 [Moon, S. J.; Lee, Y. S.; Schafgans, A. A.; Basov, D. N.] San Diego State Univ, Dept Phys, San Diego, CA 92093 USA. [Moon, S. J.] Hanyang Univ, Dept Phys, Seoul 133791, South Korea. [Lee, Y. S.] Soongsil Univ, Dept Phys, Seoul 156743, South Korea. [Chubukov, A. V.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Kasahara, S.; Terashima, T.] Kyoto Univ, Res Ctr Low Temp & Mat Sci, Kyoto 6068502, Japan. [Shibauchi, T.; Matsuda, Y.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Tanatar, M. A.; Prozorov, R.; Thaler, A.; Canfield, P. C.; Bud'ko, S. L.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Tanatar, M. A.; Prozorov, R.; Thaler, A.; Canfield, P. C.; Bud'ko, S. L.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Sefat, A. S.; Mandrus, D.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Mandrus, D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Segawa, K.] Osaka Univ, Inst Sci & Ind Res, Ibaraki, Osaka 5600047, Japan. RP Moon, SJ (reprint author), San Diego State Univ, Dept Phys, San Diego, CA 92093 USA. EM soonjmoon@hanyang.ac.kr RI Thaler, Alexander/J-5741-2014; SEGAWA, Kouji/D-4204-2014; Ando, Yoichi/B-8163-2013; Shibauchi, Takasada/B-9349-2008; Sefat, Athena/R-5457-2016; Kasahara, Shigeru/H-3064-2014 OI Thaler, Alexander/0000-0001-5066-8904; SEGAWA, Kouji/0000-0002-3633-4809; Ando, Yoichi/0000-0002-3553-3355; Shibauchi, Takasada/0000-0001-5831-4924; Sefat, Athena/0000-0002-5596-3504; Kasahara, Shigeru/0000-0002-6007-9617 FU National Science Foundation [NSF 1005493]; Air Force Office of Scientific Research; Basic Science Research Program through the National Research Foundation of Korea - Ministry of Science, ICT & Future Planning [2012R1A1A1013274]; TJ Park Science Fellowship of POSCO TJ Park Foundation; National Research Foundation of Korea (NRF) grant - Korean government (MOE) [2013R1A1A2012281]; US Department of Energy (DOE) [DE-FG02-ER46900]; DOE, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; DOE by Iowa State University [DE-AC02-07CH11358]; DOE, Basic Energy Sciences, Materials Sciences, and Engineering Division FX This work was supported by National Science Foundation (NSF 1005493) and Air Force Office of Scientific Research. S.J.M. is supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (2012R1A1A1013274) and TJ Park Science Fellowship of POSCO TJ Park Foundation. Y.S.L. is supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MOE) (No. 2013R1A1A2012281). A. V. C. is supported by the US Department of Energy (DOE) Grant No. DE-FG02-ER46900. Work at Ames Laboratory (P. C. C., S. L. B., M. T., R. P., A. T.) was supported by the DOE, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Ames Laboratory is operated for the DOE by Iowa State University under contract No. DE-AC02-07CH11358. The work of A. S. at Oak Ridge National Laboratory was supported by the DOE, Basic Energy Sciences, Materials Sciences, and Engineering Division. NR 152 TC 11 Z9 11 U1 0 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 8 PY 2014 VL 90 IS 1 AR 014503 DI 10.1103/PhysRevB.90.014503 PG 16 WC Physics, Condensed Matter SC Physics GA AL4SE UT WOS:000339122200003 ER PT J AU Ryu, HJ Wolff-Fabris, F Warren, JB Uhlarz, M Wosnitza, J Petrovic, C AF Ryu, Hyejin Wolff-Fabris, F. Warren, J. B. Uhlarz, M. Wosnitza, J. Petrovic, C. TI Multiband transport and nonmetallic low-temperature state of K0.50Na0.24Fe1.52Se2 SO PHYSICAL REVIEW B LA English DT Article ID CRITICAL FIELDS; SUPERCONDUCTIVITY; TRANSITION; LA2-XSRXCUO4; DESTRUCTION; CROSSOVER; FILMS; SPIN AB We report evidence for multiband transport and an insulating low-temperature normal state in superconducting K0.50Na0.24Fe1.52Se2 with T-c approximate to 20 K. The temperature-dependent upper critical field H-c2 is well described by a two-band BCS model. The normal-state resistance, accessible at low temperatures only in pulsed magnetic fields, shows an insulating logarithmic temperature dependence as T -> 0 after superconductivity is suppressed. This is similar as for high-T-c copper oxides and granular type-I superconductors, suggesting that the superconductor-insulator transition observed in high magnetic fields is related to intrinsic nanoscale phase separation. C1 [Ryu, Hyejin; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Ryu, Hyejin; Petrovic, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Wolff-Fabris, F.; Uhlarz, M.; Wosnitza, J.] Helmholtz Zentrum Dresden Rossendorf, Hochfeld Magnetlabor Dresden HLD, D-01314 Dresden, Germany. [Warren, J. B.] Brookhaven Natl Lab, Instrument Div, Upton, NY 11973 USA. [Wosnitza, J.] Tech Univ Dresden, Inst Festkorperphys, D-01062 Dresden, Germany. RP Ryu, HJ (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM hryu@bnl.gov; petrovic@bnl.gov RI Petrovic, Cedomir/A-8789-2009 OI Petrovic, Cedomir/0000-0001-6063-1881 FU U.S. DOE [DE-AC02-98CH10886]; Center for Emergent Superconductivity, an Energy Frontier Research Center - U.S. DOE, Office for Basic Energy Science; HLD at HZDR; Alexander von Humboldt Foundation FX Work at Brookhaven is supported by the U.S. DOE under Contract No. DE-AC02-98CH10886 and in part by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. DOE, Office for Basic Energy Science (C.P.). We acknowledge the support of the HLD at HZDR, member of the European Magnet Field Laboratory (EMFL). C.P. acknowledges support by the Alexander von Humboldt Foundation. NR 53 TC 0 Z9 0 U1 0 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 8 PY 2014 VL 90 IS 2 AR 020502 DI 10.1103/PhysRevB.90.020502 PG 5 WC Physics, Condensed Matter SC Physics GA AL4SG UT WOS:000339122400002 ER PT J AU Gao, F Chang, L Liu, YX Roberts, CD Schmidt, SM AF Gao, Fei Chang, Lei Liu, Yu-Xin Roberts, Craig D. Schmidt, Sebastian M. TI Parton distribution amplitudes of light vector mesons SO PHYSICAL REVIEW D LA English DT Article ID DYSON-SCHWINGER EQUATIONS; ANOMALOUS MAGNETIC-MOMENT; PION FORM-FACTOR; QUANTUM CHROMODYNAMICS; EXCLUSIVE PROCESSES; QCD FACTORIZATION; ASYMPTOTIC-BEHAVIOR; SYMMETRY-BREAKING; WAVE-FUNCTIONS; RHO-MESON AB A rainbow-ladder truncation of QCD's Dyson-Schwinger equations is used to calculate rho- and phi-meson valence-quark (twist-two parton) distribution amplitudes (PDAs) via a light-front projection of their Bethe-Salpeter wave functions, which possess S- and D-wave components of comparable size in the meson rest frame. All computed PDAs are broad concave functions, whose dilation with respect to the asymptotic distribution is an expression of dynamical chiral symmetry breaking. The PDAs can be used to define an ordering of valence-quark light-front spatial extent within mesons: this size is smallest within the pion and increases through the perpendicular to polarization to the parallel to polarization of the vector mesons; effects associated with the breaking of SU(3)-flavor symmetry are significantly smaller than those associated with altering the polarization of vector mesons. Notably, the predicted pointwise behavior of the rho-meson PDAs is in quantitative agreement with that inferred recently via an analysis of diffractive vector-meson photo-production experiments. C1 [Gao, Fei; Liu, Yu-Xin] Peking Univ, Dept Phys, Beijing 100871, Peoples R China. [Gao, Fei; Liu, Yu-Xin] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Gao, Fei; Liu, Yu-Xin] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China. [Chang, Lei] Univ Adelaide, CSSM, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Liu, Yu-Xin] Peking Univ, Ctr High Energy Phys, Beijing 100871, Peoples R China. [Roberts, Craig D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Schmidt, Sebastian M.] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany. [Schmidt, Sebastian M.] JARA, D-52425 Julich, Germany. RP Liu, YX (reprint author), Peking Univ, Dept Phys, Beijing 100871, Peoples R China. EM yxliu@pku.edu.cn; cdroberts@anl.gov FU National Natural Science Foundation of China [10935001, 11175004]; National Key Basic Research Program of China [G2013CB834400]; U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; Forshungs-zentrum Julich GmbH FX We are grateful for useful comments and observations from S. J. Brodsky, I. C. Cloet, R. J. Holt, J. Segovia and P. C. Tandy. C. D. R. acknowledges support through an International Fellow Award from the Helmholtz Association, and this work was otherwise supported by the National Natural Science Foundation of China under Contracts No. 10935001 and No. 11175004; the National Key Basic Research Program of China under Contract No. G2013CB834400; the U.S. Department of Energy, Office of Nuclear Physics, Contract No. DE-AC02-06CH11357; and Forshungs-zentrum Julich GmbH. NR 108 TC 17 Z9 17 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 8 PY 2014 VL 90 IS 1 AR 014011 DI 10.1103/PhysRevD.90.014011 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AL6BS UT WOS:000339217800001 ER PT J AU Hoeche, S Krauss, F Schoeherr, M AF Hoeche, Stefan Krauss, Frank Schoeherr, Marek TI Uncertainties in MEPS@NLO calculations of h plus jets SO PHYSICAL REVIEW D LA English DT Article ID HIGGS-BOSON PRODUCTION; TO-LEADING ORDER; QCD CORRECTIONS; HADRONIC COLLISIONS; COLLIDERS; SHOWERS; MASS; LHC AB Uncertainties in the simulation of Higgs boson production with up to two jets at next-to-leading-order accuracy are investigated. Traditional uncertainty estimates based on scale variations are extended employing different functional forms for the central scale, and the impact of details in the implementation of the parton shower is discussed. C1 [Hoeche, Stefan] SLAC, Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Krauss, Frank; Schoeherr, Marek] Univ Durham, Inst Particle Phys Phenomenol, Durham DH1 3LE, England. RP Hoeche, S (reprint author), SLAC, Natl Accelerator Lab, Menlo Pk, CA 94025 USA. EM shoeche@slac.stanford.edu; frank.krauss@durham.ac.uk; marek.schoenherr@durham.ac.uk FU U.S. Department of Energy [DE-AC02-76SF00515]; U.S. National Science Foundation [NSF-PHY-0705682]; Research Executive Agency (REA) of the European Union [PITN-GA-2010-264564, PITN-GA-2012-315877]; REA [PITN-GA-2012-316704]; U.S. Department of Energy's Office of Science FX S. H.'s work was supported by the U.S. Department of Energy under Contract No. DE-AC02-76SF00515 and in part by the U.S. National Science Foundation, Grant No. NSF-PHY-0705682 (The LHC Theory Initiative). M. S. acknowledges supported by the Research Executive Agency (REA) of the European Union under the Grant Agreements No. PITN-GA-2010-264564 (LHCPhenoNet) and No. PITN-GA-2012-315877 (MCnet). F. K. acknowledges support by the REA under Contract No. PITN-GA-2012-316704 (HiggsTools). M. S. would further like to acknowledge fruitful discussions on the subject within the "Jets in Higgs physics" working group for YR3 [54] and at Les Houches 2013. This research was performed using resources provided by the Open Science Grid, which is supported by the National Science Foundation and the U.S. Department of Energy's Office of Science [55]. NR 90 TC 10 Z9 10 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 8 PY 2014 VL 90 IS 1 AR 014012 DI 10.1103/PhysRevD.90.014012 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AL6BS UT WOS:000339217800002 ER PT J AU Mason, OU Han, J Woyke, T Jansson, JK AF Mason, Olivia U. Han, James Woyke, Tanja Jansson, Janet K. TI Single-cell genomics reveals features of a Colwellia species that was dominant during the Deepwater Horizon oil spill SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE DWH oil spill; Colwellia; single-cell genomics; deep-sea plume; hydrocarbon degradation; bacteria ID HYDROCARBON-DEGRADING BACTERIA; MICROBIAL COMMUNITY RESPONSE; PSEUDOMONAS-BUTANOVORA; THAUERA-BUTANIVORANS; WELL BLOWOUT; SEQUENCE; BUTANE; METABOLISM; BENZENE; PROTEIN AB During the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico a deep-sea hydrocarbon plume developed resulting in a rapid succession of bacteria. Colwellia eventually supplanted Oceanospirillales, which dominated the plume early in the spill. These successional changes may have resulted, in part, from the changing composition and abundance of hydrocarbons over time. Colwellia abundance peaked when gaseous and simple aromatic hydrocarbons increased, yet the metabolic pathway used by Colwellia in hydrocarbon disposition is unknown. Here we used single-cell genomics to gain insights into the genome properties of a Colwellia enriched during the DWH deep-sea plume. A single amplified genome (SAG) of a Colwellia cell isolated from a DWH plume, closely related (avg. 98% 16S rRNA gene similarity) to other plume Colwellia, was sequenced and annotated. The SAG was similar to the sequenced isolate Colwellia psychrerythraea 34H (84% avg. nucleotide identity). Both had genes for denitrification, chemotaxis, and motility, adaptations to cold environments and a suite of nutrient acquisition genes. The Colwellia SAG may be capable of gaseous and aromatic hydrocarbon degradation, which contrasts with a DWH plume Oceanospirillales SAG which encoded non-gaseous n-alkane and cycloalkane degradation pathways. The disparate hydrocarbon degradation pathways are consistent with hydrocarbons that were abundant at different times in the deep-sea plume; first, non-gaseous n-alkanes and cycloalkanes that could be degraded by Oceanospirillales, followed by gaseous, and simple aromatic hydrocarbons that may have been degraded by Colwellia. These insights into the genomic properties of a Colwellia species, which were supported by existing metagenomic sequence data from the plume and DWH contaminated sediments, help further our understanding of the successional changes in the dominant microbial players in the plume over the course of the DWH spill. C1 [Mason, Olivia U.] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA. [Han, James; Woyke, Tanja] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. [Jansson, Janet K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. [Jansson, Janet K.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. RP Mason, OU (reprint author), Florida State Univ, Dept Earth Ocean & Atmospher Sci, 117 N Woodward Ave,Rogers Bldg Rm 307, Tallahassee, FL 32306 USA. EM omason@fsu.edu; jrjansson@lbl.gov FU U.S. Department of Energy, Energy Biosciences Institute (EBI) [DE-AC02-05CH11231] FX This work was supported by a subcontract from the University of California at Berkeley, Energy Biosciences Institute (EBI) to Lawrence Berkeley National Laboratory under its U.S. Department of Energy contract DE-AC02-05CH11231. We would like to thank the captain and crew of the R/V Ocean Veritas. NR 35 TC 14 Z9 15 U1 4 U2 52 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD JUL 8 PY 2014 VL 5 AR 332 DI 10.3389/fmicb.2014.00332 PG 8 WC Microbiology SC Microbiology GA AK9VB UT WOS:000338775000002 PM 25071745 ER PT J AU Reichert, MD Lin, CC Vela, J AF Reichert, Malinda D. Lin, Chia-Cheng Vela, Javier TI How Robust are Semiconductor Nanorods? Investigating the Stability and Chemical Decomposition Pathways of Photoactive Nanocrystals SO CHEMISTRY OF MATERIALS LA English DT Article ID MAGNETICALLY RECYCLABLE PHOTOCATALYST; CDSE QUANTUM DOTS; METAL NANOPARTICLES; VISIBLE-LIGHT; HIGHLY EFFICIENT; CADMIUM-SULFIDE; NANOSTRUCTURES; PHOTOCHEMISTRY; REACTIVITY; PARTICLES AB Anisotropic II-VI semiconductor nanostructures are important photoactive materials for various energy conversion and optical applications. However, aside from the many available surface chemistry studies and from their ubiquitous photodegradation under continuous illumination, the general chemical reactivity and thermal stability (phase and shape transformations) of these materials are poorly understood. Using CdSe and CdS nanorods as model systems, we have investigated the behavior of II-VI semiconductor nanorods against various conditions of extreme chemical and physical stress (acids, bases, oxidants, reductants, and heat). CdSe nanorods react rapidly with acids, becoming oxidized to Se or SeO2. In contrast, CdSe nanorods remain mostly unreactive when treated with bases or strong oxidants, although bases do partially etch the tips of the nanorods (along their axis). Roasting (heating in air) of CdSe nanorods results in rock-salt CdO, but neither CdSe nor CdO is easily reduced by hydrogen (H-2). Another reductant, n-BuLi, reduces CdSe nanorods to metallic Cd. Variable temperature X-ray diffraction experiments show that axial annealing and selective axial melting of the nanorods precede particle coalescence. Furthermore, thermal analysis shows that the axial melting of II-VI nanorods is a ligand-dependent process. In agreement with chemical reactivity and thermal stability observations, silica-coating experiments show that the sharpest (most curved) II-VI surfaces are most active against heterogeneous nucleation of a silica shell. These results provide valuable insights into the fate and possible ways to enhance the stability and improve the use of II-VI semiconductor nanostructures in the fields of optics, magnetism, and energy conversion. C1 [Vela, Javier] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Ames Lab, Ames, IA 50011 USA. RP Vela, J (reprint author), Iowa State Univ, Dept Chem, 1605 Gilman Hall, Ames, IA 50011 USA. EM vela@iastate.edu RI Vela, Javier/I-4724-2014 OI Vela, Javier/0000-0001-5124-6893 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory; U.S. DOE by Iowa State University (ISU) [DEAC02-07CH11358]; Midwest Society of Cosmetic Chemists FX We thank the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory for support (2011-2013). Ames Laboratory is operated for the U.S. DOE by Iowa State University (ISU) under contract no. DEAC02-07CH11358. We thank Matt Besser for help with VT XRD, Steve Martin for help with DSC/TGA, Michelle Thompson and Sam Alvarado for help with graphics, and Aaron Sadow for suggestions. M. D. R. thanks the Midwest Society of Cosmetic Chemists for a scholarship. NR 70 TC 4 Z9 4 U1 4 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD JUL 8 PY 2014 VL 26 IS 13 BP 3900 EP 3908 DI 10.1021/cm500896n PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AL0GZ UT WOS:000338806700007 ER PT J AU He, B Pun, AB Klivansky, LM McGough, AM Ye, YF Zhu, JF Guo, JH Teat, SJ Liu, Y AF He, Bo Pun, Andrew B. Klivansky, Liana M. McGough, Alexandra M. Ye, Yifan Zhu, Junfa Guo, Jinghua Teat, Simon J. Liu, Yi TI Thiophene Fused Azacoronenes: Regioselective Synthesis, Self-Organization, Charge Transport and Its Incorporation in Conjugated Polymers SO CHEMISTRY OF MATERIALS LA English DT Article ID FIELD-EFFECT TRANSISTORS; DISCOTIC LIQUID-CRYSTALS; ORGANIC SEMICONDUCTORS; SOLAR-CELLS; DITHIENOCORONENE DIIMIDE; ELECTRONICS; ANNULATION; COPOLYMERS; MOLECULES; FAMILY AB A regioselective synthesis of an azacoronene fused with two peripheral thiophene groups has been realized through a concise synthetic route. The resulting thienoazacoronene (TAC) derivatives show high degree of self-organization in solution, in single crystals, in the bulk, and in spuncast thin films. Spuncast thin film field-effect transistors of the TACs exhibited mobilities up to 0.028 cm(2) V-1 S-1, which is among the top field effect mobilities for solution processed discotic materials. Organic photovoltaic devices using TAC-containing conjugated polymers as the donor material exhibited a high open-circuit voltage of 0.89 V, which was ascribable to TAC's low-lying highest occupied molecular orbital energy level. C1 [He, Bo; Pun, Andrew B.; Klivansky, Liana M.; McGough, Alexandra M.; Liu, Yi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Ye, Yifan; Zhu, Junfa; Guo, Jinghua; Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Ye, Yifan; Zhu, Junfa] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China. RP Liu, Y (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, One Cyclotron Rd, Berkeley, CA 94720 USA. EM yliu@lbl.gov RI Liu, yi/A-3384-2008; He, Bo/B-7478-2015; Foundry, Molecular/G-9968-2014; Zhu, Junfa/E-4020-2010 OI Liu, yi/0000-0002-3954-6102; He, Bo/0000-0003-1444-4625; Zhu, Junfa/0000-0003-0888-4261 FU Self-Assembly of Organic/Inorganic Nanocomposite Materials program; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by Self-Assembly of Organic/Inorganic Nanocomposite Materials program (B.H. and Y.L.), and was performed at the Molecular Foundry, with the X-ray experiment conducted at Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, all supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A.B.P. acknowledges the DOE SULI internship program. We thank Dr. Chenhui Zhu and Dr. Alexander Hexemer at ALS for help with GIWAXS measurements. NR 54 TC 28 Z9 28 U1 5 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD JUL 8 PY 2014 VL 26 IS 13 BP 3920 EP 3927 DI 10.1021/cm5018272 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AL0GZ UT WOS:000338806700010 ER PT J AU Chen, HP Peet, J Hsiao, YC Hu, B Dadmun, M AF Chen, Huipeng Peet, Jeff Hsiao, Yu-Che Hu, Bin Dadmun, Mark TI The Impact of Fullerene Structure on Its Miscibility with P3HT and Its Correlation of Performance in Organic Photovoltaics SO CHEMISTRY OF MATERIALS LA English DT Article ID HETEROJUNCTION SOLAR-CELLS; MULTIPLE ADDUCT FULLERENES; THIN-FILMS; MORPHOLOGY; BLENDS; PCBM; DERIVATIVES; GENERATION; SCATTERING; BISADDUCT AB Neutron reflectivity experiments are utilized to obtain the miscibility limit of four different fullerenes, bis-PCBM, ICBA, thio-PCBM, and PC70BM, in poly(3-hexylthiophene) (P3HT). The intermixing of P3HT and fullerene bilayers is monitored by neutron reflectivity before and after thermal annealing, providing quantification of the miscibility and interdiffusion of the fullerene within P3HT. These results indicate that the miscibility limit of these fullerenes in P3HT ranges from 11% to 26%, where the bis-adduct fullerenes exhibit lower miscibility in P3HT, which is also verified by small angle neutron scatting (SANS). The in-plane morphology of the P3HT:fullerene mixtures was also examined by SANS, which shows a decrease in domain size and an increase in the specific interfacial area between the fullerene and the polymer with the bis-fullerenes. Correlation of miscibility and morphology to device performance indicates that polymer/fullerene miscibility is crucial to rationally optimize the design of fullerenes for use in organic photovoltaics. Bis-PCBM has a higher open circuit voltage (V-oc) than PC60BM with P3HT; however, device performance of bis-PCBM based devices is lower than that of PC60BM based devices. This decrease in performance is attributed to the lower miscibility of bis-PCBM in P3HT, which decreases the probability of exciton dissociation and enhances the recombination of free charge carriers in the miscible region. Moreover, the minimum distance between fullerenes in the miscible region to facilitate intermolecular transport is identified as similar to 11 angstrom. C1 [Chen, Huipeng; Dadmun, Mark] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Hsiao, Yu-Che; Hu, Bin] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Peet, Jeff] Konarka Technol, Lowell, MA 01852 USA. [Dadmun, Mark] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Dadmun, M (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM dad@utk.edu RI Chen, Huipeng/G-4019-2012; Hu, Bin/A-2954-2015 OI Hu, Bin/0000-0002-1573-7625 FU Sustainable Energy Education Research Center; Joint Institute for Neutron Sciences at the University of Tennessee; National Science Foundation [DMR-1005987]; Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The authors wish to acknowledge the Sustainable Energy Education Research Center and the Joint Institute for Neutron Sciences at the University of Tennessee, as well as the National Science Foundation (DMR-1005987) for support of this project. M.D. also acknowledges the support of the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. The support of the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy, who sponsors the Oak Ridge National Laboratory Spallation Neutron Source and High Flux Isotope Reactor, is gratefully acknowledged. NR 46 TC 9 Z9 9 U1 1 U2 76 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD JUL 8 PY 2014 VL 26 IS 13 BP 3993 EP 4003 DI 10.1021/cm5015898 PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AL0GZ UT WOS:000338806700018 ER PT J AU Jiang, CY Liu, WY Talapin, DV AF Jiang, Chengyang Liu, Wenyong Talapin, Dmitri V. TI Role of Precursor Reactivity in Crystallization of Solution-Processed Semiconductors: The Case of Cu2ZnSnS4 SO CHEMISTRY OF MATERIALS LA English DT Article ID FILM SOLAR-CELLS; THIN-FILMS; COLLOIDAL NANOCRYSTALS; SOLUBLE PRECURSORS; ABSORBER LAYERS; SURFACE LIGANDS; DEVICE; PHOTOVOLTAICS; FABRICATION AB We study the formation of Cu2ZnSnS4 (CZTS) films from various liquid-phase precursors. Our experimental data point to the significant role that reactivities of precursor components play in the quality of the final material. Although reactive molecular precursors favor formation of CZTS under milder conditions, the formation of large crystalline domains requires using less reactive nanostructured precursors. We explain this effect using kinetics of nucleation and growth. We have also demonstrated a strategy to effectively enhance grain growth of CZTS using solid-state phase transition as the driving force for nanocrystal sintering. We hope this contribution will provide a useful guide toward the rational design of liquid-phase precursors for inorganic semiconductors for electronic and optoelectronic applications. C1 [Jiang, Chengyang; Liu, Wenyong; Talapin, Dmitri V.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Jiang, Chengyang; Liu, Wenyong; Talapin, Dmitri V.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Talapin, Dmitri V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Talapin, DV (reprint author), Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. EM dvtalapin@uchicago.edu RI Jiang, Chengyang (Raymond)/E-3167-2012; liu, wenyong/J-3208-2015 OI liu, wenyong/0000-0001-9143-9139 FU DOE SunShot Program [DE-EE0005312]; Keck Foundation; David and Lucile Packard Foundation; US Department of Energy [DE-AC02-06CH11357]; NSF MRSEC Program [DMR 08-20054] FX This work was supported by the DOE SunShot Program under award no. DE-EE0005312 and by the Keck Foundation. D.V.T. acknowledges support from the David and Lucile Packard Foundation. The work at the Center for Nanoscale Materials (ANL) was supported by the US Department of Energy under Contract No. DE-AC02-06CH11357. This work also used facilities supported by the NSF MRSEC Program under Award Number DMR 08-20054. NR 41 TC 14 Z9 14 U1 5 U2 85 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD JUL 8 PY 2014 VL 26 IS 13 BP 4038 EP 4043 DI 10.1021/cm502007d PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AL0GZ UT WOS:000338806700023 ER PT J AU Andersen, MB Rogers, DM Mai, J Schudel, B Hatch, AV Rempe, SB Mani, A AF Andersen, Mathias B. Rogers, David M. Mai, Junyu Schudel, Benjamin Hatch, Anson V. Rempe, Susan B. Mani, Ali TI Spatiotemporal pH Dynamics in Concentration Polarization near Ion-Selective Membranes SO LANGMUIR LA English DT Article ID ANION-EXCHANGE MEMBRANES; WATER DISSOCIATION; PERMSELECTIVE MEMBRANE; NANOPOROUS MEMBRANES; SOLUTION INTERFACE; ELECTRIC-FIELDS; CURRENT-DENSITY; TRANSPORT; PRECONCENTRATION; PROTEINS AB We present a detailed analysis of the transient pH dynamics for a weak, buffered electrolyte subject to voltage-driven transport through an ion-selective membrane. We show that pH fronts emanate from the concentration polarization zone next to the membrane and that these propagating fronts change the pH in the system several units from its equilibrium value. The analysis is based on a 1D model using the unsteady Poisson-Nernst-Planck equations with nonequilibrium chemistry and without assumptions of electroneutrality or asymptotically thin electric double layers. Nonequilibrium chemical effects, especially for water splitting, are shown to be important for the dynamical and spatiotemporal evolution of the pH fronts. Nonetheless, the model also shows that at steady state the assumption of chemical equilibrium can still lead to good approximations of the global pH distribution. Moreover, our model shows that the transport of the hydronium ion in the extended space charge region is governed by a balance between electromigration and water self-ionization. On the basis of this observation, we present a simple model showing that the net flux of the hydronium ion is proportional to the length of the extended space charge region and the water self-ionization rate. To demonstrate these effects in practice, we have adopted the experiment of Mai et al. (Mai, J.; Miller, H.; Hatch, A. V. Spatiotemporal Mapping of Concentration Polarization Induced pH Changes at Nanoconstrictions. ACS Nano 2012, 6, 10206) as a model problem, and by including the full chemistry and transport, we show that the present model can capture the experimentally observed pH fronts. Our model can, among other things, be used to predict and engineer pH dynamics, which can be essential to the performance of membrane-based systems for biochemical separation and analysis. C1 [Andersen, Mathias B.; Mani, Ali] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Rogers, David M.; Rempe, Susan B.] Sandia Natl Labs, Ctr Biol & Mat Sci, Albuquerque, NM 87185 USA. [Mai, Junyu; Schudel, Benjamin; Hatch, Anson V.] Sandia Natl Labs, Biol Sci & Engn Dept, Livermore, CA 94551 USA. RP Rempe, SB (reprint author), Sandia Natl Labs, Ctr Biol & Mat Sci, POB 5800, Albuquerque, NM 87185 USA. EM slrempe@sandia.gov; alimani@stanford.edu FU Defense Threat Reduction Agency-Joint Science and Technology Office for Chemical and Biological Defense (IAA) [DTRA10027IA-3167]; Sandia's LDRD program; National Science Foundation [PHYS-1066293]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL8500] FX This project received support from the Defense Threat Reduction Agency-Joint Science and Technology Office for Chemical and Biological Defense (IAA number DTRA10027IA-3167). This work was also supported in part by Sandia's LDRD program and the National Science Foundation under grant no. PHYS-1066293 and the hospitality of the Aspen Center for Physics. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL8500. NR 60 TC 7 Z9 7 U1 6 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUL 8 PY 2014 VL 30 IS 26 BP 7902 EP 7912 DI 10.1021/la5014297 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AL0GX UT WOS:000338806500034 PM 24892492 ER PT J AU Petzetakis, N Stone, GM Balsara, NP AF Petzetakis, Nikos Stone, Gregory M. Balsara, Nitash P. TI Synthesis of Well-Defined Polyethylene-Polydimethylsiloxane-Polyethylene Triblock Copolymers by Diimide-Based Hydrogenation of Polybutadiene Blocks SO MACROMOLECULES LA English DT Article ID LIVING ANIONIC-POLYMERIZATION; MACROMOLECULAR ARCHITECTURES; THERMOPLASTIC ELASTOMERS; POLYSTYRENE; POLYMERS; POLY(DIMETHYLSILOXANE); MEMBRANES; ISOPRENE; ROUTE AB Polyethylene, PE, is a crystalline solid with a relatively high melting temperature, and it exhibits excellent solvent resistance at room temperature. In contrast, polydimethylsiloxane, PDMS, is a rubbery polymer with an ultralow glass transition temperature and poor solvent resistance. PE-PDMS block copolymers have the potential to synergistically combine these disparate properties. In spite of this potential, synthesis of PE-PDMS block copolymers has not been widely explored. We report a facile route for the synthesis of well-defined polyethylene-b-polydimethylsiloxane-b-polyethylene (EDE) triblock copolymers. Poly(1,4-butadiene)-b-polydimethylsiloxane-b-poly(1,4-butadiene) (BDB) copolymer precursors were synthesized by anionic polymerization, followed by diimide-based hydrogenation. Under the standard hydrogenation conditions established by the work of Hahn, the siloxane bond undergoes scission resulting into significant degradation of the PDMS block. Our main accomplishment is the discovery of reaction conditions that avoid PDMS degradation. We used mechanistic insight into arrive at the optimal hydrogenation conditions, and we established the efficacy of our approach by successfully synthesizing a wide variety of block copolymers with total molecular weights ranging from 124 to 340 kg/mol and PDMS volume fractions ranging from 0.22 to 0.77. C1 [Petzetakis, Nikos; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Stone, Gregory M.] Malvern Instruments Inc, Westborough, MA 01581 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Div Mat Sci, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM nbalsara@berkeley.edu FU Energy Biosciences Institute (EBI), University of California at Berkeley; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by the Energy Biosciences Institute (EBI), University of California at Berkeley. We would like to thank Dr. Pepa Cotanda for support with the thermal analysis performed. The SAXS measurements were performed at the Advanced Light Source at LBNL, supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 38 TC 5 Z9 5 U1 9 U2 71 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD JUL 8 PY 2014 VL 47 IS 13 BP 4151 EP 4159 DI 10.1021/ma500686k PG 9 WC Polymer Science SC Polymer Science GA AL0GW UT WOS:000338806400004 ER PT J AU Beers, KM Wong, DT Jackson, AJ Wang, X Pople, JA Hexemer, A Balsara, NP AF Beers, Keith M. Wong, David T. Jackson, Andrew J. Wang, Xin Pople, John A. Hexemer, Alexander Balsara, Nitash P. TI Effect of Crystallization on Proton Transport in Model Polymer Electrolyte Membranes SO MACROMOLECULES LA English DT Article ID SEMICRYSTALLINE DIBLOCK COPOLYMERS; OXYETHYLENE/OXYBUTYLENE DIBLOCK; BLOCK-COPOLYMERS; HUMID AIR; PHASE; CONDUCTIVITY; TRANSITIONS; DIMENSIONS; KINETICS; BEHAVIOR AB Polymer electrolyte membranes with bicontinuous microphases comprising soft hydrated domains and mechanically robust hydrophobic domains are used in a wide range of electrochemical devices induding fuel cells and electrolyzers. The self-assembly, water uptake, and proton conductivity of model block copolymer electrolytes with semicrystalline hydrophobic blocks were investigated. A series of sulfonated polystyrene-block-polyethylene (PSS-PE) copolymers were synthesized to probe the interplay between crystallization, morphology, hydration, and proton transport. In block copolymer systems with amorphous hydrophobic blocks, it has been shown that higher water update and proton conductivity are obtained in low molecular weight systems. However, crystallization is known to disrupt the self-assembly of low molecular weight block copolymers. We found that this disruption results in lower water uptake and proton conductivity. Increasing molecular weight results in less morphological disruption and improvement in performance. C1 [Beers, Keith M.] Exponent, Menlo Pk, CA 94025 USA. [Beers, Keith M.; Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wong, David T.; Jackson, Andrew J.; Wang, Xin; Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Hexemer, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Beers, Keith M.; Wong, David T.; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Wong, David T.] Exponent, Natick, MA 01760 USA. [Jackson, Andrew J.] European Spallat Source ESS AB, S-22100 Lund, Sweden. [Jackson, Andrew J.] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA. [Jackson, Andrew J.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Pople, John A.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM nbalsara@berkeley.edu RI Jackson, Andrew/B-9793-2008 OI Jackson, Andrew/0000-0002-6296-0336 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Primary funding for the work was provided by the Electron Microscopy of Soft Matter Program from the Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract DE-AC02-05CH11231. SAXS experiments were performed at the Advanced Light Source (ALS) and the Stanford Synchrotron Radiation Laboratory (SSRL). The ALS is a DOE national user facility and is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under the same contract. SSRL is a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. Certain commercial equipment, instruments, materials, suppliers and software are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose. NR 34 TC 5 Z9 5 U1 4 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD JUL 8 PY 2014 VL 47 IS 13 BP 4330 EP 4336 DI 10.1021/ma500298w PG 7 WC Polymer Science SC Polymer Science GA AL0GW UT WOS:000338806400021 ER PT J AU Riley, R Salamov, AA Brown, DW Nagy, LG Floudas, D Held, BW Levasseur, A Lombard, V Morin, E Otillar, R Lindquist, EA Sun, H LaButti, KM Schmutz, J Jabbour, D Luo, H Baker, SE Pisabarro, AG Walton, JD Blanchette, RA Henrissat, B Martin, F Cullen, D Hibbett, DS Grigoriev, IV AF Riley, Robert Salamov, Asaf A. Brown, Daren W. Nagy, Laszlo G. Floudas, Dimitrios Held, Benjamin W. Levasseur, Anthony Lombard, Vincent Morin, Emmanuelle Otillar, Robert Lindquist, Erika A. Sun, Hui LaButti, Kurt M. Schmutz, Jeremy Jabbour, Dina Luo, Hong Baker, Scott E. Pisabarro, Antonio G. Walton, Jonathan D. Blanchette, Robert A. Henrissat, Bernard Martin, Francis Cullen, Dan Hibbett, David S. Grigoriev, Igor V. TI Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE lignocellulose; hylogenomics; bioenergy ID PHANEROCHAETE-CHRYSOSPORIUM; SCHIZOPHYLLUM-COMMUNE; GLOEOPHYLLUM-TRABEUM; HETEROBASIDION-ANNOSUM; SECONDARY METABOLISM; SERPULA-LACRYMANS; DEGRADING ENZYMES; LIGNIN PEROXIDASE; MOLECULAR-BIOLOGY; POSTIA-PLACENTA AB Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay. C1 [Riley, Robert; Salamov, Asaf A.; Otillar, Robert; Lindquist, Erika A.; Sun, Hui; LaButti, Kurt M.; Schmutz, Jeremy; Grigoriev, Igor V.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Brown, Daren W.] USDA, Peoria, IL 61604 USA. [Nagy, Laszlo G.; Floudas, Dimitrios; Hibbett, David S.] Clark Univ, Dept Biol, Worcester, MA 01610 USA. [Held, Benjamin W.; Blanchette, Robert A.] Univ Minnesota, St Paul, MN 55108 USA. [Levasseur, Anthony] Aix Marseille Univ, Inst Natl Rech Agron, Unite Mixte Rech 1163, F-13288 Marseille, France. [Lombard, Vincent; Henrissat, Bernard] Aix Marseille Univ, CNRS, Unite Mixte Rech 7257, F-13288 Marseille, France. [Morin, Emmanuelle; Martin, Francis] Univ Lorraine, Inst Natl Rech Agron, Unite Mixte Rech 1136, F-54280 Champenoux, France. [Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, Huntsville, AL 35806 USA. [Jabbour, Dina; Luo, Hong; Walton, Jonathan D.] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Baker, Scott E.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Pisabarro, Antonio G.] Univ Publ Navarra, Dept Agr Prod, Pamplona 31006, Spain. [Cullen, Dan] USDA, Forest Prod Lab, Madison, WI 53726 USA. RP Grigoriev, IV (reprint author), US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. EM dhibbett@clarku.edu; IVGrigoriev@lbl.gov RI Pisabarro, Antonio/K-3622-2014; Henrissat, Bernard/J-2475-2012 OI Pisabarro, Antonio/0000-0001-6987-5794; FU Office of Science of the DOE [DE-AC02-05CH11231]; DOE Great Lakes Bioenergy Research Center (DOE Office of Science Biological and Environmental Research) [DE-FC02-07ER64494] FX We thank Jill Gaskell (Forest Products Laboratory) for assistance with cultures and enzyme assays. The work conducted by the US Department of Energy (DOE) Joint Genome Institute is supported by the Office of Science of the DOE under Contract DE-AC02-05CH11231. J.D.W. and D.J. were supported by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science Biological and Environmental Research Contract DE-FC02-07ER64494). B. H. is Honorary Professor at the Faculty of Health and Medical Sciences, University of Copenhagen. F.M.'s research group is part of the Laboratory of Excellence for Advanced Research on the Biology of Forest Ecosystems (ANR-11-LABX-0002-01). NR 91 TC 107 Z9 111 U1 14 U2 151 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 8 PY 2014 VL 111 IS 27 BP 9923 EP 9928 DI 10.1073/pnas.1400592111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AK6CH UT WOS:000338514800053 PM 24958869 ER PT J AU Ihlefeld, JF Brumbach, M Allerman, AA Wheeler, DR Atcitty, S AF Ihlefeld, Jon F. Brumbach, Michael Allerman, Andrew A. Wheeler, David R. Atcitty, Stanley TI AlGaN composition dependence of the band offsets for epitaxial Gd2O3/AlxGa1-xN (0 <= x <= 0.67) heterostructures SO APPLIED PHYSICS LETTERS LA English DT Article ID MOLECULAR-BEAM EPITAXY; RAY PHOTOEMISSION-SPECTROSCOPY; NANOMETER-THICK GD2O3; GAN; SURFACES; GROWTH; OXIDE AB Gd2O3 films were prepared on (0001)-oriented AlxGa1-xN (0 <= x <= 0.67) thin film substrates via reactive molecular-beam epitaxy. X-ray diffraction revealed that these films possessed the cubic bixbyite structure regardless of substrate composition and were all 111-oriented with in-plane rotations to account for the symmetry difference between the oxide film and nitride epilayer. Valence band offsets were characterized by X-ray photoelectron spectroscopy and were determined to be 0.41 +/- 0.02 eV, 0.17 +/- 0.02 eV, and 0.06 +/- 0.03 eV at the Gd2O3/AlxGa1-xN interfaces for x = 0, 0.28, and 0.67, respectively. (C) 2014 AIP Publishing LLC. C1 [Ihlefeld, Jon F.; Brumbach, Michael; Allerman, Andrew A.; Wheeler, David R.; Atcitty, Stanley] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ihlefeld, JF (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jihlefe@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Oxide film growth conditions, instrumentation, and structural characterization were supported from the U. S. Department of Energy's Office of Electricity Delivery and Energy Reliability (OE) Energy Storage Program managed by Dr. Imre Gyuk. Band offset measurements were supported by the Laboratory Directed Research and Development (LDRD) program at Sandia. The authors acknowledge Dr. Matt Marinella for his critical review of this manuscript and Stuart Van Deusen for assistance with RBS measurements. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 23 TC 3 Z9 3 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 7 PY 2014 VL 105 IS 1 AR 012102 DI 10.1063/1.4889883 PG 4 WC Physics, Applied SC Physics GA AM2FK UT WOS:000339664900040 ER PT J AU Aman, A Chen, Y Lugovy, M Orlovskaya, N Reece, MJ Ma, D Stoica, AD An, K AF Aman, Amjad Chen, Yan Lugovy, Mykola Orlovskaya, Nina Reece, Michael J. Ma, Dong Stoica, Alexandru D. An, Ke TI In-situ neutron diffraction of LaCoO3 perovskite under uniaxial compression. I. Crystal structure analysis and texture development SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CERAMICS; FERROELASTICITY; TRANSITIONS; BEHAVIOR; STRAINS; DOMAINS; VULCAN AB The dynamics of texture formation, changes in crystal structure, and stress accommodation mechanisms have been studied in perovskite-type R (3) over barc rhombohedral LaCoO3 during uniaxial compression using in-situ neutron diffraction. The in-situ neutron diffraction revealed the complex crystallographic changes causing the texture formation and significant straining along certain crystallographic directions during compression, which are responsible for the appearance of hysteresis and non-linear ferroelastic deformation in the LaCoO3 perovskite. The irreversible strain after the first loading was connected with the appearance of non-recoverable changes in the intensity ratio of certain crystallographic peaks, causing non-reversible texture formation. However, in the second loading/unloading cycle, the hysteresis loop was closed and no further irrecoverable strain appeared after deformation. The significant texture formation is responsible for an increase in the Young's modulus of LaCoO3 at high compressive stresses, ranging from 76 GPa at the very beginning of the loading to 194 GPa at 900 MPa at the beginning of the unloading curve. (C) 2014 AIP Publishing LLC. C1 [Aman, Amjad; Chen, Yan; Lugovy, Mykola; Orlovskaya, Nina] Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA. [Chen, Yan; Ma, Dong; Stoica, Alexandru D.; An, Ke] Oak Ridge Natl Lab, Neutron Sci Directorate, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Lugovy, Mykola] Inst Problems Mat Sci, UA-03142 Kiev, Ukraine. [Reece, Michael J.] Univ London, Sch Engn & Mat Sci, London E1 4NS, England. RP Orlovskaya, N (reprint author), Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA. EM Nina.Orlovskaya@ucf.edu RI An, Ke/G-5226-2011; Ma, Dong/G-5198-2011; Stoica, Alexandru/K-3614-2013; Chen, Yan/H-4913-2014 OI An, Ke/0000-0002-6093-429X; Ma, Dong/0000-0003-3154-2454; Stoica, Alexandru/0000-0001-5118-0134; Chen, Yan/0000-0001-6095-1754 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; NSF [CMMI-0968911] FX Research conducted at ORNL's Spallation Neutron Source (SNS) was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This work was supported by the NSF Project No. CMMI-0968911 "Time Dependent Creep Deformation of Non Polar Mixed Conducting Ferroelastic Perovskites." NR 26 TC 3 Z9 3 U1 1 U2 31 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 7 PY 2014 VL 116 IS 1 AR 013503 DI 10.1063/1.4884335 PG 10 WC Physics, Applied SC Physics GA AM1QB UT WOS:000339621400013 ER PT J AU Banai, RE Burton, LA Choi, SG Hofherr, F Sorgenfrei, T Walsh, A To, B Croll, A Brownson, JRS AF Banai, R. E. Burton, L. A. Choi, S. G. Hofherr, F. Sorgenfrei, T. Walsh, A. To, B. Croell, A. Brownson, J. R. S. TI Ellipsometric characterization and density-functional theory analysis of anisotropic optical properties of single-crystal alpha-SnS SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID THIN-FILMS; BAND-STRUCTURE; TIN SULFIDE; TEMPERATURE-DEPENDENCE; ELECTRONIC-STRUCTURE; DIELECTRIC FUNCTION; SPRAY-PYROLYSIS; SPECTRA; DEPOSITION AB We report on the anisotropic optical properties of single-crystal tin monosulfide (SnS). The components epsilon(a), epsilon(b), and epsilon(c) of the pseudodielectric-function tensor - + i spectra are taken from 0.73 to 6.45 eV by spectroscopic ellipsometry. The measured spectra are in a good agreement with the results of the calculated dielectric response from hybrid density functional theory. The spectra show the direct band-gap onset and a total of eight above-band-gap optical structures that are associated with the interband-transition critical points (CPs). We obtain accurate CP energies by fitting analytic CP expressions to second-energy-derivatives of the data. Their probable electronic origins and implications for photovoltaic applications are discussed. (C) 2014 AIP Publishing LLC. C1 [Banai, R. E.; Brownson, J. R. S.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Burton, L. A.; Walsh, A.] Univ Bath, Ctr Sustainable Chem Technol, Bath BA2 7AY, Avon, England. [Burton, L. A.; Walsh, A.] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England. [Choi, S. G.; To, B.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Hofherr, F.; Sorgenfrei, T.; Croell, A.] Univ Freiburg, Crystallog Inst Earth & Environm Sci, D-79104 Freiburg, Germany. RP Choi, SG (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM sukgeun.choi@nrel.gov RI Choi, Sukgeun/J-2345-2014; Walsh, Aron/A-7843-2008; Croell, Arne/A-2480-2013 OI Walsh, Aron/0000-0001-5460-7033; Croell, Arne/0000-0002-8673-9994 FU U.S. Department of Energy as a part of the Non-Proprietary Partnering Program at the National Renewable Energy Laboratory [DE-AC36-08-GO28308]; Royal Society; EPSRC [EP/G03768X/1] FX This work was supported by the U.S. Department of Energy as a part of the Non-Proprietary Partnering Program at the National Renewable Energy Laboratory under Contract No. DE-AC36-08-GO28308. A.W. acknowledges support from the Royal Society for a University Research Fellowship, and L. A.B. was funded by EPSRC (Grant No. EP/G03768X/1). Calculations were performed with the use of the IRIDIS High Performance Computing Facility, and associated support services at the University of Southampton. NR 58 TC 12 Z9 12 U1 5 U2 33 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 7 PY 2014 VL 116 IS 1 AR 013511 DI 10.1063/1.4886915 PG 7 WC Physics, Applied SC Physics GA AM1QB UT WOS:000339621400021 ER PT J AU Fleming, RM Myers, SM Wampler, WR Lang, DV Seager, CH Campbell, JM AF Fleming, R. M. Myers, S. M. Wampler, W. R. Lang, D. V. Seager, C. H. Campbell, J. M. TI Field dependent emission rates in radiation damaged GaAs SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID LEVEL TRANSIENT SPECTROSCOPY; IRRADIATION-INDUCED DEFECTS; MOLECULAR-BEAM EPITAXY; INDUCED HOLE TRAPS; N-GAAS; ENHANCED EMISSION; GALLIUM-ARSENIDE; DEEP LEVELS; P-GAAS; SEMICONDUCTORS AB We have measured the temperature and field dependence of emission rates from five traps in electron damaged GaAs. Four of the traps have previously been identified as radiation defects. One of the traps, seen in higher doped diodes, has not been previously identified. We have fit the data to a multiphonon emission theory that allows recombination in GaAs to be characterized over a broad range of temperature and electric field. These results demonstrate an efficient method to calculate field-dependent emission rates in GaAs. (C) 2014 AIP Publishing LLC. C1 [Fleming, R. M.; Myers, S. M.; Wampler, W. R.; Lang, D. V.; Seager, C. H.; Campbell, J. M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Fleming, RM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Fleming, Robert/B-1248-2008 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We would like to thank Professor A. Schenk, ETH, Zurich for several communications discussing details of his theoretical work on electric-field effects in semiconductors. Electron damage of our GaAs diodes was performed by Don King and Kyle McDonald. Diode fabrication was provided by Bridget Clevenger, Gary Partrizi, and John Klem. We thank Ed Bielejec, Peter Schultz, Darwin Serkland, George Vizkelethy, and Alan Wright for stimulating discussions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 28 TC 5 Z9 5 U1 0 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 7 PY 2014 VL 116 IS 1 AR 013710 DI 10.1063/1.4885156 PG 7 WC Physics, Applied SC Physics GA AM1QB UT WOS:000339621400037 ER PT J AU French, M Mattsson, TR AF French, Martin Mattsson, Thomas R. TI Thermodynamically constrained correction to ab initio equations of state SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID AUGMENTED-WAVE METHOD; MOLECULAR-DYNAMICS; OF-STATE; THERMAL EXPANSIVITY; HIGH-PRESSURES; CRITICAL-POINT; ELECTRON-GAS; METALS; EARTH; GPA AB We show how equations of state generated by density functional theory methods can be augmented to match experimental data without distorting the correct behavior in the high-and low-density limits. The technique is thermodynamically consistent and relies on knowledge of the density and bulk modulus at a reference state and an estimation of the critical density of the liquid phase. We apply the method to four materials representing different classes of solids: carbon, molybdenum, lithium, and lithium fluoride. It is demonstrated that the corrected equations of state for both the liquid and solid phases show a significantly reduced dependence of the exchange-correlation functional used. (C) 2014 AIP Publishing LLC. C1 [French, Martin; Mattsson, Thomas R.] Sandia Natl Labs, HEDP Theory, Albuquerque, NM 87185 USA. RP French, M (reprint author), Sandia Natl Labs, HEDP Theory, POB 5800, Albuquerque, NM 87185 USA. FU NNSA ASC/PEM program at Sandia; U.S. Department of Energys National Nuclear Security Administration [DE-AC04-94AL85000] FX We acknowledge inspiring discussions with D. Swift, M. P. Desjarlais, L. Shulenburger, and M. D. Knudson. This work was supported by the NNSA ASC/PEM program at Sandia. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 48 TC 4 Z9 4 U1 8 U2 83 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 7 PY 2014 VL 116 IS 1 AR 013510 DI 10.1063/1.4885417 PG 5 WC Physics, Applied SC Physics GA AM1QB UT WOS:000339621400020 ER PT J AU Lugovy, M Aman, A Chen, Y Orlovskaya, N Kuebler, J Graule, T Reece, MJ Ma, D Stoica, AD An, K AF Lugovy, Mykola Aman, Amjad Chen, Yan Orlovskaya, Nina Kuebler, Jakob Graule, Thomas Reece, Michael J. Ma, Dong Stoica, Alexandru D. An, Ke TI In-situ neutron diffraction of LaCoO3 perovskite under uniaxial compression. II. Elastic properties SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FERROELASTICITY; CERAMICS; BEHAVIOR; STRAIN AB Calculations of elastic constants and development of elastic anisotropy under uniaxial compression in originally isotropic polycrystalline LaCoO3 perovskite are reported. The lattice strains in individual (hkl) planes as well as average lattice strain were determined both for planes oriented perpendicular and parallel to the loading direction using in-situ neutron diffraction. Utilizing average lattice strains as well as lattice strains along the a and c crystallographic directions, an attempt was made to determine Poisson's ratio of LaCoO3, which was then compared with that measured using an impulse excitation technique. The elastic constants were calculated and Young's moduli of LaCoO3 single crystal in different crystallographic directions were estimated. (C) 2014 AIP Publishing LLC. C1 [Lugovy, Mykola; Aman, Amjad; Chen, Yan; Orlovskaya, Nina] Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA. [Lugovy, Mykola] Inst Problems Mat Sci, UA-03142 Kiev, Ukraine. [Chen, Yan; Ma, Dong; Stoica, Alexandru D.; An, Ke] Oak Ridge Natl Lab, Neutron Sci Directorate, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Kuebler, Jakob; Graule, Thomas] Empa, Swiss Fed Labs Mat Sci & Technol, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland. [Reece, Michael J.] Univ London, Sch Engn & Mat Sci, London E1 4NS, England. RP Orlovskaya, N (reprint author), Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA. EM Nina.Orlovskaya@ucf.edu RI An, Ke/G-5226-2011; Ma, Dong/G-5198-2011; Stoica, Alexandru/K-3614-2013; Chen, Yan/H-4913-2014; OI An, Ke/0000-0002-6093-429X; Ma, Dong/0000-0003-3154-2454; Stoica, Alexandru/0000-0001-5118-0134; Chen, Yan/0000-0001-6095-1754; Kuebler, Jakob/0000-0003-1331-0721 FU NSF [CMMI-0968911]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the NSF Project No. CMMI-0968911 "Time Dependent Creep Deformation of Non Polar Mixed Conducting Ferroelastic Perovskites". Research conducted at ORNL's Spallation Neutron Source (SNS) was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 15 TC 3 Z9 3 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 7 PY 2014 VL 116 IS 1 AR 013504 DI 10.1063/1.4884336 PG 9 WC Physics, Applied SC Physics GA AM1QB UT WOS:000339621400014 ER PT J AU Zou, YT Qi, XT Wang, XB Chen, T Li, XF Welch, D Li, BS AF Zou, Yongtao Qi, Xintong Wang, Xuebing Chen, Ting Li, Xuefei Welch, David Li, Baosheng TI High-pressure behavior and thermoelastic properties of niobium studied by in situ x-ray diffraction SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID EQUATION-OF-STATE; TRANSITION-METALS; TEMPERATURE; CONJUNCTION; ELASTICITY; RADIATION; MO AB In situ synchrotron energy dispersive x-ray diffraction (XRD) experiments on Nb have been conducted at pressures up to 6.4 GPa and temperatures up to 1073 K. From the pressure-volume-temperature measurements, thermoelastic parameters were derived for the first time for Nb based on the thermal pressure (Delta Pth) equation of state (EOS), modified high-T Birch-Murnaghan EOS, and Mie-Gruneisen-Debye EOS. With the pressure derivative of the bulk modulus K-T' fixed at 4.0, we obtained the ambient isothermal bulk modulus K-T0 - 174(5) GPa, the temperature derivative of bulk modulus at constant pressure (partial derivative K-T/partial derivative T)(P)(-) - 0.060(8) GPa K-1 and at constant volume (partial derivative K-T/partial derivative T)(V)(-) -0.046d8_ GPa K-1, the volumetric thermal expansivity alpha(T)(T) (-) 2.3(3) x 10(-5) + 0.3(2) x 10(-8)T (K-1), as well as the pressure dependence of thermal expansion (partial derivative alpha/partial derivative P)(T) - (-2.0 +/- 0.4) x 10(-6) K-1 GPa(-1). Fitting the present data to the Mie-Gruneisen-Debye EOS with Debye temperature Theta(0) - 276.6K gives gamma(0) - 1.27(8) and K-T0 - 171(3) GPa at a fixed value of q - 3.0. The ambient isothermal bulk modulus and Gr_ uneisen parameter derived from this work are comparable to previously reported values from both experimental and theoretical studies. An in situ high-resolution, angle dispersive XRD study on Nb did not indicate any anomalous behavior related to pressure-induced electronic topological transitions at similar to 5GPa as has been reported previously. (C) 2014 AIP Publishing LLC. C1 [Zou, Yongtao; Li, Xuefei; Li, Baosheng] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. [Qi, Xintong; Welch, David] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Wang, Xuebing; Chen, Ting] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Li, Xuefei] Jilin Normal Univ, Key Lab Funct Mat Phys & Chem, Minist Educ, Siping 136000, Peoples R China. [Welch, David] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Zou, YT (reprint author), SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. EM yongtao.zou@stonybrook.edu FU NSF [EAR1045630]; DOE/NNSA [DENA0001815]; COMPRES, Consortium for Materials Properties Research in Earth Sciences under NSF [EAR 10-43050] FX This work was supported by NSF (EAR1045630) and DOE/NNSA (DENA0001815) to B. Li. We very much appreciate Robert C. Liebermann for his valuable discussion and suggestions. Yongtao Zou also thanks Haiyan Chen and Zhiqiang Chen for the assistance at the X17B2 and X17C beamlines. The operation of X17B2 and X17C was supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF (EAR 10-43050). Mineral Physics Institute Publication No. 502. NR 32 TC 1 Z9 1 U1 1 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 7 PY 2014 VL 116 IS 1 AR 013516 DI 10.1063/1.4887436 PG 6 WC Physics, Applied SC Physics GA AM1QB UT WOS:000339621400026 ER PT J AU Leettola, CN Knight, MJ Cascio, D Hoffman, S Bowie, JU AF Leettola, Catherine N. Knight, Mary Jane Cascio, Duilio Hoffman, Sigrid Bowie, James U. TI Characterization of the SAM domain of the PKD-related protein ANKS6 and its interaction with ANKS3 SO BMC STRUCTURAL BIOLOGY LA English DT Article DE Polycystic kidney disease; Protein-protein interaction; Polymerization; Crystal structure ID POLYCYSTIC KIDNEY-DISEASE; STERILE-ALPHA-MOTIF; LIPID PHOSPHATASE SHIP2; POSTSYNAPTIC DENSITY; KINASE; BINDING; POLYMER; MODELS; FAMILY; RAT AB Background: Autosomal dominant polycystic kidney disease ( ADPKD) is the most common genetic disorder leading to end-stage renal failure in humans. In the PKD/Mhm(cy/+) rat model of ADPKD, the point mutation R823W in the sterile alpha motif (SAM) domain of the protein ANKS6 is responsible for disease. SAM domains are known protein-protein interaction domains, capable of binding each other to form polymers and heterodimers. Despite its physiological importance, little is known about the function of ANKS6 and how the R823W point mutation leads to PKD. Recent work has revealed that ANKS6 interacts with a related protein called ANKS3. Both ANKS6 and ANKS3 have a similar domain structure, with ankyrin repeats at the N-terminus and a SAM domain at the C-terminus. Results: The SAM domain of ANKS3 is identified as a direct binding partner of the ANKS6 SAM domain. We find that ANKS3-SAM polymerizes and ANKS6-SAM can bind to one end of the polymer. We present crystal structures of both the ANKS3-SAM polymer and the ANKS3-SAM/ANKS6-SAM complex, revealing the molecular details of their association. We also learn how the R823W mutation disrupts ANKS6 function by dramatically destabilizing the SAM domain such that the interaction with ANKS3-SAM is lost. Conclusions: ANKS3 is a direct interacting partner of ANKS6. By structurally and biochemically characterizing the interaction between the ANKS3 and ANKS6 SAM domains, our work provides a basis for future investigation of how the interaction between these proteins mediates kidney function. C1 [Leettola, Catherine N.; Knight, Mary Jane; Cascio, Duilio; Bowie, James U.] Univ Calif Los Angeles, Inst Mol Biol, UCLA DOE Inst Genom & Prote, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Hoffman, Sigrid] Heidelberg Univ, Klinikum Mannheim, Med Res Ctr, D-68167 Mannheim, Germany. RP Bowie, JU (reprint author), Univ Calif Los Angeles, Inst Mol Biol, UCLA DOE Inst Genom & Prote, Dept Chem & Biochem, Boyer Hall 611 Charles E Young Dr E, Los Angeles, CA 90095 USA. EM bowie@mbi.ucla.edu FU NIH [5R01DK100482, P41 GM103403]; National Research Service Award [GM007185]; DOE [DE-FC02-02ER63421, DE-AC02-06CH11357]; NCRR [5P41RR015301-10] FX This work was supported by NIH Grant 5R01DK100482 to JUB and SH as well as a Ruth L. Kirschstein National Research Service Award GM007185 to CNL. We thank Mike Collazo and Mike Sawaya at the UCLA-DOE X-ray Crystallization and Crystallography Core Facilities, which is supported by DOE Grant DE-FC02-02ER63421. We thank M. Capel, K. Rajashankar, N. Sukumar, J. Schuermann, I. Kourinov and F. Murphy at APS NECAT beamlines 24-ID, which are supported by grants from the NCRR (5P41RR015301-10) and NIH (P41 GM103403). We thank Dan McNamara for assistance with the SEC-MALS experiments. Use of the APS is supported by the DOE under Contract DE-AC02-06CH11357. NR 60 TC 16 Z9 16 U1 0 U2 4 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1472-6807 J9 BMC STRUCT BIOL JI BMC Struct. Biol. PD JUL 7 PY 2014 VL 14 AR 17 DI 10.1186/1472-6807-14-17 PG 15 WC Biophysics SC Biophysics GA AL5TO UT WOS:000339196400001 PM 24998259 ER PT J AU Ma, J Zhou, YN Gao, YR Kong, QY Wang, ZX Yang, XQ Chen, LQ AF Ma, Jun Zhou, Yong-Ning Gao, Yurui Kong, Qingyu Wang, Zhaoxiang Yang, Xiao-Qing Chen, Liquan TI Molybdenum Substitution for Improving the Charge Compensation and Activity of Li2MnO3 SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE charge transfer; doping; layered compounds; lithium; molybdenum ID LITHIUM-ION BATTERIES; CATHODE MATERIALS; OXYGEN STABILITY; MANGANESE OXIDES; SPECTROSCOPY; PERFORMANCE; ELECTRODES; CAPACITY; MN AB Lithium-rich layer-structured oxides xLi(2)MnO(3)center dot(1-x)LiMO2 (0 < x < 1, M=Mn, Ni, Co, etc.) are interesting and potential cathode materials for high energy-density lithium ion batteries. However, the characteristic charge compensation contributed by O2- in Li2MnO3 leads to the evolution of oxygen during the initial Li+ ion extraction at high voltage and voltage fading in subsequent cycling, resulting in a safety hazard and poor cycling performance of the battery. Molybdenum substitution was performed in this work to provide another electron donor and to enhance the electrochemical activity of Li2MnO3-based cathode materials. X-ray diffraction and adsorption studies indicated that Mo5+ substitution expands the unit cell in the crystal lattice and weakens the Li-O and Mn-O bonds, as well as enhancing the activity of Li2MnO3 by lowering its delithiation potential and suppressing the release of oxygen. In addition, the chemical environment of O2- ions in molybdenum-substituted Li2MnO3 is more reversible than in the unsubstituted sample during cycling. Therefore molybdenum substitution is expected to improve the performances of the Li2MnO3-based lithium-rich cathode materials. C1 [Ma, Jun; Gao, Yurui; Wang, Zhaoxiang; Chen, Liquan] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing Key Lab New Energy Mat & Devices, Inst Phys,Key Lab Renewable Energy, Beijing 100190, Peoples R China. [Zhou, Yong-Ning; Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Kong, Qingyu] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Kong, QY (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM qkong@aps.anl.gov; zxwang@iphy.ac.cn; xyang@bn-l.gov RI Zhou, Yong-Ning/I-9579-2014 FU National Natural Science Foundation of China (NSFC) [51372268]; National 973 Program of China [2009CB220100]; U.S. Department of Energy; Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies [DEAC02-98CH10886] FX This work was financially supported by the National Natural Science Foundation of China (NSFC No. 51372268) and the National 973 Program of China (2009CB220100). The work at Brookhaven National Laboratory was supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies under Contract No. DEAC02-98CH10886. The authors acknowledge technical support by the beamline scientists at U7A and X18A of National Synchrotron Light Source (NSLS) and beamline scientists at 12BM of the Advanced Photon Sources at Argonne National Laboratory. NR 35 TC 11 Z9 11 U1 9 U2 118 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD JUL 7 PY 2014 VL 20 IS 28 BP 8723 EP 8730 DI 10.1002/chem.201402727 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA AK9TC UT WOS:000338768900031 PM 24939463 ER PT J AU Bodwin, GT Chung, HS Kim, UR Lee, J AF Bodwin, Geoffrey T. Chung, Hee Sok Kim, U-Rae Lee, Jungil TI Fragmentation Contributions to J/psi Production at the Tevatron and the LHC SO PHYSICAL REVIEW LETTERS LA English DT Article ID GLUON FRAGMENTATION; PERTURBATION-THEORY; HEAVY QUARKONIUM; QCD CORRECTIONS; PP COLLISIONS; ROOT-S=7 TEV; PARTON; POLARIZATION; SCATTERING AB We compute leading-power fragmentation corrections to J/psi production at the Tevatron and the LHC. We find that, when these corrections are combined with perturbative corrections through next-to-leading order in the strong coupling constant alpha(s), we obtain a good fit to high-p(T) cross section data from the CDF and CMS Collaborations. The fitted long-distance matrix elements lead to predictions of near-zero J/psi polarization in the helicity frame at large p(T). C1 [Bodwin, Geoffrey T.; Chung, Hee Sok; Kim, U-Rae; Lee, Jungil] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Chung, Hee Sok; Kim, U-Rae; Lee, Jungil] Korea Univ, Dept Phys, Seoul 136701, South Korea. RP Bodwin, GT (reprint author), Argonne Natl Lab, Div High Energy Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. FU Korea University; U.S. Department of Energy, Division of High Energy Physics [DE-AC02-06CH11357] FX We thank Jean-Philippe Guillet for providing information about the computer code that implements the NLO partonscattering results of Ref. [25]. We are grateful to Mathias Butenschon and Bernd Kniehl for supplying details of their NLO calculations. We especially thank Kuang-Ta Chao and Yan-Qing Ma for providing us with extensive numerical results that are based on their NLO calculations in Refs. [7,8]. This work was supported in part by Korea University. The work of G. T. B. and H. S. C. is supported by the U.S. Department of Energy, Division of High Energy Physics, under Contract No. DE-AC02-06CH11357. The submitted manuscript has been created in part by UChicago Argonne, LLC, Operator of Argonne National Laboratory. Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 37 TC 30 Z9 30 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 7 PY 2014 VL 113 IS 2 AR 022001 DI 10.1103/PhysRevLett.113.022001 PG 5 WC Physics, Multidisciplinary SC Physics GA AL3YR UT WOS:000339068900005 PM 25062165 ER PT J AU Iyer-Biswas, S Crooks, GE Scherer, NF Dinner, AR AF Iyer-Biswas, Srividya Crooks, Gavin E. Scherer, Norbert F. Dinner, Aaron R. TI Universality in Stochastic Exponential Growth SO PHYSICAL REVIEW LETTERS LA English DT Article ID GENE-REGULATION; SIZE CONTROL; CELL-SIZE; NOISE; BACTERIA; CYCLE AB Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth. C1 [Iyer-Biswas, Srividya; Scherer, Norbert F.; Dinner, Aaron R.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Iyer-Biswas, Srividya; Scherer, Norbert F.; Dinner, Aaron R.] Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA. [Crooks, Gavin E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Iyer-Biswas, S (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM nfschere@uchicago.edu; dinner@uchicago.edu FU W. M. Keck Foundation; National Science Foundation (NSF) [PHY-1305542]; Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Tom Witten and Leo Kadanoff for several insightful discussions, and Herman Gudjonson for a careful reading of the manuscript. A. R. D., N. F. S., and S. I. B. thank the W. M. Keck Foundation and the National Science Foundation (NSF Grant No. PHY-1305542) for financial support. G. E. C. was supported by the Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 34 TC 16 Z9 16 U1 3 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 7 PY 2014 VL 113 IS 2 AR 028101 DI 10.1103/PhysRevLett.113.028101 PG 5 WC Physics, Multidisciplinary SC Physics GA AL3YR UT WOS:000339068900020 PM 25062238 ER PT J AU Riviello, G Brif, C Long, RX Wu, RB Tibbetts, KM Ho, TS Rabitz, H AF Riviello, Gregory Brif, Constantin Long, Ruixing Wu, Re-Bing Tibbetts, Katharine Moore Ho, Tak-San Rabitz, Herschel TI Searching for quantum optimal control fields in the presence of singular critical points SO PHYSICAL REVIEW A LA English DT Article ID FEMTOSECOND LASER-PULSES; HIGH-HARMONIC GENERATION; EXCITED-STATE DYNAMICS; COHERENT CONTROL; POPULATION TRANSFER; LIQUID-PHASE; UNIMOLECULAR REACTIONS; RETINAL ISOMERIZATION; SELECTIVE EXCITATION; MOLECULAR-DYNAMICS AB Quantum optimal control has enjoyed wide success for a variety of theoretical and experimental objectives. These favorable results have been attributed to advantageous properties of the corresponding control landscapes, which are free from local optima if three conditions are met: (1) the quantum system is controllable, (2) the Jacobian of the map from the control field to the evolution operator is full rank, and (3) the control field is not constrained. This paper explores how gradient searches for globally optimal control fields are affected by deviations from assumption (2). In some quantum control problems, so-called singular critical points, at which the Jacobian is rank deficient, may exist on the landscape. Using optimal control simulations, we show that search failure is only observed when a singular critical point is also a second-order trap, which occurs if the control problem meets additional conditions involving the system Hamiltonian and/or the control objective. All known second-order traps occur at constant control fields, and we also show that they only affect searches that originate very close to them. As a result, even when such traps exist on the control landscape, they are unlikely to affect well-designed gradient optimizations under realistic searching conditions. C1 [Riviello, Gregory; Long, Ruixing; Tibbetts, Katharine Moore; Ho, Tak-San; Rabitz, Herschel] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Brif, Constantin] Sandia Natl Labs, Dept Scalable & Secure Syst Res, Livermore, CA 94550 USA. [Wu, Re-Bing] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China. [Wu, Re-Bing] TNlist, Ctr Quantum Informat Sci & Technol, Beijing 100084, Peoples R China. [Tibbetts, Katharine Moore] Temple Univ, Dept Chem, Philadelphia, PA 19122 USA. RP Riviello, G (reprint author), Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RI Wu, Rebing/A-3647-2013; OI Wu, Rebing/0000-0003-3545-8700; Tibbetts, Katharine/0000-0001-8853-5656 FU Department of Energy [DE-FG02-02ER15344]; Army Research Office [W911NF-13-1-0237]; NSFC [61374091, 60904034, 61134008]; Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge support from the Department of Energy under Grant No. DE-FG02-02ER15344 and the Army Research Office under Grant No. W911NF-13-1-0237. R. B. W. acknowledge support from NSFC under Grants No. 61374091, No. 60904034, and No. 61134008. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 187 TC 10 Z9 10 U1 0 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD JUL 7 PY 2014 VL 90 IS 1 AR 013404 DI 10.1103/PhysRevA.90.013404 PG 12 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA AL3WZ UT WOS:000339063300004 ER PT J AU Coldea, AI Seabra, L McCollam, A Carrington, A Malone, L Bangura, AF Vignolles, D van Rhee, PG McDonald, RD Sorgel, T Jansen, M Shannon, N Coldea, R AF Coldea, A. I. Seabra, L. McCollam, A. Carrington, A. Malone, L. Bangura, A. F. Vignolles, D. van Rhee, P. G. McDonald, R. D. Soergel, T. Jansen, M. Shannon, N. Coldea, R. TI Cascade of field-induced magnetic transitions in a frustrated antiferromagnetic metal SO PHYSICAL REVIEW B LA English DT Article ID LATTICE AB Frustrated magnets can exhibit many novel forms of order when exposed to high magnetic fields. Much less, however, is known about materials where frustration occurs in the presence of itinerant electrons. Here we report thermodynamic and transport measurements on micron-size single crystals of the triangular-lattice metallic antiferromagnet 2H-AgNiO2, in magnetic fields of up to 90 T and temperatures down to 0.35 K. We observe a cascade of magnetic phase transitions at 13.5, 20, 28, and 39 T in fields applied along the easy axis, and we combine magnetic torque, specific heat, and transport data to construct the field-temperature phase diagram. The low-field experimental data are compared with theoretical calculations for a frustrated easy-axis Heisenberg model based on realistic parameters for the localized moments of AgNiO2. Deviations from this model's predictions are attributed to the role played by the itinerant electrons. C1 [Coldea, A. I.; Shannon, N.; Coldea, R.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Coldea, A. I.; Seabra, L.; Carrington, A.; Malone, L.; Bangura, A. F.; Shannon, N.; Coldea, R.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Seabra, L.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Seabra, L.] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. [McCollam, A.; van Rhee, P. G.] Radboud Univ Nijmegen, IMM, High Field Magnet Lab, NL-6525 ED Nijmegen, Netherlands. [Bangura, A. F.; Soergel, T.; Jansen, M.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Bangura, A. F.] RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Vignolles, D.] CNRS, Lab Natl Champs Magnet Intenses, F-31077 Toulouse, France. [McDonald, R. D.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Shannon, N.] Okinawa Inst Sci & Technol, Kunigami, Okinawa 9040495, Japan. RP Coldea, AI (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM amalia.coldea@physics.ox.ac.uk RI van Rhee, Peter/C-9823-2013; Shannon, Nic/N-3874-2014; McCollam, Alix/F-9697-2015; Coldea, Amalia/C-1106-2013 OI Shannon, Nic/0000-0001-9258-1583; FU EPSRC [EP/I004475/1, EP/C539974/1, EP/G031460/1, EP/I017836/1]; FCT Grant [SFRH/BD/27862/2006]; HFML-RU/FOM; LNCMI-CNRS; EPSRC Career Acceleration Fellowship [EP/I004475/1]; BES "Science at 100 T." FX We thank J. Analytis, C. Jaudet, P. A. Goddard, Jos Perenboom, and M. D. Watson for technical support during experiments. We thank I. I. Mazin, A. Schofield, and I. Vekhter for useful discussions. This work was supported by EPSRC Grants No. EP/I004475/1, No. EP/C539974/1, No. EP/G031460/1, and No. EP/I017836/1, FCT Grant No. SFRH/BD/27862/2006, and for part of the work we acknowledge the support of HFML-RU/FOM and LNCMI-CNRS, a member of the European Magnetic Field Laboratory (EMFL). A. I. C. acknowledges support from an EPSRC Career Acceleration Fellowship (Grant No. EP/I004475/1). R.D.M. acknowledges support from BES "Science at 100 T." NR 24 TC 2 Z9 2 U1 2 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL 7 PY 2014 VL 90 IS 2 AR 020401 DI 10.1103/PhysRevB.90.020401 PG 5 WC Physics, Condensed Matter SC Physics GA AL3XJ UT WOS:000339064700001 ER PT J AU Ehlers, PJ Accardi, A Brady, LT Melnitchouk, W AF Ehlers, P. J. Accardi, A. Brady, L. T. Melnitchouk, W. TI Nuclear effects in the proton-deuteron Drell-Yan process SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC SCATTERING; LIGHT-QUARK SEA; FLAVOR ASYMMETRY; PARTON DISTRIBUTIONS; GOTTFRIED SUM; BREAKING; BINDING AB We compute the nuclear corrections to the proton-deuteron Drell-Yan cross section for inclusive dilepton production, which, when combined with the proton-proton cross section, is used to determine the flavor asymmetry in the proton sea, (d) over bar not equal (u) over bar In addition to nuclear smearing corrections that are known to be important at large values of the nucleon's parton momentum fraction x(N), we also consider dynamical offshell nucleon corrections associated with the modifications of the bound nucleon structure inside the deuteron, which we find to be significant at intermediate and large x(N) values. We also provide estimates of the nuclear corrections at kinematics corresponding to existing and planned Drell-Yan experiments at Fermilab and J-PARC which aim to determine the (d) over bar/(u) over bar ratio for x less than or similar to 0.6. C1 [Ehlers, P. J.] Univ Minnesota, Morris, MN 56267 USA. [Ehlers, P. J.; Accardi, A.; Brady, L. T.; Melnitchouk, W.] Jefferson Lab, Newport News, VA 23606 USA. [Accardi, A.; Brady, L. T.] Hampton Univ, Hampton, VA 23668 USA. RP Ehlers, PJ (reprint author), Univ Minnesota, Morris, MN 56267 USA. FU DOE under Jefferson Science Associates, LLC operates Jefferson Lab [DE-AC05-06OR23177]; NSF; DOD's ASSURE program; DOE [DE-SC0008791] FX We thank D. F. Geesaman, S. Kumano, and J.-C. Peng for helpful communications about the proposed Drell-Yan experiments at Fermilab and J-PARC. This work was supported by the DOE Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Lab, and by the NSF and DOD's ASSURE program. The work of A. A. was supported in part by DOE Contract No. DE-SC0008791. NR 59 TC 2 Z9 2 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 7 PY 2014 VL 90 IS 1 AR 014010 DI 10.1103/PhysRevD.90.014010 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AL3YA UT WOS:000339066700006 ER PT J AU Wang, GJ Tomasi, D Convit, A Logan, J Wong, CT Shumay, E Fowler, JS Volkow, ND AF Wang, Gene-Jack Tomasi, Dardo Convit, Antonio Logan, Jean Wong, Christopher T. Shumay, Elena Fowler, Joanna S. Volkow, Nora D. TI BMI Modulates Calorie-Dependent Dopamine Changes in Accumbens from Glucose Intake SO PLOS ONE LA English DT Article ID D2 RECEPTORS; REWARD VALUE; TASTE; FOOD; DYSFUNCTION; RACLOPRIDE; BEHAVIORS; STRIATUM; COCAINE; HUMANS AB Objective: Dopamine mediates the rewarding effects of food that can lead to overeating and obesity, which then trigger metabolic neuroadaptations that further perpetuate excessive food consumption. We tested the hypothesis that the dopamine response to calorie intake (independent of palatability) in striatal brain regions is attenuated with increases in weight. Method: We used positron emission tomography with [C-11]raclopride to measure dopamine changes triggered by calorie intake by contrasting the effects of an artificial sweetener (sucralose) devoid of calories to that of glucose to assess their association with body mass index (BMI) in nineteen healthy participants (BMI range 21-35). Results: Neither the measured blood glucose concentrations prior to the sucralose and the glucose challenge days, nor the glucose concentrations following the glucose challenge vary as a function of BMI. In contrast the dopamine changes in ventral striatum (assessed as changes in non-displaceable binding potential of [C-11] raclopride) triggered by calorie intake (contrast glucose - sucralose) were significantly correlated with BMI (r = 0.68) indicating opposite responses in lean than in obese individuals. Specifically whereas in normal weight individuals (BMI <25) consumption of calories was associated with increases in dopamine in the ventral striatum in obese individuals it was associated with decreases in dopamine. Conclusion: These findings show reduced dopamine release in ventral striatum with calorie consumption in obese subjects, which might contribute to their excessive food intake to compensate for the deficit between the expected and the actual response to food consumption. C1 [Wang, Gene-Jack; Tomasi, Dardo; Wong, Christopher T.; Shumay, Elena; Volkow, Nora D.] NIAAA, Lab Neuroimaging, Bethesda, MD 20892 USA. [Convit, Antonio; Logan, Jean] NYU, Dept Psychiat, New York, NY 10016 USA. [Convit, Antonio] Nathan S Kline Inst Psychiat Res, Orangeburg, NY USA. [Fowler, Joanna S.] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. RP Wang, GJ (reprint author), NIAAA, Lab Neuroimaging, Bethesda, MD 20892 USA. EM gene-jack.wang@nih.gov RI Tomasi, Dardo/J-2127-2015; OI Convit, Antonio/0000-0003-2201-2689; Logan, Jean/0000-0002-6993-9994 FU Royalty Funds; National Institute of Health [Z01AA000550, R01DK064087-09, K01DA025280]; U. S. Department of Energy OBER [DE-ACO2-76CH00016] FX U. S. Department of Energy OBER: DE-ACO2-76CH00016 for infrastructure support of Brookhaven National Laboratory and Royalty Funds to GJW. National Institute of Health: Z01AA000550 to NDV, R01DK064087-09 to AC, K01DA025280 to ES. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 26 TC 14 Z9 14 U1 3 U2 17 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 7 PY 2014 VL 9 IS 7 AR e101585 DI 10.1371/journal.pone.0101585 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AK7WB UT WOS:000338637300060 PM 25000285 ER PT J AU Berto, TC Xu, N Lee, SR McNeil, AJ Alp, EE Zhao, JY Richter-Addo, GB Lehnert, N AF Berto, Timothy C. Xu, Nan Lee, Se Ryeon McNeil, Anne J. Alp, E. Ercan Zhao, Jiyong Richter-Addo, George B. Lehnert, Nicolai TI Characterization of the Bridged Hyponitrite Complex {[Fe(OEP)](2)(mu-N2O2)}: Reactivity of Hyponitrite Complexes and Biological Relevance SO INORGANIC CHEMISTRY LA English DT Article ID NITRIC-OXIDE REDUCTASE; RESONANCE VIBRATIONAL SPECTROSCOPY; QUANTUM MECHANICS/MOLECULAR MECHANICS; CYTOCHROME-P450 NO REDUCTASE; EFFECTIVE CORE POTENTIALS; IRON NITROSYL PORPHYRINS; AXIAL LIGAND ORIENTATION; FERROUS HEME-NITROSYLS; GAUSSIAN-BASIS SETS; ELECTRONIC-STRUCTURE AB The detoxification of nitric oxide (NO) by bacterial NO reductase (NorBC) represents a paradigm of how NO can be detoxified anaerobically in cells. In order to elucidate the mechanism of this enzyme, model complexes provide a convenient means to assess potential reaction intermediates. In particular, there have been many proposed mechanisms that invoke the formation of a hyponitrite bridge between the heme b(3) and nonheme iron (Fe-B) centers within the NorBC active site. However, the reactivity of bridged iron hyponitrite complexes has not been investigated much in the literature. The model complex {[Fe(OEP)](2)(mu-N2O2)} offers a unique opportunity to study the electronic structure and reactivity of such a hyponitrite-bridged complex. Here we report the detailed characterization of {[Fe(OEP)](2)(mu-N2O2)} using a combination of IR, nuclear resonance vibrational spectroscopy, electron paramagnetic resonance, and magnetic circular dichroism spectroscopy along with SQUID magnetometry. These results show that the ground-state electronic structure of this complex is best described as having two intermediate-spin (S = 3/2) iron centers that are weakly antiferromagnetically coupled across the N2O22- bridge. The analogous complex {[Fe(PPDME)](2)(mu-N2O2)} shows overall similar properties. Finally, we report the unexpected reaction of {[Fe(OEP)](2)(mu-N2O2)} in the presence and absence of 1-methylimidizole to yield [Fe(OEP)(NO)]. Density functional theory calculations are used to rationalize why {[Fe(OEP)](2)(mu-N2O2)} cannot be formed directly by dimerization of [Fe(OEP)(NO)] and why only the reverse reaction is observed experimentally. These results thus provide insight into the general reactivity of hyponitrite-bridged iron complexes with general relevance for the N-N bond-forming step in NorBC. C1 [Berto, Timothy C.; Lee, Se Ryeon; McNeil, Anne J.; Lehnert, Nicolai] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. [Berto, Timothy C.; Lee, Se Ryeon; McNeil, Anne J.; Lehnert, Nicolai] Univ Oklahoma, Dept Biophys, Norman, OK 73019 USA. [Xu, Nan; Richter-Addo, George B.] Univ Oklahoma, Dept Chem & Biochem, Norman, OK 73019 USA. [Alp, E. Ercan; Zhao, Jiyong] Argonne Natl Lab, APS XFD, Argonne, IL 60439 USA. RP Richter-Addo, GB (reprint author), Univ Oklahoma, Dept Chem & Biochem, 101 Stephenson Pkwy, Norman, OK 73019 USA. EM grichteraddo@ou.edu; lehnertn@umich.edu FU DOE, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357]; National Science Foundation [CHE-0846235, CHE-1305777, CHE-1213674]; NSF [CHE-1040008] FX APS is supported by the DOE, Basic Energy Sciences, Office of Science, under Contract DE-AC02-06CH11357. This research was supported by grants from the National Science Foundation (Grants CHE-0846235 and CHE-1305777 to N.L. and Grant CHE-1213674 to G.B.R.-A.). We further acknowledge funding from NSF grant CHE-1040008 for a SQUID instrument (University of Michigan). NR 86 TC 15 Z9 15 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD JUL 7 PY 2014 VL 53 IS 13 BP 6398 EP 6414 DI 10.1021/ic5002573 PG 17 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AK9LH UT WOS:000338748100005 PM 24971721 ER PT J AU Bo, SH Nam, KW Borkiewicz, OJ Hu, YY Yang, XQ Chupas, PJ Chapman, KW Wu, LJ Zhang, L Wang, F Grey, CP Khalifah, PG AF Bo, Shou-Hang Nam, Kyung-Wan Borkiewicz, Olaf J. Hu, Yan-Yan Yang, Xiao-Qing Chupas, Peter J. Chapman, Karena W. Wu, Lijun Zhang, Lihua Wang, Feng Grey, Clare P. Khalifah, Peter G. TI Structures of Delithiated and Degraded LiFeBO3, and Their Distinct Changes upon Electrochemical Cycling SO INORGANIC CHEMISTRY LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; BATTERY CATHODE MATERIAL; IN-SITU; LITHIUM; INTERCALATION; DIFFRACTION; ALPHA-FE2O3; REFINEMENT AB Lithium iron borate (LiFeBO3) has a high theoretical specific capacity (220 mAh/g), which is competitive with leading cathode candidates for next-generation lithium-ion batteries. However, a major factor making it difficult to fully access this capacity is a competing oxidative process that leads to degradation of the LiFeBO3 structure. The pristine, delithiated, and degraded phases of LiFeBO3 share a common framework with a cell volume that varies by less than 2%, making it difficult to resolve the nature of the delithiation and degradation mechanisms by conventional X-ray powder diffraction studies. A comprehensive study of the structural evolution of LiFeBO3 during (de)lithiation and degradation was therefore carried out using a wide array of bulk and local structural characterization techniques, both in situ and ex situ, with complementary electrochemical studies. Delithiation of LiFeBO3 starts with the production of LitFeBO3 (t approximate to 0.5) through a two-phase reaction, and the subsequent delithiation of this phase to form Lit-xFeBO3 (x < 0.5). However, the large overpotential needed to drive the initial two-phase delithiation reaction results in the simultaneous observation of further delithiated solid-solution products of Lit FeBO3 under normal conditions of electrochemical cycling. The degradation of LiFeBO3 also results in oxidation to produce a Li-deficient phase D-LidFeBO3 (d approximate to 0.5, based on the observed Fe valence of similar to 2.5+). However, it is shown through synchrotron X-ray diffraction, neutron diffraction, and high-resolution transmission electron microscopy studies that the degradation process results in an irreversible disordering of Fe onto the Li site, resulting in the formation of a distinct degraded phase, which cannot be electrochemically converted back to LiFeBO3 at room temperature. The Li-containing degraded phase cannot be fully delithiated, but it can reversibly cycle Li (D-Lid+yFeBO3) at a thermodynamic potential of similar to 1.8 V that is substantially reduced relative to the pristine phase (similar to 2.8 V). C1 [Bo, Shou-Hang; Grey, Clare P.; Khalifah, Peter G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Nam, Kyung-Wan; Yang, Xiao-Qing; Khalifah, Peter G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Wu, Lijun] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Zhang, Lihua] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Wang, Feng] Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA. [Borkiewicz, Olaf J.; Chupas, Peter J.; Chapman, Karena W.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Lemont, IL 60439 USA. [Hu, Yan-Yan; Grey, Clare P.] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England. RP Grey, CP (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM cpg27@cam.ac.uk; kpete@bnl.gov RI Nam, Kyung-Wan/B-9029-2013; Hu, Yan-Yan/A-1795-2015; Zhang, Lihua/F-4502-2014; Nam, Kyung-Wan/E-9063-2015; Wang, Feng/C-1443-2016 OI Nam, Kyung-Wan/0000-0001-6278-6369; Hu, Yan-Yan/0000-0003-0677-5897; Nam, Kyung-Wan/0000-0001-6278-6369; Wang, Feng/0000-0003-4068-9212 FU Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center - U.S. DOE, BES [DE-SC0001294]; Office of Basic Energy Sciences, U.S. Department of Energy, at the Spallation Neutron Source, Oak Ridge National Laboratory [DE-AC05-00OR22725]; UT Battelle; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Basic Energy Sciences [DE- AC02-98CH10886]; U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the U.S. DOE, BES under award no. DE-SC0001294, including matching support from NYSTAR-NYSDED. The Neutron Bragg diffraction and NPDF studies were supported by the Office of Basic Energy Sciences, U.S. Department of Energy, at the Spallation Neutron Source, Oak Ridge National Laboratory under contract DE-AC05-00OR22725 with UT Battelle. Dr. Mikhail Feygenson (NOMAD) and Dr. Ashfia Hug (POWGEN) are acknowledged for their help in the NPDF and neutron powder diffraction data collection. The in situ XAS study was carried out at National Synchrotron Light Source (NSLS), and the use of the NSLS, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. TEM studies were carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract no. DE- AC02-98CH10886. The in situ XRD study done at Argonne and use of the Advanced Photon Source (APS), an Office of Science User Facility operated for the U.S. Department of Energy, Office of Science, by Argonne National Laboratory, were supported by the U.S. Department of Energy under contract no. DE-AC02-06CH11357. Kamila M. Wiaderek is acknowledged for her help with the experimental setup during measurements at 11-BM. We thank Dr. Zhehong Gan for useful discussion on the implementation of the pj-MATPASS NMR pulse sequence. NR 20 TC 10 Z9 11 U1 7 U2 69 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD JUL 7 PY 2014 VL 53 IS 13 BP 6585 EP 6595 DI 10.1021/ic500169g PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AK9LH UT WOS:000338748100024 PM 24914731 ER PT J AU Peter, SC Subbarao, U Rayaprol, S Martin, JB Balasubramanian, M Malliakas, CD Kanatzidis, MG AF Peter, Sebastian C. Subbarao, Udumula Rayaprol, Sudhindra Martin, Joshua B. Balasubramanian, Mahalingarn Malliakas, Christos D. Kanatzidis, Mercouri G. TI Flux Growth of Yb6.6Ir6Sn16 Having Mixed-Valent Ytterbium SO INORGANIC CHEMISTRY LA English DT Article ID X-RAY ABSORPTION; CRYSTAL-STRUCTURE; ELECTRICAL-RESISTIVITY; PHYSICAL-PROPERTIES; TERNARY STANNIDES; HIGH-PRESSURE; RARE-EARTH; YB; INTERMETALLICS; SYSTEMS AB The compound Yb6.6Ir6Sn16 was obtained as single crystals in high yield from the reaction of Yb with Ir and Sn run in excess indium. Single-crystal X-ray diffraction analysis shows that Yb6.6Ir6Sn16 crystallizes in the tetragonal space group P42/nmc with a = b = 9.7105(7) angstrom and c = 13.7183(11) angstrom. The crystal structure is composed of a [Ir6Sn16] polyanionic network with cages in which the Yb atoms are embedded. The Yb sublattice features extensive vacancies on one crystallographic site. Magnetic susceptibility measurements on single crystals indicate Curie-Weiss law behavior <100 K with no magnetic ordering down to 2 K. The magnetic moment within the linear region (<100 K) is 3.21 mu(B)/Yb, which is similar to 70% of the expected value for a free Yb3+ ion suggesting the presence of mixed-valent ytterbium atoms. X-ray absorption near edge spectroscopy confirms that Yb6.6Ir6Sn16 exhibits mixed valence. Resistivity and heat capacity measurements for Yb6.6Ir6Sn16 indicate non-Fermi liquid metallic behavior. C1 [Peter, Sebastian C.; Subbarao, Udumula] Jawaharlal Nehru Ctr Adv Sci Res, New Chem Unit, Bangalore 560064, Karnataka, India. [Rayaprol, Sudhindra] Bhabha Atom Res Ctr, UGC DAE Consortium Sci Res, Mumbai Ctr, Bombay 400085, Maharashtra, India. [Martin, Joshua B.] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Balasubramanian, Mahalingarn] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Malliakas, Christos D.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Malliakas, Christos D.; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Peter, SC (reprint author), Jawaharlal Nehru Ctr Adv Sci Res, New Chem Unit, Bangalore 560064, Karnataka, India. EM sebastiancp@jncasr.ac.in; m-kanatzidis@northwestern.edu FU Jawaharlal Nehru Centre for Advanced Scientific Research; Department of Science and Technology (DST) [SR/S2/RJN-24/2010]; Sheikh Saqr Laboratory; Council of Scientific and Industrial Research; DST; U.S. Department of Energy (DOE); U.S. DOE, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Financial support from Jawaharlal Nehru Centre for Advanced Scientific Research, Department of Science and Technology (DST) (Grant SR/S2/RJN-24/2010) and Sheikh Saqr Laboratory is gratefully acknowledged. U.S. thanks Council of Scientific and Industrial Research for a research fellowship, and S.C.P. thanks DST for a Ramanujan Fellowship. PNC/XSD facilities and research at these facilities are supported by the U.S. Department of Energy (DOE) and its founding institutions. At Argonne work is supported by the U.S. DOE, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. NR 59 TC 6 Z9 6 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD JUL 7 PY 2014 VL 53 IS 13 BP 6615 EP 6623 DI 10.1021/ic500204t PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AK9LH UT WOS:000338748100027 PM 24921221 ER PT J AU Ellis, JK Wen, XD Martin, RL AF Ellis, Jason K. Wen, Xiao-Dong Martin, Richard L. TI Investigation of Thorium Salts As Candidate Materials for Direct Observation of the Th-229m Nuclear Transition SO INORGANIC CHEMISTRY LA English DT Article ID ENERGY-ADJUSTED PSEUDOPOTENTIALS; ELECTRONIC-STRUCTURE; CRYSTAL-STRUCTURES; PERIODIC-SYSTEMS; AB-INITIO; POLYMORPHS AB Recent efforts to measure the Th-229m -> Th-229g nuclear transition sparked interest in understanding the electronic structure of wide-gap thorium salts. Such materials could be used to measure this nuclear transition using optical spectroscopy in solid-state devices. Here, we present screened hybrid density functional theory and many-body G(0)W(0) calculations of two candidate materials, namely, Na2ThF6 and ThF4, for such a measurement. Our results show an electronic gap larger than 10 eV for both materials, suggesting that the internal conversion nuclear de-excitation channel would be suppressed in these materials. We also present results for ThX4 (X = Cl, Br, I), materials with smaller gaps significantly easier to access experimentally. C1 [Ellis, Jason K.; Wen, Xiao-Dong; Martin, Richard L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Martin, RL (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM rlmartin@lanl.gov FU Heavy Element Chemistry Program at Los Alamos National Laboratory by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; LDRD program at Los Alamos National Laboratory; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC5206NA25396] FX This work was supported under the Heavy Element Chemistry Program at Los Alamos National Laboratory by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. Portions of the work were also supported by the LDRD program at Los Alamos National Laboratory. J. E. and X.-D. W. gratefully acknowledge Seaborg Institute Fellowships. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC5206NA25396. We thank Dr. X. Zhao for helpful discussions and suggestions for the manuscript. NR 36 TC 1 Z9 1 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD JUL 7 PY 2014 VL 53 IS 13 BP 6769 EP 6774 DI 10.1021/ic500570u PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AK9LH UT WOS:000338748100042 PM 24937606 ER PT J AU Das, AK Engelhard, MH Bullock, RM Roberts, JAS AF Das, Atanu K. Engelhard, Mark H. Bullock, R. Morris Roberts, John A. S. TI A Hydrogen-Evolving Ni(P2N2)(2) Electrocatalyst Covalently Attached to a Glassy Carbon Electrode: Preparation, Characterization, and Catalysis. Comparisons with the Homogeneous Analogue SO INORGANIC CHEMISTRY LA English DT Article ID OUTER-COORDINATION SPHERE; H-2 PRODUCTION; NICKEL ELECTROCATALYST; CONDUCTIVE DIAMOND; CATALYTIC RATES; PENDANT AMINES; COMPLEXES; OXIDATION; REDUCTION; SURFACES AB A hydrogen-evolving homogeneous Ni(P2N2)(2) electrocatalyst with peripheral ester groups has been covalently attached to a 1,2,3-triazolyllithium-terminated planar glassy carbon electrode surface. Coupling proceeds with both the Ni(0) and the Ni(II) complexes. X-ray photoemission spectra show excellent agreement between the Ni(0) coupling product and its parent complex, and voltammetry of the surface-confined system shows that a single species predominates with a surface density of 1.3 x 10(-10) mol cm(-2), approaching the value estimated for a densely packed monolayer. With the Ni(II) system, both photoemission and voltammetric data show speciation to unidentified products on coupling, and the surface density is 6.7 X 10(-11) mol cm(-2). The surface-confined Ni(0) complex is an electroctalyst for hydrogen evolution, showing the onset of catalytic current at the same potential as the soluble parent complex. Decomposition of the surface-confined species is observed in acidic acetonitrile. This is interpreted to reflect the lability of the Ni(II)-phosphine interaction and the basicity of the free phosphine and bears on concurrent efforts to implement surface-confined Ni(P2N2)(2) complexes in electrochemical or photoelectrochemical devices. C1 [Das, Atanu K.; Bullock, R. Morris; Roberts, John A. S.] Pacific NW Natl Lab, Ctr Mol Electrocatalysis, Div Phys Sci, Richland, WA 99352 USA. [Engelhard, Mark H.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Roberts, JAS (reprint author), Pacific NW Natl Lab, Ctr Mol Electrocatalysis, Div Phys Sci, K2-57,POB 999, Richland, WA 99352 USA. EM john.roberts@pnnl.gov RI Bullock, R. Morris/L-6802-2016; OI Bullock, R. Morris/0000-0001-6306-4851; Engelhard, Mark/0000-0002-5543-0812 FU Center for Molecular Electrocatalysis, an Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences; Department of Energy's Office of Biological and Environmental Research FX This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. The XPS measurements were performed at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 79 TC 19 Z9 19 U1 1 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD JUL 7 PY 2014 VL 53 IS 13 BP 6875 EP 6885 DI 10.1021/ic500701a PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AK9LH UT WOS:000338748100054 PM 24971843 ER PT J AU Muckerman, JT Kowalczyk, M Badiei, YM Polyansky, DE Concepcion, JJ Zong, RF Thummel, RP Fujita, E AF Muckerman, James T. Kowalczyk, Marta Badiei, Yosra M. Polyansky, Dmitry E. Concepcion, Javier J. Zong, Ruifa Thummel, Randolph P. Fujita, Etsuko TI New Water Oxidation Chemistry of a Seven-Coordinate Ruthenium Complex with a Tetradentate Polypyridyl Ligand SO INORGANIC CHEMISTRY LA English DT Article ID COUPLED ELECTRON-TRANSFER; MOLECULAR-ORBITAL METHODS; SOLVATION FREE-ENERGIES; DENSITY-FUNCTIONAL THEORY; GAUSSIAN-TYPE BASIS; PHOTOSYSTEM-II; BOND FORMATION; ORGANIC-MOLECULES; DIMER COMPLEX; BASIS-SETS AB The mononuclear ruthenium(II) complex [Ru](2+) (Ru = Ru(dpp)(pic)(2), where dpp is the tetradentate 2,9-dipyrid-2'-yl-1,10-phenanthroline ligand and pic is 4-picoline) reported by Thummel's group (Inorg. Chem. 2008, 47, 1835-1848) that contains no water molecule in its primary coordination shell is evaluated as a catalyst for water oxidation in artificial photosynthesis. A detailed theoretical characterization of the energetics, thermochemistry, and spectroscopic properties of intermediates allowed us to interpret new electrochemical and spectroscopic experimental data, and propose a mechanism for the water oxidation process that involves an unprecedented sequence of seven-coordinate ruthenium complexes as intermediates. This analysis provides insights into a mechanism that generates four electrons and four protons in the solution and a gas-phase oxygen molecule at different pH values. On the basis of the calculations and corroborated substantially by experiments, the catalytic cycle goes through [(RuIII)-Ru-2](3+) and [Ru-2(V)(O)](3+) to [Ru-1(IV)(OOH)](3+)then [Ru-2(III)(center dot center dot center dot O-3(2))](3+) at pH 0, and through [Ru-3(IV)(O)](2+), [Ru-2(V)(O)](3+), and [Ru-1(IV)(OO)](2+) at pH 9 before reaching the same [Ru-2(III)(center dot center dot center dot O-3(2))](3+) species, from which the liberation of the weakly bound O-2 might require an additional oxidation to form [Ru-3(IV)(O)](2+) to initiate further cycles involving all seven-coordinate species. C1 [Muckerman, James T.; Kowalczyk, Marta; Badiei, Yosra M.; Polyansky, Dmitry E.; Concepcion, Javier J.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Zong, Ruifa; Thummel, Randolph P.] Univ Houston, Dept Chem, Houston, TX 77204 USA. RP Muckerman, JT (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM muckerma@bnl.gov; martak@bnl.gov RI Polyansky, Dmitry/C-1993-2009 OI Polyansky, Dmitry/0000-0002-0824-2296 FU U.S. Department of Energy [DE-AC02-98CH10886, DE-FG02-07ER15888]; Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences FX The work at Brookhaven National Laboratory (BNL) was carried out under contract DE-AC02-98CH10886 and the work at Houston was carried out under contract DE-FG02-07ER15888 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences. We thank Liu Yang for carrying out some of the DFT calculations. This research utilized computing resources at the Center for Functional Nanomaterials at Brookhaven National Laboratory. NR 60 TC 19 Z9 20 U1 2 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD JUL 7 PY 2014 VL 53 IS 13 BP 6904 EP 6913 DI 10.1021/ic500709h PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AK9LH UT WOS:000338748100057 PM 24911180 ER PT J AU Ward, MD Mesbah, A Minasian, SG Shuh, DK Tyliszczak, T Lee, M Choi, ES Lebegue, S Ibers, JA AF Ward, Matthew D. Mesbah, Adel Minasian, Stefan G. Shuh, David K. Tyliszczak, Tolek Lee, Minseong Choi, Eun Sang Lebegue, Sebastien Ibers, James A. TI Synthesis and Characterization of Eight Compounds of the MU(8)Q(17) Family: ScU8S17, CoU8S17, NiU8S17, TiU8Se17, VU8Se17, CrU8Se17, CoU8Se17, and NiU8Se17 SO INORGANIC CHEMISTRY LA English DT Article ID ELECTRONIC-STRUCTURE THEORY; AUGMENTED-WAVE METHOD; X-RAY MICROSCOPY; CRYSTAL-STRUCTURE; MAGNETIC-PROPERTIES; URANIUM CHALCOGENIDES; TERNARY URANIUM; SULFIDE; SCANDIUM; SPECTROSCOPY AB The solid-state MU(8)Q(17) compounds ScU8S17, CoU8S17, NiU8S17, TiU8Se17, VU8Se17, CrU8Se17, CoU8Se17, and NiU8Se17 were synthesized from the reactions of the elements at 1173 or 1123 K. These isostructural compounds crystallize in space group C-2h(3), - C2/m of the monoclinic system in the CrU8S17 structure type. X-ray absorption near-edge structure spectroscopic studies of ScU8S17 indicate that it contains Sc3+, and hence charge balance is achieved with a composition that indudes U3+ as well as U4+. The other compounds charge balance with M2+ and U. Magnetic susceptibility measurements on ScU8S17 indicate antiferromagnetic couplings and a highly reduced effective magnetic moment. Ab Initio calculations find the compound to be metallic. Surprisingly, the Sc-S distances are actually longer than all the other M-S interactions, even though the ionic radii of Sc3+, low-spin Cr2+, and Ni2+ are similar. C1 [Ward, Matthew D.; Mesbah, Adel; Ibers, James A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Minasian, Stefan G.; Shuh, David K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Tyliszczak, Tolek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Lee, Minseong; Choi, Eun Sang] Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA. [Lee, Minseong; Choi, Eun Sang] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Lebegue, Sebastien] Univ Lorraine, Lab Cristallog Resonance Magnet & Modelisat UMR U, Fac Sci & Tech, F-54506 Vandoeuvre Les Nancy, France. RP Ibers, JA (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM ibers@chem.northwestern.edu RI mesbah, adel/A-4559-2011; Lebegue, sebastien/A-7851-2010; Lee, Minseong/D-5371-2016 OI mesbah, adel/0000-0002-6905-2402; FU Northwestern University by the U.S. Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences and Geosciences Division and Division of Materials Science and Engineering [ER-15522]; International Institute of Nanotechnology; Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at Lawrence Berkeley National Laboratory (LBNL) [DE-AC02-05CH11231]; Condensed Phase and Interfacial Molecular Sciences Program of the aforementioned Division of the U.S. Department of Energy at LBNL [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy at LBNL [DE-AC02-05CH11231]; NSF by the State of Florid [DMR-1157490]; DOE FX This research was supported at Northwestern University by the U.S. Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences and Geosciences Division and Division of Materials Science and Engineering Grant ER-15522. Use was made of the IMSERC X-ray Facility at Northwestern University, supported by the International Institute of Nanotechnology. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy under Contract DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory (LBNL). The Molecular Environmental Sciences Beam line 11.0.2 at the Advanced Light Source was supported by the Condensed Phase and Interfacial Molecular Sciences Program of the aforementioned Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at LBNL. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at LBNL. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by NSF Cooperative Agreement No. DMR-1157490 by the State of Florida and by the DOE. NR 59 TC 7 Z9 7 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD JUL 7 PY 2014 VL 53 IS 13 BP 6920 EP 6927 DI 10.1021/ic500721d PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AK9LH UT WOS:000338748100059 PM 24932673 ER PT J AU Chang, KB Vinokur, A Pinlac, RAF Suchomel, MR Marvel, MR Poeppelmeier, KR AF Chang, Kelvin B. Vinokur, Anastasiya Pinlac, Rachelle Ann F. Suchomel, Matthew R. Marvel, Michael R. Poeppelmeier, Kenneth R. TI How Lewis Acidity of the Cationic Framework Affects KNaNbOF5 Polymorphism SO INORGANIC CHEMISTRY LA English DT Article ID BOND-VALENCE PARAMETERS; OF-CENTER DISTORTIONS; ANION INTERACTIONS; CRYSTAL-STRUCTURE; OXIDE AB The valence matching principle is used to explain the loss of inversion symmetry in the noncentrosymmetric (NCS) polymorph of KNaNbOF5 in comparison to its centrosymmetric (CS) polymorph. The [NbOF5](2-) anion has five contacts to both potassium and sodium in the NCS polymorph, whereas in the CS polymorph there are only four contacts to potassium and six contacts to sodium. The lower average Lewis acidity of the cationic framework in the NCS polymorph relative to the CS polymorph reflects the loss of inversion symmetry. This lower average Lewis acidity is achieved during hydrothermal synthesis with a potassium-rich solution when the K:Na ratio in the reaction is greater than 1:1, as the Lewis acidity of potassium is lower than that of sodium. The contrasting coordination environments are manifested in secondary distortions that weaken the primary Nb=O interaction and lengthen the Nb=O bond in the NCS polymorph. An unusual heat-induced phase transition from the CS to the NCS polymorph was studied with in situ powder X-ray diffraction. The transition to the NCS polymorph upon cooling occurs through an intermediate phase(s). C1 [Chang, Kelvin B.; Vinokur, Anastasiya; Pinlac, Rachelle Ann F.; Poeppelmeier, Kenneth R.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Suchomel, Matthew R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Marvel, Michael R.] Aurora Univ, Coll Arts & Sci, Aurora, IL 60506 USA. [Poeppelmeier, Kenneth R.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Poeppelmeier, KR (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM krp@northwestern.edu RI Suchomel, Matthew/C-5491-2015; OI SUCHOMEL, Matthew/0000-0002-9500-5079 FU National Science Foundation [DMR-1005827, DMR-1307698]; MRSEC program of the National Science Foundation at the Materials Research Center of Northwestern University [DMR-1121262]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors gratefully acknowledge support from the National Science Foundation (Awards DMR-1005827 and DMR-1307698). This work made use of the J. B. Cohen X-ray Diffraction Facility and Optical Microscopy and Metallography Facility supported by the MRSEC program of the National Science Foundation (DMR-1121262) at the Materials Research Center of Northwestern University. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors thank Martin Donakowski, Romain Gautier, Daniel Fowler, and Michael Holland for their assistance in collecting in situ powder diffraction data. NR 26 TC 3 Z9 3 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD JUL 7 PY 2014 VL 53 IS 13 BP 6979 EP 6984 DI 10.1021/ic500922s PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AK9LH UT WOS:000338748100066 PM 24922362 ER PT J AU Derenzo, SE Choong, WS Moses, WW AF Derenzo, Stephen E. Choong, Woon-Seng Moses, William W. TI Fundamental limits of scintillation detector timing precision SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article DE scintillator; timing precision; timing resolution; Monte Carlo; photodetector; scintillation detector ID TIME-RESOLUTION; DEPTH AB In this paper we review the primary factors that affect the timing precision of a scintillation detector. Monte Carlo calculations were performed to explore the dependence of the timing precision on the number of photoelectrons, the scintillator decay and rise times, the depth of interaction uncertainty, the time dispersion of the optical photons (modeled as an exponential decay), the photodetector rise time and transit time jitter, the leading-edge trigger level, and electronic noise. The Monte Carlo code was used to estimate the practical limits on the timing precision for an energy deposition of 511 keV in 3 mm x 3 mm x 30 mm Lu2SiO5:Ce and LaBr3:Ce crystals. The calculated timing precisions are consistent with the best experimental literature values. We then calculated the timing precision for 820 cases that sampled scintillator rise times from 0 to 1.0 ns, photon dispersion times from 0 to 0.2 ns, photodetector time jitters from 0 to 0.5 ns fwhm, and A from 10 to 10 000 photoelectrons per ns decay time. Since the timing precision R was found to depend on A(-1/2) more than any other factor, we tabulated the parameter B, where R = BA(-1/2). An empirical analytical formula was found that fit the tabulated values of B with an rms deviation of 2.2% of the value of B. The theoretical lower bound of the timing precision was calculated for the example of 0.5 ns rise time, 0.1 ns photon dispersion, and 0.2 ns fwhm photodetector time jitter. The lower bound was at most 15% lower than leading-edge timing discrimination for A from 10 to 10 000 photoelectrons ns(-1). A timing precision of 8 ps fwhm should be possible for an energy deposition of 511 keV using currently available photodetectors if a theoretically possible scintillator were developed that could produce 10 000 photoelectrons ns(-1). C1 [Derenzo, Stephen E.; Choong, Woon-Seng; Moses, William W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Derenzo, SE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM sederenzo@lbl.gov FU Public Health Service grants [R01EB012524, R01EB006085, R21EB012599]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX We thank R Huesman and G Gullberg for deriving the analytical formula for the probability density function and T Budinger, Q Peng, S Seifert, and D Schaart for helpful discussions. This work was supported by Public Health Service grants R01EB012524, R01EB006085 and R21EB012599, and was carried out at the Lawrence Berkeley National Laboratory under contract no. DE-AC02-05CH11231. Reference to a company or product name does not imply approval or recommendation by the University of California or the US Department of Energy to the exclusion of others that may he suitable. NR 20 TC 21 Z9 21 U1 1 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 EI 1361-6560 J9 PHYS MED BIOL JI Phys. Med. Biol. PD JUL 7 PY 2014 VL 59 IS 13 BP 3261 EP 3286 DI 10.1088/0031-9155/59/13/3261 PG 26 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA AK4WK UT WOS:000338424800005 PM 24874216 ER PT J AU Perng, YC Cho, J Sun, SY Membreno, D Cirigliano, N Dunn, B Chang, JP AF Perng, Ya-Chuan Cho, Jea Sun, Steven Y. Membreno, Daniel Cirigliano, Nicolas Dunn, Bruce Chang, Jane P. TI Synthesis of ion conducting LixAlySizO thin films by atomic layer deposition SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID LITHIUM-ION; RECHARGEABLE BATTERIES; SOLID ELECTROLYTES; CROSS-SECTIONS; AL2O3; SILICON; ANODES; HETEROSTRUCTURES; ALUMINOSILICATE; ARCHITECTURES AB Thin films of a solid electrolyte, lithium aluminosilicate, were synthesized by atomic layer deposition (ALD) for potential applications in 3D Li-ion microbatteries. The films were deposited at 290 degrees C via alternating the ALD growth of the constituents, LiOH, Al2O3 and SiO2. Manipulation of the cation composition and thickness was achieved through well-controlled surface reactions during each precursor pulse cycle. Various compositions were obtained by changing the number of pulse cycles for each precursor, which enabled lithium aluminate (LixAlyO), lithium aluminosilicate (LixAlySizO) and stoichiometric LiAlSiO4 materials to be prepared. The as-deposited ALD films were amorphous and formed conformal coatings over Si nanowires. Films as thin as 6 nm were found to be free of pinholes. Complex impedance measurements confirmed that the films were ionic conductors with the room temperature conductivity in the range of 10(-7) to 10(-9) S cm(-1) and an activation energy between 0.46 and 0.84 eV, depending upon the film composition. C1 [Perng, Ya-Chuan; Cho, Jea; Chang, Jane P.] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. [Sun, Steven Y.] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Membreno, Daniel; Cirigliano, Nicolas; Dunn, Bruce] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. RP Chang, JP (reprint author), Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. EM jpchang@ucla.edu FU DARPA under iMINT [1547149]; HRL; National Science Foundation [DMR - 0932761]; Office of Naval Research [N00014-13-1-0466] FX The authors acknowledge the funding support from DARPA under iMINT (1547149), HRL and National Science Foundation (DMR - 0932761). A portion of this research was also supported by the Office of Naval Research (N00014-13-1-0466). The authors also thank Dr Tom Picraux at the Center for Integrated Nanotechnologies (CINT) and Prof. Ronggui Yang at the University of Colorado, Boulder for providing Silicon Nanowires (SiNWs), the technical support from the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. NR 53 TC 18 Z9 18 U1 8 U2 73 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PD JUL 7 PY 2014 VL 2 IS 25 BP 9566 EP 9573 DI 10.1039/c3ta14928e PG 8 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA AJ6BG UT WOS:000337774100018 ER PT J AU Chen, HP Hsiao, YC Hu, B Dadmun, M AF Chen, Huipeng Hsiao, Yu-Che Hu, Bin Dadmun, Mark TI Control of morphology and function of low band gap polymer-bis-fullerene mixed heterojunctions in organic photovoltaics with selective solvent vapor annealing SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID SOLAR-CELLS; BULK HETEROJUNCTIONS; THIN-FILMS; PERFORMANCE; BLENDS; PCBM; POLY(3-HEXYLTHIOPHENE); BISADDUCT; ACCEPTOR; NETWORK AB Replacing PCBM with a bis-adduct fullerene (i.e. ICBA) has been reported to significantly improve the open circuit voltage (V-OC) and power conversion efficiency (PCE) in P3HT bulk heterojunctions. However, for the most promising low band-gap polymer (LBP) systems, replacing PCBM with ICBA results in very poor short-circuit current (J(SC)) and PCE although the V-OC is significantly improved. Therefore, in this work, we have completed small angle neutron scattering and neutron reflectometry experiments to study the impact of post-deposition solvent annealing (SA) with control of solvent quality on the morphology and performance of LBP-bis-fullerene BHJ photovoltaics. The results show that SA in a solvent that is selective for the LBP results in a depletion of bis-fullerene near the air surface, which limits device performance. SA in a solvent vapor which has similar solubility for polymer and bis-fullerene results in a higher degree of polymer ordering, bis-fullerene phase separation, and segregation of the bis-fullerene to the air surface, which facilitates charge transport and increases power conversion efficiency (PCE) by 100%. The highest degree of polymer ordering combined with significant bis-fullerene phase separation and segregation of bis-fullerene to the air surface is obtained by SA in a solvent vapor that is selective for the bis-fulterene. The resultant morphology increases PCE by 190%. These results indicate that solvent annealing with judicious solvent choice provides a unique tool to tune the morphology of LBP-bis-fullerene BHJ system, providing sufficient polymer ordering, formation of a bis-fullerene pure phase, and segregation of bis-fullerene to the air surface to optimize the morphology of the active layer. Moreover, this process is broadly applicable to improving current "disappointing" LBP-bis-fullerene systems to optimize their morphology and OPV performance post-deposition, including higher V-OC and power conversion efficiency. C1 [Chen, Huipeng; Dadmun, Mark] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Hsiao, Yu-Che; Hu, Bin] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN USA. [Dadmun, Mark] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Dadmun, M (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM dad@utk.edu RI Chen, Huipeng/G-4019-2012; Hu, Bin/A-2954-2015 OI Hu, Bin/0000-0002-1573-7625 FU Sustainable Energy Education Research Center; Joint Institute for Neutron Sciences at the University of Tennessee; National Science Foundation [DMR-1005987, DMR-0944772]; Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The authors wish to acknowledge the Sustainable Energy Education Research Center and the Joint Institute for Neutron Sciences at the University of Tennessee, as well as the National Science Foundation (DMR-1005987) for support of this project. MDD also acknowledges the support of the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. The support of the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy, who sponsors the Oak Ridge National Laboratory High Flux Isotope Reactor and Spallation Neutron Source is gratefully acknowledged. We also acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work, where the work utilized facilities supported in part by the National Science Foundation under Agreement no. DMR-0944772. NR 32 TC 8 Z9 8 U1 4 U2 68 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PD JUL 7 PY 2014 VL 2 IS 25 BP 9883 EP 9890 DI 10.1039/c4ta01436g PG 8 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA AJ6BG UT WOS:000337774100056 ER PT J AU Buechler, MA Luscher, DJ AF Buechler, Miles A. Luscher, Darby J. TI A semi-implicit integration scheme for a combined viscoelastic-damage model of plastic bonded explosives SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE viscoSCRAM; damage; PBX-9501; plastic bonded explosive; semi-implicit ID CONSTITUTIVE MODEL; BRITTLE MATERIALS; DEPENDENCE AB This paper presents a new implementation of a constitutive model commonly used to represent plastic bonded explosives in finite element simulations of thermomechanical response. The constitutive model, viscoSCRAM, combines linear viscoelasticity with isotropic damage evolution. The original implementation was focused on short duration transient events; thus, an explicit update scheme was used. For longer duration simulations that employ significantly larger time step sizes, the explicit update scheme is inadequate. This work presents a new semi-implicit update scheme suitable for simulations using relatively large time steps. The algorithm solves a nonlinear system of equations to ensure that the stress, damaged state, and internal stresses are in agreement with implicit update equations at the end of each increment. The crack growth is advanced in time using a sub-incremental explicit scheme; thus, the entire implementation is semi-implicit. The theory is briefly discussed along with previous explicit integration schemes. The new integration algorithm and its implementation into the finite element code, Abaqus, are detailed. Finally, the new and old algorithms are compared via simulations of uniaxial compression and beam bending. The semi-implicit scheme has been demonstrated to provide higher accuracy for a given allocated computational time for the quasistatic cases considered here. Published 2014. This article is a US Government work and is in the public domain in the USA. C1 [Buechler, Miles A.; Luscher, Darby J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Luscher, DJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM djl@lanl.gov NR 25 TC 1 Z9 1 U1 1 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0029-5981 EI 1097-0207 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD JUL 6 PY 2014 VL 99 IS 1 BP 54 EP 78 DI 10.1002/nme.4672 PG 25 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA AJ3IC UT WOS:000337558700003 ER PT J AU Komanicky, V Barbour, A Lackova, M Zorko, M Zhu, C Pierce, M You, H AF Komanicky, Vladimir Barbour, Andi Lackova, Miroslava Zorko, Milena Zhu, Chenhui Pierce, Michael You, Hoydoo TI Growth of arrays of oriented epitaxial platinum nanoparticles with controlled size and shape by natural colloidal lithography SO NANOSCALE RESEARCH LETTERS LA English DT Article DE Colloidal lithography; Platinum nanoparticles; Particle shape control ID PARTICLES; FABRICATION AB We developed a method for production of arrays of platinum nanocrystals of controlled size and shape using templates from ordered silica bead monolayers. Silica beads with nominal sizes of 150 and 450 nm were self-assembled into monolayers over strontium titanate single crystal substrates. The monolayers were used as shadow masks for platinum metal deposition on the substrate using the three-step evaporation technique. Produced arrays of epitaxial platinum islands were transformed into nanocrystals by annealing in a quartz tube in nitrogen flow. The shape of particles is determined by the substrate crystallography, while the size of the particles and their spacing are controlled by the size of the silica beads in the monolayer mask. As a proof of concept, arrays of platinum nanocrystals of cubooctahedral shape were prepared on (100) strontium titanate substrates. The nanocrystal arrays were characterized by atomic force microscopy, scanning electron microscopy, and synchrotron X-ray diffraction techniques. C1 [Komanicky, Vladimir; Lackova, Miroslava; Zhu, Chenhui] Safarik Univ, Fac Sci, Kosice 04001, Slovakia. [Barbour, Andi; You, Hoydoo] Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA. [Zorko, Milena] Nat Inst Chem, SI-1001 Ljubljana, Slovenia. [Pierce, Michael] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA. RP Komanicky, V (reprint author), Safarik Univ, Fac Sci, Pk Angelinum 9, Kosice 04001, Slovakia. EM vladimir.komanicky@upjs.sk RI You, Hoydoo/A-6201-2011; Pierce, Michael/D-5570-2014 OI You, Hoydoo/0000-0003-2996-9483; Pierce, Michael/0000-0002-9209-8556 FU Slovak Grant VEGA [1/0782/12]; Slovak Research and Development Agency [APW-0132-11]; CFNT MVEP - the Centre of Excellence of the Slovak Academy of Sciences; ERDF EU Grant [ITMS26220120005]; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors would like to thank to Dr. Sungsik Lee for the help during X-ray experiments at APS. The work at Safarik University was supported by Slovak Grant VEGA No. 1/0782/12, by the grant of the Slovak Research and Development Agency under Contract No. APW-0132-11, by project CFNT MVEP - the Centre of Excellence of the Slovak Academy of Sciences, and by the ERDF EU Grant under Contract No. ITMS26220120005. The work in Materials Science Division and the use of the Advanced Photon Source and Electron Microscopy Center at Argonne National Laboratory were supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 18 TC 1 Z9 1 U1 2 U2 27 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1556-276X J9 NANOSCALE RES LETT JI Nanoscale Res. Lett. PD JUL 5 PY 2014 VL 9 AR 336 DI 10.1186/1556-276X-9-336 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AM5BJ UT WOS:000339870200001 PM 25114634 ER PT J AU Andersen, A Kathmann, SM Lilga, MA Albrecht, KO Hallen, RT Mei, DH AF Andersen, Amity Kathmann, Shawn M. Lilga, Michael A. Albrecht, Karl O. Hallen, Richard T. Mei, Donghai TI Effects of potassium doping on CO hydrogenation over MoS2 catalysts: A first-principles investigation SO CATALYSIS COMMUNICATIONS LA English DT Article DE CO hydrogenation; MoS2 catalyst; Alkali metal; Promotion; Density functional theory ID SPACE GAUSSIAN PSEUDOPOTENTIALS; DENSITY-FUNCTIONAL THEORY; SYNTHESIS GAS CONVERSION; MIXED ALCOHOLS; AB-INITIO; SURFACE; SYNGAS; ALKALI; ADSORPTION; DISSOCIATION AB The effects of potassium (K) doping on the reactivity of CO hydrogenation over MOS2(100) catalysts are investigated using periodic density functional theory (DFT) calculations. The surface doped K species enhances the CO adsorption by providing both K-O and K-C bonding. DFT results show that K-doping promotes the C-C coupling step forming the H2CCO precursor that leads to the formation of mixed higher C2+ oxygenates. Different reaction routes for CO hydrogenation on the Mo and the S edges over MOS2(100) catalysts are identified. (C) 2014 Elsevier B.V. All rights reserved. C1 [Andersen, Amity] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Kathmann, Shawn M.; Mei, Donghai] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Lilga, Michael A.; Albrecht, Karl O.; Hallen, Richard T.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Mei, DH (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM donghai.mei@pnnl.gov RI Mei, Donghai/A-2115-2012; Mei, Donghai/D-3251-2011 OI Mei, Donghai/0000-0002-0286-4182; FU CRADA project [PNNL/297]; Range Fuels FX This work was funded by a CRADA project (no. PNNL/297) with Range Fuels. The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. We would like to thank Ron Stites and Karl Kharas at Range Fuels for their insightful discussions concerning alkali-promoted MoS2 as an alcohol synthesis catalyst NR 29 TC 3 Z9 3 U1 6 U2 98 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1566-7367 EI 1873-3905 J9 CATAL COMMUN JI Catal. Commun. PD JUL 5 PY 2014 VL 52 BP 92 EP 97 DI 10.1016/j.catcom.2014.02.011 PG 6 WC Chemistry, Physical SC Chemistry GA AJ7LF UT WOS:000337877500021 ER PT J AU Chung, CW Chun, J Wang, GH Um, W AF Chung, Chul-Woo Chun, Jaehun Wang, Guohui Um, Wooyong TI Effects of iron oxides on the rheological properties of cementitious slurry SO COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS LA English DT Article DE Iron oxides; Rheology; Setting; Stiffening; Cementitious slurry ID ULTRASONIC WAVE REFLECTION; PASTE; SUSPENSIONS AB Iron oxide has been considered a promising host for immobilizing and encapsulating radioactive Tc-99 (t(1/2) = 2.1 x 10(5) year), which significantly enhances the stability of Tc-99 within a cementitious waste form. However, the flow behavior of cementitious slurry containing iron oxide has never been investigated to ensure its workability, which directly influences the preparation and performance of the cementitious waste form monolith. Variation in the rheological properties of the cementitious slurry were studied using rheometry and ultrasonic wave reflection to understand the effects of various iron oxides (magnetite, hematite, ferrihydrite, and goethite) during the cement setting and stiffening processes. The rheological behavior significantly varied with the addition of different chemical compounds of iron oxides. Complementary microscopic characteristics such as colloidal vibration currents, morphology, and particle size distributions further suggest that the most adverse alteration of cement setting and stiffening behavior caused by the presence of goethite may be attributed to its acicular shape. (C) 2014 Published by Elsevier B.V. C1 [Chung, Chul-Woo; Chun, Jaehun; Wang, Guohui; Um, Wooyong] Pacific NW Natl Lab, Richland, WA 99354 USA. [Chung, Chul-Woo] Pukyong Natl Univ, Div Architectural Engn, Pusan, South Korea. [Um, Wooyong] POSTECH, Div Adv Nucl Engn, Pohang, South Korea. RP Um, W (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM wooyong.um@pnnl.gov FU Washington River Protection Solutions (WRPS); U.S. Department of Energy Office of River Protection; WCU (World Class University); BK21 + programs at the Division of Advanced Nuclear Engineering (DANE) in POSTECH through the National Research Foundation of Korea - Ministry of Education, Science and Technology [R31-30005]; Battelle Memorial Institute for the U.S. Department of Energy [DE-AC06-76RLO 1830] FX The project was primarily supported by Washington River Protection Solutions (WRPS), the tank farm operations contractor for the U.S. Department of Energy Office of River Protection operating at the Hanford Site in Washington State. Additional support was provided by WCU (World Class University) and BK21 + programs at the Division of Advanced Nuclear Engineering (DANE) in POSTECH through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-30005). Pacific Northwest National Laboratory is a multi-program national laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO 1830. NR 23 TC 0 Z9 0 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-7757 EI 1873-4359 J9 COLLOID SURFACE A JI Colloid Surf. A-Physicochem. Eng. Asp. PD JUL 5 PY 2014 VL 453 BP 94 EP 100 DI 10.1016/j.colsurfa.2014.03.072 PG 7 WC Chemistry, Physical SC Chemistry GA AI2RG UT WOS:000336705200013 ER PT J AU Liu, J Mudryk, Y Zou, JD Pecharsky, VK Gschneidner, KA AF Liu, J. Mudryk, Y. Zou, J. D. Pecharsky, V. K. Gschneidner, K. A., Jr. TI Antiferromagnetic cluster spin-glass behavior in Pr117Co54.5Sn115.2 - A compound with a giant unit cell SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Rare earth intermetallics; Magnetic properties; Spin glass; Electrical transport; Heat capacity ID CRYSTAL-STRUCTURE; MAGNETISM; TEMPERATURE; DEPENDENCE; TRANSITION; VISCOSITY; LAW AB The magnetic properties of Pr117Co54.5Sn115.2 - a member of a family of materials with a giant unit cell have been investigated by dc magnetization, ac magnetic susceptibility, specific heat, and electrical resistivity measurements. A magnetic glassy state at freezing temperature of similar to 11 K was determined from the magnetic susceptibility and specific heat data. The glassy state in Pr117Co54.5Sn115.2 is not the conventional spin glass with randomly oriented magnetic moments, but it is related to clusters of atoms that exist in the complex crystal lattice of the material. Furthermore, the glassy state coexists with short range antiferromagnetic order, leading to the development of antiferromagnetic clusters. A weak anomaly in the specific heat data centered around 11 K supports the formation of magnetic cluster glass state in Pr117Co54.5Sn115.2. Semiconductor-like resistivity with a negative temperature coefficient from 2 to 300 K is also observed in Pr117Co54.5Sn115.2. (C) 2014 Elsevier B. V. All rights reserved. C1 [Liu, J.; Mudryk, Y.; Zou, J. D.; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Liu, J.; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Liu, J (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM liujing@iastate.edu FU U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; U. S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory operated for the U. S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 31 TC 4 Z9 4 U1 2 U2 29 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUL 5 PY 2014 VL 600 BP 101 EP 106 DI 10.1016/j.jallcom.2014.02.087 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA AE1XM UT WOS:000333766500017 ER PT J AU Subramanian, A Hudak, NS Huang, JY Zhan, Y Lou, J Sullivan, JP AF Subramanian, A. Hudak, N. S. Huang, J. Y. Zhan, Y. Lou, J. Sullivan, J. P. TI On-chip lithium cells for electrical and structural characterization of single nanowire electrodes SO NANOTECHNOLOGY LA English DT Article DE Li-ion batteries; nanostructured electrodes; single nanowire characterization ID ION BATTERIES; ELECTROCHEMICAL LITHIATION; CARBON NANOTUBES; BETA-MNO2; LIMN2O4; DEVICES; CATHODE; ANODES AB We present a transmission electron microscopy (TEM)-compatible, hybrid nanomachined, onchip construct for probing the structural and electrical changes in individual nanowire electrodes during lithium insertion. We have assembled arrays of individual beta-phase manganese dioxide (beta-MnO2) nanowires (NWs), which are employed as a model material system, into functional electrochemical cells through a combination of bottom-up (dielectrophoresis) and top-down (silicon nanomachining) unit processes. The on-chip NWs are electrochemically lithiated inside a helium-filled glovebox and their electrical conductivity is studied as a function of incremental lithium loading during initial lithiation. We observe a dramatic reduction in NW conductivity (on the order of two to three orders in magnitude), which is not reversed when the lithium is extracted from the nanoelectrode. This conductivity change is attributed to an increase in lattice disorder within the material, which is observed from TEM images of the lithiated NWs. Furthermore, electron energy loss spectroscopy (EELS) was employed to confirm the reduction in valence state of manganese, which occurs due to the transformation of MnO2 to LixMnO2. C1 [Subramanian, A.] Virginia Commonwealth Univ, Dept Mech & Nucl Engn, Richmond, VA 23284 USA. [Subramanian, A.; Hudak, N. S.; Huang, J. Y.; Sullivan, J. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Zhan, Y.; Lou, J.] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA. RP Subramanian, A (reprint author), Virginia Commonwealth Univ, Dept Mech & Nucl Engn, Med Coll Virginia Campus, Richmond, VA 23284 USA. EM asubramanian@vcu.edu RI Hudak, Nicholas/D-3529-2011 FU Laboratory Directed Research and Development (LDRD) project at Sandia National Laboratories; Science of Precision Multifunctional Nanostructures for Electrical Energy Storage (NEES); Energy Frontier Research Center; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160] FX This work was supported by a Laboratory Directed Research and Development (LDRD) project at Sandia National Laboratories and partly by the Science of Precision Multifunctional Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. In addition, this work was performed, in part, at the Sandia-Los Alamos Center for Integrated Nanotechnologies (CINT), a US Department of Energy, Office of Basic Energy Sciences user facility. The LDRD supported the development and fabrication of the MEMS platform and the development of TEM techniques. The NEES center supported some of the additional platform development and fabrication and materials characterization. CINT supported the TEM capability and the fabrication capabilities that were used for the TEM characterization and the synthesis of the unsealed platforms. This work was also partly supported by the Welch Foundation Grant C-1716 and by the National Science Foundation under Grant No. 1266438. We would also like to thank G Naga-subramanian, D Ingersoll, S Hearne, J Nogan, and D Huber for assistance with ideas, materials, techniques, and equipment. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 25 TC 10 Z9 10 U1 5 U2 79 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD JUL 4 PY 2014 VL 25 IS 26 AR 265402 DI 10.1088/0957-4484/25/26/265402 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AK8XC UT WOS:000338711000007 PM 24919450 ER PT J AU Altland, A Beri, B Egger, R Tsvelik, AM AF Altland, A. Beri, B. Egger, R. Tsvelik, A. M. TI Bethe ansatz solution of the topological Kondo model SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article DE topological Kondo effect; Bethe ansatz; non-Fermi liquid behavior ID MAJORANA FERMIONS; 2 DIMENSIONS; NANOWIRE; SUPERCONDUCTOR; SIGNATURE; SYSTEMS; FIELD AB Conduction electrons coupled to a mesoscopic superconducting island hosting Majorana bound states have been shown to display a topological Kondo effect with robust non-Fermi liquid correlations. With M bound states coupled to M leads, this is an SO(M) Kondo problem, with the asymptotic high and low-energy theories known from bosonization and conformal field theory studies. Here we complement these approaches by analyzing the Bethe ansatz equations describing the exact solution of these models at all energy scales. We apply our findings to obtain nonperturbative results on the thermodynamics of M -> M - 2 crossovers induced by tunnel couplings between adjacent Majorana bound states. C1 [Altland, A.] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany. [Beri, B.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Egger, R.] Univ Dusseldorf, Inst Theoret Phys, D-40225 Dusseldorf, Germany. [Tsvelik, A. M.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Altland, A (reprint author), Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany. EM egger@thphy.uni-duesseldorf.de RI Egger, Reinhold/A-9163-2010 OI Egger, Reinhold/0000-0001-5451-1883 FU DFG [SFB TR12]; Royal Society URF [SPP 1666]; DOE [DE-AC02-98CH10886] FX We thank AA Nersesyan and V Kravtsov for valuable discussions, and acknowledge financial support by the SFB TR12 and the SPP 1666 of the DFG, a Royal Society URF, and the DOE under contract no DE-AC02-98CH10886. NR 43 TC 10 Z9 10 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 EI 1751-8121 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD JUL 4 PY 2014 VL 47 IS 26 AR 265001 DI 10.1088/1751-8113/47/26/265001 PG 13 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA AK5UE UT WOS:000338491100001 ER PT J AU Iversen, L Tu, HL Lin, WC Christensen, SM Abel, SM Iwig, J Wu, HJ Gureasko, J Rhodes, C Petit, RS Hansen, SD Thill, P Yu, CH Stamou, D Chakraborty, AK Kuriyan, J Groves, JT AF Iversen, Lars Tu, Hsiung-Lin Lin, Wan-Chen Christensen, Sune M. Abel, Steven M. Iwig, Jeff Wu, Hung-Jen Gureasko, Jodi Rhodes, Christopher Petit, Rebecca S. Hansen, Scott D. Thill, Peter Yu, Cheng-Han Stamou, Dimitrios Chakraborty, Arup K. Kuriyan, John Groves, Jay T. TI Ras activation by SOS: Allosteric regulation by altered fluctuation dynamics SO SCIENCE LA English DT Article ID SINGLE-MOLECULE; SIGNAL-TRANSDUCTION; ENZYME CATALYSIS; PLASMA-MEMBRANE; HISTONE DOMAIN; SEVENLESS; CELL; PROTEINS; TIME; AUTOINHIBITION AB Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average. C1 [Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M.; Wu, Hung-Jen; Petit, Rebecca S.; Hansen, Scott D.; Kuriyan, John; Groves, Jay T.] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Chem, Berkeley, CA 94720 USA. [Abel, Steven M.; Chakraborty, Arup K.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA. [Iwig, Jeff; Gureasko, Jodi; Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Rhodes, Christopher] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Thill, Peter; Chakraborty, Arup K.] MIT, Dept Chem, Cambridge, MA 02139 USA. [Yu, Cheng-Han; Groves, Jay T.] Natl Univ Singapore, Mechanobiol Inst, Singapore 117548, Singapore. [Stamou, Dimitrios] Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark. [Stamou, Dimitrios] Univ Copenhagen, Nanosci Ctr, Copenhagen, Denmark. [Chakraborty, Arup K.] MIT, Dept Biol Engn, Cambridge, MA 02139 USA. [Chakraborty, Arup K.] Ragon Inst Massachusetts Gen Hosp MIT & Harvard, Cambridge, MA 02139 USA. [Chakraborty, Arup K.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Chakraborty, Arup K.] MIT, Inst Med Engn & Sci, Cambridge, MA 02139 USA. [Kuriyan, John; Groves, Jay T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Kuriyan, John; Groves, Jay T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Groves, Jay T.] Berkeley Educ Alliance Res Singapore, Singapore 138602, Singapore. RP Groves, JT (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Dept Chem, Berkeley, CA 94720 USA. EM jtgroves@lbl.gov RI Yu, Cheng-han/K-8732-2013; Iversen, Lars/C-5298-2011; Stamou, Dimitrios/D-5042-2016; OI Iversen, Lars/0000-0002-1314-130X; Stamou, Dimitrios/0000-0001-8456-8995; Christensen, Sune/0000-0001-9650-6660; Wu, Hung-Jen/0000-0003-3082-7431 FU NIH [P01 AI091580]; Danish Council for Independent Research, Natural Sciences; Mechanobiology Institute, National University of Singapore; Berkeley Education Alliance for Research in Singapore FX Major support was provided by NIH P01 AI091580. Additional support was provided by the Danish Council for Independent Research, Natural Sciences (L. I., S. M. C., and D. S.), by the Mechanobiology Institute, National University of Singapore (C.-H.Y. and J.T.G.), and by the Berkeley Education Alliance for Research in Singapore (J.T.G.). L. I., H.-L. T., W.-C. L., and J.T.G. planned and designed the research; H.-L. T. and L. I. performed experiments and analyzed data; S. M. C. and W.-C. L. assisted with experiments; H.-L. T., S. M. C., and H.-J.W. developed algorithms for data analysis; H.-L. T., S. M. A., and P. T. performed stochastic simulations; J.I., J.G., and S. D. H. prepared proteins; C.-H.Y., C. R., and R. S. P. prepared patterned substrates; L. I., H.-L. T., and J.T.G. wrote the manuscript; J.T.G. supervised the project. All authors commented on the manuscript. NR 43 TC 29 Z9 30 U1 9 U2 84 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD JUL 4 PY 2014 VL 345 IS 6192 BP 50 EP 54 DI 10.1126/science.1250373 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AK2XU UT WOS:000338284400045 PM 24994643 ER PT J AU Ingle, A Moezzi, M Lutzenhiser, L Diamond, R AF Ingle, Aaron Moezzi, Mithra Lutzenhiser, Loren Diamond, Richard TI Better home energy audit modelling: incorporating inhabitant behaviours SO BUILDING RESEARCH AND INFORMATION LA English DT Article DE asset models; energy; energy models; home energy audits; homeowners; housing; inhabitant behaviour; low carbon; renovation; retrofit; United States ID CONSUMPTION; BUILDINGS; POLICY AB Building energy modelling is often used in US home energy audits to assess a home's energy performance and to determine energy-efficiency retrofit recommendations. These models promise quantitative, engineering-based, defensible information on a home's energy retrofit opportunities. Modelling is based on assumed standard use behaviours, despite highly variable energy use practices. This research reports on tests that incorporate household behaviour in home energy audit modelling, based on a sample of single-family households that received a utility-sponsored home energy audit in Seattle, Washington, a US city with a cool temperate climate. The use of a compact set of self-reported behaviours in place of standardized behavioural assumptions improved the match between actual home energy consumption and model estimates, and shifted retrofit savings predictions. These were modest improvements over the initially poor match, but highlight the opportunity for better customizing home energy audit modelling by using simple information on household behaviours. A comparison of modelled savings of heating-related conservation actions shows that energy savings from moderate behavioural changes are on par with retrofits for many homes. These steps provide a gateway to modelling household behavioural changes alongside retrofits, and a means to bring behaviour into conversations with homeowners and into the technically oriented efficiency paradigm in general. C1 [Ingle, Aaron; Moezzi, Mithra; Lutzenhiser, Loren] Portland State Univ, Ctr Urban Studies, Toulan Sch Urban Studies & Planning, Portland, OR 97207 USA. [Diamond, Richard] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Ingle, A (reprint author), Portland State Univ, Ctr Urban Studies, Toulan Sch Urban Studies & Planning, POB 751, Portland, OR 97207 USA. EM ingle@pdx.edu; mithra@pdx.edu; llutz@pdx.edu; rcdiamond@lbl.gov FU US Department of Energy [DE-AC02-05CH11231] FX The data for this study were collected as part of a research effort supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, of the US Department of Energy [Contract No. DE-AC02-05CH11231]. NR 32 TC 3 Z9 3 U1 3 U2 24 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0961-3218 EI 1466-4321 J9 BUILD RES INF JI Build. Res. Informat. PD JUL 4 PY 2014 VL 42 IS 4 SI SI BP 409 EP 421 DI 10.1080/09613218.2014.890776 PG 13 WC Construction & Building Technology SC Construction & Building Technology GA AH2IK UT WOS:000335944500003 ER PT J AU Yue, DJ You, FQ Snyder, SW AF Yue, Dajun You, Fengqi Snyder, Seth W. TI Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges SO COMPUTERS & CHEMICAL ENGINEERING LA English DT Article; Proceedings Paper CT 23rd European Symposium on Computer Aided Process Engineering (ESCAPE) CY JUN 09-12, 2013 CL Lappeenranta Univ Technol, Lappeenranta, FINLAND HO Lappeenranta Univ Technol DE Supply chain modeling; Biofuels; Bioenergy; Mathematical programming; Multi-scale modeling ID LIFE-CYCLE ASSESSMENT; MULTIOBJECTIVE OPTIMIZATION; STOCHASTIC INVENTORY; SUSTAINABLE DESIGN; MIXED-INTEGER; SUPERSTRUCTURE OPTIMIZATION; HYDROCARBON BIOREFINERY; TECHNOECONOMIC ANALYSIS; PROGRAMMING TECHNIQUES; ECONOMIC OPTIMIZATION AB This article describes the key challenges and opportunities in modeling and optimization of biomass-tobioenergy supply chains. It reviews the major energy pathways from terrestrial and aquatic biomass to bioenergy/biofuel products as well as power and heat with an emphasis on "drop-in" liquid hydrocarbon fuels. Key components of the bioenergy supply chains are then presented, along with a comprehensive overview and classification of the existing contributions on biofuel/bioenergy supply chain optimization. This paper identifies fertile avenues for future research that focuses on multi-scale modeling and optimization, which allows the integration across spatial scales from unit operations to biorefinery processes and to biofuel value chains, as well as across temporal scales from operational level to strategic level. Perspectives on future biofuel supply chains that integrate with petroleum refinery supply chains and/or carbon capture and sequestration systems are presented. Issues on modeling of sustainability and the treatment of uncertainties in bioenergy supply chain optimization are also discussed. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Yue, Dajun; You, Fengqi] Northwestern Univ, Evanston, IL 60208 USA. [Snyder, Seth W.] Argonne Natl Lab, Argonne, IL 60439 USA. RP You, FQ (reprint author), Northwestern Univ, Evanston, IL 60208 USA. EM you@northwestern.edu RI You, Fengqi/F-6894-2011; You, Fengqi/B-5040-2011 OI You, Fengqi/0000-0001-9609-4299 NR 183 TC 113 Z9 114 U1 18 U2 127 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-1354 EI 1873-4375 J9 COMPUT CHEM ENG JI Comput. Chem. Eng. PD JUL 4 PY 2014 VL 66 BP 36 EP 56 DI 10.1016/j.compchemeng.2013.11.016 PG 21 WC Computer Science, Interdisciplinary Applications; Engineering, Chemical SC Computer Science; Engineering GA AH8GC UT WOS:000336373400005 ER PT J AU Wetter, M Zuo, WD Nouidui, TS Pang, XF AF Wetter, Michael Zuo, Wangda Nouidui, Thierry S. Pang, Xiufeng TI Modelica Buildings library SO JOURNAL OF BUILDING PERFORMANCE SIMULATION LA English DT Article DE equation-based; object-oriented; modular modelling; building simulation; co-simulation ID SIMULATION; ENERGY AB This article describes the Buildings library, a free open-source library that is implemented in Modelica, an equation-based object-oriented modelling language. The library supports rapid prototyping, as well as design and operation of building energy and control systems. First, we describe the scope of the library, which covers heating, ventilation and air-conditioning systems, multi-zone heat transfer and multi-zone airflow and contaminant transport. Next, we describe differentiability requirements and address how we implemented them. We describe the class hierarchy that allows implementing component models by extending partial implementations of base models of heat and mass exchangers, and by instantiating basic models for conservation equations and flow resistances. We also describe associated tools for pre- and post-processing, regression tests, co-simulation and real-time data exchange with building automation systems. The article closes with an example of a chilled water plant, with and without water-side economizer, in which we analysed the system-level efficiency for different control setpoints. C1 [Wetter, Michael; Zuo, Wangda; Nouidui, Thierry S.; Pang, Xiufeng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Bldg Technol & Urban Syst Dept,Simulat Res Grp, Berkeley, CA 94720 USA. RP Wetter, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Bldg Technol & Urban Syst Dept,Simulat Res Grp, Berkeley, CA 94720 USA. EM MWetter@lbl.gov FU Office of Building Technologies of the US Department of Energy [DE-AC02-05CH11231]; California Energy Commission, Public Interest Energy Research Program, Buildings End Use Energy Efficiency Program [500-10-052] FX This research was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technologies of the US Department of Energy, under Contract No. DE-AC02-05CH11231, and by the California Energy Commission, Public Interest Energy Research Program, Buildings End Use Energy Efficiency Program, award number 500-10-052. NR 14 TC 19 Z9 19 U1 2 U2 87 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1940-1493 EI 1940-1507 J9 J BUILD PERFORM SIMU JI J. Build. Perf. Simul. PD JUL 4 PY 2014 VL 7 IS 4 SI SI BP 253 EP 270 DI 10.1080/19401493.2013.765506 PG 18 WC Construction & Building Technology SC Construction & Building Technology GA 290RC UT WOS:000329775000002 ER PT J AU Budkevich, TV Giesebrecht, J Behrmann, E Loerke, J Ramrath, DJF Mielke, T Ismer, J Hildebrand, PW Tung, CS Nierhaus, KH Sanbonmatsu, KY Spahn, CMT AF Budkevich, Tatyana V. Giesebrecht, Jan Behrmann, Elmar Loerke, Justus Ramrath, David J. F. Mielke, Thorsten Ismer, Jochen Hildebrand, Peter W. Tung, Chang-Shung Nierhaus, Knud H. Sanbonmatsu, Karissa Y. Spahn, Christian M. T. TI Regulation of the Mammalian Elongation Cycle by Subunit Rolling: A Eukaryotic-Specific Ribosome Rearrangement SO CELL LA English DT Article ID AMINOACYL-TRANSFER-RNA; STRUCTURAL BASIS; CRYSTAL-STRUCTURE; EF-TU; GTP HYDROLYSIS; CRYO-EM; COMPLEX; TRANSLOCATION; MECHANISM; SELECTION AB The extent to which bacterial ribosomes and the significantly larger eukaryotic ribosomes share the same mechanisms of ribosomal elongation is unknown. Here, we present subnanometer resolution cryoelectron microscopy maps of the mammalian 80S ribosome in the posttranslocational state and in complex with the eukaryotic eEF1A, Val-tRNA, GMPPNP ternary complex, revealing significant differences in the elongation mechanism between bacteria and mammals. Surprisingly, and in contrast to bacterial ribosomes, a rotation of the small subunit around its long axis and orthogonal to the well-known intersubunit rotation distinguishes the posttranslocational state from the classical pre-translocational state ribosome. We term this motion "subunit rolling.'' Correspondingly, a mammalian decoding complex visualized in substates before and after codon recognition reveals structural distinctions from the bacterial system. These findings suggest how codon recognition leads to GTPase activation in the mammalian system and demonstrate that in mammalia subunit rolling occurs during tRNA selection. C1 [Budkevich, Tatyana V.; Giesebrecht, Jan; Behrmann, Elmar; Loerke, Justus; Ramrath, David J. F.; Mielke, Thorsten; Ismer, Jochen; Hildebrand, Peter W.; Nierhaus, Knud H.; Spahn, Christian M. T.] Charite, Inst Med Phys & Biophys, D-10117 Berlin, Germany. [Budkevich, Tatyana V.; Nierhaus, Knud H.] Max Planck Inst Mol Genet, Abt Vingron, D-14195 Berlin, Germany. [Budkevich, Tatyana V.] Inst Mol Biol & Genet, Grp Prot Biosynthesis, UA-03143 Kiev, Ukraine. [Mielke, Thorsten] Max Planck Inst Mol Genet, UltraStrukturNetzwerk, D-14195 Berlin, Germany. [Tung, Chang-Shung; Sanbonmatsu, Karissa Y.] Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Sanbonmatsu, Karissa Y.] New Mexico Consortium, Los Alamos, NM 87544 USA. RP Spahn, CMT (reprint author), Charite, Inst Med Phys & Biophys, CharitePl 1, D-10117 Berlin, Germany. EM christian.spahn@charite.de RI Behrmann, Elmar/I-5808-2015 OI Behrmann, Elmar/0000-0001-6794-3669 FU Deutsche Forschungsgemeinschaft DFG [SFB 740, 436 UKR 113/64/1-1, HI 1502]; HSFP and Senatsverwaltung fur Wissenschaft, Forschung und Kultur Berlin (UltraStructureNetwork, Anwenderzentrum); HFSP, NIH [R01-GM072686]; Los Alamos Institutional Computing; North-German Supercomputing Alliance (HLRN) [beb00001, bec00085] FX We thank Dr. Scott Blanchard for helpful discussion. The present work was supported by grants from the Deutsche Forschungsgemeinschaft DFG (SFB 740 to C. M. T. S., P. W. H., and T. M.; 436 UKR 113/64/1-1 to T. B. and HI 1502 to P. W. H.), HSFP and Senatsverwaltung fur Wissenschaft, Forschung und Kultur Berlin (UltraStructureNetwork, Anwenderzentrum). K.Y.S. was supported by HFSP, NIH Grant R01-GM072686 and Los Alamos Institutional Computing. We acknowledge the use of computational resources supplied by the North-German Supercomputing Alliance (HLRN; project beb00001 to C. M. T. S and bec00085 to P. W. H.). NR 38 TC 32 Z9 32 U1 0 U2 6 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 EI 1097-4172 J9 CELL JI Cell PD JUL 3 PY 2014 VL 158 IS 1 BP 121 EP 131 DI 10.1016/j.cell.2014.04.044 PG 11 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA AN9QQ UT WOS:000340943100012 PM 24995983 ER PT J AU Bayliss, SL Cole, JM Waddell, PG McKechnie, S Liu, XG AF Bayliss, Sam L. Cole, Jacqueline M. Waddell, Paul G. McKechnie, Scott Liu, Xiaogang TI Predicting Solar-Cell Dyes for Cosensitization SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ORGANIC-DYES; SENSITIZATION; DERIVATIVES AB A major limitation of using organic dyes for dye-sensitized solar cells (DSCs) has been their lack of broad optical absorption. Cosensitization, in which two complementary dyes are incorporated into a DSC, offers a route to combat this problem. Here we construct and implement a design route for materials discovery of new dyes for cosensitization, beginning with a chemically compatible series of existing laser dyes which are without an anchor group necessary for DSC use. We determine the crystal structures for this dye series and use their geometries to establish the DSC molecular design prerequisites aided by density-functional theory and time-dependent density-functional theory calculations. Based on insights gained from these existing dyes, modified sensitizers are computationally designed to include a suitable anchor group. A DSC cosensitization strategy for these modified sensitizers is predicted, using the central features of highest-occupied and lowest-unoccupied molecular orbital positioning, optical absorption properties, intramolecular charge-transfer characteristics, and steric effects as selection criteria. Through this molecular engineering of a series of existing non-DSC dyes, we predict new materials for DSC cosensitization. C1 [Bayliss, Sam L.; Cole, Jacqueline M.; Waddell, Paul G.; McKechnie, Scott; Liu, Xiaogang] Univ Cambridge, Cavendish Lab, Dept Phys, Cambridge CB3 0HE, England. [Cole, Jacqueline M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Waddell, Paul G.] Australian Nucl Sci & Technol Org, Lucas Heights, NSW 2234, Australia. [Cole, Jacqueline M.] Univ Calif Davis, Inst Complex Adapt Matter, Davis, CA 95616 USA. RP Cole, JM (reprint author), Univ Cambridge, Cavendish Lab, Dept Phys, JJ Thomson Ave, Cambridge CB3 0HE, England. EM jmc61@cam.ac.uk RI Cole, Jacqueline/C-5991-2008; Waddell, Paul/C-7059-2011; Liu, Xiaogang/H-2189-2011 OI Liu, Xiaogang/0000-0002-2553-2068 FU Royal Society; Fulbright Commission; ICAM Branches Cost Sharing Fund; Bragg Institute, ANSTO, Australia; EPSRC UK National Service for Computational Chemistry Software (NSCCS); King's College, University of Cambridge, U.K.; EPSRC [EP/P505445/1]; Singapore Economic Development Board; DOE Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX S.L.B. thanks Jignesh Radia and Kian Sing Low for useful discussions. J.M.C. acknowledges the Royal Society for a University Research Fellowship, the Fulbright Commission for a UK-US Fulbright Scholar Award, the ICAM Branches Cost Sharing Fund, and the Bragg Institute, ANSTO, Australia, for funding (for P.G.W.). The authors thank the EPSRC UK National Service for Computational Chemistry Software (NSCCS), based at Imperial College London, and acknowledge contributions from its staff in supporting this work. S.M. is grateful to King's College, University of Cambridge, U.K., and the EPSRC (Grant EP/P505445/1) for PhD funding. X.L. is indebted to the Singapore Economic Development Board for a Clean Energy Scholarship. Work done at Argonne National Laboratory (J.M.C.) was supported by DOE Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 30 TC 6 Z9 6 U1 0 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 3 PY 2014 VL 118 IS 26 BP 14082 EP 14090 DI 10.1021/jp501159g PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AK8QR UT WOS:000338693600003 ER PT J AU Pistner, AJ Lutterman, DA Ghidiu, MJ Walker, E Yap, GPA Rosenthal, J AF Pistner, Allen J. Lutterman, Daniel A. Ghidiu, Michael J. Walker, Eric Yap, Glenn P. A. Rosenthal, Joel TI Factors Controlling the Spectroscopic Properties and Supramolecular Chemistry of an Electron Deficient 5,5-Dimethylphlorin Architecture SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MULTIELECTRON REDOX CHEMISTRY; SENSITIZED SOLAR-CELLS; ELECTROGENERATED CHEMILUMINESCENCE; ARTIFICIAL PHOTOSYNTHESIS; CHLOROPHYLL DERIVATIVES; VISIBLE-LIGHT; ANION-BINDING; BODIPY DYES; PORPHYRINS; ELECTROCHEMISTRY AB A new 5,5-dimethylphlorin derivative (3H-(phl(CF3)) was prepared and studied through a combination of redox, photophysical, and computational experiments. The phlorin macrocycle is significantly distorted from planarity compared to more traditional tetrapyrrole architectures and displays solvatochroism in the soret region of the UV-vis spectrum (similar to,370-420 nm). DFT calculations indicate that this solvatochromic behavior stems from the polarized nature of the frontier orbital (LUMO+1) that is most heavily involved in these transitions. Compound 3H(Phl(CF3)) also displays an intriguing supramolecular chemistry with certain anions; this phlorin can cooperatively hydrogen-bond two equivalents of fluoride to form 3H(Phl(CF3))center dot 2F(-) but does not bind larger halides such as Cl- or BC. Analogous studies revealed that the phlorin can hydrogen-bond with carboxylate anions such as acetate to form 1:1 complexes such as 3H(Phl(CF3))center dot OAC(-). These supramolecular assemblies are robust and form even in relatively polar solvents such as MeCN. Hydrogen-bonding of fluoride and acetate anions to the phlorin N-H residues significantly attenuates the redox and photophysical properties of the phlorin. Moreover, The ability to independently vary the size and pK(a) of a series of carboxylate hydrogen-bond acceptors has allowed us to probe how phlorin-anion association is controlled by the anion's size and/or basicity. These studies elucidate the physical properties and the electronic effects that shape the supramolecular chemistry displayed by the phlorin platform. C1 [Pistner, Allen J.; Ghidiu, Michael J.; Walker, Eric; Yap, Glenn P. A.; Rosenthal, Joel] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. [Lutterman, Daniel A.] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA. RP Rosenthal, J (reprint author), Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. EM joelr@udel.edu RI Lutterman, Daniel/C-9704-2016 OI Lutterman, Daniel/0000-0002-4875-6056 FU NIH [P20GM103541]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; ACS Project SEED Program FX Portions of this work were supported through an Institutional Development Award from the NIH (P20GM103541) and by the donors of the American Chemical Society Petroleum Research Fund. D.A.L. was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. E.W. was a summer student from Newark High School (Newark, DE) and was supported by the ACS Project SEED Program. Data were acquired using instrumentation obtained with assistance from the NSF (CHE-0421224, CHE-0840401, CHE-1048367, and CHE-1229234). D.A.L. also thanks the Ohio Supercomputing Center. The authors also thank Y. Z. Ma (ORNL) for assistance with emission measurements. NR 66 TC 6 Z9 6 U1 0 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 3 PY 2014 VL 118 IS 26 BP 14124 EP 14132 DI 10.1021/jp5016824 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AK8QR UT WOS:000338693600007 PM 25018789 ER PT J AU Lee, D Lee, YL Grimaud, A Hong, WT Biegalski, MD Morgan, D Shao-Horn, Y AF Lee, Dongkyu Lee, Yueh-Lin Grimaud, Alexis Hong, Wesley T. Biegalski, Michael D. Morgan, Dane Shao-Horn, Yang TI Enhanced Oxygen Surface Exchange Kinetics and Stability on Epitaxial La0.8Sr0.2CoO3-delta Thin Films by La0.8Sr0.2MnO3-delta Decoration SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID OXIDE FUEL-CELLS; DOPED CERIUM OXIDE; REDUCTION KINETICS; LA1-XSRXMN1-YCOYO3+/-DELTA PEROVSKITES; LA0.6SR0.4CO0.2FE0.8O3 CATHODES; ELECTRICAL-PROPERTIES; REACTION-MECHANISM; TEMPERATURE SOFCS; COMPOSITE CATHODE; TRACER DIFFUSION AB Surface modification of perovskites is a new approach to develop highly active and stable cathodes for solid oxide fuel cells. Here, we report that La0.8Sr0.2MnO3-delta (LSM82) surface decoration led to markedly enhanced activity and stability for surface exchange kinetics of the (001)(pseudocubic)-oriented epitaxial La0.8Sr0.2CoO3-delta (LSC82) thin films on (001)-oriented yttria-stabilized zirconia (YSZ). In-plane and out-of-plane strains of the LSC82 films at elevated temperatures determined from in situ high resolution X-ray diffraction were not influenced by LSM82 decoration. Atomic force microscopy and scanning electron microscopy analysis showed that the formation of secondary particles observed upon annealing on the undecorated LSC82 surface was eliminated by the LSM82 decoration, which was accompanied by increased strontium (Sr) on the surface as revealed by auger electron spectroscopy. The enhanced stability of LSM82-decorated LSC82 against surface decomposition is in good agreement with density functional theory (DFT) calculations that showed a considerable energy gain for Mn substitution in LSC82. The surface exchange coefficients (k(q)) of LSC82, determined from electrochemical impedance spectroscopy, increased significantly with LSM82 coverage with average thicknesses up to similar to 1 nm, while LSM82 thicknesses of similar to 3.5 nm and greater reduced k(q). Moreover, LSM82 decoration increased the stability of LSC82 for oxygen surface exchange. Remarkably, the k(q) of the LSC82 film with 0.9 nm-thick LSM82 coverage was not changed significantly over 70 h at 550 degrees C, after which time it exhibited activities 2 orders of magnitude higher than that of the undecorated LSC82. DFT calculations support the hypothesis that the enhanced oxygen surface exchange kinetics and stability of LSM82-decorated LSC82 can be attributed primarily to manganese (Mn) substitution in the LSC82 enabling the stabilization of higher Sr concentration in the perovskite structure near the surface as compared to the undecorated LSC82. C1 [Lee, Dongkyu; Lee, Yueh-Lin; Grimaud, Alexis; Hong, Wesley T.; Shao-Horn, Yang] MIT, Electrochem Energy Lab, Cambridge, MA 02139 USA. [Lee, Dongkyu; Lee, Yueh-Lin; Grimaud, Alexis; Shao-Horn, Yang] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Hong, Wesley T.; Shao-Horn, Yang] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Biegalski, Michael D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Morgan, Dane] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. RP Shao-Horn, Y (reprint author), MIT, Electrochem Energy Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM shaohorn@mit.edu RI LEE, YUEH-LIN/F-6274-2011 OI LEE, YUEH-LIN/0000-0003-2477-6412 FU King Fahd University of Petroleum and Minerals in Dharam, Saudi Arabia through the Center for Clean Water and Clean Energy at MIT; King Fahd University of Petroleum and Minerals in Dharam, Saudi Arabia through the Center for Clean Water and Clean Energy at KFUPM; Department of Energy (DOE), National Energy Technology Laboratory (NETL), Solid State Energy Conversion Alliance (SECA) Core Technology Program [DEFE0009435]; National Science Foundation [OCI-1053575]; Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX We would like to thank the King Fahd University of Petroleum and Minerals in Dharam, Saudi Arabia for partial funding of the research reported in this Article through the Center for Clean Water and Clean Energy at MIT and KFUPM. This work was also partially supported by the Department of Energy (DOE), National Energy Technology Laboratory (NETL), Solid State Energy Conversion Alliance (SECA) Core Technology Program, Funding Opportunity Number DEFE0009435. Computations in this work benefited from the use of the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575. The PLD was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We thank Dr. Zhenxing Feng for his help with sample preparation for this study. NR 68 TC 9 Z9 9 U1 6 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 3 PY 2014 VL 118 IS 26 BP 14326 EP 14334 DI 10.1021/jp502192m PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AK8QR UT WOS:000338693600028 ER PT J AU Holby, EF Wu, G Zelenay, P Taylor, CD AF Holby, Edward F. Wu, Gang Zelenay, Piotr Taylor, Christopher D. TI Structure of Fe-N-x-C Defects in Oxygen Reduction Reaction Catalysts from First-Principles Modeling SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID INITIO MOLECULAR-DYNAMICS; ELECTROCATALYSTS; POLYANILINE; TRANSITION; GRAPHENE; METALS AB The structure of active sites in Fe-based nonprecious metal oxygen reduction reaction catalysts remains unknown, limiting the ability to follow a rational design paradigm for catalyst improvement. Previous studies indicate that N-coordinated Fe defects at graphene edges are the most stable such sites. Density functional theory is used for determination of stable potential oxygen reduction reaction active sites. Clusters of Fe-N-x defects are found to have N-coordination-dependent stability. Previously reported interedge structures are found to be significantly less stable than in-edge defect structures under relevant synthesis conditions. Clusters that include Fe-N-3 defects are found to spontaneously cleave the O-O bond. C1 [Holby, Edward F.; Taylor, Christopher D.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Wu, Gang; Zelenay, Piotr] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Holby, EF (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, POB 1663, Los Alamos, NM 87545 USA. EM holby@lanl.gov RI Wu, Gang/E-8536-2010; OI Wu, Gang/0000-0003-4956-5208; Holby, Edward/0000-0001-8419-6298 FU Los Alamos National Laboratory under Laboratory Directed Research and Development (LDRD) program; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC528-06NA25396]; National Science Foundation [OCI-1053575]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors wish to thank the Los Alamos National Laboratory for funding under the Laboratory Directed Research and Development (LDRD) program and for institutional computing resources. Los Alamos National Laboratory is operated by Los Alamos National Security LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC528-06NA25396. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575. This work was facilitated by CNM User Proposal 28858. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 23 TC 33 Z9 33 U1 5 U2 77 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 3 PY 2014 VL 118 IS 26 BP 14388 EP 14393 DI 10.1021/jp503266h PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AK8QR UT WOS:000338693600034 ER PT J AU Jiang, J Cao, DP Jiang, DE Wu, JZ AF Jiang, Jian Cao, Dapeng Jiang, De-en Wu, Jianzhong TI Kinetic Charging Inversion in Ionic Liquid Electric Double Layers SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; ELECTROLYTE-SOLUTIONS; SUPERCAPACITORS; TRANSISTORS; CAPACITANCE; BEHAVIOR; SIZE AB The charging kinetics of electric double layers (EDLs) has a pivotal role in the performance of a wide variety of nanostructured devices. Despite the prevalent use of ionic liquids as the electrolyte, relatively little is known on the charging behavior from a microscopic perspective. Here, we study the charging kinetics of ionic liquid EDLs using a classical time-dependent density functional theory that captures the molecular excluded volume effects and electrostatic correlations. By examining variations of the ionic density profiles and the charging density in response to an electrode voltage, we find that at certain conditions, the electrode charge shows a rapid surge in its initial response, rises quickly to the maximum, and then slowly decays toward equilibrium. The electrode charge and voltage may have opposite signs when the cell width is commensurate with the layer-by-layer ionic distributions. This unusual charging behavior can be explained in terms of the oscillatory structure of ionic liquids near the electrodes. C1 [Jiang, Jian; Cao, Dapeng] Beijing Univ Chem Technol, Dept Chem Engn, Beijing 100029, Peoples R China. [Jiang, De-en] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Wu, Jianzhong] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA. [Wu, Jianzhong] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA. RP Wu, JZ (reprint author), Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA. EM jwu@engr.ucr.edu RI Jiang, De-en/D-9529-2011; OI Jiang, De-en/0000-0001-5167-0731; Wu, Jianzhong/0000-0002-4582-5941 FU Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center - U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences FX This research is sponsored by the Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. The numerical calculations were performed at the National Energy Research Scientific Computing Center (NERSC). NR 37 TC 12 Z9 12 U1 5 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUL 3 PY 2014 VL 5 IS 13 BP 2195 EP 2200 DI 10.1021/jz5009533 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AK8QN UT WOS:000338693200005 PM 26279533 ER PT J AU Kidwell, NM Vaquero-Vara, V Ormond, TK Buckingham, GT Zhang, D Mehta-Hurt, DN McCaslin, L Nimlos, MR Daily, JW Dian, BC Stanton, JF Ellion, GB Zwier, TS AF Kidwell, Nathanael M. Vaquero-Vara, Vanesa Ormond, Thomas K. Buckingham, Grant T. Zhang, Di Mehta-Hurt, Deepali N. McCaslin, Laura Nimlos, Mark R. Daily, John W. Dian, Brian C. Stanton, John F. Ellion, G. Barney Zwier, Timothy S. TI Chirped-Pulse Fourier Transform Microwave Spectroscopy Coupled with a Flash Pyrolysis Microreactor: Structural Determination of the Reactive Intermediate Cyclopentadienone SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID GAS-PHASE; AROMATIC-HYDROCARBONS; THERMAL-DECOMPOSITION; PHOTOIONIZATION MASS; BASIS-SETS; RADICALS; OXIDATION; SPECTRA; LIGNIN; ANTIAROMATICITY AB Chirped-pulse Fourier transform microwave spectroscopy (CP-FTMW) is combined with a flash pyrolysis (hyperthermal) microreactor as a novel method to investigate the molecular structure of cyclopentadienone (C5H4=O), a key reactive intermediate in biomass decomposition and aromatic oxidation. Samples of C5H4=O were generated cleanly from the pyrolysis of o-phenylene sulfite and cooled in a supersonic expansion. The C-13 isotopic species were observed in natural abundance in both C5H4=O and in C5D4=O samples, allowing precise measurement of the heavy atom positions in C5H4=O. The eight isotopomers include: C5H4=O, C5D4=O, and the singly C-13 isotopomers with C-13 substitution at the C1, C2, and C3 positions. Microwave spectra were interpreted by CCSD(T) ab initio electronic structure calculations and an r(e) molecular structure for C5H4=O was found. Comparisons of the structure of this "anti-aromatic" molecule are made with those of comparable organic molecules, and it is concluded that the disfavoring of the "anti-aromatic" zwitterionic resonance structure is consistent with a more pronounced C=C/C-C bond alternation. C1 [Kidwell, Nathanael M.; Vaquero-Vara, Vanesa; Zhang, Di; Mehta-Hurt, Deepali N.; Dian, Brian C.; Zwier, Timothy S.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. [Ormond, Thomas K.; Buckingham, Grant T.; Nimlos, Mark R.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Ormond, Thomas K.; Buckingham, Grant T.; Ellion, G. Barney] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Daily, John W.] Univ Colorado, Dept Mech Engn, Ctr Combust & Environm Res, Boulder, CO 80309 USA. [McCaslin, Laura; Stanton, John F.] Univ Texas Austin, Dept Chem, Inst Theoret Chem, Austin, TX 78712 USA. RP Stanton, JF (reprint author), Univ Texas Austin, Dept Chem, Inst Theoret Chem, Austin, TX 78712 USA. EM jfstanton@mail.utexas.edu; barney@jila.colorado.edu; zwier@purdue.edu FU Department of Energy Basic Energy Research, Chemical Sciences Division [DE-FG02-96ER14656]; National Science Foundation [CHE-0848606, CHE-1112466]; Robert A. Welch Foundation [F-1283]; United States Department of Energy, Basic Energy Sciences [DE-FG02-07ER15884]; United States Department of Energy's Bioenergy Technology Office [DE-AC36-99GO10337]; National Renewable Energy Laboratory FX N.M.K., V.V.V., D.Z., and T.S.Z. gratefully acknowledge support from the Department of Energy Basic Energy Research, Chemical Sciences Division under Grant No. DE-FG02-96ER14656. N.M.K., V.V.V., D.Z., and T.S.Z. also thank the Jonathan Amy Facility for Chemical Instrumentation at Purdue University for personnel and equipment support. J.W.D., J.F.S., and G.B.E. would like to acknowledge support from the National Science Foundation (CHE-0848606 and CHE-1112466). J.F.S. also acknowledges support from the Robert A. Welch Foundation (Grant F-1283) and the United States Department of Energy, Basic Energy Sciences (DE-FG02-07ER15884). M.R.N. is supported by the United States Department of Energy's Bioenergy Technology Office, under Contract No. DE-AC36-99GO10337 with the National Renewable Energy Laboratory. NR 48 TC 11 Z9 11 U1 9 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUL 3 PY 2014 VL 5 IS 13 BP 2201 EP 2207 DI 10.1021/jz5010895 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AK8QN UT WOS:000338693200006 PM 26279534 ER PT J AU Pluharova, E Baer, MD Mundy, CJ Schmidt, B Jungwirth, P AF Pluharova, Eva Baer, Marcel D. Mundy, Christopher J. Schmidt, Burkhard Jungwirth, Pavel TI Aqueous Cation-Amide Binding: Free Energies and IR Spectral Signatures by Ab Initio Molecular Dynamics SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID N-METHYLACETAMIDE; INFRARED-SPECTROSCOPY; FORCE-FIELD; SIMULATIONS; PEPTIDES; DENSITY; ANIONS; MODEL; WATER; SALTS AB Understanding specific ion effects on proteins remains a considerable challenge. N-methylacetamide serves as a useful proxy for the protein backbone that can be well characterized both experimentally and theoretically. The spectroscopic signatures in the amide I band reflecting the strength of the interaction of alkali cations and alkaline earth dications with the carbonyl group remain difficult to assign and controversial to interpret. Herein, we directly compute the infrared (IR) shifts corresponding to the binding of either sodium or calcium to aqueous N-methylacetamide using ab initio molecular dynamics simulations. We show that the two cations interact with aqueous N-methylacetamide with different affinities and in different geometries. Because sodium exhibits a weak interaction with the carbonyl group, the resulting amide I band is similar to an unperturbed carbonyl group undergoing aqueous solvation. In contrast, the stronger calcium binding results in a clear IR shift with respect to N-methylacetamide in pure water. C1 [Pluharova, Eva; Jungwirth, Pavel] Acad Sci Czech Republic, Inst Organ Chem & Biochem, CR-16610 Prague 6, Czech Republic. [Baer, Marcel D.; Mundy, Christopher J.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Schmidt, Burkhard] Free Univ Berlin, Inst Math, D-14195 Berlin, Germany. RP Jungwirth, P (reprint author), Acad Sci Czech Republic, Inst Organ Chem & Biochem, Flemingovo Nam 2, CR-16610 Prague 6, Czech Republic. EM pavel.jungwirth@uochb.cas.cz RI Jungwirth, Pavel/D-9290-2011; Schmidt, Burkhard/A-2358-2013; Pluharova, Eva/B-1092-2012 OI Jungwirth, Pavel/0000-0002-6892-3288; Schmidt, Burkhard/0000-0002-9658-499X; FU Czech Ministry of Education [LH12001]; International Max Planck Research School; Praemium Academiae award from the Academy of Sciences; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; PNNL FX Support from the Czech Ministry of Education (grant LH12001) is gratefully acknowledged. E.P. thanks the International Max Planck Research School for support and acknowledges the Alternative Sponsored Fellowship program at Pacific Northwest National Laboratory (PNNL). P.J. acknowledges the Praemium Academiae award from the Academy of Sciences. Calculations of the free energy profiles were made possible through generous allocation of computer time from the North-German Supercomputing Alliance (HLRN). Calculations of vibrational spectra were performed in part using the computational resources in the National Energy Research Supercomputing Center (NERSC) at Lawrence Berkeley National Laboratory which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. C.J.M. is supported by the U.S. Department of Energy (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle. M.D.B. is grateful for the support of the Linus Panting Distinguished Postdoctoral Fellowship Program at PNNL. NR 36 TC 13 Z9 13 U1 5 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUL 3 PY 2014 VL 5 IS 13 BP 2235 EP 2240 DI 10.1021/jz500976m PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AK8QN UT WOS:000338693200012 PM 26279540 ER PT J AU Cheng, TL Wen, YH AF Cheng, Tian-Le Wen, You-Hai TI Toward a Quantitative Understanding of the Electric Field in Thermal Metal Oxidation and a Self-Consistent Wagner Theory SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID OXIDE FILM GROWTH; TRANSPORT; KINETICS; TEMPERATURE; CRYSTALS; CHARGE AB The electric field in the growing oxide film is important to the kinetics and mechanism of metal oxidation. However, understanding of the essential characteristics of the electric field during oxidation remains insufficient. A special-case analytical model is presented that provides a unified understanding for the electric field from the viewpoints of kinetics and thermodynamics. More general cases are studied by computer simulations that show similar characteristics in the electric field. In particular, simulations indicate that in many situations, the electrostatic potential drop across the bulk oxide is limited to similar to k(B)T/e, which means that the total electrostatic potential drop across the oxide film, if on the order of 1 V by rough estimation, should have contributions mostly from the electrified interfaces. Finally, regarding the Gibbs-Duhem relation, the commonly used isobaric assumption for the diffusing species is refuted. The results contained herein also provide a self-consistent understanding of Wagner's oxidation theory. C1 [Cheng, Tian-Le; Wen, You-Hai] Natl Energy Technol Lab, Albany, OR 97321 USA. RP Cheng, TL (reprint author), Natl Energy Technol Lab, 1450 Queen Ave Southwest, Albany, OR 97321 USA. EM tianle.cheng@contr.netl.doe.gov; youhai.wen@netl.doe.gov FU National Science Foundation [OCI-1053575]; United States Government FX We gratefully acknowledge Drs. Jeffrey A. Hawk and Bryan D. Morreale for carefully reading the manuscript and making helpful suggestions. We would also like to thank the Strategic Center for Coal, Cross-Cutting Research, Dr. Susan Maley, Technology Manager, for supporting this ORD activity through the IPT project led by Dr. David E. Alman. T.-L.C. acknowledges the Postgraduate Research Program operated by Oak Ridge Institute for Science and Education (ORISE) and the Extreme Science and Engineering Discovery Environment (XSEDE) that is supported by National Science Foundation Grant Number OCI-1053575. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by tradename, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 25 TC 3 Z9 3 U1 7 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUL 3 PY 2014 VL 5 IS 13 BP 2289 EP 2294 DI 10.1021/jz5008627 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AK8QN UT WOS:000338693200020 PM 26279548 ER PT J AU Kerisit, S Schwenzer, B Vijayakumar, M AF Kerisit, Sebastien Schwenzer, Birgit Vijayakumar, M. TI Effects of Oxygen-Containing Functional Groups on Supercapacitor Performance SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID TEMPERATURE IONIC LIQUIDS; GRAPHENE MATERIALS; ENERGY-CONVERSION; STORAGE; SIMULATIONS; CAPACITANCE; ELECTRODES; INSIGHTS; DENSITY; SURFACE AB Molecular dynamics (MD) simulations of the interface between graphene and the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIM OTf) were carried out to gain molecular-level insights into the performance of graphene-based supercapacitors and, in particular, determine the effects of the presence of oxygen-containing defects at the graphene surface on their integral capacitance. The MD simulations predict that increasing the surface coverage of hydroxyl groups negatively affects the integral capacitance, whereas the effect of the presence of epoxy groups is much less significant. The calculated variations in capacitance are found to be directly correlated to the interfacial structure. Indeed, hydrogen bonding between hydroxyl groups and SO3 moieties prevents BMIM+ and OTf- ions from interacting favorably in the interfacial layer and restrains the orientation and mobility of OTf- ions, thereby reducing the interfacial permittivity of the ionic liquid. The results of the simulations can facilitate the rational design of electrode materials for supercapacitors. C1 [Kerisit, Sebastien; Schwenzer, Birgit; Vijayakumar, M.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Kerisit, S (reprint author), Pacific NW Natl Lab, Div Phys Sci, 902 Battelle Blvd, Richland, WA 99352 USA. EM sebastien.kerisit@pnnl.gov; vijay@pnnl.gov RI Murugesan, Vijayakumar/C-6643-2011; OI Murugesan, Vijayakumar/0000-0001-6149-1702; Schwenzer, Birgit/0000-0002-7872-1372 FU Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy (DOE) [DE-AC05-76RL01830] FX This research was supported by the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL), a multiprogram national laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy (DOE) under contract DE-AC05-76RL01830. The computer simulations were performed in part using the Molecular Science Computing (MSC) facilities in the William R Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research (OBER) and located at PNNL. NR 32 TC 17 Z9 17 U1 7 U2 81 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUL 3 PY 2014 VL 5 IS 13 BP 2330 EP 2334 DI 10.1021/jz500900t PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AK8QN UT WOS:000338693200027 PM 26279555 ER PT J AU Ansong, C Sadler, NC Hill, EA Lewis, MP Zink, EM Smith, RD Beliaev, AS Konopka, AE Wright, AT AF Ansong, Charles Sadler, Natalie C. Hill, Eric A. Lewis, Michael P. Zink, Erika M. Smith, Richard D. Beliaev, Alexander S. Konopka, Allan E. Wright, Aaron T. TI Characterization of protein redox dynamics induced during light-to-dark transitions and nutrient limitation in cyanobacteria SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE cyanobacteria; nutrient limitation; light-dark transition; activity-based protein profiling; chemical proteomics ID SYNECHOCYSTIS SP PCC-6803; SP PCC 6803; FATTY-ACID SYNTHESIS; UNICELLULAR CYANOBACTERIA; INORGANIC CARBON; GENE-EXPRESSION; THIOREDOXIN; REGULATOR; PROTEOMICS; SYNECHOCOCCUS AB Protein redox chemistry constitutes a major void in knowledge pertaining to photoautotrophic system regulation and signaling processes. We have employed a chemical biology approach to analyze redox sensitive proteins in live Synechococcus sp. PCC 7002 cells in both light and dark periods, and to understand how cellular redox balance is disrupted during nutrient perturbation. The present work identified 300 putative redox-sensitive proteins that are involved in the generation of reductant, macromolecule synthesis, and carbon flux through central metabolic pathways, and may be involved in cell signaling and response mechanisms. Furthermore, our research suggests that dynamic redox changes in response to specific nutrient limitations, including carbon and nitrogen limitations, contribute to the regulatory changes driven by a shift from light to dark. Taken together, these results contribute to a high-level understanding of post-translational mechanisms regulating flux distributions and suggest potential metabolic engineering targets for redirecting carbon toward biofuel precursors. C1 [Ansong, Charles; Sadler, Natalie C.; Hill, Eric A.; Lewis, Michael P.; Zink, Erika M.; Smith, Richard D.; Beliaev, Alexander S.; Konopka, Allan E.; Wright, Aaron T.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Wright, AT (reprint author), Pacific NW Natl Lab, Div Biol Sci, 902 Battelle Blvd,Box 999,MSIN J4-02, Richland, WA 99352 USA. EM aaron.wright@pnnl.gov RI Smith, Richard/J-3664-2012; Beliaev, Alexander/E-8798-2016 OI Smith, Richard/0000-0002-2381-2349; Beliaev, Alexander/0000-0002-6766-4632 FU Genomic Science Program (GSP) of the U.S. DOE-OBER; GSP; OBER at PNNL FX This research was supported by the Genomic Science Program (GSP) of the U.S. DOE-OBER, and is a contribution of the PNNL Biofuels and Foundational Scientific Focus Areas and the GSP supported Pan-omics project at PNNL; MS-based measurements and microscopy were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by OBER at PNNL. NR 41 TC 7 Z9 7 U1 2 U2 30 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD JUL 3 PY 2014 VL 5 AR 325 DI 10.3389/fmicb.2014.00325 PG 10 WC Microbiology SC Microbiology GA AK9UN UT WOS:000338773400001 PM 25071738 ER PT J AU Baer, MD Fulton, JL Balasubramanian, M Schenter, GK Mundy, CJ AF Baer, Marcel D. Fulton, John L. Balasubramanian, Mahalingam Schenter, Gregory K. Mundy, Christopher J. TI Persistent Ion Pairing in Aqueous Hydrochloric Acid SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; DENSITY-FUNCTIONAL THEORY; WATER LIQUID/VAPOR INTERFACE; ABSORPTION FINE-STRUCTURE; MICROSCOPIC STRUCTURE; HYDRATION STRUCTURE; 1ST PRINCIPLES; HCL SOLUTIONS; NITRIC-ACID; AB-INITIO AB For strong acids, like hydrochloric acid, the complete dissociation into an excess proton and conjugated base as well as the formation of independent solvated charged fragments is assumed. The existence of chloride-hydronium (Cl-center dot center dot center dot H3O+) contact ion pairs even in moderate concentration hydrochloric acid (2.5 m) demonstrates that the counterions do not behave merely as spectators. Through comparison of recent extended X-ray absorption fine structure (EXAFS) measurements to state-of-the-art density functional theory (DFT) simulations, we are able to obtain a unique view into the molecular structure of medium-to-high concentrated electrolytes. Here we report that the Cl-center dot center dot center dot H3O+ contact ion pair structure persists throughout the entire concentration range studied and that these structures differ significantly from moieties studied in microsolvated hydrochloric add gas phase clusters. Characterizing distinct populations of these ion pairs gives rise to a novel molecular level description of how to view the reaction network for acid dissociation and how it relates to our picture of acid-base equilibria. C1 [Baer, Marcel D.; Fulton, John L.; Schenter, Gregory K.; Mundy, Christopher J.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Balasubramanian, Mahalingam] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. RP Mundy, CJ (reprint author), Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. EM chris.mundy@pnnl.gov FU U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; Linus Pauling Distinguished Postdoctoral Fellowship Program at PNNL; NSERC; University of Washington; Canadian Light Source; Advanced Photon Source; U.S. DOE [DE-AC02-06CH11357]; Office of Science of the U.S. Department of Energy [DE-AC02-0SCH11231] FX This work was supported the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle. M.D.B. is grateful for the support of the Linus Pauling Distinguished Postdoctoral Fellowship Program at PNNL. PNC/XSD facilities at the Advanced Photon Source and research at these facilities are supported by the U.S. Department of Energy Basic Energy Sciences, a Major Resources Support grant from NSERC, the University of Washington, the Canadian Light Source, and the Advanced Photon Source. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract DE-AC02-06CH11357. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-0SCH11231. We acknowlege computer resources through PNNL's institutional computing (PIC). We acknowledge Gil Nathanson's critical analysis of this work. NR 56 TC 18 Z9 18 U1 9 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 3 PY 2014 VL 118 IS 26 BP 7211 EP 7220 DI 10.1021/jp501091h PG 10 WC Chemistry, Physical SC Chemistry GA AK8QL UT WOS:000338693000001 PM 24837190 ER PT J AU Do, TD LaPointe, NE Sangwan, S Teplow, DB Feinstein, SC Sawaya, MR Eisenberg, DS Bowers, MT AF Do, Thanh D. LaPointe, Nichole E. Sangwan, Smriti Teplow, David B. Feinstein, Stuart C. Sawaya, Michael R. Eisenberg, David S. Bowers, Michael T. TI Factors That Drive Peptide Assembly from Native to Amyloid Structures: Experimental and Theoretical Analysis of [Leu-5]-Enkephalin Mutants SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID X-RAY-DIFFRACTION; ALZHEIMERS-DISEASE; FORMING PEPTIDE; ION CHANNELS; FORCE-FIELD; FIBRILS; SIMULATION; PROTEINS; ENVIRONMENT; STABILITY AB Five different mutants of [Leu-5] Enkephalin YGGFL peptide have been investigated for fibril formation propensities. The early oligomer structures have been probed with a combination of ion-mobility mass spectrometry and computational modeling. The two peptides YVIFL and YVVFL form oligomers and amyloid-like fibrils. YVVFV shows an early stage oligomer distribution similar to those of the previous two, but amyloid-like aggregates are less abundant. Atomic resolution X-ray structures of YVVFV show two different modes of interactions at the dry interface between steric zippers and pairs of antiparallel beta-sheets, but both are less favorable than the packing motif found in YVVFL. Both YVVFV and YVVFL can form a Class 6 steric zipper. However, in YVVFV, the strands between mating sheets are parallel to each other and in YVVFL they are antiparallel. The overall data highlight the importance of structurally characterizing high order oligomers within oligomerization pathways in studies of nanostructure assembly. C1 [Do, Thanh D.; Bowers, Michael T.] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. [LaPointe, Nichole E.; Feinstein, Stuart C.] Univ Calif Santa Barbara, Neurosci Res Inst, Santa Barbara, CA 93106 USA. [LaPointe, Nichole E.; Feinstein, Stuart C.] Univ Calif Santa Barbara, Dept Mol Cellular & Dev Biol, Santa Barbara, CA 93106 USA. [Sangwan, Smriti; Sawaya, Michael R.; Eisenberg, David S.] Univ Calif Los Angeles, Dept Chem & Biochem, Howard Hughes Med Inst, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Sangwan, Smriti; Sawaya, Michael R.; Eisenberg, David S.] Univ Calif Los Angeles, Dept Biol Chem, Howard Hughes Med Inst, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Teplow, David B.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurol, Mary S Easton Ctr Alzheimers Dis Res, Los Angeles, CA 90095 USA. [Teplow, David B.] Univ Calif Los Angeles, Brain Res Inst, Los Angeles, CA 90095 USA. [Teplow, David B.] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA. RP Bowers, MT (reprint author), Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. EM bowers@chem.ucsb.edu RI Do, Thanh/D-5170-2017; OI Do, Thanh/0000-0002-1978-4365; Sawaya, Michael/0000-0003-0874-9043 FU National Science Foundation [CHE-1301032, MCB-0958111, OCI-1053575]; National Institutes of Health [1RO1AG047116-01, NS038328, AG041295]; Jim Easton Consortium for Drug Discovery and Biomarkers at UCLA; Texas Advanced Computing Center (TACC) at The University of Texas at Austin [TG-CHE130004]; Center for Scientific Computing at the CNSI and MRL: an NSF MRSEC [DMR- 1121053]; NSF [CNS-0960316] FX The authors thank Ms. Margaret Condron for synthesizing the peptides. T.D.D. thanks Nicholas Economou, Breanna Johnson, and Dr. Christian Bleiholder for useful discussion. We thank Michael Collazo at the UCLA crystallization facility for setting up robot screens and K. Rajashankar and beamline staff at Argonne Photon Source, Northeastern Collaborative Access Team beamlines 24-ID-E, for data collection. We gratefully acknowledge support from the National Science Foundation grants CHE-1301032 (M.T.B.) and MCB-0958111 (D.S.E.), and the National Institutes of Health grants 1RO1AG047116-01 (M.T.B.), NS038328 (D.B.T.), AG041295 (D.B.T.), and by the Jim Easton Consortium for Drug Discovery and Biomarkers at UCLA (D.B.T.). This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources through the XSEDE grant number TG-CHE130004 (M.T.B.). We acknowledge support from the Center for Scientific Computing at the CNSI and MRL: an NSF MRSEC (DMR- 1121053) and NSF CNS-0960316. We also acknowledge the use of the NRI-MCDB Microscopy Facility at UC, Santa Barbara. NR 51 TC 13 Z9 13 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 3 PY 2014 VL 118 IS 26 BP 7247 EP 7256 DI 10.1021/jp502473s PG 10 WC Chemistry, Physical SC Chemistry GA AK8QL UT WOS:000338693000004 PM 24915112 ER PT J AU Perticaroli, S Nickels, JD Ehlers, G Mamontov, E Sokoov, AP AF Perticaroli, Stefania Nickels, Jonathan D. Ehlers, Georg Mamontov, Eugene Sokoov, Alexei P. TI Dynamics and Rigidity in an Intrinsically Disordered Protein, beta-Casein SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID INELASTIC NEUTRON-SCATTERING; SECONDARY STRUCTURE; FTIR SPECTROSCOPY; BOSON PEAK; BACKBONE CONTRIBUTIONS; UNSTRUCTURED PROTEINS; NMR-SPECTROSCOPY; BOVINE CASEINS; TRANSFER-RNA; SIDE-CHAIN AB The emergence of intrinsically disordered proteins (IDPs) as a recognized structural class has forced the community to confront a new paradigm of structure, dynamics, and mechanical properties for proteins. We present novel data on the similarities and differences in the dynamics and nanomechanical properties of IDPs and other biomacromolecules on the picosecond time scale. An IDP, beta-casein (CAS), has been studied in a calcium bound and unbound state using neutron and light scattering techniques. We show that CAS partially folds and stiffens upon calcium binding, but in the unfolded state, it is softer than folded proteins such as green fluorescence protein (GFP). We also see that some localized diffusive motions in CAS have a larger amplitude than in GFP at this time scale but are still smaller than those observed in tRNA. In spite of these differences, CAS dynamics are consistent with the classes of motions seen in folded protein on this time scale. C1 [Perticaroli, Stefania; Nickels, Jonathan D.; Sokoov, Alexei P.] Oak Ridge Natl Lab, Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA. [Perticaroli, Stefania; Sokoov, Alexei P.] Oak Ridge Natl Lab, Chem & Mat Sci Div, Oak Ridge, TN 37831 USA. [Ehlers, Georg] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Mamontov, Eugene] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Perticaroli, S (reprint author), Oak Ridge Natl Lab, Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA. EM spertica@utk.edu; nickelsjd@ornl.gov RI Instrument, CNCS/B-4599-2012; Ehlers, Georg/B-5412-2008; Mamontov, Eugene/Q-1003-2015; Nickels, Jonathan/I-1913-2012 OI Ehlers, Georg/0000-0003-3513-508X; Mamontov, Eugene/0000-0002-5684-2675; Nickels, Jonathan/0000-0001-8351-7846 FU Department of Energy support through the EPSCoR program [DE-FG02-08ER46528]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE; UT-Battelle, LLC; U.S. Department of Energy [DEAC05-00OR22725] FX We acknowledge Department of Energy support through the EPSCoR program (grant DE-FG02-08ER46528) and by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. The research at the Oak Ridge National Laboratory facilities is sponsored by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DEAC05-00OR22725. We also thank the SNS-User Chemistry Lab., Hugh O'Neill and Qiu Zhang for providing GFP and Paola Sassi for helpful discussions. NR 63 TC 15 Z9 15 U1 5 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 3 PY 2014 VL 118 IS 26 BP 7317 EP 7326 DI 10.1021/jp503788r PG 10 WC Chemistry, Physical SC Chemistry GA AK8QL UT WOS:000338693000011 PM 24918971 ER PT J AU Shi, W Thompson, RL Albenze, E Steckel, JA Nulwala, HB Luebke, DR AF Shi, Wei Thompson, Robert L. Albenze, Erik Steckel, Janice A. Nulwala, Hunaid B. Luebke, David R. TI Contribution of the Acetate Anion to CO2 Solubility in Ionic Liquids: Theoretical Method Development and Experimental Study SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID MONTE-CARLO SIMULATIONS; HENRYS LAW CONSTANTS; CARBON-DIOXIDE; PHASE-BEHAVIOR; 1-BUTYL-3-METHYLIMIDAZOLIUM ACETATE; GAS SOLUBILITY; MIXTURES; SEPARATION; DYNAMICS; WATER AB A new theoretical method was developed to compute the Henry's law constant for gas absorption in a solvent through strong nonphysical interactions. The new method was created by expanding the test particle insertion method typically applied to physisorbing systems to account for the strong intermolecular interactions present in chemisorbing systems. By using an ab initio (AI)-based Boltzmann-averaged potential to model the interaction between CO2 and the tetra-n-butylphosphonium acetate ([P-4444] [CH3COO]) ionic liquid, the total Henrys's law constant at 298 K was computed to be 0.011 to 0.039 bar, reasonably comparable to the experimental value of 0.18 bar measured in this work. Three different All potentials were used to verify the applicability of this approach. In contrast, when a classical force field (FF) was used to describe the interaction between CO2 and [P-4444][CH3COO], the Henry's law constant was computed to be 27 bar, significantly larger than the experimental value. The classical FF underestimates the CO2 [P-4444][CH3COO] interaction compared with the AI calculations, which in turn leads to the smaller simulated CO2 solubility. Simulations further indicate that the CO2 interaction with the [CH3COO](-) anion is much stronger than with the [P-4444](+) cation. This result strongly suggests that the large CO2 solubility in [P-4444][CH3COO] is due to the strong CO2 [CH3COO](-) interaction. C1 [Shi, Wei; Thompson, Robert L.; Albenze, Erik; Steckel, Janice A.; Nulwala, Hunaid B.; Luebke, David R.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Shi, Wei; Thompson, Robert L.; Albenze, Erik] URS Corp, South Pk, PA 15129 USA. [Shi, Wei] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. [Nulwala, Hunaid B.] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA. RP Shi, W (reprint author), US DOE, Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. EM shiw@netl.doe.gov RI Nulwala, Hunaid/G-8126-2012 OI Nulwala, Hunaid/0000-0001-7481-3723 FU National Energy Technology Laboratory under RES [DE-FE0004000]; Department of Energy, National Energy Technology Laboratory, an agency of the United States Government; URS Energy & Construction, Inc. FX W.S. thanks J. Karl Johnson for helpful discussion. This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in computational chemistry under the RES contract DE-FE0004000. This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with URS Energy & Construction, Inc. Neither the United States Government nor any agency thereof, nor any of their employees, nor URS Energy & Construction, Inc., nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 37 TC 12 Z9 12 U1 2 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 3 PY 2014 VL 118 IS 26 BP 7383 EP 7394 DI 10.1021/jp502425a PG 12 WC Chemistry, Physical SC Chemistry GA AK8QL UT WOS:000338693000018 PM 24927032 ER PT J AU Petitpas, G Benard, P Klebanoff, LE Xiao, J Aceves, S AF Petitpas, G. Benard, P. Klebanoff, L. E. Xiao, J. Aceves, S. TI A comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Cryo-compressed; Sorbents; Cryogenic hydrogen onboard storage; Dormancy; Pressure vessel design ID PRESSURE-VESSELS; VEHICLES; SYSTEM; RANGE AB While conventional low-pressure LH2 dewars have existed for decades, advanced methods of cryogenic hydrogen storage have recently been developed. These advanced methods are cryo-compression and cryo-adsorption hydrogen storage, which operate best in the temperature range 30-100 K. We present a comparative analysis of both approaches for cryogenic hydrogen storage, examining how pressure and/or sorbent materials are used to effectively increase onboard H-2 density and dormancy. We start by reviewing some basic aspects of LH2 properties and conventional means of storing it. From there we describe the cryo-compression and cryo-adsorption hydrogen storage methods, and then explore the relationship between them, clarifying the materials science and physics of the two approaches in trying to solve the same hydrogen storage task (similar to 5-8 kg H-2, typical of light duty vehicles). Assuming that the balance of plant and the available volume for the storage system in the vehicle are identical for both approaches, the comparison focuses on how the respective storage capacities, vessel weight and dormancy vary as a function of temperature, pressure and type of cryo-adsorption material (especially, powder MOP-5 and MIL-101). By performing a comparative analysis, we clarify the science of each approach individually, identify the regimes where the attributes of each can be maximized, elucidate the properties of these systems during refueling, and probe the possible benefits of a combined "hybrid" system with both cryo-adsorption and cryo-compression phenomena operating at the same time. In addition the relationships found between onboard H-2 capacity, pressure vessel and/or sorbent mass and dormancy as a function of rated pressure, type of sorbent material and fueling conditions are useful as general designing guidelines in future engineering efforts using these two hydrogen storage approaches. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Petitpas, G.; Aceves, S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Benard, P.; Xiao, J.] Univ Quebec Trois Rivieres, Inst Rech Hydrogene, Trois Rivieres, PQ G9A 5H7, Canada. [Klebanoff, L. E.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Petitpas, G (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM petitpas1@llnl.gov RI XIAO, Jinsheng/B-1616-2008 OI XIAO, Jinsheng/0000-0003-0661-4778 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE, Office of Fuel Cell Technologies; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Boeing Company via the Boeing/Sandia CRADA [SCO211651.14.00]; Natural Science and Engineering Research Council's (NSERC) H2Can Strategic Network; NSERC Strategic Network Enhancement Initiative program FX The authors of this work are from three different institutions that are acknowledged here. The work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This project was partially funded by DOE, Office of Fuel Cell Technologies, Ned Stetson and Erika Sutherland, Technology Development Managers. The work was also performed at Sandia National Laboratories, which is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. We acknowledge funding of the Sandia work by The Boeing Company via the Boeing/Sandia CRADA SCO211651.14.00. This work was also funded by the Natural Science and Engineering Research Council's (NSERC) H2Can Strategic Network and benefited from the NSERC Strategic Network Enhancement Initiative program. The authors thank Daniel Dedrick of Sandia for reviewing the manuscript. NR 52 TC 9 Z9 10 U1 1 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUL 3 PY 2014 VL 39 IS 20 BP 10564 EP 10584 DI 10.1016/j.ijhydene.2014.04.200 PG 21 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA AK4IN UT WOS:000338388200026 ER PT J AU Casolari, BL Ellington, MA Oros, JM Schuttinger, P Radley, CJ Kiley, KA Klebanoff, LE AF Casolari, B. L. Ellington, M. A. Oros, J. M. Schuttinger, P. Radley, C. J. Kiley, K. A. Klebanoff, L. E. TI Model study of a fuel cell range extender for a neighborhood electric vehicle (NEV) SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen fuel cell; Range extender; Neighborhood electric vehicle; Greenhouse gas reduction; Extending battery life AB Fuel cell systems have the potential to provide high-efficiency, low-cost power for Neighborhood Electric Vehicles (NEVs). Model results are presented examining the utility of placing a hydrogen PEM fuel cell on-board a Miles Electric ZX40ST work truck NEV as an "after-market add-on" range extender to the existing battery electric drive train, thereby creating a NEVx. Through the development and use of the Sandia-Miles-Altergy Range Test (SMART) model, we have examined the potential for a number of PEM fuel cell stack systems (with varying output power), combined with various hydrogen storage and electrical storage system configurations to achieve the desired range extension for a single 8-h work shift. Furthermore, we have evaluated the "well-to-wheels" (WTW) and greenhouse gas (GHG) reductions, and assessed the costs (both capital and O&M) for the different NEVx configurations and operating profiles. This analysis demonstrates that a NEVx incorporating a PEM fuel cell range extender provides a viable means of providing the desired range (or equivalently the runtime) while increasing the vehicle's versatility and maintaining its zero-emissions rating. A 5 kW fuel cell system with 2.6 kg of hydrogen stored at 2265 psi in conventional steel cylinders can meet the demands of the low-power duty cycles envisioned for the NEVx. A slightly higher powered NEVx with a 7.5 kW fuel cell offers the same advantages in operating profiles that require more power, for example with frequent starts, sustained higher speeds, or hilly routes. While currently expensive, the total cost per mile of the fuel cell range extender is comparable to conventional gasoline vehicles. The WTV TGHG emissions of the NEVx are 40%-85% lower than those for a comparable gasoline powered vehicle, depending on the particular drive profile and sources of both hydrogen and electricity. The analysis shows that a fuel cell range extender can maintain the vehicle battery pack at a high state of charge (SOC) throughout the operating profile, thereby extending overall battery life and reducing charging time. The fuel cell range extender is currently envisioned as a drop-in retrofit for the existingMiles Electric ZX40ST work truck. However, with sufficient demand, a fully integrated new vehicle system could be both more efficient and less expensive. If designed into the NEVx from the start, the cost, weight, and emissions could all be reduced while increasing the payload space and versatility. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Casolari, B. L.; Ellington, M. A.; Oros, J. M.; Schuttinger, P.; Radley, C. J.] Aliergy Syst, Folsom, CA 95630 USA. [Kiley, K. A.] Miles Elect Vehicles, Unit 114, Westlake Village, CA 91362 USA. [Klebanoff, L. E.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Klebanoff, LE (reprint author), Sandia Natl Labs, POB 969,MS 9161,7011 East Ave, Livermore, CA 94551 USA. EM lekleba@sandia.gov FU Pete Devlin and colleagues at the DOE Fuel Cell Market Transformation Group within the DOE EERE Fuel Cell Technologies Office; U.S. Department of Energy's National Nuclear Security Administration [DE-AC0494AL85000] FX The authors thank Pete Devlin and colleagues at the DOE Fuel Cell Market Transformation Group within the DOE EERE Fuel Cell Technologies Office for sponsoring this work. The authors thank Greg Moreland (SRA International) as well as Joe Pratt and Daniel Dedrick (Sandia) for very helpful reviews of the manuscript. We are grateful to Aymeric Rousseau of Argonne National Laboratory for discussions of his work in Reference [13]. Daniel Strong of Sandia created the NEVx image in Fig. 20. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC0494AL85000. NR 21 TC 4 Z9 4 U1 1 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUL 3 PY 2014 VL 39 IS 20 BP 10757 EP 10787 DI 10.1016/j.ijhydene.2014.05.001 PG 31 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA AK4IN UT WOS:000338388200042 ER PT J AU Gorham, CS Hattar, K Cheaito, R Duda, JC Gaskins, JT Beechem, TE Ihlefeld, JF Biedermann, LB Piekos, ES Medlin, DL Hopkins, PE AF Gorham, Caroline S. Hattar, Khalid Cheaito, Ramez Duda, John C. Gaskins, John T. Beechem, Thomas E. Ihlefeld, Jon F. Biedermann, Laura B. Piekos, Edward S. Medlin, Douglas L. Hopkins, Patrick E. TI Ion irradiation of the native oxide/silicon surface increases the thermal boundary conductance across aluminum/silicon interfaces SO PHYSICAL REVIEW B LA English DT Article ID PICOSECOND LIGHT-PULSES; KAPITZA CONDUCTANCE; DOMAIN THERMOREFLECTANCE; MOLECULAR-DYNAMICS; SILICON NANOWIRES; HEAT-FLOW; CONDUCTIVITY; TRANSPORT; FILMS; TEMPERATURE AB The thermal boundary conductance across solid-solid interfaces can be affected by the physical properties of the solid boundary. Atomic composition, disorder, and bonding between materials can result in large deviations in the phonon scattering mechanisms contributing to thermal boundary conductance. Theoretical and computational studies have suggested that the mixing of atoms around an interface can lead to an increase in thermal boundary conductance by creating a region with an average vibrational spectra of the two materials forming the interface. In this paper, we experimentally demonstrate that ion irradiation and subsequent modification of atoms at solid surfaces can increase the thermal boundary conductance across solid interfaces due to a change in the acoustic impedance of the surface. We measure the thermal boundary conductance between thin aluminum films and silicon substrates with native silicon dioxide layers that have been subjected to proton irradiation and post-irradiation surface cleaning procedures. The thermal boundary conductance across the Al/native oxide/Si interfacial region increases with an increase in proton dose. Supported with statistical simulations, we hypothesize that ion beam mixing of the native oxide and silicon substrate within similar to 2.2 nm of the silicon surface results in the observed increase in thermal boundary conductance. This ion mixing leads to the spatial gradation of the silicon native oxide into the silicon substrate, which alters the acoustic impedance and vibrational characteristics at the interface of the aluminum film and native oxide/silicon substrate. We confirm this assertion with picosecond acoustic analyses. Our results demonstrate that under specific conditions, a "more disordered and defected" interfacial region can have a lower resistance than a more "perfect" interface. C1 [Gorham, Caroline S.; Cheaito, Ramez; Duda, John C.; Gaskins, John T.; Hopkins, Patrick E.] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. [Hattar, Khalid; Beechem, Thomas E.; Ihlefeld, Jon F.; Biedermann, Laura B.; Piekos, Edward S.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Medlin, Douglas L.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Gorham, CS (reprint author), Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. EM phopkins@virginia.edu FU Office of Naval Research Young Investigator Program [N00014-13-4-0528]; Army Research Office [W911NF-13-1-0378]; Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories FX We appreciate support from the Office of Naval Research Young Investigator Program (Grant No. N00014-13-4-0528), the Army Research Office (Grant No. W911NF-13-1-0378), and the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. Additionally, the authors acknowledge John Bradley for allowing use of the 80-300 Titan S/TEM at Lawrence Livermore National Laboratory. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94A185000. NR 66 TC 12 Z9 12 U1 1 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL 3 PY 2014 VL 90 IS 2 AR 024301 DI 10.1103/PhysRevB.90.024301 PG 10 WC Physics, Condensed Matter SC Physics GA AK5VO UT WOS:000338494800001 ER PT J AU Dey, B Meyer, CA Bellis, M Williams, M Adhikari, KP Adikaram, D Aghasyan, M Amaryan, MJ Anderson, MD Pereira, SA Ball, J Baltzell, NA Battaglieri, M Bedlinskiy, I Biselli, AS Bono, J Boiarinov, S Briscoe, WJ Brooks, WK Burkert, VD Carman, DS Celentano, A Chandavar, S Colaneri, L Cole, PL Contalbrigo, M Cortes, O Crede, V D'Angelo, A Dashyan, N De Vita, R De Sanctis, E Deur, A Djalali, C Doughty, D Dugger, M Dupre, R El Alaoui, A El Fassi, L Elouadrhiri, L Fedotov, G Fegan, S Fleming, JA Garcon, M Gevorgyan, N Ghandilyan, Y Gilfoyle, GP Giovanetti, KL Girod, FX Glazier, DI Goetz, JT Gothe, RW Griffioen, KA Guidal, M Hafidi, K Hanretty, C Harrison, N Hattawy, M Hicks, K Ho, D Holtrop, M Hyde, CE Ilieva, Y Ireland, DG Ishkhanov, BS Jenkins, D Jo, HS Joo, K Keller, D Khandaker, M Kim, A Kim, W Klein, A Klein, FJ Koirala, S Kubarovsky, V Kuhn, SE Kuleshov, SV Lenisa, P Livingston, K Lu, H MacGregor, IJD Markov, N Mayer, M McCracken, ME McKinnon, B Mineeva, T Mirazita, M Mokeev, V Montgomery, RA Moriya, K Moutarde, H Munevar, E Camacho, CM Nadel-Turonski, P Niccolai, S Niculescu, G Niculescu, I Osipenko, M Pappalardo, LL Paremuzyan, R Park, K Pasyuk, E Peng, P Phillips, JJ Pisano, S Pogorelko, O Pozdniakov, S Price, JW Procureur, S Protopopescu, D Puckett, AJR Rimal, D Ripani, M Ritchie, BG Rizzo, A Rossi, P Roy, P Sabatie, F Saini, MS Schott, D Schumacher, RA Seder, E Senderovich, I Sharabian, YG Simonyan, A Smith, ES Sober, DI Sokhan, D Stepanyan, SS Stoler, P Strakovsky, II Strauch, S Sytnik, V Taiuti, M Tang, W Tkachenko, S Ungaro, M Vernarsky, B Vlassov, AV Voskanyan, H Voutier, E Walford, NK Watts, DP Zachariou, N Zana, L Zhang, J Zhao, ZW Zonta, I AF Dey, B. Meyer, C. A. Bellis, M. Williams, M. Adhikari, K. P. Adikaram, D. Aghasyan, M. Amaryan, M. J. Anderson, M. D. Pereira, S. Anefalos Ball, J. Baltzell, N. A. Battaglieri, M. Bedlinskiy, I. Biselli, A. S. Bono, J. Boiarinov, S. Briscoe, W. J. Brooks, W. K. Burkert, V. D. Carman, D. S. Celentano, A. Chandavar, S. Colaneri, L. Cole, P. L. Contalbrigo, M. Cortes, O. Crede, V. D'Angelo, A. Dashyan, N. De Vita, R. De Sanctis, E. Deur, A. Djalali, C. Doughty, D. Dugger, M. Dupre, R. El Alaoui, A. El Fassi, L. Elouadrhiri, L. Fedotov, G. Fegan, S. Fleming, J. A. Garcon, M. Gevorgyan, N. Ghandilyan, Y. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Glazier, D. I. Goetz, J. T. Gothe, R. W. Griffioen, K. A. Guidal, M. Hafidi, K. Hanretty, C. Harrison, N. Hattawy, M. Hicks, K. Ho, D. Holtrop, M. Hyde, C. E. Ilieva, Y. Ireland, D. G. Ishkhanov, B. S. Jenkins, D. Jo, H. S. Joo, K. Keller, D. Khandaker, M. Kim, A. Kim, W. Klein, A. Klein, F. J. Koirala, S. Kubarovsky, V. Kuhn, S. E. Kuleshov, S. V. Lenisa, P. Livingston, K. Lu, H. MacGregor, I. J. D. Markov, N. Mayer, M. McCracken, M. E. McKinnon, B. Mineeva, T. Mirazita, M. Mokeev, V. Montgomery, R. A. Moriya, K. Moutarde, H. Munevar, E. Camacho, C. Munoz Nadel-Turonski, P. Niccolai, S. Niculescu, G. Niculescu, I. Osipenko, M. Pappalardo, L. L. Paremuzyan, R. Park, K. Pasyuk, E. Peng, P. Phillips, J. J. Pisano, S. Pogorelko, O. Pozdniakov, S. Price, J. W. Procureur, S. Protopopescu, D. Puckett, A. J. R. Rimal, D. Ripani, M. Ritchie, B. G. Rizzo, A. Rossi, P. Roy, P. Sabatie, F. Saini, M. S. Schott, D. Schumacher, R. A. Seder, E. Senderovich, I. Sharabian, Y. G. Simonyan, A. Smith, E. S. Sober, D. I. Sokhan, D. Stepanyan, S. S. Stoler, P. Strakovsky, I. I. Strauch, S. Sytnik, V. Taiuti, M. Tang, W. Tkachenko, S. Ungaro, M. Vernarsky, B. Vlassov, A. V. Voskanyan, H. Voutier, E. Walford, N. K. Watts, D. P. Zachariou, N. Zana, L. Zhang, J. Zhao, Z. W. Zonta, I. CA CLAS Collaboration TI Data analysis techniques, differential cross sections, and spin density matrix elements for the reaction gamma p -> phi p (vol 89, 055208, 2014) SO PHYSICAL REVIEW C LA English DT Correction C1 [Dey, B.; Meyer, C. A.; Bellis, M.; Williams, M.; Ho, D.; Lu, H.; McCracken, M. E.; Moriya, K.; Schumacher, R. A.; Vernarsky, B.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [McCracken, M. E.] Washington & Jefferson Coll, Washington, PA 15301 USA. [Baltzell, N. A.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60441 USA. [Dugger, M.; Pasyuk, E.; Ritchie, B. G.; Senderovich, I.] Arizona State Univ, Tempe, AZ 85287 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Klein, F. J.; Sober, D. I.; Walford, N. K.] Catholic Univ Amer, Washington, DC 20064 USA. [Ball, J.; Garcon, M.; Girod, F. X.; Moutarde, H.; Procureur, S.; Sabatie, F.] CEA, Ctr Saclay, Irfu Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.] Christopher Newport Univ, Newport News, VA 23606 USA. [Harrison, N.; Joo, K.; Markov, N.; Mineeva, T.; Puckett, A. J. R.; Seder, E.; Ungaro, M.] Univ Connecticut, Storrs, CT 06269 USA. [Fleming, J. A.; Glazier, D. I.; Watts, D. P.; Zana, L.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Bono, J.; Rimal, D.; Schott, D.] Florida Int Univ, Miami, FL 33199 USA. [Crede, V.; Hanretty, C.; Roy, P.; Saini, M. S.] Florida State Univ, Tallahassee, FL 32306 USA. [Briscoe, W. J.; Ilieva, Y.; Munevar, E.; Strakovsky, I. I.] George Washington Univ, Washington, DC 20052 USA. [Cole, P. L.; Cortes, O.] Idaho State Univ, Pocatello, ID 83209 USA. [Contalbrigo, M.; Lenisa, P.; Pappalardo, L. L.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Aghasyan, M.; Pereira, S. Anefalos; De Sanctis, E.; Mirazita, M.; Montgomery, R. A.; Pisano, S.; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Battaglieri, M.; Celentano, A.; De Vita, R.; Osipenko, M.; Ripani, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Colaneri, L.; D'Angelo, A.; Rizzo, A.; Zonta, I.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Guidal, M.; Hattawy, M.; Jo, H. S.; Camacho, C. Munoz; Niccolai, S.; Sokhan, D.] Inst Phys Nucl ORSAY, Orsay, France. [Bedlinskiy, I.; Kuleshov, S. V.; Pogorelko, O.; Pozdniakov, S.; Vlassov, A. V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Giovanetti, K. L.; Niculescu, G.] James Madison Univ, Harrisonburg, VA 22807 USA. [Kim, A.; Kim, W.; Park, K.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Voutier, E.] Univ Grenoble 1, LPSC, INPG, CNRS IN2P3, Grenoble, France. [Holtrop, M.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.] Norfolk State Univ, Norfolk, VA 23504 USA. [Chandavar, S.; Goetz, J. T.; Hicks, K.; Keller, D.; Taiuti, M.; Tang, W.] Ohio Univ, Athens, OH 45701 USA. [Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Hyde, C. E.; Klein, A.; Koirala, S.; Kuhn, S. E.; Mayer, M.; Niculescu, I.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Kubarovsky, V.; Stoler, P.; Ungaro, M.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Gilfoyle, G. P.] Univ Richmond, Richmond, VA 23173 USA. [D'Angelo, A.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Ishkhanov, B. S.; Mokeev, V.] Skobeltsyn Nucl Phys Inst, Moscow 119899, Russia. [Djalali, C.; Fedotov, G.; Gothe, R. W.; Ilieva, Y.; Park, K.; Strauch, S.; Tkachenko, S.; Zachariou, N.; Zhao, Z. W.] Univ S Carolina, Columbia, SC 29208 USA. [Boiarinov, S.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Deur, A.; Doughty, D.; Elouadrhiri, L.; Kubarovsky, V.; Mokeev, V.; Nadel-Turonski, P.; Pasyuk, E.; Rossi, P.; Sharabian, Y. G.; Smith, E. S.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Brooks, W. K.; Joo, K.; Kuleshov, S. V.; Sytnik, V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Anderson, M. D.; Fegan, S.; Ireland, D. G.; Livingston, K.; MacGregor, I. J. D.; McKinnon, B.; Phillips, J. J.; Protopopescu, D.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Griffioen, K. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Dashyan, N.; Gevorgyan, N.; Ghandilyan, Y.; Paremuzyan, R.; Simonyan, A.; Voskanyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Peng, P.] Univ Virginia, Charlottesville, VA 22901 USA. [Jenkins, D.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. RP Dey, B (reprint author), Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. RI D'Angelo, Annalisa/A-2439-2012; Celentano, Andrea/J-6190-2012; Rizzo, Alessandro/C-6397-2014; Brooks, William/C-8636-2013; Kuleshov, Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; Meyer, Curtis/L-3488-2014; Ireland, David/E-8618-2010; El Alaoui, Ahmed/B-4638-2015; MacGregor, Ian/D-4072-2011; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Adikaram, Dasuni/D-1539-2016 OI D'Angelo, Annalisa/0000-0003-3050-4907; Celentano, Andrea/0000-0002-7104-2983; Rizzo, Alessandro/0000-0001-5597-8514; Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827; Meyer, Curtis/0000-0001-7599-3973; Ireland, David/0000-0001-7713-7011; Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; NR 1 TC 1 Z9 1 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JUL 3 PY 2014 VL 90 IS 1 AR 019901 DI 10.1103/PhysRevC.90.019901 PG 2 WC Physics, Nuclear SC Physics GA AK5WR UT WOS:000338497900003 ER PT J AU Schuster, MD Quaglioni, S Johnson, CW Jurgenson, ED Navratil, P AF Schuster, Micah D. Quaglioni, Sofia Johnson, Calvin W. Jurgenson, Eric D. Navratil, Petr TI Operator evolution for ab initio theory of light nuclei SO PHYSICAL REVIEW C LA English DT Article ID MONTE-CARLO CALCULATIONS; EFFECTIVE-FIELD THEORY; CORE SHELL-MODEL; CHIRAL LAGRANGIANS; CURRENTS; FORCES; HAMILTONIANS AB The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency, however, one ought to apply the same transformation to other operators when calculating transitions and mean values from the eigenstates of the renormalized Hamiltonian. Working in a translationally invariant harmonic oscillator basis for the two-and three-nucleon systems, we evolve the Hamiltonian, square radius, and total dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix elements in the He-4 nucleus all but completely restores the invariance of the expectation values under the transformation. We also consider a Gaussian operator with adjustable range; short ranges have the largest absolute renormalization when including two-and three-body induced terms, while at long ranges the induced three-body contribution takes on increased relative importance. C1 [Schuster, Micah D.; Johnson, Calvin W.] San Diego State Univ, San Diego, CA 92182 USA. [Schuster, Micah D.; Quaglioni, Sofia; Jurgenson, Eric D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Navratil, Petr] TRIUMF, Vancouver, BC V6T 2A3, Canada. RP Schuster, MD (reprint author), San Diego State Univ, 5500 Campanile Dr, San Diego, CA 92182 USA. FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; US DOE/SC/NP [SCW1158]; US Department of Energy [DE-FG02-96ER40985, DE-FC02-07ER41457]; Natural Sciences and Engineering Research Council of Canada (NSERC) [401945-2011]; National Research Council Canada FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Support came from the US DOE/SC/NP (Work Proposal SCW1158), US Department of Energy Grants No. DE-FG02-96ER40985 and No. DE-FC02-07ER41457, and the Natural Sciences and Engineering Research Council of Canada (NSERC) Grant No. 401945-2011. TRIUMF receives funding through the National Research Council Canada. Computing support came from the LLNL institutional Computing Grand Challenge program. NR 52 TC 16 Z9 16 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUL 3 PY 2014 VL 90 IS 1 AR 011301 DI 10.1103/PhysRevC.90.011301 PG 5 WC Physics, Nuclear SC Physics GA AK5WR UT WOS:000338497900001 ER PT J AU Reichhardt, C Reichhardt, CJO AF Reichhardt, C. Reichhardt, C. J. Olson TI Active matter transport and jamming on disordered landscapes SO PHYSICAL REVIEW E LA English DT Article ID PHASE; TEMPERATURE; TRANSITION; BACTERIA; DYNAMICS; WALL AB We numerically examine the transport of active run-and-tumble particles with steric particle-particle interactions driven with a drift force over random disordered landscapes composed of fixed obstacles. For increasing run lengths, the net particle transport initially increases before reaching a maximum and decreasing at larger run lengths. The transport reduction is associated with the formation of cluster or living crystal states that become locally jammed or clogged by the obstacles. We also find that the system dynamically jams at lower particle densities when the run length is increased. Our results indicate that there is an optimal activity level for transport of run-and-tumble type active matter through quenched disorder and could be important for understanding biological transport in complex environments or for applications of active matter particles in random media. C1 [Reichhardt, C.; Reichhardt, C. J. Olson] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Reichhardt, C (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Reichhardt, Cynthia/0000-0002-3487-5089 FU NNSA of the U.S. DoE at LANL [DE-AC52-06NA25396] FX We thank L. Lopatina for useful discussions. This work was carried out under the auspices of the NNSA of the U.S. DoE at LANL under Contract No. DE-AC52-06NA25396. NR 50 TC 19 Z9 19 U1 3 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD JUL 3 PY 2014 VL 90 IS 1 AR 012701 DI 10.1103/PhysRevE.90.012701 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA AK5XY UT WOS:000338501700006 PM 25122329 ER PT J AU Sebastian, SE Harrison, N Balakirev, FF Altarawneh, MM Goddard, PA Liang, RX Bonn, DA Hardy, WN Lonzarich, GG AF Sebastian, Suchitra E. Harrison, N. Balakirev, F. F. Altarawneh, M. M. Goddard, P. A. Liang, Ruixing Bonn, D. A. Hardy, W. N. Lonzarich, G. G. TI Normal-state nodal electronic structure in underdoped high-T-c copper oxides SO NATURE LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; QUANTUM CRITICAL-POINT; HIGH MAGNETIC-FIELDS; FERMI-SURFACE; CUPRATE SUPERCONDUCTORS; ORGANIC SUPERCONDUCTORS; MOTT INSULATOR; DENSITY-WAVE; OSCILLATIONS; PSEUDOGAP AB An outstanding problem in the field of high-transition-temperature (high-T-c) superconductivity is the identification of the normal state out of which superconductivity emerges in the mysterious underdoped regime(1). The normal state uncomplicated by thermal fluctuations can be studied using applied magnetic fields that are sufficiently strong to suppress long-range superconductivity at low temperatures(2,3). Proposals in which the normal ground state is characterized by small Fermi surface pockets that exist in the absence of symmetry breaking(1,4-8) have been superseded by models based on the existence of a superlattice that breaks the translational symmetry of the underlying lattice(7-15). Recently, a charge superlattice model that positions a small electron-like Fermi pocket in the vicinity of the nodes (where the superconducting gap is minimum)(8,9,16,17) has been proposed as a replacement for the prevalent superlatticemodels(10-14) that position the Fermi pocket in the vicinity of the pseudogap at the antinodes (where the superconducting gap is maximum)(18). Although some ingredients of symmetry breaking have been recently revealed by crystallographic studies, their relevance to the electronic structure remains unresolved(19-21). Here we report angle-resolved quantum oscillation measurements in the underdoped copper oxide YBa2Cu3O6+x. These measurements reveal a normal ground state comprising electron-like Fermi surface pockets located in the vicinity of the nodes, and also point to an underlying superlattice structure of low frequency and long wavelength with features in common with the charge order identified recently by complementary spectroscopic techniques(14,19-22). C1 [Sebastian, Suchitra E.; Lonzarich, G. G.] Univ Cambridge, Cavendish Lab, Cambridge CB3 OHE, England. [Harrison, N.; Balakirev, F. F.; Altarawneh, M. M.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87504 USA. [Altarawneh, M. M.] Mutah Univ, Dept Phys, Mutah 61710, Karak, Jordan. [Goddard, P. A.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Liang, Ruixing; Bonn, D. A.; Hardy, W. N.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Liang, Ruixing; Bonn, D. A.; Hardy, W. N.] Canadian Inst Adv Res, Quantum Mat Program, Toronto, ON M5G 1Z8, Canada. RP Sebastian, SE (reprint author), Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 OHE, England. EM suchitra@phy.cam.ac.uk; nharrison@lanl.gov RI Goddard, Paul/A-8638-2015; OI Goddard, Paul/0000-0002-0666-5236; Harrison, Neil/0000-0001-5456-7756 FU Royal Society, King's College Cambridge; Winton Programme for the Physics of Sustainability; European Research Council under the European Union [337425-SUPERCONDUCTINGMOTT]; Engineering and Physical Sciences Research Council (EPSRC) grant [EP/K012894/1]; EPSRC; Canadian Institute for Advanced Research; Natural Science and Engineering Research Council; NSF [DMR-0654118]; state of Florida; DOE FX S.E.S. acknowledges support from the Royal Society, King's College Cambridge, the Winton Programme for the Physics of Sustainability, and the European Research Council under the European Union's Seventh Framework Programme (grant number FP/2007-2013)/ERC Grant Agreement number 337425-SUPERCONDUCTINGMOTT. N.H. and F.F.B. acknowledge support for high-magnetic-field experiments from the US Department of Energy, Office of Science, BES-MSE 'Science of 100 Tesla' programme. G. G. L. acknowledges support from Engineering and Physical Sciences Research Council (EPSRC) grant EP/K012894/1. P. A. G. is supported by the EPSRC and thanks the University of Oxford for the provision of a Visiting Lectureship. R.L., D.A.B. and W.N.H. acknowledge support from the Canadian Institute for Advanced Research, and the Natural Science and Engineering Research Council. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by NSF co-operative agreement number DMR-0654118, the state of Florida, and the DOE. We acknowledge discussions with many colleagues, including H. Alloul, C. Bergemann, A. Carrington, S. Chakravarty, A. Chubukov, E. M. Forgan, S. R. Julian, B. Keimer, S. A. Kivelson, R. B. Laughlin, M. Le Tacon, L. Taillefer, D.-H. Lee, P. A. Lee, P. B. Littlewood, A. P. Mackenzie, M. R. Norman, C. Pepin, C. Proust, M. Randeria, S. Sachdev, A. Sacuto, T. Senthil, J. P. Sethna, J. Tranquada and C. M. Varma. We are grateful for the experimental support provided by the '100 T' team, including J. B. Betts, Y. Coulter, M. Gordon, C. H. Mielke, A. Parish, D. Rickel and D. Roybal. NR 107 TC 45 Z9 45 U1 12 U2 127 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUL 3 PY 2014 VL 511 IS 7507 BP 61 EP U378 DI 10.1038/nature13326 PG 18 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AK1TN UT WOS:000338199400035 PM 24930767 ER PT J AU Kim, D Shi, Z Simmons, CB Ward, DR Prance, JR Koh, TS Gamble, JK Savage, DE Lagally, MG Friesen, M Coppersmith, SN Eriksson, MA AF Kim, Dohun Shi, Zhan Simmons, C. B. Ward, D. R. Prance, J. R. Koh, Teck Seng Gamble, John King Savage, D. E. Lagally, M. G. Friesen, Mark Coppersmith, S. N. Eriksson, Mark A. TI Quantum control and process tomography of a semiconductor quantum dot hybrid qubit SO NATURE LA English DT Article ID SINGLE-ELECTRON SPIN; OSCILLATIONS; COMPUTATION AB The similarities between gated quantum dots and the transistors in modern microelectronics(1,2)-in fabrication methods, physical structure and voltage scales for manipulation-have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots(3-18). Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring(19). Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets(11), dynamic pumping of nuclear spins(12) or the addition of a third quantum dot(17). Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with pi-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states). C1 [Kim, Dohun; Shi, Zhan; Simmons, C. B.; Ward, D. R.; Prance, J. R.; Koh, Teck Seng; Friesen, Mark; Coppersmith, S. N.; Eriksson, Mark A.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Gamble, John King] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Savage, D. E.; Lagally, M. G.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. RP Eriksson, MA (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM maeriksson@wisc.edu RI Prance, Jonathan/B-3536-2013 OI Prance, Jonathan/0000-0001-5009-383X FU ARO [W911NF-12-0607]; NSF [PHY-1104660]; Laboratory Directed Research and Development programme at Sandia National Laboratories; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported in part by ARO (W911NF-12-0607), the NSF (PHY-1104660) and by the Laboratory Directed Research and Development programme at Sandia National Laboratories. Sandia National Laboratories is a multi-programme laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Development and maintenance of the growth facilities used for fabricating samples is supported by the US Department of Energy (DE-FG02-03ER46028). This research used US National Science Foundation-supported shared facilities at the University of Wisconsin-Madison. D.K. acknowledges conversations with X. Wu and K. Rudinger. NR 30 TC 68 Z9 68 U1 15 U2 93 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUL 3 PY 2014 VL 511 IS 7507 BP 70 EP 74 DI 10.1038/nature13407 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AK1TN UT WOS:000338199400037 PM 24990747 ER PT J AU Crowell, SR Hanson-Drury, S Williams, DE Corley, RA AF Crowell, S. R. Hanson-Drury, S. Williams, D. E. Corley, R. A. TI In vitro metabolism of benzo[a] pyrene and dibenzo[def, p] chrysene in rodent and human hepatic microsomes. SO TOXICOLOGY LETTERS LA English DT Article DE Benzo[a]pyrene; Dibenzo[def,p]chrysene; Michaelis-Menten; V-MAX; K-M; Intrinsic clearance ID POLYCYCLIC AROMATIC-HYDROCARBONS; HUMAN BREAST-MILK; TRANSPLACENTAL CARCINOGENESIS; PHARMACOKINETIC MODELS; ULTIMATE CARCINOGENS; ACTIVATION; EXPOSURE; ENZYMES; MOUSE; PAHS AB Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and often carcinogenic contaminants released into the environment during natural and anthropogenic combustion processes. Benzo[a] pyrene (B[a]P) is the prototypical carcinogenic PAH, and dibenzo[def,p] chrysene (DBC) is a less prevalent, but highly potent transplacental carcinogenic PAH. Both are metabolically activated by isoforms of the cytochrome P450 enzyme superfamily to form reactive carcinogenic and cytotoxic metabolites. Metabolism of B[a] P and DBC was studied in hepatic microsomes of male Sprague- Dawley rats, naive and pregnant female B6129SF1/J mice, and female humans, corresponding to available pharmacokinetic data. Michaelis-Menten saturation kinetic parameters including maximum rates of metabolism (V-MAX, nmol/min/mg microsomal protein), affinity constants (K-M, mu M), and rates of intrinsic clearance (CLINT, ml/min/kg body weight) were calculated from substrate depletion data. CLINT was also estimated from substrate depletion data using the alternative in vitro half-life method. V-MAX and CLINT were higher forB[a] P than DBC, regardless of species. Clearance for both B[a] P and DBC was highest in naive female mice and lowest in female humans. Clearance rates of B[a] P and DBC in male rat were more similarto female human than to female mice. Clearance of DBC in liver microsomes from pregnant mice was reduced compared to naive mice, consistent with reduced active P450 protein levels and elevated tissue concentrations and residence times for DBC observed in previous in vivo pharmacokinetic studies. These findings suggest that rats are a more appropriate model organism for human PAH metabolism, and that pregnancy's effects on metabolism should be further explored. Published by Elsevier Ireland Ltd. C1 [Crowell, S. R.; Hanson-Drury, S.; Corley, R. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Williams, D. E.] Oregon State Univ, Dept Environm & Mol Toxicol, Corvallis, OR 97331 USA. RP Crowell, SR (reprint author), 902 Battelle Blvd, Richland, WA 99352 USA. EM susan.crowell@pnnl.gov FU National Institute of Environmental Health Sciences [P42ES016465] FX This research was supported by Award Number P42ES016465 from the National Institute of Environmental Health Sciences. NR 35 TC 7 Z9 9 U1 3 U2 33 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0378-4274 EI 1879-3169 J9 TOXICOL LETT JI Toxicol. Lett. PD JUL 3 PY 2014 VL 228 IS 1 BP 48 EP 55 DI 10.1016/j.toxlet.2014.04.004 PG 8 WC Toxicology SC Toxicology GA AH9KD UT WOS:000336460300006 PM 24769260 ER PT J AU Cole, K Roessler, CG Mule, EA Benson-Xu, EJ Mullen, JD Le, BA Tieman, AM Birone, C Brown, M Hernandez, J Neff, S Williams, D Allaire, M Orville, AM Sweet, RM Soares, AS AF Cole, Krystal Roessler, Christian G. Mule, Elizabeth A. Benson-Xu, Emma J. Mullen, Jeffrey D. Le, Benjamin A. Tieman, Alanna M. Birone, Claire Brown, Maria Hernandez, Jesus Neff, Sherry Williams, Daniel Allaire, Marc Orville, Allen M. Sweet, Robert M. Soares, Alexei S. TI A Linear Relationship between Crystal Size and Fragment Binding Time Observed Crystallographically: Implications for Fragment Library Screening Using Acoustic Droplet Ejection SO PLOS ONE LA English DT Article ID X-RAY CRYSTALLOGRAPHY; PROTEIN CRYSTAL; REFINEMENT; LYSOZYME; CRYSTALLIZATION; DIFFUSION AB High throughput screening technologies such as acoustic droplet ejection (ADE) greatly increase the rate at which X-ray diffraction data can be acquired from crystals. One promising high throughput screening application of ADE is to rapidly combine protein crystals with fragment libraries. In this approach, each fragment soaks into a protein crystal either directly on data collection media or on a moving conveyor belt which then delivers the crystals to the X-ray beam. By simultaneously handling multiple crystals combined with fragment specimens, these techniques relax the automounter duty-cycle bottleneck that currently prevents optimal exploitation of third generation synchrotrons. Two factors limit the speed and scope of projects that are suitable for fragment screening using techniques such as ADE. Firstly, in applications where the high throughput screening apparatus is located inside the X-ray station (such as the conveyor belt system described above), the speed of data acquisition is limited by the time required for each fragment to soak into its protein crystal. Secondly, in applications where crystals are combined with fragments directly on data acquisition media (including both of the ADE methods described above), the maximum time that fragments have to soak into crystals is limited by evaporative dehydration of the protein crystals during the fragment soak. Here we demonstrate that both of these problems can be minimized by using small crystals, because the soak time required for a fragment hit to attain high occupancy depends approximately linearly on crystal size. C1 [Cole, Krystal; Mule, Elizabeth A.; Benson-Xu, Emma J.; Mullen, Jeffrey D.; Le, Benjamin A.; Tieman, Alanna M.] Brookhaven Natl Lab, Off Educ Programs, Upton, NY 11973 USA. [Roessler, Christian G.; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Birone, Claire] Babylon Jr Senior High Sch, Babylon, NY USA. [Brown, Maria] Sayville High Sch, West Sayville, NY USA. [Hernandez, Jesus] Queens Metropolitan High Sch, Forest Hills, NY USA. [Neff, Sherry] Shoreham Wading River High Sch, Shoreham, NY USA. [Williams, Daniel] Shelter Isl High Sch, Shelter Isl, NY USA. [Cole, Krystal] SUNY Coll Purchase, Purchase, NY 10577 USA. [Mule, Elizabeth A.] Freeport High Sch, Freeport, NY USA. [Benson-Xu, Emma J.] Georgetown Day Sch, Washington, DC USA. [Mullen, Jeffrey D.] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. [Le, Benjamin A.] Georgia Inst Technol, Dept Biomed Engn, Atlanta, GA 30332 USA. [Tieman, Alanna M.] Univ Delaware, Dept Biol Sci, Newark, DE USA. [Orville, Allen M.; Sweet, Robert M.] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. RP Soares, AS (reprint author), Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. EM soares@bnl.gov FU Brookhaven National Laboratory/U.S. Department of Energy, Laboratory Directed Research and Development [11-008]; Office of Biological and Environmental Research of the US Department of Energy; National Center for Research Resources [P41RR012408]; National Institute of General Medical Sciences of the National Institutes of Health [P41GM103473]; Office of Basic Energy Sciences of the US Department of Energy FX Personnel for this study were recruited largely through the 2010 and 2012 summer session of the Science Undergraduate Laboratory Internships Program (SULI), supported through the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS). Major ongoing financial support for acoustic droplet ejection applications was through the Brookhaven National Laboratory/U.S. Department of Energy, Laboratory Directed Research and Development Grant 11-008 and from the Offices of Biological and Environmental Research and of Basic Energy Sciences of the US Department of Energy, and from the National Center for Research Resources (P41RR012408) and the National Institute of General Medical Sciences (P41GM103473) of the National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 24 TC 5 Z9 5 U1 1 U2 5 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 2 PY 2014 VL 9 IS 7 AR e101036 DI 10.1371/journal.pone.0101036 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO5BA UT WOS:000341354100056 PM 24988328 ER PT J AU Ma, W Tumbleston, JR Ye, L Wang, C Hou, JH Ade, H AF Ma, Wei Tumbleston, John R. Ye, Long Wang, Cheng Hou, Jianhui Ade, Harald TI Quantification of Nano- and Mesoscale Phase Separation and Relation to Donor and Acceptor Quantum Efficiency, J(SC), and FF in Polymer:Fullerene Solar Cells SO ADVANCED MATERIALS LA English DT Article ID OPEN-CIRCUIT VOLTAGE; LOW-BANDGAP POLYMER; X-RAY-SCATTERING; HIGHLY EFFICIENT; MOLECULAR-ORIENTATION; ORGANIC PHOTOVOLTAICS; SOLVENT ADDITIVES; DOMAIN PURITY; THIN-FILMS; HETEROJUNCTION AB Two characteristic length scales are revealed and quantified in a complex hierarchical polymer-fullerene blend by combining different X-ray scattering techniques. Anti-correlated composition variations between meso- and nanoscale separation are observed and impacted by the solvent mixture. Due to competition between the impact of the two length scales, the relation to device performance is complex and an ideal morphology is yet to be delineated. C1 [Ma, Wei; Tumbleston, John R.; Ade, Harald] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Ye, Long; Hou, Jianhui] Chinese Acad Sci, State Key Lab Polymer Phys & Chem, Beijing Natl Lab Mol Sci, Inst Chem, Beijing 100190, Peoples R China. [Ye, Long] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Wang, Cheng] Laurence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Hou, JH (reprint author), Chinese Acad Sci, State Key Lab Polymer Phys & Chem, Beijing Natl Lab Mol Sci, Inst Chem, Beijing 100190, Peoples R China. EM hjhzlz@iccas.ac.cn; harald_ade@ncsu.edu RI Ye, Long/B-7423-2013; Hou, Jianhui /E-5824-2011; MA, Wei/E-1254-2013; Wang, Cheng/A-9815-2014; OI Ye, Long/0000-0002-5884-0083; Hou, Jianhui /0000-0002-2105-6922; MA, Wei/0000-0001-6926-1960; Ma, Wei/0000-0002-7239-2010 FU U.S. Department of Energy, Office of Science, Basic Energy Science, Division of Materials Science and Engineering [DE-FG02-98ER45737]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; National High Technology Research and Development Program 863 [2011AA050523]; Chinese Academy of Sciences; Ministry of Science and Technology of China; NSFC [S2012GR0224, 51173189] FX X-ray characterization, device fabrication, and device measurements by NCSU were supported by the U.S. Department of Energy, Office of Science, Basic Energy Science, Division of Materials Science and Engineering under Contract DE-FG02-98ER45737. X-ray data was acquired at beamlines 11.0.1.2, 7.3.3 and 5.3.2.2 at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors would like to acknowledge financial support from the National High Technology Research and Development Program 863 (2011AA050523), the Chinese Academy of Sciences, the Ministry of Science and Technology of China, and the NSFC (Nos. S2012GR0224, 51173189). NR 63 TC 64 Z9 64 U1 9 U2 112 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD JUL 2 PY 2014 VL 26 IS 25 BP 4234 EP 4241 DI 10.1002/adma.201400216 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AL3DZ UT WOS:000339007000003 PM 24677439 ER PT J AU Douglas, JD Chen, MS Niskala, JR Lee, OP Yiu, AT Young, EP Frechet, JMJ AF Douglas, Jessica D. Chen, Mark S. Niskala, Jeremy R. Lee, Olivia P. Yiu, Alan T. Young, Eric P. Frechet, Jean M. J. TI Solution-Processed, Molecular Photovoltaics that Exploit Hole Transfer from Non-Fullerene, n-Type Materials SO ADVANCED MATERIALS LA English DT Article ID ORGANIC SOLAR-CELLS; OPEN-CIRCUIT VOLTAGE; BULK-HETEROJUNCTION; ELECTRON-TRANSFER; FILM MORPHOLOGY; PERFORMANCE; ACCEPTOR; EFFICIENCY; DYNAMICS; DONOR AB Solution-processed organic photovoltaic devices containing p-type and non-fullerene n-type small molecules obtain power conversion efficiencies as high as 2.4%. The optoelectronic properties of the n-type material BT(TTI-n12)(2) allow these devices to display high open-circuit voltages (>0.85 V) and generate significant charge carriers through hole transfer in addition to the electron-transfer pathway, which is common in fullerene-based devices. C1 [Douglas, Jessica D.; Chen, Mark S.; Niskala, Jeremy R.; Lee, Olivia P.; Yiu, Alan T.; Young, Eric P.; Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Douglas, Jessica D.; Chen, Mark S.; Niskala, Jeremy R.; Lee, Olivia P.; Yiu, Alan T.; Young, Eric P.; Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Douglas, Jessica D.; Chen, Mark S.; Niskala, Jeremy R.; Lee, Olivia P.; Yiu, Alan T.; Frechet, Jean M. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Frechet, Jean M. J.] King Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia. RP Chen, MS (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM mschen@berkeley.edu; jean.frechet@kaust.edu.sa OI Frechet, Jean /0000-0001-6419-0163 FU Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231]; Frechet "various donors" gift fund; Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry FX This work was supported in part by the Director, Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division, of the U.S. Department of Energy under contract No. DE-AC02-05CH11231, and the Frechet "various donors" gift fund for the support of research in new materials. M.S.C. thanks the Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry for a fellowship. NR 50 TC 36 Z9 36 U1 8 U2 95 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD JUL 2 PY 2014 VL 26 IS 25 BP 4313 EP 4319 DI 10.1002/adma.201305444 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AL3DZ UT WOS:000339007000015 PM 24819694 ER PT J AU Warnan, J Cabanetos, C El Labban, A Hansen, MR Tassone, C Toney, MF Beaujuge, PM AF Warnan, Julien Cabanetos, Clement El Labban, Abdulrahman Hansen, Michael Ryan Tassone, Christopher Toney, Michael F. Beaujuge, Pierre M. TI Ordering Effects in Benzo[1,2-b:4,5-b ']difuran-thieno[3,4-c]pyrrole-4,6-dione Polymers with > 7% Solar Cell Efficiency SO ADVANCED MATERIALS LA English DT Article ID LOW-BANDGAP POLYMERS; PHOTOVOLTAIC APPLICATIONS; CONJUGATED POLYMERS; SIDE-CHAINS; OPTOELECTRONIC PROPERTIES; PHASE-SEPARATION; PERFORMANCE; ADDITIVES; SPECTROSCOPY; COPOLYMER AB Benzo[1,2-b:4,5-b']difuran-thieno[3,4-c]pyrrole-4,6-dione (PBDFTPD) polymers prepared by microwave-assisted synthesis can achieve power conversion efficiencies (PCEs) >7% in bulk-heterojunction solar cells with phenyl-C61/71-butyric acid methyl ester (PCBM). In "as-cast" PBD-FTPD-based devices solution-processed without a small-molecule additive, high PCEs can be obtained in spite of the weak propensity of the polymers to self-assemble and form p-aggregates in thin films. C1 [Warnan, Julien; Cabanetos, Clement; El Labban, Abdulrahman; Beaujuge, Pierre M.] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia. [Hansen, Michael Ryan] Aarhus Univ, Interdisciplinary Nanosci Ctr iNANO, DK-8000 Aarhus C, Denmark. [Hansen, Michael Ryan] Aarhus Univ, Dept Chem, DK-8000 Aarhus C, Denmark. [Hansen, Michael Ryan] Max Planck Inst Polymer Res, D-55128 Mainz, Germany. [Tassone, Christopher; Toney, Michael F.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Beaujuge, PM (reprint author), King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia. EM pierre.beaujuge@kaust.edu.sa RI Hansen, Michael Ryan/A-4519-2011; OI Hansen, Michael Ryan/0000-0001-7114-8051; El Labban, Abdulrahman/0000-0001-9891-0851 FU King Abdullah University of Science and Technology (KAUST); Villum Foundation FX The authors acknowledge financial support under Baseline Research Funding from King Abdullah University of Science and Technology (KAUST). The authors thank KAUST Analytical Core Labs for mass spectrometry and elemental analyses, and Sandra Seywald (MPIP - Mainz, Germany) for SEC measurements. The authors thank the Advanced Imaging and Characterization Laboratories at KAUST for technical support. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource user facility, operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. MRH acknowledges financial support from the Villum Foundation under the Young Investigator Program. NR 39 TC 41 Z9 41 U1 4 U2 71 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD JUL 2 PY 2014 VL 26 IS 25 BP 4357 EP 4362 DI 10.1002/adma.201305344 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AL3DZ UT WOS:000339007000022 PM 24829168 ER PT J AU Seidel, J Trassin, M Zhang, Y Maksymovych, P Uhlig, T Milde, P Kohler, D Baddorf, AP Kalinin, SV Eng, LM Pan, XQ Ramesh, R AF Seidel, Jan Trassin, Morgan Zhang, Yi Maksymovych, Peter Uhlig, Tino Milde, Peter Koehler, Denny Baddorf, Arthur P. Kalinin, Sergei V. Eng, Lukas M. Pan, Xiaoqing Ramesh, Ramamoorthy TI Electronic Properties of Isosymmetric Phase Boundaries in Highly Strained Ca-Doped BiFeO3 SO ADVANCED MATERIALS LA English DT Article ID FERROELECTRIC DOMAIN-WALLS; THIN-FILMS; CONDUCTION; DEVICES; GROWTH AB Anisotropic electronic conductivity is reported for isosymmetric phase boundaries in highly strained bismuth ferrite, which are the (fully epitaxial) connecting regions between two different structural variants of the same material. Strong correlations between nanoscale phase transitions and the local electronic conductivity are found. A high degree of control over their electronic properties can be attained through non-local electrical switching. C1 [Seidel, Jan] Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. [Seidel, Jan; Ramesh, Ramamoorthy] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Seidel, Jan; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Trassin, Morgan; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Trassin, Morgan] Swiss Fed Inst Technol, Dept Mat, CH-8093 Zurich, Switzerland. [Zhang, Yi; Pan, Xiaoqing] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Maksymovych, Peter; Baddorf, Arthur P.; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Uhlig, Tino; Milde, Peter; Koehler, Denny; Eng, Lukas M.] Tech Univ Dresden, Inst Appl Photophys, D-01062 Dresden, Germany. RP Seidel, J (reprint author), Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. EM jan.seidel@unsw.edu.au RI Kalinin, Sergei/I-9096-2012; Maksymovych, Petro/C-3922-2016; Baddorf, Arthur/I-1308-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Maksymovych, Petro/0000-0003-0822-8459; Baddorf, Arthur/0000-0001-7023-2382 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy [DE-AC02-05CH11231]; Australian Research Council [FT110100523, DP140100463, DP140102849]; National Research Foundation of Korea - Korean Government [NRF-2013S1A2A2035418]; RTG-DFG [1401]; Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy [CNMS2010-280]; U.S. Department of Energy [DE-FG02-07ER46416]; NSF [DMR-0907191, DMR-0820404, DMR-0723032] FX The work at Berkeley is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy under contract DE-AC02-05CH11231. J. S. acknowledges support by the Australian Research Council under grant numbers FT110100523, DP140100463, DP140102849 and by the National Research Foundation of Korea funded by the Korean Government (NRF-2013S1A2A2035418). T. U. and D. K. kindly acknowledge financial support by the RTG-DFG Project 1401. Work at the Center for Nanophase Materials Sciences was performed in project CNMS2010-280, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Work at the University of Michigan was supported by the U.S. Department of Energy under award DE-FG02-07ER46416 and by NSF under awards DMR-0907191, DMR-0820404 and DMR-0723032 (aberration-corrected TEM instrument). We thank Cheuk-Wai Tai from Stockholm University for providing the PPA software. NR 43 TC 18 Z9 18 U1 12 U2 132 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD JUL 2 PY 2014 VL 26 IS 25 BP 4376 EP 4380 DI 10.1002/adma.201400557 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AL3DZ UT WOS:000339007000025 PM 24729350 ER PT J AU Aartsen, MG Abbasi, R Ackermann, M Adams, J Aguilar, JA Ahlers, M Altmann, D Arguelles, C Arlen, TC Auffenberg, J Bai, X Baker, M Barwick, SW Baum, V Bay, R Beatty, JJ Tjus, JB Becker, KH Benabderrahmane, ML BenZvi, S Berghaus, P Berley, D Bernardini, E Bernhard, A Besson, DZ Binder, G Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Bose, D Boser, S Botner, O Brayeur, L Bretz, HP Brown, AM Bruijn, R Casey, J Casier, M Chirkin, D Christov, A Christy, B Clark, K Classen, L Clevermann, F Coenders, S Cohen, S Cowen, DF Silva, AHC Danninger, M Daughhetee, J Davis, JC Day, M de Andre, JPAM De Clercq, C De Ridder, S Desiati, P de Vries, KD de With, M DeYoung, T Diaz-Velez, JC Dunkman, M Eagan, R Eberhardt, B Eichmann, B Eisch, J Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feintzeig, J Feusels, T Filimonov, K Finley, C Fischer-Wasels, T Flis, S Franckowiak, A Frantzen, K Fuchs, T Gaisser, TK Gallagher, J Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Golup, G Gonzalez, JG Goodman, JA Gora, D Grandmont, DT Grant, D Gretskov, P Groh, JC Gross, A Ha, C Haack, C Ismail, AH Hallen, P Hallgren, A Halzen, F Hanson, K Hebecker, D Heereman, D Heinen, D Helbing, K Hellauer, R Hickford, S Hill, GC Hoffman, KD Hoffmann, R Homeier, A Hoshina, K Huang, F Huelsnitz, W Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobi, E Jacobsen, J Jagielski, K Japaridze, GS Jero, K Jlelati, O Kaminsky, B Kappes, A Karg, T Karle, A Kauer, M Kelley, JL Kiryluk, J Klas, J Klein, SR Kohne, JH Kohnen, G Kolanoski, H Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krasberg, M Kriesten, A Krings, K Kroll, G Kunnen, J Kurahashi, N Kuwabara, T Labare, M Landsman, H Larson, MJ Lesiak-Bzdak, M Leuermann, M Leute, J Luenemann, J Macias, O Madsen, J Maggi, G Maruyama, R Mase, K Matis, HS McNally, F Meagher, K Meli, A Merck, M Meures, T Miarecki, S Middell, E Milke, N Miller, J Mohrmann, L Montaruli, T Morse, R Nahnhauer, R Naumann, U Niederhausen, H Nowicki, SC Nygren, DR Obertacke, A Odrowski, S Olivas, A Omairat, A O'Murchadha, A Palczewski, T Paul, L Pepper, JA de los Heros, CP Pfendner, C Pieloth, D Pinat, E Posselt, J Price, PB Przybylski, GT Quinnan, M Radel, L Rameez, M Rawlins, K Redl, P Reimann, R Resconi, E Rhode, W Ribordy, M Richman, M Riedel, B Robertson, S Rodrigues, JP Rott, C Ruhe, T Ruzybayev, B Ryckbosch, D Saba, SM Sander, HG Santander, M Sarkar, S Schatto, K Scheriau, F Schmidt, T Schmitz, M Schoenen, S Schoneberg, S Schonwald, A Schukraft, A Schulte, L Schulz, O Seckel, D Sestayo, Y Seunarine, S Shanidze, R Sheremata, C Smith, MWE Soldin, D Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stanisha, NA Stasik, A Stezelberger, T Stokstad, RG Stossl, A Strahler, EA Strom, R Strotjohann, NL Sullivan, GW Taavola, H Taboada, I Tamburro, A Tepe, A Ter-Antonyan, S Tesic, G Tilav, S Toale, PA Tobin, MN Toscano, S Tselengidou, M Unger, E Usner, M Vallecorsa, S van Eijndhoven, N van Santen, J Vehring, M Voge, M Vraeghe, M Walck, C Wallraff, M Weaver, C Wellons, M Wendt, C Westerhoff, S Whelan, BJ Whitehorn, N Wiebe, K Wiebusch, CH Williams, DR Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, DL Xu, XW Yanez, JP Yodh, G Yoshida, S Zarzhitsky, P Ziemann, J Zierke, S Zoll, M AF Aartsen, M. G. Abbasi, R. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Altmann, D. Arguelles, C. Arlen, T. C. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Baum, V. Bay, R. Beatty, J. J. Tjus, J. Becker Becker, K. -H. Benabderrahmane, M. L. BenZvi, S. Berghaus, P. Berley, D. Bernardini, E. Bernhard, A. Besson, D. Z. Binder, G. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Bose, D. Boeser, S. Botner, O. Brayeur, L. Bretz, H. -P. Brown, A. M. Bruijn, R. Casey, J. Casier, M. Chirkin, D. Christov, A. Christy, B. Clark, K. Classen, L. Clevermann, F. Coenders, S. Cohen, S. Cowen, D. F. Silva, A. H. Cruz Danninger, M. Daughhetee, J. Davis, J. C. Day, M. de Andre, J. P. A. M. De Clercq, C. De Ridder, S. Desiati, P. de Vries, K. D. de With, M. DeYoung, T. Diaz-Velez, J. C. Dunkman, M. Eagan, R. Eberhardt, B. Eichmann, B. Eisch, J. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feintzeig, J. Feusels, T. Filimonov, K. Finley, C. Fischer-Wasels, T. Flis, S. Franckowiak, A. Frantzen, K. Fuchs, T. Gaisser, T. K. Gallagher, J. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Golup, G. Gonzalez, J. G. Goodman, J. A. Gora, D. Grandmont, D. T. Grant, D. Gretskov, P. Groh, J. C. Gross, A. Ha, C. Haack, C. Ismail, A. Haj Hallen, P. Hallgren, A. Halzen, F. Hanson, K. Hebecker, D. Heereman, D. Heinen, D. Helbing, K. Hellauer, R. Hickford, S. Hill, G. C. Hoffman, K. D. Hoffmann, R. Homeier, A. Hoshina, K. Huang, F. Huelsnitz, W. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobi, E. Jacobsen, J. Jagielski, K. Japaridze, G. S. Jero, K. Jlelati, O. Kaminsky, B. Kappes, A. Karg, T. Karle, A. Kauer, M. Kelley, J. L. Kiryluk, J. Klaes, J. Klein, S. R. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krasberg, M. Kriesten, A. Krings, K. Kroll, G. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Landsman, H. Larson, M. J. Lesiak-Bzdak, M. Leuermann, M. Leute, J. Luenemann, J. Macias, O. Madsen, J. Maggi, G. Maruyama, R. Mase, K. Matis, H. S. McNally, F. Meagher, K. Meli, A. Merck, M. Meures, T. Miarecki, S. Middell, E. Milke, N. Miller, J. Mohrmann, L. Montaruli, T. Morse, R. Nahnhauer, R. Naumann, U. Niederhausen, H. Nowicki, S. C. Nygren, D. R. Obertacke, A. Odrowski, S. Olivas, A. Omairat, A. O'Murchadha, A. Palczewski, T. Paul, L. Pepper, J. A. de los Heros, C. Perez Pfendner, C. Pieloth, D. Pinat, E. Posselt, J. Price, P. B. Przybylski, G. T. Quinnan, M. Raedel, L. Rameez, M. Rawlins, K. Redl, P. Reimann, R. Resconi, E. Rhode, W. Ribordy, M. Richman, M. Riedel, B. Robertson, S. Rodrigues, J. P. Rott, C. Ruhe, T. Ruzybayev, B. Ryckbosch, D. Saba, S. M. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Scheriau, F. Schmidt, T. Schmitz, M. Schoenen, S. Schoeneberg, S. Schoenwald, A. Schukraft, A. Schulte, L. Schulz, O. Seckel, D. Sestayo, Y. Seunarine, S. Shanidze, R. Sheremata, C. Smith, M. W. E. Soldin, D. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stanisha, N. A. Stasik, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Strahler, E. A. Stroem, R. Strotjohann, N. L. Sullivan, G. W. Taavola, H. Taboada, I. Tamburro, A. Tepe, A. Ter-Antonyan, S. Tesic, G. Tilav, S. Toale, P. A. Tobin, M. N. Toscano, S. Tselengidou, M. Unger, E. Usner, M. Vallecorsa, S. van Eijndhoven, N. van Santen, J. Vehring, M. Voge, M. Vraeghe, M. Walck, C. Wallraff, M. Weaver, Ch. Wellons, M. Wendt, C. Westerhoff, S. Whelan, B. J. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, D. L. Xu, X. W. Yanez, J. P. Yodh, G. Yoshida, S. Zarzhitsky, P. Ziemann, J. Zierke, S. Zoll, M. TI Search for non-relativistic magnetic monopoles with IceCube SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID UNIFIED GAUGE THEORIES; PROTON-DECAY; FERMION INTERACTIONS; NEUTRINO TELESCOPE; MACRO EXPERIMENT; STOPPING POWER; ENERGY-LOSS; SOUTH-POLE; ICE; PERFORMANCE AB The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the Grand Unified Theory (GUT) era shortly after the Big Bang. Depending on the underlying gauge group these monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of to . In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow-particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of the flux of non-relativistic GUT monopoles is constrained up to a level of at a 90 % confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections. C1 [Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gretskov, P.; Haack, C.; Hallen, P.; Heinen, D.; Jagielski, K.; Kriesten, A.; Krings, K.; Leuermann, M.; Paul, L.; Raedel, L.; Reimann, R.; Schoenen, S.; Schukraft, A.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.; Zierke, S.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Aartsen, M. G.; Hill, G. C.; Robertson, S.; Whelan, B. J.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Civist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; Binder, G.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Binder, G.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [de With, M.; Kolanoski, H.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Tjus, J. Becker; Eichmann, B.; Fedynitch, A.; Saba, S. M.; Schoeneberg, S.; Unger, E.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Boeser, S.; Franckowiak, A.; Hebecker, D.; Homeier, A.; Kowalski, M.; Schulte, L.; Stasik, A.; Strotjohann, N. L.; Usner, M.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Hanson, K.; Heereman, D.; Meures, T.; O'Murchadha, A.; Pinat, E.] Univ Libre Bruxelles, Sci Fac CP230, B-1050 Brussels, Belgium. [Brayeur, L.; Casier, M.; De Clercq, C.; de Vries, K. D.; Golup, G.; Kunnen, J.; Maggi, G.; Miller, J.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Ishihara, A.; Mase, K.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Brown, A. M.; Hickford, S.; Macias, O.] Univ Canterbury, Dept Phys & Astron, Christchurch, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Goodman, J. A.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Koskinen, D. J.; Sarkar, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Clevermann, F.; Frantzen, K.; Fuchs, T.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.; Scheriau, F.; Schmitz, M.; Ziemann, J.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Grandmont, D. T.; Grant, D.; Nowicki, S. C.; Odrowski, S.; Sheremata, C.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Altmann, D.; Classen, L.; Gora, D.; Kappes, A.; Tselengidou, M.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Aguilar, J. A.; Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [De Ridder, S.; Feusels, T.; Ismail, A. Haj; Jlelati, O.; Labare, M.; Meli, A.; Ryckbosch, D.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bruijn, R.; Cohen, S.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Abbasi, R.; Ahlers, M.; Arguelles, C.; Baker, M.; BenZvi, S.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Tobin, M. N.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abbasi, R.; Ahlers, M.; Arguelles, C.; Baker, M.; BenZvi, S.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Tobin, M. N.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Baum, V.; Eberhardt, B.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Bernhard, A.; Coenders, S.; Gross, A.; Leute, J.; Resconi, E.; Schulz, O.; Sestayo, Y.] Tech Univ Munich, D-85748 Garching, Germany. [Bai, X.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, S-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bose, D.; Rott, C.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Clark, K.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Larson, M. J.; Palczewski, T.; Pepper, J. A.; Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Arlen, T. C.; Cowen, D. F.; de Andre, J. P. A. M.; DeYoung, T.; Dunkman, M.; Eagan, R.; Groh, J. C.; Huang, F.; Quinnan, M.; Smith, M. W. E.; Stanisha, N. A.; Tesic, G.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Boersma, D. J.; Botner, O.; Euler, S.; Hallgren, A.; de los Heros, C. Perez; Stroem, R.; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.; Tepe, A.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Ackermann, M.; Benabderrahmane, M. L.; Berghaus, P.; Bernardini, E.; Bretz, H. -P.; Silva, A. H. Cruz; Gluesenkamp, T.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stoessl, A.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. RP Aartsen, MG (reprint author), Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. EM mohamed.lotfi.benabderrahmane@desy.de; schoenen@physik.rwth-aachen.de RI Tjus, Julia/G-8145-2012; Koskinen, David/G-3236-2014; Auffenberg, Jan/D-3954-2014; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011; Wiebusch, Christopher/G-6490-2012; Taavola, Henric/B-4497-2011; OI Koskinen, David/0000-0002-0514-5917; Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479; Auffenberg, Jan/0000-0002-1185-9094; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952; Wiebusch, Christopher/0000-0002-6418-3008; Rott, Carsten/0000-0002-6958-6033; Taavola, Henric/0000-0002-2604-2810; Groh, John/0000-0001-9880-3634; Perez de los Heros, Carlos/0000-0002-2084-5866; Strotjohann, Nora Linn/0000-0002-4667-6730; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Arguelles Delgado, Carlos/0000-0003-4186-4182 FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin - Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada; West-Grid and Compute/Calcul Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); DFG [Sonderforschungsbereich 676]; Helmholtz Alliance for Astroparticle Physics (HAP); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research(FNRS-FWO); FWO Odysseus programme; Flanders Institute; Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF) FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin - Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, West-Grid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), L.B. was funded by the DFG Sonderforschungsbereich 676, Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research(FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF). NR 65 TC 11 Z9 11 U1 0 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL 2 PY 2014 VL 74 IS 7 AR 2938 DI 10.1140/epjc/s10052-014-2938-8 PG 19 WC Physics, Particles & Fields SC Physics GA AL3AH UT WOS:000338996800001 ER PT J AU Schwarz, WHE Grein, F Ruedenberg, K AF Schwarz, W. H. Eugen Grein, Fritz Ruedenberg, Klaus TI In memoriam Hermann Hartmann, founder of TCA, on the occasion of his 100th birthday SO THEORETICAL CHEMISTRY ACCOUNTS LA English DT Editorial Material C1 [Schwarz, W. H. Eugen] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. [Schwarz, W. H. Eugen] Univ Siegen, Dept Chem, D-57068 Siegen, Germany. [Grein, Fritz] Univ New Brunswick, Dept Chem, Fredericton, NB E3B 5A3, Canada. [Ruedenberg, Klaus] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Ruedenberg, Klaus] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Schwarz, WHE (reprint author), Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. EM Schwarz@chemie.uni-siegen.de; Ruedenberg@iastate.edu NR 0 TC 0 Z9 0 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1432-881X EI 1432-2234 J9 THEOR CHEM ACC JI Theor. Chem. Acc. PD JUL 2 PY 2014 VL 133 IS 8 AR 1508 DI 10.1007/s00214-014-1508-3 PG 2 WC Chemistry, Physical SC Chemistry GA AL3AI UT WOS:000338996900001 ER PT J AU Lei, Y Zhao, HY Rivas, RD Lee, S Liu, B Lu, JL Stach, E Winans, RE Chapman, KW Greeley, JP Miller, JT Chupas, PJ Elam, JW AF Lei, Yu Zhao, Haiyan Rivas, Rosa Diaz Lee, Sungsik Liu, Bin Lu, Junling Stach, Eric Winans, Randall E. Chapman, Karena W. Greeley, Jeffrey P. Miller, Jeffrey T. Chupas, Peter J. Elam, Jeffrey W. TI Adsorbate-Induced Structural Changes in 1-3 nm Platinum Nanoparticles SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ATOMIC LAYER DEPOSITION; PAIR-DISTRIBUTION-FUNCTION; MOLECULAR-DYNAMICS SIMULATION; FINNIS-SINCLAIR POTENTIALS; X-RAY-DIFFRACTION; CLUSTER-SIZE; BOND-LENGTH; CATALYSTS; GOLD; HYDROGENATION AB We investigated changes in the Pt-Pt bond distance, particle size, crystallinity, and coordination of Pt nanopartides as a function of particle size (1-3 nm) and adsorbate (H-2, CO) using synchrotron radiation pair distribution function (PDF) and X-ray absorption spectroscopy (XAS) measurements. The similar to 1 nm Pt nanopartides showed a Pt-Pt bond distance contraction of similar to 1.4%. The adsorption of H-2 and CO at room temperature relaxed the Pt-Pt bond distance contraction to a value close to that of bulk fcc Pt. The adsorption of H-2 improved the crystallinity of the small Pt nanopartides. However, CO adsorption generated a more disordered fcc structure for the 1-3 nm Pt nanopartides compared to the H-2 adsorption Pt nanopartides. In situ XANES measurements revealed that this disorder results from the electron back-donation of the Pt nanoparticles to CO, leading to a higher degree of rehybridization of the metal orbitals in the Pt-adsorbate system. C1 [Lu, Junling; Elam, Jeffrey W.] Argonne Natl Lab, Energy Syst Div, Lemont, IL 60439 USA. [Zhao, Haiyan; Lee, Sungsik; Winans, Randall E.; Chapman, Karena W.; Chupas, Peter J.] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Lei, Yu] Univ Alabama, Dept Chem & Mat Engn, Huntsville, AL 35899 USA. [Rivas, Rosa Diaz; Stach, Eric] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Liu, Bin] Kansas State Univ, Dept Chem Engn, Manhattan, KS 66506 USA. [Greeley, Jeffrey P.] Purdue Univ, Dept Chem Engn, W Lafayette, IN 47907 USA. RP Elam, JW (reprint author), Argonne Natl Lab, Energy Syst Div, Lemont, IL 60439 USA. EM jelam@anl.gov RI Stach, Eric/D-8545-2011; BM, MRCAT/G-7576-2011; Lu, Junling/F-3791-2010; Liu, Bin/C-1475-2012; OI Stach, Eric/0000-0002-3366-2153; Lu, Junling/0000-0002-7371-8414; Lei, Yu/0000-0002-4161-5568 FU Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; University of Alabama in Huntsville; Kansas State University FX This material is based upon work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. This research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Y.L. gratefully acknowledges the start-up support by the University of Alabama in Huntsville. B.L. also thanks the start-up support by the Kansas State University. We acknowledge grants of computer time at the Argonne Laboratory Computing Resource Center (LCRC), and the National Energy Research Scientific Computing Center (NERSC). NR 49 TC 20 Z9 20 U1 12 U2 96 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 2 PY 2014 VL 136 IS 26 BP 9320 EP 9326 DI 10.1021/ja4126998 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA AK8QI UT WOS:000338692700018 PM 24919812 ER PT J AU Letko, CS Panetier, JA Head-Gordon, M Tilley, TD AF Letko, Christopher S. Panetier, Julien A. Head-Gordon, Martin Tilley, T. Don TI Mechanism of the Electrocatalytic Reduction of Protons with Diaryldithiolene Cobalt Complexes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TRANSITION-METAL-COMPLEXES; RAY-ABSORPTION SPECTROSCOPY; HYDROGEN EVOLUTION; DITHIOLENE COMPLEXES; ELECTRONIC-STRUCTURE; H-2 PRODUCTION; CONVERGENCE ACCELERATION; 2-IODOXYBENZOIC ACID; CORRELATION-ENERGY; FUNCTIONAL MODELS AB A series of dimeric cobalt-diaryldithiolene complexes [Co(S2C2Ar2)(2)](2), possessing various aryl para substituents (OMe, F, Cl, and Br), were studied as electrocatalysts for proton reduction in nonaqueous media, in an effort to correlate dithiolene donor strength with catalyst activity. Cyclic voltammetry data acquired for the cobalt-diaryldithiolene dimers guided the isolation of chemically reduced monoanionic ([Co(S2C2Ar2)(2)](-)) and dianionic ([Co(S2C2Ar2)(2)](2-)) monomers. The potassium and tetrabutylammonium salts of dianionic cobalt-diaryldithiolene complexes have been characterized by single crystal X-ray crystallography. Treatment of the dianionic species with stoichiometric quantities of a weak acid afforded H-2 and the monoanionic cobalt-diaryldithiolene species. Density functional theory (BP86) suggests that hydrogen elimination proceeds through a diprotonated intermediate with a Co-H bond and a protonated S center. A transition state for transfer of the S-H proton to the metal center was located with a computed free energy of 5.9 kcal/mol, in solution (DMF via C-PCM approach). C1 [Letko, Christopher S.; Panetier, Julien A.] Univ Calif Berkeley, Joint Ctr Artificial Photosynthesis, Div Mat Sci, Berkeley, CA 94720 USA. [Head-Gordon, Martin; Tilley, T. Don] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM mhg@cchem.berkeley.edu; tdtilley@berkeley.edu OI Panetier, Julien/0000-0003-4905-8396 FU Office of Science of the U.S. Department of Energy [DE-SC0004993] FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. The authors would like to thank Dr. Michael Nippe for assistance with X-ray crystallography and Dr. Andreas Hauser for helpful discussions. NR 92 TC 28 Z9 28 U1 4 U2 74 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 2 PY 2014 VL 136 IS 26 BP 9364 EP 9376 DI 10.1021/ja5019755 PG 13 WC Chemistry, Multidisciplinary SC Chemistry GA AK8QI UT WOS:000338692700023 PM 24950387 ER PT J AU de Florian, D Sassot, R Stratmann, M Vogelsang, W AF de Florian, Daniel Sassot, Rodolfo Stratmann, Marco Vogelsang, Werner TI Evidence for Polarization of Gluons in the Proton SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARTON DISTRIBUTIONS; SCATTERING AB We discuss the impact of recent high-statistics Relativistic Heavy Ion Collider data on the determination of the gluon polarization in the proton in the context of a global QCD analysis of polarized parton distributions. We find evidence for a nonvanishing polarization of gluons in the region of momentum fraction and at the scales mostly probed by the data. Although information from low momentum fractions is presently lacking, this finding is suggestive of a significant contribution of gluon spin to the proton spin, thereby limiting the amount of orbital angular momentum required to balance the proton spin budget. C1 [de Florian, Daniel; Sassot, Rodolfo] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina. [de Florian, Daniel; Sassot, Rodolfo] Univ Buenos Aires, Fac Ciencias Exactas & Nat, IFIBA, RA-1428 Buenos Aires, DF, Argentina. [Stratmann, Marco; Vogelsang, Werner] Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany. [Stratmann, Marco] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP de Florian, D (reprint author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina. EM deflo@df.uba.ar; sassot@df.uba.ar; marco.stratmann@uni-tuebingen.de; werner.vogelsang@uni-tuebingen.de RI de Florian, Daniel/B-6902-2011; OI de Florian, Daniel/0000-0002-3724-0695; Stratmann, Marco/0000-0001-7125-8701 FU U.S. DOE [DE-AC02-98CH10886]; BNL-LDRD Project [12-034]; CONICET; ANPCyT; UBACyT; Marie Curie [IRG 256574]; Institutional Strategy of the University of Tubingen (DFG) [ZUK 63] FX We thank E. C. Aschenauer, K. Boyle, P. Djawotho, and C. Gagliardi for useful communications. M. S. was supported in part by the U.S. DOE (Contract No. DE-AC02-98CH10886) and BNL-LDRD Project No. 12-034. This work was supported by CONICET, ANPCyT, UBACyT, Marie Curie Grant No. IRG 256574, and the Institutional Strategy of the University of Tubingen (DFG, ZUK 63). NR 26 TC 61 Z9 61 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 2 PY 2014 VL 113 IS 1 AR 012001 DI 10.1103/PhysRevLett.113.012001 PG 5 WC Physics, Multidisciplinary SC Physics GA AK8GJ UT WOS:000338665200008 PM 25032920 ER PT J AU Bellei, C Amendt, PA AF Bellei, C. Amendt, P. A. TI Asymptotic separation in multispecies collisional plasma shocks SO PHYSICAL REVIEW E LA English DT Article ID SIMULATION; WAVE AB When a piston drives a shock in a multicomponent plasma, residual separation of the ion species persists close to the piston-plasma boundary, long after the shock has propagated away from the boundary and has reached a (nearly) steady-state solution. This effect is observed in hybrid particle-in-cell simulations with two kinetic ion species and fluid electrons. It is a consequence of the different dynamics experienced by ions of different mass and charge-to-mass ratio and must be taken into account to properly model the physics of species separation in collisional plasma shocks. C1 [Bellei, C.; Amendt, P. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Bellei, C (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. FU US Department of Energy; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; [LDRD-11-ERD-075] FX The authors acknowledge useful discussions with S. C. Wilks. Computing support for this work came from a LLNL Computational Directorate Grand Challenge award. This work was performed under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and supported by LDRD-11-ERD-075. NR 14 TC 5 Z9 5 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD JUL 2 PY 2014 VL 90 IS 1 AR 013101 DI 10.1103/PhysRevE.90.013101 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA AK8FN UT WOS:000338662800010 PM 25122395 ER PT J AU Saini, D Behlow, H Podila, R Dickel, D Pillai, B Skove, MJ Serkiz, SM Rao, AM AF Saini, D. Behlow, H. Podila, R. Dickel, D. Pillai, B. Skove, M. J. Serkiz, S. M. Rao, A. M. TI Mechanical Resonances of Helically Coiled Carbon Nanowires SO SCIENTIFIC REPORTS LA English DT Article ID NANOTUBES AB Despite their wide spread applications, the mechanical behavior of helically coiled structures has evaded an accurate understanding at any length scale (nano to macro) mainly due to their geometrical complexity. The advent of helically coiled micro/nanoscale structures in nano-robotics, nano-inductors, and impact protection coatings has necessitated the development of new methodologies for determining their shear and tensile properties. Accordingly, we developed a synergistic protocol which (i) integrates analytical, numerical (i.e., finite element usingCOMSOLH (R)) and experimental (harmonic detection of resonance; HDR) methods to obtain an empirically validated closed form expression for the shear modulus and resonance frequency of a singly clamped helically coiled carbon nanowire (HCNW), and (ii) circumvents the need for solving 12th order differential equations. From the experimental standpoint, a visual detection of resonances (using in situ scanning electron microscopy) combined with HDR revealed intriguing non-planar resonance modes at much lower driving forces relative to those needed for linear carbon nanotube cantilevers. Interestingly, despite the presence of mechanical and geometrical nonlinearities in the HCNW resonance behavior the ratio of the first two transverse modes f2/f1 was found to be similar to the ratio predicted by the Euler-Bernoulli theorem for linear cantilevers. C1 [Saini, D.; Behlow, H.; Podila, R.; Dickel, D.; Pillai, B.; Skove, M. J.; Serkiz, S. M.; Rao, A. M.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Saini, D.; Behlow, H.; Podila, R.; Dickel, D.; Pillai, B.; Skove, M. J.; Serkiz, S. M.; Rao, A. M.] Clemson Univ, Clemson Nanomat Ctr, Clemson, SC 29634 USA. [Podila, R.; Skove, M. J.; Rao, A. M.] Clemson Univ, Ctr Opt Mat Sci & Engn Technol, Clemson, SC 29634 USA. [Serkiz, S. M.] Savannah River Natl Lab, Natl & Homeland Secur Directorate, Aiken, SC 29808 USA. RP Rao, AM (reprint author), Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. EM arao@g.clemson.edu OI Podila, Ramakrishna/0000-0003-0472-2361 NR 24 TC 4 Z9 4 U1 2 U2 33 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUL 2 PY 2014 VL 4 AR 5542 DI 10.1038/srep05542 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AK4VB UT WOS:000338421100001 PM 24986377 ER PT J AU Biswas, S Yang, YS Schleputz, CM Geva, N Headrick, RL Pindak, R Clarke, R Shtein, M AF Biswas, Shaurjo Yang, Yongsoo Schlepuetz, Christian M. Geva, Nadav Headrick, Randall L. Pindak, Ron Clarke, Roy Shtein, Max TI Spatial Mapping of Morphology and Electronic Properties of Air-Printed Pentacene Thin Films SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID MOLECULAR ORGANIC SEMICONDUCTORS; LIGHT-EMITTING DEVICES; VAPOR-PHASE DEPOSITION; TRANSISTORS; MOBILITY; GROWTH; PERFORMANCE; EVAPORATION; DENSITY; LASER AB To accelerate the pace of materials discovery and application, comprehensive links need to be established between a material's structure, properties, and process conditions used to obtain the material and/or final application format. This work examines the dry printing of pentacene thin film transistor (TFT) channels by guard flow-enhanced organic vapor jet printing (GF-OVJP), a technique that enables direct, solvent-free, additive patterning of device-quality molecular semiconductors in air. Deposition in air entails non-trivial effects at the boundary between ambient surroundings and the gas jet carrying the semiconductor vapor that influence the morphology and properties of the resulting electronic devices. Synchrotron X-ray diffraction is employed, complemented by measurement of electronic properties of GF-OVJP deposited films in a TFT to reveal how the morphology and electronic properties of the films depend on thickness, location within the printed pattern, nozzle translation velocity, and other process parameters. The hole field-effect mobility of the printed pentacene film is linked quantitatively with its crystallinity, as well as with extent of exposure to ambient air during deposition. The analysis can be extended to accurately predict the performance of devices deposited in air by GF-OVJP, which are demonstrated here for a planar, large area deposit. C1 [Biswas, Shaurjo; Geva, Nadav; Shtein, Max] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Yang, Yongsoo; Clarke, Roy] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Schlepuetz, Christian M.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Headrick, Randall L.] Univ Vermont, Dept Phys, Burlington, VT 05405 USA. [Pindak, Ron] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Biswas, S (reprint author), Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. EM mshtein@umich.edu RI Schleputz, Christian/C-4696-2008; Yang, Yongsoo/P-7716-2014 OI Schleputz, Christian/0000-0002-0485-2708; Yang, Yongsoo/0000-0001-8654-302X FU Air Force Office of Scientific Research (AFOSR) [FA9550-09-1-0109]; Center for Solar and Thermal Energy Conversion; Energy Frontier Research Center - US Department of Energy (DOE), Office of Basic Energy Sciences [DE-SC0000957]; U.S. Department of Energy [DE-FG02-06ER46273, DE-AC02-98CH10886]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-07ER46380] FX The authors MS and SB thanks the Air Force Office of Scientific Research (AFOSR) for its Presidential Early Career Award for Scientists and Engineers (PECASE), Award No. FA9550-09-1-0109, for supporting the development of the GF-OVJP technique, analysis of compressible hydrodynamics, and its application to deposition organic TFT materials and devices performed in this work. MS, RC, SB, YY and CMS acknowledge funding from Center for Solar and Thermal Energy Conversion, and Energy Frontier Research Center supported by the US Department of Energy (DOE), Office of Basic Energy Sciences (Award No. DE-SC0000957) for supporting the high resolution XRD experiments and data analysis performed at the Brookhaven National Laboratory (BNL), as well as the analytical work on predicting field effect mobility as a function of deposition conditions. BNL NSLS experiments were also supported by the U.S. Department of Energy (Contract No. DE-FG02-06ER46273, PI: RC and Contract No. DE-AC02-98CH10886) while the use of APS at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. RLH was supported by grant No. DE-FG02-07ER46380 from the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. The authors thank N. Senabulya for her help in synchrotron data acquisition. Excellent beamline support by C. Nelson and S. LaMarra (NSLS-X21), Z. Zhang (APS-33IDD), and the staff of the NSLS and the APS is gratefully acknowledged. NR 38 TC 2 Z9 2 U1 1 U2 29 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JUL 2 PY 2014 VL 24 IS 25 BP 3907 EP 3916 DI 10.1002/adfm.201303983 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AJ9EV UT WOS:000338011200007 ER PT J AU Xia, YD Luo, H Frisbey, M Nourgaliev, R AF Xia, Yidong Luo, Hong Frisbey, Megan Nourgaliev, Robert TI A set of parallel, implicit methods for a reconstructed discontinuous Galerkin method for compressible flows on 3D hybrid grids SO COMPUTERS & FLUIDS LA English DT Article DE Discontinuous Galerkin; Hierarchical WENO reconstruction; Implicit methods; Automatic differentiation; Parallel computing ID NAVIER-STOKES EQUATIONS; FINITE-ELEMENT-METHOD; HERMITE WENO SCHEMES; EULER EQUATIONS; CONSERVATION-LAWS; ARBITRARY GRIDS; UNSTRUCTURED MESHES; TETRAHEDRAL GRIDS; ELLIPTIC PROBLEMS; DG/FV METHODS AB A set of implicit methods are proposed for a third-order hierarchical WENO reconstructed discontinuous Galerkin method for compressible flows on 3D hybrid grids. An attractive feature in these methods are the application of the Jacobian matrix based on the P-1 element approximation, resulting in a huge reduction of memory requirement compared with DG (P-2). Also, three approaches - analytical derivation, divided differencing, and automatic differentiation (AD) are presented to construct the Jacobian matrix respectively, where the AD approach shows the best robustness. A variety of compressible flow problems are computed to demonstrate the fast convergence property of the implemented flow solver. Furthermore, an SPMD (single program, multiple data) programming paradigm based on MPI is proposed to achieve parallelism. The numerical results on complex geometries indicate that this low-storage implicit method can provide a viable and attractive DG solution for complicated flows of practical importance. (C) 2014 Published by Elsevier Ltd. C1 [Xia, Yidong; Luo, Hong; Frisbey, Megan] N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA. [Nourgaliev, Robert] Lawrence Livermore Natl Lab, Div B, Livermore, CA 94550 USA. RP Xia, YD (reprint author), N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA. EM yxia2@ncsu.edu RI Luo, Hong/A-9133-2011 NR 69 TC 6 Z9 7 U1 0 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 EI 1879-0747 J9 COMPUT FLUIDS JI Comput. Fluids PD JUL 2 PY 2014 VL 98 SI SI BP 134 EP 151 DI 10.1016/j.compfluid.2014.01.023 PG 18 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA AJ8VM UT WOS:000337986000010 ER PT J AU Yan, HF Conley, R Bouet, N Chu, YS AF Yan, Hanfei Conley, Ray Bouet, Nathalie Chu, Yong S. TI Hard x-ray nanofocusing by multilayer Laue lenses SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Review DE multilayer Laue lens; x-ray nanofocusing optics; thin-film deposition; dynamical diffraction; synchrotron instrumentation; x-ray microscopy ID FRESNEL ZONE-PLATE; K-B MIRRORS; THIN-FILMS; ION-BEAM; ESTIMATING ABERRATIONS; MO/SI MULTILAYERS; W/SI MULTILAYERS; RESOLUTION; MICROSCOPY; OPTICS AB Multilayer Laue lens (MLL) is a new class of x-ray optics that offer great promise for achieving nanometre-level spatial resolution by focusing hard x-rays. Fabricating an MLL via thin-film deposition provides the means to achieve a linear Fresnel-zone plate structure with zone widths below 1 nm, while retaining a virtually limitless aspect ratio. Despite its similarity to the Fresnel-zone plate, MLL exhibits categorically distinctive focusing properties and their fabrication comes with a wide array of challenges. This article provides a comprehensive review of advances in MLLs, and includes extensive theoretical modelling on focusing performance, discussion on fabrication challenges, their current capabilities and notable results from x-ray focusing experiments. C1 [Yan, Hanfei; Conley, Ray; Bouet, Nathalie; Chu, Yong S.] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Conley, Ray] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Yan, HF (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. EM ychu@bnl.gov RI Yan, Hanfei/F-7993-2011; OI Yan, Hanfei/0000-0001-6824-0367; Bouet, Nathalie/0000-0002-5816-9429 FU Department of Energy, Office of Basic Energy Sciences [DE-AC-02-98CH10886, DE-AC-02-06CH11357] FX The authors thank Hyon-Chol Kang (Chosun University, Republic of Korea), Takahisa Koyama (SPring-8, Japan), Hans-Ulrich Krebs (University of Gottingen, Germany) and Tim Salditt (University of Gottingen, Germany) for sharing their results and for permission to publish their figures. We are indebted to past and current collaborators for their invaluable contributions to different areas of MLL development. Work at Brookhaven National Laboratory was supported by the Department of Energy, Office of Basic Energy Sciences under contract DE-AC-02-98CH10886. RC's work at Argonne National Laboratory was supported by the Department of Energy, Office of Basic Energy Sciences under contract DE-AC-02-06CH11357. NR 164 TC 30 Z9 30 U1 3 U2 38 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 EI 1361-6463 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD JUL 2 PY 2014 VL 47 IS 26 AR 263001 DI 10.1088/0022-3727/47/26/263001 PG 31 WC Physics, Applied SC Physics GA AJ5KV UT WOS:000337722000002 ER PT J AU Patton, B Zhivun, E Hovde, DC Budker, D AF Patton, B. Zhivun, E. Hovde, D. C. Budker, D. TI All-Optical Vector Atomic Magnetometer SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIC-FIELDS; LIGHT SHIFTS; OPERATION AB We demonstrate an all-optical magnetometer capable of measuring the magnitude and direction of a magnetic field using nonlinear magneto-optical rotation in cesium vapor. Vector capability is added by effective modulation of the field along orthogonal axes and subsequent demodulation of the magnetic-resonance frequency. This modulation is provided by the ac Stark shift induced by circularly polarized laser beams. The sensor exhibits a demonstrated rms noise floor of similar to 65 fT/root Hz in measurement of the field magnitude and 0.5 mrad/root Hz in the field direction; elimination of technical noise would improve these sensitivities to 12 fT/root Hz and 10 mu rad/root Hz, respectively. Applications for this all-optical vector magnetometer would include magnetically sensitive fundamental physics experiments, such as the search for a permanent electric dipole moment of the neutron. C1 [Patton, B.; Zhivun, E.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Patton, B.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Hovde, D. C.] Southwest Sci Ohio Operat, Cincinnati, OH 45244 USA. [Budker, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Budker, D.] Johannes Gutenberg Univ Mainz, Helmholtz Inst, D-55099 Mainz, Germany. RP Patton, B (reprint author), AOSense Inc, Sunnyvale, CA 94085 USA. EM BPattonUCB@gmail.com RI Budker, Dmitry/F-7580-2016 OI Budker, Dmitry/0000-0002-7356-4814 FU University of California UC Discovery Proof of Concept [197073]; NASA SBIR [NNX13CG20P]; National Science Foundation [PHY-1068875]; DFG Priority Program [SPP1491] FX We thank Douglas Beck, Michael Sturm, David Wurm, and Peter Fierlinger for their helpful input, Mikhail Balabas for preparation of the antirelaxation-coated cesium cell, and Arne Wickenbrock for contributions to the measurement. This work was funded in part by a University of California UC Discovery Proof of Concept grant (No. 197073) and NASA SBIR Contract No. NNX13CG20P and is supported by National Science Foundation Grant No. PHY-1068875. B.P. is supported by DFG Priority Program SPP1491, "Precision Measurements with Cold and Ultracold Neutrons." NR 40 TC 25 Z9 28 U1 8 U2 47 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 1 PY 2014 VL 113 IS 1 AR 013001 DI 10.1103/PhysRevLett.113.013001 PG 5 WC Physics, Multidisciplinary SC Physics GA CI8BM UT WOS:000354992500001 PM 25032923 ER PT J AU Kwon, MJ Yang, JS Shim, MJ Boyanov, MI Kemner, KM O'Loughlin, EJ AF Kwon, Man Jae Yang, Jung-Seok Shim, Moo Joon Boyanov, Maxim I. Kemner, Kenneth M. O'Loughlin, Edward J. TI Acid Extraction Overestimates the Total Fe(II) in the Presence of Iron (Hydr)oxide and Sulfide Minerals SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS LA English DT Article ID SULFATE-REDUCING BACTERIA; CHEMICAL-REDUCTION; DISSOLVED SULFIDE; MARINE-SEDIMENTS; HYDROGEN-SULFIDE; FERRIC IRON; KINETICS; LEPIDOCROCITE; DISSOLUTION; REACTIVITY AB Acid extraction followed by a colorimetric assay is a widely use approach for the determination of the total Fe(II) in samples from suboxic and anoxic environments. Under sulfidogenic conditions, these samples can contain both metal sulfides and iron (hydr) oxides. Our comparisons between 0.5 N HCl extraction and X-ray absorption fine structure (XAFS) analysis of systems containing 40 mM Fe(III) as (hydr)oxides and 10 mM FeS showed that the presence of sulfide can result in significant overestimation of the total Fe(II) by acid extraction. The total Fe(II) determined by XAFS was consistent with the added FeS. However, the total Fe(II) determined by extraction was significantly higher dependent on the nature of the Fe(III) (hydr)oxides; the rates and extent of Fe(II) production were higher with ferrihydrite and lepidocrocite than with goethite. Total Fe(II) concentrations determined following acid extraction might be overestimated when iron (hydr)oxides and sulfide minerals are present samples. C1 [Kwon, Man Jae; Yang, Jung-Seok; Shim, Moo Joon] Korea Inst Sci & Technol, Gangneung Inst, Kangnung 210340, South Korea. [Boyanov, Maxim I.; Kemner, Kenneth M.; O'Loughlin, Edward J.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Kwon, MJ (reprint author), Korea Inst Sci & Technol, 679 Saimdangro, Kangnung 210340, South Korea. EM mkwon@kist.re.kr; inenviron@kist.re.kr OI O'Loughlin, Edward/0000-0003-1607-9529 FU Subsurface Biogeochemical Research Program, Office of Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE) [DE-AC02-06CH11357]; DOE; MRCAT/EnviroCAT member institutions; Korea Ministry of Environment [2013000540005] FX We thank Bhoopesh Mishra and the beamline staff for assistance during XAFS data collection, Hyojin Kim for laboratory assistance, Michael McCormick for BET analysis, and Karen Haugen for thoughtful editing of the manuscript. This research is part of the Subsurface Science Scientific Focus Area at Argonne National Laboratory supported by the Subsurface Biogeochemical Research Program, Office of Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE), under Contract DE-AC02-06CH11357. MRCAT/EnviroCAT operations are supported by DOE and the MRCAT/EnviroCAT member institutions. This work was partially supported by the Korea Ministry of Environment under "The GAIA Project-2013000540005". NR 34 TC 0 Z9 0 U1 5 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2328-8930 J9 ENVIRON SCI TECH LET JI Environ. Sci. Technol. Lett. PD JUL PY 2014 VL 1 IS 7 BP 310 EP 314 DI 10.1021/ez500152h PG 5 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CD1JN UT WOS:000350831300004 ER PT J AU Malama, B Revil, A AF Malama, Bwalya Revil, Andre TI Modeling Transient Streaming Potentials in Falling-Head Permeameter Tests SO GROUNDWATER LA English DT Article ID ELECTRICAL DOUBLE-LAYER; POROUS-MEDIA; WATER-TABLE; INFILTRATION EXPERIMENT; CONDUCTIVITY; PERMEABILITY; POLARIZATION; INTERFACE; INVERSION; GRANITE AB We present transient streaming potential data collected during falling-head permeameter tests performed on samples of two sands with different physical and chemical properties. The objective of the work is to estimate hydraulic conductivity (K) and the electrokinetic coupling coefficient (Cl) of the sand samples. A semi-empirical model based on the falling-head permeameter flow model and electrokinetic coupling is used to analyze the streaming potential data and to estimate K and Cl. The values of K estimated from head data are used to validate the streaming potential method. Estimates of K from streaming potential data closely match those obtained from the associated head data, with less than 10% deviation. The electrokinetic coupling coefficient was estimated from streaming potential vs. (1) time and (2) head data for both sands. The results indicate that, within limits of experimental error, the values of Cl estimated by the two methods are essentially the same. The results of this work demonstrate that a temporal record of the streaming potential response in falling-head permeameter tests can be used to estimate both K and Cl. They further indicate the potential for using transient streaming potential data as a proxy for hydraulic head in hydrogeology applications. C1 [Malama, Bwalya] Sandia Natl Labs, Performance Assessment Dept, Carlsbad, NM 88220 USA. [Revil, Andre] Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA. [Revil, Andre] Univ Savoie, CNRS, ISTerre, UMR 5275, Le Bourget Du Lac, France. RP Malama, B (reprint author), Sandia Natl Labs, Performance Assessment Dept, 4100 Natl Pk High Way, Carlsbad, NM 88220 USA. EM bnmalam@sandia.gov FU WIPP programs; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy. We wish to thank our colleagues Dr. Kristopher Kuhlman and Dr. Gregory Roselle of Sandia National Laboratories for their insightful comments on the manuscript. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 52 TC 0 Z9 0 U1 2 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0017-467X EI 1745-6584 J9 GROUNDWATER JI Groundwater PD JUL-AUG PY 2014 VL 52 IS 4 BP 535 EP 549 DI 10.1111/gwat.12081 PG 15 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA AZ1DB UT WOS:000347979400009 PM 23782328 ER PT J AU Rajeev, L Luning, EG Mukhopadhyay, A AF Rajeev, Lara Luning, Eric G. Mukhopadhyay, Aindrila TI DNA-affinity-purified Chip (DAP-chip) Method to Determine Gene Targets for Bacterial Two component Regulatory Systems SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Genetics; Issue 89; DNA-Affinity-Purified-chip; response regulator; transcription factor binding site; two component system; signal transduction; Desulfovibrio; lactate utilization regulator; ChIP-chip ID RESPONSE REGULATOR; IDENTIFICATION; SITES AB In vivo methods such as ChIP-chip are well-established techniques used to determine global gene targets for transcription factors. However, they are of limited use in exploring bacterial two component regulatory systems with uncharacterized activation conditions. Such systems regulate transcription only when activated in the presence of unique signals. Since these signals are often unknown, the in vitro microarray based method described in this video article can be used to determine gene targets and binding sites for response regulators. This DNA-affinity-purified-chip method may be used for any purified regulator in any organism with a sequenced genome. The protocol involves allowing the purified tagged protein to bind to sheared genomic DNA and then affinity purifying the protein-bound DNA, followed by fluorescent labeling of the DNA and hybridization to a custom tiling array. Preceding steps that may be used to optimize the assay for specific regulators are also described. The peaks generated by the array data analysis are used to predict binding site motifs, which are then experimentally validated. The motif predictions can be further used to determine gene targets of orthologous response regulators in closely related species. We demonstrate the applicability of this method by determining the gene targets and binding site motifs and thus predicting the function for a sigma54-dependent response regulator DVU3023 in the environmental bacterium Desulfovibrio vulgaris Hildenborough. C1 [Rajeev, Lara; Luning, Eric G.; Mukhopadhyay, Aindrila] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Rajeev, L (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM lrajeev@lbl.gov OI Rajeev, Lara/0000-0002-0106-9195 FU Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Amy Chen for her help in preparing for the video shoot and for demonstrating the technique. This work conducted by ENIGMA: Ecosystems and Networks Integrated with Genes and Molecular Assemblies (http://enigma.lbl.gov), a Scientific Focus Area Program at Lawrence Berkeley National Laboratory, was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 21 TC 0 Z9 0 U1 2 U2 3 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD JUL PY 2014 IS 89 AR e51715 DI 10.3791/51715 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CB0DR UT WOS:000349296100064 ER PT J AU Thomas, EL Dovidio, JF West, TV AF Thomas, Erin L. Dovidio, John F. West, Tessa V. TI Lost in the Categorical Shuffle: Evidence for the Social Non-Prototypicality of Black Women SO CULTURAL DIVERSITY & ETHNIC MINORITY PSYCHOLOGY LA English DT Article DE Black women; categorization; intersectionality; social prototypicality ID ABSTRACT IDEAS; CATEGORIZATION; GENDER; WHITE; WOMAN; RACE; INTERSECTIONALITY; INVISIBILITY; STEREOTYPES; PSYCHOLOGY AB The white male norm hypothesis (Zarate & Smith, 1990) posits that White men's race and gender go overlooked as a result of their prototypical social statuses. In contrast, the intersectional invisibility hypothesis (Purdie-Vaughns & Eibach, 2008) posits that people with membership in multiple subordinate social groups experience social invisibility as a result of their non-prototypical social statuses. The present research reconciles these contradictory theories and provides empirical support for the core assumption of the intersectional invisibility hypothesis-that intersectional targets are non-prototypical within their race and gender ingroups. In a speeded categorization task, participants were slower to associate Black women versus Black men with the category "Black" and slower to associate Black women versus White women with the category "woman." We discuss the implications of this work for social categorical theory development and future intersectionality research. C1 [Thomas, Erin L.; Dovidio, John F.] Yale Univ, Dept Psychol, New Haven, CT 06520 USA. [West, Tessa V.] NYU, Dept Psychol, New York, NY 10003 USA. RP Thomas, EL (reprint author), Argonne Natl Lab, 9700 S Cass Ave,Bldg 201, Lemont, IL 60439 USA. EM ethomas@anl.gov NR 45 TC 7 Z9 7 U1 2 U2 12 PU EDUCATIONAL PUBLISHING FOUNDATION-AMERICAN PSYCHOLOGICAL ASSOC PI WASHINGTON PA 750 FIRST ST, NE, WASHINGTON, DC 20002-4242 USA SN 1099-9809 EI 1939-0106 J9 CULT DIVERS ETHN MIN JI Cult. Divers. Ethn. Minor. Psychol. PD JUL PY 2014 VL 20 IS 3 BP 370 EP 376 DI 10.1037/a0035096 PG 7 WC Ethnic Studies; Psychology, Social SC Ethnic Studies; Psychology GA CB2FB UT WOS:000349441100007 PM 24730367 ER PT J AU Dionisi, H Matos, M Anselmino, L Lozada, M Mac Cormack, W Carroll, J Lundgren, L Sjoling, S Chavarria, K Henrissat, B Jansson, J AF Dionisi, Hebe Matos, Marina Anselmino, Luciano Lozada, Mariana Mac Cormack, Walter Carroll, Jolynn Lundgren, Leif Sjoling, Sara Chavarria, Krystle Henrissat, Bernard Jansson, Janet TI Mining alginate lyases in sediment metagenomes from four geographically distant cold coastal environments SO NEW BIOTECHNOLOGY LA English DT Meeting Abstract C1 [Dionisi, Hebe; Matos, Marina; Anselmino, Luciano; Lozada, Mariana] Patagonian Natl Res Ctr CENPAT CONICET, Buenos Aires, DF, Argentina. [Mac Cormack, Walter] Argentinean Antarctic Inst, Buenos Aires, DF, Argentina. [Mac Cormack, Walter] Natl Univ Buenos Aires, Buenos Aires, DF, Argentina. [Carroll, Jolynn] Univ Tromso, N-9001 Tromso, Norway. [Carroll, Jolynn] Akvaplan Niva AS, FRAM High North Res Ctr Climate & Environm, Tromso, Norway. [Lundgren, Leif] Stockholm Univ, Stockholm, Sweden. [Sjoling, Sara] Sodertorn Univ, Huddinge, Sweden. [Chavarria, Krystle; Jansson, Janet] Lawrence Berkeley Natl Labs, Berkeley, CA USA. [Henrissat, Bernard] Ctr Natl Rech Sci, Marseille, France. NR 0 TC 0 Z9 0 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1871-6784 EI 1876-4347 J9 NEW BIOTECHNOL JI New Biotech. PD JUL PY 2014 VL 31 SU S MA O18-3 BP S69 EP S70 DI 10.1016/j.nbt.2014.05.1771 PG 2 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA AY0PJ UT WOS:000347298600158 ER PT J AU Keasling, J AF Keasling, Jay TI Synthetic biology for synthetic chemistry SO NEW BIOTECHNOLOGY LA English DT Meeting Abstract C1 [Keasling, Jay] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Keasling, Jay] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Keasling, Jay] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Synthet Biol Dept, Phys Biosci Div, Berkeley, CA 94720 USA. [Keasling, Jay] Joint BioEnergy Inst, Emeryville, CA 94608 USA. NR 0 TC 0 Z9 0 U1 4 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1871-6784 EI 1876-4347 J9 NEW BIOTECHNOL JI New Biotech. PD JUL PY 2014 VL 31 SU S MA PL1-2 BP S9 EP S9 DI 10.1016/j.nbt.2014.05.1633 PG 1 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA AY0PJ UT WOS:000347298600020 ER PT J AU Aguiar, JA Dholabhai, PP Bi, ZX Jia, QX Fu, EG Wang, YQ Aoki, T Zhu, JT Misra, A Uberuaga, BP AF Aguiar, Jeffery A. Dholabhai, Pratik P. Bi, Zhenxing Jia, Quanxi Fu, Engang G. Wang, Yongqiang Aoki, Toshihiro Zhu, Jiangtao Misra, Amit Uberuaga, Blas P. TI Linking Interfacial Step Structure and Chemistry with Locally Enhanced Radiation-Induced Amorphization at Oxide Heterointerfaces SO ADVANCED MATERIALS INTERFACES LA English DT Article ID ENERGY-LOSS SPECTROSCOPY; CERIUM-BASED OXIDES; ELECTRON-MICROSCOPY; TRANSITION-METALS; LOSS SPECTRA; STATES; HETEROSTRUCTURES; DISLOCATIONS; STABILITY; ALGORITHM AB Nanostructured materials and their interfaces have attracted recent interest for their functionality in a wide variety of different applications. However, the origins of these properties in several instances remain unknown. One promising aspect of nanomaterials is their role in materials design for mitigating radiation damage. In particular, engineered radiation tolerant materials would exploit the presence of internal interfaces to act as recombination centers and suppress damage accumulation. Realizing this promise, however, requires a fundamental understanding of how radiation-induced defects interact with interfaces. Thus, studying the interfacial atomic structure and chemistry before and after irradiation is critical. In this study, we have performed transmission electron microscopy on a series of pristine and ion-irradiated oxide interfaces to probe radiation-induced effects. The CeO2/SrTiO3 interface, chosen as a model system for these studies, is characterized by differences in SrTiO3 terminations or steps. Our salient result is that steps are centers for preferential amorphization in SrTiO3, which we attribute to defect flow across the interface induced by non-stoichiometry in CeO2. The study concludes the interfacial atomic ordering in the form of steps thereby modifies the response to ion irradiation and suggests interface patterning as another parameter to functionalize radiation tolerant materials. C1 [Aguiar, Jeffery A.; Dholabhai, Pratik P.; Fu, Engang G.; Wang, Yongqiang; Uberuaga, Blas P.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Bi, Zhenxing; Misra, Amit] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Jia, Quanxi] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Aoki, Toshihiro; Zhu, Jiangtao] Arizona State Univ, LeRoy Erying Ctr Solid State Sci, Tempe, AZ 85287 USA. [Zhu, Jiangtao] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. RP Aguiar, JA (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM jeffery.aguiar@lanl.gov RI Aoki, Toshihiro/I-4852-2015; Misra, Amit/H-1087-2012; OI Aguiar, Jeffery/0000-0001-6101-4762 FU Center for Materials at Irradiation and Mechanical Extremes (CMIME); Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [2008LANL1026]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by Center for Materials at Irradiation and Mechanical Extremes (CMIME), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number 2008LANL1026. We acknowledge Patricia Dickerson at LANL and Dorothy Coffey at ORNL for fabricating our FIB foils. JAA acknowledges access to the ORNL's ShaRE User Facility where part of the TEM work was performed in collaboration with Miaofang Chi, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We gratefully acknowledge other parts of the TEM work was performed within the LeRoy Eyring Center for Solid State Science at Arizona State University. We also acknowledge helpful discussions and editorial support from Maulik Patel and Michelle Hanenburg. NR 47 TC 8 Z9 8 U1 1 U2 13 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2196-7350 J9 ADV MATER INTERFACES JI Adv. Mater. Interfaces PD JUL PY 2014 VL 1 IS 4 AR 1300142 DI 10.1002/admi.201300142 PG 8 WC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AZ5TR UT WOS:000348283300003 ER PT J AU Caskey, CM Richards, RM Ginley, DS Zakutayev, A AF Caskey, Christopher M. Richards, Ryan M. Ginley, David S. Zakutayev, Andriy TI Thin film synthesis and properties of copper nitride, a metastable semiconductor SO MATERIALS HORIZONS LA English DT Article ID INORGANIC MATERIALS; GROWTH; TEMPERATURE; DEPOSITION; EPITAXY; DESIGN; GAP; TIN AB Copper nitride (Cu3N) thin films were grown by reactive sputtering using a high-throughput combinatorial approach with orthogonal gradients of substrate temperature and target-substrate distance. This technique enables high-throughput modulation of the anion activity, and is broadly applicable to the combinatorial synthesis of other materials. Stable, phase pure Cu3N thin films were grown on glass substrates at temperatures between 150 and 200 degrees C, depending on the target-substrate distance. These 00L oriented thin films have 10(-3) S cm(-1) conductivity and 1.5 eV optical absorption onset, making Cu3N interesting for future studies in the context of solar energy conversion applications. The analysis of the synthetic results provides insights into the thermodynamic origins of the growth of metastable Cu3N, and sets a nitrogen chemical potential of +1 eV per atom as a lower limit of the anion activity that can be achieved in non-equilibrium thin film growth of metastable materials. The first step towards testing the transferability of this result to other materials was made by reactive sputtering of tin, antimony, and bismuth in nitrogen. C1 [Caskey, Christopher M.; Ginley, David S.; Zakutayev, Andriy] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Caskey, Christopher M.; Richards, Ryan M.] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. RP Caskey, CM (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM chris.caskey@nrel.gov RI Richards, Ryan/B-3513-2008; OI Zakutayev, Andriy/0000-0002-3054-5525 FU U.S. Department of Energy, office of Energy Efficiency and Renewable Energy, "Ternary Copper Nitride Absorbers" Next Generation PV II project within the SunShot initiative FX This research is supported by the U.S. Department of Energy, office of Energy Efficiency and Renewable Energy, as a part of the "Ternary Copper Nitride Absorbers" Next Generation PV II project within the SunShot initiative. The authors would like to thank John D. Perkins, Stephan Lany, Vladan Stevanovic and Julien Vidal for illuminating discussions and Sn3N4 FERE calculations. NR 50 TC 31 Z9 31 U1 7 U2 59 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2051-6347 EI 2051-6355 J9 MATER HORIZ JI Mater. Horizons PD JUL PY 2014 VL 1 IS 4 BP 424 EP 430 DI 10.1039/c4mh00049h PG 7 WC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AZ4PG UT WOS:000348204200006 ER PT J AU Chalamala, BR Guttromson, R Masiello, RD AF Chalamala, Babu R. Guttromson, Ross Masiello, Ralph D. TI Energy Storage-Part II: Realizing the Value SO PROCEEDINGS OF THE IEEE LA English DT Editorial Material C1 [Chalamala, Babu R.] SunEdison, St Peters, MO 63376 USA. [Guttromson, Ross] Sandia Natl Labs, Elect Power Syst Res Dept, Albuquerque, NM 87185 USA. [Guttromson, Ross] Pacific NW Natl Lab, Richland, WA 99352 USA. [Masiello, Ralph D.] KEMA Innovat, Burlington, MA USA. [Masiello, Ralph D.] US DOE, Energy Advisory Comm, Washington, DC 20585 USA. [Masiello, Ralph D.] US DOE, Storage Subcomm, Washington, DC 20585 USA. RP Chalamala, BR (reprint author), SunEdison, St Peters, MO 63376 USA. NR 0 TC 0 Z9 0 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 EI 1558-2256 J9 P IEEE JI Proc. IEEE PD JUL PY 2014 VL 102 IS 7 SI SI BP 1050 EP 1051 DI 10.1109/JPROC.2014.2326809 PG 2 WC Engineering, Electrical & Electronic SC Engineering GA AK1PQ UT WOS:000338187700002 ER PT J AU Kintner-Meyer, M AF Kintner-Meyer, Michael TI Regulatory Policy and Markets for Energy Storage in North America SO PROCEEDINGS OF THE IEEE LA English DT Article DE Energy storage; power generation dispatch; power generation planning; power-system economics AB The last five years have been one of the most exciting times for the energy storage industry. We have seen significant advancements in the regulatory process to make accommodations for valuing and monetizing energy storage for what it provides to the grid. The most impactful regulatory decision for the energy storage industry has come from California, where the California Public Utilities Commission issued a decision that mandates procurement requirements of 1.325 GW for energy storage to three investor-owned utilities in four stages in 2014, 2016, 2018, and 2020. Furthermore, at the federal level, the U. S. Federal Energy Regulatory Commission's (FERC's) Order 755 requires transmission operators to develop pay-for-performance tariffs for ancillary services. This has had a direct impact on the market design of U. S. competitive wholesale markets and the monetization of fast-responding grid assets. While this order is technology neutral, it clearly plays into the fast-responding capability of energy storage technologies. Today, PJM, CAISO, MISO, NYISO, and NE-ISO have implemented Order 755 and offer new tariff-for-regulation services based on pay-for-performance principles. Furthermore, FERC Order 784, which was issued in July 2013, requires transmission providers to consider speed and accuracy in determining the requirements for ancillary services. In November 2013, FERC issued Order 972, which revises the small generator interconnection agreement that declares energy storage as a power source. This order puts energy storage on par with existing generators. This paper will discuss the implementation of FERC's pay-for-performance regulation order at all independent service operators (ISOs) in the United States under FERC regulatory authority (this excludes ERCOT). Also discussed will be the market impacts and overall impacts on the NERC regulation performance indexes. The paper ends with a discussion on the California, New York, and Ontario, Canada, procurement mandates and the opportunity that it may present to the energy storage industry. C1 Pacific NW Natl Lab, Richland, WA 99354 USA. RP Kintner-Meyer, M (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM michael.kintner-meyer@pnnl.gov NR 8 TC 8 Z9 8 U1 5 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 EI 1558-2256 J9 P IEEE JI Proc. IEEE PD JUL PY 2014 VL 102 IS 7 SI SI BP 1065 EP 1072 DI 10.1109/JPROC.2014.2319243 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA AK1PQ UT WOS:000338187700004 ER PT J AU Silva-Monroy, CA Watson, JP AF Silva-Monroy, Cesar A. Watson, Jean-Paul TI Integrating Energy Storage Devices Into Market Management Systems SO PROCEEDINGS OF THE IEEE LA English DT Article DE Energy markets; energy storage; market management system (MMS) AB Intuitively, the integration of energy storage technologies such as pumped hydro and batteries into vertically integrated utility and independent system operator/regional transmission operator (ISO/RTO)-scale systems should confer significant benefits to operations, ranging from mitigation of renewables generation variability to peak shaving. However, the realized benefits of such integration are highly dependent upon the environment in which the integration occurs. Further, integration of storage requires careful modeling extensions of existing market management systems (MMSs), which are currently responsible for market and reliability operations in the grid. In this paper, we outline the core issues that arise when integrating storage devices into an MMS system, ranging from high-level modeling of storage devices for purposes of unit comment and economic dispatch to the potential need for new mechanisms to more efficiently allow for storage to participate in market environments. We observe that the outcomes of cost-benefit analyses of storage integration are sensitive to system-specific details, e.g., wind penetration levels. Finally, we provide an illustrative case study showing significant positive impacts of storage integration. C1 [Silva-Monroy, Cesar A.; Watson, Jean-Paul] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Silva-Monroy, CA (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM casilv@sandia.gov; jwatson@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94-AL85000] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL85000. This work was supported in part by Dr. I. Gyuk and his colleagues at the Energy Storage Program at the U.S. Department of Energy. NR 19 TC 4 Z9 4 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 EI 1558-2256 J9 P IEEE JI Proc. IEEE PD JUL PY 2014 VL 102 IS 7 SI SI BP 1084 EP 1093 DI 10.1109/JPROC.2014.2327378 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA AK1PQ UT WOS:000338187700006 ER PT J AU Walsh, F Pelludat, C Duffy, B Smith, DP Owens, SM Frey, JE Holliger, E AF Walsh, Fiona Pelludat, Cosima Duffy, Brion Smith, Daniel P. Owens, Sarah M. Frey, Juerg E. Holliger, Eduard TI Impact of streptomycin applications on antibiotic resistance in apple orchards SO AGRARFORSCHUNG SCHWEIZ LA German DT Article DE streptomycin; antibiotics; apple orchard; development of resistance; bacterial community in soil ID GENES AB The Federal Office for Agriculture (FOAG) authorized the use of streptomycin to fight fire blight under controlled conditions in 2008 with the provison that the development of antibiotic resistance in the treated plots is monitored. Agroscope in Wadenswil thus performed the first study to quantitatively analyze the influence of streptomycin use in agriculture on the abundance of the mobile streptomycin and tetracycline resistance genes (strA, strB, aadA, tetB, tetM, tetW) and the insertion sequence 1S1133. Furthermore, the effect of the streptomycin treatment on the bacterial community structure was assessed. Flowers, leaves and soil were collected from three streptomycin-treated orchards in 2010, 2011 and 2012. The abundance and distribution of the resistance genes was analyzed at different time-points and included as a function of the treatment. The mobile antibiotic resistance genes were detected prior to streptomycin treatment in almost all samples, indicating the presence of these genes in nature. Statistically significant increases in the resistance gene abundance were occasional, inconsistent and not reproducible from one year to the next. Analysis of the bacterial community in soils from orchards with or without streptomycin treatment revealed no statistically significant or constant alterations. We conclude that the application of streptomycin in these orchards led neither to an increase in streptomycin or tetracycline resistance gene abundance nor to a negative impact on the bacterial community. C1 [Walsh, Fiona] Natl Univ Ireland, Dept Biol, Maynooth, Kildare, Ireland. [Pelludat, Cosima; Frey, Juerg E.; Holliger, Eduard] Agroscope, Inst Pflanzenbauwissensch IPB, CH-8820 Wadenswil, Switzerland. [Duffy, Brion] ZHAW Life Sci & Facil Management, Umweltgen & Systembiol, CH-8820 Wadenswil, Switzerland. [Smith, Daniel P.; Owens, Sarah M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Walsh, F (reprint author), Natl Univ Ireland, Dept Biol, Maynooth, Kildare, Ireland. EM fiona.walsh@nuim.ie RI Walsh, Fiona/C-6652-2012 OI Walsh, Fiona/0000-0003-0789-1689 NR 4 TC 0 Z9 0 U1 0 U2 12 PU AGRARFORSCHUNG PI POSIEUX PA AGROSCOPE LIEBEFELD-POSIEUX, POSIEUX, CH-1725, SWITZERLAND SN 1663-7852 EI 1663-7909 J9 AGRARFORSCH SCHWEIZ+ JI Agrarforschung Schweiz PD JUL-AUG PY 2014 VL 5 IS 7-8 BP 300 EP 305 PG 6 WC Agriculture, Multidisciplinary SC Agriculture GA AU3YG UT WOS:000345545900006 ER PT J AU Graham, C Boreham, D Glenn, T Lance, S Martino, J Manson, R McArthur, A Rogers, S Wilson, J Somers, C AF Graham, Carly Boreham, Douglas Glenn, Travis Lance, Stacey Martino, Jessica Manson, Richard McArthur, Andrew Rogers, Sean Wilson, Joanna Somers, Christopher TI Degraded DNA and next-generation sequencing: low quality DNA affects double digest restriction associated DNA sequencing SO GENOME LA English DT Meeting Abstract C1 [Graham, Carly; Martino, Jessica; Manson, Richard; Somers, Christopher] Univ Regina, Dept Biol, Regina, SK S4S 0A2, Canada. [Boreham, Douglas; Wilson, Joanna] McMaster Univ, Dept Biol, Hamilton, ON L8S 4M1, Canada. [Glenn, Travis] Univ Georgia, Coll Publ Hlth, Athens, GA 30602 USA. [Lance, Stacey] Univ Georgia, Savannah River Ecol Lab, Athens, GA 30602 USA. [McArthur, Andrew] McArthur Bioinformat, Hamilton, ON L8S 3P6, Canada. [Rogers, Sean] Univ Calgary, Dept Biol Sci, Calgary, AB T2N 1N4, Canada. NR 0 TC 0 Z9 0 U1 1 U2 6 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA SN 0831-2796 EI 1480-3321 J9 GENOME JI Genome PD JUL PY 2014 VL 57 IS 7 BP 390 EP 390 PG 1 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA AU3SF UT WOS:000345533100017 ER PT J AU Graham, C Boreham, D Glenn, T Lance, S Martino, J Manson, R McArthur, A Rogers, S Wilson, J Somers, C AF Graham, Carly Boreham, Douglas Glenn, Travis Lance, Stacey Martino, Jessica Manson, Richard McArthur, Andrew Rogers, Sean Wilson, Joanna Somers, Christopher TI Limited impact of phlebotomy technique on proteomic measures SO GENOME LA English DT Meeting Abstract C1 [Graham, Carly; Martino, Jessica; Manson, Richard; Somers, Christopher] Univ Regina, Dept Biol, Regina, SK S4S 0A2, Canada. [Boreham, Douglas; Wilson, Joanna] McMaster Univ, Dept Biol, Hamilton, ON L8S 4M1, Canada. [Glenn, Travis] Univ Georgia, Coll Publ Hlth, Athens, GA 30602 USA. [Lance, Stacey] Univ Georgia, Savannah River Ecol Lab, Athens, GA 30602 USA. [McArthur, Andrew] McArthur Bioinformat, Hamilton, ON L8S 3P6, Canada. [Rogers, Sean] Univ Calgary, Dept Biol Sci, Calgary, AB T2N 1N4, Canada. NR 0 TC 0 Z9 0 U1 0 U2 1 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA SN 0831-2796 EI 1480-3321 J9 GENOME JI Genome PD JUL PY 2014 VL 57 IS 7 BP 391 EP 392 PG 2 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA AU3SF UT WOS:000345533100018 ER PT J AU Li, BY Karri, N Wang, Q AF Li, By Ye Karri, Naveen Wang, Qi TI Three-dimensional numerical analysis on blade response of a vertical-axis tidal current turbine under operational conditions SO JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY LA English DT Article ID MODEL AB Tidal current as a large-scale renewable source of energy has received significant attention recently. The technology used to harvest energy from tidal current is called a tidal current turbine. Although some of the principles of wind turbine design are applicable to tidal current turbines, to ensure long-term reliability in tidal current turbines, designers must consider elements such as cavitation damage and corrosion. Depending on the orientation of axis, tidal current turbines can be classified as vertical-axis turbines or horizontal-axis turbines. Existing studies on the vertical-axis tidal current turbines focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of vertical-axis tidal current turbines. After reviewing existing methods for modeling tidal current turbines, we developed a hybrid approach that combines a discrete vortex method with a finite element method that can simulate the integrated hydrodynamic and structural response of a vertical-axis turbine. This hybrid method was employed to analyze a typical three-blade vertical-axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius (H/R) ratios. The results indicated that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. The optimization of a three-blade vertical-axis turbine design using the hybrid method yielded a turbine H/R ratio of about 3.0 for reliable maximum power output. (C) 2014 AIP Publishing LLC. C1 [Li, By Ye] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China. [Karri, Naveen] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wang, Qi] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Li, BY (reprint author), Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, State Key Lab Ocean Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China. EM ye.li@sjtu.edu.cn FU Battelle Memorial Institute; U.S. Department of Energy FX The authors would like to thank the financial support from China 1000 Talent Plan, Battelle Memorial Institute and the U.S. Department of Energy. NR 21 TC 0 Z9 0 U1 4 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1941-7012 J9 J RENEW SUSTAIN ENER JI J. Renew. Sustain. Energy PD JUL PY 2014 VL 6 IS 4 AR 043123 DI 10.1063/1.4892952 PG 10 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA AS9ZI UT WOS:000344596400037 ER PT J AU Austin, KG Travis, J Pace, G Lieberman, HR AF Austin, Krista G. Travis, John Pace, Gerry Lieberman, Harris R. TI Analysis of 1,3 dimethylamylamine concentrations in Geraniaceae, geranium oil and dietary supplements SO DRUG TESTING AND ANALYSIS LA English DT Article DE DMAA; pelargonium; stimulant; synthetic; DSHEA; ephedra ID BLOOD-PRESSURE; BITTER ORANGE; HEART-RATE; PELARGONIUM; 1,3-DIMETHYLAMYLAMINE; EXTRACTS; CAFFEINE; HEALTHY; WEIGHT; SAFETY AB 1,3-Dimethylamylamine (DMAA) is a sympathomimetic compound currently incorporated into some dietary supplements. Significant controversy exists regarding the 'natural' origin of DMAA, as claimed by manufacturers of supplements. Manufacturers often refer to its presence by the name Geranamine (R) implying that DMAA is found in the plant species Geranium and Pelargonium known collectively as Geraniaceae. This study determined whether DMAA is present in the plant species, Geranium and Pelargonium. In addition, concentrations of DMAA in popular dietary supplements and commercial Geranium and Pelargonium oils were assessed. One Pelargonium cultivar, one Geranium cultivar, three essential oils from Pelargonium or Geranium, raw DMAA powder, and seven dietary supplements (DS) sold as finished products and labelled as containing DMAA, or one of its synonyms, were analyzed for the presence of DMAA by ultra performance liquid chromatography tandemmass spectrometry (UPLC-MS/MS). No measurable levels of DMAA in Geranium, Pelargonium or essential oils at a detection limit of 1-2 ng/g were present. UPLC/MS/MS analysis confirmed the presence of DMAA in spiked plant and oil samples, all seven DS products, and raw DMAA powder. Concentrations (weight%) of DMAA provided in DS ranged from 0.11% to 673%. This study indicates DMAA contained in DS is of a synthetic origin and is not present in the plant species Geranium and Pelargonium; thus the 'natural' origin and use of DMAA as an ingredient in DS is not substantiated. Copyright (C) 2013 John Wiley & Sons, Ltd. C1 [Austin, Krista G.; Lieberman, Harris R.] US Army, Environm Med Res Inst, Natick, MA 01760 USA. [Austin, Krista G.] Oak Ridge Inst Sci & Educ, Belcamp, MD 21017 USA. [Travis, John; Pace, Gerry] NSF Int, Ann Arbor, MI 48105 USA. RP Austin, KG (reprint author), US Army, Mil Nutr Div, Environm Med Res Inst, Natick, MA 01760 USA. EM krista.g.austin.ctr@mail.mil FU US Army Medical Research and Materiel Command (USAMRMC); Department of Defense Center Alliance for Dietary Supplement Research FX This work was supported by the US Army Medical Research and Materiel Command (USAMRMC) and the Department of Defense Center Alliance for Dietary Supplement Research. The opinions contained herein are the private views of the author and are not to be construed as official or as reflecting the views of the Army or the Department of Defense. Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations. Approved for public release; distribution is unlimited. NR 30 TC 11 Z9 11 U1 7 U2 17 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1942-7603 EI 1942-7611 J9 DRUG TEST ANAL JI Drug Test. Anal. PD JUL-AUG PY 2014 VL 6 IS 7-8 SI SI BP 797 EP 804 DI 10.1002/dta.1491 PG 8 WC Biochemical Research Methods; Chemistry, Analytical; Pharmacology & Pharmacy SC Biochemistry & Molecular Biology; Chemistry; Pharmacology & Pharmacy GA AQ6YR UT WOS:000342960300022 PM 23704033 ER PT J AU Hannum, WH AF Hannum, William H. TI Modern and future nuclear fuel cycles and the relationship with nuclear waste management SO WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT LA English DT Article AB Discussions of nuclear fuel cycles and nuclear waste typically focus on very long-term radiological hazards and on concerns over proliferation of nuclear weapons. While there are technical solutions to address the radiological hazards for any of the various feasible fuel cycles, there are substantial practical differences that may influence both the cost and political acceptability of waste disposal options. Only full recycle reduces the actual long-term hazard in a major way. Efficient use of the energy content of uranium will eventually require some form of recycle of used nuclear fuel, but with known recoverable uranium resources, this is not an urgent concern. Proliferation concerns differ among the various fuel cycles and each presents its own challenges, but ultimately, the differences in proliferation risks are more political than technical. At this point, the actual cost of any of the options for closing the fuel cycle is not adequately known to provide guidance. (C) 2013 John Wiley & Sons, Ltd. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Hannum, WH (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wm.hannum@earthlink.net NR 14 TC 0 Z9 0 U1 2 U2 9 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-8396 EI 2041-840X J9 WIRES ENERGY ENVIRON JI Wiley Interdiscip. Rev. Energy Environ. PD JUL-AUG PY 2014 VL 3 IS 4 BP 323 EP 329 DI 10.1002/wene.99 PG 7 WC Energy & Fuels SC Energy & Fuels GA AQ9WP UT WOS:000343209000001 ER PT J AU Chang, YC Bowie, JU AF Chang, Yu-Chu Bowie, James U. TI Membrane Protein Folding Stability and Kinetics in Bilayers SO PROTEIN SCIENCE LA English DT Meeting Abstract CT 28th Annual Symposium of the Protein-Society CY JUL 27-30, 2014 CL San Diego, CA SP Prot Soc, Bristol Myers Squibb, Lilly, Biochemistry C1 [Chang, Yu-Chu; Bowie, James U.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90024 USA. [Chang, Yu-Chu; Bowie, James U.] Univ Calif Los Angeles, DOE Inst Genom & Prote, Los Angeles, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 EI 1469-896X J9 PROTEIN SCI JI Protein Sci. PD JUL PY 2014 VL 23 SU 1 MA 06-363 BP 233 EP 233 PG 1 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AM0OU UT WOS:000339545700353 ER PT J AU Marchi, A Salomons, E Ostfeld, A Kapelan, Z Simpson, AR Zecchin, AC Maier, HR Wu, ZY Elsayed, SM Song, Y Walski, T Stokes, C Wu, WY Dandy, GC Alvisi, S Creaco, E Franchini, M Saldarriaga, J Paez, D Hernandez, D Bohorquez, J Bent, R Coffrin, C Judi, D McPherson, T van Hentenryck, P Matos, JP Monteiro, AJ Matias, N Yoo, DG Lee, HM Kim, JH Iglesias-Rey, PL Martinez-Solano, FJ Mora-Melia, D Ribelles-Aguilar, JV Guidolin, M Fu, GT Reed, P Wang, Q Liu, HX McClymont, K Johns, M Keedwell, E Kandiah, V Jasper, MN Drake, K Shafiee, E Barandouzi, MA Berglund, AD Brill, D Mahinthakumar, G Ranjithan, R Zechman, EM Morley, MS Tricarico, C de Marinis, G Tolson, BA Khedr, A Asadzadeh, M AF Marchi, Angela Salomons, Elad Ostfeld, Avi Kapelan, Zoran Simpson, Angus R. Zecchin, Aaron C. Maier, Holger R. Wu, Zheng Yi Elsayed, Samir M. Song, Yuan Walski, Tom Stokes, Christopher Wu, Wenyan Dandy, Graeme C. Alvisi, Stefano Creaco, Enrico Franchini, Marco Saldarriaga, Juan Paez, Diego Hernandez, David Bohorquez, Jessica Bent, Russell Coffrin, Carleton Judi, David McPherson, Tim van Hentenryck, Pascal Matos, Jose Pedro Monteiro, Antonio Jorge Matias, Natercia Yoo, Do Guen Lee, Ho Min Kim, Joong Hoon Iglesias-Rey, Pedro L. Martinez-Solano, Francisco J. Mora-Melia, Daniel Ribelles-Aguilar, Jose V. Guidolin, Michele Fu, Guangtao Reed, Patrick Wang, Qi Liu, Haixing McClymont, Kent Johns, Matthew Keedwell, Edward Kandiah, Venu Jasper, Micah Nathanael Drake, Kristen Shafiee, Ehsan Barandouzi, Mehdy Amirkhanzadeh Berglund, Andrew David Brill, Downey Mahinthakumar, Gnanamanikam Ranjithan, Ranji Zechman, Emily Michelle Morley, Mark S. Tricarico, Carla de Marinis, Giovanni Tolson, Bryan A. Khedr, Ayman Asadzadeh, Masoud TI Battle of the Water Networks II SO JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT LA English DT Article DE Water distribution systems; Optimization; Design; Pump operation ID MULTIOBJECTIVE OPTIMIZATION; GENETIC ALGORITHM; OPTIMAL-DESIGN; SEARCH AB The Battle of the Water Networks II (BWN-II) is the latest of a series of competitions related to the design and operation of water distribution systems (WDSs) undertaken within the Water Distribution Systems Analysis (WDSA) Symposium series. The BWN-II problem specification involved a broadly defined design and operation problem for an existing network that has to be upgraded for increased future demands, and the addition of a new development area. The design decisions involved addition of new and parallel pipes, storage, operational controls for pumps and valves, and sizing of backup power supply. Design criteria involved hydraulic, water quality, reliability, and environmental performance measures. Fourteen teams participated in the Battle and presented their results at the 14th Water Distribution Systems Analysis conference in Adelaide, Australia, September 2012. This paper summarizes the approaches used by the participants and the results they obtained. Given the complexity of the BWN-II problem and the innovative methods required to deal with the multiobjective, high dimensional and computationally demanding nature of the problem, this paper represents a snap-shot of state of the art methods for the design and operation of water distribution systems. A general finding of this paper is that there is benefit in using a combination of heuristic engineering experience and sophisticated optimization algorithms when tackling complex real-world water distribution system design problems. (C) 2014 American Society of Civil Engineers. C1 [Marchi, Angela; Simpson, Angus R.; Zecchin, Aaron C.; Maier, Holger R.; Stokes, Christopher; Wu, Wenyan; Dandy, Graeme C.] Univ Adelaide, Sch Civil Environm & Min Engn, Adelaide, SA 5005, Australia. [Salomons, Elad] OptiWater, IL-34385 Haifa, Israel. [Ostfeld, Avi] Technion Israel Inst Technol, Fac Civil & Environm Engn, IL-32000 Haifa, Israel. [Kapelan, Zoran; Guidolin, Michele; Fu, Guangtao; Wang, Qi; Liu, Haixing; McClymont, Kent; Johns, Matthew; Keedwell, Edward; Morley, Mark S.] Univ Exeter, Ctr Water Syst, Exeter EX4 4QF, Devon, England. [Wu, Zheng Yi; Walski, Tom] Bentley Syst Inc, Watertown, CT 06795 USA. [Elsayed, Samir M.] Univ Connecticut, Dept Comp Sci & Engn, Storrs, CT USA. [Song, Yuan] Univ Connecticut, Dept Comp Sci & Engn, Storrs, CT 06269 USA. [Alvisi, Stefano; Creaco, Enrico; Franchini, Marco] Univ Ferrara, Dept Engn, I-44122 Ferrara, Italy. [Saldarriaga, Juan; Paez, Diego; Hernandez, David; Bohorquez, Jessica] Univ Los Andes, Dept Civil & Environm Engn, Bogota, Colombia. [Bent, Russell; Judi, David; McPherson, Tim] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Coffrin, Carleton; van Hentenryck, Pascal] NICTA Optimisat Res Grp, Canberra, ACT 2601, Australia. [Matos, Jose Pedro; Monteiro, Antonio Jorge; Matias, Natercia] Univ Tecn Lisboa, Inst Super Tecn, P-1049001 Lisbon, Portugal. [Matos, Jose Pedro] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Vaud, Switzerland. [Yoo, Do Guen; Lee, Ho Min; Kim, Joong Hoon] Korea Univ, Sch Civil Environm & Architectural Engn, Seoul 136713, South Korea. [Iglesias-Rey, Pedro L.; Martinez-Solano, Francisco J.; Mora-Melia, Daniel; Ribelles-Aguilar, Jose V.] Univ Politecn Valencia, Dept Ingn Hidraul & Medioambiente, Valencia 46022, Spain. [Reed, Patrick] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA. [Liu, Haixing] Harbin Inst Technol, Sch Municipal & Environm Engn, Harbin 150001, Heilongjiang, Peoples R China. [Kandiah, Venu; Jasper, Micah Nathanael; Drake, Kristen; Shafiee, Ehsan; Barandouzi, Mehdy Amirkhanzadeh; Berglund, Andrew David; Brill, Downey; Mahinthakumar, Gnanamanikam; Ranjithan, Ranji; Zechman, Emily Michelle] N Carolina State Univ, Dept Civil Construct & Environm Engn, Raleigh, NC 27695 USA. [Tricarico, Carla; de Marinis, Giovanni] Univ Cassino Lazio Merid, Dipartimento Ingn Civile & Meccan, I-03043 Cassino, Frosinone, Italy. [Tolson, Bryan A.; Khedr, Ayman; Asadzadeh, Masoud] Univ Waterloo, Dept Civil & Environm Engn, Waterloo, ON N2L 3G1, Canada. RP Ostfeld, A (reprint author), Technion Israel Inst Technol, Fac Civil & Environm Engn, IL-32000 Haifa, Israel. EM ostfeld@techunix.technion.ac.il RI Tolson, Bryan/O-2884-2014; Maier, Holger/B-9639-2008; Reed, Patrick/E-4435-2014; Alvisi, Stefano/E-9489-2015; Martinez-Solano, F. Javier/I-8781-2012; Iglesias-Rey, Pedro/H-9738-2015; Franchini, Marco/O-9831-2015; Asadzadeh, Masoud/F-4743-2014; Mora, Daniel/I-1085-2015; Saldarriaga, Juan/R-3070-2016 OI WANG, QI/0000-0003-0746-2366; Bent, Russell/0000-0002-7300-151X; Tolson, Bryan/0000-0002-3092-5536; Maier, Holger/0000-0002-0277-6887; Reed, Patrick/0000-0002-7963-6102; Alvisi, Stefano/0000-0002-5690-2092; Martinez-Solano, F. Javier/0000-0002-8140-5960; Iglesias-Rey, Pedro/0000-0001-8300-3255; Franchini, Marco/0000-0002-0215-2855; Asadzadeh, Masoud/0000-0002-7290-7731; Mora, Daniel/0000-0002-6191-7299; Saldarriaga, Juan/0000-0003-1265-2949 NR 37 TC 23 Z9 23 U1 3 U2 22 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9496 EI 1943-5452 J9 J WATER RES PLAN MAN JI J. Water Resour. Plan. Manage.-ASCE PD JUL PY 2014 VL 140 IS 7 AR 04014009 DI 10.1061/(ASCE)WR.1943-5452.0000378 PG 14 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA AQ5HB UT WOS:000342837100003 ER PT J AU Bair, KE Davenport, JR Burton, SD AF Bair, Kyle E. Davenport, Joan R. Burton, Sarah D. TI Speciation of Phosphorus in Anthropogenically Acidified Soils SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; AL-27 MAS NMR; P-31 NMR; PHOSPHATE SPECIATION; NORTHERN IDAHO; ACIDIFICATION; FRACTIONATION; CALCIUM; SPECTROSCOPY; WASHINGTON AB Determination of inorganic phosphorus (P) species in anthropogenically acidified soils of Washington's Columbia Basin (CB) is vital in understanding which available P extraction methods are most appropriate so that fertilizer recommendations can be made accurately. The objective of this work was to determine dominant P species in anthropogenically acidified soils of the CB using chemical fractionation and 31P nuclear magnetic resonance (NMR) spectroscopy. Soil samples from the CB ranging in pH (5.2-8.4) together with native calcareous and acidic soils were analyzed. Chemical P fractionation to determine soluble, aluminum (Al), iron (Fe), reductant soluble P (RSP), and calcium (Ca) showed that CB soils contain more than 60% of inorganic P as Ca-P. Significant differences in other fractions were most pronounced in the Fe-P form. As soil pH decreased the proportion of Fe-P extracted increased suggesting a possible transition in soil P chemistry concomitant with change from high to low pH. Solid-state 31P NMR spectroscopy was limited by the low soil P content and interference from paramagnetic ions. No definitive determination of inorganic soil P species could be made. Despite these limitations, some generalized inferences can be made using the spinning side band (SSB) patterns. Because the traditional sodium bicarbonate (NaHCO3) extractable P (Olsen phosphorus [OP]) method assumes a dominant Ca-P form, fertility recommendations based on OP appears to be the best option for determining plant available P for soils that have been acidified by human involvement. C1 [Bair, Kyle E.] Soiltest Farm Consultants, Moses Lake, WA 98837, Australia. [Davenport, Joan R.] Washington State Univ, Irrigated Res & Extens Ctr, Prosser, WA 99350 USA. [Burton, Sarah D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Bair, KE (reprint author), Soiltest Farm Consultants, 2925 Driggs Dr, Moses Lake, WA 98837, Australia. EM kyle@soiltestlab.com FU Department of Energy's Office of Biological and Environmental Research FX A portion of this research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 36 TC 1 Z9 1 U1 5 U2 20 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 EI 1435-0661 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD JUL-AUG PY 2014 VL 78 IS 4 BP 1474 EP 1480 DI 10.2136/sssaj2013.12.0540 PG 7 WC Soil Science SC Agriculture GA AQ9IF UT WOS:000343163800035 ER PT J AU Hess, J Skrede, I Wolfe, BE LaButti, K Ohm, RA Grigoriev, IV Pringle, A AF Hess, Jaqueline Skrede, Inger Wolfe, Benjamin E. LaButti, Kurt Ohm, Robin A. Grigoriev, Igor V. Pringle, Anne TI Transposable Element Dynamics among Asymbiotic and Ectomycorrhizal Amanita Fungi SO GENOME BIOLOGY AND EVOLUTION LA English DT Article DE evolution of symbiosis; genome architecture; phylogeny; repetitive DNA; ecological genomics ID GENOME EVOLUTION; SEQUENCE DATA; DROSOPHILA-MELANOGASTER; PHYLOGENETIC ANALYSES; LTR RETROTRANSPOSONS; POPULATION-GENETICS; MAXIMUM-LIKELIHOOD; MAGNAPORTHE-GRISEA; LACCARIA-BICOLOR; PLANT-PATHOGENS AB Transposable elements (TEs) are ubiquitous inhabitants of eukaryotic genomes and their proliferation and dispersal shape genome architectures and diversity. Nevertheless, TE dynamics are often explored for one species at a time and are rarely considered in ecological contexts. Recent work with plant pathogens suggests a link between symbiosis and TE abundance. The genomes of pathogenic fungi appear to house an increased abundance of TEs, and TEs are frequently associated with the genes involved in symbiosis. To investigate whether this pattern is general, and relevant to mutualistic plant-fungal symbioses, we sequenced the genomes of related asymbiotic (AS) and ectomycorrhizal (ECM) Amanita fungi. Using methods developed to interrogate both assembled and unassembled sequences, we characterized and quantified TEs across three AS and three ECM species, including the AS outgroup Volvariella volvacea. The ECM genomes are characterized by abundant numbers of TEs, an especially prominent feature of unassembled sequencing libraries. Increased TE activity in ECM species is also supported by phylogenetic analysis of the three most abundant TE superfamilies; phylogenies revealed many radiations within contemporary ECM species. However, the AS species Amanita thiersii also houses extensive amplifications of elements, highlighting the influence of additional evolutionary parameters on TE abundance. Our analyses provide further evidence for a link between symbiotic associations among plants and fungi, and increased TE activity, while highlighting the importance individual species' natural histories may have in shaping genome architecture. C1 [Hess, Jaqueline; Skrede, Inger; Wolfe, Benjamin E.; Pringle, Anne] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. [Skrede, Inger] Univ Oslo, Sect Genet & Evolutionary Biol, N-0316 Oslo, Norway. [Wolfe, Benjamin E.] Harvard Univ, FAS Ctr Syst Biol, Cambridge, MA 02138 USA. [LaButti, Kurt; Ohm, Robin A.; Grigoriev, Igor V.] US DOE, Joint Genome Inst, Walnut Creek, CA USA. RP Hess, J (reprint author), Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. EM jaqueline.hess@ibv.uio.no RI Ohm, Robin/I-6689-2016; OI Hess, Jaqueline/0000-0003-3281-5434; Skrede, Inger/0000-0002-1113-7403 FU National Science Foundation [1021606]; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; Fulbright Foundation; Norwegian Research Council [NFR 209194]; Kristine Bonnevie Scholarship of the Faculty of Mathemathics and Natural Sciences, University of Oslo FX Funding was provided by the National Science Foundation, Award Number 1021606. The authors are grateful to F. Martin's laboratory and the Mycorrhizal Genomics Initiative consortium for access to unpublished genome data. Sequence data of A. thiersii and A. muscaria were produced by the US Department of Energy Joint Genome Institute, supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. This work was supported by the Fulbright Foundation, the Norwegian Research Council (NFR 209194) and the Kristine Bonnevie Scholarship of the Faculty of Mathemathics and Natural Sciences, University of Oslo to I. S. All calculations were performed on the Harvard Odyssey High Performance Computing cluster. NR 96 TC 10 Z9 10 U1 3 U2 26 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1759-6653 J9 GENOME BIOL EVOL JI Genome Biol. Evol. PD JUL PY 2014 VL 6 IS 7 BP 1564 EP 1578 DI 10.1093/gbe/evu121 PG 15 WC Evolutionary Biology; Genetics & Heredity SC Evolutionary Biology; Genetics & Heredity GA AQ1ZE UT WOS:000342583200003 PM 24923322 ER PT J AU Calafiore, G Dhuey, S Sassolini, S Alayo, N Gosselin, D Vogler, M Olynick, D Peroz, C Cabrini, S AF Calafiore, Giuseppe Dhuey, Scott Sassolini, Simone Alayo, Nerea Gosselin, David Vogler, Marko Olynick, Deirdre Peroz, Christophe Cabrini, Stefano TI Multilayer lift-off process for sub-15-nm patterning by step-and-repeat ultraviolet nanoimprint lithography SO JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS LA English DT Article DE nanoimprint; etching; metallic nanostructure; lift-off ID IMPRINT LITHOGRAPHY; NM; FABRICATION; OPTICS; SCALE; FILMS AB Numerous studies report the importance of nanoscale metallic features to increase the sensitivity of gas sensors, biodetectors, and for the fabrication of the new-generation plasmonic devices. So far, nanoimprint lithography has not shown the capability to pattern a metallic structure that would both be sub-15 nm and sufficiently thick to ensure electrical conductance. To overcome these limitations, we report a step and repeat nanoimprint lithography (SR-NIL) on a pre-spin-coated layer stack. This work reports the fabrication of sub-15-nm lines that are 15-nm thick and have a 50-nm-half-pitch grating with 35-nm-thick metal, which represents the new state of the art for SR-NIL. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Calafiore, Giuseppe; Peroz, Christophe] aBeam Technol Inc, Hayward, CA 94541 USA. [Dhuey, Scott; Sassolini, Simone; Gosselin, David; Olynick, Deirdre; Cabrini, Stefano] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Alayo, Nerea] Inst Microelect Barcelona, Barcelona 08193, Spain. [Vogler, Marko] Micro Resist Technol, D-12555 Berlin, Germany. RP Calafiore, G (reprint author), aBeam Technol Inc, 22290 Foothill Blvd,Suite 2, Hayward, CA 94541 USA. EM gc@abeamtech.com RI Foundry, Molecular/G-9968-2014; OI Alayo, Nerea/0000-0002-0414-9246 FU Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy [DE- AC02-05CH11231] FX The authors would like to thank E. Wood and B. Hartneck for their technical support. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under Contract No. DE- AC02-05CH11231. NR 22 TC 6 Z9 6 U1 5 U2 19 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1932-5150 EI 1932-5134 J9 J MICRO-NANOLITH MEM JI J. Micro-Nanolithogr. MEMS MOEMS PD JUL-SEP PY 2014 VL 13 IS 3 AR 033013 DI 10.1117/1.JMM.13.3.033013 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics SC Engineering; Science & Technology - Other Topics; Materials Science; Optics GA AQ1MH UT WOS:000342545000016 ER PT J AU Caton, S Haas, C Chard, K Bubendorfer, K Rana, OF AF Caton, Simon Haas, Christian Chard, Kyle Bubendorfer, Kris Rana, Omer F. TI A Social Compute Cloud: Allocating and Sharing Infrastructure Resources via Social Networks SO IEEE TRANSACTIONS ON SERVICES COMPUTING LA English DT Article DE Social cloud computing; social networks; cloud computing; preference-based resource allocation ID SYSTEMS; MARRIAGE AB Social network platforms have rapidly changed the way that people communicate and interact. They have enabled the establishment of, and participation in, digital communities as well as the representation, documentation and exploration of social relationships. We believe that as 'apps' become more sophisticated, it will become easier for users to share their own services, resources and data via social networks. To substantiate this, we present a social compute cloud where the provisioning of cloud infrastructure occurs through "friend" relationships. In a social compute cloud, resource owners offer virtualized containers on their personal computer(s) or smart device(s) to their social network. However, as users may have complex preference structures concerning with whom they do or do not wish to share their resources, we investigate, via simulation, how resources can be effectively allocated within a social community offering resources on a best effort basis. In the assessment of social resource allocation, we consider welfare, allocation fairness, and algorithmic runtime. The key findings of this work illustrate how social networks can be leveraged in the construction of cloud computing infrastructures and how resources can be allocated in the presence of user sharing preferences. C1 [Caton, Simon; Haas, Christian] Karlsruhe Inst Technol, Karlsruhe Serv Res Inst, D-76021 Karlsruhe, Germany. [Caton, Simon; Haas, Christian] Karlsruhe Inst Technol, Inst Informat Syst & Mkt, D-76021 Karlsruhe, Germany. [Chard, Kyle] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Chard, Kyle] Argonne Natl Lab, Chicago, IL USA. [Bubendorfer, Kris] Victoria Univ Wellington, Sch Engn & Comp Sci, Wellington, New Zealand. [Rana, Omer F.] Cardiff Univ, Sch Comp Sci & Informat, Cardiff CF10 3AX, S Glam, Wales. RP Caton, S (reprint author), Karlsruhe Inst Technol, Karlsruhe Serv Res Inst, D-76021 Karlsruhe, Germany. EM simon.caton@kit.edu; ch.haas@kit.edu; kyle@ci.uchicago.edu; kris.bubendorfer@ecs.vuw.ac.nz; o.f.rana@cs.cardiff.ac.uk RI Rana, Omer/E-4314-2015 OI Rana, Omer/0000-0003-3597-2646 FU Karlsruhe House of Young Scientists (KHYS); Deutsche Forschungsgemeinschaft; Open Access Publishing Fund of Karlsruhe Institute of Technology FX This work was partially funded by the Karlsruhe House of Young Scientists (KHYS). We would like to thank Justin Cappos and the Seattle team for their assistance in resolving technical issues, and many valuable discussions. We acknowledge support by Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of Karlsruhe Institute of Technology. NR 51 TC 20 Z9 20 U1 0 U2 12 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1939-1374 J9 IEEE T SERV COMPUT JI IEEE Trans. Serv. Comput. PD JUL-SEP PY 2014 VL 7 IS 3 SI SI BP 359 EP 372 DI 10.1109/TSC.2014.2303091 PG 14 WC Computer Science, Information Systems; Computer Science, Software Engineering SC Computer Science GA AP5PY UT WOS:000342132300004 ER PT J AU Dawson, S Ismail, A Low, I AF Dawson, S. Ismail, A. Low, Ian TI Redux on "When is the top quark a parton?" SO PHYSICAL REVIEW D LA English DT Article ID HEAVY-QUARK; NEUTRAL-CURRENT; HADRON COLLIDERS; HIGGS PRODUCTION; QCD CORRECTIONS; LEADING ORDER; LEPTOPRODUCTION; DISTRIBUTIONS; ASSOCIATION; SCATTERING AB If a new heavy particle phi is produced in association with the top quark in a hadron collider, the production cross section exhibits a collinear singularity of the form log(m(phi)/m(t)), which can be resummed by introducing a top quark parton distribution function (PDF). We reassess the necessity of such resummation in the context of a high-energy pp collider. We find that the introduction of a top PDF typically has a small effect at root S similar to 100 TeV due to three factors: (1) alpha(s) at the scale mu = m(phi), which is quite small when log(m(phi)/m(t)) is large, (2) the Bjorken x << 1 for m(phi) less than or similar to 10 TeV, and (3) the kinematic region where log(m(phi)/m(t)) >> 1 is suppressed by phase space. We consider the example of pp -> tH(+) at next-to-leading logarithm(NLL) order and show that, in terms of the total cross section, the effect of a top PDF is generically smaller than that of a bottom PDF in the associated production of b phi. However, in the p(T) distribution of the charged Higgs, the NLL calculation using a top PDF is crucial to generate the p(T) distribution for p(T) less than or similar to m(t). C1 [Dawson, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Ismail, A.; Low, Ian] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Ismail, A.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Low, Ian] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Dawson, S (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. OI Dawson, Sally/0000-0002-5598-695X FU U.S. Department of Energy [DE-AC02-98CH10886, DE-AC02-06CH11357, DE-FG02-12ER41811, DE-SC0010143] FX S. D. thanks M. Ubiali for a useful discussion of the FONLL scheme used by the NNPDF collaboration. The work of S. D. is supported by the U.S. Department of Energy under Grant No. DE-AC02-98CH10886. The work at ANL is supported by the U.S. Department of Energy under Grant No. DE-AC02-06CH11357. A. I. is supported in part by the U.S. Department of Energy under Grant No. DE-FG02-12ER41811. I. L. is supported in part by the U.S. Department of Energy under Grant No. DE-SC0010143. NR 49 TC 7 Z9 7 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL 1 PY 2014 VL 90 IS 1 AR 014005 DI 10.1103/PhysRevD.90.014005 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AP9VZ UT WOS:000342430600007 ER PT J AU Engels, J Karsch, F AF Engels, J. Karsch, F. TI Finite size dependence of scaling functions of the three-dimensional O(4) model in an external field SO PHYSICAL REVIEW D LA English DT Article ID CRITICAL POINT; EQUATION; STATE; QCD AB We calculate universal finite-size scaling functions for the order parameter and the longitudinal susceptibility of the three-dimensional O(4) model. The phase transition of this model is supposed to be in the same universality class as the chiral transition of two-flavor QCD. The scaling functions serve as a testing device for QCD simulations on small lattices, where, for example, pseudocritical temperatures are difficult to determine. In addition, we have improved the infinite-volume limit parametrization of the scaling functions by using newly generated high statistics data for the three-dimensional O(4) model in the high-temperature region on an L = 120 lattice. C1 [Engels, J.; Karsch, F.] Univ Bielefeld, Fak Phys, D-33615 Bielefeld, Germany. [Karsch, F.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Engels, J (reprint author), Univ Bielefeld, Fak Phys, D-33615 Bielefeld, Germany. FU U.S. Department of Energy [DE-AC02-98CH10886] FX This work has been supported in part by Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. NR 19 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL 1 PY 2014 VL 90 IS 1 AR 014501 DI 10.1103/PhysRevD.90.014501 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AP9VZ UT WOS:000342430600008 ER PT J AU Coleman, AM Abodeely, JM Skaggs, RL Moeglein, WA Newby, DT Venteris, ER Wigmosta, MS AF Coleman, Andre M. Abodeely, Jared M. Skaggs, Richard L. Moeglein, William A. Newby, Deborah T. Venteris, Erik R. Wigmosta, Mark S. TI An integrated assessment of location-dependent scaling for microalgae biofuel production facilities SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Microalgae; Biofuels; Techno-economic analysis; Resource assessment; Scaling; Process design ID TECHNOECONOMIC ANALYSIS; UNITED-STATES; BIODIESEL; AVAILABILITY; CHALLENGES; CONVERSION; MODEL AB Successful development of a large-scalemicroalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain-fromfacility siting and design through processing and upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are partially addressed by applying the Integrated Assessment Framework (IAF) - an integrated multi-scale modeling, analysis, and data management suite - to address key issues in developing and operating an open-pond microalgae production facility. This is done by analyzing how variability and uncertainty over space and through time affect feedstock production rates, and determining the site-specific "optimum" facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. To provide a baseline analysis, the IAF was applied to a set of sites in the southeastern U.S. with the potential to cumulatively produce 5 billion gallons per year. The results indicate costs can be reduced by scaling downstream processing capabilities to fit site-specific growing conditions, available and economically viable resources, and specific microalgal strains. (C) 2014 Elsevier B.V. All rights reserved. C1 [Coleman, Andre M.; Venteris, Erik R.; Wigmosta, Mark S.] Pacific NW Natl Lab, Hydrol Tech Grp, Richland, WA 99352 USA. [Abodeely, Jared M.; Newby, Deborah T.] Idaho Natl Lab, Biofuels & Renewable Energy Technol, Idaho Falls, ID 83415 USA. [Skaggs, Richard L.] Pacific NW Natl Lab, Earth Syst Sci, Richland, WA 99352 USA. [Moeglein, William A.] Pacific NW Natl Lab, Software Syst & Architecture Tech Grp, Richland, WA 99352 USA. RP Coleman, AM (reprint author), Pacific NW Natl Lab, Hydrol Tech Grp, POB 999,MSIN K9-33, Richland, WA 99352 USA. EM Andre.Coleman@pnnl.gov; Jared.Abodeely@inl.gov; Richard.Skaggs@pnnl.gov; William.Moeglein@pnnl.gov; Deborah.Newby@inl.gov; Erik.Venteris@pnnl.gov; Mark.Wigmosta@pnnl.gov FU Bioenergy Technology Office within the Energy Efficiency and Renewable Energy Office of the U.S. Department of Energy; U.S. Department of Energy [DE-AC06-76RLO 1830] FX Support for this research was provided by the Bioenergy Technology Office within the Energy Efficiency and Renewable Energy Office of the U.S. Department of Energy. The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO 1830. NR 51 TC 5 Z9 5 U1 3 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD JUL PY 2014 VL 5 BP 79 EP 94 DI 10.1016/j.algal.2014.05.008 PG 16 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AO9MK UT WOS:000341679600011 ER PT J AU Ruffing, AM Trahan, CA AF Ruffing, Anne M. Trahan, Christine A. TI Biofuel toxicity and mechanisms of biofuel tolerance in three model cyanobacteria SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Biofuel toxicity; Cyanobacterial biofuel toxicity; Biofuel tolerance; Cyanobacterial biofuel tolerance; Cyanobacterial biofuels ID SP PCC 6803; FATTY-ACID PRODUCTION; BUTANOL-TOLERANCE; ORGANIC-SOLVENTS; ESCHERICHIA-COLI; OXIDATIVE STRESS; ETHANOL; RESISTANCE; BACTERIA; MICROORGANISMS AB While recent studies have demonstrated direct photosynthetic production of biofuels via engineered cyanobacteria, biofuel yields from cyanobacteria remain at low levels. As with heterotrophic biofuel production, product toxicity is likely a limiting factor. Some mechanisms of toxicity may be similar to those studied in common heterotrophic hosts; however, the photosynthesis-dependent pathways for carbon fixation and energy production in cyanobacteria present unique targets for biofuel toxicity. This study investigates biofuel toxicity for three model cyanobacterial strains: Synechococcus elongatus PCC 7942, Synechocystis sp. PCC 6803, and Synechococcus sp. PCC 7002. While cyanobacterial biofuel tolerances were generally lower than that of heterotrophic hosts, the marine strain Synechococcus sp. PCC 7002 showed increased tolerance to short chain alcohols, and long-chain biofuel products, such as fatty alcohols, saturated free fatty acids, alkanes, and alkenes had minimal toxicity for all three cyanobacteria. Targeted mutants were generated to explore natural mechanisms of biofuel tolerance in cyanobacteria, such as cell membrane composition, reactive oxygen species degradation, and efflux pumps. These mutants confirmed the influence of cell membrane composition on cyanobacterial tolerance to short-chain alcohols. This study provides data to guide both biofuel product and cyanobacterial host selection and further identifies potential targets for improving biofuel tolerance in cyanobacteria. (C) 2014 Elsevier B.V. All rights reserved. C1 [Ruffing, Anne M.; Trahan, Christine A.] Sandia Natl Labs, Dept Bioenergy & Def Technol, Albuquerque, NM 87185 USA. RP Ruffing, AM (reprint author), Sandia Natl Labs, POB 5800,MS 1413, Albuquerque, NM 87185 USA. EM aruffin@sandia.gov FU Laboratory Directed Research and Development program at Sandia National Laboratories; United States Department of Energy [DE-ACO4-94AL85000]; NSF [MCB 0455318, DBI 0521587]; INBRE program of the National Center for Research Resources [P20 RR16475]; NSF EPSCoR [EPS-0236913]; State of Kansas through Kansas Technology Enterprise Corporation and Kansas State University [EPS-0236913] FX This work was supported by the Harry S. Truman Fellowship in National Security Science and Engineering and an Early Career Award, both funded by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-ACO4-94AL85000. The author also acknowledges Dr. Jerilyn Timlin (SNL) for providing Synechocystis sp. PCC 6803 and Dr. Bryan Carson (SNL) for his generosity in sharing equipment. Lipid analysis was performed by Drs. Mary Roth and Ruth Welti at the Kansas Lipidomics Research Center. Instrument acquisition and method development at the Kansas Lipidomics Research Center was supported by NSF grants MCB 0455318 and DBI 0521587, K-INBRE (NIH Grant P20 RR16475 from the INBRE program of the National Center for Research Resources), and NSF EPSCoR grant EPS-0236913 with matching support from the State of Kansas through Kansas Technology Enterprise Corporation and Kansas State University. NR 44 TC 13 Z9 13 U1 6 U2 76 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD JUL PY 2014 VL 5 BP 121 EP 132 DI 10.1016/j.algal.2014.07.006 PG 12 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AO9MK UT WOS:000341679600015 ER PT J AU Davis, RW Jones, HDT Collins, AM Ricken, JB Sinclair, MB Timlin, JA Singh, S AF Davis, Ryan W. Jones, Howland D. T. Collins, Aaron M. Ricken, J. Bryce Sinclair, Michael B. Timlin, Jerilyn A. Singh, Seema TI Label-free measurement of algal triacylglyceride production using fluorescence hyperspectral imaging SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Microalgae; Triacylglyceride; Carotenoid; Fluorescence microscopy; Hyperspectral imaging; Membrane recycling ID MICROALGA CHLAMYDOMONAS-REINHARDTII; RAMAN-SPECTROSCOPY; NILE RED; IN-VIVO; NEOCHLORIS-OLEOABUNDANS; PIGMENT LOCALIZATION; NUTRIENT LIMITATION; LIPID-COMPOSITION; BIODIESEL; CELLS AB Microalgae have been identified as a promising renewable feedstock for production of lipids for feeds and fuels. Current methods for identifying algae strains and growth conditions that support high lipid production require a variety of fluorescent chemical indicators, such as Nile Red and more recently, Bodipy. Despite notable successes using these approaches, chemical indicators exhibit several drawbacks, including non-uniform staining, low lipid specificity, cellular toxicity, and variable permeability based on cell-type, limiting their applicability for high-throughput bioprospecting. In this work, we used in vivo hyperspectral confocal fluorescence microscopy of a variety of potential microalgae production strains (Nannochloropsis sp., Dunaliella salina, Neochloris oleoabundans, and Chlamydomonas reinhardtii) to identify a label-free method for localizing lipid bodies and quantifying the lipid yield on a single-cell basis. By analyzing endogenous fluorescence from chlorophyll and resonance Raman emission from lipid-solubilized carotenoids we deconvolved pure component emission spectra and generated diffraction limited projections of the lipid bodies and chloroplast organelles, respectively. Applying this imaging method to nutrient depletion time-courses from lab-scale and outdoor cultivation systems revealed an additional autofluorescence spectral component that became more prominent over time, and varied inversely with the chlorophyll intensity, indicative of physiological compromise of the algal cell. This signal could result in false-positives for conventional measurements of lipid accumulation (via spectral overlap with Nile Red), however, the additional spectral feature was found to be useful for classification of lipid enrichment and culture crash conditions in the outdoor cultivation system. Under nutrient deprivation, increases in the lipid fraction of the cellular volume of - 500% were observed, as well as a correlated decrease in the chloroplast fraction of the total cellular volume. The results suggest that a membrane recycling mechanism dominates for nutrient deprivation-based lipid accumulation in the microalgae tested. (C) 2013 Elsevier B.V. All rights reserved. C1 [Davis, Ryan W.; Singh, Seema] Sandia Natl Labs, Livermore, CA 94551 USA. [Jones, Howland D. T.; Collins, Aaron M.; Ricken, J. Bryce; Sinclair, Michael B.; Timlin, Jerilyn A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Davis, RW (reprint author), Sandia Natl Labs, MS9671, Livermore, CA 94550 USA. OI Timlin, Jerilyn/0000-0003-2953-1721 FU Sandia Corporation, a Lockheed Martin Company [DE-ACO4-94AL85000]; Sandia National Laboratories' Laboratory Directed Research and Development FX The authors wish to thank Prof. Qiang Hu from Arizona State University and Prof. Pete Lammers from New Mexico State University for instructive conversations related to microalgae biochemistry, physiology, and lipid accumulation mechanisms. We would also like to thank Dave Haaland, Michael R. Keenan, Mark Van Benthem, Greg Poulter, and Christopher L. Stork for algorithm and software development, and Michelle Raymer for rendering 3D hyperspectral images. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-ACO4-94AL85000. Support is acknowledged from Sandia National Laboratories' Laboratory Directed Research and Development projects titled,"From algae to oilgae: In-situ studies of the factors controlling growth, oil production, and oil excretion in microalgae," Seema Singh (PI) and "Benchtop to raceway: Spectroscopic signatures of dynamic biological processes in algal communities,"Jerilyn A. Timlin PI). NR 48 TC 6 Z9 6 U1 7 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD JUL PY 2014 VL 5 BP 181 EP 189 DI 10.1016/j.algal.2013.11.010 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AO9MK UT WOS:000341679600021 ER PT J AU Canter, CE Davis, R Urgun-Demirtas, M Frank, ED AF Canter, Christina E. Davis, Ryan Urgun-Demirtas, Meltem Frank, Edward D. TI Infrastructure associated emissions for renewable diesel production from microalgae SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Algae; Life-cycle analysis; Greenhouse gas emissions AB Greenhouse gas (GHG) emissions for microalgae biofuel infrastructure are sometimes neglected during a life-cycle analysis (LCA). Construction materials were found for a baseline facility designed to produce renewable diesel in the United States. Material use was amortized over the material lifetime of thirty years and then, using emission factors available in GREET 2, energy use and GHG emissions were found per MJ of renewable diesel (MJ RD). For the baseline, infrastructure GHG emissions were 8.9 gCO(2)e/MJ RD. Plastic and concrete had the largest emissions, and the growth ponds used the most materials of any unit operation. Fossil fuels comprised 97% of all energy use, which came predominately from natural gas at 0.090 MJ/MJ RD. A sensitivity analysis showed that changes to the pond liner thickness and material lifetime had the largest effects with the lifetime increasing the GHG emissions 28% over the baseline. Increasing the productivity (up to 50 g/m(2)/d) or lipid content (up to 50 wt.%) decreased the emissions. Infrastructure emissions were compared to those from the fuel-cycle of a reduced emission scenario, showing that infrastructure related emissions ranged from 17% to 57% of the fuel-cycle emissions, with higher values at lower productivities. (C) 2014 Elsevier B.V. All rights reserved. C1 [Canter, Christina E.] Univ Arizona, Dept Chem & Environm Engn, Tucson, AZ 85721 USA. [Urgun-Demirtas, Meltem; Frank, Edward D.] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. [Davis, Ryan] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Frank, ED (reprint author), Argonne Natl Lab, Ctr Transportat Res, 9700 S Cass Ave, Argonne, IL 60439 USA. EM cecanter@email.arizona.edu; Ryan.Davis@nrel.gov; demirtasmu@anl.gov; efrank@anl.gov RI Frank, Edward/A-8865-2012 FU Biomass Technology Office in the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy; US Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; Alliance for Sustainable Energy, LLC [DE-AC36-08GO28308] FX We are grateful to Dan Fishman, Joyce Yang, Zia Haq, Kristen Johnson, Christy Sterner, and Michael Wang for their guidance and insights. This work was sponsored by the Biomass Technology Office in the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a US Department of Energy Office of Science laboratory, is operated under contract no. DE-AC02-06CH11357. The National Renewable Energy Laboratory (NREL) is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC under contract DE-AC36-08GO28308. The US Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the government. The funding source for the work reported here did not have a role in study design, data collection, analysis, data interpretation, writing, or in the decision to publish. NR 12 TC 5 Z9 5 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD JUL PY 2014 VL 5 BP 195 EP 203 DI 10.1016/j.algal.2014.01.001 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AO9MK UT WOS:000341679600023 ER PT J AU Venteris, ER Skaggs, RL Wigmosta, MS Coleman, AM AF Venteris, Erik R. Skaggs, Richard L. Wigmosta, Mark S. Coleman, Andre M. TI Regional algal biofuel production potential in the coterminous United States as affected by resource availability trade-offs SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Algal biofuel; Sustainability; Resource assessment; Land use change ID HYDROTHERMAL LIQUEFACTION; SALINE GROUNDWATER; FEEDSTOCKS; BIOMASS; WATER AB A warm sunny climate and unoccupied arid land as in the American Southwest are favorable for algal cultivation. However, additional resource constraints affect the overall viability of specific sites and regions. We investigated tradeoffs between growth rate, water, and CO2 availability and costs for two strains: Nannochloropsis salina and Chlorella sp. We conducted site selection exercises to produce 7.95E + 10 L yr(-1) (21 billion gal yr(-1) (BGY)) of renewable diesel (RD). Experimental trials from the National Alliance for Advanced Biofuels and Bio-Products (NAABB) team informed the growth model of our Biomass Assessment Tool. We simulated RD production by both lipid extraction (LE) and hydrothermal liquefaction (HTL). Sites were screened for the availability of freshwater and flue gas, and prioritized by the net value of biofuel minus water (the least-expensive and available source) and flue gas delivery costs. Water sources considered were ground waters ranging in salinity from fresh to brines and seawater. We found that HTL produced more RD per unit biomass than LE, resulting in an improvement in economic efficiency of 76%. Selections constrained by production and water were concentrated along the Gulf of Mexico and southeastern Atlantic coasts. Adding flue gas constraints increased the spatial distribution to include sites nationwide. The 21 BGY target required similar to 3.8 million ha of mainly forest (41.3%) and pasture (35.7%). Exclusion in favor of barren and scrub lands forced most production to the southwestern US, but with increased water consumption (5.7 times) and decreased economic efficiency (- 38%). (C) 2014 Elsevier B.V. All rights reserved. C1 [Venteris, Erik R.; Skaggs, Richard L.; Wigmosta, Mark S.; Coleman, Andre M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Venteris, ER (reprint author), Pacific NW Natl Lab, POB 999,MSIN K9-33,902 Battelle Blvd, Richland, WA 99352 USA. EM erik.venteris@pnnl.gov FU US Department of Energy [DE-EE0003046, DE-AC06-76RLO 1830]; Battelle Memorial Institute for the U.S. Department of Energy [DE-AC06-76RLO 1830] FX The authors would like to acknowledge funding of this work by the US Department of Energy under Contract DE-EE0003046 awarded to the National Alliance for Advanced Biofuels and Bioproducts. The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO 1830. We express our appreciation to Dr. Michael Huesemann (PNNL) for providing data on growth performance for Chlorella and N. salina and to Susanne Jones (PNNL) for providing data on HTL. NR 42 TC 1 Z9 1 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD JUL PY 2014 VL 5 BP 215 EP 225 DI 10.1016/j.algal.2014.02.002 PG 11 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AO9MK UT WOS:000341679600025 ER PT J AU Brady, PV Pohl, PI Hewson, JC AF Brady, Patrick V. Pohl, Phillip I. Hewson, John C. TI A coordination chemistry model of algal autoflocculation SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Autoflocculation; Harvesting ID FLOCCULATION; WATER; COAGULATION; DISSOLUTION; BRUCITE AB Autoflocculation is triggered by the coordination of cationic surface sites on mineral precipitates, or Ca+2 and Mg+2, to anionic algal carboxylate groups. The solution composition controls on autoflocculation can be quantitatively described using surface complexation models of algal, Mg(OH)(2), hydroxylapatite, and calcite interfaces. Cation bridging of adjacent algae triggers autoflocculation at lower pH than does Mg(OH)(2) formation. Autoflocculation in response to lime addition reaches a maximum at pH similar to 11 because of Mg(OH)(2) formation, but then plateaus with further lime addition because of the decrease in Mg(OH)(2) surface charge with increasing pH. Hydroxylapatite surfaces are positively charged, hence able to autoflocculate algae, under most conditions. Calcite surfaces are positively charged, and autoflocculation potential is high, when dissolved Ca+2 and Mg+2 levels are high; calcite has low autoflocculation potential when Ca+2 and Mg+2 levels are low and sulfate levels are high, and the calcite surface is negatively charged. (C) 2014 Elsevier B.V. All rights reserved. C1 [Brady, Patrick V.; Pohl, Phillip I.; Hewson, John C.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brady, PV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU Sandia Laboratory Directed Research and Development office; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We greatly appreciate funding from the Sandia Laboratory Directed Research and Development office. Thanks to Vincent Post for his PHREEQC version for Windows and to Mark P. McHenry for helpful advice. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 26 TC 10 Z9 10 U1 4 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD JUL PY 2014 VL 5 BP 226 EP 230 DI 10.1016/j.algal.2014.02.004 PG 5 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AO9MK UT WOS:000341679600026 ER PT J AU Abodeely, JM Coleman, AM Stevens, DM Ray, AE Cafferty, KG Newby, DT AF Abodeely, Jared M. Coleman, Andre M. Stevens, Daniel M. Ray, Allison E. Cafferty, Kara G. Newby, Deborah T. TI Assessment of algal farm designs using a dynamic modular approach SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Techno-economic analysis; Microalgae; Open-pond; Biodiesel; Resource assessment ID BIOFUEL PRODUCTION; UNITED-STATES; MICROALGAE; AVAILABILITY; ENERGY AB The notion of renewable energy provides an important mechanism for diversifying an energy portfolio, which ultimately would have numerous benefits including increased energy resilience, reduced reliance on foreign energy supplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth, and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associated with algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the development and application of the Algae Logistics Model (ALM) which is tailored to help address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments of multiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tier were sub-selected and assessed using daily site-specific algae biomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary significantly depending on location and biomass productivity and that integration of novel dewatering equipment, order of operations, and equipment scaling can also have significant impacts on economics. (C) 2014 Elsevier B.V. All rights reserved. C1 [Abodeely, Jared M.; Stevens, Daniel M.; Ray, Allison E.; Cafferty, Kara G.; Newby, Deborah T.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Coleman, Andre M.] Pacific NW Natl Lab, Hydrol Tech Grp, Richland, WA 99352 USA. RP Newby, DT (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Deborah.Newby@inl.gov FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office under DOE Idaho Operations Office [DE-AC07-05ID14517] FX Funding for this project was provided by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 38 TC 2 Z9 2 U1 2 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD JUL PY 2014 VL 5 BP 264 EP 273 DI 10.1016/j.algal.2014.03.004 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AO9MK UT WOS:000341679600031 ER PT J AU Bentz, JA Blumenthal, DJ Potter, AB AF Bentz, Julie A. Blumenthal, Daniel J. Potter, A. Bradley TI It's all about the data: Responding to international chemical, biological, radiological, and nuclear incidents SO BULLETIN OF THE ATOMIC SCIENTISTS LA English DT Article DE biological; CBRN; chemical; consequence management; data analysis; international response; nuclear; radiological AB After digesting lessons from US operations during the Fukushima Daiichi accident in Japan, the White House National Security Council staff created several interagency working groups to examine procedural issues associated with responding to international chemical, biological, radiological, and nuclear (CBRN) incidents. What emerged were best practices and lessons learned designed to transform data to decisions across the many levels of government during an international CBRN incident for those people making life-saving and life-sustaining choices. Actions at both the strategic and operational levels are needed to enable a country to more effectively transfer its domestic response capabilities and infrastructure to an international consequence management response. International complications include varying organizational relationships and legal authorities; resource limitations in overseas jurisdictions; nonstandard sources and formats of information; differing public health and protection standards; and language barriers. The technical data needed for emergency personnel to safely and effectively respond to CBRN incidents are especially difficult to obtain, require specialized analytical tools to process, and demand particular procedures for sharing in an international context. Without addressing these issues up front, any country responding to a CBRN event beyond its borders may struggle to effectively respond. C1 [Bentz, Julie A.] White House Natl Secur Council, Washington, DC USA. [Potter, A. Bradley] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Potter, A. Bradley] Johns Hopkins Univ, Baltimore, MD 21218 USA. NR 13 TC 0 Z9 0 U1 1 U2 8 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0096-3402 EI 1938-3282 J9 B ATOM SCI JI Bull. Atom. Scient. PD JUL-AUG PY 2014 VL 70 IS 4 BP 57 EP 68 DI 10.1177/0096340214539117 PG 12 WC International Relations; Social Issues SC International Relations; Social Issues GA AP1NN UT WOS:000341837400009 ER PT J AU Remo, JL Haubold, HJ AF Remo, John L. Haubold, Hans J. TI Threats from space: 20 years of progress SO BULLETIN OF THE ATOMIC SCIENTISTS LA English DT Article DE asteroid; Chelyabinsk; comet; near-Earth object; NEO; United Nations ID CHELYABINSK; METEORITE; AIRBURST; EARTH AB It has been 20 years since planning began for the 1995 United Nations International Conference on Near-Earth Objects. The conference proceedings established the scientific basis for an international organizational framework to support research and collective actions to mitigate a potential near-Earth object (NEO) threat to the planet. Since that time, researchers have conducted telescope surveys that should, within the coming decade, answer many questions about the size, number, and Earth impact probability of these objects. Space explorations to asteroids and comets have been successfully carried out, including sample recovery. Laboratory experiments and computer simulations at Sandia National Laboratories have analyzed the effects of high-energy-density soft x-ray radiation on meteorites-which might help researchers develop a way to redirect an incoming asteroid by vaporizing a thin layer of its surface. An Action Team on NEOs, established in 2001 in response to recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space, identified the primary components of NEO mitigation and emphasized the value of finding potentially hazardous NEOs as soon as possible. Recommendations from the action team are meant to ensure that all nations are aware of the NEO danger, and to coordinate mitigation activities among nations that could be affected by an impact, as well as those that might play an active role in any eventual deflection or disruption campaign. C1 [Remo, John L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Remo, John L.] Harvard Univ, Dept Astron, Cambridge, MA 02138 USA. [Remo, John L.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Remo, John L.] Sandia Natl Labs, Livermore, CA 94550 USA. [Haubold, Hans J.] UN, Off Outer Space Affairs, Vienna, Austria. [Haubold, Hans J.] Ctr Math Sci, Pala, India. [Haubold, Hans J.] UN Basic Space Sci Initiat, Berkeley, CA USA. RP Remo, JL (reprint author), Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. NR 22 TC 1 Z9 1 U1 1 U2 11 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0096-3402 EI 1938-3282 J9 B ATOM SCI JI Bull. Atom. Scient. PD JUL-AUG PY 2014 VL 70 IS 4 BP 85 EP 93 DI 10.1177/0096340214539125 PG 9 WC International Relations; Social Issues SC International Relations; Social Issues GA AP1NN UT WOS:000341837400012 ER PT J AU Davidson, C Drury, E Lopez, A Elmore, R Margolis, R AF Davidson, Carolyn Drury, Easan Lopez, Anthony Elmore, Ryan Margolis, Robert TI Modeling photovoltaic diffusion: an analysis of geospatial datasets SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE solar photovoltaic; technology diffusion; distributed generation ID CONSUMERS; SYSTEMS AB This study combines address-level residential photovoltaic (PV) adoption trends in California with several types of geospatial information-population demographics, housing characteristics, foreclosure rates, solar irradiance, vehicle ownership preferences, and others-to identify which subsets of geospatial information are the best predictors of historical PV adoption. Number of rooms, heating source and house age were key variables that had not been previously explored in the literature, but are consistent with the expected profile of a PV adopter. The strong relationship provided by foreclosure indicators and mortgage status have less of an intuitive connection to PV adoption, but may be highly correlated with characteristics inherent in PV adopters. Next, we explore how these predictive factors and model performance varies between different Investor Owned Utility (IOU) regions in California, and at different spatial scales. Results suggest that models trained with small subsets of geospatial information (five to eight variables) may provide similar explanatory power as models using hundreds of geospatial variables. Further, the predictive performance of models generally decreases at higher resolution, i.e., below ZIP code level since several geospatial variables with coarse native resolution become less useful for representing high resolution variations in PV adoption trends. However, for California we find that model performance improves if parameters are trained at the regional IOU level rather than the state-wide level. We also find that models trained within one IOU region are generally representative for other IOU regions in CA, suggesting that a model trained with data from one state may be applicable in another state. C1 [Davidson, Carolyn; Drury, Easan; Lopez, Anthony; Elmore, Ryan; Margolis, Robert] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Davidson, C (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM carolyn.davidson@nrel.gov FU US Department of Energy [DE-AC36-08GO28308] FX This work was supported by the US Department of Energy under contract number DE-AC36-08GO28308. The authors would like to thank the following individuals and organizations for their contributions to and review of this work: Michael Gleason, Dylan Hettinger and David Keyser. NR 19 TC 2 Z9 2 U1 2 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JUL PY 2014 VL 9 IS 7 AR 074009 DI 10.1088/1748-9326/9/7/074009 PG 15 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA AP2AA UT WOS:000341873200010 ER PT J AU Kravitz, B MacMartin, DG Robock, A Rasch, PJ Ricke, KL Cole, JNS Curry, CL Irvine, PJ Ji, DY Keith, DW Kristjansson, JE Moore, JC Muri, H Singh, B Tilmes, S Watanabe, S Yang, ST Yoon, JH AF Kravitz, Ben MacMartin, Douglas G. Robock, Alan Rasch, Philip J. Ricke, Katharine L. Cole, Jason N. S. Curry, Charles L. Irvine, Peter J. Ji, Duoying Keith, David W. Kristjansson, Jon Egill Moore, John C. Muri, Helene Singh, Balwinder Tilmes, Simone Watanabe, Shingo Yang, Shuting Yoon, Jin-Ho TI A multi-model assessment of regional climate disparities caused by solar geoengineering SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE geoengineering; GeoMIP; regional climate; climate modeling ID RADIATION MANAGEMENT; HYDROLOGICAL CYCLE; BALANCE AB Global-scale solar geoengineering is the deliberate modification of the climate system to offset some amount of anthropogenic climate change by reducing the amount of incident solar radiation at the surface. These changes to the planetary energy budget result in differential regional climate effects. For the first time, we quantitatively evaluate the potential for regional disparities in a multi-model context using results from a model experiment that offsets the forcing from a quadrupling of CO2 via reduction in solar irradiance. We evaluate temperature and precipitation changes in 22 geographic regions spanning most of Earth's continental area. Moderate amounts of solar reduction (up to 85% of the amount that returns global mean temperatures to preindustrial levels) result in regional temperature values that are closer to preindustrial levels than an un-geoengineered, high CO2 world for all regions and all models. However, in all but one model, there is at least one region for which no amount of solar reduction can restore precipitation toward its preindustrial value. For most metrics considering simultaneous changes in both variables, temperature and precipitation values in all regions are closer to the preindustrial climate for a moderate amount of solar reduction than for no solar reduction. C1 [Kravitz, Ben; Rasch, Philip J.; Singh, Balwinder; Yoon, Jin-Ho] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [MacMartin, Douglas G.] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA. [MacMartin, Douglas G.; Ricke, Katharine L.] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA USA. [Robock, Alan] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08903 USA. [Cole, Jason N. S.] Environm Canada, Canadian Ctr Climate Modeling & Anal, Toronto, ON, Canada. [Curry, Charles L.] Univ Victoria, Sch Earth & Ocean Sci, Victoria, BC, Canada. [Irvine, Peter J.] IASS, Potsdam, Germany. [Ji, Duoying; Moore, John C.] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China. [Keith, David W.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Kristjansson, Jon Egill; Muri, Helene] Univ Oslo, Dept Geosci, Oslo, Norway. [Tilmes, Simone] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Watanabe, Shingo] Japan Agcy Marine Earth Sci & Technol, Yokohama, Kanagawa, Japan. [Yang, Shuting] Danish Meteorol Inst, Copenhagen, Denmark. RP Kravitz, B (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. EM ben.kravitz@pnnl.gov RI YOON, JIN-HO/A-1672-2009; Kravitz, Ben/P-7925-2014; Moore, John/B-2868-2013; Muri, Helene/D-4845-2015; MacMartin, Douglas/A-6333-2016; Robock, Alan/B-6385-2016; Watanabe, Shingo/L-9689-2014 OI Irvine, Peter/0000-0002-5469-1543; YOON, JIN-HO/0000-0002-4939-8078; Kravitz, Ben/0000-0001-6318-1150; Cole, Jason/0000-0003-0450-2748; Moore, John/0000-0001-8271-5787; Muri, Helene/0000-0003-4738-493X; MacMartin, Douglas/0000-0003-1987-9417; Watanabe, Shingo/0000-0002-2228-0088 FU Fund for Innovative Climate and Energy Research (FICER); NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center; U.S. Department of Energy by Battelle Memorial Institute [DE-AC05-76RLO 1830]; US National Science Foundation [AGS-1157525, GEO-1240507]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Canadian NSERC grant [CRDPJ 403886-10]; European Union's Seventh Framework Programme through the IMPLICC project [FP7-ENV-2008-1-226567]; Norwegian Research Council's Programme for Supercomputing (NOTUR); EuTRACE project; European Union 7th Framework Programme 785 grant [306395]; HPC resources of [CCT/TGCC/CINES/IDRIS] [2012-t2012012201]; National Science Foundation; Innovative Program of Climate Change Projection for the 21st century, MEXT, Japan FX We thank all participants of the Geoengineering Model Intercomparison Project and their model development teams, CLIVAR/WCRP Working Group on Coupled Modeling for endorsing GeoMIP and the scientists managing the Earth System Grid data nodes who have assisted with making GeoMIP output available. We also thank Kari Alterskjaer, Olivier Boucher, Susannah M. Burrows, Sarah Fillmore, James M. Haywood, Andy Jones, Ulrike Niemeier, and Hauke Schmidt for helpful discussions and three anonymous reviewers for their comments. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP the U. S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. BK is supported by the Fund for Innovative Climate and Energy Research (FICER). Simulations performed by BK were supported by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RLO 1830. AR is supported by US National Science Foundation grants AGS-1157525 and GEO-1240507. Computer resources for PJR, BS, and JHY were provided by the National Energy Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. CLC is supported by a Canadian NSERC grant (CRDPJ 403886-10). JEK received funding from the European Union's Seventh Framework Programme through the IMPLICC project (FP7-ENV-2008-1-226567) and support from the Norwegian Research Council's Programme for Supercomputing (NOTUR) through a grant of computing time. HM was supported by the EuTRACE project, the European Union 7th Framework Programme 785 grant No. 306395. Simulations with the IPSL-CM5 model were supported through HPC resources of [CCT/TGCC/CINES/IDRIS] under the allocation 2012-t2012012201 made by GENCI (Grand Equipement National de Calcul Intensif). DJ and JCM thank all members of the BNU-ESM model group, as well as the Center of Information and Network Technology at Beijing Normal University for assistance in publishing the GeoMIP data set. The National Center for Atmospheric Research is funded by the National Science Foundation. SW was supported by the Innovative Program of Climate Change Projection for the 21st century, MEXT, Japan. NR 36 TC 21 Z9 21 U1 4 U2 36 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JUL PY 2014 VL 9 IS 7 AR 074013 DI 10.1088/1748-9326/9/7/074013 PG 7 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA AP2AA UT WOS:000341873200014 ER PT J AU Wehner, MF AF Wehner, Michael F. TI A temporary hiatus in warming of extreme temperatures is not unusual, nor inconsistent with model simulations of human-induced climate change SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article AB Sillman et al (2014) find that observed trends of extremely hot days and cold nights are consistent with the current generation of climate models. Short periods of localized decreases in these extreme temperatures are not unusual and the Sillman et al results increase confidence in projections of future changes in extreme temperature. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Wehner, MF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM mfwehner@lbl.gov FU Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the US Department of Energy Office of Science [DE-AC02-05CH11231] FX This work was supported by the Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the US Department of Energy Office of Science under contract number DE-AC02-05CH11231. The author wishes to thank David Easterling and Daithi Stone for their useful comments. NR 8 TC 0 Z9 0 U1 2 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JUL PY 2014 VL 9 IS 7 AR 071001 DI 10.1088/1748-9326/9/7/071001 PG 3 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA AP2AA UT WOS:000341873200001 ER PT J AU Korneev, V Danilovskaya, L Nakagawa, S Moridis, G AF Korneev, Valeri Danilovskaya, Ludmila Nakagawa, Seiji Moridis, George TI Krauklis wave in a trilayer SO GEOPHYSICS LA English DT Article ID FLUID LAYER; PROPAGATION; SCATTERING; FRACTURES; CRACK AB The Krauklis wave is a slow dispersive wave mode that propagates in a fluid layer bounded by elastic media. The guided properties of this wave and its ability to generate very short wavelengths at seismic frequency range predict possibility of resonances in fluid-filled rock fractures. Study of Krauklis wave properties at laboratory scales requires evaluation of its propagation velocities in models with finite and thin elastic walls. Analysis of an exact solution for a fluid-filled trilayer with equal thickness plates reveals existence of the Krauklis waves in such a model, as well as another mode which propagates mostly in the solid part. Both propagation modes exist at all frequencies. We derived and verified various asymptotic solutions by comparing their dependencies on layer thicknesses and frequency with the exact numerical solution. Analytical and computational results demonstrate that in a 60-cmlong model, the first resonant frequency can be below 10 Hz. This result suggests that the Krauklis-wave effects can be studied in a laboratory at seismic range of frequencies avoiding a notorious problem of frequency downscaling. Strong dispersive properties of Krauklis waves and their dominant behavior in fluid-fracture systems are likely phenomena explaining the observed frequency-dependent seismic effects in natural underground reservoirs. C1 [Korneev, Valeri; Nakagawa, Seiji; Moridis, George] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Danilovskaya, Ludmila] PGS, Oslo, Norway. RP Korneev, V (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM vakorneev@lbl.gov; danilovskaya.luda@gmail.com; snakagawa@lbl.gov; gmoridis@lbl.gov RI Nakagawa, Seiji/F-9080-2015 OI Nakagawa, Seiji/0000-0002-9347-0903 FU Office of Science, Office of Basic Energy Sciences; Research Partnership to Secure Energy for America through Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program; Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was partially funded through the director of the Office of Science, Office of Basic Energy Sciences, and by the Research Partnership to Secure Energy for America through the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program, as authorized by the U.S. Energy Policy Act of 2005, supported by the assistant secretary for Fossil Energy of the Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. The comments of C. Morency, K. van Dalen, and an anonymous reviewer helped very much to improve the paper. NR 20 TC 1 Z9 2 U1 1 U2 2 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 EI 1942-2156 J9 GEOPHYSICS JI Geophysics PD JUL-AUG PY 2014 VL 79 IS 4 BP L33 EP L39 DI 10.1190/GEO2013-0216.1 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AP3OI UT WOS:000341985500023 ER PT J AU Dai, LY Shi, M Tang, GY Zheng, HQ AF Dai, L. Y. Shi, M. Tang, G. Y. Zheng, H. Q. TI How to distinguish a molecule from an 'elementary' particle? SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article DE Hadronic molecule; chiral symmetry; X(3872); f(0)(980) ID PI-K SCATTERINGS; KAPPA-RESONANCE; WAVE; AMPLITUDES; MODEL AB We discuss how to use Morgan's pole counting rule to distinguish a molecular state from an 'elementary' particle. As two examples we focus on X(3872) and f(0)(980) particles. A molecule may be generated from a meson loop bubble chain, and an 'elementary' particle is related to an explicit interaction field in the effective lagrangian and propagates with a Breit-Wigner propagator. For X(3872) it is found that the data favor the 'elementary' particle explanation. For f(0)(980) the study becomes much more difficult, since highly nonperturbative dynamics is involved. A unitarization model analysis suggests that f(0)(980)'s property is quite exotic. Unlike other light scalars, it does not behave like a (q) over barq state, and could be interpreted as a molecule. C1 [Dai, L. Y.; Shi, M.; Tang, G. Y.; Zheng, H. Q.] Peking Univ, Dept Phys, Beijing 100871, Peoples R China. [Dai, L. Y.; Shi, M.; Tang, G. Y.; Zheng, H. Q.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Zheng, H. Q.] Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China. RP Dai, LY (reprint author), Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. FU National Nature Science Foundations of China [10925522, 11021092] FX I would like to thank the organizers of Chiral 2013, especially Li-sheng Geng for kind hospitality and providing the nice atmosphere during the conference. This work is supported in part by National Nature Science Foundations of China under Contract Nos. 10925522 and 11021092. NR 18 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD JUL PY 2014 VL 23 IS 7 SI SI AR 1461002 DI 10.1142/S0218301314610023 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AP2VO UT WOS:000341934000003 ER PT J AU Olek, AT Rayon, C Makowski, L Kim, HR Ciesielski, P Badger, J Paul, LN Ghosh, S Kihara, D Crowley, M Himmel, ME Bolin, JT Carpita, NC AF Olek, Anna T. Rayon, Catherine Makowski, Lee Kim, Hyung Rae Ciesielski, Peter Badger, John Paul, Lake N. Ghosh, Subhangi Kihara, Daisuke Crowley, Michael Himmel, Michael E. Bolin, Jeffrey T. Carpita, Nicholas C. TI The Structure of the Catalytic Domain of a Plant Cellulose Synthase and Its Assembly into Dimers SO PLANT CELL LA English DT Article ID X-RAY-SCATTERING; SMALL-ANGLE SCATTERING; PROTEIN-STRUCTURE PREDICTION; SECONDARY CELL-WALLS; FOLD-RECOGNITION; HIGH-THROUGHPUT; SYNTHESIZING COMPLEX; ARABIDOPSIS-THALIANA; ACETOBACTER-XYLINUM; BINDING DOMAINS AB Cellulose microfibrils are para-crystalline arrays of several dozen linear (1 -> 4)-beta-D-glucan chains synthesized at the surface of the cell membrane by large, multimeric complexes of synthase proteins. Recombinant catalytic domains of rice (Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-Glc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain, elongated structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. The arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize. C1 [Olek, Anna T.; Rayon, Catherine; Carpita, Nicholas C.] Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA. [Makowski, Lee] Northeastern Univ, Dept Bioengn, Boston, MA 02115 USA. [Makowski, Lee] Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02115 USA. [Kim, Hyung Rae; Ghosh, Subhangi; Kihara, Daisuke; Bolin, Jeffrey T.; Carpita, Nicholas C.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. [Ciesielski, Peter; Crowley, Michael; Himmel, Michael E.] Natl Renewable Energy Lab, Biomol Sci Grp, Golden, CO 80401 USA. [Badger, John] DeltaG Technol, San Diego, CA 92122 USA. [Paul, Lake N.; Carpita, Nicholas C.] Purdue Univ, Bindley Biosci Ctr, W Lafayette, IN 47907 USA. [Kihara, Daisuke] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA. RP Carpita, NC (reprint author), Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA. EM carpita@purdue.edu FU Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0000997]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; National Science Foundation [1158340, IIS1319551, DBI1262189, IOS1127027]; National Institutes of Health [R01GM097528]; National Research Foundation of Korea [NRF-2011-220-C00004] FX We thank Robert F. Fischetti (APS, Argonne, IL) for helpful discussions on SAXS acquisition. We thank Marc Allaire (National Synchrotron Light Source, Brookhaven National Laboratory) for help collecting the SAXS data. We thank Debby Delmer for helpful comments on the nucleotide and nucleotide-sugar binding. This work was supported by the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Award DE-SC0000997. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-98CH10886. SAXS method development was supported by National Science Foundation Grant 1158340 to L.M.D.K. acknowledges support from the National Institutes of Health (R01GM097528), the National Science Foundation (IIS1319551, DBI1262189, and IOS1127027), and the National Research Foundation of Korea (NRF-2011-220-C00004). NR 74 TC 12 Z9 12 U1 2 U2 25 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 EI 1532-298X J9 PLANT CELL JI Plant Cell PD JUL PY 2014 VL 26 IS 7 BP 2996 EP 3009 DI 10.1105/tpc.114.126862 PG 14 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA AP4VE UT WOS:000342076200022 PM 25012190 ER PT J AU Rossi, G Palanque-Delabrouille, N Borde, A Viel, M Yeche, C Bolton, JS Rich, J Le Goff, JM AF Rossi, Graziano Palanque-Delabrouille, Nathalie Borde, Arnaud Viel, Matteo Yeche, Christophe Bolton, James S. Rich, James Le Goff, Jean-Marc TI Suite of hydrodynamical simulations for the Lyman-alpha forest with massive neutrinos SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: theory; cosmology: observations; large-scale structure of Universe; methods: numerical ID DIGITAL SKY SURVEY; MATTER POWER SPECTRUM; PROBABILITY-DISTRIBUTION FUNCTION; SMOOTHED PARTICLE HYDRODYNAMICS; TEMPERATURE-DENSITY RELATION; HOT DARK-MATTER; MICROWAVE BACKGROUND ANISOTROPIES; OSCILLATION SPECTROSCOPIC SURVEY; QSO ABSORPTION-SPECTRA; LARGE-SCALE STRUCTURE AB The signature left in quasar spectra by neutral hydrogen in the Universe allows constraining the sum of the neutrino masses with a better sensitivity than laboratory experiments and may shed new light on the neutrino mass hierarchy and the absolute mass-scale of neutrinos. Constraints on cosmological parameters and on the dark energy equation of state can also be derived from a joint parameter estimation procedure. However, this requires a detailed modeling of the line-of-sight power spectrum of the transmitted flux in the Lyman-alpha (Ly alpha) forest on scales ranging from a few to hundreds of megaparsecs, which in turn demands the inclusion and careful treatment of cosmological neutrinos. To this end, we present here a suite of state-of-the-art hydrodynamical simulations with cold dark matter (CDM), baryons and massive neutrinos, specifically targeted for modeling the low-density regions of the intergalactic medium (IGM) as probed by the Ly alpha forest at high-redshift. The simulations span volumes ranging from (25 h(-1) Mpc)(3) to (100 h(-1) Mpc)(3), and were made using either 3 x 192(3) similar or equal to 21 million or 3 x 768(3) similar or equal to 1.4 billion particles. The resolution of the various runs was further enhanced, so that we reached the equivalent of 3 x 3072(3) similar or equal to 87 billion particles in a (100 h(-1) Mpc)(3) box size. The chosen cosmological parameters are compatible with the latest Planck 2013 results, although we also explored the effect of slight variations in the main cosmological and astrophysical parameters. We adopted a particle-type implementation of massive neutrinos, and consider three degenerate species with masses Sigma m(v) = 0.1, 0.2, 0.3, 0.4, and 0.8 eV, respectively. We improved on previous studies in several ways, in particular with updated routines for IGM radiative cooling and heating processes, and initial conditions based on second-order Lagrangian perturbation theory (2LPT) rather than the Zel'dovich approximation. This allowed us to safely start our runs at relatively low redshift (z = 30), which reduced the shot-noise contamination in the neutrino component and the CPU consumption. In addition to providing technical details on the simulations, we present the first analysis of the nonlinear three-and one-dimensional matter and flux power spectra from these models, and characterize the statistics of the transmitted flux in the Ly alpha forest including the effect of massive neutrinos. In synergy with recent data from the Baryon Acoustic Spectroscopic Survey (BOSS) and the Planck satellite, and with a grid of corresponding neutrino-less simulations, our realizations will allow us to constrain cosmological parameters and neutrino masses directly from the Ly alpha forest with improved sensitivity. In addition, our simulations can be useful for a broader variety of cosmological and astrophysical applications, ranging from the three-dimensional modeling of the Ly alpha forest to cross-correlations between different probes, studying the expansion history of the Universe including massive neutrinos, and particle-physics related topics. Moreover, while our simulations have been specifically designed to meet the requirements of the BOSS survey, they can also be used for upcoming or future experiments - such as eBOSS and DESI. C1 [Rossi, Graziano; Palanque-Delabrouille, Nathalie; Borde, Arnaud; Yeche, Christophe; Rich, James; Le Goff, Jean-Marc] CEA, Ctr Saclay, Irfu SPP, F-91191 Gif Sur Yvette, France. [Rossi, Graziano] Sejong Univ, Dept Astron & Space Sci, Seoul 143747, South Korea. [Palanque-Delabrouille, Nathalie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Viel, Matteo] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Viel, Matteo] Natl Inst Nucl Phys, INFN, I-34127 Trieste, Italy. [Bolton, James S.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. RP Rossi, G (reprint author), CEA, Ctr Saclay, Irfu SPP, F-91191 Gif Sur Yvette, France. EM graziano@sejongac.kr OI Viel, Matteo/0000-0002-2642-5707 FU Agence Nationale de la Recherche [ANR-11-JS04-011-01]; Sejong University; ERC-StG "CosmoIGM"; Royal Society; [2012071264] FX We acknowledge PRACE for awarding us access to resource Curie-thin nodes based in France at TGCC, for our project 2012071264. This work was granted access to the HPC resources of CCRT under the allocation 2013-t2013047004 made by GENCI (Grand Equipement National de Calcul Intensif). A.B., N.P.-D., G.R. and Ch.Y. acknowledge support from grant ANR-11-JS04-011-01 of Agence Nationale de la Recherche. The work of G.R. is also supported by the faculty research fund of Sejong University in 2014. M.V. is supported by ERC-StG "CosmoIGM". J.S.B. acknowledges the support of a Royal Society University Research Fellowship. We thank Volker Springel for making Gadget-3 available. NR 148 TC 16 Z9 16 U1 2 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2014 VL 567 AR A79 DI 10.1051/0004-6361/201423507 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AO2VU UT WOS:000341185300074 ER PT J AU Shade, A Jones, SE Caporaso, JG Handelsman, J Knight, R Fierer, N Gilbert, JA AF Shade, Ashley Jones, Stuart E. Caporaso, J. Gregory Handelsman, Jo Knight, Rob Fierer, Noah Gilbert, Jack A. TI Conditionally Rare Taxa Disproportionately Contribute to Temporal Changes in Microbial Diversity SO MBIO LA English DT Article ID COMMUNITY STRUCTURE; BACTERIAL; BIOSPHERE; DYNAMICS; TIME; OCEAN; VARIABILITY; POPULATIONS; DISTURBANCE; RESILIENCE AB Microbial communities typically contain many rare taxa that make up the majority of the observed membership, yet the contribution of this microbial "rare biosphere" to community dynamics is unclear. Using 16S rRNA amplicon sequencing of 3,237 samples from 42 time series of microbial communities from nine different ecosystems (air; marine; lake; stream; adult human skin, tongue, and gut; infant gut; and brewery wastewater treatment), we introduce a new method to detect typically rare microbial taxa that occasionally become very abundant (conditionally rare taxa [CRT]) and then quantify their contributions to temporal shifts in community structure. We discovered that CRT made up 1.5 to 28% of the community membership, represented a broad diversity of bacterial and archaeal lineages, and explained large amounts of temporal community dissimilarity (i.e., up to 97% of Bray-Curtis dissimilarity). Most of the CRT were detected at multiple time points, though we also identified "one-hit wonder" CRT that were observed at only one time point. Using a case study from a temperate lake, we gained additional insights into the ecology of CRT by comparing routine community time series to large disturbance events. Our results reveal that many rare taxa contribute a greater amount to microbial community dynamics than is apparent from their low proportional abundances. This observation was true across a wide range of ecosystems, indicating that these rare taxa are essential for understanding community changes over time. IMPORTANCE Microbial communities and their processes are the foundations of ecosystems. The ecological roles of rare microorganisms are largely unknown, but it is thought that they contribute to community stability by acting as a reservoir that can rapidly respond to environmental changes. We investigated the occurrence of typically rare taxa that very occasionally become more prominent in their communities ("conditionally rare"). We quantified conditionally rare taxa in time series from a wide variety of ecosystems and discovered that not only were conditionally rare taxa present in all of the examples, but they also contributed disproportionately to temporal changes in diversity when they were most abundant. This result indicates an important and general role for rare microbial taxa within their communities. C1 [Shade, Ashley] Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI 48824 USA. [Jones, Stuart E.] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA. [Caporaso, J. Gregory; Gilbert, Jack A.] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60439 USA. [Caporaso, J. Gregory] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA. [Handelsman, Jo] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT USA. [Knight, Rob] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA. [Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Knight, Rob] Univ Colorado, BioFrontiers Inst, Boulder, CO 80309 USA. [Fierer, Noah] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA. [Fierer, Noah] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. RP Gilbert, JA (reprint author), Argonne Natl Lab, Inst Genom & Syst Biol, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gilbertjack@anl.gov RI Knight, Rob/D-1299-2010; OI Shade, Ashley/0000-0002-7189-3067 FU A Gordon and Betty Moore Foundation from the Life Sciences Research Foundation; U.S. Department of Energy [DE-AC02-06CH11357]; Howard Hughes Medical Institute FX A Gordon and Betty Moore Foundation postdoctoral fellowship from the Life Sciences Research Foundation supported A.S. This work was supported in part by the U.S. Department of Energy under contract DE-AC02-06CH11357 and by the Howard Hughes Medical Institute. NR 53 TC 52 Z9 52 U1 9 U2 102 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD JUL-AUG PY 2014 VL 5 IS 4 AR e01371-14 DI 10.1128/mBio.01371-14 PG 9 WC Microbiology SC Microbiology GA AO8FE UT WOS:000341588100058 PM 25028427 ER PT J AU Czyz, DM Potluri, LP Jain-Gupta, N Riley, SP Martinez, JJ Steck, TL Crosson, S Shuman, HA Gabay, JE AF Czyz, Daniel M. Potluri, Lakshmi-Prasad Jain-Gupta, Neeta Riley, Sean P. Martinez, Juan J. Steck, Theodore L. Crosson, Sean Shuman, Howard A. Gabay, Joelle E. TI Host-Directed Antimicrobial Drugs with Broad-Spectrum Efficacy against Intracellular Bacterial Pathogens SO MBIO LA English DT Article ID LISTERIA-MONOCYTOGENES INFECTION; COXIELLA-BURNETII; ANAPLASMA-PHAGOCYTOPHILUM; STAPHYLOCOCCUS-AUREUS; HUMAN-LEUKOCYTES; ANIMAL-MODEL; INHIBITORS; PROTEIN; CELLS; TUBERCULOSIS AB We sought a new approach to treating infections by intracellular bacteria, namely, by altering host cell functions that support their growth. We screened a library of 640 Food and Drug Administration (FDA)-approved compounds for agents that render THP-1 cells resistant to infection by four intracellular pathogens. We identified numerous drugs that are not antibiotics but were highly effective in inhibiting intracellular bacterial growth with limited toxicity to host cells. These compounds are likely to target three kinds of host functions: (i) G protein-coupled receptors, (ii) intracellular calcium signals, and (iii) membrane cholesterol distribution. The compounds that targeted G protein receptor signaling and calcium fluxes broadly inhibited Coxiella burnetii, Legionella pneumophila, Brucella abortus, and Rickettsia conorii, while those directed against cholesterol traffic strongly attenuated the intracellular growth of C. burnetii and L. pneumophila. These pathways probably support intracellular pathogen growth so that drugs that perturb them may be therapeutic candidates. Combining host-and pathogen-directed treatments is a strategy to decrease the emergence of drug-resistant intracellular bacterial pathogens. IMPORTANCE Although antibiotic treatment is often successful, it is becoming clear that alternatives to conventional pathogen-directed therapy must be developed in the face of increasing antibiotic resistance. Moreover, the costs and timing associated with the development of novel antimicrobials make repurposed FDA-approved drugs attractive host-targeted therapeutics. This paper describes a novel approach of identifying such host-targeted therapeutics against intracellular bacterial pathogens. We identified several FDA-approved drugs that inhibit the growth of intracellular bacteria, thereby implicating host intracellular pathways presumably utilized by bacteria during infection. C1 [Czyz, Daniel M.; Potluri, Lakshmi-Prasad; Jain-Gupta, Neeta; Riley, Sean P.; Martinez, Juan J.; Crosson, Sean; Shuman, Howard A.] Univ Chicago, Argonne Natl Lab, Howard Taylor Ricketts Lab, Lemont, IL 60439 USA. [Czyz, Daniel M.; Potluri, Lakshmi-Prasad; Riley, Sean P.; Martinez, Juan J.; Shuman, Howard A.; Gabay, Joelle E.] Univ Chicago, Dept Microbiol, Chicago, IL 60637 USA. [Jain-Gupta, Neeta; Steck, Theodore L.; Crosson, Sean] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. RP Shuman, HA (reprint author), Univ Chicago, Argonne Natl Lab, Howard Taylor Ricketts Lab, Lemont, IL 60439 USA. EM hashuman@uchicago.edu OI Potluri, Lakshmi-Prasad/0000-0001-5260-6678 FU Region V Great Lakes Regional Center of Excellence in Biodefense and Emerging Infectious Diseases Consortium (NIH) [1-U54-AI-057153]; [5RO1 AI23549] FX We acknowledge membership within and support from the Region V Great Lakes Regional Center of Excellence in Biodefense and Emerging Infectious Diseases Consortium (NIH award 1-U54-AI-057153). This work was also supported by award 5RO1 AI23549 (H. A. S.). We declare that no financial interests exist. NR 64 TC 11 Z9 11 U1 0 U2 11 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD JUL-AUG PY 2014 VL 5 IS 4 AR e01534-14 DI 10.1128/mBio.01534-14 PG 14 WC Microbiology SC Microbiology GA AO8FE UT WOS:000341588100019 PM 25073644 ER PT J AU Shao, WJ Price, MN Deutschbauer, AM Romine, MF Arkin, AP AF Shao, Wenjun Price, Morgan N. Deutschbauer, Adam M. Romine, Margaret F. Arkin, Adam P. TI Conservation of Transcription Start Sites within Genes across a Bacterial Genus SO MBIO LA English DT Article ID GENOME-WIDE IDENTIFICATION; SHEWANELLA-ONEIDENSIS MR-1; ESCHERICHIA-COLI; ANTISENSE TRANSCRIPTION; RNA; PROMOTERS; SEQUENCE; ARCHITECTURE; COMPLEXITY AB Transcription start sites (TSSs) lying inside annotated genes, on the same or opposite strand, have been observed in diverse bacteria, but the function of these unexpected transcripts is unclear. Here, we use the metal-reducing bacterium Shewanella oneidensis MR-1 and its relatives to study the evolutionary conservation of unexpected TSSs. Using high-resolution tiling microarrays and 5'-end RNA sequencing, we identified 2,531 TSSs in S. oneidensis MR-1, of which 18% were located inside coding sequences (CDSs). Comparative transcriptome analysis with seven additional Shewanella species revealed that the majority (76%) of the TSSs within the upstream regions of annotated genes (gTSSs) were conserved. Thirty percent of the TSSs that were inside genes and on the sense strand (iTSSs) were also conserved. Sequence analysis around these iTSSs showed conserved promoter motifs, suggesting that many iTSS are under purifying selection. Furthermore, conserved iTSSs are enriched for regulatory motifs, suggesting that they are regulated, and they tend to eliminate polar effects, which confirms that they are functional. In contrast, the transcription of antisense TSSs located inside CDSs (aTSSs) was significantly less likely to be conserved (22%). However, aTSSs whose transcription was conserved often have conserved promoter motifs and drive the expression of nearby genes. Overall, our findings demonstrate that some internal TSSs are conserved and drive protein expression despite their unusual locations, but the majority are not conserved and may reflect noisy initiation of transcription rather than a biological function. IMPORTANCE The first step of gene expression is the initiation of transcription from promoters, which have been traditionally thought to be located upstream of genes. Recently, studies showed that in diverse bacteria, promoters are often located inside genes. It has not been clear if these unexpected promoters are important to the organism or if they result from transcriptional noise. Here, we identify and examine promoters in eight related bacterial species. Promoters that lie within genes on the sense strand are often conserved as locations and in their sequences. Furthermore, these promoters often affect the bacterium's growth. Thus, many of these unexpected promoters are likely functional. Fewer promoters that lie within genes on the antisense strand are conserved, but the conserved ones seem to drive the expression of nearby genes. C1 [Shao, Wenjun; Price, Morgan N.; Deutschbauer, Adam M.; Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Shao, Wenjun] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Romine, Margaret F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Arkin, AP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM aparkin@lbl.gov RI Arkin, Adam/A-6751-2008; OI Arkin, Adam/0000-0002-4999-2931; Romine, Margaret/0000-0002-0968-7641 FU Office of Science, Office of Biological and Environmental Research, U.S. Department of Energy [DE-AC02-05CH11231] FX This work was conducted by ENIGMA (Ecosystems and Networks Integrated with Genes and Molecular Assemblies), which is supported by the Office of Science, Office of Biological and Environmental Research, U.S. Department of Energy, contract number DE-AC02-05CH11231. Curation of the annotation was supported by the Genomic Science Program (GSP), Office of Biological and Environmental Research, U.S. Department of Energy, and is a contribution of the Pacific Northwest National Laboratory (PNNL) Foundational Scientific Focus Area. NR 46 TC 11 Z9 11 U1 2 U2 6 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD JUL-AUG PY 2014 VL 5 IS 4 AR e01398-14 DI 10.1128/mBio.01398-14 PG 13 WC Microbiology SC Microbiology GA AO8FE UT WOS:000341588100059 PM 24987095 ER PT J AU Li, JK Gong, LT Ji, X Zhang, J Miao, P AF Li, Jinkai Gong, Liutang Ji, Xi Zhang, Jin Miao, Pei TI Development paths of China's agricultural Pharmaceutical industry under Eco-agriculture background SO PAKISTAN JOURNAL OF PHARMACEUTICAL SCIENCES LA English DT Article DE Ecological agriculture; green pesticide; pharmaceutical industry AB Using pesticides has double effects. On one hand, it contributes to pests control and regulates the growth of crops; On the other hand, it does harm to the environment. To develop ecological agriculture should not only emphasize the output level of agriculture to pursuit of economic efficiency, but also need to keep the ecological environment protected and focus on the social benefits during the development of the industry. As a large agricultural country in the world, China is vigorously promoting the development of ecological agriculture, which is bound to put forward to developing the pesticide industry and green ecological development requirements to promote the transformation and upgrading of agricultural pharmaceutical industry. This paper discusses the mechanism of pesticide pollution on the ecological environment and analyzes China's agricultural problems in the pharmaceutical industry. Then study on the development of Chinese green pesticides and try to find the proper paths of agricultural pharmaceutical to achieve industrial upgrading. C1 [Li, Jinkai; Zhang, Jin] Henan Univ Econ & Law, Henan Collaborat Innovat Ctr Coordinated Dev, Zhengzhou, Henan, Peoples R China. [Li, Jinkai; Gong, Liutang] Peking Univ, Guanghua Sch Management, Beijing 100871, Peoples R China. [Ji, Xi] Peking Univ, Econ Sch Management, Beijing 100871, Peoples R China. [Miao, Pei] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Ji, X (reprint author), Peking Univ, Econ Sch Management, Beijing 100871, Peoples R China. EM jixi@pku.edu.cn FU Scientific Research Common Program of the Major Public Bidding Project of National Soft Science [2012GXS1D003]; National Natural Science Foundation of China [71173006]; New Century Excellent Talents in University [NCET-2012-0691]; National Fund of Social Science of China [08AJY039]; Science & Technology Innovation Talent in University of Henan Province [201008]; Humanity and Social Science Foundation from Henan Educational Committee [2011-JD-018] FX This work is partially supported by the Scientific Research Common Program of the Major Public Bidding Project of National Soft Science (2012GXS1D003), the National Natural Science Foundation of China (71173006), New Century Excellent Talents in University (NCET-2012-0691), the National Fund of Social Science of China (08AJY039), the Science & Technology Innovation Talent in University of Henan Province:(201008), Humanity and Social Science Foundation from Henan Educational Committee (2011-JD-018). The Major Project from HNUEL (2012-001). NR 11 TC 0 Z9 0 U1 0 U2 7 PU UNIV KARACHI PI KARACHI PA UNIV CAMPUS, FAC PHARMACY, KARACHI, 75270, PAKISTAN SN 1011-601X J9 PAK J PHARM SCI JI Pak. J. Pharm. Sci. PD JUL PY 2014 VL 27 IS 4 SU S BP 1049 EP 1055 PG 7 WC Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA AP1CN UT WOS:000341804100011 PM 25016265 ER PT J AU Gupta, PK Rabehl, R AF Gupta, Prabhat Kumar Rabehl, Roger TI Numerical modeling of a 2 K J-T heat exchanger used in Fermilab Vertical Test Stand VTS-1 SO CRYOGENICS LA English DT Article DE 2 K J-T heat exchanger; Vertical Test Stand Operation; 2 K refrigeration systems AB Fermilab Vertical Test Stand-1 (VTS-1) has been in operation since 2007 for testing superconducting radio frequency (SCRF) cavities at 2 K. This test stand includes a heat exchanger consisting of a single layer; helically wound finned tube, upstream of the J-T valve. A finite difference thermal model has been developed in Engineering Equation Solver (EES) to study the thermal performance of this heat exchanger during refilling of the test stand. The model can predict heat exchanger performance under various other operating conditions and is therefore useful as a design tool for similar heat exchangers in other facilities. The present paper discusses the different operational modes of this heat exchanger and its thermal characteristics under these operational modes. Results of this model have been compared with experimental data gathered from the VTS-1 heat exchanger, and they are in good agreement with the present model. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Gupta, Prabhat Kumar] Raja Ramanna Ctr Adv Technol, Cryoengn & Cryomodule Dev Sect, Indore, Madhya Pradesh, India. [Rabehl, Roger] Fermilab Natl Accelerator Lab, Test & Instrumentat Dept, Tech Div, Batavia, IL 60510 USA. RP Gupta, PK (reprint author), Raja Ramanna Ctr Adv Technol, Cryoengn & Cryomodule Dev Sect, Indore, Madhya Pradesh, India. EM prabhat@rrcat.gov.in; rabehl@fnal.gov FU Fermi Research Alliance, LLC [De-AC02-07CH11359] FX The Fermi National Accelerator Laboratory is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. NR 6 TC 0 Z9 0 U1 1 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD JUL-AUG PY 2014 VL 62 BP 31 EP 36 DI 10.1016/j.cryogenics.2014.03.018 PG 6 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA AO6OE UT WOS:000341470600005 ER PT J AU Morari, A Castellana, VG Villa, O Tumeo, A Weaver, J Haglin, D Choudhury, S Feo, J AF Morari, Alessandro Castellana, Vito Giovanni Villa, Oreste Tumeo, Antonino Weaver, Jesse Haglin, David Choudhury, Sutanay Feo, John TI SCALING SEMANTIC GRAPH DATABASES IN SIZE AND PERFORMANCE SO IEEE MICRO LA English DT Article AB GEMS IS A FULL SOFTWARE SYSTEM THAT IMPLEMENTS A LARGE-SCALE, SEMANTIC GRAPH DATABASE ON COMMODITY CLUSTERS. ITS FRAMEWORK COMPRISES A SPARQL-TO-C++ COMPILER, A LIBRARY OF DISTRIBUTED DATA STRUCTURES, AND A CUSTOM MULTITHREADED RUNTIME LIBRARY. THE AUTHORS EVALUATED THEIR SOFTWARE STACK ON THE BERLIN SPARQL BENCHMARK WITH DATASETS OF UP TO 10 BILLION GRAPH EDGES, DEMONSTRATING SCALING IN DATASET SIZE AND PERFORMANCE AS THEY ADDED CLUSTER NODES. C1 [Morari, Alessandro; Weaver, Jesse; Haglin, David] Pacific NW Natl Lab, Data Intens Sci Comp Grp, Richland, WA 99352 USA. [Castellana, Vito Giovanni; Tumeo, Antonino] Pacific NW Natl Lab, High Performance Comp Grp, Richland, WA 99352 USA. [Villa, Oreste] Nvidia Res, Architecture Grp, Santa Clara, CA USA. [Choudhury, Sutanay] Pacific NW Natl Lab, Computat Sci & Math Div, Sci Data Management Grp, Richland, WA 99352 USA. [Feo, John] High Performance Data Analyt Project, Stanford, CA USA. [Feo, John] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Tumeo, A (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd MSIN J4-30, Richland, WA 99352 USA. EM antonino.tumeo@pnnl.gov RI Tumeo, Antonino/L-3106-2016 FU Center for Adaptive Super Computing Software (CASS) at US Department of Energy's Pacific Northwest National Laboratory (PNNL); Battelle Memorial Institute [DE-ACO6-76RL01830] FX This work was supported by the Center for Adaptive Super Computing Software (CASS) at the US Department of Energy's Pacific Northwest National Laboratory (PNNL). The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute under Contract DE-ACO6-76RL01830. A portion of the research was performed using PNNL Institutional Computing. NR 6 TC 5 Z9 5 U1 0 U2 5 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0272-1732 EI 1937-4143 J9 IEEE MICRO JI IEEE Micro PD JUL-AUG PY 2014 VL 34 IS 4 BP 16 EP 26 PG 11 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA AO7XH UT WOS:000341565500004 ER PT J AU Battaglia, DJ Burrell, KH Chang, CS Ku, S deGrassie, JS Grierson, BA AF Battaglia, D. J. Burrell, K. H. Chang, C. S. Ku, S. deGrassie, J. S. Grierson, B. A. TI Kinetic neoclassical transport in the H-mode pedestal SO PHYSICS OF PLASMAS LA English DT Article ID RADIAL ELECTRIC-FIELD; TOKAMAK PLASMA EDGE; POLOIDAL ROTATION; DIII-D; TRANSITION; VELOCITY; SPECTROSCOPY; TURBULENCE; OPERATION; PHYSICS AB Multi-species kinetic neoclassical transport through the QH-mode pedestal and scrape-off layer on DIII-D is calculated using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. Quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density, and orthogonal measurements of impurity temperature and flow profiles is achieved by adding random-walk particle diffusion to the guiding-center drift motion. The radial electric field (E-r) that maintains ambipolar transport across flux surfaces and to the wall is computed self-consistently on closed and open magnetic field lines and is in excellent agreement with experiment. The E-r inside the separatrix is the unique solution that balances the outward flux of thermal tail deuterium ions against the outward neoclassical electron flux and inward pinch of impurity and colder deuterium ions. Particle transport in the pedestal is primarily due to anomalous transport, while the ion heat and momentum transport are primarily due to the neoclassical transport. The full-f treatment quantifies the non-Maxwellian energy distributions that describe a number of experimental observations in low-collisionallity pedestals on DIII-D, including intrinsic co-I-p parallel flows in the pedestal, ion temperature anisotropy, and large impurity temperatures in the scrape-off layer. (C) 2014 AIP Publishing LLC. C1 [Battaglia, D. J.; Chang, C. S.; Ku, S.; Grierson, B. A.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Burrell, K. H.; deGrassie, J. S.] Gen Atom Co, San Diego, CA 92186 USA. RP Battaglia, DJ (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08540 USA. RI Ku, Seung-Hoe/D-2315-2009 OI Ku, Seung-Hoe/0000-0002-9964-1208 FU U.S. Department of Energy [DE-AC02-09CH11466, DE-FG02-95ER54309, DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy under DE-AC02-09CH11466 and DE-FG02-95ER54309. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the U.S. Department of Energy under DE-AC02-05CH11231. The authors gratefully acknowledge the contributions of the teams at the DIII-D National Fusion Facility and the Edge Physics Simulation Project. In particular, D. Stotler and R. Hager for continuous support for the XGC0 code. D. Battaglia is grateful to R. Groebner, J. Canik, R. Maingi, R. Nazikian, S. Kaye, and co-authors for guidance during this work. NR 36 TC 10 Z9 10 U1 0 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2014 VL 21 IS 7 AR 072508 DI 10.1063/1.4886803 PG 11 WC Physics, Fluids & Plasmas SC Physics GA AO2LN UT WOS:000341154100054 ER PT J AU Chrystal, C Burrell, KH Grierson, BA Staebler, GM Solomon, WM Wang, WX Rhodes, TL Schmitz, L Kinsey, JE Lao, LL deGrassie, JS Mordijck, S Meneghini, O AF Chrystal, C. Burrell, K. H. Grierson, B. A. Staebler, G. M. Solomon, W. M. Wang, W. X. Rhodes, T. L. Schmitz, L. Kinsey, J. E. Lao, L. L. deGrassie, J. S. Mordijck, S. Meneghini, O. TI Testing neoclassical and turbulent effects on poloidal rotation in the core of DIII-D SO PHYSICS OF PLASMAS LA English DT Article ID MOMENTUM TRANSPORT; TOROIDAL ROTATION; TOKAMAK PLASMA; ASPECT RATIO; SHEAR; PARADIGM; VELOCITY; IONS AB Experimental tests of ion poloidal rotation theories have been performed on DIII-D using a novel impurity poloidal rotation diagnostic. These tests show significant disagreements with theoretical predictions in various conditions, including L-mode plasmas with internal transport barriers (ITB), H-mode plasmas, and QH-mode plasmas. The theories tested include standard neoclassical theory, turbulence driven Reynolds stress, and fast-ion friction on the thermal ions. Poloidal rotation is observed to spin up at the formation of an ITB and makes a significant contribution to the measurement of the (R) over right arrow x (B) over right arrow shear that forms the ITB. In ITB cases, neoclassical theory agrees quantitatively with the experimental measurements only in the steep gradient region. Significant quantitative disagreement with neoclassical predictions is seen in the cores of ITB, QH-, and H-mode plasmas, demonstrating that neoclassical theory is an incomplete description of poloidal rotation. The addition of turbulence driven Reynolds stress does not remedy this disagreement; linear stability calculations and Doppler backscattering measurements show that disagreement increases as turbulence levels decline. Furthermore, the effect of fast-ion friction, by itself, does not lead to improved agreement; in QH-mode plasmas, neoclassical predictions are closest to experimental results in plasmas with the largest fast ion friction. Predictions from a new model that combines all three effects show somewhat better agreement in the H-mode case, but discrepancies well outside the experimental error bars remain. (C) 2014 AIP Publishing LLC. C1 [Chrystal, C.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Burrell, K. H.; Staebler, G. M.; Kinsey, J. E.; Lao, L. L.; deGrassie, J. S.] Gen Atom Co, San Diego, CA 92186 USA. [Grierson, B. A.; Solomon, W. M.; Wang, W. X.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Rhodes, T. L.; Schmitz, L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Mordijck, S.] Coll William & Mary, Williamsburg, VA 23187 USA. [Meneghini, O.] Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA. RP Chrystal, C (reprint author), Univ Calif San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA. OI Solomon, Wayne/0000-0002-0902-9876 FU US Department of Energy [DE-AC02-06OR23100, DE-FC0-04ER54698, DE-AC02-09CH11466, DE-FG02-08ER54984, DE-SC0007880] FX This work was supported by the US Department of Energy under DE-AC02-06OR23100, DE-FC0-04ER54698, DE-AC02-09CH11466, DE-FG02-08ER54984, DE-SC0007880, and DE-AC02-06OR23100. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. NR 42 TC 5 Z9 5 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2014 VL 21 IS 7 AR 072504 DI 10.1063/1.4887296 PG 13 WC Physics, Fluids & Plasmas SC Physics GA AO2LN UT WOS:000341154100050 ER PT J AU Dennis, GR Hudson, SR Dewar, RL Hole, MJ AF Dennis, G. R. Hudson, S. R. Dewar, R. L. Hole, M. J. TI Multi-region relaxed magnetohydrodynamics with anisotropy and flow SO PHYSICS OF PLASMAS LA English DT Article ID PLASMA-VACUUM SYSTEMS; MHD EQUILIBRIA; RELAXATION; PRESSURE; PRINCIPLES; STABILITY AB We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes pressure anisotropy and general plasma flows. This anisotropic extension to our previous isotropic model is motivated by Sun and Finn's model of relaxed anisotropic magnetohydrodynamic equilibria. We prove that as the number of plasma regions becomes infinite, our anisotropic extension of MRxMHD reduces to anisotropic ideal MHD with flow. The continuously nested flux surface limit of our MRxMHD model is the first variational principle for anisotropic plasma equilibria with general flow fields. (C) 2014 AIP Publishing LLC. C1 [Dennis, G. R.; Dewar, R. L.; Hole, M. J.] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 0200, Australia. [Hudson, S. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Dennis, GR (reprint author), Australian Natl Univ, Res Sch Phys & Engn, GPO Box 4, Canberra, ACT 0200, Australia. EM graham.dennis@anu.edu.au RI Hudson, Stuart/H-7186-2013; OI Hudson, Stuart/0000-0003-1530-2733; Dewar, Robert/0000-0002-9518-7087 FU U.S. Department of Energy; Australian Research Council [DP0452728, FT0991899, DP110102881] FX The authors gratefully acknowledge support of the U.S. Department of Energy and the Australian Research Council, through Grants Nos. DP0452728, FT0991899, and DP110102881. NR 26 TC 1 Z9 1 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2014 VL 21 IS 7 AR 072512 DI 10.1063/1.4890847 PG 10 WC Physics, Fluids & Plasmas SC Physics GA AO2LN UT WOS:000341154100058 ER PT J AU Granetz, RS Esposito, B Kim, JH Koslowski, R Lehnen, M Martin-Solis, JR Paz-Soldan, C Rhee, T Wesley, JC Zeng, L AF Granetz, R. S. Esposito, B. Kim, J. H. Koslowski, R. Lehnen, M. Martin-Solis, J. R. Paz-Soldan, C. Rhee, T. Wesley, J. C. Zeng, L. CA ITPA MHD Grp TI An ITPA joint experiment to study runaway electron generation and suppression SO PHYSICS OF PLASMAS LA English DT Article AB Recent results from an ITPA joint experiment to study the onset, growth, and decay of relativistic electrons (REs) indicate that loss mechanisms other than collisional damping may play a dominant role in the dynamics of the RE population, even during the quiescent I-p flattop. Understanding the physics of RE growth and mitigation is motivated by the theoretical prediction that disruptions of full-current (15 MA) ITER discharges could generate up to 10 MA of REs with 10-20 MeV energies. The ITPA MHD group is conducting a joint experiment to measure the RE detection threshold conditions on a number of tokamaks under quasi-steady-state conditions in which V-loop, n(e), and REs can be well-diagnosed and compared to collisional theory. Data from DIII-D, C-Mod, FTU, KSTAR, and TEXTOR have been obtained so far, and the consensus to date is that the threshold E-field is significantly higher than predicted by relativistic collisional theory, or conversely, the density required to damp REs is significantly less than predicted, which could have significant implications for RE mitigation on ITER. (C) 2014 AIP Publishing LLC. C1 [Granetz, R. S.] MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Esposito, B.] CR Frascati, Tecn Fus, ENEA Unita, I-00044 Frascati, Italy. [Kim, J. H.; Rhee, T.] Natl Fus Res Inst, Taejon 305806, South Korea. [Kim, J. H.] Univ Sci & Technol, Dept Nucl Fus & Plasma Sci, Taejon 305350, South Korea. [Koslowski, R.] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany. [Lehnen, M.] ITER Org, F-13115 St Paul Les Durance, France. [Martin-Solis, J. R.] Univ Carlos III Madrid, Madrid 28911, Spain. [Paz-Soldan, C.] ORISE, Oak Ridge, TN 37831 USA. [Wesley, J. C.] Gen Atom Co, San Diego, CA 92186 USA. [Zeng, L.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. RP Granetz, RS (reprint author), MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. EM granetz@mit.edu FU US Department of Energy [DE-FC02-99ER54512-CMOD, DE-FC02-04ER54698, DE-AC05-06OR23100]; Direccion General de Investigacion, Cientifica y Tecnica (Ministerio de Economia y Competitividad) [ENE2012-31753] FX This work supported in part by: US Department of Energy under DE-FC02-99ER54512-CMOD, DE-FC02-04ER54698 (GA), and DE-AC05-06OR23100 (ORISE).; Direccion General de Investigacion, Cientifica y Tecnica (Ministerio de Economia y Competitividad), Project No. ENE2012-31753. NR 8 TC 18 Z9 19 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2014 VL 21 IS 7 AR 072506 DI 10.1063/1.4886802 PG 7 WC Physics, Fluids & Plasmas SC Physics GA AO2LN UT WOS:000341154100052 ER PT J AU Hanson, JM Bialek, JM Baruzzo, M Bolzonella, T Hyatt, AW Jackson, GL King, J La Haye, RJ Lanctot, MJ Marrelli, L Martin, P Navratil, GA Okabayashi, M Olofsson, KEJ Paz-Soldan, C Piovesan, P Piron, C Piron, L Shiraki, D Strait, EJ Terranova, D Turco, F Turnbull, AD Zanca, P AF Hanson, J. M. Bialek, J. M. Baruzzo, M. Bolzonella, T. Hyatt, A. W. Jackson, G. L. King, J. La Haye, R. J. Lanctot, M. J. Marrelli, L. Martin, P. Navratil, G. A. Okabayashi, M. Olofsson, K. E. J. Paz-Soldan, C. Piovesan, P. Piron, C. Piron, L. Shiraki, D. Strait, E. J. Terranova, D. Turco, F. Turnbull, A. D. Zanca, P. TI Feedback-assisted extension of the tokamak operating space to low safety factor SO PHYSICS OF PLASMAS LA English DT Article ID RESISTIVE WALL MODE; DIII-D TOKAMAK; REVERSED-FIELD PINCH; HYDROMAGNETIC-STABILITY; ACTIVE CONTROL; BETA-LIMIT; STABILIZATION; PLASMA; INSTABILITIES; ROTATION AB Recent DIII-D and RFX-mod experiments have demonstrated stable tokamak operation at very low values of the edge safety factor q(a) near and below 2. The onset of n = 1 resistive wall mode (RWM) kink instabilities leads to a disruptive stability limit, encountered at q(a) = 2 (limiter plasmas) and q(95) = 2 (divertor plasmas). However, passively stable operation can be attained for q(a) and q(95) values as low as 2.2. RWM damping in the q(a) = 2 regime was measured using active MHD spectroscopy. Although consistent with theoretical predictions, the amplitude of the damped response does not increase significantly as the q(a) = 2 limit is approached, in contrast with damping measurements made approaching the pressure-driven RWM limit. Applying proportional gain magnetic feedback control of the n = 1 modes has resulted in stabilized operation with q(95) values reaching as low as 1.9 in DIII-D and q(a) reaching 1.55 in RFX-mod. In addition to being consistent with the q(a) = 2 external kink mode stability limit, the unstable modes have growth rates on the order of the characteristic wall eddy-current decay timescale in both devices, and a dominant m = 2 poloidal structure that is consistent with ideal MHD predictions. The experiments contribute to validating MHD stability theory and demonstrate that a key tokamak stability limit can be overcome with feedback. (C) 2014 AIP Publishing LLC. C1 [Hanson, J. M.; Bialek, J. M.; Navratil, G. A.; Olofsson, K. E. J.; Shiraki, D.; Turco, F.] Columbia Univ, Dept Appl Math & Appl Phys, New York, NY 10027 USA. [Baruzzo, M.; Bolzonella, T.; Marrelli, L.; Martin, P.; Piovesan, P.; Piron, C.; Piron, L.; Terranova, D.; Zanca, P.] Consorzio RFX, I-35127 Padua, Italy. [Hyatt, A. W.; Jackson, G. L.; La Haye, R. J.; Lanctot, M. J.; Strait, E. J.; Turnbull, A. D.] Gen Atom Co, San Diego, CA 92186 USA. [King, J.; Paz-Soldan, C.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37830 USA. [Okabayashi, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hanson, JM (reprint author), Columbia Univ, Dept Appl Math & Appl Phys, New York, NY 10027 USA. EM jmh2130@columbia.edu RI Marrelli, Lionello/G-4451-2013; Lanctot, Matthew J/O-4979-2016 OI Marrelli, Lionello/0000-0001-5370-080X; Lanctot, Matthew J/0000-0002-7396-3372 FU U.S. Department of Energy [DE-FG02-04ER54761, DE-FC02-04ER54698, DE-AC05-06OR23100, DE-AC02-09CH11466] FX This research was supported in part by the U.S. Department of Energy under DE-FG02-04ER54761, DE-FC02-04ER54698, DE-AC05-06OR23100, and DE-AC02-09CH11466. The authors gratefully acknowledge useful discussions with Dr. E. A. Lazarus and Dr. A. M. Garofalo and the assistance of C. Chrobak in ensuring the proper functioning of the DIII-D I-coil feedback power supplies. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. NR 58 TC 8 Z9 8 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2014 VL 21 IS 7 AR 072107 DI 10.1063/1.4886796 PG 8 WC Physics, Fluids & Plasmas SC Physics GA AO2LN UT WOS:000341154100009 ER PT J AU Knapp, CE Kirkpatrick, RC AF Knapp, C. E. Kirkpatrick, R. C. TI Possible energy gain for a plasma-liner-driven magneto-inertial fusion concept SO PHYSICS OF PLASMAS LA English DT Article ID TARGETS; FUEL; SIMULATION AB A one-dimensional parameter study of a Magneto-Inertial Fusion (MIF) concept indicates that significant gain may be achievable. This concept uses a dynamically formed plasma shell with inwardly directed momentum to drive a magnetized fuel to ignition, which in turn partially burns an intermediate layer of unmagnetized fuel. The concept is referred to as Plasma Jet MIF or PJMIF. The results of an adaptive mesh refinement Eulerian code (Crestone) are compared to those of a Lagrangian code (LASNEX). These are the first published results using the Crestone and LASNEX codes on the PJMIF concept. (C) 2014 AIP Publishing LLC. C1 [Knapp, C. E.; Kirkpatrick, R. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Knapp, CE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. FU DOE [DE-AC52-06NA25396] FX We gratefully acknowledge Dr. Francis Thio and Dr. Scott Hsu for discussions and the test case used as a starting point. We also appreciate the help from Dr. Charles Wingate and the rest of the Crestone team at LANL. Thanks are also due Dr. Ian Tregillis (LANL) and the LLNL team for LASNEX support. This work was supported by DOE Contract No. DE-AC52-06NA25396. NR 33 TC 4 Z9 5 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2014 VL 21 IS 7 AR 070701 DI 10.1063/1.4885075 PG 6 WC Physics, Fluids & Plasmas SC Physics GA AO2LN UT WOS:000341154100001 ER PT J AU Lushnikov, PM Rose, HA Silantyev, DA Vladimirova, N AF Lushnikov, Pavel M. Rose, Harvey A. Silantyev, Denis A. Vladimirova, Natalia TI Vlasov multi-dimensional model dispersion relation SO PHYSICS OF PLASMAS LA English DT Article ID STIMULATED RAMAN-SCATTERING; PLASMA-OSCILLATIONS; WAVES; INSTABILITY; GAS AB A hybrid model of the Vlasov equation in multiple spatial dimension D>1 [H. A. Rose and W. Daughton, Phys. Plasmas 18, 122109 (2011)], the Vlasov multi dimensional model (VMD), consists of standard Vlasov dynamics along a preferred direction, the z direction, and N flows. At each z, these flows are in the plane perpendicular to the z axis. They satisfy Eulerian-type hydrodynamics with coupling by self-consistent electric and magnetic fields. Every solution of the VMD is an exact solution of the original Vlasov equation. We show approximate convergence of the VMD Langmuir wave dispersion relation in thermal plasma to that of Vlasov-Landau as N increases. Departure from strict rotational invariance about the z axis for small perpendicular wavenumber Langmuir fluctuations in 3D goes to zero like theta(N), where theta is the polar angle and flows are arranged uniformly over the azimuthal angle. (C) 2014 AIP Publishing LLC. C1 [Lushnikov, Pavel M.; Silantyev, Denis A.; Vladimirova, Natalia] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA. [Rose, Harvey A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Rose, Harvey A.; Silantyev, Denis A.; Vladimirova, Natalia] New Mexico Consortium, Los Alamos, NM 87544 USA. RP Lushnikov, PM (reprint author), Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA. EM plushnik@math.unm.edu RI Lushnikov, Pavel/I-2304-2013 FU National Science Foundation [PHY 1004118, PHY 1004110] FX The authors would like to acknowledge R. L. Berger for helpful discussion on 2D Vlasov simulations. This work was supported by the National Science Foundation under Grant Nos. PHY 1004118 and PHY 1004110. NR 23 TC 0 Z9 0 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2014 VL 21 IS 7 AR 072103 DI 10.1063/1.4886122 PG 9 WC Physics, Fluids & Plasmas SC Physics GA AO2LN UT WOS:000341154100005 ER PT J AU Murphy, TJ AF Murphy, T. J. TI The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra SO PHYSICS OF PLASMAS LA English DT Article ID NATIONAL IGNITION FACILITY; OF-FLIGHT SIGNALS; INDIRECTLY DRIVEN; NOVA; IMPLOSIONS; TARGETS; PLASMAS AB Measuring the width of the energy spectrum of fusion-produced neutrons from deuterium (DD) or deuterium-tritium (DT) plasmas is a commonly used method for determining the ion temperature in inertial confinement fusion (ICF) implosions. In a plasma with a Maxwellian distribution of ion energies, the spread in neutron energy arises from the thermal spread in the center-of-mass velocities of reacting pairs of ions. Fluid velocities in ICF are of a similar magnitude as the center-of-mass velocities and can lead to further broadening of the neutron spectrum, leading to erroneous inference of ion temperature. Motion of the reacting plasma will affect DD and DT neutrons differently, leading to disagreement between ion temperatures inferred from the two reactions. This effect may be a contributor to observations over the past decades of ion temperatures higher than expected from simulations, ion temperatures in disagreement with observed yields, and different temperatures measured in the same implosion from DD and DT neutrons. This difference in broadening of DD and DT neutrons also provides a measure of turbulent motion in a fusion plasma. (C) 2014 AIP Publishing LLC. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Murphy, TJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM tjmurphy@lanl.gov RI Murphy, Thomas/F-3101-2014 OI Murphy, Thomas/0000-0002-6137-9873 FU U.S. DOE by LANL [DE-AC52-06NA25396] FX The author would like to thank Cris W. Barnes for reviewing and suggesting changes to this manuscript, and B. Appelbe for pointing out errors in and providing a corrected version of Eq. (43) in Ref. 20. This work was performed under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396. NR 28 TC 20 Z9 20 U1 3 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2014 VL 21 IS 7 AR 072701 DI 10.1063/1.4885342 PG 5 WC Physics, Fluids & Plasmas SC Physics GA AO2LN UT WOS:000341154100059 ER PT J AU Paz-Soldan, C Lanctot, MJ Logan, NC Shiraki, D Buttery, RJ Hanson, JM La Haye, RJ Park, JK Solomon, WM Strait, EJ AF Paz-Soldan, C. Lanctot, M. J. Logan, N. C. Shiraki, D. Buttery, R. J. Hanson, J. M. La Haye, R. J. Park, J. -K. Solomon, W. M. Strait, E. J. TI The importance of matched poloidal spectra to error field correction in DIII-D SO PHYSICS OF PLASMAS LA English DT Article ID TEARING MODES; TOKAMAK; PERTURBATIONS; STABILITY AB Optimal error field correction (EFC) is thought to be achieved when coupling to the least-stable "dominant" mode of the plasma is nulled at each toroidal mode number (n). The limit of this picture is tested in the DIII-D tokamak by applying superpositions of in- and ex-vessel coil set n = 1 fields calculated to be fully orthogonal to the n = 1 dominant mode. In co-rotating H-mode and low-density Ohmic scenarios, the plasma is found to be, respectively, 7 x and 20 x less sensitive to the orthogonal field as compared to the in-vessel coil set field. For the scenarios investigated, any geometry of EFC coil can thus recover a strong majority of the detrimental effect introduced by the n = 1 error field. Despite low sensitivity to the orthogonal field, its optimization in H-mode is shown to be consistent with minimizing the neoclassical toroidal viscosity torque and not the higher-order n = 1 mode coupling. (C) 2014 AIP Publishing LLC. C1 [Paz-Soldan, C.; Lanctot, M. J.; Buttery, R. J.; La Haye, R. J.; Strait, E. J.] Gen Atom Co, San Diego, CA 92121 USA. [Logan, N. C.; Park, J. -K.; Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Shiraki, D.; Hanson, J. M.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Paz-Soldan, C (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92121 USA. EM paz-soldan@fusion.gat.com RI Lanctot, Matthew J/O-4979-2016; OI Lanctot, Matthew J/0000-0002-7396-3372; Solomon, Wayne/0000-0002-0902-9876 FU U.S. Department of Energy [DE-AC05-06OR23100, DE-FC02-04ER54698, DE-AC02-09CH11466, DE-FG02-04ER54761] FX This work was supported by the U.S. Department of Energy under Nos. DE-AC05-06OR23100, DE-FC02-04ER54698, DE-AC02-09CH11466, and DE-FG02-04ER54761. The authors would like to thank X. Lee and S. Smith for assistance with transport analysis, M. A. Van Zeeland for CO2 interferometer calibrations at low density, N. M. Ferraro for useful discussions, and H. Reimerdes and M. J. Schaffer for collecting the I-coil data re-analyzed herein. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. NR 42 TC 16 Z9 16 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2014 VL 21 IS 7 AR 072503 DI 10.1063/1.4886795 PG 13 WC Physics, Fluids & Plasmas SC Physics GA AO2LN UT WOS:000341154100049 ER PT J AU Peterson, JL Michel, P Thomas, CA Town, RPJ AF Peterson, J. L. Michel, P. Thomas, C. A. Town, R. P. J. TI The impact of laser plasma interactions on three-dimensional drive symmetry in inertial confinement fusion implosions SO PHYSICS OF PLASMAS LA English DT Article ID NATIONAL-IGNITION-FACILITY; PHYSICS BASIS; TARGETS; DESIGN; BEAMS AB Achieving symmetric hohlraum radiation drive is an important aspect of indirectly driven inertial confinement fusion experiments. However, when experimentally delivered laser powers deviate from ideal conditions, the resultant radiation field can become asymmetric. Two situations in which this may arise are random uncorrelated fluctuations, in as-delivered laser power and laser beams that do not participate in the implosion (either intentionally or unintentionally). Furthermore, laser plasma interactions in the hohlraum obfuscate the connection between laser powers and radiation drive. To study the effect of these situations on drive symmetry, we develop a simplified model for crossed-beam energy transfer, laser backscatter, and plasma absorption that can be used in conjunction with view factor calculations to expediently translate laser powers into three-dimensional capsule flux symmetries. We find that crossed-beam energy transfer can alter both the statistical properties of uncorrelated laser fluctuations and the impact of missing laser beams on radiation symmetry. A method is proposed to mitigate the effects of missing laser beams. (C) 2014 AIP Publishing LLC. C1 [Peterson, J. L.; Michel, P.; Thomas, C. A.; Town, R. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Peterson, JL (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM peterson76@llnl.gov RI Michel, Pierre/J-9947-2012 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank L. Suter, O. Jones, and B. Kirkwood for useful discussions, J. Milovich for providing the HYDRA data, and N. Izumi for the NIF x-ray data. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 19 TC 6 Z9 7 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2014 VL 21 IS 7 AR 072712 DI 10.1063/1.4891350 PG 10 WC Physics, Fluids & Plasmas SC Physics GA AO2LN UT WOS:000341154100070 ER PT J AU Philippe, F Tassin, V Depierreux, S Gauthier, P Masson-Laborde, PE Monteil, MC Seytor, P Villette, B Lasinski, B Park, HS Ross, JS Amendt, P Doppner, T Hinkel, DE Wallace, R Williams, E Michel, P Frenje, J Gatu-Johnson, M Li, CK Petrasso, R Glebov, V Sorce, C Stoeckl, C Nikroo, A Giraldez, E AF Philippe, F. Tassin, V. Depierreux, S. Gauthier, P. Masson-Laborde, P. E. Monteil, M. C. Seytor, P. Villette, B. Lasinski, B. Park, H. S. Ross, J. S. Amendt, P. Doeppner, T. Hinkel, D. E. Wallace, R. Williams, E. Michel, P. Frenje, J. Gatu-Johnson, M. Li, C. K. Petrasso, R. Glebov, V. Sorce, C. Stoeckl, C. Nikroo, A. Giraldez, E. TI Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega SO PHYSICS OF PLASMAS LA English DT Article ID NATIONAL IGNITION FACILITY; INERTIAL-FUSION; LASER; PLASMAS AB A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results. (C) 2014 AIP Publishing LLC. C1 [Philippe, F.; Tassin, V.; Depierreux, S.; Gauthier, P.; Masson-Laborde, P. E.; Monteil, M. C.; Seytor, P.; Villette, B.] CEA, DAM, DIF, F-91297 Arpajon, France. [Lasinski, B.; Park, H. S.; Ross, J. S.; Amendt, P.; Doeppner, T.; Hinkel, D. E.; Wallace, R.; Williams, E.; Michel, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Frenje, J.; Gatu-Johnson, M.; Li, C. K.; Petrasso, R.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Glebov, V.; Sorce, C.; Stoeckl, C.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Nikroo, A.; Giraldez, E.] Gen Atom Co, San Diego, CA 92186 USA. RP Philippe, F (reprint author), CEA, DAM, DIF, F-91297 Arpajon, France. RI Michel, Pierre/J-9947-2012; OI Masson-Laborde, Paul-Edouard/0000-0003-2786-9382 FU Lawrence Livermore National Security, LLC (LLNS) [DE-AC52-07NA27344]; [LDRD-11-SI-002] FX This work was performed under the auspices of Lawrence Livermore National Security, LLC (LLNS) under Contract No. DE-AC52-07NA27344 and supported by LDRD-11-SI-002. NR 25 TC 7 Z9 7 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2014 VL 21 IS 7 AR 074504 DI 10.1063/1.4890485 PG 5 WC Physics, Fluids & Plasmas SC Physics GA AO2LN UT WOS:000341154100119 ER PT J AU Raman, KS Smalyuk, VA Casey, DT Haan, SW Hoover, DE Hurricane, OA Kroll, JJ Nikroo, A Peterson, JL Remington, BA Robey, HF Clark, DS Hammel, BA Landen, OL Marinak, MM Munro, DH Peterson, KJ Salmonson, J AF Raman, K. S. Smalyuk, V. A. Casey, D. T. Haan, S. W. Hoover, D. E. Hurricane, O. A. Kroll, J. J. Nikroo, A. Peterson, J. L. Remington, B. A. Robey, H. F. Clark, D. S. Hammel, B. A. Landen, O. L. Marinak, M. M. Munro, D. H. Peterson, K. J. Salmonson, J. TI An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility SO PHYSICS OF PLASMAS LA English DT Article ID RAYLEIGH-TAYLOR GROWTH; RICHTMYER-MESHKOV INSTABILITY; SINGLE-MODE; PLANAR TARGETS; DENSE MATTER; LASER; NOVA; CONVERGENT; SIMULATIONS; SYSTEM AB A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure Rayleigh-Taylor and Richtmyer-Meshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a "low-foot" drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF. (C) 2014 AIP Publishing LLC. C1 [Raman, K. S.; Smalyuk, V. A.; Casey, D. T.; Haan, S. W.; Hurricane, O. A.; Kroll, J. J.; Peterson, J. L.; Remington, B. A.; Robey, H. F.; Clark, D. S.; Hammel, B. A.; Landen, O. L.; Marinak, M. M.; Munro, D. H.; Salmonson, J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hoover, D. E.; Nikroo, A.] Gen Atom Co, San Diego, CA 92121 USA. [Peterson, K. J.] Sandia Natl Labs, Albuquerque, NM 87125 USA. RP Raman, KS (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This experiment was initiated as part of a larger high energy density (HED) ignition science effort led by one of us (O. A. Hurricane) and developed within the mix campaign of the NIF ignition program. We would like to acknowledge M. J. Edwards, A. Hamza, W. Hsing, J. Kilkenny, D. Pilkington, J. Sefcik, C. Verdon, and A. Wan for strongly supporting this project. We would like to thank NIF target fabrication for building the targets and NIF operations for executing the shots. We acknowledge D. Callahan, O. S. Jones, J. Milovich, N. Meezan, and S. Prisbey for discussions about aspects of hohlraum design; N. Meezan for help in determining our pulse shape; S. MacLaren, M. Schneider, and K. Widmann for illuminating discussions about M-band measurements and modeling; and P. Sterne for helpful comments about the GDP equation-of-state. The laser deviations shown in Table I were provided by B. MacGowan. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 94 TC 42 Z9 42 U1 3 U2 25 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2014 VL 21 IS 7 AR 072710 DI 10.1063/1.4890570 PG 21 WC Physics, Fluids & Plasmas SC Physics GA AO2LN UT WOS:000341154100068 ER PT J AU Sefkow, AB Slutz, SA Koning, JM Marinak, MM Peterson, KJ Sinars, DB Vesey, RA AF Sefkow, A. B. Slutz, S. A. Koning, J. M. Marinak, M. M. Peterson, K. J. Sinars, D. B. Vesey, R. A. TI Design of magnetized liner inertial fusion experiments using the Z facility SO PHYSICS OF PLASMAS LA English DT Article ID TARGET FUSION; CONFINEMENT FUSION; CYLINDRICAL GEOMETRY; IGNITION CONDITIONS; ICF TARGETS; ION-BEAMS; FUEL; FIELD; DENSITY; GAIN AB The magnetized liner inertial fusion concept has been presented as a path toward obtaining substantial thermonuclear fusion yields using the Z accelerator [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. We present the first integrated magnetohydrodynamic simulations of the inertial fusion targets, which self-consistently include laser preheating of the fuel, the presence of electrodes, and end loss effects. These numerical simulations provided the design for the first thermonuclear fusion neutron-producing experiments on Z using capabilities that presently exist: peak currents of I-max = 18-20 MA, pre-seeded axial magnetic fields of B-z(0) = 10 T, laser preheat energies of about E-las = 2 kJ delivered in 2 ns, DD fuel, and an aspect ratio 6 solid Be liner imploded to 70 km/s. Specific design details and observables for both near-term and future experiments are discussed, including sensitivity to laser timing and absorbed preheat energy. The initial experiments measured stagnation radii r(stag) < 75 mu m, temperatures around 3 keV, and isotropic neutron yields up to Y-n(DD) = 2 x 10(12), with inferred alpha-particle magnetization parameters around r(stag)/r(L)(alpha) = 1:7 [M. R. Gomez et al., Phys. Rev. Lett. (submitted)]. (C) 2014 AIP Publishing LLC. C1 [Sefkow, A. B.; Slutz, S. A.; Peterson, K. J.; Sinars, D. B.; Vesey, R. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Koning, J. M.; Marinak, M. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Sefkow, AB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU National Nuclear Security Administration [DE-AC04-94AL85000]; Laboratory Directed Research and Development Program at Sandia FX The authors acknowledge C. W. Nakhleh and M. C. Herrmann for support, the TLCC2 team at Sandia for computing support, D. R. Welch for LSP code support, and B. G. Logan for helpful feedback. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. Support provided in part by the Laboratory Directed Research and Development Program at Sandia. NR 50 TC 31 Z9 31 U1 2 U2 21 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2014 VL 21 IS 7 AR 072711 DI 10.1063/1.4890298 PG 15 WC Physics, Fluids & Plasmas SC Physics GA AO2LN UT WOS:000341154100069 ER PT J AU Franckowiak, A Funk, S AF Franckowiak, Anna Funk, Stefan TI Giant gamma-ray bubbles in the Milky Way SO PHYSICS TODAY LA English DT Editorial Material ID FERMI; GALAXY C1 [Franckowiak, Anna; Funk, Stefan] SLAC, Menlo Pk, CA 94025 USA. [Franckowiak, Anna] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. RP Franckowiak, A (reprint author), SLAC, Menlo Pk, CA 94025 USA. RI Funk, Stefan/B-7629-2015 OI Funk, Stefan/0000-0002-2012-0080 NR 7 TC 0 Z9 0 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD JUL PY 2014 VL 67 IS 7 BP 60 EP 61 DI 10.1063/PT.3.2457 PG 2 WC Physics, Multidisciplinary SC Physics GA AO6GL UT WOS:000341448200021 ER PT J AU Chiang, CCK Barkakaty, B Puskas, JE Xie, WS Cornish, K Peruch, F Deffieux, A AF Chiang, Cheng Ching K. Barkakaty, Balaka Puskas, Judit E. Xie, Wenshuang Cornish, Katrina Peruch, Federic Deffieux, Alain TI UNRAVELING THE MYSTERY OF NATURAL RUBBER BIOSYNTHESIS. PART II: COMPOSITION AND GROWTH OF IN VITRO NATURAL RUBBER USING HIGH-RESOLUTION SIZE EXCLUSION CHROMATOGRAPHY SO RUBBER CHEMISTRY AND TECHNOLOGY LA English DT Article ID PARTHENIUM-ARGENTATUM GRAY; GUAYULE RUBBER AB The superior properties of natural rubber (cis-1,4-polyisoprene [NR]) are a function of its structure and composition, properties that still remain a mystery and that are irreplaceable by any synthetic rubber. NR from guayule (Parthenium argentatum) has been gaining special interest for its hypoallergenic properties while maintaining superior mechanical properties that are commonly associated with the Brazilian rubber tree (Hevea brasiliensis), the most common source of NR. Techniques exist to isolate washed rubber particles (WRPs) that contain enzymatically active rubber transferase, to study NR biosynthesis, and previous work on the in vitro NR growth in Hevea has demonstrated the presence of around 50 wt% of a low molecular weight ([MW], M-n <10 000 g/mol) fraction. Structural and compositional analyses of this low MW fraction in Hevea are challenging due to the high protein content. We discuss the analysis and composition of guayule latex and WRPs using high-resolution Size Exclusion Chromatography. We also discuss the composition of the soluble fraction of inactive guayule latex using matrix-assisted laser desorption ionization/time of flight mass spectrometry. C1 [Chiang, Cheng Ching K.; Puskas, Judit E.] Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. [Barkakaty, Balaka] Oak Ridge Natl Lab, Ctr Nanophase & Mat Sci, Oak Ridge, TN 37831 USA. [Puskas, Judit E.] Univ Akron, Dept Biomol & Chem Engn, Akron, OH 44325 USA. [Xie, Wenshuang; Cornish, Katrina] Ohio State Univ, OARDC, Wooster, OH 44691 USA. [Peruch, Federic; Deffieux, Alain] Univ Bordeaux, LCPO CNRS, Pessac, France. RP Puskas, JE (reprint author), Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. EM jpuskas@uakcron.edu RI Cornish, Katrina/A-9773-2013; PERUCH, Frederic/E-1765-2015; Xie, Wenshuang/K-3084-2014 OI PERUCH, Frederic/0000-0003-1891-5877; Xie, Wenshuang/0000-0003-4504-8609 FU National Science Foundation (NSF) [CHE-1012636]; Ohio State University; NSF-DMR [0509687]; University of Akron FX This material is based upon work supported by the National Science Foundation (NSF) under CHE-1012636 and by The Ohio State University. The authors also acknowledge NSF-DMR 0509687 and the University of Akron for funds used to upgrade our SEC instrument. We are also thankful to Chrys Wesdemiotis in the Department of Chemistry for the SEC fractionation and MALDI/TOF analysis. NR 12 TC 0 Z9 0 U1 1 U2 22 PU AMER CHEMICAL SOC INC PI AKRON PA RUBBER DIV UNIV AKRON PO BOX 499, AKRON, OH 44309-0499 USA SN 0035-9475 EI 1943-4804 J9 RUBBER CHEM TECHNOL JI Rubber Chem. Technol. PD JUL-SEP PY 2014 VL 87 IS 3 BP 451 EP 458 DI 10.5254/rct.14.87913 PG 8 WC Polymer Science SC Polymer Science GA AO7PV UT WOS:000341546000004 ER PT J AU Qi, ML Bie, BX Zhao, FP Hu, CM Fan, D Ran, XX Xiao, XH Yang, WG Li, P Luo, SN AF Qi, M. L. Bie, B. X. Zhao, F. P. Hu, C. M. Fan, D. Ran, X. X. Xiao, X. H. Yang, W. G. Li, P. Luo, S. N. TI A metallography and x-ray tomography study of spall damage in ultrapure Al SO AIP ADVANCES LA English DT Article ID TANTALUM; COPPER AB We characterize spall damage in shock-recovered ultrapure Al with metallography and x-ray tomography. The measured damage profiles in ultrapure Al induced by planar impact at different shock strengths, can be described with a Gaussian function, and showed dependence on shock strengths. Optical metallography is reasonably accurate for damage profile measurements, and agrees within 10-25% with x-ray tomography. Full tomography analysis showed that void size distributions followed a power law with an exponent of gamma = 1.5 +/- 2.0, which is likely due to void nucleation and growth, and the exponent is considerably smaller than the predictions from percolation models. (C) 2014 Author(s). C1 [Qi, M. L.; Bie, B. X.; Ran, X. X.] Wuhan Univ Technol, Sch Sci, Wuhan 430070, Hubei, Peoples R China. [Qi, M. L.; Hu, C. M.; Yang, W. G.] Argonne Natl Lab, HPSynC Adv Photon Source, Argonne, IL 60439 USA. [Bie, B. X.; Zhao, F. P.; Fan, D.; Luo, S. N.] Peac Inst Multiscale Sci, Chengdu 610207, Sichuan, Peoples R China. [Bie, B. X.; Zhao, F. P.; Fan, D.; Luo, S. N.] Sichuan Univ, Chengdu 610207, Sichuan, Peoples R China. [Hu, C. M.; Li, P.] China Acad Engn Phys, Natl Key Lab Shock Wave & Detonat Phys, Mianyang 621900, Sichuan, Peoples R China. [Xiao, X. H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Qi, ML (reprint author), Wuhan Univ Technol, Sch Sci, Wuhan 430070, Hubei, Peoples R China. EM wenge@aps.anl.gov; sluo@pims.ac.cn RI Luo, Sheng-Nian /D-2257-2010 OI Luo, Sheng-Nian /0000-0002-7538-0541 FU National Natural Science Foundation of China; NSAF [11172221, U1330111]; China Scholarship Council FX We benefited from invaluable discussions with L. Q. Zheng, Q. An, L. Han, K. Xia and S. Huang. This work was funded by the National Natural Science Foundation of China and NSAF (11172221 and U1330111) and China Scholarship Council. NR 26 TC 3 Z9 3 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD JUL PY 2014 VL 4 IS 7 AR 077118 DI 10.1063/1.4890310 PG 12 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AO2RT UT WOS:000341173700018 ER PT J AU Xu, XF Jie, YX Beyerlein, IJ AF Xu, X. Frank Jie, Yuxin Beyerlein, Irene J. TI A probability model for the strength of carbon nanotubes SO AIP ADVANCES LA English DT Article ID COMPOSITE LAMINA; TENSILE-STRENGTH; CREEP-RUPTURE; STATISTICS; SIZE; MICROCOMPOSITES; MECHANICS; LIFETIME; FRACTURE; BUNDLES AB A longstanding controversy exists on the form of the probability distribution for the strength of carbon nanotubes: is it Weibull, lognormal, or something else? We present a theory for CNT strength through integration of weakest link scaling, flaw statistics, and brittle fracture. The probability distribution that arises exhibits multiple regimes, each of which takes the form of a Weibull distribution. Our model not only gives a possible resolution to the debate but provides away to attain reliable estimates of CNT strength for materials design from practical-sized (non-asymptotic) data sets of CNT strength. Last, the model offers an explanation for the severe underestimation of CNT strength from strength tests of CNT bundles. (C) 2014 Author(s). C1 [Xu, X. Frank] Beijing Jiaotong Univ, Sch Civil Engn, Beijing 100044, Peoples R China. [Jie, Yuxin] Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China. [Beyerlein, Irene J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Xu, XF (reprint author), Beijing Jiaotong Univ, Sch Civil Engn, Beijing 100044, Peoples R China. EM xixu@bjtu.edu.cn FU National Science Foundation of China [11132003]; Natural Science Foundation of China [51039003]; National Basic Research Program of China (973 Program) [2013CB036402]; Los Alamos National Laboratory Directed Research and Development (LDRD) [ER20140348] FX X.F.X. was supported by National Science Foundation of China (11132003). Y.J. was supported by Natural Science Foundation of China (51039003) and National Basic Research Program of China (973 Program 2013CB036402). I.J.B. was supported by a Los Alamos National Laboratory Directed Research and Development (LDRD) project ER20140348. NR 36 TC 0 Z9 0 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD JUL PY 2014 VL 4 IS 7 AR 077116 DI 10.1063/1.4890214 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AO2RT UT WOS:000341173700016 ER PT J AU Balachandran, PV Cammarata, A Nelson-Cheeseman, BB Bhattacharya, A Rondinelli, JM AF Balachandran, P. V. Cammarata, A. Nelson-Cheeseman, B. B. Bhattacharya, A. Rondinelli, J. M. TI Inductive crystal field control in layered metal oxides with correlated electrons SO APL MATERIALS LA English DT Article ID SUPERCONDUCTIVITY; HETEROSTRUCTURES; ANISOTROPY; CHEMISTRY; VALENCE; STATE; BA; CA AB We show that the NiO6 crystal field energies can be tailored indirectly via heterovalent A cation ordering in layered (La,A) NiO4 Ruddlesden-Popper (RP) oxides, where A = Sr, Ca, or Ba, using density functional calculations. We leverage as a driving force the electrostatic interactions between charged [LaO](1+) and neutral [AO](0) planes to inductively tune the Ni-O bond distortions, without intentional doping or epitaxial strain, altering the correlated d-orbital energies. We use this strategy to design cation ordered LaCaNiO4 and LaBaNiO4 with distortions favoring enhanced Ni e(g) orbital polarization, and find local electronic structure signatures analogous to those in RP La-cuprates, i.e., parent phases of the high-temperature superconducting oxides. (C) 2014 Author(s). C1 [Balachandran, P. V.; Cammarata, A.; Rondinelli, J. M.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Nelson-Cheeseman, B. B.] Univ St Thomas, Sch Engn, St Paul, MN 55105 USA. [Nelson-Cheeseman, B. B.; Bhattacharya, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Bhattacharya, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Balachandran, PV (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. EM jrondinelli@nortwestern.edu RI Bhattacharya, Anand/G-1645-2011; Rondinelli, James/A-2071-2009; Cammarata, Antonio/A-4883-2014 OI Bhattacharya, Anand/0000-0002-6839-6860; Rondinelli, James/0000-0003-0508-2175; Cammarata, Antonio/0000-0002-5691-0682 FU DARPA [N66001-12-1-4224]; ONR [N00014-11-1-0664]; U.S. DOE, Office of Basic Energy Sciences (BES) [DE-AC02-06CH11357]; DOE-BES Materials Science and Engineering Division FX P. V. B and J. M. R. acknowledge funding support from DARPA (Grant No. N66001-12-1-4224). A. C. was supported by ONR (N00014-11-1-0664). DFT calculations were performed with the DoD Garnet ERDC, Spirit AFRL machines, and the CARBON cluster at the Center of Nanoscale Materials [Argonne National Laboratory, supported by the U.S. DOE, Office of Basic Energy Sciences (BES), DE-AC02-06CH11357]. B. B. N.-C. and A. B. were supported by the DOE-BES Materials Science and Engineering Division. The authors thank H. Zhou and D. Haskel for useful discussions. NR 41 TC 6 Z9 6 U1 4 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD JUL PY 2014 VL 2 IS 7 AR 076110 DI 10.1063/1.4890544 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AO2RW UT WOS:000341174100012 ER PT J AU Gostincar, C Ohm, RA Kogej, T Sonjak, S Turk, M Zajc, J Zalar, P Grube, M Sun, H Han, J Sharma, A Chiniquy, J Ngan, CY Lipzen, A Barry, K Grigoriev, IV Gunde-Cimerman, N AF Gostincar, Cene Ohm, Robin A. Kogej, Tina Sonjak, Silva Turk, Martina Zajc, Janja Zalar, Polona Grube, Martin Sun, Hui Han, James Sharma, Aditi Chiniquy, Jennifer Ngan, Chew Yee Lipzen, Anna Barry, Kerrie Grigoriev, Igor V. Gunde-Cimerman, Nina TI Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species SO BMC GENOMICS LA English DT Article DE Aureobasidium pullulans; Dothideomycetes; Genome; Stress; Haloadaptation; Halotolerance; Polyextremotolerant; New species; Opportunistic mycosis; Pullulan ID YEAST PLASMA-MEMBRANE; PREDICTING SUBCELLULAR-LOCALIZATION; CARBOHYDRATE-ACTIVE ENZYMES; FUNGUS HORTAEA-WERNECKII; HALOPHILIC BLACK YEASTS; SACCHAROMYCES-CEREVISIAE; MELANIN BIOSYNTHESIS; COLLETOTRICHUM-LAGENARIUM; WALLEMIA-ICHTHYOPHAGA; ANTIFUNGAL ACTIVITY AB Background: Aureobasidium pullulans is a black-yeast-like fungus used for production of the polysaccharide pullulan and the antimycotic aureobasidin A, and as a biocontrol agent in agriculture. It can cause opportunistic human infections, and it inhabits various extreme environments. To promote the understanding of these traits, we performed de-novo genome sequencing of the four varieties of A. pullulans. Results: The 25.43-29.62 Mb genomes of these four varieties of A. pullulans encode between 10266 and 11866 predicted proteins. Their genomes encode most of the enzyme families involved in degradation of plant material and many sugar transporters, and they have genes possibly associated with degradation of plastic and aromatic compounds. Proteins believed to be involved in the synthesis of pullulan and siderophores, but not of aureobasidin A, are predicted. Putative stress-tolerance genes include several aquaporins and aquaglyceroporins, large numbers of alkali-metal cation transporters, genes for the synthesis of compatible solutes and melanin, all of the components of the high-osmolarity glycerol pathway, and bacteriorhodopsin-like proteins. All of these genomes contain a homothallic mating-type locus. Conclusions: The differences between these four varieties of A. pullulans are large enough to justify their redefinition as separate species: A. pullulans, A. melanogenum, A. subglaciale and A. namibiae. The redundancy observed in several gene families can be linked to the nutritional versatility of these species and their particular stress tolerance. The availability of the genome sequences of the four Aureobasidium species should improve their biotechnological exploitation and promote our understanding of their stress-tolerance mechanisms, diverse lifestyles, and pathogenic potential. C1 [Gostincar, Cene; Kogej, Tina; Sonjak, Silva; Turk, Martina; Zajc, Janja; Gunde-Cimerman, Nina] Univ Ljubljana, Dept Biol, Biotech Fac, SI-1000 Ljubljana, Slovenia. [Gostincar, Cene] Natl Inst Biol, SI-1000 Ljubljana, Slovenia. [Ohm, Robin A.; Sun, Hui; Han, James; Sharma, Aditi; Chiniquy, Jennifer; Ngan, Chew Yee; Lipzen, Anna; Barry, Kerrie; Grigoriev, Igor V.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Grube, Martin] Karl Franzens Univ Graz, Inst Plant Sci, A-8010 Graz, Austria. [Gunde-Cimerman, Nina] Ctr Excellence Integrated Approaches Chem & Biol, SI-1000 Ljubljana, Slovenia. RP Gostincar, C (reprint author), Univ Ljubljana, Dept Biol, Biotech Fac, Vecna Pot 111, SI-1000 Ljubljana, Slovenia. EM cene.gostincar@bf.uni-lj.si RI Ohm, Robin/I-6689-2016; OI Gostincar, Cene/0000-0002-0149-3674 FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; state budget through the Slovenian Research Agency (Infrastructural Centre Mycosmo, MRIC UL) [Z4-5531]; European Regional Development Fund [OP13.1.1.2.02.0005]; Slovenian Ministry of Higher Education, Science and Technology FX The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors acknowledge financial support from the state budget through the Slovenian Research Agency (Infrastructural Centre Mycosmo, MRIC UL, Postdoctoral Project Z4-5531 to CG, and Young Researcher Grant to JZ). The study was also partly financed via operation "Centre of excellence for integrated approaches in chemistry and biology of proteins" number OP13.1.1.2.02.0005, financed by European Regional Development Fund (85% share of financing) and by the Slovenian Ministry of Higher Education, Science and Technology (15% share of financing). The authors would like to thank Chris Berrie for language editing assistance. NR 189 TC 45 Z9 47 U1 6 U2 53 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD JUL 1 PY 2014 VL 15 AR 549 DI 10.1186/1471-2164-15-549 PG 28 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA AN5ML UT WOS:000340635400001 PM 24984952 ER PT J AU Maurer, EP Brekke, L Pruitt, T Thrasher, B Long, J Duffy, P Dettinger, M Cayan, D Arnold, J AF Maurer, E. P. Brekke, L. Pruitt, T. Thrasher, B. Long, J. Duffy, P. Dettinger, M. Cayan, D. Arnold, J. TI AN ENHANCED ARCHIVE FACILITATING CLIMATE IMPACTS AND ADAPTATION ANALYSIS SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID CHANGE SCENARIOS; CALIFORNIA; FUTURE; PRECIPITATION; INFORMATION; SENSITIVITY; MODELS; TEMPERATURE; VARIABILITY; PROJECTIONS AB We describe the expansion of a publicly available archive of downscaled climate and hydrology projections for the United States. Those studying or planning to adapt to future climate impacts demand downscaled climate model output for local or regional use. The archive we describe attempts to fulfill this need by providing data in several formats, selectable to meet user needs. Our archive has served as a resource for climate impacts modelers, water managers, educators, and others. Over 1,400 individuals have transferred more than 50 TB of data from the archive. In response to user demands, the archive has expanded from monthly downscaled data to include daily data to facilitate investigations of phenomena sensitive to daily to monthly temperature and precipitation, including extremes in these quantities. New developments include downscaled output from the new Coupled Model Intercomparison Project phase 5 (CMIP5) climate model simulations at both the monthly and daily time scales, as well as simulations of surface hydrological variables. The web interface allows the extraction of individual projections or ensemble statistics for user-defined regions, promoting the rapid assessment of model consensus and uncertainty for future projections of precipitation, temperature, and hydrology. The archive is accessible online (http://gdo-dcp.ucllnl.org/downscaled_cmip_projections). C1 [Maurer, E. P.] Santa Clara Univ, Dept Civil Engn, Santa Clara, CA 95053 USA. [Brekke, L.; Pruitt, T.] US Bur Reclamat, Tech Serv Ctr 86 68520, Denver, CO 80225 USA. [Thrasher, B.] Climate Analyt Grp, Palo Alto, CA USA. [Thrasher, B.] Climate Cent, Princeton, NJ USA. [Long, J.; Duffy, P.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Dettinger, M.; Cayan, D.] US Geol Survey, La Jolla, CA USA. [Dettinger, M.; Cayan, D.] Univ Calif San Diego, Scripps Inst Oceanog, Div Climate Atmospher Sci & Phys Oceanog, La Jolla, CA 92093 USA. [Arnold, J.] US Army Corps Engineers, Inst Water Resources, Alexandria, VA USA. RP Maurer, EP (reprint author), Santa Clara Univ, Dept Civil Engn, 500 El Camino Real, Santa Clara, CA 95053 USA. EM emaurer@engr.scu.edu RI Maurer, Edwin/C-7190-2009; OI Maurer, Edwin/0000-0001-7134-487X; Thrasher, Bridget/0000-0002-3961-1971 FU Bureau of Reclamation's Science and Technology Program; WaterSMART grants; California Energy Commission (CEC); U.S. Department of the Interior Southwest Climate Science Center FX We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Portions of the archive dataset were produced using computational facilities of the NASA Earth Exchange (www.nex.nasa.gov). This work was supported by the Bureau of Reclamation's Science and Technology Program (data service development) and by WaterSMART grants to develop Climate Data Analysis Tools. Support was also provided by the California Energy Commission (CEC)-funded California Climate Change Center under the CEC PIER Program and by the U.S. Department of the Interior Southwest Climate Science Center. NR 57 TC 14 Z9 14 U1 3 U2 20 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD JUL PY 2014 VL 95 IS 7 BP 1011 EP + DI 10.1175/BAMS-D-13-00126.1 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AO0ED UT WOS:000340981000010 ER PT J AU Charilaou, M Hellman, F AF Charilaou, M. Hellman, F. TI Anomalous magnetic thermodynamics in uncompensated collinear antiferromagnets SO EPL LA English DT Article ID POLARIZED PHOTOELECTRON DIFFRACTION; 3-DIMENSIONAL ISING-MODEL; MONTE-CARLO; PHASE-TRANSITIONS; CRITICAL-BEHAVIOR; EXCHANGE BIAS; SURFACE; TEMPERATURE; FILMS; COO AB Monte Carlo simulations show that the net magnetization of collinear antiferromagnets (AFM) with uncompensated surfaces exhibits a unique thermodynamic behavior, with a temperature dependence unlike that of ferromagnets or of the Neel vector. The magnetization of AFM is not equal to that of its surface, even though it results from surface effects. This phenomenon appears in thin AFM films but is valid even in the limit of semi-infinite systems. The net magnetization of AFM therefore corresponds to a distinct topological thermodynamic state due to the free surface. Copyright (C) EPLA, 2014 C1 [Charilaou, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Charilaou, M (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. OI Charilaou, Michalis/0000-0003-1072-1701 FU magnetism program at LBNL; DOE BES DMSE [DE-AC02-05CH11231]; Swiss National Science Foundation [PBEZP2-142894] FX We thank D. S. BOUMA, A. VISHWANATH, D.-H. LEE, J. E. MOORE, and R. J. BIRGENEAU for fruitful discussions, and gratefully acknowledge funding from the magnetism program at LBNL, from DOE BES DMSE Contract DE-AC02-05CH11231. MC also thanks the Swiss National Science Foundation for support via Grant PBEZP2-142894. NR 51 TC 2 Z9 2 U1 1 U2 6 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD JUL PY 2014 VL 107 IS 2 AR 27002 DI 10.1209/0295-5075/107/27002 PG 6 WC Physics, Multidisciplinary SC Physics GA AN7KX UT WOS:000340779900021 ER PT J AU Miskowiec, A Buck, ZN Brown, MC Kaiser, H Hansen, FY King, GM Taub, H Jiji, R Cooley, JW Tyagi, M Diallo, SO Mamontov, E Herwig, KW AF Miskowiec, A. Buck, Z. N. Brown, M. C. Kaiser, H. Hansen, F. Y. King, G. M. Taub, H. Jiji, R. Cooley, J. W. Tyagi, M. Diallo, S. O. Mamontov, E. Herwig, K. W. TI On the freezing behavior and diffusion of water in proximity to single-supported zwitterionic and anionic bilayer lipid membranes SO EPL LA English DT Article ID ELASTIC NEUTRON-SCATTERING; DEUTERON MAGNETIC-RESONANCE; MOLECULAR-DYNAMICS; HYDRATION; STATE; NMR AB We compare the freezing/melting behavior of water hydrating single-supported bilayers of a zwitterionic lipid DMPC with that of an anionic lipid DMPG. For both membranes, the temperature dependence of the elastically scattered neutron intensity indicates distinct water types undergoing translational diffusion: bulk-like water probably located above the membrane and two types of confined water closer to the lipid head groups. The membranes differ in the greater width Delta T of the water freezing transition near the anionic DMPG bilayer (Delta T similar to 70 K) compared to zwitterionic DMPC (Delta T similar to 20 K) as well as in the abruptness of the freezing/melting transitions of the bulk-like water. Copyright (C) EPLA, 2014 C1 [Miskowiec, A.; Buck, Z. N.; Kaiser, H.; King, G. M.; Taub, H.] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. [Miskowiec, A.; Buck, Z. N.; Kaiser, H.; King, G. M.; Taub, H.] Univ Missouri, Univ Missouri Res Reactor, Columbia, MO USA. [Brown, M. C.; Jiji, R.; Cooley, J. W.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. [Hansen, F. Y.] Tech Univ Denmark, Dept Chem, DK-2800 Lyngby, Denmark. [Tyagi, M.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Tyagi, M.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Diallo, S. O.; Mamontov, E.; Herwig, K. W.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Taub, H (reprint author), Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. EM taubh@missouri.edu RI Tyagi, Madhu Sudan/M-4693-2014; Mamontov, Eugene/Q-1003-2015; Diallo, Souleymane/B-3111-2016; OI Tyagi, Madhu Sudan/0000-0002-4364-7176; Mamontov, Eugene/0000-0002-5684-2675; Diallo, Souleymane/0000-0002-3369-8391; JiJi, Renee/0000-0003-0399-4648 FU U.S. National Science Foundation [DMR-0705974, DGE-1069091]; NSF [DMR-0454672]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the U.S. National Science Foundation under Grant Nos. DMR-0705974 and DGE-1069091 and utilized facilities supported in part by the NSF under agreement No. DMR-0454672. A portion of this research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We thank Dan A. NEUMANN and IOAN KOSZTIN for helpful discussions. NR 24 TC 4 Z9 4 U1 0 U2 13 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD JUL PY 2014 VL 107 IS 2 AR 28008 DI 10.1209/0295-5075/107/28008 PG 6 WC Physics, Multidisciplinary SC Physics GA AN7KX UT WOS:000340779900035 ER PT J AU Beck, JH Ray, B Grote, RR Osgood, RM Black, CT Alam, MA Kymissis, I AF Beck, Jonathan H. Ray, Biswajit Grote, Richard R. Osgood, Richard M., Jr. Black, Charles T. Alam, Muhammad Ashraful Kymissis, Ioannis TI Nanostructured Electrodes Improve the Fill Factor of Organic Photovoltaics SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Fill factor (FF); nanolithography; nanostructured electrodes (NEs); organic photovoltaic (OPV) cell ID OPEN-CIRCUIT VOLTAGE; SOLAR-CELLS; EFFICIENCY; POLYMER; SUBPHTHALOCYANINE; ENHANCEMENT; DEPOSITION; TRANSPORT AB In this study, we demonstrate that suboptical-wavelength nanostructured electrodes (NEs) improve fill factor (FF) in organic photovoltaic devices without compromising open-circuit voltage or short-circuit current. We attribute this improvement to efficient charge collection by the NEs, which reduce recombination in low-mobility organic semiconductors. NEs increase the FF of planar heterojunction devices with boron subphthalocyanine chloride (SubPc)/C-60 from 28% to 40%. Optical simulations and external quantum efficiency measurements show that improved charge collection, rather than light trapping, is the mechanism for device improvement. Our findings suggest that NEs can be optimized for a given material set to improve FF performance, which is important for improving organic photovoltaic power conversion efficiency. C1 [Beck, Jonathan H.; Grote, Richard R.; Osgood, Richard M., Jr.; Kymissis, Ioannis] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA. [Ray, Biswajit; Alam, Muhammad Ashraful] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47906 USA. [Black, Charles T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Beck, JH (reprint author), Columbia Univ, Dept Elect Engn, New York, NY 10027 USA. EM jhb2158@columbia.edu; ray0@purdue.edu; richard.r.grote@gmail.com; osgood@columbia.edu; ctblack@bnl.gov; alam@purdue.edu; johnkym@ee.columbia.edu RI Kymissis, Ioannis/A-5994-2010 OI Kymissis, Ioannis/0000-0001-7417-1759 FU Center for Re-Defining Photovoltaic Efficiency Through Molecule Scale Control: an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001085]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was supported as part of the Center for Re-Defining Photovoltaic Efficiency Through Molecule Scale Control: an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0001085. The work carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-98CH10886. NR 44 TC 1 Z9 1 U1 2 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD JUL PY 2014 VL 4 IS 4 BP 1100 EP 1106 DI 10.1109/JPHOTOV.2014.2315436 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA AN8FA UT WOS:000340837500014 ER PT J AU Mei, DH Glezakou, VA Lebarbier, V Kovarik, L Wan, HY Albrecht, KO Gerber, M Rousseau, R Dagle, RA AF Mei, Donghai Glezakou, Vassiliki-Alexandra Lebarbier, Vanessa Kovarik, Libor Wan, Haiying Albrecht, Karl O. Gerber, Mark Rousseau, Roger Dagle, Robert A. TI Highly active and stable MgAl2O4-supported Rh and Ir catalysts for methane steam reforming: A combined experimental and theoretical study SO JOURNAL OF CATALYSIS LA English DT Article DE Methane steam reforming; Ab initio molecular dynamics; Rhodium; Iridium; Spinel ID GENERALIZED GRADIENT APPROXIMATION; METAL-SUPPORT INTERACTIONS; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; CHEMICAL CONVERSION; NICKEL-CATALYSTS; GAMMA-AL2O3 SURFACES; SITE REQUIREMENTS; REACTION PATHWAYS AB In this work, we present a combined experimental and theoretical investigation of stable MgAl2O4-supported Rh and Ir catalysts for the steam methane reforming (SMR) reaction. Catalytic SMR performance for a series of noble metal catalysts supported on MgAl2O4 spinel has been evaluated at 873-1123 K. The turnover rate at 873 K follows the order: Pd > Ir > Pt similar to Rh > Ru > Ni. However, Rh and Ir are found to have the best combination of activity and stability for SMR in the presence of simulated biomass-derived syngas where highly dispersed similar to 2 nm Rh and similar to 1 nm Ir clusters are identified on the MgAl2O4 spinel support. Scanning Transmission Electron Microscopy (STEM) images show that this excellent dispersion is maintained even under high-temperature conditions (e.g., at 1123 K in the presence of steam), while larger particle sizes of Rh and particularly Ir are observed when supported on Al2O3. These observations are further confirmed by ab initio molecular dynamic (AIMD) simulations, which find that similar to 1 nm Rh and Ir particles (50-atom cluster) bind strongly to the MgAl2O4 surface via a redox process. The strong metal-support interaction between the spinel support and Rh or Ir helps anchor the metal clusters and reduce the tendency to form larger particle sizes. Density functional theory (DFT) calculations suggest that these supported smaller Rh and Ir particles have a lower work function than larger more bulk-like ones, which enables them to activate both water and methane more effectively than larger particles, yet have a minimal influence on the relative stability of coke precursors. In addition, theoretical mechanistic studies are used to probe the relationship between structure and reactivity. Consistent with the experimental observations, our theoretical modeling results also suggest that the small spinel-supported Ir catalyst is more active than the counterpart Rh catalyst for SMR. (C) 2014 Elsevier Inc. All rights reserved. C1 [Mei, Donghai; Glezakou, Vassiliki-Alexandra; Rousseau, Roger] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Mei, Donghai; Glezakou, Vassiliki-Alexandra; Lebarbier, Vanessa; Wan, Haiying; Albrecht, Karl O.; Gerber, Mark; Rousseau, Roger; Dagle, Robert A.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Lebarbier, Vanessa; Wan, Haiying; Albrecht, Karl O.; Gerber, Mark; Dagle, Robert A.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Kovarik, Libor] Pacific NW Natl Lab, William R Wiley Mol Sci Lab, Richland, WA 99352 USA. RP Mei, DH (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM donghai.mei@pnnl.gov; roger.rousseau@pnnl.gov; robert.dagle@pnnl.gov RI Mei, Donghai/A-2115-2012; Rousseau, Roger/C-3703-2014; Mei, Donghai/D-3251-2011; Kovarik, Libor/L-7139-2016 OI Mei, Donghai/0000-0002-0286-4182; FU United States Department of Energy (DOE)'s Bioenergy Technologies Office (BETO); Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) located at PNNL FX This work was financially supported by the United States Department of Energy (DOE)'s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time was granted by a user proposal at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) located at PNNL. Part of the computational time was provided by the National Energy Research Scientific Computing Center (NERSC). NR 67 TC 25 Z9 28 U1 17 U2 137 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD JUL PY 2014 VL 316 BP 11 EP 23 DI 10.1016/j.jcat.2014.04.021 PG 13 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA AN8KT UT WOS:000340853800002 ER PT J AU Pakhare, D Schwartz, V Abdelsayed, V Haynes, D Shekhawat, D Poston, J Spivey, J AF Pakhare, Devendra Schwartz, Viviane Abdelsayed, Victor Haynes, Daniel Shekhawat, Dushyant Poston, James Spivey, James TI Kinetic and mechanistic study of dry (CO2) reforming of methane over Rh-substituted La2Zr2O7 pyrochlores SO JOURNAL OF CATALYSIS LA English DT Article DE Dry reforming; La-oxycarbonates; Pyrochlores; Lattice oxygen; Kinetic isotope effect; Transient pulsing ID SUPPORTED RHODIUM CATALYSTS; CARBON-DIOXIDE; SYNTHESIS GAS; PARTIAL OXIDATION; NICKEL-CATALYSTS; NATURAL-GAS; CHEMICAL CONVERSION; TRANSITION-METALS; REACTION PATHWAYS; NI CATALYSTS AB The active sites and kinetics of dry reforming of methane (DRM) on lanthanum zirconate (LZ) pyrochlore catalysts are studied as a function of Rh substitution, temperature, and partial pressures of CH4 and CO2. In this work, we focus specifically on determining the catalytic active sites for CH4 and CO2 activation and their role in the DRM mechanism over the two Rh-substituted pyrochlores, i.e., 2 wt% Rh, designated L2RhZ and 5 wt% Rh, designated L5RhZ. Kinetic rate modeling suggests dual-site mechanism, where CH4 and CO2 are activated on different sites (dual-site mechanism). Eleven different rate models were tested against the kinetic rate data obtained over these two Rh pyrochlores. Statistical analysis shows valid and similar fits for only two of eleven models: one in which activation of CH4 is rate-determining and one in which CO2 activation is rate-determining. This dual-site mechanism is studied further in detail to test the validity of the intermediate steps predicted by the kinetic model. CH4/CD4 isotope switching shows a strong deuterium kinetic isotope effect on CH4 and CO2 conversion, suggesting that CH4 dissociation is the rate-determining step. Higher apparent activation energies of CH4 (E-a, CH4) versus CO2 (E-a, CO2) on both catalysts also confirm that CH4 activation is rate-determining. Basic nature of La-O sites activates mildly acidic CO2 to form La2O2CO3 complexes as confirmed by FTIR. From different polymorphs of La-2-O2CO3, the spectator and reactive species were distinguished by pulsing CH4 over La2O2CO3. Alternating pulses (CH4/Ar -> CO2/Ar -> CH4/Ar) at 550 degrees C showed simultaneous formation of CO and H-2, suggesting that surface carbon, formed by CH4 decomposition, is oxidized by H2O; a crucial step in understanding the catalytic behavior of pyrochlores in the reaction mechanism. These experiments were used to identify the two types of sites taking, part in the dual-site DRM mechanism. The work reported here helps in determining a single set of kinetically significant steps that most closely represent the mechanistic scheme of DRM over L2RhZ and L5RhZ. (C) 2014 Elsevier Inc. All rights reserved. C1 [Pakhare, Devendra; Spivey, James] Louisiana State Univ, Dept Chem Engn, Baton Rouge, LA 70803 USA. [Schwartz, Viviane] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Dept Energy, Oak Ridge, TN 37831 USA. [Abdelsayed, Victor; Haynes, Daniel; Shekhawat, Dushyant; Poston, James] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Abdelsayed, Victor] URS Corp, Morgantown, WV 26507 USA. RP Spivey, J (reprint author), Louisiana State Univ, Dept Chem Engn, Baton Rouge, LA 70803 USA. EM jjspivey@lsu.edu FU Center for Atomic Level Catalyst Design; Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001058]; Oak Ridge National Laboratory; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This material is based upon work supported as part of the Center for Atomic Level Catalyst Design, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001058. [A portion of] this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 85 TC 33 Z9 33 U1 7 U2 106 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD JUL PY 2014 VL 316 BP 78 EP 92 DI 10.1016/j.jcat.2014.04.023 PG 15 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA AN8KT UT WOS:000340853800008 ER PT J AU Stack, KM Grotzinger, JP Kah, LC Schmidt, ME Mangold, N Edgett, KS Sumner, DY Siebach, KL Nachon, M Lee, R Blaney, DL Deflores, LP Edgar, LA Fairen, AG Leshin, LA Maurice, S Oehler, DZ Rice, MS Wiens, RC AF Stack, K. M. Grotzinger, J. P. Kah, L. C. Schmidt, M. E. Mangold, N. Edgett, K. S. Sumner, D. Y. Siebach, K. L. Nachon, M. Lee, R. Blaney, D. L. Deflores, L. P. Edgar, L. A. Fairen, A. G. Leshin, L. A. Maurice, S. Oehler, D. Z. Rice, M. S. Wiens, R. C. TI Diagenetic origin of nodules in the Sheepbed member, Yellowknife Bay formation, Gale crater, Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID MOLAR-TOOTH STRUCTURES; BELT-PURCELL SUPERGROUP; CARBONATE CONCRETIONS; CLIMATOLOGICAL FACTORS; ISOTOPIC COMPOSITION; CALCITE CONCRETIONS; INTERNAL STRUCTURE; DUTCH PLEISTOCENE; MERIDIANI-PLANUM; MARINE-SEDIMENTS AB The Sheepbed member of the Yellowknife Bay formation in Gale crater contains millimeter-scale nodules that represent an array of morphologies unlike those previously observed in sedimentary deposits on Mars. Three types of nodules have been identified in the Sheepbed member in order of decreasing abundance: solid nodules, hollow nodules, and filled nodules, a variant of hollow nodules whose voids have been filled with sulfate minerals. This study uses Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI) images from the Mars Science Laboratory Curiosity rover to determine the size, shape, and spatial distribution of the Sheepbed nodules. The Alpha Particle X-Ray Spectrometer (APXS) and ChemCam instruments provide geochemical data to help interpret nodule origins. Based on their physical characteristics, spatial distribution, and composition, the nodules are interpreted as concretions formed during early diagenesis. Several hypotheses are considered for hollow nodule formation including origins as primary or secondary voids. The occurrence of concretions interpreted in the Sheepbed mudstone and in several other sedimentary sequences on Mars suggests that active groundwater systems play an important role in the diagenesis of Martian sedimentary rocks. When concretions are formed during early diagenetic cementation, as interpreted for the Sheepbed nodules, they have the potential to create a taphonomic window favorable for the preservation of Martian organics. C1 [Stack, K. M.; Grotzinger, J. P.; Siebach, K. L.; Rice, M. S.] CALTECH, Dept Geol & Planetary Sci, Pasadena, CA 91125 USA. [Kah, L. C.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN USA. [Schmidt, M. E.; Lee, R.] Brock Univ, Dept Earth Sci, St Catharines, ON L2S 3A1, Canada. [Mangold, N.; Nachon, M.] Univ Nantes, Lab Planetol & Geodynam Nantes, Nantes, France. [Edgett, K. S.] Malin Space Sci Syst Inc, San Diego, CA USA. [Sumner, D. Y.] Univ Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA. [Blaney, D. L.; Deflores, L. P.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Edgar, L. A.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA. [Fairen, A. G.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Leshin, L. A.] Rensselaer Polytech Inst, Dept Earth & Environm Sci, Troy, NY USA. [Leshin, L. A.] Rensselaer Polytech Inst, Sch Sci, Troy, NY USA. [Maurice, S.] Univ Toulouse 3, Inst Rech Astrophy & Planetol Toulouse, F-31062 Toulouse, France. [Oehler, D. Z.] NASA, Johnson Space Ctr, Astromat Res & Explorat Sci Directorate, Houston, TX USA. [Wiens, R. C.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Stack, KM (reprint author), CALTECH, Dept Geol & Planetary Sci, Pasadena, CA 91125 USA. EM kstack@caltech.edu OI Edgett, Kenneth/0000-0001-7197-5751; Siebach, Kirsten/0000-0002-6628-6297 NR 71 TC 26 Z9 26 U1 2 U2 27 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUL PY 2014 VL 119 IS 7 BP 1637 EP 1664 DI 10.1002/2014JE004617 PG 28 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AN4BZ UT WOS:000340533900009 ER PT J AU Aad, G Abajyan, T Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akesson, TPA Akimoto, G Akimov, AV Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Ammosov, VV Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Ask, S Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Auge, E Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, S Balek, P Balli, F Banas, E Banerjee, S Bangert, A Bannoura, AAE Bansal, V Bansil, S Barak, L Baranov, SP Barber, T Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batkova, L Batley, JR Battistin, M Bauer, F Bawa, HS Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belloni, A Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertolucci, F Besana, MI Besjes, GJ Bessidskaia, O Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bolnet, NM Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, G Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, RC Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprinia, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Mourslie, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Christidi, IA Chromek-Burckhart, D Chu, ML Chudoba, J Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collins-Tooth, C Collot, J Colombo, T Colon, G Compostella, G Muino, P Coniavitis, E Conidi, MC Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Ortuzar, MC Cristinziani, M Crosetti, G Cuciuc, CM Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darlea, GL Darmora, S Dassoulas, JA Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S de Graat, J De Groot, N de Jong, P De la Taille, C De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Deigaard, I Del Peso, J Del Prete, T Deliot, F Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, ADV Doan, TKO Dobos, D Dobson, E Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Uhrssen, MD Dunford, M Yildiz, HD Duren, M Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, J Fisher, MJ Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gandrajula, RP Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Giunta, M Gjelsten, BK Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godfrey, J Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L De la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Grybel, K Guan, L Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hageboeck, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Harvey, A Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Heisterkamp, S Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JM Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javurek, T Jeanty, L Jeng, GY Plante, IJL Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Karnevskiy, M Karpov, SN Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-Zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsmana, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Labarga, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Law, AT Laycock, P Le, BT Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leonhardt, K Leontsinis, S Leroy, C Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liub, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Lorenz, J Martinez, NL Losada, M Loscutoff, P Losty, MJ Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchika, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, LS Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matsunaga, H Matsushita, T Mattig, P Mattig, S Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Medinnis, M Meehan, S Meera-Lebbai, R Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, I Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Moeller, V Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Herrera, CM Moraes, A Morange, N Morel, J Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neusied, A Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Nowakm, S Nozaki, M Nozkail, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Nei, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oraram, CJ Oreglia, MJ Ren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajche, K Palacino, G Paestini, S Pallin, D Palma, A Paimeris, JD Pah, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefal, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Pate, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwel, J Perepelitsa, DV Codina, EP Garcia-Estan, MT Reale, VP Perini, F Pernegger, H Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petteni, M Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignottil, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pinge, A Pinto, B Pires, S Pizio, C Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proiss, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Pueschel, E Puldon, D Purohit, M Puzo, P Pylypchenko, Y Qian, J Qin, G Quadt, A Quarrie, DR Quayle, WB Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reinsch, A Reisin, H Relich, M Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosendahl, PL Rosenthal, . Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudoiph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ruzicka, P Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Saek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, R Schaefer, D Schaefer, R Schaelicke, A Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, R Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffe, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixasa, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sforza, F Sfyra, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherwood, P Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Shoret, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidorov, D Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, R Inev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Sommer, R Song, HY Soni, N Sood, A Sopko, V Sopko, B Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spighi, R Spigo, G Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steele, G Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, . Stenze, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoerig, K Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramania, HS Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svats, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Degado, AT Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Toja, J Tokara, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Totrence, E Torres, H Pastor, E Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitisl, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, L Tsulaia, V Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van der Deijl, PC van der Geer, R van der Graaf, H Van der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I Van Woerden, MC Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, .EV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vitells, O Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobe, V Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, W Wagner, P Wahrmund, S Wakabayashi, J Walder, J Walker, R Watkowtak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigel, P Weinert, B Weingarten, J Weiser, C Wen, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, SL Wu, Y Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zibell, A Zieminska, D Zimin, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zitoun, R Zobernig, G Zoccolli, A zur Nedden, M Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abajyan, T. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amaral Coutinho, Y. Amelung, C. Ammosov, V. V. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, S. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bangert, A. Bannoura, A. A. E. Bansal, V. Bansil, S. Barak, L. Baranov, S. P. Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battistin, M. Bauer, F. Bawa, H. S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belloni, A. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertolucci, F. Besana, M. I. Besjes, G. J. Bessidskaia, O. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bolnet, N. M. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, G. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprinia, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. El Mourslie, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Christidi, I. A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Ortuzar, M. Crispin Cristinziani, M. Crosetti, G. Cuciuc, C. -M. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darlea, G. L. Darmora, S. Dassoulas, J. A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De la Taille, C. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobos, D. Dobson, E. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Uhrssen, M. D. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, J. Fisher, M. J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gandrajula, R. P. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Giunta, M. Gjelsten, B. K. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godfrey, J. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez De la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Groth-Jensen, J. Grout, Z. J. Grybel, K. Guan, L. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Gunther, J. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Harvey, A. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Heisterkamp, S. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Iturbe Ponce, J. M. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javurek, T. Jeanty, L. Jeng, G. -Y. Plante, I. Jen-La Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Karnevskiy, M. Karpov, S. N. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Koeneke, K. Koenig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsmana, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Labarga, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Law, A. T. Laycock, P. Le, B. T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leonhardt, K. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Losty, M. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchika, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martinez, H. Martinez, M. Martin-Haugh, L. S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matsunaga, H. Matsushita, T. Maettig, P. Maettig, S. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Medinnis, M. Meehan, S. Meera-Lebbai, R. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mendoza Navas, L. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano Moya, M. Minashvili, I. A. Mincer, I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Moeller, V. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neusied, A. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Nowakm, S. Nozaki, M. Nozkail, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Nei, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oraram, C. J. Oreglia, M. J. Ren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajche, K. Palacino, G. Paestini, S. Pallin, D. Palma, A. Paimeris, J. D. Pah, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefal, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Pate, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwel, J. Perepelitsa, D. V. Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Perini, F. Pernegger, H. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petteni, M. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignottil, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pinge, A. Pinto, B. Pires, S. Pizio, C. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Portell Bueso, X. Pospelov, G. E. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proiss, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qin, G. Quadt, A. Quarrie, D. R. Quayle, W. B. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reinsch, A. Reisin, H. Relich, M. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Romero Adam, E. Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosendahl, P. L. Rosenthal, . Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudoiph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ruzicka, P. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Saek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, R. Schaefer, D. Schaefer, R. Schaelicke, A. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, Rd. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffe, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixasa, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sforza, F. Sfyra, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherwood, P. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Shoret, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, R. Inev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Sommer, R. Song, H. Y. Soni, N. Sood, A. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spighi, R. Spigo, G. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steele, G. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, . Stenze, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoerig, K. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramania, H. S. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svats, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Degado, A. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Toja, J. Tokara, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Totrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitisl, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, Li. Tsulaia, V. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. Van Woerden, M. C. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, . E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vitells, O. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobe, V. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, W. Wagner, P. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Watkowtak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigel, P. Weinert, B. Weingarten, J. Weiser, C. Wen, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, S. L. Wu, Y. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zibell, A. Zieminska, D. Zimin, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zitoun, R. Zobernig, G. Zoccolli, A. zur Nedden, M. Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Monitoring and data quality assessment of the ATLAS liquid argon calorimeter SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Particle identification methods; Calorimeters; Large detector systems for particle and astroparticle physics ID LHC AB The liquid argon calorimeter is a key component of the ATLAS detector installed at the CERN Large Hadron Collider. The primary purpose of this calorimeter is the measurement of electron and photon kinematic properties. It also provides a crucial input for measuring jets and missing transverse momentum. An advanced data monitoring procedure was designed to quickly identify issues that would affect detector performance and ensure that only the best quality data are used for physics analysis. This article presents the validation procedure developed during the 2011 and 2012 LHC data-taking periods, in which more than 98% of the proton-proton luminosity recorded by ATLAS at a centre-of-mass energy of 7-8 TeV had calorimeter data quality suitable for physics analysis. C1 [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Edson, W.; Ernst, J.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Chan, K.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Petit, E.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Petit, E.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Feng, E. J.; Fernando, W.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; O'grady, F.; Ruehr, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitisl, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, GR-15773 Zografos, Greece. [Abdinov, O.; Aguilar-Saavedra, J. A.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Krstic, J.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Agatonovic-Jovin, T.; Bozovic-Jelisavcic, I.; Cirkovic, P.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Bach, A. M.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Varouchas, D.; Virzi, J.; Wang, H.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Varouchas, D.; Virzi, J.; Wang, H.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rieck, P.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, D-10099 Berlin, Germany. [Agustoni, M.; Ancu, L. S.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Schneider, B.; Sciacca, F. G.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Ancu, L. S.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Schneider, B.; Sciacca, F. G.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Mclaughlan, T.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Bellagamba, L.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccolli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bindi, M.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccolli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Abajyan, T.; Arslan, O.; Backhaus, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Glatzer, J.; Gonella, L.; Haefner, P.; Hageboeck, S.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mueller, K.; Nanava, G.; Nattermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Zimmermann, R.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchika, C.; Marroquim, F.; Nepomuceno, A. A.; Seixasa, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Univ Fed Juiz de Fora, Juiz De Fora, Brazil. [do Vale, M. A. B.] Univ Fed Sao Joao del Rei, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Myagkov, A. G.; Nevski, P.; Nikolaenko, V.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Zaitsev, A. M.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprinia, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Romeo, G.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Marchand, J. F.; Oakham, F. G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anastopoulos, C.; Andari, N.; Anghinolfi, F.; Avolio, G.; Baak, M. A.; Backes, M.; Battistin, M.; Bellomo, M.; Beltramello, O.; Berge, D.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dopke, J.; Dudarev, A.; Ellis, N.; Elsing, M.; Facini, G.; Farthouat, P.; Fassnacht, P.; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jansen, H.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Mapelli, L.; Martin, B.; Messina, A.; Meyer, J.; Mornacchi, G.; Nairz, A. M.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Salzburger, A.; Savu, D. O.; Scanlon, T.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyra, A.; Solans, C. A.; Spigo, G.; Stewart, G. A.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; Van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Fiascaris, M.; Gardner, R. W.; Plante, I. Jen-La; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Cottin, G.; Diaz, M. A.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Li, B.; Liu, M.; Liu, Y.; Peng, H.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Onyisi, P. U. E.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Perepelitsa, D. V.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Hoffmann, M. Dano; Galster, G.; Gregersen, K.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Joergensen, M. D.; Klinkby, E. B.; Loevschall-Jensen, A. E.; Mehlhase, S.; Monk, J.; Petersen, T. C.; Pinge, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN, Lab Nazl Frascati, Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Belenguer, M. Jimenez; Katzy, J.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Belenguer, M. Jimenez; Katzy, J.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Czodrowski, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Rudoiph, C.; Schnoor, U.; Socher, F.; Steinberg, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Finelli, K. D.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Edwards, N. C.; Walls, F. M. Garay; Harrington, R. D.; Korn, A.; Martin, V. J.; O'Brien, B. J.; Pino, S. A. Olivares; Proiss, M.; Schaelicke, A.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Aad, G.; Amoroso, S.; Barber, T.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Consorti, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Jenni, P.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Madar, R.; Mahboubi, K.; Mohr, W.; Parzefal, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, S.; Tsiskaridze, V.; Ungaro, F. C.; Venturi, M.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Winkelmann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Katre, A.; La Rosa, A.; Liang, Z.; Latour, B. Martin dit; Mermod, P.; Herrera, C. Mora; Muenstermann, D.; Nektarijevic, S.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Soh, D. A.; Vallecorsa, S.; Weng, Z.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, GE-380086 Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenze, H.] Univ Giessen, Inst Phys 2, D-35390 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Thompson, A. S.; Wright, M.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland. [Bierwagen, K.; Blumenschein, U.; Brandt, O.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Knue, A.; Krieger, P.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Meyer, J.; Morel, J.; Nackenhorst, O.; Nadal, J.; Peters, R. F. Y.; Quadt, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Albrand, S.; Brown, J.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Jeanty, L.; Mateos, D. Lopez; Mercurio, K. M.; Mills, C.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Hofmann, J. I.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kugel, A.] Heidelberg Univ, Inst Tech Informat, ZITI, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Evans, H.; Gagnon, P.; Luehring, F.; Ogren, H.; Penwel, J.; Poveda, J.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Cinca, D.; Gandrajula, R. P.; Limper, M.; Mallik, U.; Mandrysch, R.; Morange, N.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Karpov, S. N.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Amako, K.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Inamaru, Y.; King, M.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Kurumida, R.; Matsushita, T.; Ochi, A.; Shimizu, S.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Toja, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Catmore, J. R.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Grancagnolo, F.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Bona, M.; Carter, J. R.; Cerrito, L.; Ellis, N.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Salamanna, G.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; Edwards, N. C.; George, S.; Gibson, S. M.; Goncalo, R.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dobson, E.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Corriveau, F.; Greenwood, Z. D.; McPherson, R. A.; Robertson, S. H.; Sawyer, L.; Sircar, A.; Sobie, R.; Subramaniam, R.; Tamsett, M. C.; Teuscher, R. J.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Jenni, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Jenni, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Jenni, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.; Wielers, M.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Arnaez, O.; Blum, W.; Buescher, V.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Ji, W.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Neusied, A.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55122 Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Cox, B. E.; Da Via, C.; Forti, A.; Howarth, J.; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Price, D.; Robinson, J. E. M.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Alio, L.; Azuelos, G.; Barbero, M.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Feligioni, L.; Gingrich, D. M.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Nagai, Y.; Oakham, F. G.; Pralavorio, P.; Rozanov, A.; Savard, P.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.; Vetterli, M. C.] Aix Marseille Univ, CPPM, Marseille, France. [Alio, L.; Azuelos, G.; Barbero, M.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Feligioni, L.; Gingrich, D. M.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Nagai, Y.; Oakham, F. G.; Pralavorio, P.; Rozanov, A.; Savard, P.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.; Vetterli, M. C.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Schramm, S.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Diglio, S.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chelstowska, M. A.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, L.; Long, J. D.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Peters, R. F. Y.; Qian, J.; Scheirich, D.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Stelzer, H. J.; Ta, D.; Tollefson, K.; True, P.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meloni, F.; Meroni, C.; Perini, F.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Volpi, G.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Meloni, F.; Perini, F.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Asbah, N.; Azuelos, G.; Dallaire, F.; Davies, M.; Gauthier, L.; Giunta, M.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, Li.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Nessi, M.; Romaniouk, A.; Shulga, E.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Galea, C.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Meineck, C.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.; Zibell, A.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, V. M.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, R.; Schwegler, Ph.; Sforza, F.; Stern, S.; Stonjek, S.; Terzo, S.; Vanadia, M.; von der Schmitt, H.; Weigel, P.; Wildauer, A.; Zanzi, D.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Di Donato, C.; Doria, A.; Giordano, R.; Izzo, V.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; della Volpe, D.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Dao, V.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Salvucci, A.] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Nikhef, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Valencic, N.; Van der Deijl, P. C.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Valencic, N.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; de Lima, D. E. Ferreira; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Cranmer, K.; Haas, A.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignottil, D. T.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Hasib, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Nozkail, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Shamim, M.; Strom, D. M.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Auge, E.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De la Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, F-91405 Orsay, France. [Khalek, S. Abdel; Auge, E.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De la Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajche, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Sawyer, C.; Shoret, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Degenhardt, J.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Olivito, D.; Ospanov, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Roda, C.; Scuri, F.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Roda, C.; Scuri, F.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Araque, J. P.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas LIP, P-1000 Lisbon, Portugal. [Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Machado Miguens, J.; Maio, A.; Maneira, J.; Palma, A.; Pina, J.] Univ Lisbon, Fac Ciencias, P-1699 Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] CAFPE, Granada, Spain. [Wemans, A. Do Valle] Univ Nova Lisboa, Dept Fis, Caparica, Portugal. [Wemans, A. Do Valle] Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svats, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobe, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, L. S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vanadia, M.; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Vanadia, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Mourslie, R. Cherkaoui; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Grabas, H. M. X.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Mijovic, L.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffe, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, Commissariat Energie Atom & Energies Alternat, DSM IRFU, Inst Rech Les Lois Fondament Univers, F-91191 Gif Sur Yvette, France. [Grillo, A. A.; Kuhl, A.; Law, A. T.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Ibragimov, I.; Ikematsu, K.; Rammes, M.; Rosenthal, .; Sipica, V.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; Godfrey, J.; Kvita, J.; O'Nei, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Batkova, L.; Blazek, T.; Federic, P.; Stavina, P.; Sykora, I.; Tokara, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Chen, X.; Huang, Y.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, . E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Clement, C.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, Rd.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, Rd.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Santo, A.; Grout, Z. J.; Potter, C. J.; Rose, A.; Salvatore, F.; Castillo, I. Santoyo; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Pate, N. D.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Brelier, B.; Chau, C. C.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, R.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsmana, A.; Losty, M. J.; Oakham, F. G.; Perez Codina, E.; Savard, P.; Schouten, D.; Seuster, R.; Stelzer-Chilton, .; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Mendoza Navas, L.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Farrell, S.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Toggerson, B.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] INFN, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez De la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, G.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez De la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez De la Hoz, S.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Loh, C. W.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC V5Z 1M9, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Milov, A.; Milstein, D.; Roth, I.; Schaarschmidt, J.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Castillo, L. R. Flores; Hard, A. S.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Redelbach, A.; Schreyer, M.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Weber, S. W.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Inst Natl Phys Nucl & Phys Particules, IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Chen, L.; Gao, J.] Univ Napoli Parthenope, Naples, Italy. [Conventi, F.; Della Pietra, M.] Inst Particle Phys, Toronto, ON, Canada. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Li, B.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Lin, S. C.] Acad Sinica, Acad Sinica Grid Comp, Inst Phys, Taipei 115, Taiwan. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Technol State Univ, Moscow Inst Phys, Dolgoprudnyi, Russia. [Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Pinamonti, M.] SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Rosenthal, .; Stelzer-Chilton, .; Xu, L.] Univ Hamburg, Inst Experimentalphys, Hamburg, Germany. Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Ferrando, James/A-9192-2012; Doyle, Anthony/C-5889-2009; Di Domenico, Antonio/G-6301-2011; de Groot, Nicolo/A-2675-2009; Wemans, Andre/A-6738-2012; Nemecek, Stanislav/G-5931-2014; Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; De, Kaushik/N-1953-2013; Mitsou, Vasiliki/D-1967-2009; Smirnova, Oxana/A-4401-2013; Villa, Mauro/C-9883-2009; Staroba, Pavel/G-8850-2014; Brooks, William/C-8636-2013; Lei, Xiaowen/O-4348-2014; Alexa, Calin/F-6345-2010; Warburton, Andreas/N-8028-2013; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Gabrielli, Alessandro/H-4931-2012; Lokajicek, Milos/G-7800-2014; Castro, Nuno/D-5260-2011; Moraes, Arthur/F-6478-2010; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Ferrer, Antonio/H-2942-2015; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Ciubancan, Liviu Mihai/L-2412-2015; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Andreazza, Attilio/E-5642-2011; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; messina, andrea/C-2753-2013; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Gauzzi, Paolo/D-2615-2009; Fabbri, Laura/H-3442-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Monzani, Simone/D-6328-2017; Juste, Aurelio/I-2531-2015; Grinstein, Sebastian/N-3988-2014; Fullana Torregrosa, Esteban/A-7305-2016; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Fassi, Farida/F-3571-2016; la rotonda, laura/B-4028-2016; OI Ferrando, James/0000-0002-1007-7816; Doyle, Anthony/0000-0001-6322-6195; Di Domenico, Antonio/0000-0001-8078-2759; Wemans, Andre/0000-0002-9669-9500; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; De, Kaushik/0000-0002-5647-4489; Mitsou, Vasiliki/0000-0002-1533-8886; Smirnova, Oxana/0000-0003-2517-531X; Villa, Mauro/0000-0002-9181-8048; Brooks, William/0000-0001-6161-3570; Lei, Xiaowen/0000-0002-2564-8351; Warburton, Andreas/0000-0002-2298-7315; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Gabrielli, Alessandro/0000-0001-5346-7841; Castro, Nuno/0000-0001-8491-4376; Moraes, Arthur/0000-0002-5157-5686; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Andreazza, Attilio/0000-0001-5161-5759; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Gauzzi, Paolo/0000-0003-4841-5822; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Monzani, Simone/0000-0002-0479-2207; Chromek-Burckhart, Doris/0000-0003-4243-3288; Sawyer, Lee/0000-0001-8295-0605; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; Mincer, Allen/0000-0002-6307-1418; Grinstein, Sebastian/0000-0002-6460-8694; Troncon, Clara/0000-0002-7997-8524; Bailey, David C/0000-0002-7970-7839; Chen, Hucheng/0000-0002-9936-0115; Qian, Jianming/0000-0003-4813-8167; Nisati, Aleandro/0000-0002-5080-2293; Fullana Torregrosa, Esteban/0000-0003-3082-621X; Vari, Riccardo/0000-0002-2814-1337; Gray, Heather/0000-0002-5293-4716; Grancagnolo, Francesco/0000-0002-9367-3380; Dell'Asta, Lidia/0000-0002-9601-4225; Korol, Aleksandr/0000-0001-8448-218X; Smestad, Lillian/0000-0002-0244-8736; Giordani, Mario/0000-0002-0792-6039; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Fassi, Farida/0000-0002-6423-7213; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Coccaro, Andrea/0000-0003-2368-4559; Cristinziani, Markus/0000-0003-3893-9171; Haas, Andrew/0000-0002-4832-0455; Galhardo, Bruno/0000-0003-0641-301X; Della Volpe, Domenico/0000-0001-8530-7447; Mendes Saraiva, Joao Gentil/0000-0002-7006-0864; Pina, Joao /0000-0001-8959-5044; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Weber, Michele/0000-0002-2770-9031; Wang, Kuhan/0000-0002-6151-0034; Grohsjean, Alexander/0000-0003-0748-8494; La Rosa, Alessandro/0000-0001-6291-2142; Beck, Hans Peter/0000-0001-7212-1096; Salamanna, Giuseppe/0000-0002-0861-0052; Prokofiev, Kirill/0000-0002-2177-6401; Veneziano, Stefano/0000-0002-2598-2659; Lacasta, Carlos/0000-0002-2623-6252; Vazquez Schroeder, Tamara/0000-0002-9780-099X; Chen, Chunhui /0000-0003-1589-9955; Walsh, Brian/0000-0003-1689-2309; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Terzo, Stefano/0000-0003-3388-3906; Smirnov, Sergei/0000-0002-6778-073X; Belanger-Champagne, Camille/0000-0003-2368-2617 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America; Canton of Geneva, Switzerland FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 28 TC 0 Z9 0 U1 5 U2 89 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUL PY 2014 VL 9 AR P07024 DI 10.1088/1748-0221/9/07/P07024 PG 55 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AM7MF UT WOS:000340050700045 ER PT J AU Adamowski, M Carls, B Dvorak, E Hahn, A Jaskierny, W Johnson, C Jostlein, H Kendziora, C Lockwitz, S Pahlka, B Plunkett, R Pordes, S Rebel, B Schmitt, R Stancari, M Tope, T Voirin, E Yang, T AF Adamowski, M. Carls, B. Dvorak, E. Hahn, A. Jaskierny, W. Johnson, C. Jostlein, H. Kendziora, C. Lockwitz, S. Pahlka, B. Plunkett, R. Pordes, S. Rebel, B. Schmitt, R. Stancari, M. Tope, T. Voirin, E. Yang, T. TI The Liquid Argon Purity Demonstrator SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Noble liquid detectors (scintillation, ionization, double-phase); Neutrino detectors; Time projection chambers ID DETECTOR; DESIGN AB The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation. C1 [Adamowski, M.; Carls, B.; Hahn, A.; Jaskierny, W.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Dvorak, E.] South Dakota Sch Mines & Technol, Rapid City, SD 57701 USA. [Johnson, C.] Indiana Univ, Bloomington, IN 47405 USA. RP Rebel, B (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM brebel@fnal.gov FU Grants Agencies of the DOE FX We thank the staff at Fermilab for their technical assistance in running the LAPD experiment. We acknowledge support by the Grants Agencies of the DOE. NR 14 TC 11 Z9 11 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUL PY 2014 VL 9 AR P07005 DI 10.1088/1748-0221/9/07/P07005 PG 28 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AM7MF UT WOS:000340050700026 ER PT J AU Adloff, C Blaising, JJ Chefdeville, M Drancourt, C Gaglione, R Geffroy, N Karyotakis, Y Koletsou, I Prast, J Vouters, G Repond, J Schlereth, J Xia, L Baldolemar, E Li, J Park, ST Sosebee, M White, AP Yu, J Eigen, G Thomson, MA Ward, DR Benchekroun, D Hoummada, A Khoulaki, Y Apostolakis, J Arfaoui, S Benoit, M Dannheim, D Elsener, K Folger, G Grefe, C Ivantchenko, V Killenberg, M Klempt, W van der Kraaij, E Linssen, L Lucaci-Timoce, AI Munnich, A Poss, S Ribon, A Roloff, P Sailer, A Schlatter, D Sicking, E Strube, J Uzhinskiy, V Carloganu, C Gay, P Manen, S Royer, L Cornett, U David, D Ebrahimi, A Falley, G Feege, N Gadow, K Gottlicher, P Gunter, C Hartbrich, O Hermberg, B Karstensen, S Krivan, F Kruger, K Lu, S Lutz, B Morozov, S Morgunov, V Neubuser, C Reinecke, M Sefkow, F Smirnov, P Terwort, M Fagot, A Tytgat, M Zaganidis, N Hostachy, JY Morin, L Garutti, E Laurien, S Marchesini, I Matysek, M Ramilli, M Briggl, K Eckert, P Harion, T Schultz-Coulon, HC Shen, W Stamen, R Chang, S Khan, A Kim, DH Kong, DJ Oh, YD Bilki, B Norbeck, E Northacker, D Onel, Y Wilson, GW Kawagoe, K Miyazaki, Y Sudo, Y Ueno, H Yoshioka, T Dauncey, PD Gil, EC Mannai, S Baulieu, G Calabria, P Caponetto, L Combaret, C Della Negra, R Ete, R Grenier, G Han, R Ianigro, JC Kieffer, R Laktineh, I Lumb, N Mathez, H Mirabito, L Petrukhin, A Steen, A Tromeur, W Vander Donckt, M Zoccarato, Y Antequera, JB Alamillo, EC Fouz, MC Puerta-Pelayo, J Corriveau, F Bobchenko, B Chadeeva, M Danilov, M Epifantsev, A Markin, O Mizuk, R Novikov, E Rusinov, V Tarkovsky, E Kozlov, V Soloviev, Y Besson, D Buzhan, P Ilyin, A Kantserov, V Kaplin, V Popova, E Tikhomirov, V Gabriel, M Kiesling, C Seidel, K Simon, F Soldner, C Szalay, M Tesar, M Weuste, L Amjad, MS Bonis, J di Lorenzo, SC Cornebise, P Fleury, J Frisson, T van der Kolk, N Richard, F Poschl, R Rouene, J Anduze, M Balagura, V Becheva, E Boudry, V Brient, JC Cornat, R Frotin, M Gastaldi, F Guliyev, E Haddad, Y Magniette, F Ruan, M Tran, TH Videau, H Callier, S Dulucq, F Martin-Chassard, G de la Taille, C Raux, L Seguin-Moreau, N Zacek, J Cvach, J Gallus, P Havranek, M Janata, M Kvasnicka, J Lednicky, D Marcisovsky, M Polak, I Popule, J Tomasek, L Tomasek, M Ruzicka, P Sicho, P Smolik, J Vrba, V Zalesak, J Belhorma, B Ghazlane, H Kotera, K Ono, H Takeshita, T Uozumi, S Chai, JS Song, HS Lee, SH Gotze, M Sauer, J Weber, S Zeitnitz, C AF Adloff, C. Blaising, J. -J. Chefdeville, M. Drancourt, C. Gaglione, R. Geffroy, N. Karyotakis, Y. Koletsou, I. Prast, J. Vouters, G. Repond, J. Schlereth, J. Xia, L. Baldolemar, E. Li, J. Park, S. T. Sosebee, M. White, A. P. Yu, J. Eigen, G. Thomson, M. A. Ward, D. R. Benchekroun, D. Hoummada, A. Khoulaki, Y. Apostolakis, J. Arfaoui, S. Benoit, M. Dannheim, D. Elsener, K. Folger, G. Grefe, C. Ivantchenko, V. Killenberg, M. Klempt, W. van der Kraaij, E. Linssen, L. Lucaci-Timoce, A. -I. Muennich, A. Poss, S. Ribon, A. Roloff, P. Sailer, A. Schlatter, D. Sicking, E. Strube, J. Uzhinskiy, V. Carloganu, C. Gay, P. Manen, S. Royer, L. Cornett, U. David, D. Ebrahimi, A. Falley, G. Feege, N. Gadow, K. Goettlicher, P. Guenter, C. Hartbrich, O. Hermberg, B. Karstensen, S. Krivan, F. Krueger, K. Lu, S. Lutz, B. Morozov, S. Morgunov, V. Neubueser, C. Reinecke, M. Sefkow, F. Smirnov, P. Terwort, M. Fagot, A. Tytgat, M. Zaganidis, N. Hostachy, J. -Y. Morin, L. Garutti, E. Laurien, S. Marchesini, I. Matysek, M. Ramilli, M. Briggl, K. Eckert, P. Harion, T. Schultz-Coulon, H. -Ch. Shen, W. Stamen, R. Chang, S. Khan, A. Kim, D. H. Kong, D. J. Oh, Y. D. Bilki, B. Norbeck, E. Northacker, D. Onel, Y. Wilson, G. W. Kawagoe, K. Miyazaki, Y. Sudo, Y. Ueno, H. Yoshioka, T. Dauncey, P. D. Gil, E. Cortina Mannai, S. Baulieu, G. Calabria, P. Caponetto, L. Combaret, C. Della Negra, R. Ete, R. Grenier, G. Han, R. Ianigro, J-C. Kieffer, R. Laktineh, I. Lumb, N. Mathez, H. Mirabito, L. Petrukhin, A. Steen, A. Tromeur, W. Vander Donckt, M. Zoccarato, Y. Berenguer Antequera, J. Calvo Alamillo, E. Fouz, M. -C. Puerta-Pelayo, J. Corriveau, F. Bobchenko, B. Chadeeva, M. Danilov, M. Epifantsev, A. Markin, O. Mizuk, R. Novikov, E. Rusinov, V. Tarkovsky, E. Kozlov, V. Soloviev, Y. Besson, D. Buzhan, P. Ilyin, A. Kantserov, V. Kaplin, V. Popova, E. Tikhomirov, V. Gabriel, M. Kiesling, C. Seidel, K. Simon, F. Soldner, C. Szalay, M. Tesar, M. Weuste, L. Amjad, M. S. Bonis, J. di Lorenzo, S. Conforti Cornebise, P. Fleury, J. Frisson, T. van der Kolk, N. Richard, F. Poeschl, R. Rouene, J. Anduze, M. Balagura, V. Becheva, E. Boudry, V. Brient, J-C. Cornat, R. Frotin, M. Gastaldi, F. Guliyev, E. Haddad, Y. Magniette, F. Ruan, M. Tran, T. H. Videau, H. Callier, S. Dulucq, F. Martin-Chassard, G. de la Taille, Ch. Raux, L. Seguin-Moreau, N. Zacek, J. Cvach, J. Gallus, P. Havranek, M. Janata, M. Kvasnicka, J. Lednicky, D. Marcisovsky, M. Polak, I. Popule, J. Tomasek, L. Tomasek, M. Ruzicka, P. Sicho, P. Smolik, J. Vrba, V. Zalesak, J. Belhorma, B. Ghazlane, H. Kotera, K. Ono, H. Takeshita, T. Uozumi, S. Chai, J. S. Song, H. S. Lee, S. H. Goetze, M. Sauer, J. Weber, S. Zeitnitz, C. CA CALICE Collaboration TI The time structure of hadronic showers in highly granular calorimeters with tungsten and steel absorbers SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Timing detectors; Calorimeters; Calorimeter methods; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc) ID URANIUM SCINTILLATOR AB The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel. C1 [Adloff, C.; Blaising, J. -J.; Chefdeville, M.; Drancourt, C.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Koletsou, I.; Prast, J.; Vouters, G.] Univ Savoie, Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Repond, J.; Schlereth, J.; Xia, L.; Killenberg, M.; Muennich, A.; Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Eigen, G.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Thomson, M. A.; Ward, D. R.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Benchekroun, D.; Hoummada, A.; Khoulaki, Y.] Univ Hassan II Ain Chock, Fac Sci, Casablanca, Morocco. [Apostolakis, J.; Arfaoui, S.; Benoit, M.; Dannheim, D.; Elsener, K.; Folger, G.; Grefe, C.; Ivantchenko, V.; Killenberg, M.; Klempt, W.; van der Kraaij, E.; Linssen, L.; Lucaci-Timoce, A. -I.; Muennich, A.; Poss, S.; Ribon, A.; Roloff, P.; Sailer, A.; Schlatter, D.; Sicking, E.; Strube, J.; Uzhinskiy, V.] CERN, CH-1211 Geneva 23, Switzerland. [Carloganu, C.; Gay, P.; Manen, S.; Royer, L.] Univ Clermont Ferrand, Univ Blaise Pascal, CNRS, IN2P3, F-63000 Clermont Ferrand, France. [Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Feege, N.; Gadow, K.; Goettlicher, P.; Guenter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krueger, K.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubueser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Marchesini, I.] DESY, D-22603 Hamburg, Germany. [Fagot, A.; Tytgat, M.; Zaganidis, N.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Hostachy, J. -Y.; Morin, L.] Univ Grenoble 1, Inst Polytechn Grenoble, Lab Phys Subatom & Cosmol, CNRS IN2P3, F-38026 Grenoble, France. [Garutti, E.; Laurien, S.; Marchesini, I.; Matysek, M.; Ramilli, M.] Univ Hamburg, Dept Phys, Inst Experimentalphys, D-22761 Hamburg, Germany. [Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H. -Ch.; Shen, W.; Stamen, R.] Heidelberg Univ, Fac Phys & Astron, D-69120 Heidelberg, Germany. [Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.] Kyungpook Natl Univ, Dept Phys, Taegu 702701, South Korea. [Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Wilson, G. W.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Ueno, H.; Yoshioka, T.] Kyushu Univ, Dept Phys, Fukuoka 8128581, Japan. [Dauncey, P. D.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, London SW7 2AZ, England. [Gil, E. Cortina; Mannai, S.] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Cosmol CP3, B-1320 Louvain La Neuve, Belgium. [Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Della Negra, R.; Ete, R.; Grenier, G.; Han, R.; Ianigro, J-C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Vander Donckt, M.; Zoccarato, Y.] Univ Lyon 1, CNRS, IN2P3, IPNL 4, F-69622 Villeurbanne, France. [Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M. -C.; Puerta-Pelayo, J.] CIEMAT, Ctr Invest Energet Medioambient & Tecnol, E-28040 Madrid, Spain. [Corriveau, F.] Inst Particle Phys Canada, Montreal, PQ H3A 2T8, Canada. [Corriveau, F.] Dept Phys, Montreal, PQ H3A 2T8, Canada. [Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.] Inst Theoret & Expt Phys, RU-117218 Moscow, Russia. [Kozlov, V.; Soloviev, Y.] Russian Acad Sci, PN Lebedev Phys Inst, RU-117924 Moscow, Russia. [Besson, D.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Popova, E.; Tikhomirov, V.] Moscow Engn Phys Inst, MEPhI, Dept Phys, RU-115409 Moscow, Russia. [Gabriel, M.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Amjad, M. S.; Bonis, J.; di Lorenzo, S. Conforti; Cornebise, P.; Fleury, J.; Frisson, T.; van der Kolk, N.; Richard, F.; Poeschl, R.; Rouene, J.] Univ Paris 11, Ctr Sci Orsay, Lab Accelerateur Lineaire, CNRS IN2P3, F-91898 Orsay, France. [Anduze, M.; Balagura, V.; Becheva, E.; Boudry, V.; Brient, J-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Ruan, M.; Tran, T. H.; Videau, H.] Ecole Polytech, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Callier, S.; Dulucq, F.; Martin-Chassard, G.; de la Taille, Ch.; Raux, L.; Seguin-Moreau, N.] Ecole Polytech, CNRS, IN2P3, OMEGA, F-91128 Palaiseau, France. [Zacek, J.] Charles Univ Prague, Inst Particle & Nucl Phys, CZ-18000 Prague 8, Czech Republic. [Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Belhorma, B.; Ghazlane, H.] Ctr Natl Energie Sci & Techn Nucl, Rabat, Morocco. [Kotera, K.; Ono, H.; Takeshita, T.; Uozumi, S.] Shinshu Univ, Dept Phys, Nagano 390861, Japan. [Chai, J. S.; Song, H. S.; Lee, S. H.] Sungkyunkwan Univ, Coll Informat & Commun Engn, WCU Dept Energy Sci, Suwon 440746, South Korea. [Goetze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Phys, D-42097 Wuppertal, Germany. [Danilov, M.; Mizuk, R.] MEPhI, Moscow, Russia. [Danilov, M.; Mizuk, R.] Moscow Inst Phys & Technol, Moscow, Russia. [Guliyev, E.] TRIUMF, Vancouver, BC V6T 2A3, Canada. RP Simon, F (reprint author), Max Planck Inst Phys & Astrophys, Fohringer Ring 6, D-80805 Munich, Germany. EM fsimon@mpp.mpg.de RI van der Kolk, Naomi/M-9423-2016; Calvo Alamillo, Enrique/L-1203-2014; Kozlov, Valentin/M-8000-2015; Soloviev, Yury/M-8788-2015; Tikhomirov, Vladimir/M-6194-2015; Smirnov, Petr/N-9652-2015; U-ID, Kyushu/C-5291-2016; Danilov, Mikhail/C-5380-2014; Mizuk, Roman/B-3751-2014; Cvach, Jaroslav/G-6269-2014; Chadeeva, Marina/C-8789-2016 OI van der Kolk, Naomi/0000-0002-8670-0408; Thomson, Mark/0000-0002-2654-9005; Calvo Alamillo, Enrique/0000-0002-1100-2963; Soloviev, Yury/0000-0003-1136-2827; Tikhomirov, Vladimir/0000-0002-9634-0581; Bilki, Burak/0000-0001-9515-3306; Danilov, Mikhail/0000-0001-9227-5164; Chadeeva, Marina/0000-0003-1814-1218 FU European Commission under the FP7 Research Infrastructures project AIDA [262025]; Bundesministerium fur Bildung und Forschung, Germany; DFG cluster of excellence 'Origin and Structure of the Universe' of Germany; Helmholtz-Nachwuchsgruppen grant [VH-NG-206]; BMBF [05HS6VHS1]; Russian Ministry of Education and Science [4465.2014.2, 14.A12.31.000]; Russian Foundation for Basic Research [14-02-00873A]; MICINN; CPAN, Spain; CRI(MST) of MOST/KOSEF in Korea; US Department of Energy; US National Science Foundation; Ministry of Education, Youth and Sports of the Czech Republic [AV0 Z3407391, AV0 Z10100502, LC527, LA09042]; Grant Agency of the Czech Republic [202/05/0653]; National Sciences and Engineering Research Council of Canada; Science and Technology Facilities Council, U.K. FX We gratefully acknowledge help by the technical staff at several CALICE institutes for their help with the WAHCAL / T3B, and SDHCAL / T3B test beams. We also gratefully acknowledge the DESY and CERN managements for their support and hospitality, and their accelerator staff for the reliable and efficient beam operation. The authors would like to thank the RIMST (Zelenograd) group for their help and sensors manufacturing. This work was supported by the European Commission under the FP7 Research Infrastructures project AIDA, grant agreement no. 262025; by the Bundesministerium fur Bildung und Forschung, Germany; by the the DFG cluster of excellence 'Origin and Structure of the Universe' of Germany; by the Helmholtz-Nachwuchsgruppen grant VH-NG-206; by the BMBF, grant no. 05HS6VHS1; by the Russian Ministry of Education and Science contracts 4465.2014.2 and 14.A12.31.000 and the Russian Foundation for Basic Research grant 14-02-00873A; by MICINN and CPAN, Spain; by CRI(MST) of MOST/KOSEF in Korea; by the US Department of Energy and the US National Science Foundation; by the Ministry of Education, Youth and Sports of the Czech Republic under the projects AV0 Z3407391, AV0 Z10100502, LC527 and LA09042 and by the Grant Agency of the Czech Republic under the project 202/05/0653; by the National Sciences and Engineering Research Council of Canada; and by the Science and Technology Facilities Council, U.K.. NR 20 TC 4 Z9 4 U1 0 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUL PY 2014 VL 9 AR P07022 DI 10.1088/1748-0221/9/07/P07022 PG 23 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AM7MF UT WOS:000340050700043 ER PT J AU Bubna, M Bortoletto, D Alagoz, E Krzywda, A Arndt, K Shipsey, I Bolla, G Hinton, N Kok, A Hansen, TE Summanwar, A Brom, JM Boscardin, M Chramowicz, J Cumalat, J Dalla Betta, GF Dinardo, M Godshalk, A Jones, M Krohn, MD Kumar, A Lei, CM Mendicino, R Moroni, L Perera, L Povoli, M Prosser, A Rivera, R Solano, A Obertino, MM Kwan, S Uplegger, L Vigani, L Wagner, S AF Bubna, M. Bortoletto, D. Alagoz, E. Krzywda, A. Arndt, K. Shipsey, I. Bolla, G. Hinton, N. Kok, A. Hansen, T. -E. Summanwar, A. Brom, J. M. Boscardin, M. Chramowicz, J. Cumalat, J. Dalla Betta, G. F. Dinardo, M. Godshalk, A. Jones, M. Krohn, M. D. Kumar, A. Lei, C. M. Mendicino, R. Moroni, L. Perera, L. Povoli, M. Prosser, A. Rivera, R. Solano, A. Obertino, M. M. Kwan, S. Uplegger, L. Vigani, L. Wagner, S. TI Testbeam and laboratory characterization of CMS 3D pixel sensors SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Radiation-hard detectors; Si microstrip and pad detectors ID DETECTORS; DESIGN AB The pixel detector is the innermost tracking device in CMS, reconstructing interaction vertices and charged particle trajectories. The sensors located in the innermost layers of the pixel detector must be upgraded for the ten-fold increase in luminosity expected at the High-Luminosity LHC (HL-LHC). As a possible replacement for planar sensors, 3D silicon technology is under consideration due to its good performance after high radiation fluence. In this paper, we report on pre- and post-irradiation measurements of CMS 3D pixel sensors with different electrode configurations from different vendors. The effects of irradiation on electrical properties, charge collection efficiency, and position resolution are discussed. Measurements of various test structures for monitoring the fabrication process and studying the bulk and surface properties of silicon sensors, such as MOS capacitors, planar and gate-controlled diodes are also presented. C1 [Bubna, M.; Bortoletto, D.; Alagoz, E.; Krzywda, A.; Arndt, K.; Shipsey, I.; Bolla, G.; Hinton, N.; Jones, M.] Purdue Univ, W Lafayette, IN 47907 USA. [Boscardin, M.] Fdn Bruno Kessler CMM FBK, Ctr Mat & Microsyst, Trento, Italy. [Dalla Betta, G. F.; Mendicino, R.; Povoli, M.] INFN TIFPA, Trento, Italy. [Dalla Betta, G. F.; Mendicino, R.; Povoli, M.] Univ Trent, I-38100 Trento, Italy. [Solano, A.; Obertino, M. M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Chramowicz, J.; Lei, C. M.; Prosser, A.; Rivera, R.; Kwan, S.; Uplegger, L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Cumalat, J.; Krohn, M. D.; Wagner, S.] Univ Colorado, Boulder, CO 80309 USA. [Moroni, L.; Vigani, L.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Dinardo, M.] Univ Milano Bicocca, Milan, Italy. [Godshalk, A.; Kumar, A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brom, J. M.] Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Perera, L.] Univ Mississippi, University, MS 38677 USA. [Kok, A.; Hansen, T. -E.; Summanwar, A.] SINTEF ICT, Oslo, Norway. RP Bubna, M (reprint author), Purdue Univ, W Lafayette, IN 47907 USA. EM mbubna@purdue.edu RI Dalla Betta, Gian-Franco/I-1783-2012; OI Dalla Betta, Gian-Franco/0000-0001-5516-9282; Arndt, Kirk/0000-0002-6826-8340 NR 15 TC 3 Z9 3 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUL PY 2014 VL 9 AR C07019 DI 10.1088/1748-0221/9/07/C07019 PG 15 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AM7MF UT WOS:000340050700019 ER PT J AU Correia, PMM Oliveira, CAB Azevedo, CDR Silva, ALM Veenhof, R Nemallapudi, MV Veloso, JFCA AF Correia, P. M. M. Oliveira, C. A. B. Azevedo, C. D. R. Silva, A. L. M. Veenhof, R. Nemallapudi, M. Varun Veloso, J. F. C. A. TI A dynamic method for charging-up calculations: the case of GEM SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Avalanche-induced secondary effects; Detector modelling and simulations II (electric fields, charge transport, multiplication and induction, pulse formation, electron emission, etc); Micropattern gaseous detectors (MSGC, GEM, THGEM, RETHGEM, MHSP, MICROPIC, MI-CROMEGAS, InGrid, etc); Charge transport and multiplication in gas ID IONIZATION; SIMULATION; POLYIMIDE AB The simulation of Micro Pattern Gaseous Detectors (MPGDs) signal response is an important and powerful tool for the design and optimization of such detectors. However, several attempts to exactly simulate the effective gas gain have not been completely successful. Namely, the gain stability over time has not been fully understood. Charging-up of the insulator surfaces have been pointed as one of the responsible for the difference between experimental and Monte Carlo results. This work describes two iterative methods to simulate the charging-up in one MPGD device, the Gas Electron Multiplier (GEM). The first method, which uses a constant step size for avalanches time evolution, is very detailed but slow to compute. The second method instead uses a dynamic step-size that improves the computing time. Good agreement between both methods was achieved. Comparison with experimental results shows that charging-up plays an important role in detectors operation, explaining the time evolution of the gain. However it doesn't seem to be the only responsible for the difference between measurements and Monte Carlo simulations. C1 [Correia, P. M. M.; Oliveira, C. A. B.; Azevedo, C. D. R.; Silva, A. L. M.; Veloso, J. F. C. A.] Univ Aveiro, Dept Phys, I3N, P-3810193 Aveiro, Portugal. [Oliveira, C. A. B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Veenhof, R.; Nemallapudi, M. Varun] CERN, PH Dept, CH-1211 Geneva 23, Switzerland. [Veenhof, R.] Uludag Univ, Fac Arts & Sci, Dept Phys, TR-16059 Bursa, Turkey. RP Correia, PMM (reprint author), Univ Aveiro, Dept Phys, I3N, P-3810193 Aveiro, Portugal. EM pmcorreia@ua.pt RI Correia, Pedro/K-8075-2014; Azevedo, Carlos/J-5733-2013; veloso, joao/J-4478-2013; OI Correia, Pedro/0000-0001-7292-7735; Azevedo, Carlos/0000-0002-0012-9918; Silva, Ana/0000-0002-8363-0109; Veloso, Joao/0000-0002-7107-7203 FU COMPETE [CERN/FP/123604/2011, PTDC/FIS/110925/2009]; FEDER [CERN/FP/123604/2011, PTDC/FIS/110925/2009]; FCT (Lisbon) [CERN/FP/123604/2011, PTDC/FIS/110925/2009, BIC/UI96/5496/2011, SFHR/BPD/79163/2011] FX This work was partially supported by projects CERN/FP/123604/2011 and PTDC/FIS/110925/2009 through COMPETE, FEDER and FCT (Lisbon) programs.; P.M.M. Correia was supported by FCT (Lisbon) grant BIC/UI96/5496/2011.; C.D.R. Azevedo was supported by FCT (Lisbon) grant SFHR/BPD/79163/2011. NR 17 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUL PY 2014 VL 9 AR P07025 DI 10.1088/1748-0221/9/07/P07025 PG 15 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AM7MF UT WOS:000340050700046 ER PT J AU Denisov, D AF Denisov, D. TI Fermilab program and plans SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Accelerator Applications; Cryogenic detectors; Dark Matter detectors (WIMPs, axions, etc.) AB This article is a short summary of the talk presented at 2014 Instrumentation Conference in Novosibirsk about Fermilab's experimental program and future plans. It includes brief description of the P5 long term planning progressing in US as well as discussion of the future accelerators considered at Fermilab. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Denisov, D (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM denisovd@fnal.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUL PY 2014 VL 9 AR C07021 DI 10.1088/1748-0221/9/07/C07021 PG 9 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AM7MF UT WOS:000340050700021 ER PT J AU Frankle, FM Gluck, F Valerius, K Bokeloh, K Beglarian, A Bonn, J Bornschein, L Drexlin, G Habermehl, F Leber, ML Osipowicz, A Otten, EW Steidl, M Thummler, T Weinheimer, C Wilkerson, JF Wolf, J Zadorozhny, SV AF Fraenkle, F. M. Glueck, F. Valerius, K. Bokeloh, K. Beglarian, A. Bonn, J. Bornschein, L. Drexlin, G. Habermehl, F. Leber, M. L. Osipowicz, A. Otten, E. W. Steidl, M. Thuemmler, T. Weinheimer, C. Wilkerson, J. F. Wolf, J. Zadorozhny, S. V. TI Penning discharge in the KATRIN pre-spectrometer SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Spectrometers; Instrumentation for particle accelerators and storage rings - low energy (linear accelerators, cyclotrons, electrostatic accelerators) ID ION-BOMBARDMENT; MAGNETIC-FIELD; MASS; ELECTRON; EMISSION; VACUUM; TEMPERATURE AB The KArlsruhe TRItium Neutrino (KATRIN) experiment is a next-generation, large-scale tritium beta-decay experiment to determine the neutrino mass by investigating the kinematics of tritium beta-decay with a sensitivity of 200 meV/c(2) using the MAC-E filter technique. In order to reach this sensitivity a low background level of 10(-2) counts per second (cps) is required. A major background concern in MAC-E filters is the presence of Penning traps. A Penning trap is a special configuration of electromagnetic fields that allows the storage of electrically charged particles. This paper describes the mechanism of Penning discharges and the corresponding measurements performed at the test setup of the KATRIN pre-spectrometer. These investigations led to the conclusion that the observed electric breakdown, strong discharges and extremely large background rates were due to discharges caused by Penning traps located at both ends of the pre-spectrometer. Furthermore, the paper describes the design of a new set of electrodes (modified ground electrodes and new "anti-Penning" electrodes) to successfully remove these traps. After the installation of these electrodes in the pre-spectrometer, the measurements confirmed that the strong Penning discharges disappeared. The experience gained from the pre-spectrometer was used to design the electrode system of the main spectrometer. Recent measurements with the main spectrometer showed no indications of Penning trap related backgrounds. C1 [Fraenkle, F. M.; Glueck, F.; Bornschein, L.; Drexlin, G.; Habermehl, F.; Wolf, J.] Karlsruher Inst Technol, Inst Expt Kernphys, Karlsruhe, Germany. [Glueck, F.] Wigner Res Ctr Phys, Budapest, Hungary. [Valerius, K.; Bokeloh, K.; Weinheimer, C.] Univ Munster, Inst Kernphys, Karlsruhe, Germany. [Beglarian, A.] Karlsruher Inst Technol, Inst Prozessdatenverarbeitung & Elekt, Karlsruhe, Germany. [Bonn, J.; Otten, E. W.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Leber, M. L.] Univ Washington, Ctr Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Osipowicz, A.] Univ Appl Sci HS Fulda, Fulda, Germany. [Steidl, M.; Thuemmler, T.] Karlsruher Inst Technol, Inst Kernphys, Karlsruhe, Germany. [Wilkerson, J. F.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC USA. [Wilkerson, J. F.] Triangle Univ Nucl Lab, Durham, NC 27706 USA. [Wilkerson, J. F.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Zadorozhny, S. V.] Russian Acad Sci, Inst Nucl Res, Troitsk, Russia. RP Frankle, FM (reprint author), Karlsruher Inst Technol, Inst Expt Kernphys, Karlsruhe, Germany. EM florian.fraenkle@kit.edu FU Bundesministerium fur Bildung und Forschung (BMBF) [05A11VK3, 05A11PM2]; Deutsche Forschungsgemeinschaft (DFG) [Transregio 27]; Department of Energy, Office of Nuclear Physics [DE-FG02-97ER41041, DE-FG02-97ER41033] FX This work has been supported by the Bundesministerium fur Bildung und Forschung (BMBF) with project numbers 05A11VK3 and 05A11PM2 and the Deutsche Forschungsgemeinschaft (DFG) via Transregio 27 Neutrinos and beyond. The Department of Energy, Office of Nuclear Physics supported this work with the grants DE-FG02-97ER41041 and DE-FG02-97ER41033. NR 54 TC 0 Z9 0 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUL PY 2014 VL 9 AR P07028 DI 10.1088/1748-0221/9/07/P07028 PG 23 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AM7MF UT WOS:000340050700049 ER PT J AU Madrak, R Wildman, D AF Madrak, Robyn Wildman, David TI A new technique for RF distribution SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Accelerator Subsystems and Technologies; Accelerator Applications ID GUIDED-WAVE PROPAGATION; GYROMAGNETIC MEDIA; TOPICS AB For independent phase and amplitude control, RF cavities are often driven by one power source per cavity. In many cases it would be advantageous in terms of cost to instead use one higher power source for many cavities. Vector modulators have been developed, which, when used with a single source provide for the independent phase and amplitude control which would have been otherwise lost. The key components of these vector modulators are a novel type of phase shifter - adjustable fast phase shifters with perpendicularly biased garnets. The vector modulators have been constructed and used with a single klystron in a 3.4 MeV test linac to successfully accelerate proton beam. C1 [Madrak, Robyn; Wildman, David] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Madrak, R (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM madrak@fnal.gov FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; United States Department of Energy FX This work is supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 21 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUL PY 2014 VL 9 AR P07019 DI 10.1088/1748-0221/9/07/P07019 PG 18 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AM7MF UT WOS:000340050700040 ER PT J AU Shiltsev, V AF Shiltsev, V. TI A phenomenological cost model for high energy particle accelerators SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Manufacturing; Accelerator Subsystems and Technologies; Acceleration cavities and magnets superconducting (high-temperature superconductor; radiation hardened magnets; normal-conducting; permanent magnet devices; wigglers and undulators); Overall mechanics design (support structures and materials, vibration analysis etc) ID COLLIDERS AB Accelerator-based facilities have enabled forefront research in high-energy physics for more than half a century. The accelerator technology of colliders has progressed immensely, while beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. In this paper we derive a simple scaling model for the cost of large accelerators and colliding beam facilities based on costs of 17 big facilities which have been either built or carefully estimated. Although this approach cannot replace an actual cost estimate based on an engineering design, this parameterization is to indicate a somewhat realistic cost range for consideration of what future frontier accelerator facilities might be fiscally realizable. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Shiltsev, V (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM shiltsev@fnal.gov FU Fermi Research Alliance, LLC with the United States Department of Energy [DE-AC02-07CH11359] FX The author is very thankful to Peter Garbincius, Stuart Henderson, and Stephen Holmes for useful discussions and Ted Liu, Gene Kafka and Michael Zisman for thoughtful comments that helped to improve the manuscript. Fermi National Accelerator Laboratory is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 37 TC 4 Z9 4 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUL PY 2014 VL 9 AR T07002 DI 10.1088/1748-0221/9/07/T07002 PG 13 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AM7MF UT WOS:000340050700053 ER PT J AU Wang, S Yu, X Zhang, J Zhang, Y Wang, L Leinenweber, K Xu, H Popov, D Park, C Yang, W He, D Zhao, Y AF Wang, S. Yu, X. Zhang, J. Zhang, Y. Wang, L. Leinenweber, K. Xu, H. Popov, D. Park, C. Yang, W. He, D. Zhao, Y. TI Crystal structures, elastic properties, and hardness of high-pressure synthesized CrB2 and CrB4 SO JOURNAL OF SUPERHARD MATERIALS LA English DT Article DE chromium borides; CrB4; CrB2; high-pressure synthesis; structure; compressibility; superhard material ID SUPERHARD RHENIUM DIBORIDE; BORON-RICH SOLIDS; TUNGSTEN TETRABORIDE; AMBIENT-PRESSURE; DIAMOND; BORIDES; HARDER AB Chromium tetraboride (CrB4), a recently proposed candidate for superhard materials, has been synthesized at high pressure and temperature by a solid-state reaction. As a byproduct, chromium diboride (CrB2) also forms and co-exists with CrB4 in the final product. The comparative studies of crystal structure, elastic property, and hardness of both phases have been conducted at the same sample environment conditions. The crystal structure of CrB4 has been refined with an orthorhombic symmetry of Immm(space group no. 71) or Pnnm (space group no. 58) using X-ray diffraction data. Further simulations indicate that the structural distinction between Immm and Pnnm can be resolved by neutron diffraction, due to the high scattering cross-section of boron (B-11) by neutrons. Although CrB2 and CrB4 have close bulk modulus at about 230 GPa, the measured asymptotic Vickers hardness yields 16 GPa for CrB2 but 30 GPa for CrB4, which is nearly two times that of CrB2. The dramatic enhancement in hardness in CrB4 is attributed to the strong three-dimensional Cr-B network, in contrast to the layered lattice structure of hexagonal CrB2. C1 [Wang, S.; Zhang, Y.; Wang, L.; Zhao, Y.] Univ Nevada, HiPSEC, Las Vegas, NV 89154 USA. [Wang, S.; Zhang, Y.; Wang, L.; Zhao, Y.] Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA. [Wang, S.; Yu, X.; Zhang, J.; Xu, H.; Zhao, Y.] Los Alamos Natl Lab, LANSCE Div, Los Alamos, NM 87545 USA. [Wang, S.; Yu, X.; Zhang, J.; Xu, H.; Zhao, Y.] Los Alamos Natl Lab, EES Div, Los Alamos, NM 87545 USA. [Wang, S.; He, D.] Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Peoples R China. [Leinenweber, K.] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Popov, D.; Park, C.; Yang, W.] Carnegie Inst Sci, HPCAT, Geophys Lab, Argonne, IL 60439 USA. [Popov, D.; Park, C.; Yang, W.] Carnegie Inst Sci, HPSynC, Geophys Lab, Argonne, IL 60439 USA. [Yang, W.] Ctr High Pressure Sci & Technol Adv Res HPSTAR, Shanghai 201203, Peoples R China. RP Wang, S (reprint author), Univ Nevada, HiPSEC, Las Vegas, NV 89154 USA. EM Yusheng.Zhao@UNLV.edu RI Park, Changyong/A-8544-2008; OI Park, Changyong/0000-0002-3363-5788; Xu, Hongwu/0000-0002-0793-6923 FU DOE-NNSA [DE-NA0001974]; DOE-BES [DE-FG02-99ER45775, DE-AC02-06CH11357]; NSF; UNLV High Pressure Science and Engineering Center (HiPSEC) [DE-FC52-06NA27684]; UNLV start-up; Los Alamos National Laboratory under DOE [DE-AC52-06NA25396]; EFree, an Energy Frontier Research Center - DOEBES [DE-SC0001057] FX Portions of this work were performed at HPCAT, Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. This work is also supported by UNLV High Pressure Science and Engineering Center (HiPSEC), which is a DOE NNSA Center of Excellence operated under Cooperative Agreement DE-FC52-06NA27684, and UNLV start-up funding to Y. Zhao. This research is partially supported by Los Alamos National Laboratory, which is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. HPSynC is supported as part of EFree, an Energy Frontier Research Center funded by DOEBES under Grant DE-SC0001057. NR 37 TC 9 Z9 9 U1 4 U2 50 PU ALLERTON PRESS INC PI NEW YORK PA 18 WEST 27TH ST, NEW YORK, NY 10001 USA SN 1063-4576 EI 1934-9408 J9 J SUPERHARD MATER+ JI J. Superhard Mater. PD JUL PY 2014 VL 36 IS 4 BP 279 EP 287 DI 10.3103/S1063457614040066 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA AO0LH UT WOS:000340999800006 ER PT J AU Rice, WD Ambwani, P Thompson, JD Leighton, C Crooker, SA AF Rice, William D. Ambwani, Palak Thompson, Joe D. Leighton, Christopher Crooker, Scott A. TI Revealing optically induced magnetization in SrTiO3 using optically coupled SQUID magnetometry and magnetic circular dichroism SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID OXIDE INTERFACES; LAALO3/SRTIO3 INTERFACE; DOPED SRTIO3; FERROMAGNETISM; SUPERCONDUCTIVITY; HETEROSTRUCTURES; SEMICONDUCTOR; ELECTRONICS; COEXISTENCE; OXYGEN AB In this work, the authors study the time-and temperature-dependence of optically induced magnetization in bulk crystals of slightly oxygen-deficient SrTiO3-delta using an optically coupled superconducting quantum interference device magnetometer. Circularly-polarized sub-bandgap light is found to induce a weak (similar to 5 x 10(-7) emu) but extremely long-lived (hours) magnetic moment in SrTiO3-delta at zero magnetic field. The authors utilize this effect to demonstrate that SrTiO3-delta crystals can be used as an optically addressable magnetic memory by writing and subsequently reading magnetic patterns with light. The induced magnetization is consistent with that of a polarized ensemble of independent oxygen-vacancy-related complexes, rather than from collective or long-range magnetic order. (c) 2014 American Vacuum Society. C1 [Rice, William D.; Crooker, Scott A.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Ambwani, Palak; Leighton, Christopher] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [Thompson, Joe D.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Rice, WD (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, POB 1663, Los Alamos, NM 87545 USA. EM crooker@lanl.gov FU Los Alamos LDRD program under US DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; NSF [DMR-0804432]; MRSEC Program of the NSF [DMR-0819885] FX This work was supported by the Los Alamos LDRD program under the auspices of the US DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Work at UMN supported in part by NSF under DMR-0804432 and in part by the MRSEC Program of the NSF under DMR-0819885. NR 30 TC 0 Z9 0 U1 4 U2 17 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD JUL PY 2014 VL 32 IS 4 AR 04E102 DI 10.1116/1.4871691 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA AO2RP UT WOS:000341173200002 ER PT J AU Bolnick, DI Snowberg, LK Hirsch, PE Lauber, CL Org, E Parks, B Lusis, AJ Knight, R Caporaso, JG Svanback, R AF Bolnick, Daniel I. Snowberg, Lisa K. Hirsch, Philipp E. Lauber, Christian L. Org, Elin Parks, Brian Lusis, Aldons J. Knight, Rob Caporaso, J. Gregory Svanback, Richard TI Individual diet has sex-dependent effects on vertebrate gut microbiota SO NATURE COMMUNICATIONS LA English DT Article ID THREESPINE STICKLEBACK; STABLE-ISOTOPES; TROPHIC POSITION; EURASIAN PERCH; POPULATION; COMMUNITIES; DIVERSITY; SPECIALIZATION; ECOLOGY; HABITAT AB Vertebrates harbour diverse communities of symbiotic gut microbes. Host diet is known to alter microbiota composition, implying that dietary treatments might alleviate diseases arising from altered microbial composition ('dysbiosis'). However, it remains unclear whether diet effects are general or depend on host genotype. Here we show that gut microbiota composition depends on interactions between host diet and sex within populations of wild and laboratory fish, laboratory mice and humans. Within each of two natural fish populations (threespine stickleback and Eurasian perch), among-individual diet variation is correlated with individual differences in gut microbiota. However, these diet-microbiota associations are sex dependent. We document similar sex-specific diet-microbiota correlations in humans. Experimental diet manipulations in laboratory stickleback and mice confirmed that diet affects microbiota differently in males versus females. The prevalence of such genotype by environment (sex by diet) interactions implies that therapies to treat dysbiosis might have sex-specific effects. C1 [Bolnick, Daniel I.] Univ Texas Austin, Howard Hughes Med Inst, Austin, TX 78712 USA. [Bolnick, Daniel I.; Snowberg, Lisa K.] Univ Texas Austin, Dept Integrat Biol, Austin, TX 78712 USA. [Hirsch, Philipp E.; Svanback, Richard] Uppsala Univ, Dept Ecol & Genet, SE-75236 Uppsala, Sweden. [Hirsch, Philipp E.] Univ Basel, Program Man Soc Environm, CH-4051 Basel, Switzerland. [Lauber, Christian L.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Org, Elin; Parks, Brian; Lusis, Aldons J.] Univ Calif Los Angeles, Dept Med, Div Cardiol, Los Angeles, CA 90095 USA. [Knight, Rob] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA. [Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Knight, Rob] Univ Colorado, BioFrontiers Inst, Boulder, CO 80309 USA. [Caporaso, J. Gregory] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA. [Caporaso, J. Gregory] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60439 USA. RP Bolnick, DI (reprint author), Univ Texas Austin, Howard Hughes Med Inst, One Univ Stn C0990, Austin, TX 78712 USA. EM danbolnick@austin.utexas.edu RI Hirsch, Philipp/F-4895-2012; Bolnick, Daniel/G-4440-2015; Knight, Rob/D-1299-2010; OI Bolnick, Daniel/0000-0003-3148-6296; Org, Elin/0000-0003-1451-9375 FU Howard Hughes Medical Institute; David and Lucille Packard Foundation; Swedish Research Council; NIH [HL28481, HL30568]; Marie Curie Foundation IOF FX This research was funded by the Howard Hughes Medical Institute (D.I.B., R.K.), the David and Lucille Packard Foundation (D.I.B.), and the Swedish Research Council (R.S.). The mouse experiment was funded by NIH HL28481 and HL30568 (A.J.L.) and the Marie Curie Foundation IOF (E.O.). We thank M.Araujo, D. Cayon, E. Geibrink, J. Malmberg and W. Stutz for field work, Xinmei Feng for lab work, Donna Berg-Lyons and Scott Hunicke-Smith for sequencing, and D. Schluter and D. Rennison for comments. NR 70 TC 56 Z9 58 U1 7 U2 71 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2014 VL 5 AR 4500 DI 10.1038/ncomms5500 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AN5IW UT WOS:000340625100003 PM 25072318 ER PT J AU Dutilh, BE Noriko, CW McNair, K Sanchez, SE Silva, GGZ Boling, L Barr, JJ Speth, DR Seguritan, V Aziz, RK Felts, B Dinsdale, EA Mokili, JL Edwards, RA AF Dutilh, Bas E. Cassman, Noriko McNair, Katelyn Sanchez, Savannah E. Silva, Genivaldo G. Z. Boling, Lance Barr, Jeremy J. Speth, Daan R. Seguritan, Victor Aziz, Ramy K. Felts, Ben Dinsdale, Elizabeth A. Mokili, John L. Edwards, Robert A. TI A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes SO NATURE COMMUNICATIONS LA English DT Article ID HUMAN GUT VIROME; HUMAN FECES; BACTEROIDES-FRAGILIS; VIRAL COMMUNITIES; HUMAN MICROBIOME; GENOME SEQUENCE; VIRUSES; PROTEIN; PHAGE; DNA AB Metagenomics, or sequencing of the genetic material from a complete microbial community, is a promising tool to discover novel microbes and viruses. Viral metagenomes typically contain many unknown sequences. Here we describe the discovery of a previously unidentified bacteriophage present in the majority of published human faecal metagenomes, which we refer to as crAssphage. Its similar to 97 kbp genome is six times more abundant in publicly available metagenomes than all other known phages together; it comprises up to 90% and 22% of all reads in virus-like particle (VLP)-derived metagenomes and total community metagenomes, respectively; and it totals 1.68% of all human faecal metagenomic sequencing reads in the public databases. The majority of crAssphage-encoded proteins match no known sequences in the database, which is why it was not detected before. Using a new co-occurrence profiling approach, we predict a Bacteroides host for this phage, consistent with Bacteroides-related protein homologues and a unique carbohydrate-binding domain encoded in the phage genome. C1 [Dutilh, Bas E.] Radboud Univ Nijmegen, Med Ctr, Radboud Inst Mol Life Sci, Ctr Mol & Biomol Informat, NL-6525 GA Nijmegen, Netherlands. [Dutilh, Bas E.; McNair, Katelyn; Aziz, Ramy K.; Edwards, Robert A.] San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. [Dutilh, Bas E.; Cassman, Noriko; Sanchez, Savannah E.; Boling, Lance; Barr, Jeremy J.; Seguritan, Victor; Dinsdale, Elizabeth A.; Mokili, John L.] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. [Dutilh, Bas E.; Edwards, Robert A.] Univ Fed Rio de Janeiro, Inst Biol, Dept Marine Biol, BR-21941902 Rio De Janeiro, Brazil. [Silva, Genivaldo G. Z.; Dinsdale, Elizabeth A.; Edwards, Robert A.] San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA. [Speth, Daan R.] Radboud Univ Nijmegen, Inst Water & Wetland Res, Dept Microbiol, NL-6525 AJ Nijmegen, Netherlands. [Aziz, Ramy K.] Cairo Univ, Fac Pharm, Dept Microbiol & Immunol, Cairo 11562, Egypt. [Felts, Ben] San Diego State Univ, Dept Math, San Diego, CA 92182 USA. [Edwards, Robert A.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Dutilh, BE (reprint author), Radboud Univ Nijmegen, Med Ctr, Radboud Inst Mol Life Sci, Ctr Mol & Biomol Informat, Geert Grootepl 28, NL-6525 GA Nijmegen, Netherlands. EM bedutilh@gmail.com RI Aziz, Ramy/B-2918-2009; Dutilh, Bas/B-9719-2011; OI Aziz, Ramy/0000-0002-4448-7100; Dutilh, Bas/0000-0003-2329-7890; Speth, Daan/0000-0002-2361-5935; Barr, Jeremy/0000-0001-5603-5294 FU NWO Veni [016.111.075]; CAPES/BRASIL; Dutch Virgo Consortium [FES0908, NGI 050-060-452]; BE-Basic [fp0702]; National Science Foundation [DBI-0850356, MCB-1330800, DEB-1046413]; Information and Intelligent Systems Division of the National Science Foundation [CNS-1305112] FX We thank Alejandro Reyes, Jeffrey Gordon and Forest Rohwer for access to virome materials and fruitful discussions; Michiyo Wellington-Oguri for initial host predictions; Anca Segall for help with iVireons; and Cynthia Sears (NIH-R01CA151393) for screening Bacteroides genomes. B.E.D. was supported by NWO Veni (016.111.075), CAPES/BRASIL and the Dutch Virgo Consortium (FES0908, NGI 050-060-452); D.R.S. by was supported BE-Basic (fp0702); and R.A.E. was supported by grants from the National Science Foundation (DBI-0850356, MCB-1330800, and DEB-1046413). High performance computation was provided by award CNS-1305112 from the Information and Intelligent Systems Division of the National Science Foundation to R.A.E. NR 69 TC 63 Z9 64 U1 5 U2 66 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2014 VL 5 AR 4498 DI 10.1038/ncomms5498 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AN5IW UT WOS:000340625100001 PM 25058116 ER PT J AU Kim, JW Khim, S Chun, SH Jo, Y Balicas, L Yi, HT Cheong, SW Harrison, N Batista, CD Han, JH Kim, KH AF Kim, Jae Wook Khim, Seunghyun Chun, Sae Hwan Jo, Y. Balicas, L. Yi, H. T. Cheong, S. -W. Harrison, N. Batista, C. D. Han, Jung Hoon Kim, Kee Hoon TI Manifestation of magnetic quantum fluctuations in the dielectric properties of a multiferroic SO NATURE COMMUNICATIONS LA English DT Article ID BOSE-EINSTEIN CONDENSATION; PHASE-TRANSITIONS; CRITICALITY; FERROELECTRICITY; POLARIZATION; BA2COGE2O7; SYMMETRY; BEHAVIOR AB Insulating magnets can display novel signatures of quantum fluctuations as similar to the case of metallic magnets. However, their weak spin-lattice coupling has made such observations challenging. Here we find that antiferromagnetic (AF) quantum fluctuations manifest in the dielectric properties of multiferroic Ba2CoGe2O7, where a ferroelectric polarization develops concomitant to an AF ordering. Upon application of a magnetic field (H), dielectric constant shows a characteristic power-law dependence near absolute zero temperature and close to the critical field H-c = 37.1 T due to enhanced AF quantum fluctuations. When H>H-c, the dielectric constant shows the temperature-dependent anomalies that reflect a crossover from a field-tuned quantum critical to a gapped spin-polarized state. We uncover theoretically that a linear relation between AF susceptibility and dielectric constant stems from the generic magnetoelectric coupling and directly explains the experimental findings, opening a new pathway for studying quantum criticality in condensed matter. C1 [Kim, Jae Wook; Khim, Seunghyun; Chun, Sae Hwan; Kim, Kee Hoon] Seoul Natl Univ, Dept Phys & Astron, CeNSCMR, Seoul 151747, South Korea. [Jo, Y.; Balicas, L.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Yi, H. T.; Cheong, S. -W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Yi, H. T.; Cheong, S. -W.] Rutgers State Univ, Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA. [Harrison, N.] Los Alamos Natl Lab, NHMFL, Los Alamos, NM 87545 USA. [Batista, C. D.] LANL, Div Theoret, Los Alamos, NM 87545 USA. [Han, Jung Hoon] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Kim, Kee Hoon] Seoul Natl Univ, Inst Appl Phys, Seoul 151747, South Korea. RP Kim, KH (reprint author), Seoul Natl Univ, Dept Phys & Astron, CeNSCMR, Seoul 151747, South Korea. EM khkim@phya.snu.ac.kr RI Yi, Hee Taek/F-6399-2010; Batista, Cristian/J-8008-2016; OI Harrison, Neil/0000-0001-5456-7756 FU CRI program [2010-0018300]; BSR program [2009-0083512]; Fundamental R&D program for the Core Technology of Materials; NSF [DMR-0654118]; State of Florida; US DOE-BES [LANLF100]; DOE-BES [DE-SC0002613]; DOE [DE-FG02-07ER46382]; NRF [2013R1A2A1A01006430] FX This work is supported by the CRI (2010-0018300), BSR (2009-0083512) programs, and the Fundamental R&D program for the Core Technology of Materials. Work at NHMFL Pulsed Field Facility at LANL and NHMFL DC Field facility was supported by the NSF grant DMR-0654118, the State of Florida, and the US DOE-BES project 'Science at 100 tesla' BES FWP LANLF100. L.B. is supported by DOE-BES through Grant No. DE-SC0002613. The work at Rutgers was supported by the DOE:DE-FG02-07ER46382. J.H.H. is supported by NRF Grants No. 2013R1A2A1A01006430. NR 39 TC 5 Z9 5 U1 3 U2 70 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2014 VL 5 AR 4419 DI 10.1038/ncomms5419 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AN5IB UT WOS:000340622900011 PM 25072808 ER PT J AU Kim, J Daghofer, M Said, AH Gog, T van den Brink, J Khaliullin, G Kim, BJ AF Kim, Jungho Daghofer, M. Said, A. H. Gog, T. van den Brink, J. Khaliullin, G. Kim, B. J. TI Excitonic quasiparticles in a spin-orbit Mott insulator SO NATURE COMMUNICATIONS LA English DT Article ID ONE-DIMENSIONAL SRCUO2; COPPER-OXIDE; QUANTUM ANTIFERROMAGNET; ELECTRONIC-STRUCTURE; PHOTOEMISSION; HOLE; EXCITATIONS; SR2IRO4; KCOF3; STATE AB In condensed matter systems, out of a large number of interacting degrees of freedom emerge weakly coupled quasiparticles (QPs), in terms of which most physical properties are described. The lack of identification of such QPs is a major barrier for understanding myriad exotic properties of correlated electrons, such as unconventional superconductivity and non-Fermi liquid behaviours. Here we report the observation of a composite particle in a quasi-two-dimensional spin-1/2 antiferromagnet Sr2IrO4-an exciton dressed with magnons-that propagates with the canonical characteristics of a QP: a finite QP residue and a lifetime longer than the hopping time scale. The dynamics of this charge-neutral excitation mirrors the fundamental process of the analogous one-hole propagation in the background of spins-1/2, and reveals the same intrinsic dynamics that is obscured for a single, charged-hole doped into two-dimensional cuprates. C1 [Kim, Jungho; Said, A. H.; Gog, T.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Daghofer, M.; van den Brink, J.] IFW Dresden, Inst Theoret Solid State Phys, D-01069 Dresden, Germany. [Khaliullin, G.; Kim, B. J.] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. [Kim, B. J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kim, BJ (reprint author), Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany. EM bjkim@fkf.mpg.de RI Daghofer, Maria/C-5762-2008; van den Brink, Jeroen/E-5670-2011 OI Daghofer, Maria/0000-0001-9434-8937; van den Brink, Jeroen/0000-0001-6594-9610 FU US Department of Energy (DOE) Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; US DOE [DE-AC02-06CH11357] FX B.J.K. thanks G. Jackeli for discussions. Work in the Materials Science Division of Argonne National Laboratory (sample preparation and characterization) was supported by the US Department of Energy (DOE) Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US DOE Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. NR 43 TC 33 Z9 33 U1 7 U2 89 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2014 VL 5 AR 4453 DI 10.1038/ncomms5453 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AN5IB UT WOS:000340622900045 PM 25029968 ER PT J AU Matzen, S Nesterov, O Rispens, G Heuver, JA Biegalski, M Christen, HM Noheda, B AF Matzen, S. Nesterov, O. Rispens, G. Heuver, J. A. Biegalski, M. Christen, H. M. Noheda, B. TI Super switching and control of in-plane ferroelectric nanodomains in strained thin films SO NATURE COMMUNICATIONS LA English DT Article ID SINGLE-CRYSTAL BATIO3; DOMAIN FORMATION; CLOSURE; POLARIZATION; STATES; PB(ZR,TI)O-3; ROTATION; NANODOTS AB With shrinking device sizes, controlling domain formation in nanoferroelectrics becomes crucial. Periodic nanodomains that self-organize into so-called 'superdomains' have been recently observed, mainly at crystal edges or in laterally confined nanoobjects. Here we show that in extended, strain-engineered thin films, superdomains with purely in-plane polarization form to mimic the single-domain ground state, a new insight that allows a priori design of these hierarchical domain architectures. Importantly, superdomains behave like strain-neutral entities whose resultant polarization can be reversibly switched by 90 degrees, offering promising perspectives for novel device geometries. C1 [Matzen, S.; Nesterov, O.; Rispens, G.; Heuver, J. A.; Noheda, B.] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands. [Biegalski, M.; Christen, H. M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Matzen, S (reprint author), Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands. EM sylvia.matzen@u-psud.fr RI Christen, Hans/H-6551-2013 OI Christen, Hans/0000-0001-8187-7469 FU NanoNextNL; micro and nanotechnology consortium of the Government of the Netherlands; Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This work is supported by NanoNextNL, a micro and nanotechnology consortium of the Government of the Netherlands and 130 partners. We thank Andre Beerlink and Oliver H. Seeck for their support at the P08-Petra III beamline, as well as Brian Smith and Guus Rijnders for their help with the substrate treatment. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 46 TC 20 Z9 20 U1 8 U2 92 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2014 VL 5 AR 4415 DI 10.1038/ncomms5415 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AN5IB UT WOS:000340622900007 PM 25019998 ER PT J AU Carr, SM Woods, SI Jung, TM Carter, AC Datla, RU AF Carr, S. M. Woods, S. I. Jung, T. M. Carter, A. C. Datla, R. U. TI Experimental measurements and noise analysis of a cryogenic radiometer SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID LOW-TEMPERATURE DETECTORS; THERMAL AGITATION; TRANSITION; THERMOMETRY; PERFORMANCE; PRINCIPLES; CONDUCTORS; STANDARD; PHYSICS AB A cryogenic radiometer device, intended for use as part of an electrical-substitution radiometer, was measured at low temperature. The device consists of a receiver cavity mechanically and thermally connected to a temperature-controlled stage through a thin-walled polyimide tube which serves as a weak thermal link. With the temperature difference between the receiver and the stage measured in millikelvin and the electrical power measured in picowatts, the measured responsivity was 4700 K/mW and the measured thermal time constant was 14 s at a stage temperature of 1.885 K. Noise analysis in terms of Noise Equivalent Power (NEP) was used to quantify the various fundamental and technical noise contributions, including phonon noise and Johnson-Nyquist noise. The noise analysis clarifies the path toward a cryogenic radiometer with a noise floor limited by fundamental phonon noise, where the magnitude of the phonon NEP is 6.5 fW/root Hz for the measured experimental parameters. C1 [Carr, S. M.; Woods, S. I.; Jung, T. M.; Carter, A. C.; Datla, R. U.] NIST, Gaithersburg, MD 20899 USA. RP Carr, SM (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. NR 44 TC 0 Z9 0 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2014 VL 85 IS 7 AR 075105 DI 10.1063/1.4883191 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AO2SQ UT WOS:000341176600052 PM 25085171 ER PT J AU Dameron, AA Kempe, MD Reese, MO AF Dameron, Arrelaine A. Kempe, Michael D. Reese, Matthew O. TI Internal sensor compensation for increased Ca test sensitivity SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID LIGHT-EMITTING DEVICES; ORGANIC SOLAR-CELLS; CALCIUM CORROSION; ENCAPSULATION; DEGRADATION; POLYMER AB The development of state-of-the-art barrier films and encapsulation schema for displays and photovoltaics requires precise measurement of water vapor permeation as quickly as possible. We have demonstrated improvements to our electrical, Ca-trace-based water vapor transmission rate measurement technique without introducing any additional cost or sample handling concerns. Most importantly, the contacting scheme was changed so that the effective length of the sensor traces can be more precisely determined making the contact resistance between the Ca and Au/Ti films far less likely to affect the results. A 4-pt contacting pattern was also applied to the internal (non-data) witness trace. This expanded the potential utility of the witness trace from just an indicator for the integrity of the sample assembly, to also being used to compensate for measurement error. Lastly, we increased the relative precision of our resistance measurements by implementing a Ca sensor trace with significantly higher resistance. Principally, these changes produce significant measurement improvements for permeation rates less than 10(-4) g/m(2)/day, by lowering the noise floor, reducing required measurement time, and increasing the reproducibility of this test method. (C) 2014 AIP Publishing LLC. C1 [Dameron, Arrelaine A.; Kempe, Michael D.; Reese, Matthew O.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Dameron, AA (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM arrelaine.dameron@nrel.gov FU U.S. Department of Energy [DOE-AC36-08GO28308]; National Renewable Energy Laboratory FX The authors acknowledge Dylan Nobles and Anna Duda for glass preparation and thin film deposition during test card fabrication and Geoff Nunes for fruitful discussions about improving electrical measurement sensitivity. This work was supported by the U.S. Department of Energy under Contract No. DOE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 22 TC 1 Z9 1 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2014 VL 85 IS 7 AR 075102 DI 10.1063/1.4884790 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AO2SQ UT WOS:000341176600049 PM 25085168 ER PT J AU Dolan, DH Seagle, CT Ao, T Hacking, RG AF Dolan, D. H. Seagle, C. T. Ao, T. Hacking, R. G. TI Note: Heated flyer-plate impact system SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MOLYBDENUM AB A technique for launching heated flyer plates was developed on a single-stage gas gun. This type of impact creates a well-posed mechanical state and a tunable thermal state, which is useful for calibrating dynamic temperature measurements. Proof-of-principle thermoreflectance measurements were performed using this technique. Since the target remains at room temperature until the moment of impact, heated flyers avoid differential expansion and annealing issues, allowing novel impact experiments to be performed. (C) 2014 AIP Publishing LLC. C1 [Dolan, D. H.; Seagle, C. T.; Ao, T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Hacking, R. G.] Albuquerque Operat, Natl Secur Technol, Albuquerque, NM 87185 USA. RP Dolan, DH (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dhdolan@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Aaron Bowers and Andrew Shay for their assistance in mechanical design, testing, and firing heated projectiles. Reflectance spectroscopy measurements were assisted by Chase Smith from National Security Technologies. Experiments were performed at the Dynamic Integrated Compression Experiment (DICE) facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 14 TC 0 Z9 0 U1 3 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2014 VL 85 IS 7 AR 076102 DI 10.1063/1.4890278 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AO2SQ UT WOS:000341176600068 PM 25085187 ER PT J AU Drisdell, WS Kortright, JB AF Drisdell, W. S. Kortright, J. B. TI Gas cell for in situ soft X-ray transmission-absorption spectroscopy of materials SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE CAPTURE; FINE-STRUCTURE; DIFFRACTION; THICKNESS; CATALYSIS; SOLIDS; WATER AB A simple gas cell design, constructed primarily from commercially available components, enables in situ soft X-ray transmission-absorption spectroscopy of materials in contact with gas at ambient temperature. The cell has a minimum X-ray path length of 1 mm and can hold gas pressures up to similar to 300 Torr, and could support higher pressures with simple modifications. The design enables cycling between vacuum and gas environments without interrupting the X-ray beam, and can be fully sealed to allow for measurements of air-sensitive samples. The cell can attach to the downstream port of any appropriate synchrotron beamline, and offers a robust and versatile method for in situ measurements of certain materials. The construction and operation of the cell are discussed, as well as sample preparation and proper spectral analysis, illustrated by examples of spectral measurements. Potential areas for improvement and modification for specialized applications are also mentioned. (C) 2014 AIP Publishing LLC. C1 [Drisdell, W. S.; Kortright, J. B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Drisdell, WS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI Stangl, Kristin/D-1502-2015; EFRC, CGS/I-6680-2012 FU Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001015]; Office of Science, Office of Basic Energy Sciences, of U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award No. DE-SC0001015. Portions of this work were performed as a User Project at beamlines 6.3.1 and 6.3.2 at the Advanced Light Source at Lawrence Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 31 TC 4 Z9 4 U1 3 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2014 VL 85 IS 7 AR 074103 DI 10.1063/1.4890816 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AO2SQ UT WOS:000341176600035 PM 25085154 ER PT J AU Ingraham, JM Deng, ZD Li, X Fu, T McMichael, GA Trumbo, BA AF Ingraham, J. M. Deng, Z. D. Li, X. Fu, T. McMichael, G. A. Trumbo, B. A. TI A fast and accurate decoder for underwater acoustic telemetry SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SALMON; SYSTEM; TURBINES; PASSAGE; INSTRUMENTATION; SURVIVAL; TRACKING; DESIGN AB The Juvenile Salmon Acoustic Telemetry System, developed by the U. S. Army Corps of Engineers, Portland District, has been used to monitor the survival of juvenile salmonids passing through hydroelectric facilities in the Federal Columbia River Power System. Cabled hydrophone arrays deployed at dams receive coded transmissions sent from acoustic transmitters implanted in fish. The signals' time of arrival on different hydrophones is used to track fish in 3D. In this article, a new algorithm that decodes the received transmissions is described and the results are compared to results for the previous decoding algorithm. In a laboratory environment, the new decoder was able to decode signals with lower signal strength than the previous decoder, effectively increasing decoding efficiency and range. In field testing, the new algorithm decoded significantly more signals than the previous decoder and three-dimensional tracking experiments showed that the new decoder's time-of-arrival estimates were accurate. At multiple distances from hydrophones, the new algorithm tracked more points more accurately than the previous decoder. The new algorithm was also more than 10 times faster, which is critical for real-time applications on an embedded system. (C) 2014 AIP Publishing LLC. C1 [Ingraham, J. M.; Deng, Z. D.; Li, X.; Fu, T.; McMichael, G. A.] Pacific NW Natl Lab, Richland, WA 99332 USA. [Trumbo, B. A.] US Army Corps Engineers, Walla Walla, WA 99362 USA. RP Deng, ZD (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99332 USA. EM zhiqun.deng@pnnl.gov RI Deng, Daniel/A-9536-2011 OI Deng, Daniel/0000-0002-8300-8766 FU U.S. Army Corps of Engineers (USACE) FX This research was funded by the U.S. Army Corps of Engineers (USACE). We greatly appreciate the assistance of USACE staff members including Martin Ahmann, Brad Eppard, Derek Fryer, Mike Langeslay, Steve Juhnke, Marvin Shutters, and Jon Renholds. Critical assistance also was provided by many staff members of the Pacific Northwest National Laboratory, including Ki Won Jung, Jun Lu, Jayson Martinez, Mitchell Myjak, Mark Weiland, and Maura Zimmerschied. NR 25 TC 1 Z9 1 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2014 VL 85 IS 7 AR 074903 DI 10.1063/1.4891041 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AO2SQ UT WOS:000341176600043 PM 25085162 ER PT J AU Jiang, CY Tong, X Brown, DR Chi, S Christianson, AD Kadron, BJ Robertson, JL Winn, BL AF Jiang, C. Y. Tong, X. Brown, D. R. Chi, S. Christianson, A. D. Kadron, B. J. Robertson, J. L. Winn, B. L. TI Development of a compact in situ polarized He-3 neutron spin filter at Oak Ridge National Laboratory SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID EXCHANGE; GAS AB We constructed a compact in situ polarized He-3 neutron spin filter based on spin-exchange optical pumping which is capable of continuous pumping of the He-3 gas while the system is in place in the neutron beam on an instrument. The compact size and light weight of the system simplifies its utilization on various neutron instruments. The system has been successfully tested as a neutron polarizer on the triple-axis spectrometer (HB3) and the hybrid spectrometer (HYSPEC) at Oak Ridge National Laboratory. Over 70% He-3 polarization was achieved and maintained during the test experiments. Over 90% neutron polarization and an average of 25% transmission for neutrons of 14.7 meV and 15 meV was also obtained. (C) 2014 AIP Publishing LLC. C1 [Jiang, C. Y.; Tong, X.; Brown, D. R.; Kadron, B. J.; Robertson, J. L.] Oak Ridge Natl Lab, Instrument & Source Design Div, Oak Ridge, TN 37831 USA. [Chi, S.; Christianson, A. D.; Winn, B. L.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Jiang, CY (reprint author), Oak Ridge Natl Lab, Instrument & Source Design Div, Oak Ridge, TN 37831 USA. EM tongx@ornl.gov RI christianson, andrew/A-3277-2016; Chi, Songxue/A-6713-2013; Winn, Barry/A-5065-2016; tong, Xin/C-4853-2012; OI christianson, andrew/0000-0003-3369-5884; Chi, Songxue/0000-0002-3851-9153; Winn, Barry/0000-0001-6383-4318; tong, Xin/0000-0001-6105-5345; Jiang, Chenyang/0000-0002-6321-3164 FU Scientific User Facilities Division, Office of Basic Energy Sciences, United States Department of Energy; US Department of Energy (DOE) [DE-AC05-00OR22725] FX This work was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, United States Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US Department of Energy (DOE) under Contract No. DE-AC05-00OR22725. NR 12 TC 6 Z9 6 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2014 VL 85 IS 7 AR 075112 DI 10.1063/1.4890391 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AO2SQ UT WOS:000341176600059 PM 25085178 ER PT J AU Lu, L Fan, D Bie, BX Ran, XX Qi, ML Parab, N Sun, JZ Liao, HJ Hudspeth, MC Claus, B Fezzaa, K Sun, T Chen, W Gong, XL Luo, SN AF Lu, L. Fan, D. Bie, B. X. Ran, X. X. Qi, M. L. Parab, N. Sun, J. Z. Liao, H. J. Hudspeth, M. C. Claus, B. Fezzaa, K. Sun, T. Chen, W. Gong, X. L. Luo, S. N. TI Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation. (C) 2014 AIP Publishing LLC. C1 [Lu, L.; Gong, X. L.] Univ Sci & Technol China, Dept Modern Mech, CAS Key Lab Mech Behav & Design Mat, Hefei 230027, Anhui, Peoples R China. [Lu, L.; Fan, D.; Bie, B. X.; Luo, S. N.] Peac Inst Multiscale Sci, Chengdu 610207, Sichuan, Peoples R China. [Bie, B. X.; Ran, X. X.; Qi, M. L.] Wuhan Univ Technol, Sch Sci, Wuhan 430070, Hubei, Peoples R China. [Parab, N.; Sun, J. Z.; Liao, H. J.; Hudspeth, M. C.; Claus, B.; Chen, W.] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA. [Fezzaa, K.; Sun, T.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Chen, W.] Purdue Univ, Sch Mat Sci Engn, W Lafayette, IN 47907 USA. RP Lu, L (reprint author), Univ Sci & Technol China, Dept Modern Mech, CAS Key Lab Mech Behav & Design Mat, Hefei 230027, Anhui, Peoples R China. EM qiml@whut.edu.cn; gongxl@ustc.edu.cn; sluo@pims.ac.cn RI Luo, Sheng-Nian /D-2257-2010; gong, xinglong/A-3831-2009 OI Luo, Sheng-Nian /0000-0002-7538-0541; FU National Natural Science Foundation of China (NNSFC); NSAF [11172221, U1330111]; (U.S.) DOE [DE-AC02-06CH11357] FX This work was supported in part by the National Natural Science Foundation of China (NNSFC) and NSAF (Grant Nos. 11172221 and U1330111). Use of the Advanced Photon Source, an Office of Science User Facility operated for the (U.S.) Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the (U.S.) DOE under Contract No. DE-AC02-06CH11357. NR 15 TC 12 Z9 12 U1 3 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2014 VL 85 IS 7 AR 076101 DI 10.1063/1.4887343 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AO2SQ UT WOS:000341176600067 PM 25085186 ER PT J AU Pereira, NR Presura, R Wallace, M Kastengren, A AF Pereira, N. R. Presura, R. Wallace, M. Kastengren, A. TI X-ray polarization splitting by a single crystal evaluated with synchrotron x-rays SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID Z-PINCH PLASMA; SPECTROSCOPY; ANISOTROPY AB In hexagonal crystals such as quartz, an asymmetric Bragg reflection from two equivalent internal crystal planes can separate unpolarized x-rays into two linearly polarized components. The perfectly polarized and tunable x-rays from a synchrotron are ideal to evaluate polarization spitting in detail. One unanticipated feature is that additional reflections from the crystal affect the diffraction intensity of the two polarized components, an effect that is unlikely to matter in polarization spectroscopy of radiating plasmas for which the crystal is intended. (C) 2014 AIP Publishing LLC. C1 [Pereira, N. R.] Ecopulse Inc, Springfield, VA 22152 USA. [Presura, R.; Wallace, M.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Kastengren, A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Pereira, NR (reprint author), Ecopulse Inc, 7884 Vervain Ct, Springfield, VA 22152 USA. FU DOE [DE-NA-00001834]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Dr. E. O. Baronova for supplying the crystals, and for many useful discussions. This work was supported by DOE through Contract No. DE-NA-00001834 to the University of Nevada at Reno. The crystal was tested under GUP-31704 on beamline 7-BM at the Advanced Photon Source, Argonne National Laboratory, Argonne, IL. Use of the Advanced Photon Source is supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 22 TC 0 Z9 0 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2014 VL 85 IS 7 AR 073503 DI 10.1063/1.4890336 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AO2SQ UT WOS:000341176600017 PM 25085136 ER PT J AU Schiemann, M Geier, M Shaddix, CR Vorobiev, N Scherer, V AF Schiemann, Martin Geier, Manfred Shaddix, Christopher R. Vorobiev, Nikita Scherer, Viktor TI Determination of char combustion kinetics parameters: Comparison of point detector and imaging-based particle-sizing pyrometry SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID COAL CHARS; TEMPERATURE; ENVIRONMENTS; SIZE AB In this study, the char burnout characteristics of two German coals (a lignite and a high-volatile bituminous coal) were investigated using two different experimental configurations and optical techniques in two distinct laboratories for measurement of temperature and size of burning particles. The optical diagnostic hardware is quite different in the two systems, but both perform two-color pyrometry and optical sizing measurements on individual particles burning in isolation from each other in high-temperature laminar flows to characterize the char consumption kinetics. The performance of the specialized systems is compared for two different combustion atmospheres (with 6.6 and 12 vol.% O-2) and gas temperatures between 1700 and 1800 K. The measured particle temperatures and diameters are converted to char burning rate parameters for several residence times during the course of the particles' burnout. The results confirm that comparable results are obtained with the two configurations, although higher levels of variability in the measured data were observed in the imaging-based pyrometer setup. Corresponding uncertainties in kinetics parameters were larger, and appear to be more sensitive to systematic measurement errors when lower oxygen contents are used in the experiments. Consequently, burnout experiments in environments with sufficiently high O-2 contents may be used to measure reliable char burning kinetics rates. Based on simulation results for the two coals, O-2 concentrations in the range 10%-30% are recommended for kinetic rate measurements on 100 m particles. (C) 2014 AIP Publishing LLC. C1 [Schiemann, Martin; Vorobiev, Nikita; Scherer, Viktor] Ruhr Univ Bochum, Dept Energy Plant Technol, Bochum, Germany. [Geier, Manfred; Shaddix, Christopher R.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. RP Schiemann, M (reprint author), Ruhr Univ Bochum, Dept Energy Plant Technol, Univ Str 150, Bochum, Germany. EM schiemann@leat.rub.de RI Schiemann, Martin/K-3190-2016 OI Schiemann, Martin/0000-0003-2697-2759 FU German Research Foundation (DFG) [SFB/Transregio 129]; DOE Fossil Energy Crosscutting Technologies program; U.S. DOE's National Nuclear Security Administration [DE-AC04-94AL85000]; project SCHI [1272/1-1] FX The work at Ruhr-University of Bochum was financed by the German Research Foundation (DFG) within the framework of the SFB/Transregio 129 "Oxyflame" and the project SCHI 1272/1-1. The work at Sandia National Laboratories was supported under the DOE Fossil Energy Crosscutting Technologies program. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for U.S. DOE's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 26 TC 7 Z9 7 U1 3 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2014 VL 85 IS 7 AR 075114 DI 10.1063/1.4890438 PG 11 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AO2SQ UT WOS:000341176600061 PM 25085180 ER PT J AU Mily, EJ Oni, A LeBeau, JM Liu, Y Brown-Shaklee, HJ Ihlefeld, JF Maria, JP AF Mily, E. J. Oni, A. LeBeau, J. M. Liu, Y. Brown-Shaklee, H. J. Ihlefeld, J. F. Maria, J. -P. TI The role of terminal oxide structure and properties in nanothermite reactions SO THIN SOLID FILMS LA English DT Article DE Energetic material; Barrier layer; Film ID ALUMINUM NANOPARTICLE OXIDATION; OXYGEN SELF-DIFFUSION; THIN-FILM REACTIONS; THERMITE REACTIONS; PHASE-FORMATION; EXOTHERMIC REACTION; REACTION-KINETICS; SINGLE-CRYSTAL; COMBUSTION; NANO AB In this report, thin films of copper oxide, a common thermite oxidant, and varying metallic species (Al, Zr, and Mg) were deposited in an alternating layered geometry on sapphire by magnetron sputtering. Keeping stoichiometric equivalence, the effects of varying metallic constituents were studied with respect to their onset reaction temperature and energy output. Reaction progression was characterized by a systematic step wise vacuum anneal followed by subsequent ex situ X-ray diffraction, and differential thermal analysis. It was found that reaction temperature depends heavily on the terminal oxide's diffusion properties, showing a correlation (C) 2014 Elsevier B.V. All rights reserved. C1 [Mily, E. J.; Oni, A.; LeBeau, J. M.; Liu, Y.; Maria, J. -P.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27606 USA. [Brown-Shaklee, H. J.; Ihlefeld, J. F.] Sandia Natl Labs, Elect Opt & Nanomat Dept, Albuquerque, NM 87185 USA. RP Mily, EJ (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27606 USA. EM ejmily@ncsu.edu; aaoni@ncsu.edu; jmlebeau@ncsu.edu; yi_liu@ncsu.edu2; hjbrown@sandia.gov2; jihlefe@sandia.gov; jpmaria@ncsu.edu FU U.S. Army Research Office; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank Ralph Athenian and the U.S. Army Research Office for continued financial support. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 59 TC 6 Z9 6 U1 4 U2 33 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUL 1 PY 2014 VL 562 BP 405 EP 410 DI 10.1016/j.tsf.2014.05.005 PG 6 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA AN5UY UT WOS:000340658100064 ER PT J AU Sun, ZW Skjellum, A Ward, L Curry, ML AF Sun, Zhiwei Skjellum, Anthony Ward, Lee Curry, Matthew L. TI A Lightweight Data Location Service for Nondeterministic Exascale Storage Systems SO ACM TRANSACTIONS ON STORAGE LA English DT Article DE Design; Algorithms; Performance; Efficient search; Exascale; nondeterministic; scalability; storage ID NETWORK; SEARCH AB In this article, we present LWDLS, a lightweight data location service designed for Exascale storage systems (storage systems with order of 10(18) bytes) and geo-distributed storage systems (large storage systems with physically distributed locations). LWDLS provides a search-based data location solution, and enables free data placement, movement, and replication. In LWDLS, probe and prune protocols are introduced that reduce topology mismatch, and a heuristic flooding search algorithm (HFS) is presented that achieves higher search efficiency than pure flooding search while having comparable search speed and coverage to the pure flooding search. LWDLS is lightweight and scalable in terms of incorporating low overhead, high search efficiency, no global state, and avoiding periodic messages. LWDLS is fully distributed and can be used in nondeterministic storage systems and in deterministic storage systems to deal with cases where search is needed. Extensive simulations modeling large-scale High Performance Computing (HPC) storage environments provide representative performance outcomes. Performance is evaluated by metrics including search scope, search efficiency, and average neighbor distance. Results show that LWDLS is able to locate data efficiently with low cost of state maintenance in arbitrary network environments. Through these simulations, we demonstrate the effectiveness of protocols and search algorithm of LWDLS. C1 [Sun, Zhiwei; Skjellum, Anthony] Univ Alabama Birmingham, Dept Comp & Informat Sci, Birmingham, AL 35233 USA. [Ward, Lee; Curry, Matthew L.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Sun, ZW (reprint author), Univ Alabama Birmingham, Dept Comp & Informat Sci, Birmingham, AL 35233 USA. EM zhwsun@uab.edu FU United States Department of Energy [DE-AC04-94AL85000]; National Science Foundation [OCI-1064247, CCF-1239962]; U.S. Department of Energy's National Nuclear Security Administration [AC04-94AL85000] FX This work was supported in part by the United States Department of Energy under Contract DE-AC04-94AL85000 and by the National Science Foundation under grant OCI-1064247 and grant CCF-1239962. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 42 TC 0 Z9 0 U1 0 U2 0 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 1553-3077 EI 1553-3093 J9 ACM T STORAGE JI ACM Trans. Storage PD JUL PY 2014 VL 10 IS 3 AR 12 DI 10.1145/2629451 PG 22 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA AN3TU UT WOS:000340512400004 ER PT J AU Joghee, P Pylypenko, S Wood, K Bender, G O'Hayre, R AF Joghee, Prabhuram Pylypenko, Svitlana Wood, Kevin Bender, Guido O'Hayre, Ryan TI High-Performance Alkaline Direct Methanol Fuel Cell using a Nitrogen-Postdoped Anode SO CHEMSUSCHEM LA English DT Article DE electrochemistry; fuel cells; ion exchange; membranes; oxidation ID ANION-EXCHANGE MEMBRANE; MODIFIED CARBON SUPPORTS; OXYGEN REDUCTION; PTRU CATALYSTS; DURABILITY; OXIDATION; ACID AB A commercial PtRu/C catalyst postdoped with nitrogen demonstrates a significantly higher performance (similar to 10-20% improvement) in the anode of an alkaline direct methanol fuel cell than an unmodified commercial PtRu/C catalyst control. The enhanced performance shown herein is attributed at least partially to the increased electrochemical surface area of the PtRu/C after postdoping with nitrogen. C1 [Joghee, Prabhuram; Pylypenko, Svitlana; Wood, Kevin; O'Hayre, Ryan] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. [Bender, Guido] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP O'Hayre, R (reprint author), Colorado Sch Mines, Dept Met & Mat Engn, 1500 Illinois St, Golden, CO 80401 USA. EM rohayre@mines.edu FU Army Research Office [W911NF-09-1-0528]; U.S. Department of Energy EERE, Fuel Cell Technologies Program [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the Army Research Office under grant #W911NF-09-1-0528 and the U.S. Department of Energy EERE, Fuel Cell Technologies Program, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. The authors also acknowledge the microscopy facility at CSM and the fuel cell testing and surface analysis facilities provided at NREL. NR 25 TC 4 Z9 5 U1 4 U2 19 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD JUL PY 2014 VL 7 IS 7 BP 1854 EP 1857 DI 10.1002/cssc.201400158 PG 4 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AN1RO UT WOS:000340361500006 PM 24889380 ER PT J AU Wang, WH Xu, S Manaka, Y Suna, Y Kambayashi, H Muckerman, JT Fujita, E Himeda, Y AF Wang, Wan-Hui Xu, Shaoan Manaka, Yuichi Suna, Yuki Kambayashi, Hide Muckerman, James T. Fujita, Etsuko Himeda, Yuichiro TI Formic Acid Dehydrogenation with Bioinspired Iridium Complexes: A Kinetic Isotope Effect Study and Mechanistic Insight SO CHEMSUSCHEM LA English DT Article DE dehydrogenation; formic acid; hydrogen; iridium; isotope effects ID HYDROGEN GENERATION; CARBON-DIOXIDE; HOMOGENEOUS HYDROGENATION; AMBIENT CONDITIONS; CATALYTIC-ACTIVITY; WATER SOLUBILITY; BASE-EQUILIBRIUM; H/D EXCHANGE; FUEL-CELLS; STORAGE AB Highly efficient hydrogen generation from dehydrogenation of formic acid is achieved by using bioinspired iridium complexes that have hydroxyl groups at the ortho positions of the bipyridine or bipyrimidine ligand (i.e., OH in the second coordination sphere of the metal center). In particular, [Ir(Cp*)(TH4BPM)(H2O)] SO4 (TH4BPM: 2,2', 6,6'-tetrahydroxyl-4,4'-bipyrimidine; Cp*: pentamethylcyclopentadienyl) has a high turnover frequency of 39500 h(-1) at 80 degrees C in a 1M aqueous solution of HCO2H/HCO2Na and produces hydrogen and carbon dioxide without carbon monoxide contamination. The deuterium kinetic isotope effect study clearly indicates a different rate-determining step for complexes with hydroxyl groups at different positions of the ligands. The rate-limiting step is beta-hydrogen elimination from the iridium-formate intermediate for complexes with hydroxyl groups at ortho positions, owing to a proton relay (i.e., pendent-base effect), which lowers the energy barrier of hydrogen generation. In contrast, the reaction of iridium hydride with a proton to liberate hydrogen is demonstrated to be the rate-determining step for complexes that do not have hydroxyl groups at the ortho positions. C1 [Wang, Wan-Hui; Xu, Shaoan; Manaka, Yuichi; Suna, Yuki; Kambayashi, Hide; Himeda, Yuichiro] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan. [Wang, Wan-Hui; Himeda, Yuichiro] Japan Sci & Technol Agcy, ACT C, Kawaguchi, Saitama 3320012, Japan. [Muckerman, James T.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Himeda, Y (reprint author), Natl Inst Adv Ind Sci & Technol, Tsukuba Cent 5,1-1-1 Higashi, Tsukuba, Ibaraki 3058565, Japan. EM himeda.y@aist.go.jp RI Wang, Wan-Hui/J-8773-2012; OI Wang, Wan-Hui/0000-0002-5943-4589; Manaka, Yuichi/0000-0001-5872-3365 FU Japan Science and Technology Agency (JST), ACT-C; U.S. Department of Energy [DE-AC02-98CH10886]; Division of Chemical Sciences, Geosciences & Biosciences, Office of Basic Energy Sciences FX Y.H. and W.-H. W. thank the Japan Science and Technology Agency (JST), ACT-C for financial support. The work at BNL was performed under contract DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences & Biosciences, Office of Basic Energy Sciences. NR 47 TC 35 Z9 35 U1 4 U2 94 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD JUL PY 2014 VL 7 IS 7 BP 1976 EP 1983 DI 10.1002/cssc.201301414 PG 8 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AN1RO UT WOS:000340361500023 PM 24840600 ER PT J AU Leonard, KJ Aytug, T Gapud, AA List, FA Greenwood, NT Zhang, YW Perez-Bergquist, AG Weber, WJ AF Leonard, Keith J. Aytug, Tolga Gapud, Albert A. List, Fredrick A., III Greenwood, Nathan T. Zhang, Yanwen Perez-Bergquist, Alejandro G. Weber, William J. TI IRRADIATION RESPONSE OF NEXT GENERATION HIGH TEMPERATURE SUPERCONDUCTORS FOR FUSION ENERGY APPLICATIONS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th International Conference on Fusion Reactor Materials (ICFRM-16) CY OCT 20-26, 2013 CL Beijing, PEOPLES R CHINA DE high temperature superconductors; ion irradiation; critical current density ID NEUTRON-IRRADIATION; THIN-FILMS; YBA2CU3O7-DELTA; DEFECTS; WIRE; YBCO AB The latest generations of rare-earth substituted and nano-doped YBa2Cu3O7-x (YBCO) high temperature superconductors (HTS) developed for applications in magnetic fields are being evaluated for potential use in fusion energy applications. The benefits include increased plasma performance and reduced system cost through more compact and cryoplant-free fusion energy systems. The response to ion irradiation of commercially produced GdBa2Cu3O7-x, (Y,Dy)Ba2Cu3O7-x, and Zr-doped (Y,Gd)Ba2Cu3O7-x samples was investigated. These state-of-the-art conductors represent different design methods for enhanced flux pinning, resulting in different responses to radiation damage. Irradiations using 5-MeV Ni and 25-MeV Au ions were used to examine cascade damage while keeping electronic energy loss levels below columnar defect thresholds. An improved radiation tolerance is found in these new generation HTS conductors. Specifically, the influences of irradiation on the superconducting critical temperatures and the electrical transport properties of the samples were much less than that observed on the earlier generation of irradiated HTS materials investigated by others. C1 [Leonard, Keith J.; Aytug, Tolga; List, Fredrick A., III; Zhang, Yanwen; Perez-Bergquist, Alejandro G.; Weber, William J.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Gapud, Albert A.; Greenwood, Nathan T.] Univ S Alabama, Mobile, AL 36688 USA. [Zhang, Yanwen; Perez-Bergquist, Alejandro G.; Weber, William J.] Univ Tennessee, Knoxville, TN USA. RP Leonard, KJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. EM leonardk@ornl.gov RI Weber, William/A-4177-2008 OI Weber, William/0000-0002-9017-7365 FU Office of Fusion Energy Sciences, in the U.S. Department of Energy FX The Office of Fusion Energy Sciences, in the U.S. Department of Energy, provided funding for this work. Great appreciation is given to Martin Rupich (AMSC), David Christen and Georgios Polyzos for their review of this work and for their helpful discussions. NR 27 TC 4 Z9 4 U1 2 U2 20 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL-AUG PY 2014 VL 66 IS 1 BP 57 EP 62 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AN1MX UT WOS:000340349100008 ER PT J AU Endert, A AF Endert, Alex TI Semantic Interaction for Visual Analytics Toward Coupling Cognition and Computation SO IEEE COMPUTER GRAPHICS AND APPLICATIONS LA English DT Editorial Material ID DIRECT-MANIPULATION C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Endert, A (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM alex.endert@pnnl.gov NR 25 TC 6 Z9 6 U1 1 U2 7 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0272-1716 EI 1558-1756 J9 IEEE COMPUT GRAPH JI IEEE Comput. Graph. Appl. PD JUL-AUG PY 2014 VL 34 IS 4 BP 8 EP 15 PG 8 WC Computer Science, Software Engineering SC Computer Science GA AN3ZR UT WOS:000340527900003 PM 25051565 ER PT J AU Reeves, KG Kanai, Y AF Reeves, Kyle G. Kanai, Yosuke TI Theoretical oxidation state analysis of Ru-(bpy)(3): Influence of water solvation and Hubbard correction in first-principles calculations SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; LOCALIZED WANNIER FUNCTIONS; 1ST PRINCIPLES SIMULATIONS; QUANTUM MONTE-CARLO; SPECTROSCOPY; ACCURACY; ORBITALS AB Oxidation state is a powerful concept that is widely used in chemistry and materials physics, although the concept itself is arguably ill-defined quantum mechanically. In this work, we present impartial comparison of four, well-recognized theoretical approaches based on Lowdin atomic orbital projection, Bader decomposition, maximally localized Wannier function, and occupation matrix diagonalization, for assessing how well transition metal oxidation states can be characterized. Here, we study a representative molecular complex, tris(bipyridine) ruthenium. We also consider the influence of water solvation through first-principles molecular dynamics as well as the improved electronic structure description for strongly correlated d-electrons by including Hubbard correction in density functional theory calculations. (C) 2014 AIP Publishing LLC. C1 [Reeves, Kyle G.; Kanai, Yosuke] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA. [Kanai, Yosuke] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. RP Reeves, KG (reprint author), Univ N Carolina, Dept Chem, CB 3290, Chapel Hill, NC 27599 USA. EM ykanai@unc.edu RI Kanai, Yosuke/B-5554-2016 FU Petroleum Research Fund [52494-DNI6]; National Science Foundation [DGE-1144081] FX We gratefully acknowledge support by the donors of the Petroleum Research Fund, administered by the American Chemical Society, Grant No. 52494-DNI6 and National Energy Research Computing Center for computational resources. This material is based upon work supported by the National Science Foundation under Grant No. DGE-1144081. NR 41 TC 2 Z9 2 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL PY 2014 VL 141 IS 2 AR 024305 DI 10.1063/1.4886406 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AN0IY UT WOS:000340269200026 PM 25028017 ER PT J AU Wang, XF Jones, TE Wu, Y Lu, ZP Halas, S Durakiewicz, T Eberhart, ME AF Wang, X. F. Jones, T. E. Wu, Y. Lu, Z. P. Halas, S. Durakiewicz, T. Eberhart, M. E. TI An electronic criterion for assessing intrinsic brittleness of metallic glasses SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID WORK-FUNCTIONS; MECHANICAL-BEHAVIOR; DENSITY; PLASTICITY; BOND; EMBRITTLEMENT; TRANSITION; CRYSTALS; ALLOYS; ORDER AB Bulk metallic glasses (BMGs) are characterized by a number of remarkable physical and mechanical properties. Unfortunately, these same materials are often intrinsically brittle, which limits their utility. Consequently, considerable effort has been expended searching for correlations between the phenomenologically complex mechanical properties of metallic glasses and more basic properties, such correlations might provide insight into the structure and bonding controlling the deformation properties of BMGs. While conducting such a search, we uncovered a weak correlation between a BMG's work function and its susceptibility to brittle behavior. We argue that the basis for this correlation is a consequence of a component of the work function - the surface dipole - and a fundamental bond property related to the shape of the charge density at a bond critical point. Together these observations suggest that simple first principle calculations might be useful in the search for tougher BMGs. (C) 2014 AIP Publishing LLC. C1 [Wang, X. F.] Xiangtan Univ, Key Lab Low Dimens Mat & Applicat Technol, Minist Educ, Xiangtan 411105, Hunan, Peoples R China. [Jones, T. E.; Eberhart, M. E.] Colorado Sch Mines, Mol Theory Grp, Golden, CO 80401 USA. [Jones, T. E.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Wu, Y.; Lu, Z. P.] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Halas, S.] Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland. [Durakiewicz, T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wang, XF (reprint author), Xiangtan Univ, Key Lab Low Dimens Mat & Applicat Technol, Minist Educ, Xiangtan 411105, Hunan, Peoples R China. EM luzp@ustb.edu.cn; meberhar@mines.edu RI Lu, Zhao-Ping/A-2718-2009; WANG, XF/B-6708-2009; Wu, Yuan/C-4025-2015 OI Wu, Yuan/0000-0001-7857-0247 FU Natural Science Foundation of China (NSFC) [11202178, 51010001, 51001009]; Hunan Provincial Natural Science Foundation of China [14JJ3082]; 111 Project [B07003]; Program for Changjiang Scholars and Innovative Research Team in University; Office of Naval Research (ONR) [N00014-10-1-0838]; (U.S.) Army Research Office (US-ARO) [421-20-18] FX We gratefully acknowledge support of this work by the Natural Science Foundation of China (NSFC) (11202178, 51010001, and 51001009), Hunan Provincial Natural Science Foundation of China (14JJ3082), 111 Project (B07003), and Program for Changjiang Scholars and Innovative Research Team in University. T. E. Jones and M. E. Eberhart would like to thank Office of Naval Research (ONR) under Grant No. N00014-10-1-0838 and (U.S.) Army Research Office (US-ARO) under Grant No. 421-20-18 for their support of this work. NR 51 TC 2 Z9 2 U1 4 U2 38 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL PY 2014 VL 141 IS 2 AR 024503 DI 10.1063/1.4884783 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AN0IY UT WOS:000340269200032 PM 25028023 ER PT J AU Whitmer, JK Joshi, AA Roberts, TF de Pablo, JJ AF Whitmer, Jonathan K. Joshi, Abhijeet A. Roberts, Tyler F. de Pablo, Juan J. TI Liquid-crystal mediated nanoparticle interactions and gel formation (vol 138, 194903, 2013) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Correction C1 [Whitmer, Jonathan K.; Joshi, Abhijeet A.; Roberts, Tyler F.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [de Pablo, Juan J.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [de Pablo, Juan J.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Whitmer, JK (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. EM depablo@uchicago.edu NR 2 TC 0 Z9 0 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL PY 2014 VL 141 IS 2 AR 029901 DI 10.1063/1.4889998 PG 1 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AN0IY UT WOS:000340269200055 ER PT J AU Wei, HY Cowee, MM Russell, CT Leinweber, HK AF Wei, H. Y. Cowee, M. M. Russell, C. T. Leinweber, H. K. TI Ion cyclotron waves at Mars: Occurrence and wave properties SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PHOBOS OBSERVATIONS; FREE-ENERGY; POLAR CUSP; BOW SHOCK; INSTABILITIES; UPSTREAM; SIMULATIONS; ENVIRONMENT; PICKUP; PLASMA AB Ion cyclotron waves (ICWs) are generated during the interaction between the solar wind and the Martian exosphere in a process called ion pickup. Mars Global Surveyor (MGS) detected waves near the proton gyrofrequency, indicating pickup of the exospheric hydrogen. To analyze these waves, we first improve the zero levels of the MGS magnetic field data taken during the first aerobreaking phase and then perform a statistical study of the ICWs observed from just outside the Martian bow shock to over 14 Mars radii away. These ICW events typically last for 5 to 30 min but can occasionally last for hours. The wave power decreases slowly with distance on both the upstream and downstream sides. From the variation of wave properties with the strength of the background field, we find that there are likely still remaining offsets in at least some the data sets even after applying our calibration technique. Thus, we use the events with a strong background field to examine the wave properties that depend on an accurate determination of the field direction and strength. We find the pickup angle associated with the largest occurrence rate of ICWs to be around 45, but neither the wave amplitude, nor wave frequency, nor wave duration appear to vary with pickup angle. Finally, we find the waves with background field strength greater than 4 nT occur on both the positive and negative electric field sides of Mars but have a larger occurrence rate on the side of Mars in the positive electric field direction (which is defined as the direction of the cross product of the magnetic field vector and solar wind flow vector). C1 [Wei, H. Y.; Russell, C. T.; Leinweber, H. K.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Cowee, M. M.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Wei, HY (reprint author), Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. EM hwei@igpp.ucla.edu FU NASA [NNH11AQ68I] FX This work was supported by NASA research grant NNH11AQ68I. The MGS data used in the manuscript are publicly accessible on the Planetary Data System (http://ppi.pds.nasa.gov/search/view/?f=yes&id=pds://PPI/MGSMAG_0001). The additional calibration of the field zero level is performed at UCLA, and the data product can be requested from the corresponding author (hwei@igpp.ucla.edu). NR 35 TC 4 Z9 4 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2014 VL 119 IS 7 BP 5244 EP 5258 DI 10.1002/2014JA020067 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AN4HT UT WOS:000340549000010 ER PT J AU Kozyra, JU Liemohn, MW Cattell, C De Zeeuw, D Escoubet, CP Evans, DS Fang, X Fok, MC Frey, HU Gonzalez, WD Hairston, M Heelis, R Lu, G Manchester, WB Mende, S Paxton, LJ Rastaetter, L Ridley, A Sandanger, M Soraas, F Sotirelis, T Thomsen, MW Tsurutani, BT Verkhoglyadova, O AF Kozyra, J. U. Liemohn, M. W. Cattell, C. De Zeeuw, D. Escoubet, C. P. Evans, D. S. Fang, X. Fok, M-C Frey, H. U. Gonzalez, W. D. Hairston, M. Heelis, R. Lu, G. Manchester, W. B. Mende, S. Paxton, L. J. Rastaetter, L. Ridley, A. Sandanger, M. Soraas, F. Sotirelis, T. Thomsen, M. W. Tsurutani, B. T. Verkhoglyadova, O. TI Solar filament impact on 21 January 2005: Geospace consequences SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID GREAT MAGNETIC STORM; DENSE-PLASMA SHEET; IONOSPHERIC ELECTRIC-FIELDS; LATITUDE BOUNDARY-LAYER; NEAR-EARTH MAGNETOTAIL; GLOBAL MHD SIMULATION; RICE CONVECTION MODEL; LATENT-HEAT RELEASE; 1-2 SEPTEMBER 1859; ART. NO. 1151 AB On 21 January 2005, a moderate magnetic storm produced a number of anomalous features, some seen more typically during superstorms. The aim of this study is to establish the differences in the space environment from what we expect (and normally observe) for a storm of this intensity, which make it behave in some ways like a superstorm. The storm was driven by one of the fastest interplanetary coronal mass ejections in solar cycle 23, containing a piece of the dense erupting solar filament material. The momentum of the massive solar filament caused it to push its way through the flux rope as the interplanetary coronal mass ejection decelerated moving toward 1 AU creating the appearance of an eroded flux rope (see companion paper by Manchester et al. (2014)) and, in this case, limiting the intensity of the resulting geomagnetic storm. On impact, the solar filament further disrupted the partial ring current shielding in existence at the time, creating a brief superfountain in the equatorial ionosphere-an unusual occurrence for a moderate storm. Within 1 h after impact, a cold dense plasma sheet (CDPS) formed out of the filament material. As the interplanetary magnetic field (IMF) rotated from obliquely to more purely northward, the magnetotail transformed from an open to a closed configuration and the CDPS evolved from warmer to cooler temperatures. Plasma sheet densities reached tens per cubic centimeter along the flanks-high enough to inflate the magnetotail in the simulation under northward IMF conditions despite the cool temperatures. Observational evidence for this stretching was provided by a corresponding expansion and intensification of both the auroral oval and ring current precipitation zones linked to magnetotail stretching by field line curvature scattering. Strong Joule heating in the cusps, a by-product of the CDPS formation process, contributed to an equatorward neutral wind surge that reached low latitudes within 1-2 h and intensified the equatorial ionization anomaly. Understanding the geospace consequences of extremes in density and pressure is important because some of the largest and most damaging space weather events ever observed contained similar intervals of dense solar material. C1 [Kozyra, J. U.; Liemohn, M. W.; De Zeeuw, D.; Manchester, W. B.; Ridley, A.] Univ Michigan, AOSS Dept, Ann Arbor, MI 48109 USA. [Cattell, C.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Escoubet, C. P.] ESA, Noordwijk, Netherlands. [Fang, X.] Univ Colorado Boulder, LASP, Boulder, CO USA. [Fok, M-C] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Frey, H. U.; Mende, S.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Gonzalez, W. D.] INPE, Sao Jose Dos Campos, Brazil. [Hairston, M.; Heelis, R.] Univ Texas Dallas, William B Hanson Ctr Space Sci, Richardson, TX 75083 USA. [Lu, G.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Paxton, L. J.; Sotirelis, T.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Rastaetter, L.] GSFC, Community Coordinated Modeling Ctr, Greenbelt, MD USA. [Sandanger, M.; Soraas, F.] Univ Bergen, Dept Phys & Technol, Birkeland Ctr Space Sci, Bergen, Norway. [Thomsen, M. W.] Los Alamos Natl Lab, Los Alamos, NM USA. [Tsurutani, B. T.; Verkhoglyadova, O.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Kozyra, JU (reprint author), Univ Michigan, AOSS Dept, Ann Arbor, MI 48109 USA. EM jukozyra@umich.edu RI Liemohn, Michael/H-8703-2012; Lu, Gang/A-6669-2011; Paxton, Larry/D-1934-2015; Rastaetter, Lutz/D-4715-2012; Manchester, Ward/I-9422-2012; Fang, Xiaohua/C-2773-2008; Ridley, Aaron/F-3943-2011 OI Sandanger, Marit Irene/0000-0002-9696-3527; Cattell, Cynthia/0000-0002-3805-320X; Hairston, Marc/0000-0003-4524-4837; Frey, Harald/0000-0001-8955-3282; Liemohn, Michael/0000-0002-7039-2631; Paxton, Larry/0000-0002-2597-347X; Rastaetter, Lutz/0000-0002-7343-4147; Fang, Xiaohua/0000-0002-6584-2837; Verkhoglyadova, Olga/0000-0002-9295-9539; Ridley, Aaron/0000-0001-6933-8534 FU NASA [NAG5-10297, NAG-10850, NNX10AQ34G, NNX09AI04G]; NSF [ATM-0090165, ATM 0903596]; NASA USPI-GOCE project [1549222]; NASA Heliophysics Guest Investigators program [NNH09AK621]; National Science Foundation FX The authors would like to thank the sources of funding for this study: NASA grants NAG5-10297 and NAG-10850, NNX10AQ34G, NNX09AI04G, and NSF grants ATM-0090165 and ATM 0903596. A portion of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA. The work at NCAR was supported in part by the NASA USPI-GOCE project under subcontract 1549222 and by the NASA Heliophysics Guest Investigators program under grant NNH09AK621. NCAR is sponsored by the National Science Foundation. Helpful discussions with A. F. Nagy and G. Rostoker are gratefully acknowledged. The authors would also like to thank all of their data providers. Simulations used in this work are available through the Community Coordinated Modeling Center's run archive at http://ccmc.gsfc.nasa.gov/results/index.php under the identifiers Derek_Andeweg_111608_1 and Derek Andeweg_111608_2, and runs with outputs at a 1 min cadence (Derek_Andeweg_111608_1a and Derek Andeweg_111608_2a) are also available on request. Special thanks is given to the developers of the VISBARD visualization software, the CSEM team for use of the SWMF global models, and the developers of the Virtual Modeling Repository (VMR). The ACE, TIMED GUVI, IMAGE HENA, IMAGE FUV, NOAA, LANL MPA, and FAST satellite observations used in this analysis were freely available through OMNIWeb (http://omniweb.gsfc.nasa.gov), CDAWeb (http://cdaweb.gsfc.nasa.gov/cdaweb/), and NASA's Heliophysics Virtual Observatories (http://hpde.gsfc.nasa.gov/hpde_data_access.html). Reprocessed ACE solar wind parameters during intervals of high background radiation during the 21-22 January 2005 storm were provided by Ruth Skoug (LANL) and Heather Elliott (SwRI). Primary access to the DMSP SSJ data was through the APL DMSP data server at http://sd-www.jhuapl.edu/Aurora/spectrogram/index.html, and to the DMSP SSIES data through a data server at the University of Texas at Dallas at http://cindispace.utdallas.edu/DMSP/. Double Star-1 datawere accessed through the Double Star Science Data Center at http://www.rssd. esa.int/index.php? project=DOUBLESTAR&page=data_ring and Cluster satellite data through the Cluster Active Archive at http://caa.estec.esa.int/caa/home.xml. NR 199 TC 6 Z9 6 U1 2 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2014 VL 119 IS 7 BP 5401 EP 5448 DI 10.1002/2013JA019748 PG 48 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AN4HT UT WOS:000340549000022 ER PT J AU Tu, WC Cowee, MM Liu, K AF Tu, Weichao Cowee, M. M. Liu, K. TI Modeling the loss of inner belt protons by magnetic field line curvature scattering SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PITCH ANGLE DIFFUSION; RADIATION BELT; PLASMA SHEET; PARTICLE; MAGNETOTAIL AB The sudden loss of energetic protons in the inner radiation belt has been observed during geomagnetic storms. It is hypothesized that this sudden loss occurs because of changes in the geomagnetic field configuration which lead to a breakdown of the first adiabatic invariant, mu, in a process called magnetic field line curvature scattering or mu scattering. Comparison of observations to various analytic model predictions for mu scattering induced loss has, however, yielded discrepancies. To better understand how well the analytic models predict the proton loss, test particle simulations are carried out for various magnetic field configurations. Although our simulation results agree well with the analytic models for single-scattering events, the results after cumulative mu scattering can show significant disagreement with the theoretical predictions based on analytic models. In particular, we find the assumption that protons with predicted initial delta mu/mu 0.01 or epsilon > 0.1 are ultimately lost overestimates the proton loss. Based on the test particle simulation results, we develop a new empirical model, called the "epsilon-onset" model, to predict the minimum value of e at which all protons of a given pitch angle and energy can be assumed to be lost due to mu scattering. By applying our epsilon-onset model as the variable cutoff condition between trapping and detrapping, we obtain very good agreement between theoretical predictions and the simulation results for a range of Kp, suggesting that the epsilon-onset model can potentially serve as an easy-to-use and more reliable predictor of inner belt proton loss due to mu scattering than the previously used fixed-valued cutoff conditions. C1 [Tu, Weichao; Cowee, M. M.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM 87545 USA. [Liu, K.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RP Tu, WC (reprint author), Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM 87545 USA. EM wtu@lanl.gov RI Tu, Weichao/B-6507-2011 OI Tu, Weichao/0000-0003-4547-3269 FU U.S. Department of Energy through the LANL Laboratory Directed Research and Development (LDRD) Program FX We gratefully acknowledge the support of the U.S. Department of Energy through the LANL Laboratory Directed Research and Development (LDRD) Program for this work. NR 20 TC 3 Z9 3 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2014 VL 119 IS 7 BP 5638 EP 5650 DI 10.1002/2014JA019864 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AN4HT UT WOS:000340549000036 ER PT J AU Foley, S Fitzpatrick, G Briggs, MS Connaughton, V Tierney, D McBreen, S Dwyer, JR Chaplin, VL Bhat, PN Byrne, D Cramer, E Fishman, GJ Xiong, S Greiner, J Kippen, RM Meegan, CA Paciesas, WS Preece, RD von Kienlin, A Wilson-Hodge, C AF Foley, S. Fitzpatrick, G. Briggs, M. S. Connaughton, V. Tierney, D. McBreen, S. Dwyer, J. R. Chaplin, V. L. Bhat, P. N. Byrne, D. Cramer, E. Fishman, G. J. Xiong, S. Greiner, J. Kippen, R. M. Meegan, C. A. Paciesas, W. S. Preece, R. D. von Kienlin, A. Wilson-Hodge, C. TI Pulse properties of terrestrial gamma-ray flashes detected by the Fermi Gamma-Ray Burst Monitor SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID BREAKDOWN; AIR AB The Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope has triggered on over 300 terrestrial gamma-ray flashes (TGFs) since its launch in June 2008. With 14 detectors, GBM collects on average similar to 100 counts per triggered TGF, enabling unprecedented studies of the time profiles of TGFs. Here we present the first rigorous analysis of the temporal properties of a large sample of TGFs (278), including the distributions of the rise and fall times of the individual pulses and their durations. A variety of time profiles are observed with 19% of TGFs having multiple pulses separated in time and 31 clear cases of partially overlapping pulses. The effect of instrumental dead time and pulse pileup on the temporal properties are also presented. As the observed gamma ray pulse structure is representative of the electron flux at the source, TGF pulse parameters are critical to distinguish between relativistic feedback discharge and lightning leader models. We show that at least 67% of TGFs at satellite altitudes are significantly asymmetric. For the asymmetric pulses, the rise times are almost always shorter than the fall times. Those which are not are consistent with statistical fluctuations. The median rise time for asymmetric pulses is similar to 3 times shorter than for symmetric pulses while their fall times are comparable. The asymmetric shapes observed are consistent with the relativistic feedback discharge model when Compton scattering of photons between the source and Fermi is included, and instrumental effects are taken into account. C1 [Foley, S.; Fitzpatrick, G.; Tierney, D.; McBreen, S.; Byrne, D.] Univ Coll Dublin, Sch Phys, Belfield, Ireland. [Foley, S.; Greiner, J.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Briggs, M. S.; Connaughton, V.; Chaplin, V. L.; Bhat, P. N.; Xiong, S.; Preece, R. D.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Briggs, M. S.; Connaughton, V.; Preece, R. D.] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. [Dwyer, J. R.; Cramer, E.] Florida Inst Technol, Dept Phys & Space Sci, Melbourne, FL 32901 USA. [Fishman, G. J.] Jacobs Engn Inc, Huntsville, AL USA. [Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM USA. [Meegan, C. A.; Paciesas, W. S.] NASA, George C Marshall Space Flight Ctr, Univ Space Res Assoc, Huntsville, AL 35812 USA. [Wilson-Hodge, C.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. RP Fitzpatrick, G (reprint author), Univ Coll Dublin, Sch Phys, Belfield, Ireland. EM Gerard.Fitzpatrick@ucdconnect.ie FU Irish Research Council for Science, Engineering and Technology; Marie Curie Actions under FP7; Irish Research Council; Fermi Guest Investigator Program; Science Foundation Ireland [09-RFP-AST-2400, 12/IP/1288]; DARPA [HR0011-1-10-1-0061] FX We thank the anonymous reviewers for their insightful comments. S. F. acknowledges the support of the Irish Research Council for Science, Engineering and Technology, cofunded by Marie Curie Actions under FP7. G. F. acknowledges the support of the Irish Research Council. The Fermi GBM Collaboration acknowledges support for GBM development, operations, and data analysis from NASA in the United States and from BMWi/DLR in Germany. M. S. B., V. C., and S. X. acknowledge support from the Fermi Guest Investigator Program. D. T. acknowledges support from Science Foundation Ireland under grant 09-RFP-AST-2400. S. M. B. acknowledges support from Science Foundation Ireland under grant 12/IP/1288. The work by J.D. has been supported in part by DARPA grant HR0011-1-10-1-0061. All GBM data used in this paper are available at http://fermi.gsfc.nasa.gov/ssc/data/access/gbm/. NR 35 TC 3 Z9 3 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2014 VL 119 IS 7 BP 5931 EP 5942 DI 10.1002/2014JA019805 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AN4HT UT WOS:000340549000058 ER PT J AU Chen, ZG Shi, ZW Yang, W Lu, XB Lai, Y Yan, HG Wang, F Zhang, GY Li, ZQ AF Chen, Zhi-Guo Shi, Zhiwen Yang, Wei Lu, Xiaobo Lai, You Yan, Hugen Wang, Feng Zhang, Guangyu Li, Zhiqiang TI Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures SO NATURE COMMUNICATIONS LA English DT Article ID HEXAGONAL BORON-NITRIDE; DIRAC FERMIONS; MEMORY DEVICES; SUPERLATTICES; FIELD AB Van der Waals heterostructures formed by assembling different two-dimensional atomic crystals into stacks can lead to many new phenomena and device functionalities. In particular, graphene/boron-nitride heterostructures have emerged as a very promising system for band engineering of graphene. However, the intrinsic value and origin of the bandgap in such heterostructures remain unresolved. Here we report the observation of an intrinsic bandgap in epitaxial graphene/boron-nitride heterostructures with zero crystallographic alignment angle. Magneto-optical spectroscopy provides a direct probe of the Landau level transitions in this system and reveals a bandgap of similar to 38 meV (440 K). Moreover, the Landau level transitions are characterized by effective Fermi velocities with a critical dependence on specific transitions and magnetic field. These findings highlight the important role of many-body interactions in determining the fundamental properties of graphene heterostructures. C1 [Chen, Zhi-Guo; Lai, You; Li, Zhiqiang] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Shi, Zhiwen; Wang, Feng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yang, Wei; Lu, Xiaobo; Zhang, Guangyu] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Yang, Wei; Lu, Xiaobo] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Yan, Hugen] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Li, ZQ (reprint author), Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. EM fengwang76@berkeley.edu; gyzhang@iphy.ac.cn; zli@magnet.fsu.edu RI Chen, Zhiguo/B-9192-2015; Yan, Hugen/G-1642-2012; Shi, Zhiwen/C-4945-2013; Yang, Wei/F-4676-2016; Zhang, Guangyu/G-7892-2011; wang, Feng/I-5727-2015 OI Chen, Zhiguo/0000-0002-8242-4784; Shi, Zhiwen/0000-0002-3928-2960; FU User Collaboration Grants Programme at the National High Magnetic Field Laboratory; Office of Basic Energy Science, Department of Energy [DE-SC0003949, DE-AC02-05CH11231]; National Basic Research Program of China (973 Program) [2013CB934500]; National Science Foundation of China (NSFC) [61325021, 91223204]; Chinese Academy of Sciences; National Science Foundation Cooperative Agreement [DMR-1157490]; State of Florida; US Department of Energy FX Z.-G.C., Y.L. and Z.L. acknowledge support from the User Collaboration Grants Programme at the National High Magnetic Field Laboratory. Z.S. and F.W. are supported by Office of Basic Energy Science, Department of Energy under contract no. DE-SC0003949 and contract no. DE-AC02-05CH11231. G.Z. acknowledges the supports from the National Basic Research Program of China (973 Program, grant no. 2013CB934500), the National Science Foundation of China (NSFC, grant nos. 61325021 and 91223204), and the Chinese Academy of Sciences. Optical measurements were performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement no. DMR-1157490, the State of Florida, and the US Department of Energy. NR 40 TC 43 Z9 43 U1 5 U2 99 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2014 VL 5 AR 4461 DI 10.1038/ncomms5461 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AN5IF UT WOS:000340623400006 PM 25034319 ER PT J AU Feng, ZLA El Gabaly, F Ye, XF Shen, ZX Chueh, WC AF Feng, Zhuoluo A. El Gabaly, Farid Ye, Xiaofei Shen, Zhi-Xun Chueh, William C. TI Fast vacancy-mediated oxygen ion incorporation across the ceria-gas electrochemical interface SO NATURE COMMUNICATIONS LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; CEO2(111) SURFACE; REDUCED SURFACES; FUEL-CELL; IN-SITU; WATER; OXIDE; OXIDATION; MECHANISMS; ADSORPTION AB Electrochemical incorporation reactions are ubiquitous in energy storage and conversion devices based on mixed ionic and electronic conductors, such as lithium-ion batteries, solid-oxide fuel cells and water-splitting membranes. The two-way traffic of ions and electrons across the electrochemical interface, coupled with the bulk transport of mass and charge, has been challenging to understand. Here we report an investigation of the oxygen-ion incorporation pathway in CeO2-delta (ceria), one of the most recognized oxygen-deficient compounds, during hydrogen oxidation and water splitting. We probe the response of surface oxygen vacancies, electrons and adsorbates to the electrochemical polarization at the ceria-gas interface. We show that surface oxygen-ion transfer, mediated by oxygen vacancies, is fast. Furthermore, we infer that the electron transfer between cerium cations and hydroxyl ions is the rate-determining step. Our in operando observations reveal the precise roles of surface oxygen vacancy and electron defects in determining the rate of surface incorporation reactions. C1 [Feng, Zhuoluo A.; Shen, Zhi-Xun] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Feng, Zhuoluo A.; Shen, Zhi-Xun; Chueh, William C.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [El Gabaly, Farid; Chueh, William C.] Sandia Natl Labs, Dept Mat Phys, Livermore, CA 94550 USA. [Ye, Xiaofei; Chueh, William C.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. RP Chueh, WC (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. EM wchueh@stanford.edu FU School of Engineering and the Precourt Institute for Energy at Stanford University; Gordon and Betty Moore Foundation [GBMF2573]; National Science Foundation [1336835]; US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Division of Materials and Engineering Sciences [DE-AC04-94AL85000, DE-AC02-05CH11231]; Stanford Graduate Fellowship FX This work was supported in part by the start-up funding from the School of Engineering and the Precourt Institute for Energy at Stanford University. Z.A.F. was supported by the Gordon and Betty Moore Foundation through Grant GBMF2573 to Z.-X.S. and by the National Science Foundation under Award #1336835, F.E.G. by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Division of Materials and Engineering Sciences under Award # DE-AC04-94AL85000 and X.Y. by the Stanford Graduate Fellowship. The Advanced Light Source is supported by the Director, Office of Science, and Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. We thank Y. Yang and G. Hassink for assistance with sample preparation, and K. McCarty, A. McDaniel, Z. Liu, R. Chang, B. Mao and S. Axnanda for assistance with experiments at the Advanced Light Source. Finally, we thank N. Melosh for illuminating discussions. NR 57 TC 33 Z9 33 U1 19 U2 167 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2014 VL 5 AR 4374 DI 10.1038/ncomms5374 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AN5FI UT WOS:000340615500065 PM 25007038 ER PT J AU Gai, Z Lin, WZ Burton, JD Fuchigami, K Snijders, PC Ward, TZ Tsymbal, EY Shen, J Jesse, S Kalinin, SV Baddorf, AP AF Gai, Zheng Lin, Wenzhi Burton, J. D. Fuchigami, K. Snijders, P. C. Ward, T. Z. Tsymbal, Evgeny Y. Shen, J. Jesse, Stephen Kalinin, Sergei V. Baddorf, Arthur P. TI Chemically induced Jahn-Teller ordering on manganite surfaces SO NATURE COMMUNICATIONS LA English DT Article ID INSULATOR-TRANSITION; ATOMIC-SCALE; METAL; POLARIZATION; TRANSPORT; OXIDES; CHARGE; FILMS AB Physical and electrochemical phenomena at the surfaces of transition metal oxides and their coupling to local functionality remains one of the enigmas of condensed matter physics. Understanding the emergent physical phenomena at surfaces requires the capability to probe the local composition, map order parameter fields and establish their coupling to electronic properties. Here we demonstrate that measuring the sub-30-pm displacements of atoms from high-symmetry positions in the atomically resolved scanning tunnelling microscopy allows the physical order parameter fields to be visualized in real space on the single-atom level. Here, this local crystallographic analysis is applied to the in-situ-grown manganite surfaces. In particular, using direct bond-angle mapping we report direct observation of structural domains on manganite surfaces, and trace their origin to surface-chemistry-induced stabilization of ordered Jahn-Teller displacements. Density functional calculations provide insight into the intriguing interplay between the various degrees of freedom now resolved on the atomic level. C1 [Gai, Zheng; Lin, Wenzhi; Jesse, Stephen; Kalinin, Sergei V.; Baddorf, Arthur P.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Burton, J. D.; Tsymbal, Evgeny Y.] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. [Burton, J. D.; Tsymbal, Evgeny Y.] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. [Fuchigami, K.] IHI Corp, Res Lab, Yokohama, Kanagawa 2358501, Japan. [Snijders, P. C.; Ward, T. Z.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Snijders, P. C.; Shen, J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Shen, J.] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. [Shen, J.] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. RP Gai, Z (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM gaiz@ornl.gov RI Gai, Zheng/B-5327-2012; Tsymbal, Evgeny/G-3493-2013; Kalinin, Sergei/I-9096-2012; Burton, John/B-5875-2008; Jesse, Stephen/D-3975-2016; Baddorf, Arthur/I-1308-2016; Ward, Thomas/I-6636-2016 OI Gai, Zheng/0000-0002-6099-4559; Kalinin, Sergei/0000-0001-5354-6152; Burton, John/0000-0001-5535-2407; Jesse, Stephen/0000-0002-1168-8483; Baddorf, Arthur/0000-0001-7023-2382; Ward, Thomas/0000-0002-1027-9186 FU US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; NSF MRSEC [DMR-0820521]; NSF EPSCoR [EPS-1010674] FX Research was supported in part (W.L., S.V.K., K.F., P.C.S., T.Z.W.) by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. This research was in part conducted and supported (Z.G., S.J., A.P.B.) at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The work at the University of Nebraska-Lincoln (J.D.B., E.Y.T.) was supported by NSF MRSEC (Grant No. DMR-0820521) and NSF EPSCoR (Grant No. EPS-1010674). Computations were performed at the UNL Holland Computing Center. NR 29 TC 3 Z9 3 U1 4 U2 58 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2014 VL 5 AR 4528 DI 10.1038/ncomms5528 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AN5IZ UT WOS:000340625400007 PM 25058540 ER PT J AU Ievlev, AV Morozovska, AN Eliseev, EA Shur, VY Kalinin, SV AF Ievlev, Anton V. Morozovska, Anna N. Eliseev, Eugene A. Shur, Vladimir Ya Kalinin, Sergei V. TI Ionic field effect and memristive phenomena in single-point ferroelectric domain switching SO NATURE COMMUNICATIONS LA English DT Article ID NONLINEAR DIELECTRIC MICROSCOPY; SCANNING FORCE MICROSCOPY; THIN-FILMS; NANOSCALE; POLARIZATION; SPINTRONICS; ELECTRONICS; CRYSTAL; SYSTEMS; PHYSICS AB Electric field-induced polarization switching underpins most functional applications of ferroelectric materials in information technology, materials science and optoelectronics. Recently, much attention has been focused on the switching of individual domains using scanning probe microscopy. The classical picture of tip-induced switching, including formation of cylindrical domains with size, is largely determined by the field distribution and domain wall motion kinetics. The polarization screening is recognized as a necessary precondition to the stability of ferroelectric phase; however, screening processes are generally considered to be uniformly efficient and not leading to changes in switching behaviour. Here we demonstrate that single-point tip-induced polarization switching can give rise to a surprisingly broad range of domain morphologies, including radial and angular instabilities. These behaviours are traced to the surface screening charge dynamics, which in some cases can even give rise to anomalous switching against the electric field (ionic field effect). C1 [Ievlev, Anton V.; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Morozovska, Anna N.] Natl Acad Sci Ukraine, Inst Phys, UA-03028 Kiev, Ukraine. [Eliseev, Eugene A.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine. [Shur, Vladimir Ya] Ural Fed Univ, Ferroelect Lab, Inst Nat Sci, Ekaterinburg 620000, Russia. RP Ievlev, AV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2008, Oak Ridge, TN 37831 USA. EM ievlevav@ornl.gov RI Kalinin, Sergei/I-9096-2012; Ievlev, Anton/H-3678-2012 OI Kalinin, Sergei/0000-0001-5354-6152; Ievlev, Anton/0000-0003-3645-0508 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; SFFR-NSF project (U.S. National Science Foundation) [NSF-DMR-1210588]; SFFR-NSF project (State Fund of Fundamental State Fund of Fundamental Research of Ukraine) [UU48/002]; CNMS [2013-293]; National Academy of Sciences of Ukraine [35-02-14]; RFBR [13-02-01391-a]; Government of Sverdlovsk region [13-02-96041-r-Ural] FX A part of this research (A.V.I. and S.V.K.) was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. A.N.M. and E. A. E. acknowledge the support via bilateral SFFR-NSF project (U.S. National Science Foundation under NSF-DMR-1210588, State Fund of Fundamental State Fund of Fundamental Research of Ukraine, grant UU48/002), CNMS user project 2013-293 and National Academy of Sciences of Ukraine (grant 35-02-14). V.Y.S. acknowledge CNMS user proposal, RFBR and Government of Sverdlovsk region (grant 13-02-96041-r-Ural) and RFBR (grant 13-02-01391-a). We gratefully acknowledge Yuriy Pershin and Daria Khanukaeva for valuable discussions. NR 46 TC 10 Z9 10 U1 2 U2 47 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2014 VL 5 AR 4545 DI 10.1038/ncomms5545 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AN5JK UT WOS:000340626500001 PM 25066894 ER PT J AU Kern, J Tran, R Alonso-Mori, R Koroidov, S Echols, N Hattne, J Ibrahim, M Gul, S Laksmono, H Sierra, RG Gildea, RJ Han, G Hellmich, J Lassalle-Kaiser, B Chatterjee, R Brewster, AS Stan, CA Glockner, C Lampe, A DiFiore, D Milathianaki, D Fry, AR Seibert, MM Koglin, JE Gallo, E Uhlig, J Sokaras, D Weng, TC Zwart, PH Skinner, DE Bogan, MJ Messerschmidt, M Glatzel, P Williams, GJ Boutet, S Adams, PD Zouni, A Messinger, J Sauter, NK Bergmann, U Yano, J Yachandra, VK AF Kern, Jan Tran, Rosalie Alonso-Mori, Roberto Koroidov, Sergey Echols, Nathaniel Hattne, Johan Ibrahim, Mohamed Gul, Sheraz Laksmono, Hartawan Sierra, Raymond G. Gildea, Richard J. Han, Guangye Hellmich, Julia Lassalle-Kaiser, Benedikt Chatterjee, Ruchira Brewster, Aaron S. Stan, Claudiu A. Gloeckner, Carina Lampe, Alyssa DiFiore, Doertee Milathianaki, Despina Fry, Alan R. Seibert, M. Marvin Koglin, Jason E. Gallo, Erik Uhlig, Jens Sokaras, Dimosthenis Weng, Tsu-Chien Zwart, Petrus H. Skinner, David E. Bogan, Michael J. Messerschmidt, Marc Glatzel, Pieter Williams, Garth J. Boutet, Sebastien Adams, Paul D. Zouni, Athina Messinger, Johannes Sauter, Nicholas K. Bergmann, Uwe Yano, Junko Yachandra, Vittal K. TI Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy SO NATURE COMMUNICATIONS LA English DT Article ID OXYGEN-EVOLVING COMPLEX; FREE-ELECTRON LASER; CYANOBACTERIAL PHOTOSYSTEM-II; 3.2 ANGSTROM RESOLUTION; CRYSTAL-STRUCTURE; THERMOSYNECHOCOCCUS-ELONGATUS; ABSORPTION SPECTROSCOPY; CRYSTALLOGRAPHIC DATA; STRUCTURE REFINEMENT; CENTERED OXIDATION AB The dioxygen we breathe is formed by light-induced oxidation of water in photosystem II. O-2 formation takes place at a catalytic manganese cluster within milliseconds after the photosystem II reaction centre is excited by three single-turnover flashes. Here we present combined X-ray emission spectra and diffraction data of 2-flash (2F) and 3-flash (3F) photosystem II samples, and of a transient 3F' state (250 mu s after the third flash), collected under functional conditions using an X-ray free electron laser. The spectra show that the initial O-O bond formation, coupled to Mn reduction, does not yet occur within 250 mu s after the third flash. Diffraction data of all states studied exhibit an anomalous scattering signal from Mn but show no significant structural changes at the present resolution of 4.5 angstrom. This study represents the initial frames in a molecular movie of the structural changes during the catalytic reaction in photosystem II. C1 [Kern, Jan; Tran, Rosalie; Echols, Nathaniel; Hattne, Johan; Gul, Sheraz; Gildea, Richard J.; Han, Guangye; Lassalle-Kaiser, Benedikt; Chatterjee, Ruchira; Brewster, Aaron S.; Lampe, Alyssa; Zwart, Petrus H.; Adams, Paul D.; Sauter, Nicholas K.; Yano, Junko; Yachandra, Vittal K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Kern, Jan; Alonso-Mori, Roberto; Milathianaki, Despina; Fry, Alan R.; Seibert, M. Marvin; Koglin, Jason E.; Bogan, Michael J.; Messerschmidt, Marc; Williams, Garth J.; Boutet, Sebastien; Bergmann, Uwe] SLAC Natl Accelerator Lab, LCLS, Menlo Pk, CA 94025 USA. [Koroidov, Sergey; Messinger, Johannes] Umea Univ, Inst Kemi, Kemiskt Biol Ctr, S-90187 Umea, Sweden. [Ibrahim, Mohamed; Hellmich, Julia; Zouni, Athina] Humboldt Univ, Inst Biol, D-10099 Berlin, Germany. [Ibrahim, Mohamed; Hellmich, Julia; Gloeckner, Carina; DiFiore, Doertee; Zouni, Athina] Tech Univ Berlin, Max Volmer Lab Biophys Chem, D-10623 Berlin, Germany. [Laksmono, Hartawan; Sierra, Raymond G.; Stan, Claudiu A.; Bogan, Michael J.] SLAC Natl Accelerator Lab, PULSE Inst, Menlo Pk, CA 94025 USA. [Gallo, Erik; Uhlig, Jens; Glatzel, Pieter] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Sokaras, Dimosthenis; Weng, Tsu-Chien] SLAC Natl Accelerator Lab, SSRL, Menlo Pk, CA 94025 USA. [Skinner, David E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Energy Res Sci Comp Ctr, Berkeley, CA 94720 USA. RP Bergmann, U (reprint author), SLAC Natl Accelerator Lab, LCLS, Menlo Pk, CA 94025 USA. EM bergmann@slac.stanford.edu; jyano@lbl.gov; vkyachandra@lbl.gov RI Messerschmidt, Marc/F-3796-2010; Uhlig, Jens/A-5475-2010; Kern, Jan/G-2586-2013; Glatzel, Pieter/E-9958-2010; Sauter, Nicholas/K-3430-2012; Adams, Paul/A-1977-2013 OI Koroidov, Seregey/0000-0003-4823-2188; Messerschmidt, Marc/0000-0002-8641-3302; Uhlig, Jens/0000-0002-0528-0422; Kern, Jan/0000-0002-7272-1603; Glatzel, Pieter/0000-0001-6532-8144; Adams, Paul/0000-0001-9333-8219 FU NIH [GM055302, P41GM103393, GM095887, GM102520]; Director, Office of Science, Office of Basic Energy Sciences (OBES), Division of Chemical Sciences, Geosciences and Biosciences (CSGB) of the Department of Energy (DOE) [DE-AC02-05CH11231]; LBNL Laboratory Directed Research and Development; Alexander von Humboldt Foundation; European Union Seventh Framework Programme (FP7) [283745]; Solar Fuels Strong Research Environment (Umea University); Artificial Leaf Project (K&A Wallenberg Foundation); Energimyndigheten; VR; DOE Office of Basic Energy Sciences, Chemical Sciences Division [DE-AC02-76SF00515]; LCLS; Human Frontiers Science Project Award [RPG005/2011]; SLAC Laboratory Directed Research and Development Program; DOE Office of Science [DE-AC02-05CH11231]; DOE OBES; National Center for Research Resources; DOE Office of Biological and Environmental Research FX This work was supported by NIH Grant GM055302 (V.K.Y) for PS II biochemistry, structure and mechanism; the Director, Office of Science, Office of Basic Energy Sciences (OBES), Division of Chemical Sciences, Geosciences and Biosciences (CSGB) of the Department of Energy (DOE) under Contract DE-AC02-05CH11231 (J.Y. and V.K.Y.) for X-ray methodology and instrumentation; by NIH grant P41GM103393 for part of the XES instrumentation and support of U.B.; an LBNL Laboratory Directed Research and Development award to N.K.S; and NIH grants GM095887 and GM102520 (N.K.S.) for data processing methods. The DFG-Cluster of Excellence 'UniCat' coordinated by the Technische Universitat Berlin and Sfb1078, TP A5 (A.Z.); the Alexander von Humboldt Foundation (J.K.); the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 283745 (CRISP) (P.G.); the Solar Fuels Strong Research Environment (Umea University), the Artificial Leaf Project (K&A Wallenberg Foundation), Energimyndigheten (J.M.) and VR (M.M.S., J.M.), and the Human Frontiers Science Project (J.Y., U.B. and A.Z.) are acknowledged for supporting this project. The injector work was supported by DOE Office of Basic Energy Sciences, Chemical Sciences Division, under Contract DE-AC02-76SF00515 (H.L., C.A.S. and M.J.B.), LCLS (R.G.S.), the Human Frontiers Science Project Award RPG005/2011 (H.L.) and the SLAC Laboratory Directed Research and Development Program (C.A.S. and M.J.B.). We thank Professor Ken Sauer for continuing scientific discussions. We thank Tom Terwilliger, Randy Read, Nigel Moriarty, Ralf Grosse-Kunstleve, Pavel Afonine and Jeffrey Headd for helpful discussions and technical assistance regarding XRD data processing; Matthew Latimer for support with the XES set-up; Don Schaefer, Alan Miahnahri and William White for support with development of the laser illumination and injector set-up; Christopher Kenney, Ryan Herbst, Jack Pines, Philip Hart, John Morse, Gunther Haller and Sven Herrmann for support with the CSPAD detectors; Amedeo Perazzo and Igor Gaponenko (SLAC) for computing support; Gregory Bell (Energy Sciences Network (ESnet)) for arranging network access for data transfer; and Shane Canon (NERSC) for arranging computing access. We thank the staff at LCLS/SLAC and the staff at SSRL, ALS, APS and ESRF for support of synchrotron experiments. Portions of this research were carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. Data processing was performed in part at the National Energy Research Scientific Computing Center, supported by the DOE Office of Science, contract number DE-AC02-05CH11231. Testing of crystals and various parts of the set-up were carried out at synchrotron facilities that were provided by the Advanced Light Source (ALS), BL 5.0.2, in Berkeley, and Stanford Synchrotron Radiation Lightsource (SSRL), BL 6-2, in Stanford, funded by DOE OBES. The SSRL Biomedical Technology programme is supported by NIH, the National Center for Research Resources and the DOE Office of Biological and Environmental Research. SR PS II XES data were recorded at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. NR 70 TC 71 Z9 87 U1 13 U2 131 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2014 VL 5 AR 4371 DI 10.1038/ncomms5371 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AN5FI UT WOS:000340615500062 PM 25006873 ER PT J AU Knipe, K Manero, A Siddiqui, SF Meid, C Wischek, J Okasinski, J Almer, J Karlsson, AM Bartsch, M Raghavan, S AF Knipe, Kevin Manero, Albert, II Siddiqui, Sanna F. Meid, Carla Wischek, Janine Okasinski, John Almer, Jonathan Karlsson, Anette M. Bartsch, Marion Raghavan, Seetha TI Strain response of thermal barrier coatings captured under extreme engine environments through synchrotron X-ray diffraction SO NATURE COMMUNICATIONS LA English DT Article ID STRESS; OXIDATION; SYSTEMS; SCALES; OXIDE; DELAMINATION; MECHANISMS; GRADIENT; DAMAGE; ALLOY AB The mechanical behaviour of thermal barrier coatings in operation holds the key to under-standing durability of jet engine turbine blades. Here we report the results from experiments that monitor strains in the layers of a coating subjected to thermal gradients and mechanical loads representing extreme engine environments. Hollow cylindrical specimens, with electron beam physical vapour deposited coatings, were tested with internal cooling and external heating under various controlled conditions. High-energy synchrotron X-ray measurements captured the in situ strain response through the depth of each layer, revealing the link between these conditions and the evolution of local strains. Results of this study demonstrate that variations in these conditions create corresponding trends in depth-resolved strains with the largest effects displayed at or near the interface with the bond coat. With larger temperature drops across the coating, significant strain gradients are seen, which can contribute to failure modes occurring within the layer adjacent to the interface. C1 [Knipe, Kevin; Manero, Albert, II; Siddiqui, Sanna F.; Raghavan, Seetha] Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA. [Meid, Carla; Wischek, Janine; Bartsch, Marion] Deutsch Zentrum Luft & Raumfahrt eV DLR, Inst Werkstoff Forsch, D-51147 Cologne, Germany. [Okasinski, John; Almer, Jonathan] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Karlsson, Anette M.] Cleveland State Univ, Cleveland, OH 44115 USA. RP Raghavan, S (reprint author), Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA. EM seetha.raghavan@ucf.edu RI Bartsch, Marion/B-9501-2012; Albe, Karsten/F-1139-2011 OI Bartsch, Marion/0000-0002-3952-2928; FU National Science Foundation [OISE 1157619, CMMI 1125696]; German Science Foundation (DFG) [SFB-TRR103]; National Science Foundation Graduate Research Fellowship Program [1144246]; US DOE [DE-AC02-06CH11357] FX This material is based upon work supported by the National Science Foundation grants OISE 1157619, CMMI 1125696 and by the German Science Foundation (DFG) grant no. SFB-TRR103, Project A3. This material is additionally based upon work supported by the National Science Foundation Graduate Research Fellowship Program under grant no. 1144246. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under contract no. DE-AC02-06CH11357. NR 38 TC 5 Z9 5 U1 3 U2 30 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2014 VL 5 AR 4559 DI 10.1038/ncomms5559 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AN5VE UT WOS:000340658700001 PM 25078347 ER PT J AU Li, XL Gu, M Hu, SY Kennard, R Yan, PF Chen, XL Wang, CM Sailor, MJ Zhang, JG Liu, J AF Li, Xiaolin Gu, Meng Hu, Shenyang Kennard, Rhiannon Yan, Pengfei Chen, Xilin Wang, Chongmin Sailor, Michael J. Zhang, Ji-Guang Liu, Jun TI Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes SO NATURE COMMUNICATIONS LA English DT Article ID LONG CYCLE LIFE; NANOPARTICLES; LITHIATION; NANOWIRES; STORAGE; ELECTRODES; PARTICLES; COMPOSITE; SIZE AB Nanostructured silicon is a promising anode material for high-performance lithium-ion batteries, yet scalable synthesis of such materials, and retaining good cycling stability in high loading electrode remain significant challenges. Here we combine in-situ transmission electron microscopy and continuum media mechanical calculations to demonstrate that large (420 mm) mesoporous silicon sponge prepared by the anodization method can limit the particle volume expansion at full lithiation to similar to 30% and prevent pulverization in bulk silicon particles. The mesoporous silicon sponge can deliver a capacity of up to similar to 750 mAhg(-1) based on the total electrode weight with >80% capacity retention over 1,000 cycles. The first cycle irreversible capacity loss of pre-lithiated electrode is <5%. Bulk electrodes with an area-specific-capacity of similar to 1.5 mAhcm(-2) and similar to 92% capacity retention over 300 cycles are also demonstrated. The insight obtained from this work also provides guidance for the design of other materials that may experience large volume variation during operations. C1 [Li, Xiaolin; Hu, Shenyang; Chen, Xilin; Zhang, Ji-Guang; Liu, Jun] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Gu, Meng; Yan, Pengfei; Wang, Chongmin] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. [Kennard, Rhiannon; Sailor, Michael J.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. RP Zhang, JG (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM jiguang.zhang@pnnl.gov; jun.liu@pnnl.gov RI Gu, Meng/B-8258-2013; yan, pengfei/E-4784-2016; OI yan, pengfei/0000-0001-6387-7502; HU, Shenyang/0000-0002-7187-3082 FU Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, of the US Department of Energy (DOE) [DE-AC02-05CH11231]; Batteries for Advanced Transportation Technologies (BATT) program [18769]; US National Science Foundation [DMR-1210417]; DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, of the US Department of Energy (DOE) under Contract No. DE-AC02-05CH11231, Subcontract No. 18769, under the Batteries for Advanced Transportation Technologies (BATT) program, and by the US National Science Foundation under Grant No. DMR-1210417. A portion of the research was performed at the William R. Wiley Environmental Molecular Sciences, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 40 TC 104 Z9 104 U1 37 U2 256 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2014 VL 5 AR 4105 DI 10.1038/ncomms5105 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AN5FK UT WOS:000340615900001 PM 25001098 ER PT J AU Li, Z Wang, YF Yao, QM Justice, NB Ahn, TH Xu, D Hettich, RL Banfield, JF Pan, CL AF Li, Zhou Wang, Yingfeng Yao, Qiuming Justice, Nicholas B. Ahn, Tae-Hyuk Xu, Dong Hettich, Robert L. Banfield, Jillian F. Pan, Chongle TI Diverse and divergent protein post-translational modifications in two growth stages of a natural microbial community SO NATURE COMMUNICATIONS LA English DT Article ID ACID-MINE DRAINAGE; LYSINE ACETYLATION; PHOSPHORYLATION NETWORKS; MASS-SPECTROMETRY; GLOBAL ANALYSIS; CROSS-TALK; PROTEOMICS; EVOLUTIONARY; BACTERIA; CONSERVATION AB Detailed characterization of post-translational modifications (PTMs) of proteins in microbial communities remains a significant challenge. Here we directly identify and quantify a broad range of PTMs (hydroxylation, methylation, citrullination, acetylation, phosphorylation, methylthiolation, S-nitrosylation and nitration) in a natural microbial community from an acid mine drainage site. Approximately 29% of the identified proteins of the dominant Leptospirillum group II bacteria are modified, and 43% of modified proteins carry multiple PTM types. Most PTM events, except S-nitrosylations, have low fractional occupancy. Notably, PTM events are detected on Cas proteins involved in antiviral defense, an aspect of Cas biochemistry not considered previously. Further, Cas PTM profiles from Leptospirillum group II differ in early versus mature biofilms. PTM patterns are divergent on orthologues of two closely related, but ecologically differentiated, Leptospirillum group II bacteria. Our results highlight the prevalence and dynamics of PTMs of proteins, with potential significance for ecological adaptation and microbial evolution. C1 [Li, Zhou; Wang, Yingfeng; Ahn, Tae-Hyuk; Hettich, Robert L.; Pan, Chongle] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Li, Zhou; Wang, Yingfeng; Ahn, Tae-Hyuk; Hettich, Robert L.; Pan, Chongle] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Li, Zhou; Hettich, Robert L.; Pan, Chongle] Univ Tennessee, Grad Sch Genome Sci & Technol, Oak Ridge Natl Lab, Knoxville, TN 37996 USA. [Yao, Qiuming; Xu, Dong] Univ Missouri, Dept Comp Sci, Columbia, MO 65211 USA. [Yao, Qiuming; Xu, Dong] Univ Missouri, Christopher S Bond Life Sci Ctr, Columbia, MO 65211 USA. [Justice, Nicholas B.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Banfield, JF (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM jbanfield@berkeley.edu; panc@ornl.gov RI Li, Zhou/L-7976-2015; Hettich, Robert/N-1458-2016 OI Hettich, Robert/0000-0001-7708-786X FU US Department of Energy Office of Science, Biological and Environmental Research, Carbon Cycling program; National Institutes of Health [R01-GM100701]; Office of Science of the US Department of Energy FX We thank Dr. Annika Mosier for providing a GS2 sample; Dr. Ritin Sharma for providing an E. coli sample; and Dr. Jennifer Doudna and Dr. Rodolphe Barrangou for discussion about the CRISPR-Cas system. This work was funded by the US Department of Energy Office of Science, Biological and Environmental Research, Carbon Cycling program for Z.L., N.B.J., R.L.H., J.F.B. and C.P., Knowledgebase program for Y.W. and T.-H.A., and National Institutes of Health grant (R01-GM100701) for Q.Y. and D.X. This research used resources of the Oak Ridge Leadership Computing Facility. Oak Ridge National Laboratory is supported by the Office of Science of the US Department of Energy. NR 60 TC 11 Z9 11 U1 8 U2 43 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2014 VL 5 AR 4405 DI 10.1038/ncomms5405 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AN5GO UT WOS:000340618900006 PM 25059763 ER PT J AU Motkuri, RK Annapureddy, HVR Vijaykumar, M Schaef, HT Martin, PF McGrail, BP Dang, LX Krishna, R Thallapally, PK AF Motkuri, Radha Kishan Annapureddy, Harsha V. R. Vijaykumar, M. Schaef, H. Todd Martin, Paul F. McGrail, B. Peter Dang, Liem X. Krishna, Rajamani Thallapally, Praveen K. TI Fluorocarbon adsorption in hierarchical porous frameworks SO NATURE COMMUNICATIONS LA English DT Article ID METAL-ORGANIC FRAMEWORK; CARBON-DIOXIDE UPTAKE; SURFACE-AREA; COORDINATION POLYMER; HYDROGEN ADSORPTION; ACTIVATED CARBON; CO2; SITES; PORES; CRYSTALLINE AB Metal-organic frameworks comprise an important class of solid-state materials and have potential for many emerging applications such as energy storage, separation, catalysis and bio-medical. Here we report the adsorption behaviour of a series of fluorocarbon derivatives on a set of microporous and hierarchical mesoporous frameworks. The microporous frameworks show a saturation uptake capacity for dichlorodifluoromethane of >4 mmol g(-1) at a very low relative saturation pressure (P/P-o) of 0.02. In contrast, the mesoporous framework shows an exceptionally high uptake capacity reaching >14 mmol g(-1) at P/P-o of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption is found to generally correlate with the polarizability and boiling point of the refrigerant, with dichlorodifluoromethane >chlorodifluoromethane >chlorotrifluoromethane >tetrafluoromethane >methane. These results suggest the possibility of exploiting these sorbents for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling. C1 [Motkuri, Radha Kishan; Martin, Paul F.; McGrail, B. Peter] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Annapureddy, Harsha V. R.; Vijaykumar, M.; Schaef, H. Todd; Dang, Liem X.; Thallapally, Praveen K.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Krishna, Rajamani] Univ Amsterdam, Vant Hoff Inst Mol Sci, NL-1098 XH Amsterdam, Netherlands. RP Motkuri, RK (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM Radhakishan.Motkuri@pnnl.gov; praveen.thallapally@pnnl.gov RI Motkuri, Radha/F-1041-2014; Murugesan, Vijayakumar/C-6643-2011; Krishna, Rajamani/A-1098-2012; OI Motkuri, Radha/0000-0002-2079-4798; Murugesan, Vijayakumar/0000-0001-6149-1702; Krishna, Rajamani/0000-0002-4784-8530; Thallapally, Praveen Kumar/0000-0001-7814-4467 FU U.S. Department of Energy; ARPA-E Building Energy Efficiency Through Innovative Thermodevices (BEETIT) programme; U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences and Biosciences FX This work was performed at Pacific Northwest National Laboratory (PNNL) and was supported by the U.S. Department of Energy, ARPA-E Building Energy Efficiency Through Innovative Thermodevices (BEETIT) programme. The U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences and Biosciences funded the work performed by L.X.D. We gratefully acknowledge technical support and refrigerants provided by Gary Silverman and Brett Van Horn of Arkema, Inc., and practical advice on adsorption chiller design from Mike Stonecipher at Power Partners, Inc. PNNL is operated by Battelle for DOE under contract DE-AC05-76RL01830. We would like to thank Collin D. Wick of Louisiana Tech University for generating Fig. 3 in the manuscript. NR 45 TC 28 Z9 28 U1 6 U2 84 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2014 VL 5 AR 4368 DI 10.1038/ncomms5368 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AN5FI UT WOS:000340615500059 PM 25006832 ER PT J AU Nagy, LG Ohm, RA Kovacs, GM Floudas, D Riley, R Gacser, A Sipiczki, M Davis, JM Doty, SL de Hoog, GS Lang, BF Spatafora, JW Martin, FM Grigoriev, IV Hibbett, DS AF Nagy, Laszlo G. Ohm, Robin A. Kovacs, Gabor M. Floudas, Dimitrios Riley, Robert Gacser, Attila Sipiczki, Matyas Davis, John M. Doty, Sharon L. de Hoog, G. Sybren Lang, B. Franz Spatafora, Joseph W. Martin, Francis M. Grigoriev, Igor V. Hibbett, David S. TI Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts SO NATURE COMMUNICATIONS LA English DT Article ID SACCHAROMYCES-CEREVISIAE; PHYLOGENETIC ANALYSES; FUNGAL PATHOGENS; CELL-SEPARATION; GENE-EXPRESSION; MODELS; PROTEIN; CPS1; SCHIZOSACCHAROMYCES; MICROSPORIDIA AB Convergent evolution is common throughout the tree of life, but the molecular mechanisms causing similar phenotypes to appear repeatedly are obscure. Yeasts have arisen in multiple fungal clades, but the genetic causes and consequences of their evolutionary origins are unknown. Here we show that the potential to develop yeast forms arose early in fungal evolution and became dominant independently in multiple clades, most likely via parallel diversification of Zn-cluster transcription factors, a fungal-specific family involved in regulating yeast-filamentous switches. Our results imply that convergent evolution can happen by the repeated deployment of a conserved genetic toolkit for the same function in distinct clades via regulatory evolution. We suggest that this mechanism might be a common source of evolutionary convergence even at large time scales. C1 [Nagy, Laszlo G.; Floudas, Dimitrios; Hibbett, David S.] Clark Univ, Dept Biol, Worcester, MA 01610 USA. [Ohm, Robin A.; Riley, Robert; Grigoriev, Igor V.] Joint Genome Inst, US Dept Energy, Walnut Creek, CA 94598 USA. [Kovacs, Gabor M.] Eotvos Lorand Univ, Inst Biol, Dept Plant Anat, H-1117 Budapest, Hungary. [Kovacs, Gabor M.] Hungarian Acad Sci, Inst Plant Protect, Agr Res Ctr, H-1525 Budapest, Hungary. [Gacser, Attila] Univ Szeged, Dept Microbiol, H-6726 Szeged, Hungary. [Sipiczki, Matyas] Univ Debrecen, Dept Genet, H-4010 Debrecen, Hungary. [Davis, John M.] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA. [Doty, Sharon L.] Univ Washington, Sch Environm & Forest Sci, Coll Environm, Seattle, WA 98195 USA. [de Hoog, G. Sybren] CBS KNAW Fungal Biodivers Ctr, Utrecht, Netherlands. [Lang, B. Franz] Univ Montreal, Dept Biochim, Montreal, PQ H3C 3J7, Canada. [Spatafora, Joseph W.] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA. [Martin, Francis M.] Nancy Univ, INRA, UMR 1136, F-54280 Seichamps, France. RP Nagy, LG (reprint author), Clark Univ, Dept Biol, Worcester, MA 01610 USA. EM lnagy@clarku.edu; dhibbett@clarku.edu RI Ohm, Robin/I-6689-2016; OI Doty, Sharon/0000-0002-9546-315X FU NSF [DEB-1208719, DEB-0933081]; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences; Lab of Excellence ARBRE [ANR-11-LABX-0002-01]; HSRF [OTKA 101323] FX We are grateful to Kenneth H. Wolfe for agreeing to use the genome of Sporobolomyces roseus. We thank Neva Meyer for critically reading the manuscript. This work was supported under the NSF grants DEB-1208719 and DEB-0933081 (both to D.S.H.). The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. G.M.K. and A.G. are supported by a Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences. F.M.M. is supported by the Lab of Excellence ARBRE (ANR-11-LABX-0002-01). M.S. is supported by the HSRF grant OTKA 101323. NR 58 TC 16 Z9 16 U1 3 U2 29 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2014 VL 5 AR 4471 DI 10.1038/ncomms5471 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AN5IF UT WOS:000340623400016 PM 25034666 ER PT J AU Sun, DL Fang, M Xu, XS Jiang, L Guo, HW Wang, YM Yang, WT Yin, LF Snijders, PC Ward, TZ Gai, Z Zhang, XG Lee, HN Shen, J AF Sun, Dali Fang, Mei Xu, Xiaoshan Jiang, Lu Guo, Hangwen Wang, Yanmei Yang, Wenting Yin, Lifeng Snijders, Paul C. Ward, T. Z. Gai, Zheng Zhang, X. -G. Lee, Ho Nyung Shen, Jian TI Active control of magnetoresistance of organic spin valves using ferroelectricity SO NATURE COMMUNICATIONS LA English DT Article ID MULTIFERROIC TUNNEL-JUNCTIONS; HALF-METALLIC FERROMAGNET; SEMICONDUCTORS; INTERFACE; INJECTION; POLARIZATION; SPINTRONICS; DEVICES AB Organic spintronic devices have been appealing because of the long spin lifetime of the charge carriers in the organic materials and their low cost, flexibility and chemical diversity. In previous studies, the control of resistance of organic spin valves is generally achieved by the alignment of the magnetization directions of the two ferromagnetic electrodes, generating magnetoresistance. Here we employ a new knob to tune the resistance of organic spin valves by adding a thin ferroelectric interfacial layer between the ferromagnetic electrode and the organic spacer: the magnetoresistance of the spin valve depends strongly on the history of the bias voltage, which is correlated with the polarization of the ferroelectric layer; the magnetoresistance even changes sign when the electric polarization of the ferroelectric layer is reversed. These findings enable active control of resistance using both electric and magnetic fields, opening up possibility for multi-state organic spin valves. C1 [Sun, Dali; Fang, Mei; Wang, Yanmei; Yang, Wenting; Yin, Lifeng; Shen, Jian] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. [Sun, Dali; Fang, Mei; Wang, Yanmei; Yang, Wenting; Yin, Lifeng; Shen, Jian] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Sun, Dali; Fang, Mei; Wang, Yanmei; Yang, Wenting; Yin, Lifeng; Shen, Jian] Fudan Univ, Collaborat Innovat Ctr Adv Microstructure, Shanghai 200433, Peoples R China. [Sun, Dali; Xu, Xiaoshan; Jiang, Lu; Guo, Hangwen; Snijders, Paul C.; Ward, T. Z.; Gai, Zheng; Lee, Ho Nyung] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Sun, Dali; Jiang, Lu; Guo, Hangwen; Snijders, Paul C.; Shen, Jian] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Gai, Zheng; Zhang, X. -G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhang, X. -G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Xu, XS (reprint author), Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. EM xiaoshan.xu@unl.edu; shenj5494@fudan.edu.cn RI Gai, Zheng/B-5327-2012; Xu, Xiaoshan/B-1255-2009; Ward, Thomas/I-6636-2016; Lee, Ho Nyung/K-2820-2012 OI Gai, Zheng/0000-0002-6099-4559; Xu, Xiaoshan/0000-0002-4363-392X; Ward, Thomas/0000-0002-1027-9186; Lee, Ho Nyung/0000-0002-2180-3975 FU National Basic Research Program of China (973 Program) [2011CB921800, 2013CB932901, 2014CB921104]; National Natural Science Foundation of China [91121002, 11274071]; Shanghai Municipal Natural Science Foundation [11ZR1402600]; China Postdoctoral Science Foundation [2013M540321]; Wuhan National High Magnetic Field Center [WHMFCKF2011008]; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy, Basic Energy Sciences, Scientific User Facilities Division; US DOE [DE-SC0002136] FX This study was supported by the National Basic Research Program of China (973 Program) under the grant numbers 2011CB921800, 2013CB932901 and 2014CB921104; National Natural Science Foundation of China (91121002 and 11274071); Shanghai Municipal Natural Science Foundation (11ZR1402600); China Postdoctoral Science Foundation (2013M540321); the Wuhan National High Magnetic Field Center (WHMFCKF2011008) (M.F., L.Y., Y.W., W.Y. and J.S.). We also acknowledge the funding support of U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (D.S., X.X., L.J., H.N.L., P.C.S. and T.Z.W.) and the U.S. Department of Energy, Basic Energy Sciences, Scientific User Facilities Division (X.G.Z. and Z.G.), the US DOE grant DE-SC0002136 (H.G. and J.S.). NR 34 TC 8 Z9 8 U1 9 U2 88 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2014 VL 5 AR 4396 DI 10.1038/ncomms5396 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AN5GM UT WOS:000340618700011 PM 25008155 ER PT J AU Zhai, XF Cheng, L Liu, Y Schlepuetz, CM Dong, S Li, H Zhang, XQ Chu, SQ Zheng, LR Zhang, J Zhao, AD Hong, H Bhattacharya, A Eckstein, JN Zeng, CG AF Zhai, Xiaofang Cheng, Long Liu, Yang Schlepuetz, Christian M. Dong, Shuai Li, Hui Zhang, Xiaoqiang Chu, Shengqi Zheng, Lirong Zhang, Jing Zhao, Aidi Hong, Hawoong Bhattacharya, Anand Eckstein, James N. Zeng, Changgan TI Correlating interfacial octahedral rotations with magnetism in (LaMnO3+delta)(N)/(SrTiO3)(N) superlattices SO NATURE COMMUNICATIONS LA English DT Article ID THIN-FILMS; OXIDE INTERFACES; MANGANITE FILMS; MAGNETOTRANSPORT; PEROVSKITES; LAMNO3 AB Lattice distortion due to oxygen octahedral rotations have a significant role in mediating the magnetism in oxides, and recently attracts a lot of interests in the study of complex oxides interface. However, the direct experimental evidence for the interrelation between octahedral rotation and magnetism at interface is scarce. Here we demonstrate that interfacial octahedral rotation are closely linked to the strongly modified ferromagnetism in (LaMnO3+delta)(N)/(SrTiO3)(N) superlattices. The maximized ferromagnetic moment in the N = 6 superlattice is accompanied by a metastable structure (space group Imcm) featuring minimal octahedral rotations (a(-) a(-) c(-), alpha similar to 4.2 degrees, gamma similar to 0.5 degrees). Quenched ferromagnetism for N<4 superlattices is correlated to a substantially enhanced c axis octahedral rotation (a(-) a(-) c(-), alpha similar to 3.8 degrees, gamma similar to 8 degrees for N = 2). Monte-Carlo simulation based on double-exchange model qualitatively reproduces the experimental observation, confirming the correlation between octahedral rotation and magnetism. Our study demonstrates that engineering superlattices with controllable interfacial structures can be a feasible new route in realizing functional magnetic materials. C1 [Zhai, Xiaofang; Cheng, Long; Li, Hui; Zhang, Xiaoqiang; Zeng, Changgan] Univ Sci & Technol China, Dept Phys, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Zhai, Xiaofang; Zhao, Aidi; Zeng, Changgan] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China. [Liu, Yang; Schlepuetz, Christian M.; Hong, Hawoong] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Dong, Shuai] Southeast Univ, Dept Phys, Nanjing 211189, Jiangsu, Peoples R China. [Chu, Shengqi; Zheng, Lirong; Zhang, Jing] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China. [Zhao, Aidi] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Bhattacharya, Anand] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Bhattacharya, Anand] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Eckstein, James N.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. RP Zhai, XF (reprint author), Univ Sci & Technol China, Dept Phys, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. EM xfzhai@ustc.edu.cn; yangliu3@aps.anl.gov; sdong@seu.edu.cn RI Liu, Yang/I-2806-2012; Dong (董), Shuai (帅)/A-5513-2008; Bhattacharya, Anand/G-1645-2011; Schleputz, Christian/C-4696-2008 OI Liu, Yang/0000-0001-6506-5903; Dong (董), Shuai (帅)/0000-0002-6910-6319; Bhattacharya, Anand/0000-0002-6839-6860; Chu, Shengqi/0000-0002-6334-5095; Schleputz, Christian/0000-0002-0485-2708 FU National Basic Research Program of China [2012CB922000, 2014CB921102, 2011CB922101]; National Natural Science Foundation of China [11104258, 11034006, 11374279, 11274060, 51322206]; Chinese Academy of Sciences [XDB01020000, KJCX2-EW-J02]; Specialized Research Fund for the Doctoral Program of Higher Education [20113402110046]; Fundamental Research Funds for the Central Universities [WK2340000035]; Materials Science and Engineering Division, US Department of Energy, Office of Science, Basic Energy Sciences [DE-AC02-06CH11357] FX We are grateful to Professor Xingao Gong, Professor Hongjun Xiang, Professor Jin Zhao and Professor Zhenyu Zhang for their insightful discussions; and to Professor Wang-sheng Chu for help on the XAFS analysis. This work was supported by National Basic Research Program of China (2012CB922000, 2014CB921102, 2011CB922101), National Natural Science Foundation of China (grant nos. 11104258, 11034006, 11374279, 11274060 and 51322206), Chinese Academy of Sciences (XDB01020000, KJCX2-EW-J02), Specialized Research Fund for the Doctoral Program of Higher Education (20113402110046) and Fundamental Research Funds for the Central Universities (WK2340000035). A.B. acknowledges support of the Materials Science and Engineering Division, US Department of Energy, Office of Science, Basic Energy Sciences. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under contract no. DE-AC02-06CH11357. NR 51 TC 26 Z9 26 U1 15 U2 146 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2014 VL 5 AR 4283 DI 10.1038/ncomms5283 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AN5FW UT WOS:000340617100002 PM 25005724 ER PT J AU Zhang, P Li, TC Zhu, J Zhu, XF Yang, S Wang, Y Yin, XB Zhang, X AF Zhang, Peng Li, Tongcang Zhu, Jie Zhu, Xuefeng Yang, Sui Wang, Yuan Yin, Xiaobo Zhang, Xiang TI Generation of acoustic self-bending and bottle beams by phase engineering SO NATURE COMMUNICATIONS LA English DT Article ID WAVE-PACKETS; AIRY BEAMS; METAMATERIALS; BULLETS; SOUND AB Directing acoustic waves along curved paths is critical for applications such as ultrasound imaging, surgery and acoustic cloaking. Metamaterials can direct waves by spatially varying the material properties through which the wave propagates. However, this approach is not always feasible, particularly for acoustic applications. Here we demonstrate the generation of acoustic bottle beams in homogeneous space without using metamaterials. Instead, the sound energy flows through a three-dimensional curved shell in air leaving a close-to-zero pressure region in the middle, exhibiting the capability of circumventing obstacles. By designing the initial phase, we develop a general recipe for creating self-bending wave packets, which can set acoustic beams propagating along arbitrary prescribed convex trajectories. The measured acoustic pulling force experienced by a rigid ball placed inside such a beam confirms the pressure field of the bottle. The demonstrated acoustic bottle and self-bending beams have potential applications in medical ultrasound imaging, therapeutic ultrasound, as well as acoustic levitations and isolations. C1 [Zhang, Peng; Li, Tongcang; Zhu, Jie; Zhu, Xuefeng; Yang, Sui; Wang, Yuan; Yin, Xiaobo; Zhang, Xiang] Univ Calif Berkeley, Natl Sci Fdn, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Yang, Sui; Yin, Xiaobo; Zhang, Xiang] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, Natl Sci Fdn, Nanoscale Sci & Engn Ctr, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Wang, Yuan/F-7211-2011; Zhang, Peng/D-9624-2011; Zhang, Xiang/F-6905-2011; Zhu, Jie/C-3462-2012; Yin, Xiaobo/A-4142-2011; Yang, Sui /H-4417-2016 OI Zhu, Jie/0000-0002-2547-7775; FU Office of Naval Research (ONR) MURI program [N00014-13-1-0631] FX We thank Yongmin Liu for assistance. This research was supported by the Office of Naval Research (ONR) MURI program under grant no. N00014-13-1-0631. NR 43 TC 35 Z9 36 U1 10 U2 78 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2014 VL 5 AR 4316 DI 10.1038/ncomms5316 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AN5FI UT WOS:000340615500007 PM 24989825 ER PT J AU Tan, ST AlZayed, NS Lakshminarayana, G Naumar, F Umar, AA Oyama, M Myronchuk, G Kityk, IV AF Tan, Sin Tee AlZayed, N. S. Lakshminarayana, G. Naumar, F. Umar, A. A. Oyama, M. Myronchuk, G. Kityk, I. V. TI Laser stimulated electrooptics in the Ag-ZnO nanorods SO PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES LA English DT Article DE Synthesis of ZnO nanorod; Silver nanoparticle; Electrooptics effect ID NONLINEAR-OPTICAL PROPERTIES; MEDIATED GROWTH METHOD; THIN-FILMS; NANOPARTICLES; NANOWIRES; SURFACES; ARRAY AB In the present work, we have discovered a photoinduced linear electrooptics in ZnO nanorods which were fabricated by simply varying the content of the growth solution. It was established that by varying the growth solution concentration one can vary the surface density of the ZnO nanorod arrays growth on the surface. The lowest ZnO content produces the lowest surface density in the nanorods. The photoinduced linear electrooptics was studied using the He-Ne laser at wavelength 1150 nm and was stimulated by 7 ns nitrogen laser at 371 nm. The nonlinear dependence of the Ag nanoparticle (NP) concentration was found and it was significantly higher than that for the pure ZnO NP. Principal role of the Ag NP on the observed effects was discussed. (C) 2014 Published by Elsevier B.V, C1 [Tan, Sin Tee; Naumar, F.; Umar, A. A.] Univ Kebangsaan Malaysia, Inst Microengn & Nanoelect, Ukm Bangi 43600, Selangor, Malaysia. [AlZayed, N. S.] King Saud Univ, Dept Phys & Astron, Coll Sci, Riyadh 11451, Saudi Arabia. [Lakshminarayana, G.] Los Alamos Natl Lab, Mat Sci & Technol Div MST7, Los Alamos, NM 87545 USA. [Oyama, M.] Kyoto Univ, Grad Sch Engn, Dept Chem Mat, Nishikyo Ku, Kyoto 6158520, Japan. [Myronchuk, G.] Eastern European Univ, Fac Phys, Lutsk, Ukraine. [Kityk, I. V.] Czestochowa Tech Univ, Fac Elect Engn, PL-42201 Czestochowa, Poland. RP Myronchuk, G (reprint author), Eastern European Univ, Fac Phys, Voli 6, Lutsk, Ukraine. EM galynamyronchuk@yahoo.co.uk RI Ali Umar, Akrajas/K-3921-2016; Tan, Sin Tee/N-4791-2014; Oyama, Munetaka/D-6541-2014; Ali Umar, Akrajas/E-8696-2015; Kityk, Iwan/M-4032-2015 OI Ali Umar, Akrajas/0000-0001-8299-4827; Naumar, Fitri Yenni/0000-0001-7423-0851; Tan, Sin Tee/0000-0002-6845-6608; Oyama, Munetaka/0000-0001-7422-9914; Ali Umar, Akrajas/0000-0001-8299-4827; FU King Saud University FX N.S.A. and I.V.K. are grateful to the King Saud University for the financial support. NR 23 TC 4 Z9 4 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1386-9477 EI 1873-1759 J9 PHYSICA E JI Physica E PD JUL PY 2014 VL 61 BP 23 EP 27 DI 10.1016/j.physe.2014.03.010 PG 5 WC Nanoscience & Nanotechnology; Physics, Condensed Matter SC Science & Technology - Other Topics; Physics GA AN5JL UT WOS:000340626600004 ER PT J AU Kim, EY Lorenzo-Redondo, R Little, SJ Chung, YS Phalora, PK Berry, IM Archer, J Penugonda, S Fischer, W Richman, DD Bhattacharya, T Malim, MH Wolinsky, SM AF Kim, Eun-Young Lorenzo-Redondo, Ramon Little, Susan J. Chung, Yoon-Seok Phalora, Prabhjeet K. Berry, Irina Maljkovic Archer, John Penugonda, Sudhir Fischer, Will Richman, Douglas D. Bhattacharya, Tanmoy Malim, Michael H. Wolinsky, Steven M. TI Human APOBEC3 Induced Mutation of Human Immunodeficiency Virus Type-1 Contributes to Adaptation and Evolution in Natural Infection SO PLOS PATHOGENS LA English DT Article ID CD4(+) T-CELLS; HIV-1 INFECTION; CYTIDINE DEAMINATION; REVERSE-TRANSCRIPTASE; SELECTIVE PRESSURE; ANTIVIRAL ACTIVITY; HIGH-THROUGHPUT; IN-VIVO; VIF; DNA AB Human APOBEC3 proteins are cytidine deaminases that contribute broadly to innate immunity through the control of exogenous retrovirus replication and endogenous retroelement retrotransposition. As an intrinsic antiretroviral defense mechanism, APOBEC3 proteins induce extensive guanosine-to-adenosine (G-to-A) mutagenesis and inhibit synthesis of nascent human immunodeficiency virus-type 1 (HIV-1) cDNA. Human APOBEC3 proteins have additionally been proposed to induce infrequent, potentially non-lethal G-to-A mutations that make subtle contributions to sequence diversification of the viral genome and adaptation though acquisition of beneficial mutations. Using single-cycle HIV-1 infections in culture and highly parallel DNA sequencing, we defined trinucleotide contexts of the edited sites for APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H. We then compared these APOBEC3 editing contexts with the patterns of G-to-A mutations in HIV-1 DNA in cells obtained sequentially from ten patients with primary HIV-1 infection. Viral substitutions were highest in the preferred trinucleotide contexts of the edited sites for the APOBEC3 deaminases. Consistent with the effects of immune selection, amino acid changes accumulated at the APOBEC3 editing contexts located within human leukocyte antigen (HLA)appropriate epitopes that are known or predicted to enable peptide binding. Thus, APOBEC3 activity may induce mutations that influence the genetic diversity and adaptation of the HIV-1 population in natural infection. C1 [Kim, Eun-Young; Lorenzo-Redondo, Ramon; Chung, Yoon-Seok; Berry, Irina Maljkovic; Penugonda, Sudhir; Wolinsky, Steven M.] Northwestern Univ, Feinberg Sch Med, Div Infect Dis, Chicago, IL 60611 USA. [Little, Susan J.; Richman, Douglas D.] Univ Calif San Diego, Div Infect Dis, San Diego, CA 92103 USA. [Phalora, Prabhjeet K.; Malim, Michael H.] Kings Coll London, Guys Hosp, Dept Infect Dis, London WC2R 2LS, England. [Archer, John] Univ Manchester, Fac Life Sci, Manchester, Lancs, England. [Fischer, Will; Bhattacharya, Tanmoy] Los Alamos Natl Lab, Los Alamos, NM USA. [Richman, Douglas D.] Vet Affairs San Diego Healthcare Syst, San Diego, CA USA. [Bhattacharya, Tanmoy] Santa Fe Inst, Santa Fe, NM 87501 USA. RP Malim, MH (reprint author), Kings Coll London, Guys Hosp, Dept Infect Dis, London WC2R 2LS, England. EM Michael.malim@kcl.ac.uk; s-wolinsky@northwestern.edu RI Bhattacharya, Tanmoy/J-8956-2013; OI Bhattacharya, Tanmoy/0000-0002-1060-652X; Malim, Michael/0000-0002-7699-2064; Archer, John/0000-0001-6212-0962; Wolinsky, Steven/0000-0002-9625-6697; Lorenzo-Redondo, Ramon/0000-0002-5462-9483; Fischer, Will/0000-0003-4579-4062 FU National Institutes of Health, National Institutes of Allergy and Infectious Diseases [AI43638, AI074621, AI070072, AI035039]; California HIV Research Program (CHRP) [RN07-SD-702]; U.K. Medical Research Council [G1000196]; HIV Immune Network Team Program (HINT) [NIH/NAID P01AI090935] FX Grants from the National Institutes of Health, National Institutes of Allergy and Infectious Diseases (AI43638, AI074621, AI070072, and AI035039), the California HIV Research Program (CHRP) RN07-SD-702, the U.K. Medical Research Council (G1000196), and HIV Immune Network Team Program (HINT, NIH/NAID P01AI090935) supported this work. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 68 TC 19 Z9 19 U1 0 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7366 EI 1553-7374 J9 PLOS PATHOG JI PLoS Pathog. PD JUL PY 2014 VL 10 IS 7 AR e1004281 DI 10.1371/journal.ppat.1004281 PG 15 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA AN4IL UT WOS:000340551000054 PM 25080100 ER PT J AU Faria, JP Overbeek, R Xia, FF Rocha, M Rocha, I Henry, CS AF Faria, Jose P. Overbeek, Ross Xia, Fangfang Rocha, Miguel Rocha, Isabel Henry, Christopher S. TI Genome-scale bacterial transcriptional regulatory networks: reconstruction and integrated analysis with metabolic models SO BRIEFINGS IN BIOINFORMATICS LA English DT Article DE genome-scale metabolic (GSM) model; transcriptional regulatory network (TRN); de novo reverse engineering; integrated metabolic and regulatory models ID ENGINEERING GENE NETWORKS; PROTEIN-DNA INTERACTIONS; FACTOR-BINDING SITES; ESCHERICHIA-COLI; IN-SILICO; HIGH-THROUGHPUT; BACILLUS-SUBTILIS; MYCOBACTERIUM-TUBERCULOSIS; BIOLOGICAL NETWORKS; EXPRESSION PROFILES AB Advances in sequencing technology are resulting in the rapid emergence of large numbers of complete genome sequences. High-throughput annotation and metabolic modeling of these genomes is now a reality. The high-throughput reconstruction and analysis of genome-scale transcriptional regulatory networks represent the next frontier in microbial bioinformatics. The fruition of this next frontier will depend on the integration of numerous data sources relating to mechanisms, components and behavior of the transcriptional regulatory machinery, as well as the integration of the regulatory machinery into genome-scale cellular models. Here, we review existing repositories for different types of transcriptional regulatory data, including expression data, transcription factor data and binding site locations and we explore how these data are being used for the reconstruction of new regulatory networks. From template network-based methods to de novo reverse engineering from expression data, we discuss how regulatory networks can be reconstructed and integrated with metabolic models to improve model predictions and performance. We also explore the impact these integrated models can have in simulating phenotypes, optimizing the production of compounds of interest or paving the way to a whole-cell model. C1 [Faria, Jose P.] Univ Minho, Ctr Biol Engn, MIT Portugal Program Bioengn Syst, P-4719 Braga, Portugal. [Faria, Jose P.; Overbeek, Ross; Xia, Fangfang; Henry, Christopher S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Overbeek, Ross] Fellowship Interpretat Genomes, Burr Ridge, IL USA. [Rocha, Miguel] Univ Minho, Sch Engn, P-4719 Braga, Portugal. [Rocha, Miguel] Univ Minho, CCTC Res Ctr, P-4719 Braga, Portugal. [Rocha, Isabel] Univ Minho, Inst Biotechnol & Bioengn, P-4719 Braga, Portugal. [Henry, Christopher S.] Univ Chicago, Chicago, IL 60637 USA. [Henry, Christopher S.] Northwestern Univ, Evanston, IL 60208 USA. RP Henry, CS (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM chenry@mcs.anl.gov RI Rocha, Isabel/A-4279-2013; Rocha, Miguel/B-9404-2011; OI Rocha, Isabel/0000-0001-9494-3410; Rocha, Miguel/0000-0001-8439-8172; Faria, Jose/0000-0001-9302-7250 FU FCT (Portuguese Foundation for Science and Technology) PhD program [FRH/BD/70824/2010]; ERDF-European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness); National Funds through the FCT [FCOMP-01-0124-FEDER-015079, FCOMP-01-0124-FEDER-009707]; U.S. Department of Energy [DE-ACO2-06CH11357]; National Science Foundation [0850546] FX J.P.F. acknowledges funding from [FRH/BD/70824/2010] of the FCT (Portuguese Foundation for Science and Technology) PhD program. The work was supported in part by the ERDF-European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness), National Funds through the FCT within projects [FCOMP-01-0124-FEDER-015079] (ToMEGIM-Computational Tools for Metabolic Engineering using Genome-scale Integrated Models) and FCOMP-01-0124-FEDER-009707 (HeliSysBio-molecular Systems Biology in Helicobacter pylori), the U.S. Department of Energy under contract [DE-ACO2-06CH11357] and the National Science Foundation under [0850546]. NR 189 TC 4 Z9 4 U1 1 U2 30 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1467-5463 EI 1477-4054 J9 BRIEF BIOINFORM JI Brief. Bioinform. PD JUL PY 2014 VL 15 IS 4 BP 592 EP 611 DI 10.1093/bib/bbs071 PG 20 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA AM7LJ UT WOS:000340048400011 PM 23422247 ER PT J AU Cook, BG AF Cook, Brandon G. TI Applied Mathematics: Methods and Matlab SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Editorial Material C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Cook, BG (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM bln@ornl.gov NR 0 TC 0 Z9 0 U1 0 U2 4 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 EI 1558-366X J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD JUL-AUG PY 2014 VL 16 IS 4 BP 6 EP 7 PG 2 WC Computer Science, Interdisciplinary Applications SC Computer Science GA AM7DU UT WOS:000340025700002 ER PT J AU Cappuccio, JA Falso, MJS Kashgarian, M Buchholz, BA AF Cappuccio, Jenny A. Falso, Miranda J. Sarachine Kashgarian, Michaele Buchholz, Bruce A. TI C-14 Analysis of protein extracts from Bacillus spores SO FORENSIC SCIENCE INTERNATIONAL LA English DT Article DE Accelerator mass spectrometry; Spore; Bacillus; C-14 bomb-pulse dating; Isotope forensics ID STABLE-ISOTOPE RATIOS; AGE CALIBRATION; BONE-COLLAGEN; RADIOCARBON; CARBON; MARINE; AMS; DIET; TERRESTRIAL; NITROGEN AB Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The (FC)-C-14 (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures (FC)-C-14 values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The (FC)-C-14 of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F-14C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their C-14 signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate C-14 bomb-pulse dating. Since media is contemporary, C-14 bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media. (C) 2014 Elsevier Ireland Ltd. All rights reserved. C1 [Cappuccio, Jenny A.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94551 USA. [Falso, Miranda J. Sarachine; Kashgarian, Michaele; Buchholz, Bruce A.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. RP Buchholz, BA (reprint author), Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. EM buchholz2@llnl.gov FU Department of Homeland Security (DHS) [T12146]; NIGMS [8P41GM103483]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank Dr. Steve Velsko for providing archived samples, Cindy Thomas for performing spore extractions, and Paula Zermeno for processing graphite samples. Support was provided by Department of Homeland Security (DHS) Task order T12146 and NIGMS 8P41GM103483. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 45 TC 0 Z9 0 U1 1 U2 10 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0379-0738 EI 1872-6283 J9 FORENSIC SCI INT JI Forensic Sci.Int. PD JUL PY 2014 VL 240 BP 54 EP 60 DI 10.1016/j.forsciint.2014.04.003 PG 7 WC Medicine, Legal SC Legal Medicine GA AM7KR UT WOS:000340046400013 PM 24814329 ER PT J AU Keegan, E Kristo, MJ Colella, M Robel, M Williams, R Lindvall, R Eppich, G Roberts, S Borg, L Gaffney, A Plaue, J Wong, H Davis, J Loi, E Reinhard, M Hutcheon, I AF Keegan, Elizabeth Kristo, Michael J. Colella, Michael Robel, Martin Williams, Ross Lindvall, Rachel Eppich, Gary Roberts, Sarah Borg, Lars Gaffney, Amy Plaue, Jonathan Wong, Henri Davis, Joel Loi, Elaine Reinhard, Mark Hutcheon, Ian TI Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia SO FORENSIC SCIENCE INTERNATIONAL LA English DT Article DE Nuclear forensics; Uranium ore concentrate; Nuclear forensic signatures AB Early in 2009, a state policing agency raided a clandestine drug laboratory in a suburb of a major city in Australia. During the search of the laboratory, a small glass jar labelled "Gamma Source" and containing a green powder was discovered. The powder was radioactive. This paper documents the detailed nuclear forensic analysis undertaken to characterise and identify the material and determine its provenance. Isotopic and impurity content, phase composition, microstructure and other characteristics were measured on the seized sample, and the results were compared with similar material obtained from the suspected source (ore and ore concentrate material). While an extensive range of parameters were measured, the key 'nuclear forensic signatures' used to identify the material were the U isotopic composition, Pb and Sr isotope ratios, and the rare earth element pattern. These measurements, in combination with statistical analysis of the elemental and isotopic content of the material against a database of uranium ore concentrates sourced from mines located worldwide, led to the conclusion that the seized material (a uranium ore concentrate of natural isotopic abundance) most likely originated from Mary Kathleen, a former Australian uranium mine. (C) 2014 Elsevier Ireland Ltd. All rights reserved. C1 [Keegan, Elizabeth; Colella, Michael; Wong, Henri; Davis, Joel; Loi, Elaine; Reinhard, Mark] Australian Nucl Sci & Technol Org, Kirrawee, NSW 2232, Australia. [Kristo, Michael J.; Robel, Martin; Williams, Ross; Lindvall, Rachel; Eppich, Gary; Roberts, Sarah; Borg, Lars; Gaffney, Amy; Plaue, Jonathan; Hutcheon, Ian] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Keegan, E (reprint author), Australian Nucl Sci & Technol Org, Locked Bag 2001, Kirrawee, NSW 2232, Australia. EM liz.keegan@ansto.gov.au RI Wong, Henri/L-8809-2014; OI Eppich, Gary/0000-0003-2176-6673 FU U.S. Department of Energy [DE-AC52-07NA27344]; Department of Energy Office of Nuclear Controls [NA-242]; Office of Nuclear Verification [NA-243] FX Lawrence Livermore National Laboratory performed this work under the auspices of the U.S. Department of Energy under Contract DE-AC52-07NA27344. This work was funded by both the Department of Energy Office of Nuclear Controls (NA-242) and Office of Nuclear Verification (NA-243). NR 18 TC 14 Z9 14 U1 7 U2 35 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0379-0738 EI 1872-6283 J9 FORENSIC SCI INT JI Forensic Sci.Int. PD JUL PY 2014 VL 240 BP 111 EP 121 DI 10.1016/j.forsciint.2014.04.004 PG 11 WC Medicine, Legal SC Legal Medicine GA AM7KR UT WOS:000340046400020 PM 24836840 ER PT J AU Cengher, M Lohr, J Gorelov, YA Ellis, R Kolemen, E Ponce, D Noraky, S Moeller, CP AF Cengher, Mirela Lohr, J. Gorelov, Y. A. Ellis, R. Kolemen, Egemen Ponce, D. Noraky, S. Moeller, C. P. TI Performance and Upgrades for the Electron Cyclotron Heating System on DIII-D SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Antenna; DIII-D; electron cyclotron current drive; electron cyclotron heating (ECH); gyrotron; RF transmission line AB The electron cyclotron heating (ECH) system on the DIII-D fusion reactor consists of six 110-GHz gyrotrons with 6 MW installed power for pulses limited administratively to 5 s in length. The transmission coefficient is better than -1.1 dB for four of the transmission lines, which is close to the theoretical value. A new depressed collector gyrotron was recently installed and is injecting up to 720 kW of power into DIII-D during 2013 tokamak operations. Three of the four dual waveguide launchers, which can steer the RF beams +/- 20 degrees both poloidally and toroidally, were used for real-time neoclassical tearing mode control and suppression with increased poloidal scanning speed up to 60 degrees/s and positioning accuracy of the beams of +/- 2 mm at the plasma center. The ECH capabilities on DIII-D are being steadily updated, leading to increased experimental flexibility and high reliability of the system. In the past year, the ECH system reliability reached 87% for 2352 successful individual gyrotron shots into DIII-D. Planning is under way for the addition of two new depressed collector gyrotrons, one at 110 GHz, 1.2 MW and another at 117.5 GHz, 1.5 MW generated power, both of which are in the test stage at Communications and Power Industries. C1 [Cengher, Mirela; Lohr, J.; Gorelov, Y. A.; Ponce, D.; Noraky, S.; Moeller, C. P.] Gen Atom Co, San Diego, CA 92186 USA. [Ellis, R.; Kolemen, Egemen] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Cengher, M (reprint author), Gen Atom Co, San Diego, CA 92186 USA. EM cengher@fusion.gat.com; lohn@fusion.gat.com; gorelov@fusion.gat.com; ellis@fusion.gat.com; ekolemen@pppl.gov; ponce@fusion.gat.com; noraky@fusion.gat.com; moeller@fusion.gat.com FU U.S. Department of Energy [DE-FC02-04ER54698, DE-AC02-09CH11466] FX This work was supported by the U.S. Department of Energy under Grant DE-FC02-04ER54698 and Grant DE-AC02-09CH11466. NR 8 TC 5 Z9 5 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD JUL PY 2014 VL 42 IS 7 BP 1964 EP 1970 DI 10.1109/TPS.2013.2292299 PG 7 WC Physics, Fluids & Plasmas SC Physics GA AM9GX UT WOS:000340190200017 ER PT J AU Yoon, HS Lee, JY Kim, HS Kim, MS Kim, ES Shin, YJ Chu, WS Ahn, SH AF Yoon, Hae-Sung Lee, Jang-Yeob Kim, Hyung-Soo Kim, Min-Soo Kim, Eun-Seob Shin, Yong-Jun Chu, Won-Shik Ahn, Sung-Hoon TI A Comparison of Energy Consumption in Bulk Forming, Subtractive, and Additive Processes: Review and Case Study SO INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY LA English DT Article DE Electricity consumption; Green manufacturing; Manufacturing initiatives; Manufacturing processes; Specific energy consumption (SEC); Sustainability ID MANUFACTURING PROCESSES; ENVIRONMENTAL IMPACTS; MACHINE-TOOLS; TECHNOLOGY; DESIGN; SUSTAINABILITY; REQUIREMENTS; OPTIMIZATION; PARAMETERS; EFFICIENCY AB In addition to the steps taken to ensure optimal efficiency in industry, significant effort has been directed towards the green and sustainable manufacturing practices. In this paper, we review conventional and state-of-the-art manufacturing technologies to provide insight into energy consumption at the processing level. In the review, collected energy data were summarized for three manufacturing categories: conventional bulk-forming, subtractive, and additive manufacturing (AM) processes. Additive processes, in particular, are strongly emphasized in the Advanced Manufacturing Initiatives proposed recently by the United States government. Currently, the specific energy consumption (SEC) of additive processes is estimated to be similar to 100-fold higher than that of conventional bulk-forming processes, with subtractive processes showing intermediate values that varied over a wide range in terms of scale. Although SEC may vary with respect to the details, in general, the research showed a negative correlation with respect to the reciprocal logarithmic form of the productivity. In addition to the literature review presented, we performed case studies for the three manufacturing processes, to provide practical examples of energy consumption. Additionally, our results indicated that AM processes may require more extensive evaluation; i.e., an assessment of the entire manufacturing cycle, for more accurate prediction of the subsequent environmental impact. C1 [Yoon, Hae-Sung; Lee, Jang-Yeob; Kim, Hyung-Soo; Kim, Min-Soo; Kim, Eun-Seob; Shin, Yong-Jun; Chu, Won-Shik; Ahn, Sung-Hoon] Seoul Natl Univ, Dept Mech & Aerosp Engn, Seoul 151744, South Korea. [Yoon, Hae-Sung; Lee, Jang-Yeob] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Ahn, Sung-Hoon] Seoul Natl Univ, Inst Adv Machinery & Design, Seoul 151744, South Korea. [Ahn, Sung-Hoon] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA. RP Ahn, SH (reprint author), Seoul Natl Univ, Dept Mech & Aerosp Engn, Gwanak Ro 1, Seoul 151744, South Korea. EM ahnsh@snu.ac.kr FU Brain Korea 21 plus project; National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology [NRF-2010-0029227]; SNU-Hyundai NGV cooperative research projects - Hyundai WIA Corporation FX This work was supported by the Brain Korea 21 plus project, the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (No. NRF-2010-0029227), and SNU-Hyundai NGV cooperative research projects funded by Hyundai WIA Corporation. NR 97 TC 32 Z9 32 U1 6 U2 47 PU KOREAN SOC PRECISION ENG PI SEOUL PA RM 306, KWANGMYUNG BLDG, 5-4 NONHYUN-DONG, KANGNAM-GU, SEOUL, 135-010, SOUTH KOREA SN 2288-6206 EI 2198-0810 J9 INT J PR ENG MAN-GT JI Int. J. Precis Eng Manuf-Green Technol. PD JUL PY 2014 VL 1 IS 3 BP 261 EP 279 DI 10.1007/s40684-014-0033-0 PG 19 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Manufacturing; Engineering, Mechanical SC Science & Technology - Other Topics; Engineering GA AM7HD UT WOS:000340035500012 ER PT J AU Ross, RD Edwards, LH Acerbo, AS Ominsky, MS Virdi, AS Sena, K Miller, LM Sumner, DR AF Ross, Ryan D. Edwards, Lindsey H. Acerbo, Alvin S. Ominsky, Michael S. Virdi, Amarjit S. Sena, Kotaro Miller, Lisa M. Sumner, D. Rick TI Bone Matrix Quality After Sclerostin Antibody Treatment SO JOURNAL OF BONE AND MINERAL RESEARCH LA English DT Article DE MINERALIZATION; MINERALIZATION KINETICS; BONE MINERAL DENSITY DISTRIBUTION; BACKSCATTER SCANNING ELECTRON MICROSCOPY; FOURIER TRANSFORM INFRARED IMAGING; SCLEROSTIN ANTIBODY; BONE ID MINERALIZATION DENSITY DISTRIBUTION; DEVELOPING TRABECULAR BONE; CANCELLOUS BONE; RAT MODEL; ILIAC CREST; POSTMENOPAUSAL OSTEOPOROSIS; SECONDARY MINERALIZATION; TISSUE STIFFNESS; ALENDRONATE; WOMEN AB Sclerostin antibody (Scl-Ab) is a novel bone-forming agent that is currently undergoing preclinical and clinical testing. Scl-Ab treatment is known to dramatically increase bone mass, but little is known about the quality of the bone formed during treatment. In the current study, global mineralization of bone matrix in rats and nonhuman primates treated with vehicle or Scl-Ab was assayed by backscattered scanning electron microscopy (bSEM) to quantify the bone mineral density distribution (BMDD). Additionally, fluorochrome labeling allowed tissue age-specific measurements to be made in the primate model with Fourier-transform infrared microspectroscopy to determine the kinetics of mineralization, carbonate substitution, crystallinity, and collagen cross-linking. Despite up to 54% increases in the bone volume after Scl-Ab treatment, the mean global mineralization of trabecular and cortical bone was unaffected in both animal models investigated. However, there were two subtle changes in the BMDD after Scl-Ab treatment in the primate trabecular bone, including an increase in the number of pixels with a low mineralization value (Z(5)) and a decrease in the standard deviation of the distribution. Tissue age-specific measurements in the primate model showed that Scl-Ab treatment did not affect the mineral-to-matrix ratio, crystallinity, or collagen cross-linking in the endocortical, intracortical, or trabecular compartments. Scl-Ab treatment was associated with a nonsignificant trend toward accelerated mineralization intracortically and a nearly 10% increase in carbonate substitution for tissue older than 2 weeks in the trabecular compartment (p < 0.001). These findings suggest that Scl-Ab treatment does not negatively impact bone matrix quality. (C) 2014 American Society for Bone and Mineral Research. C1 [Ross, Ryan D.; Edwards, Lindsey H.; Sena, Kotaro; Sumner, D. Rick] Rush Univ, Med Ctr, Dept Anat & Cell Biol, Chicago, IL 60612 USA. [Acerbo, Alvin S.; Miller, Lisa M.] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. [Acerbo, Alvin S.; Miller, Lisa M.] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Ominsky, Michael S.] Amgen Inc, Thousand Oaks, CA 91320 USA. [Virdi, Amarjit S.; Sumner, D. Rick] Rush Univ, Med Ctr, Dept Orthoped Surg, Chicago, IL 60612 USA. RP Sumner, DR (reprint author), Rush Univ, Med Ctr, Dept Anat & Cell Biol, 600 South Paulina,Suite 507, Chicago, IL 60612 USA. EM Rick_Sumner@rush.edu FU Amgen; UCB; Grainger Foundation; US Department of Energy [DE-AC02-98CH10886] FX Funding for the parent studies was provided by Amgen and UCB. Additional support for the present study was from the Grainger Foundation. The electron microscope at the University of Illinois at Chicago's Core Facility was used. The National Synchotron Light Source is supported by the US Department of Energy under contract no. DE-AC02-98CH10886. Micro-CT scanning was performed at the Rush University Medical Center MicroCT/Histology Core. NR 68 TC 22 Z9 22 U1 0 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0884-0431 EI 1523-4681 J9 J BONE MINER RES JI J. Bone Miner. Res. PD JUL PY 2014 VL 29 IS 7 BP 1597 EP 1607 DI 10.1002/jbmr.2188 PG 11 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA AN0AO UT WOS:000340243600010 PM 24470143 ER PT J AU Brooks, AN Reiss, DJ Allard, A Wu, WJ Salvanha, DM Plaisier, CL Chandrasekaran, S Pan, M Kaur, A Baliga, NS AF Brooks, Aaron N. Reiss, David J. Allard, Antoine Wu, Wei-Ju Salvanha, Diego M. Plaisier, Christopher L. Chandrasekaran, Sriram Pan, Min Kaur, Amardeep Baliga, Nitin S. TI A system-level model for the microbial regulatory genome SO MOLECULAR SYSTEMS BIOLOGY LA English DT Article DE EGRIN; gene regulatory networks; systems biology; transcriptional regulation ID ESCHERICHIA-COLI K-12; TRANSCRIPTIONAL REGULATION; DIPEPTIDE PERMEASE; TRANSPORT-SYSTEMS; NETWORK INFERENCE; GENE-EXPRESSION; PROMOTERS; REGULONDB; REGION; SITES AB Microbes can tailor transcriptional responses to diverse environmental challenges despite having streamlined genomes and a limited number of regulators. Here, we present data-driven models that capture the dynamic interplay of the environment and genome-encoded regulatory programs of two types of prokaryotes: Escherichia coli (a bacterium) and Halobacterium salinarum (an archaeon). The models reveal how the genome-wide distributions of cis-acting gene regulatory elements and the conditional influences of transcription factors at each of those elements encode programs for eliciting a wide array of environment-specific responses. We demonstrate how these programs partition transcriptional regulation of genes within regulons and operons to re-organize gene-gene functional associations in each environment. The models capture fitness-relevant co-regulation by different transcriptional control mechanisms acting across the entire genome, to define a generalized, system-level organizing principle for prokaryotic gene regulatory networks that goes well beyond existing paradigms of gene regulation. An online resource (http://egrin2.systemsbiology.net) has been developed to facilitate multiscale exploration of conditional gene regulation in the two prokaryotes. C1 [Brooks, Aaron N.; Reiss, David J.; Wu, Wei-Ju; Salvanha, Diego M.; Plaisier, Christopher L.; Chandrasekaran, Sriram; Pan, Min; Kaur, Amardeep; Baliga, Nitin S.] Inst Syst Biol, Seattle, WA 98109 USA. [Brooks, Aaron N.; Baliga, Nitin S.] Univ Washington, Mol & Cellular Biol Program, Seattle, WA 98195 USA. [Allard, Antoine] Univ Laval, Dept Phys Genie Phys & Opt, Quebec City, PQ, Canada. [Salvanha, Diego M.] Univ Sao Paulo, Dept Comp & Math FFCLRP USP, LabPIB, BR-14049 Ribeirao Preto, Brazil. [Baliga, Nitin S.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Baliga, Nitin S.] Univ Washington, Dept Biol, Seattle, WA 98195 USA. [Baliga, Nitin S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Reiss, DJ (reprint author), Inst Syst Biol, Seattle, WA 98109 USA. EM dreiss@systemsbiology.org; nbaliga@systemsbiology.org RI Allard, Antoine/H-3168-2011; OI Allard, Antoine/0000-0002-8208-9920; Brooks, Aaron/0000-0002-5309-7307; Plaisier, Christohper/0000-0003-3273-5717 FU Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy [DE-FG02-04ER64685, DE-FG02-07ER64327, DE-FG02-08ER64685]; U.S. National Science Foundation [EAGER-MSB-1237267, Interplay-NSF-1330912, ABI-NSF-1262637]; U.S. National Institutes of Health, Center for Systems Biology [2P50GM076547]; University of Luxembourg-ISB partnership; Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF); ORISE-ORAU [DE-AC05-06OR23100]; Sao Paulo Research Foundation (FAPESP) [2012/05392-1, 2011/08104-4] FX This work conducted by ENIGMA was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Additional funding was provided by grants from the U.S. Department of Energy (DE-FG02-04ER64685 to NB, DE-FG02-07ER64327 to NB, DE-FG02-08ER64685 to NB); the U.S. National Science Foundation (EAGER-MSB-1237267 and Interplay-NSF-1330912 to NB and ABI-NSF-1262637 to NB and DJR); the U.S. National Institutes of Health, Center for Systems Biology (2P50GM076547 to NB); and by the University of Luxembourg-ISB partnership. ANB supported by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, and administered by ORISE-ORAU under contract no. DE-AC05-06OR23100. DMS supported by Sao Paulo Research Foundation (FAPESP) grants 2012/05392-1 and 2011/08104-4. We thank Justin Ashworth, Adrian Lopez Garcia de Lomana, Ben Heavner, James Eddy, and Serdar Turkarslan for helpful comments. NR 37 TC 16 Z9 16 U1 1 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-4292 J9 MOL SYST BIOL JI Mol. Syst. Biol. PD JUL PY 2014 VL 10 IS 7 AR 740 DI 10.15252/msb.20145160 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AN0TB UT WOS:000340295800004 PM 25028489 ER PT J AU Chachamis, G Hentschinski, M Martinez, JDM Vera, AS AF Chachamis, G. Hentschinski, M. Madrigal Martinez, J. D. Sabio Vera, A. TI Forward jet production & quantum corrections to the gluon Regge trajectory from Lipatov's high energy effective action SO PHYSICS OF PARTICLES AND NUCLEI LA English DT Article ID QCD EFFECTIVE ACTION; IMPACT FACTORS; VERTEX; APPROXIMATION; SINGULARITY; POMERON AB We review Lipatov's high energy effective action and show that it is a useful computational tool to calculate scattering amplitudes in (quasi)-multi-Regge kinematics. We explain in some detail our recent work where a novel regularization and subtraction procedure has been proposed that allows to extend the use of this effective action beyond tree level. Two examples are calculated at next-to-leading order: forward jet vertices and the gluon Regge trajectory. C1 [Chachamis, G.] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, E-46980 Valencia, Spain. [Hentschinski, M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Madrigal Martinez, J. D.; Sabio Vera, A.] Inst Fis Teor UAM CSIC, E-28049 Madrid, Spain. [Madrigal Martinez, J. D.; Sabio Vera, A.] Univ Autonoma Madrid, E-28049 Madrid, Spain. RP Chachamis, G (reprint author), Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, Parc Cient, E-46980 Valencia, Spain. EM grigorios.chachamis@ific.uv.es; hentsch@bnl.gov; josedaniel.madrigal@uam.es RI Hentschinski, Martin/A-9708-2015; Chachamis, Grigorios/B-3351-2017; OI Hentschinski, Martin/0000-0003-2922-7308; Chachamis, Grigorios/0000-0003-0347-0879; Madrigal, Jose Daniel/0000-0002-2453-0706 FU European Comission [PITN-GA-2010-264564]; Comunidad de Madrid through Proyecto HEPHA-COS [ESP-1473]; MICINN [FPA2010-17747]; German Academic Exchange Service (DAAD); U.S. Department of Energy [DE-AC02-98CH10886]; BNL "Laboratory Directed Research and Development" grant [LDRD 12-034] FX We acknowledge partial support from the European Comission under contract LHCPhe-noNet (PITN-GA-2010-264564), the Comunidad de Madrid through Proyecto HEPHA-COS ESP-1473, and MICINN (FPA2010-17747). M. H. also acknowledges support from the German Academic Exchange Service (DAAD), the U.S. Department of Energy under contract number DE-AC02-98CH10886 and a BNL "Laboratory Directed Research and Development" grant (LDRD 12-034). NR 40 TC 5 Z9 5 U1 0 U2 1 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7796 EI 1531-8559 J9 PHYS PART NUCLEI+ JI Phys. Part. Nuclei PD JUL PY 2014 VL 45 IS 4 BP 788 EP 799 DI 10.1134/S1063779614040030 PG 12 WC Physics, Particles & Fields SC Physics GA AM5JY UT WOS:000339895400012 ER PT J AU Langley, SA Karpen, GH Langley, CH AF Langley, Sasha A. Karpen, Gary H. Langley, Charles H. TI Nucleosomes Shape DNA Polymorphism and Divergence SO PLOS GENETICS LA English DT Article ID SYNONYMOUS CODON USAGE; DROSOPHILA-MELANOGASTER; NATURAL-SELECTION; POSITIONING SEQUENCES; TRANSCRIPTION FACTORS; MOLECULAR EVOLUTION; POPULATION-GENETICS; CHROMATIN-STRUCTURE; EUKARYOTIC GENOME; BASE COMPOSITION AB An estimated 80% of genomic DNA in eukaryotes is packaged as nucleosomes, which, together with the remaining interstitial linker regions, generate higher order chromatin structures [1]. Nucleosome sequences isolated from diverse organisms exhibit similar to 10 bp periodic variations in AA, TT and GC dinucleotide frequencies. These sequence elements generate intrinsically curved DNA and help establish the histone-DNA interface. We investigated an important unanswered question concerning the interplay between chromatin organization and genome evolution: do the DNA sequence preferences inherent to the highly conserved histone core exert detectable natural selection on genomic divergence and polymorphism? To address this hypothesis, we isolated nucleosomal DNA sequences from Drosophila melanogaster embryos and examined the underlying genomic variation within and between species. We found that divergence along the D. melanogaster lineage is periodic across nucleosome regions with base changes following preferred nucleotides, providing new evidence for systematic evolutionary forces in the generation and maintenance of nucleosome-associated dinucleotide periodicities. Further, Single Nucleotide Polymorphism (SNP) frequency spectra show striking periodicities across nucleosomal regions, paralleling divergence patterns. Preferred alleles occur at higher frequencies in natural populations, consistent with a central role for natural selection. These patterns are stronger for nucleosomes in introns than in intergenic regions, suggesting selection is stronger in transcribed regions where nucleosomes undergo more displacement, remodeling and functional modification. In addition, we observe a large-scale (similar to 180 bp) periodic enrichment of AA/TT dinucleotides associated with nucleosome occupancy, while GC dinucleotide frequency peaks in linker regions. Divergence and polymorphism data also support a role for natural selection in the generation and maintenance of these super-nucleosomal patterns. Our results demonstrate that nucleosome-associated sequence periodicities are under selective pressure, implying that structural interactions between nucleosomes and DNA sequence shape sequence evolution, particularly in introns. C1 [Langley, Sasha A.; Karpen, Gary H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Karpen, Gary H.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Langley, Charles H.] Univ Calif Davis, Dept Ecol & Evolut, Davis, CA 95616 USA. RP Langley, SA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM chlangley@ucdavis.edu FU NIH [HG02942, GM066272] FX This research was supported by grants from the NIH (http://www.nih.gov): HG02942 to CHL and GM066272 to GHK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 89 TC 12 Z9 12 U1 3 U2 18 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7390 EI 1553-7404 J9 PLOS GENET JI PLoS Genet. PD JUL PY 2014 VL 10 IS 7 AR e1004457 DI 10.1371/journal.pgen.1004457 PG 15 WC Genetics & Heredity SC Genetics & Heredity GA AM5ME UT WOS:000339902600015 PM 24991813 ER PT J AU Carrillo, JMY Dobrynin, AV AF Carrillo, Jan-Michael Y. Dobrynin, Andrey V. TI Salt Effect on Osmotic Pressure of Polyelectrolyte Solutions: Simulation Study SO POLYMERS LA English DT Article DE polyelectrolytes; polyelectrolyte solutions; osmotic pressure ID MOLECULAR-DYNAMICS SIMULATIONS; COUNTERION CONDENSATION; POOR SOLVENT; COEFFICIENT; DNA; BEHAVIOR; ROD AB We present results of the hybrid Monte Carlo/molecular dynamics simulations of the osmotic pressure of salt solutions of polyelectrolytes. In our simulations, we used a coarse-grained representation of polyelectrolyte chains, counterions and salt ions. During simulation runs, we alternate Monte Carlo and molecular dynamics simulation steps. Monte Carlo steps were used to perform small ion exchange between simulation box containing salt ions (salt reservoir) and simulation box with polyelectrolyte chains, counterions and salt ions (polyelectrolyte solution). This allowed us to model Donnan equilibrium and partitioning of salt and counterions across membrane impermeable to polyelectrolyte chains. Our simulations have shown that the main contribution to the system osmotic pressure is due to salt ions and osmotically active counterions. The fraction of the condensed (osmotically inactive) counterions first increases with decreases in the solution ionic strength then it saturates. The reduced value of the system osmotic coefficient is a universal function of the ratio of the concentration of osmotically active counterions and salt concentration in salt reservoir. Simulation results are in a very good agreement with osmotic pressure measurements in sodium polystyrene sulfonate, DNA, polyacrylic acid, sodium polyanetholesulfonic acid, polyvinylbenzoic acid, and polydiallyldimethylammonium chloride solutions. C1 [Carrillo, Jan-Michael Y.] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Dobrynin, Andrey V.] Univ Connecticut, Inst Mat Sci, Polymer Program, Storrs, CT 06269 USA. [Dobrynin, Andrey V.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. RP Dobrynin, AV (reprint author), Univ Connecticut, Inst Mat Sci, Polymer Program, Storrs, CT 06269 USA. EM carrillojy@ornl.gov; avd@ims.uconn.edu RI Carrillo, Jan-Michael/K-7170-2013; OI Carrillo, Jan-Michael/0000-0001-8774-697X; Dobrynin, Andrey/0000-0002-6484-7409 FU National Science Foundation [DMR-1004576]; Office of Advanced Scientific Computing Research; U.S. Department of Energy [DE-AC05-00OR22725] FX The authors are grateful to the National Science Foundation for the financial support under the Grant DMR-1004576. Jan-Michael Y. Carrillo's contribution was sponsored by the Office of Advanced Scientific Computing Research; U.S. Department of Energy and performed at the Oak Ridge National Laboratory, which is managed by University of Tennessee-Battelle, LLC under Contract No. DE-AC05-00OR22725. NR 46 TC 6 Z9 6 U1 9 U2 52 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2073-4360 J9 POLYMERS-BASEL JI Polymers PD JUL PY 2014 VL 6 IS 7 BP 1897 EP 1913 DI 10.3390/polym6071897 PG 17 WC Polymer Science SC Polymer Science GA AM6QL UT WOS:000339989600002 ER PT J AU Park, JH Risset, ON Shiddiq, M Peprah, MK Knowles, ES Andrus, MJ Beedle, CC Ehlers, G Podlesnyak, A Cizmar, E Nagler, SE Hill, S Talham, DR Meisel, MW AF Park, J. -H. Risset, O. N. Shiddiq, M. Peprah, M. K. Knowles, E. S. Andrus, M. J. Beedle, C. C. Ehlers, G. Podlesnyak, A. Cizmar, E. Nagler, S. E. Hill, S. Talham, D. R. Meisel, M. W. TI Magnetic Response of Mn(III)F(salen) at Low Temperatures SO ACTA PHYSICA POLONICA A LA English DT Article; Proceedings Paper CT 15th Czech and Slovak Conference on Magnetism (CSMAG) CY JUN 17-21, 2013 CL Kosice, SLOVAKIA SP P J Safarik Univ, Fac Sci, Slovak Acad Sci, Inst Expt Phys, Slovak Phys Soc, Union Czech Mathematicians & Physicists, Czech Phys Soc, Quantum Design, LOT Oriel Grp Europe, Cryogen Ltd, Cryosoft s r o, ChromSpec Slovakia s r o, SEVT a s, Mineralne vody a s, Tech Univ, Slovak Magnet Soc ID HALDANE-GAP; CHAIN AB The low temperature magnetic response of Mn(III)F(salen), salen = H14C16N2O2, an S = 2 linear-chain system, has been studied. Using a single crystal with the field applied perpendicular to the chain direction, torque magnetometry, down to 20 mK and up to 18 T, revealed a feature at 3.8 T when T <= 400 mK. ESR (approximate to 200 GHz) studies, using single crystals at 4 K and in 5 T, have not detected any signal. In 10 mT, the temperature dependence of the susceptibility of powder-like samples can be reasonably fit when J/k(B) = 50 K and g = 2. In addition, these data are unchanged for P <= 1.0 GPa. Using a randomly-oriented, powder-like, deuterated (12 of 14 H replaced by D) sample of 2.2 g at 270 mK, neutron scattering data, acquired with the Cold Neutron Chopper Spectrometer at the Spallation Neutron Source, show several well defined excitations that may be from the zero-field energy levels of antiferromagnetic S = 2 spins with g = 2, J/k(B) = 50 K, D/k(B) = 2.8 K, and E/k(B) = 0.5 K. C1 [Park, J. -H.; Beedle, C. C.] Florida State Univ, Natl High Magnet Field Lab NHMFL, Tallahassee, FL 32310 USA. [Risset, O. N.; Andrus, M. J.; Talham, D. R.] Univ Florida, Dept Chem, Gainesville, FL 32611 USA. [Shiddiq, M.; Hill, S.] Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA. [Shiddiq, M.; Hill, S.] Florida State Univ, NHMFL, Tallahassee, FL 32310 USA. [Peprah, M. K.; Knowles, E. S.; Meisel, M. W.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Peprah, M. K.; Knowles, E. S.; Meisel, M. W.] Univ Florida, NHMFL, Gainesville, FL 32611 USA. [Ehlers, G.; Podlesnyak, A.; Nagler, S. E.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Cizmar, E.; Meisel, M. W.] Safarik Univ, Inst Phys, Fac Sci, Kosice 04154, Slovakia. RP Meisel, MW (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. EM meisel@phys.ufl.edu RI Hill, Stephen/J-5383-2014; Nagler, Stephen/E-4908-2010; Instrument, CNCS/B-4599-2012; Ehlers, Georg/B-5412-2008; Podlesnyak, Andrey/A-5593-2013; Cizmar, Erik/R-9171-2016 OI Hill, Stephen/0000-0001-6742-3620; Nagler, Stephen/0000-0002-7234-2339; Ehlers, Georg/0000-0003-3513-508X; Podlesnyak, Andrey/0000-0001-9366-6319; Cizmar, Erik/0000-0001-6289-110X NR 10 TC 1 Z9 1 U1 1 U2 8 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4246 EI 1898-794X J9 ACTA PHYS POL A JI Acta Phys. Pol. A PD JUL PY 2014 VL 126 IS 1 BP 228 EP 229 PG 2 WC Physics, Multidisciplinary SC Physics GA AM4NX UT WOS:000339833100110 ER PT J AU Maskova, S Danis, S Llobet, A Nakotte, H Havela, L AF Maskova, S. Danis, S. Llobet, A. Nakotte, H. Havela, L. TI Large Magnetocaloric Effect in Nd2Ni2In SO ACTA PHYSICA POLONICA A LA English DT Article; Proceedings Paper CT 15th Czech and Slovak Conference on Magnetism (CSMAG) CY JUN 17-21, 2013 CL Kosice, SLOVAKIA SP P J Safarik Univ, Fac Sci, Slovak Acad Sci, Inst Expt Phys, Slovak Phys Soc, Union Czech Mathematicians & Physicists, Czech Phys Soc, Quantum Design, LOT Oriel Grp Europe, Cryogen Ltd, Cryosoft s r o, ChromSpec Slovakia s r o, SEVT a s, Mineralne vody a s, Tech Univ, Slovak Magnet Soc AB Nd2Ni2 In is an antiferromagnet (T-N = 8 K) with crystal structure equivalent to the Shastry-Sutherland lattice, possibly leading to the magnetic frustration. The AF coupling with moments in the basal plane can be driven by weak magnetic fields (< 0.2 T) into the c-axis ferromagnet. The situation leads to large changes of magnetic entropy in fields below 1 T, which makes Nd2Ni2 In a candidate for magnetocaloric applications. The entropy change is 9.6 J/(kg K) in fields of 1 T. C1 [Maskova, S.; Danis, S.; Havela, L.] Charles Univ Prague, Dept Condensed Matter Phys, Prague 12116 2, Czech Republic. [Llobet, A.] Los Alamos Natl Lab, LANSCE, Los Alamos, NM 87545 USA. [Nakotte, H.] New Mexico State Univ, Las Cruces, NM 88003 USA. RP Maskova, S (reprint author), Charles Univ Prague, Dept Condensed Matter Phys, Ke Karlovu 5, Prague 12116 2, Czech Republic. EM maskova@mag.mff.cuni.cz RI Llobet, Anna/B-1672-2010 NR 4 TC 3 Z9 3 U1 2 U2 9 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4246 EI 1898-794X J9 ACTA PHYS POL A JI Acta Phys. Pol. A PD JUL PY 2014 VL 126 IS 1 BP 282 EP 283 PG 2 WC Physics, Multidisciplinary SC Physics GA AM4NX UT WOS:000339833100137 ER PT J AU Acar, H Cinar, S Thunga, M Kessler, MR Hashemi, N Montazami, R AF Acar, Handan Cinar, Simge Thunga, Mahendra Kessler, Michael R. Hashemi, Nastaran Montazami, Reza TI Study of Physically Transient Insulating Materials as a Potential Platform for Transient Electronics and Bioelectronics SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID FIELD-EFFECT TRANSISTORS; MECHANICAL-PROPERTIES; POLY(VINYL ALCOHOL); GLASS-TRANSITION; SUGAR MIXTURES; SILK FIBROIN; BLEND FILMS; PERFORMANCE; COMPOSITES; MAGNESIUM AB Controlled degradation and transiency of materials is of significant importance in the design and fabrication of degradable and transient biomedical and electronic devices and platforms. Here, the synthesis of programmable biodegradable and transient insulating polymer films is reported, which have sufficient physical and chemical properties to be used as substrates for the construction of transient electronics. The composite structure can be used as a means to control the dissolution and transiency rate of the polymer composite film. Experimental and computational studies demonstrate that the addition of gelatin or sucrose to a PVA polymer matrix can be used as a means to program and either slow or enhance the transiency of the composite. The dissolution of the polymer composites are fitted with inverse exponential functions of different time constants; the lower time constants are an indication of faster transiency of the polymer composite. The addition of gelatin results in larger time constants, whereas the addition of sucrose generally results in smaller time constants. C1 [Acar, Handan; Hashemi, Nastaran; Montazami, Reza] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. [Cinar, Simge] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Thunga, Mahendra] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Thunga, Mahendra] US DOE, Ames Lab, Ames, IA 50011 USA. [Kessler, Michael R.] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. RP Acar, H (reprint author), Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. EM reza@iastate.edu RI Kessler, Michael/C-3153-2008; Hashemi, Nastaran/A-7645-2012; OI Kessler, Michael/0000-0001-8436-3447; Hashemi, Nastaran/0000-0001-8921-7588; Cinar, Simge/0000-0003-3098-2888; Montazami, Reza/0000-0002-8827-0026 FU Iowa State University; Health Research Initiative and Presidential Initiative for Interdisciplinary Research at Iowa State University FX This material is based upon work supported in part by the Iowa State University. A portion of this work was supported by a funding from Health Research Initiative and Presidential Initiative for Interdisciplinary Research at Iowa State University. Authors would like to thank Professor Mufit Akinc for his support of this work. NR 64 TC 29 Z9 29 U1 13 U2 54 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JUL PY 2014 VL 24 IS 26 BP 4135 EP 4143 DI 10.1002/adfm.201304186 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AM0VK UT WOS:000339565300014 ER PT J AU Wullschleger, SD Epstein, HE Box, EO Euskirchen, ES Goswami, S Iversen, CM Kattge, J Norby, RJ van Bodegom, PM Xu, XF AF Wullschleger, Stan D. Epstein, Howard E. Box, Elgene O. Euskirchen, Eugenie S. Goswami, Santonu Iversen, Colleen M. Kattge, Jens Norby, Richard J. van Bodegom, Peter M. Xu, Xiaofeng TI Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems SO ANNALS OF BOTANY LA English DT Review DE Plant functional types; PFT; Earth system model; ESM; Arctic tundra; biogeography; dynamic vegetation models; global change; plant traits; high-latitude ecosystem ID COMPARISON PROJECT WETCHIMP; GLOBAL WETLAND EXTENT; FOREST-TUNDRA ECOTONE; CLIMATE-CHANGE; CARBON-CYCLE; ARCTIC ECOSYSTEMS; TERRESTRIAL BIOSPHERE; PERMAFROST THAW; BOREAL FOREST; BIOGEOCHEMISTRY MODEL AB Earth system models describe the physical, chemical and biological processes that govern our global climate. While it is difficult to single out one component as being more important than another in these sophisticated models, terrestrial vegetation is a critical player in the biogeochemical and biophysical dynamics of the Earth system. There is much debate, however, as to how plant diversity and function should be represented in these models. Plant functional types (PFTs) have been adopted by modellers to represent broad groupings of plant species that share similar characteristics (e.g. growth form) and roles (e.g. photosynthetic pathway) in ecosystem function. In this review, the PFT concept is traced from its origin in the early 1800s to its current use in regional and global dynamic vegetation models (DVMs). Special attention is given to the representation and parameterization of PFTs and to validation and benchmarking of predicted patterns of vegetation distribution in high-latitude ecosystems. These ecosystems are sensitive to changing climate and thus provide a useful test case for model-based simulations of past, current and future distribution of vegetation. Models that incorporate the PFT concept predict many of the emerging patterns of vegetation change in tundra and boreal forests, given known processes of tree mortality, treeline migration and shrub expansion. However, representation of above- and especially below-ground traits for specific PFTs continues to be problematic. Potential solutions include developing trait databases and replacing fixed parameters for PFTs with formulations based on trait co-variance and empirical trait-environment relationships. Surprisingly, despite being important to land-atmosphere interactions of carbon, water and energy, PFTs such as moss and lichen are largely absent from DVMs. Close collaboration among those involved in modelling with the disciplines of taxonomy, biogeography, ecology and remote sensing will be required if we are to overcome these and other shortcomings. C1 [Wullschleger, Stan D.; Goswami, Santonu; Iversen, Colleen M.; Norby, Richard J.; Xu, Xiaofeng] Oak Ridge Natl Lab, Div Environm Sci, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Epstein, Howard E.] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA. [Box, Elgene O.] Univ Georgia, Dept Geog, Athens, GA 30602 USA. [Euskirchen, Eugenie S.] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK 99775 USA. [Kattge, Jens] Max Planck Inst Biogeochem, D-07745 Jena, Germany. [van Bodegom, Peter M.] Vrije Univ Amsterdam, Dept Ecol Sci, Amsterdam, Netherlands. RP Wullschleger, SD (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Climate Change Sci Inst, POB 2008, Oak Ridge, TN 37831 USA. EM wullschlegsd@ornl.gov RI Norby, Richard/C-1773-2012; van Bodegom, Peter/N-8150-2015; Xu, Xiaofeng/B-2391-2008; Kattge, Jens/J-8283-2016; Wullschleger, Stan/B-8297-2012 OI Norby, Richard/0000-0002-0238-9828; van Bodegom, Peter/0000-0003-0771-4500; Xu, Xiaofeng/0000-0002-6553-6514; Kattge, Jens/0000-0002-1022-8469; Wullschleger, Stan/0000-0002-9869-0446 FU US Department of Energy, Office of Science, Biological and Environmental Research Program; US Department of Energy [DE-AC05-00OR22725]; Office of Biological and Environmental Research in the DOE Office of Science FX This research was sponsored by the US Department of Energy, Office of Science, Biological and Environmental Research Program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. The Next-Generation Ecosystem Experiments (NGEE Arctic) project is supported by the Office of Biological and Environmental Research in the DOE Office of Science. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a non-exclusive, paid-up, irrevocable, world-wide licence to publish or reproduce the published form of this manuscript, or allow others to do so, for US Government purposes. NR 197 TC 38 Z9 39 U1 23 U2 179 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-7364 EI 1095-8290 J9 ANN BOT-LONDON JI Ann. Bot. PD JUL PY 2014 VL 114 IS 1 BP 1 EP 16 DI 10.1093/aob/mcu077 PG 16 WC Plant Sciences SC Plant Sciences GA AM4FT UT WOS:000339809600001 PM 24793697 ER PT J AU Sirova, D Santrucek, J Adamec, L Barta, J Borovec, J Pech, J Owens, SM Santruckova, H Schaufele, R Storchova, H Vrba, J AF Sirova, Dagmara Santrucek, Jiri Adamec, Lubomir Barta, Jiri Borovec, Jakub Pech, Jiri Owens, Sarah M. Santruckova, Hana Schaeufele, Rudi Storchova, Helena Vrba, Jaroslav TI Dinitrogen fixation associated with shoots of aquatic carnivorous plants: is it ecologically important? SO ANNALS OF BOTANY LA English DT Article DE Aldrovanda vesiculosa; aquatic carnivorous plants; Utricularia vulgaris; U; australis; U; intermedia; U; reflexa; daily nitrogen gain; N nutrition; N-15(2) labelling; nitrogen fixation; periphyton; traps ID NORTHERN PITCHER PLANT; NITROGEN-FIXATION; SARRACENIA-PURPUREA; UTRICULARIA-AUSTRALIS; ALDROVANDA-VESICULOSA; TRAPS; COMMUNITY; GROWTH; CARBON; LENTIBULARIACEAE AB Rootless carnivorous plants of the genus Utricularia are important components of many standing waters worldwide, as well as suitable model organisms for studying plant-microbe interactions. In this study, an investigation was made of the importance of microbial dinitrogen (N-2) fixation in the N acquisition of four aquatic Utricularia species and another aquatic carnivorous plant, Aldrovanda vesiculosa. 16S rRNA amplicon sequencing was used to assess the presence of micro-organisms with known ability to fix N-2. Next-generation sequencing provided information on the expression of N-2 fixation-associated genes. N-2 fixation rates were measured following N-15(2)-labelling and were used to calculate the plant assimilation rate of microbially fixed N-2. Utricularia traps were confirmed as primary sites of N-2 fixation, with up to 16 % of the plant-associated microbial community consisting of bacteria capable of fixing N-2. Of these, rhizobia were the most abundant group. Nitrogen fixation rates increased with increasing shoot age, but never exceeded 1 center dot 3 mu mol N g(-1) d. mass d(-1). Plant assimilation rates of fixed N-2 were detectable and significant, but this fraction formed less than 1 % of daily plant N gain. Although trap fluid provides conditions favourable for microbial N-2 fixation, levels of nif gene transcription comprised < 0 center dot 01 % of the total prokaryotic transcripts. It is hypothesized that the reason for limited N-2 fixation in aquatic Utricularia, despite the large potential capacity, is the high concentration of NH4-N (2 center dot 0-4 center dot 3 mg L-1) in the trap fluid. Resulting from fast turnover of organic detritus, it probably inhibits N-2 fixation in most of the microorganisms present. Nitrogen fixation is not expected to contribute significantly to N nutrition of aquatic carnivorous plants under their typical growth conditions; however, on an annual basis the plant-microbe system can supply nitrogen in the order of hundreds of mg m(-2) into the nutrient-limited littoral zone, where it may thus represent an important N source. C1 [Sirova, Dagmara; Santrucek, Jiri; Barta, Jiri; Santruckova, Hana; Vrba, Jaroslav] Univ South Bohemia, Fac Sci, Dept Expt Plant Biol, Dept Ecosyst Biol, CZ-37005 Ceske Budejovice, Czech Republic. [Santrucek, Jiri] Biol Ctr AS CR, Inst Plant Mol Biol, CZ-37005 Ceske Budejovice, Czech Republic. [Adamec, Lubomir] Inst Bot AS CR, Sect Plant Ecol, CZ-37982 Trebon, Czech Republic. [Borovec, Jakub; Vrba, Jaroslav] Biol Ctr AS CR, Inst Hydrobiol, CZ-37005 Ceske Budejovice, Czech Republic. [Pech, Jiri] Univ South Bohemia, Fac Sci, Inst Appl Informat, CZ-37005 Ceske Budejovice, Czech Republic. [Owens, Sarah M.] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60439 USA. [Owens, Sarah M.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Schaeufele, Rudi] Tech Univ Munich, Dept Grassland Study, Freising Weihenstephan, Germany. [Storchova, Helena] Inst Expt Bot AS CR, CZ-16502 Prague 6, Lysolaje, Czech Republic. RP Sirova, D (reprint author), Univ South Bohemia, Fac Sci, Dept Expt Plant Biol, Dept Ecosyst Biol, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic. EM dagmara_sirova@hotmail.com RI Vrba, Jaroslav/M-3780-2013; Storchova, Helena/F-4723-2010; Adamec, Lubomir/G-9970-2011; Santrucek, Jiri/G-9776-2014; Borovec, Jakub/F-9637-2014; Sirova, Dagmar/F-8239-2014 OI Storchova, Helena/0000-0001-6701-179X; Santrucek, Jiri/0000-0003-0430-5795; FU Czech Scientific Foundation [P504/11/0783]; programme 'Projects of Large Infrastructure for Research, Development, and Innovations' [LM2010005]; [RVO 67985939] FX This study was supported by the Czech Scientific Foundation project No. P504/11/0783 and partly by the long-term research development project No. RVO 67985939 (L.A.). Sincere thanks are due to Brian G. McMillan for correction of the English text. Special thanks are due to two anonymous referees for valuable comments that helped to improve the manuscript. Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum, provided under the programme 'Projects of Large Infrastructure for Research, Development, and Innovations' (LM2010005), is greatly acknowledged. We are grateful to the IGSB-NGS Sequencing Core at Argonne National Laboratory for preparing the metatranscriptomic libraries and completing the sequencing. NR 55 TC 6 Z9 6 U1 11 U2 63 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-7364 EI 1095-8290 J9 ANN BOT-LONDON JI Ann. Bot. PD JUL PY 2014 VL 114 IS 1 BP 125 EP 133 DI 10.1093/aob/mcu067 PG 9 WC Plant Sciences SC Plant Sciences GA AM4FT UT WOS:000339809600009 PM 24817095 ER PT J AU Welna, M Kudrawiec, R Nabetani, Y Walukiewicz, W AF Welna, Monika Kudrawiec, Robert Nabetani, Yu Walukiewicz, Wladyslaw TI Band anticrossing in ZnOSe highly mismatched alloy SO APPLIED PHYSICS EXPRESS LA English DT Article ID MODULATION SPECTROSCOPY; TEMPERATURE-DEPENDENCE; OPTICAL-PROPERTIES; GAP; ZNSE1-XOX; GAAS AB ZnOxSe1-x layers with x <= 1.35% were studied by photoreflectance at 80 K. Careful analysis of the PR spectra allowed the identification of the optical transitions from the valence band to the E- and E+ subbands originating from the band anticrossing interaction between the resonant oxygen level and the conduction band of the ZnSe host. In addition, it was possible to resolve a strain-induced splitting of the valence band into the heavy-and light-hole subbands. The strain changes from compressive to tensile with increasing oxygen concentration for these ZnOxSe1-x layers grown on a GaAs substrate. (C) 2014 The Japan Society of Applied Physics C1 [Welna, Monika; Kudrawiec, Robert] Wroclaw Univ Technol, Inst Phys, PL-50370 Wroclaw, Poland. [Welna, Monika; Kudrawiec, Robert; Walukiewicz, Wladyslaw] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Nabetani, Yu] Univ Yamanashi, Dept Elect Engn, Kofu, Yamanashi 4008511, Japan. RP Kudrawiec, R (reprint author), Wroclaw Univ Technol, Inst Phys, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland. EM robert.kudrawiec@pwr.wroc.pl FU National Science Center (SONATA BIS) [2012/07/E/ST3/01742]; ETIUDA [2013/08/T/ST3/00400]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was performed with a grant from the National Science Center (SONATA BIS No. 2012/07/E/ST3/01742 and ETIUDA No. 2013/08/T/ST3/00400). Research at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 28 TC 10 Z9 10 U1 1 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1882-0778 EI 1882-0786 J9 APPL PHYS EXPRESS JI Appl. Phys. Express PD JUL PY 2014 VL 7 IS 7 AR 071202 DI 10.7567/APEX.7.071202 PG 3 WC Physics, Applied SC Physics GA AM5VW UT WOS:000339930100007 ER PT J AU Boggs, MA Mason, H Arai, Y Powell, BA Kersting, AB Zavarin, M AF Boggs, Mark A. Mason, Harris Arai, Yuji Powell, Brian A. Kersting, Annie B. Zavarin, Mavrik TI Nuclear Magnetic Resonance Spectroscopy of Aqueous Plutonium(IV) Desferrioxamine B Complexes SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Environmental chemistry; Plutonium; Siderophores; Biomass; NMR spectroscopy ID ABSORPTION FINE-STRUCTURE; ACTINIDE SPECIATION; CRYSTAL-STRUCTURE; REDOX BEHAVIOR; NATURAL-WATERS; METAL-IONS; OXIDE; NMR; SIDEROPHORES; GROUNDWATER AB Two aqueous Pu-IV-desferrioxamine B (DFOB) complexes were characterized by one-and two-dimensional NMR techniques and an unexpected dimeric (PuDFOB)-D-IV-di-mu-(O/ OH)-(PuDFOB)-D-IV complex was identified. Both "Curie" and "anti-Curie" behavior were observed for the dimeric species, yet the monomeric species only showed "anti-Curie" behavior. Diffusion ordered spectroscopy experiments showed an increase in particle size for the two species, which is indicative of a dimeric species. Bond lengths and coordination numbers estimated from X-ray absorption spectroscopy are consistent with the proposed structures. C1 [Boggs, Mark A.; Mason, Harris; Kersting, Annie B.; Zavarin, Mavrik] Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Livermore, CA 94551 USA. [Arai, Yuji] Univ Illinois, Dept Nat Resources & Environm Sci, Urbana, IL 61801 USA. [Powell, Brian A.] Clemson Univ, Dept Environm Engn & Earth Sci, Clemson, SC 29631 USA. RP Boggs, MA (reprint author), Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Livermore, CA 94551 USA. EM Boggs6@llnl.gov RI Powell, Brian /C-7640-2011; Mason, Harris/F-7194-2011 OI Powell, Brian /0000-0003-0423-0180; Mason, Harris/0000-0002-1840-0550 FU U.S. Department of Energy's Office of Biological and Environmental Research [DE-AC52-07NA27344]; DOE Office of Biological and Environmental Research; National Institutes of Health (NIH), National Institute of General Medical Sciences (NIGMS) [P41GM103393] FX This work was supported by the Subsurface Biogeochemical Research Program of the U.S. Department of Energy's Office of Biological and Environmental Research prepared by Lawrence Livermore National Laboratory (LLNL) under contract number DE-AC52-07NA27344. Sample preparation and collection of XAS data would not have been possible without the help of Amy Hixon and Shanna Estes from the Department of Environmental Engineering and Earth Sciences at Clemson University. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health (NIH), National Institute of General Medical Sciences (NIGMS) (including P41GM103393). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS, NCRR or NIH. NR 56 TC 2 Z9 2 U1 2 U2 25 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1434-1948 EI 1099-0682 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD JUL PY 2014 IS 21 BP 3312 EP 3321 DI 10.1002/ejic.201402105 PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AL9SO UT WOS:000339481400004 ER PT J AU Mante, OD Babu, SP Amidon, TE AF Mante, Ofei D. Babu, Suresh P. Amidon, Thomas E. TI A comprehensive study on relating cell-wall components of lignocellulosic biomass to oxygenated species formed during pyrolysis SO JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS LA English DT Article DE Biomass components; Cellulose; Hemicellulose; Lignin; Fast pyrolysis: bio-oil; Oxygenated compounds ID FLUIDIZED-BED REACTOR; BIO-OIL; THERMAL-DEGRADATION; SUGARCANE-BAGASSE; LIGNIN PYROLYSIS; WOODY BIOMASS; TORREFACTION; CELLULOSE; PRODUCTS; HEMICELLULOSE AB This study was conducted to fundamentally understand the relationship between biomass composition and key pyrolysis oxygenates that affect the quality of bio-oil. Unlike many studies where surrogates are used to probe the effect of biomass characteristics on pyrolysis; in this investigation, we used well-characterized biomass feedstocks with different natural varying levels of plant cell-wall components. With this approach, possible interaction effects of the biomass components which are not revealed in model studies are captured. Selected oxygenates from the pyrolysis of debarked sugar maple, poplar, willow, switchgrass, and hot-water extracted sugar maple were correlated with their composition (namely, glucan, xylan, arabinan, mannan, acetyl, lignin, extractives and ash). The pyrolysis was conducted at 550 degrees C using a bench scale pyroprobe-GC/MS and Pearson correlation coefficients were used to statistically analyze the data. Quantitatively, relationships between the biomass components and oxygenated species such as acetic acid, levoglucosan, hydroxyacetone, methyl pyruvate, furfural, 2-furanone, 5-hydroxymethyl furfural, 4-allyl-2,6-dimethoxyphenol, coniferyl alcohol, and 2-methoxy-4-vinylphenol were established. Statistically significant correlation between the acetyl content and acetic acid yield indicate that deacetylation of the lignocellulosic cell wall could help in reducing the acidity of bio-oils. Likewise, other strong correlations suggest that carbonyls could be reduced by lowering the hemicellulose fraction. The data also indicated possible interaction between lignin and polysaccharides on the formation of specific oxygenates. For example, it was found that feedstocks with high lignin content tend to produce high yields of hydroxyacetaldehyde. Similarly, feedstocks with high glucan fraction yield more phenolic aldehydes and ketones. Overall, it can be inferred from the results that both genomic science and pretreatment could be used as tools to modify the heterogeneity of lignocellulosics to reduce the complexity of biomass pyrolysis and improve prospects for producing better quality bio-oils. (C) 2014 Elsevier B.V. All rights reserved. C1 [Mante, Ofei D.; Babu, Suresh P.] Brookhaven Natl Lab, Dept Sustainable Energy Technol, Upton, NY 11973 USA. [Amidon, Thomas E.] SUNY Coll Environm Sci & Forestry, Dept Paper & Bioproc Engn, Syracuse, NY 13210 USA. RP Mante, OD (reprint author), Brookhaven Natl Lab, Dept Sustainable Energy Technol, Upton, NY 11973 USA. EM nmante@bnl.gov RI Mante, Ofei/E-8513-2014 OI Mante, Ofei/0000-0002-0960-2943 FU BNL Laboratory-Directed Research and Development Program, LDRD Project [12-024] FX The authors acknowledge funding support from the BNL Laboratory-Directed Research and Development Program, LDRD Project #12-024. Dr. Tim Volk of The State University of New York College of Environmental Science and Forestry (SUNY-ESF) is acknowledged for supplying biomass samples and Mr. Christopher Wood (SUNY-ESF) for performing the HWE experiments. The authors would also like to thank Ms. Rebecca Trojanowski of BNL for preparing the various biomass samples for analysis and the experiment. NR 66 TC 6 Z9 6 U1 2 U2 51 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-2370 EI 1873-250X J9 J ANAL APPL PYROL JI J. Anal. Appl. Pyrolysis PD JUL PY 2014 VL 108 BP 56 EP 67 DI 10.1016/j.jaap.2014.05.016 PG 12 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA AM1IF UT WOS:000339598900008 ER PT J AU Borde, A Palanque-Delabrouille, N Rossi, G Viel, M Bolton, JS Yeche, C LeGoff, JM Rich, J AF Borde, Arnaud Palanque-Delabrouille, Nathalie Rossi, Graziano Viel, Matteo Bolton, James S. Yeche, Christophe LeGoff, Jean-Marc Rich, Jim TI New approach for precise computation of Lyman-alpha forest power spectrum with hydrodynamical simulations SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE cosmological simulations; Lyman alpha forest; cosmological parameters from LSS; power spectrum ID DIGITAL SKY SURVEY; OSCILLATION SPECTROSCOPIC SURVEY; MICROWAVE BACKGROUND ANISOTROPIES; COLUMN DENSITY DISTRIBUTION; SUPERNOVA LEGACY SURVEY; QSO ABSORPTION-SPECTRA; 9TH DATA RELEASE; INTERGALACTIC MEDIUM; SDSS-III; FLUX DISTRIBUTION AB Current experiments are providing measurements of the flux power spectrum from the Lyman-alpha forests observed in quasar spectra with unprecedented accuracy. Their interpretation in terms of cosmological constraints requires specific simulations of at least equivalent precision. In this paper, we present a suite of cosmological N-body simulations with cold dark matter and baryons, specifically aiming at modeling the low-density regions of the inter-galactic medium as probed by the Lyman-a forests at high redshift. The simulations were run using the GADGET-3 code and were designed to match the requirements imposed by the quality of the current SDSS-III/BOSS or forthcoming SDSS-IV/eBOSS data. They are made using either 2 x 768(3) similar or equal to 1 billion or 2 x 192(3) similar or equal to 14 million particles, spanning volumes ranging from (25 Mpc h(-1))(3) for high-resolution simulations to (100 Mpc h(-1))(3) for large-volume ones. Using a splicing technique, the resolution is further enhanced to reach the equivalent of simulations with 2 x 3072(3) similar or equal to 58 billion particles in a (100 Mpc h(-1))(3) box size, i.e. a mean mass per gas particle of 1.2 x 10(5)M(circle dot)h(-1). We show that the resulting power spectrum is accurate at the 2% level over the full range from a few Mpc to several tens of Mpc. We explore the effect on the one-dimensional transmitted-flux power spectrum of four cosmological parameters (n(s), sigma(8), Omega(m), and H-0) and two astrophysical parameters (T-0 and gamma) that are related to the heating rate of the intergalactic medium. By varying the input parameters around a central model chosen to be in agreement with the latest Planck results, we built a grid of simulations that allows the study of the impact on the flux power spectrum of these six relevant parameters. We improve upon previous studies by not only measuring the effect of each parameter individually, but also probing the impact of the simultaneous variation of each pair of parameters. We thus provide a full secondorder expansion, including cross-terms, around our central model. We check the validity of the second-order expansion with independent simulations obtained either with different cosmological parameters or different seeds. Finally, a comparison to the one-dimensional Lyman-alpha forest power spectrum obtained with BOSS by [1] shows an excellent agreement. C1 [Borde, Arnaud; Palanque-Delabrouille, Nathalie; Rossi, Graziano; Yeche, Christophe; LeGoff, Jean-Marc; Rich, Jim] CEA, Ctr Saclay, IRFU SPP, F-91191 Gif Sur Yvette, France. [Palanque-Delabrouille, Nathalie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Viel, Matteo] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Viel, Matteo] INFN Natl Inst Nucl Phys, I-34127 Trieste, Italy. [Bolton, James S.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Rossi, Graziano] Sejong Univ, Dept Astron & Space Sci, Seoul 143747, South Korea. RP Borde, A (reprint author), CEA, Ctr Saclay, IRFU SPP, F-91191 Gif Sur Yvette, France. EM arnaud.borde@cea.fr; nathalie.palanque-delabrouille@cea.fr; graziano@kias.re.kr; matteoviel@gmail.com; ames.bolton@nottingham.ac.uk; christophe.yeche@cea.fr; jean-marc.le-goff@cea.fr; james.rich@cea.fr OI Viel, Matteo/0000-0002-2642-5707 FU Agence Nationale de la Recherche [ANR-11-JS04-011-01]; ERC-StG "CosmoIGM"; Royal Society FX A.B., N.P.-D., G.R. and Ch.Y. acknowledge support from grant ANR-11-JS04-011-01 of Agence Nationale de la Recherche.; M.V. is supported by ERC-StG "CosmoIGM".; J.S.B. acknowledges the support of a Royal Society University Research Fellowship. NR 78 TC 15 Z9 15 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD JUL PY 2014 IS 7 AR 005 DI 10.1088/1475-7516/2014/07/005 PG 33 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AM4DL UT WOS:000339802700006 ER PT J AU Carrasco, JJM Foreman, S Green, D Senatore, L AF Carrasco, John Joseph M. Foreman, Simon Green, Daniel Senatore, Leonardo TI The 2-loop matter power spectrum and the IR-safe integrand SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE power spectrum; cosmological perturbation theory ID COSMOLOGICAL PERTURBATION-THEORY AB Large scale structure surveys are likely the next leading probe of cosmological information. It is therefore crucial to reliably predict their observables. The Effective Field Theory of Large Scale Structures (EFTofLSS) provides a manifestly convergent perturbation theory for the weakly non-linear regime, where dark matter correlation functions are computed in an expansion of the wavenumber k over the wavenumber associated to the non-linear scale k(NL). To push the predictions to higher wavenumbers, it is necessary to compute the 2-loop matter power spectrum. For equal-time correlators, exactly as with standard perturturbation theory, there are IR divergences present in each diagram that cancel completely in the final result. We develop a method by which all 2-loop diagrams are computed as one integral, with an integrand that is manifestly free of any IR divergences. This allows us to compute the 2-loop power spectra in a reliable way that is much less numerically challenging than standard techniques. We apply our method to scaling universes where the linear power spectrum is a single power law of k, and where IR divergences can particularly easily interfere with accurate evaluation of loop corrections if not handled carefully. We show that our results are independent of IR cutoff and, after renormalization, of the UV cutoff, and comment how the method presented here naturally generalizes to higher loops. C1 [Carrasco, John Joseph M.; Foreman, Simon; Green, Daniel; Senatore, Leonardo] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94306 USA. [Carrasco, John Joseph M.; Foreman, Simon; Green, Daniel; Senatore, Leonardo] Stanford Univ, Dept Phys, Stanford, CA 94306 USA. [Foreman, Simon; Green, Daniel; Senatore, Leonardo] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Foreman, Simon; Green, Daniel; Senatore, Leonardo] SLAC, Menlo Pk, CA 94025 USA. [Senatore, Leonardo] CERN, Div Theory, CH-1211 Geneva 23, Switzerland. RP Carrasco, JJM (reprint author), Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94306 USA. EM jjmc@stanford.edu; sfore@stanford.edu; drgreen@stanford.edu; senatore@stanford.edu FU Stanford Institute for Theoretical Physics; NSF [PHY-0756174, PHY-1068380]; John Templeton Foundation; Natural Sciences and Engineering Research Council of Canada; Stanford ITP; U.S. Department of Energy [DE-AC02-76SF00515]; DOE Early Career Award [DE-FG02-12ER41854] FX We thank Tobias Baldauf, Francis Bernardeau, Toni Riotto, Uros Seljak, Zvonimir Vlah, and Matias Zaldarriaga for useful conversations. We thank Francis Bernardeau and Atsushi Taruya for extensive help in running the RegPT code. J.J.M.C. would like to thank thank Academic Technology Services at UCLA for computer support. J.J.M.C. is supported by the Stanford Institute for Theoretical Physics and the NSF grant no. PHY-0756174 and a grant from the John Templeton Foundation. S. F. is partially supported by the Natural Sciences and Engineering Research Council of Canada. D. G. is supported in part by the Stanford ITP and by the U.S. Department of Energy contract to SLAC no. DE-AC02-76SF00515. L. S. is supported by DOE Early Career Award DE-FG02-12ER41854 and by NSF grant PHY-1068380. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. NR 17 TC 24 Z9 24 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD JUL PY 2014 IS 7 AR 056 DI 10.1088/1475-7516/2014/07/056 PG 25 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AM4DL UT WOS:000339802700057 ER PT J AU Carrasco, JJM Foreman, S Green, D Senatore, L AF Carrasco, John Joseph M. Foreman, Simon Green, Daniel Senatore, Leonardo TI The Effective Field Theory of Large Scale Structures at two loops SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE power spectrum; cosmological perturbation theory ID MATTER POWER SPECTRUM; COSMOLOGICAL PERTURBATION-THEORY; PRECISION EMULATION; UNIVERSE; MODELS AB Large scale structure surveys promise to be the next leading probe of cosmological information. It is therefore crucial to reliably predict their observables. The Effective Field Theory of Large Scale Structures (EFTofLSS) provides a manifestly convergent perturbation theory for the weakly non-linear regime of dark matter, where correlation functions are computed in an expansion of the wavenumber k of a mode over the wavenumber associated with the non-linear scale k(NL). Since most of the information is contained at high wavenumbers, it is necessary to compute higher order corrections to correlation functions. After the one-loop correction to the matter power spectrum, we estimate that the next leading one is the two-loop contribution, which we compute here. At this order in k/k(NL), there is only one counterterm in the EFTofLSS that must be included, though this term contributes both at tree-level and in several one-loop diagrams. We also discuss correlation functions involving the velocity and momentum fields. We find that the EFTofLSS prediction at two loops matches to percent accuracy the non-linear matter power spectrum at redshift zero up to k similar to 0.6 h Mpc(-1), requiring just one unknown coefficient that needs to be fit to observations. Given that Standard Perturbation Theory stops converging at redshift zero at k similar to 0.1 h Mpc(-1), our results demonstrate the possibility of accessing a factor of order 200 more dark matter quasi-linear modes than naively expected. If the remaining observational challenges to accessing these modes can be addressed with similar success, our results show that there is tremendous potential for large scale structure surveys to explore the primordial universe. C1 [Carrasco, John Joseph M.; Foreman, Simon; Green, Daniel; Senatore, Leonardo] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94306 USA. [Carrasco, John Joseph M.; Foreman, Simon; Green, Daniel; Senatore, Leonardo] Stanford Univ, Dept Phys, Stanford, CA 94306 USA. [Foreman, Simon; Green, Daniel; Senatore, Leonardo] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Foreman, Simon; Green, Daniel; Senatore, Leonardo] SLAC, Menlo Pk, CA 94025 USA. [Senatore, Leonardo] CERN, Div Theory, CH-1211 Geneva 23, Switzerland. RP Carrasco, JJM (reprint author), Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94306 USA. EM jjmc@stanford.edu; sfore@stanford.edu; drgreen@stanford.edu; senatore@stanford.edu FU Stanford Institute for Theoretical Physics; NSF [PHY-0756174, PHY-1068380]; John Templeton Foundation; Natural Sciences and Engineering Research Council of Canada; Stanford ITP; U.S. Department of Energy [DE-AC02-76SF00515]; DOE Early Career Award [DE-FG02-12ER41854] FX We thank Asimina Arvanitaki, Tom Abel, Tobias Baldauf, Daniel Baumann, Guido D'Amico, Savas Dimopoulos, Lance Dixon, Eiichiro Komatsu, Rafael Porto, Emiliano Sefusatti, Steve Shenker, Slava Rychkov, Filippo Vernizzi, Zvonimir Vlah, and especially Francis Bernardeau, Uros Seljak and Matias Zaldarriaga for useful conversations. We thank Tobias Baldauf, Uros Seljak and Zvonimir Vlah for providing us with the detailed data of the Okumura et al simulations that we use for the momentum calculation. We would like to thank Academic Technology Services at UCLA for computer support, as well as Stuart Marshall and KIPAC Computing for computer support. We also thank the KITP Santa Barbara for hospitality. J.J.M.C. is supported by the Stanford Institute for Theoretical Physics and the NSF grant no. PHY-0756174 and a grant from the John Templeton Foundation. S. F. is partially supported by the Natural Sciences and Engineering Research Council of Canada. D. G. is supported in part by the Stanford ITP and by the U.S. Department of Energy contract to SLAC no. DE-AC02-76SF00515. L. S. is supported by DOE Early Career Award DE-FG02-12ER41854 and by NSF grant PHY-1068380. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. NR 34 TC 40 Z9 40 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD JUL PY 2014 IS 7 AR 057 DI 10.1088/1475-7516/2014/07/057 PG 49 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AM4DL UT WOS:000339802700058 ER PT J AU Hryczuk, A Cholis, I Iengo, R Tavakoli, M Ullio, P AF Hryczuk, Andrzej Cholis, Ilias Iengo, Roberto Tavakoli, Maryam Ullio, Piero TI Indirect detection analysis: wino dark matter case study SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter theory; gamma ray theory; cosmic ray theory; cosmology of theories beyond the SM ID MINOR DWARF GALAXY; LARGE-AREA TELESCOPE; COSMIC-RAYS; MILKY-WAY; ANNIHILATIONS; ABUNDANCE; CLUSTER; MODELS; HALOS; HAZE AB We perform a multichannel analysis of the indirect signals for the Wino Dark Matter, including one-loop electroweak and Sommerfeld enhancement corrections. We derive limits from cosmic ray antiprotons and positrons, from continuum galactic and extragalactic diffuse gamma-ray spectra, from the absence of gamma-ray line features at the galactic center above 500 GeV in energy, from gamma-rays toward nearby dwarf spheroidal galaxies and galaxy clusters, and from CMB power-spectra. Additionally, we show the future prospects for neutrino observations toward the inner Galaxy and from antideuteron searches. For each of these indirect detection probes we include and discuss the relevance of the most important astrophysical uncertainties that can impact the strength of the derived limits. We find that the Wino as a dark matter candidate is excluded in the mass range bellow similar or equal to 800 GeV from antiprotons and between 1.8 and 3.5 TeV from the absence of a gamma-ray line feature toward the galactic center. Limits from other indirect detection probes confirm the main bulk of the excluded mass ranges. C1 [Hryczuk, Andrzej] Tech Univ Munich, Phys Dept T31, D-85748 Garching, Germany. [Cholis, Ilias] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Iengo, Roberto; Ullio, Piero] SISSA, I-34136 Trieste, Italy. [Iengo, Roberto; Ullio, Piero] Ist Nazl Fis Nucl, Sez Trieste, I-34136 Trieste, Italy. [Tavakoli, Maryam] Inst Res Fundamental Sci IPM, Sch Astron, Tehran, Iran. RP Hryczuk, A (reprint author), Tech Univ Munich, Phys Dept T31, James Franck Str 1, D-85748 Garching, Germany. EM andrzej.hryczuk@tum.de; cholis@fnal.gov; iengo@sissa.it; maryam.tavakoli@desy.de; ullio@sissa.it FU Gottfried Wilhelm Leibniz programme of the Deutsche Forschungsgemeinschaft (DFG); DFG cluster of excellence "Origin and Structure of the Universe"; US Department of Energy; NSF [1066293]; European Union [PITN-GA-2011-289442] FX We would like to thank Mirko Boezio, Timothy Cohen, Carmelo Evoli, Dan Hooper and Luca Maccione for valuable discussions. The work of A. H. is supported by the Gottfried Wilhelm Leibniz programme of the Deutsche Forschungsgemeinschaft (DFG) and the DFG cluster of excellence "Origin and Structure of the Universe". This work has been supported by the US Department of Energy (I. C.). I. C. would like to thank also the Aspen Center for Physics and the NSF Grant #1066293 for hospitality during the latter stages of this project. P. U. acknowledges partial support from the European Union FP7 ITN INVISIBLES (Marie Curie Actions, PITN-GA-2011-289442). NR 152 TC 37 Z9 37 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD JUL PY 2014 IS 7 AR 031 DI 10.1088/1475-7516/2014/07/031 PG 47 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AM4DL UT WOS:000339802700032 ER PT J AU Louis, T Addison, GE Hasselfield, M Bond, JR Calabrese, E Das, S Devlin, MJ Dunkley, J Dunner, R Gralla, M Hajian, A Hincks, AD Hlozek, R Huffenberger, K Infante, L Kosowsky, A Marriage, TA Moodley, K Naess, S Niemack, MD Nolta, MR Page, LA Partridge, B Sehgal, N Sievers, JL Spergel, DN Staggs, ST Walter, BZ Wollack, EJ AF Louis, Thibaut Addison, Graeme E. Hasselfield, Matthew Bond, J. Richard Calabrese, Erminia Das, Sudeep Devlin, Mark J. Dunkley, Joanna Duenner, Rolando Gralla, Megan Hajian, Amir Hincks, Adam D. Hlozek, Renee Huffenberger, Kevin Infante, Leopoldo Kosowsky, Arthur Marriage, Tobias A. Moodley, Kavilan Naess, Sigurd Niemack, Michael D. Nolta, Michael R. Page, Lyman A. Partridge, Bruce Sehgal, Neelima Sievers, Jonathan L. Spergel, David N. Staggs, Suzanne T. Walter, Benjamin Z. Wollack, Edward J. TI The Atacama Cosmology Telescope: cross correlation with Planck maps SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE CMBR experiments; CMBR detectors; cosmological parameters from CMBR ID PROBE WMAP OBSERVATIONS; POWER SPECTRUM; MICROWAVE AB We present the temperature power spectrum of the Cosmic Microwave Background obtained by cross-correlating maps from the Atacama Cosmology Telescope (ACT) at 148 and 218 GHz with maps from the Planck satellite at 143 and 217 GHz, in two overlapping regions covering 592 square degrees. We find excellent agreement between the two datasets at both frequencies, quantified using the variance of the residuals between the ACT power spectra and the ACT x Planck cross-spectra. We use these cross-correlations to measure the calibration of the ACT data at 148 and 218 GHz relative to Planck, to 0.7% and 2% precision respectively. We find no evidence for anisotropy in the calibration parameter. We compare the Planck 353 GHz power spectrum with the measured amplitudes of dust and cosmic infrared background (CIB) of ACT data at 148 and 218 GHz. We also compare planet and point source measurements from the two experiments. C1 [Louis, Thibaut; Calabrese, Erminia; Dunkley, Joanna; Naess, Sigurd] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Addison, Graeme E.; Hincks, Adam D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Hasselfield, Matthew; Hlozek, Renee; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Bond, J. Richard; Hajian, Amir; Nolta, Michael R.; Sievers, Jonathan L.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Das, Sudeep] Argonne Natl Lab, Lemont, IL 60439 USA. [Devlin, Mark J.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Duenner, Rolando; Infante, Leopoldo] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Gralla, Megan; Marriage, Tobias A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Marriage, Tobias A.; Niemack, Michael D.; Page, Lyman A.; Spergel, David N.; Staggs, Suzanne T.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Huffenberger, Kevin] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Moodley, Kavilan; Sievers, Jonathan L.] Univ KwaZulu Natal, Sch Math Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Niemack, Michael D.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Niemack, Michael D.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Partridge, Bruce; Walter, Benjamin Z.] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Sehgal, Neelima] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Louis, T (reprint author), Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. EM Thibaut.Louis@astro.ox.ac.uk RI Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Sievers, Jonathan/0000-0001-6903-5074; Huffenberger, Kevin/0000-0001-7109-0099 FU U.S. National Science Foundation [AST-0408698, AST-0965625]; Princeton University; University of Pennsylvania; Canada Foundation for Innovation (CFI); Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT); CFI under Compute Canada; CFI under Government of Ontario; CFI under Ontario Research Fund - Research Excellence; University of Toronto; ERC [259505]; NASA Office of Space Science; [PHY-0855887]; [PHY-1214379] FX This work was supported by the U.S. National Science Foundation through awards AST-0408698 and AST-0965625 for the ACT project, as well as awards PHY-0855887 and PHY-1214379. Funding was also provided by Princeton University, the University of Pennsylvania, and a Canada Foundation for Innovation (CFI) award to UBC. ACT operates in the Parque Astronomico Atacama in northern Chile under the auspices of the Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT). Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the CFI under the auspices of Compute Canada, the Government of Ontario, the Ontario Research Fund - Research Excellence; and the University of Toronto. Funding from ERC grant 259505 supports JD, EC, SN and TL. We thank George Efstathiou and Duncan Hanson for discussions about the Planck data. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. NR 26 TC 6 Z9 6 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD JUL PY 2014 IS 7 AR 016 DI 10.1088/1475-7516/2014/07/016 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AM4DL UT WOS:000339802700017 ER PT J AU DePaoli, HC Borland, AM Tuskan, GA Cushman, JC Yang, XH AF DePaoli, Henrique C. Borland, Anne M. Tuskan, Gerald A. Cushman, John C. Yang, Xiaohan TI Synthetic biology as it relates to CAM photosynthesis: challenges and opportunities SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Review DE Bioenergy; computational modelling; crassulacean acid metabolism; photosynthesis; synthetic biology; water-use efficiency ID CRASSULACEAN ACID METABOLISM; C-4 PHOTOSYNTHESIS; PHOTOSYSTEM-II; HOMOLOGOUS RECOMBINATION; GENE-EXPRESSION; PCR PRODUCTS; GUARD-CELLS; TRANSCRIPTION FACTORS; NUMERICAL-SIMULATION; PROTEIN-DEGRADATION AB To meet future food and energy security needs, which are amplified by increasing population growth and reduced natural resource availability, metabolic engineering efforts have moved from manipulating single genes/proteins to introducing multiple genes and novel pathways to improve photosynthetic efficiency in a more comprehensive manner. Biochemical carbon-concentrating mechanisms such as crassulacean acid metabolism (CAM), which improves photosynthetic, water-use, and possibly nutrient-use efficiency, represent a strategic target for synthetic biology to engineer more productive C-3 crops for a warmer and drier world. One key challenge for introducing multigene traits like CAM onto a background of C-3 photosynthesis is to gain a better understanding of the dynamic spatial and temporal regulatory events that underpin photosynthetic metabolism. With the aid of systems and computational biology, vast amounts of experimental data encompassing transcriptomics, proteomics, and metabolomics can be related in a network to create dynamic models. Such models can undergo simulations to discover key regulatory elements in metabolism and suggest strategic substitution or augmentation by synthetic components to improve photosynthetic performance and water-use efficiency in C-3 crops. Another key challenge in the application of synthetic biology to photosynthesis research is to develop efficient systems for multigene assembly and stacking. Here, we review recent progress in computational modelling as applied to plant photosynthesis, with attention to the requirements for CAM, and recent advances in synthetic biology tool development. Lastly, we discuss possible options for multigene pathway construction in plants with an emphasis on CAM-into-C-3 engineering. C1 [DePaoli, Henrique C.; Borland, Anne M.; Tuskan, Gerald A.; Yang, Xiaohan] Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA. [Borland, Anne M.] Newcastle Univ, Sch Biol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Cushman, John C.] Univ Nevada, Dept Biochem & Mol Biol, Reno, NV 89557 USA. RP Yang, XH (reprint author), Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA. EM yangx@ornl.gov RI Tuskan, Gerald/A-6225-2011; Yang, Xiaohan/A-6975-2011; OI Tuskan, Gerald/0000-0003-0106-1289; Yang, Xiaohan/0000-0001-5207-4210; De Paoli, Henrique/0000-0001-8494-0603 FU Department of Energy, Office of Science, Genomic Science Program [DE-SC0008834]; US Department of Energy [DE-AC05-00OR22725] FX This material is based upon work supported by the Department of Energy, Office of Science, Genomic Science Program (under award number DE-SC0008834). The authors would like to thank Mary Ann Cushman and Lee E. Gunter for critical review and clarifying comments on the manuscript. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the US Department of Energy (under contract number DE-AC05-00OR22725). NR 148 TC 13 Z9 13 U1 6 U2 62 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 EI 1460-2431 J9 J EXP BOT JI J. Exp. Bot. PD JUL PY 2014 VL 65 IS 13 SI SI BP 3381 EP 3393 DI 10.1093/jxb/eru038 PG 13 WC Plant Sciences SC Plant Sciences GA AM6DU UT WOS:000339953400006 PM 24567493 ER PT J AU Zambrano, VAB Lawson, T Olmos, E Fernandez-Garcia, N Borland, AM AF Zambrano, V. Andrea Barrera Lawson, Tracy Olmos, Enrique Fernandez-Garcia, Nieves Borland, Anne M. TI Leaf anatomical traits which accommodate the facultative engagement of crassulacean acid metabolism in tropical trees of the genus Clusia SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Article DE CAM; Clusia; leaf anatomy; PEPC; photosynthesis; stomata ID STOMATAL APERTURE; DESERT SUCCULENTS; DELTA-C-13 VALUES; CAM EXPRESSION; CELL-SIZE; PHOTOSYNTHESIS; PLANTS; CO2; ECOPHYSIOLOGY; CONDUCTANCE AB Succulence and leaf thickness are important anatomical traits in CAM plants, resulting from the presence of large vacuoles to store organic acids accumulated overnight. A higher degree of succulence can result in a reduction in intercellular air space which constrains internal conductance to CO2. Thus, succulence presents a trade-off between the optimal anatomy for CAM and the internal structure ideal for direct C-3 photosynthesis. This study examined how plasticity for the reversible engagement of CAM in the genus Clusia could be accommodated by leaf anatomical traits that could facilitate high nocturnal PEPC activity without compromising the direct day-time uptake of CO2 via Rubisco. Nine species of Clusia ranging from constitutive C-3 through C-3/CAM intermediates to constitutive CAM were compared in terms of leaf gas exchange, succulence, specific leaf area, and a range of leaf anatomical traits (% intercellular air space (IAS), length of mesophyll surface exposed to IAS per unit area, cell size, stomatal density/size). Relative abundances of PEPC and Rubisco proteins in different leaf tissues of a C-3 and a CAM-performing species of Clusia were determined using immunogold labelling. The results indicate that the relatively well-aerated spongy mesophyll of Clusia helps to optimize direct C-3-mediated CO2 fixation, whilst enlarged palisade cells accommodate the potential for C-4 carboxylation and nocturnal storage of organic acids. The findings provide insight on the optimal leaf anatomy that could accommodate the bioengineering of inducible CAM into C-3 crops as a means of improving water use efficiency without incurring detrimental consequences for direct C-3-mediated photosynthesis. C1 [Zambrano, V. Andrea Barrera; Borland, Anne M.] Newcastle Univ, Sch Biol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Lawson, Tracy] Univ Essex, Sch Biol Sci, Colchester CO4 3SQ, Essex, England. [Olmos, Enrique; Fernandez-Garcia, Nieves] CEBAS CSIC Campus Univ Espinardo, Dept Abiot Stress & Plant Pathol, Murcia 30100, Spain. [Borland, Anne M.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Borland, AM (reprint author), Newcastle Univ, Sch Biol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. EM Anne.Borland@ncl.ac.uk RI Olmos, Enrique/B-6235-2008; Lawson, Tracy/A-1922-2017; OI Olmos, Enrique/0000-0003-2392-8891; Lawson, Tracy/0000-0002-4073-7221 FU Colfuturo; Newcastle University; Department of Energy, Office of Science, Genomic Science Program [DE-SC0008834]; US Department of Energy [DE AC05 00OR22725] FX VABZ was funded by Colfuturo, and Newcastle University. This material is based upon work supported by the Department of Energy, Office of Science, Genomic Science Program under Award Number DE-SC0008834. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the US Department of Energy under Contract Number DE AC05 00OR22725. NR 44 TC 6 Z9 6 U1 4 U2 45 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 EI 1460-2431 J9 J EXP BOT JI J. Exp. Bot. PD JUL PY 2014 VL 65 IS 13 SI SI BP 3513 EP 3523 DI 10.1093/jxb/eru022 PG 11 WC Plant Sciences SC Plant Sciences GA AM6DU UT WOS:000339953400017 ER PT J AU Ceusters, J Borland, AM Taybi, T Frans, M Godts, C De Proft, MP AF Ceusters, Johan Borland, Anne M. Taybi, Tahar Frans, Mario Godts, Christof De Proft, Maurice P. TI Light quality modulates metabolic synchronization over the diel phases of crassulacean acid metabolism SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Article DE CAM; carbohydrate; gas exchange; light quality; PEPC; PEPCK; titratable acidity ID PHOSPHOENOLPYRUVATE CARBOXYLASE KINASE; BROMELIAD AECHMEA-MAYA; EPIPHYTE GUZMANIA-MONOSTACHIA; PHYSIOLOGICAL LEAF DAMAGE; CIRCADIAN-RHYTHM; MESEMBRYANTHEMUM-CRYSTALLINUM; BRYOPHYLLUM LEAVES; C-4 PHOTOSYNTHESIS; BLUE-LIGHT; CAM AB Temporal compartmentation of carboxylation processes is a defining feature of crassulacean acid metabolism and involves circadian control of key metabolic and transport steps that regulate the supply and demand for carbon over a 24 h cycle. Recent insights on the molecular workings of the circadian clock and its connection with environmental inputs raise new questions on the importance of light quality and, by analogy, certain photoreceptors for synchronizing the metabolic components of CAM. The present work tested the hypothesis that optimal coupling of stomatal conductance, net CO2 uptake, and the reciprocal turnover of carbohydrates and organic acids over the diel CAM cycle requires both blue and red light input signals. Contrasting monochromatic wavelengths of blue, green, and red light (i.e. 475, 530, 630 nm) with low fluence rates (10 mu mol m(-2) s(-1)) were administered for 16 hours each diel cycle for a total treatment time of 48 hours to the obligate CAM bromeliad, Aechmea 'Maya'. Of the light treatments imposed, low-fluence blue light was a key determinant in regulating stomatal responses, organic acid mobilization from the vacuole, and daytime decarboxylation. However, the reciprocal relationship between starch and organic acid turnover that is typical for CAM was uncoupled under low-fluence blue light. Under low-fluence red or green light, the diel turnover of storage carbohydrates was orchestrated in line with the requirements of CAM, but a consistent delay in acid consumption at dawn compared with plants under white or low-fluence blue light was noted. Consistent with the acknowledged influences of both red and blue light as input signals for the circadian clock, the data stress the importance of both red and blue-light signalling pathways for synchronizing the metabolic and physiological components of CAM over the day/night cycle. C1 [Ceusters, Johan; Frans, Mario] Katholieke Univ Leuven, Fac Engn Technol, Dept Microbial & Mol Syst, Bioengn Technol TC, B-2440 Geel, Belgium. [Borland, Anne M.; Taybi, Tahar] Newcastle Univ, Sch Biol, Newcastle Inst Res Sustainabil, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Borland, Anne M.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Godts, Christof; De Proft, Maurice P.] Katholieke Univ Leuven, Div Crop Biotech, Dept Biosyst, Fac Biosci Engn, B-3001 Heverlee, Belgium. RP Ceusters, J (reprint author), Katholieke Univ Leuven, Fac Engn Technol, Dept Microbial & Mol Syst, Bioengn Technol TC, Campus Geel,Kleinhoefstr 4, B-2440 Geel, Belgium. EM johan.ceusters@kuleuven.be FU Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen); Office of Science (BER); U.S. Department of Energy; FWO Vlaanderen; US Department of Energy [DE-AC05-00OR22725] FX This research was supported by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). Additional support was provided by the Office of Science (BER), U.S. Department of Energy and by FWO Vlaanderen. Deroose Plants NV is acknowledged for supplying plant material, Veerle Verdoodt (Leuven), and Sue Patterson (Newcastle) for assistance in the lab, and Johan Calcoen for assistance in assembling the different LED configurations. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the US Department of Energy under Contract Number DE-AC05-00OR22725. NR 58 TC 6 Z9 6 U1 2 U2 42 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 EI 1460-2431 J9 J EXP BOT JI J. Exp. Bot. PD JUL PY 2014 VL 65 IS 13 SI SI BP 3705 EP 3714 DI 10.1093/jxb/eru185 PG 10 WC Plant Sciences SC Plant Sciences GA AM6DU UT WOS:000339953400032 PM 24803500 ER PT J AU McLendon, WJ Koronaios, R Enick, RM Biesmans, G Salazar, L Miller, A Soong, Y McLendon, T Romanov, V Crandall, D AF McLendon, W. J. Koronaios, R. Enick, R. M. Biesmans, G. Salazar, L. Miller, A. Soong, Y. McLendon, T. Romanov, V. Crandall, D. TI Assessment of CO2-soluble non-ionic surfactants for mobility reduction using mobility measurements and CT imaging SO JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING LA English DT Article DE CO2-soluble surfactants; foam; mobility; CT images; enhanced oil recovery (EOR) ID HYDROCARBON SURFACTANTS; CO2-IN-WATER EMULSIONS AB The addition of CO2-soluble, brine-soluble surfactants to the high pressure CO2 can facilitate the in-situ generation of CO2-in-brine foams for conformance and/or mobility control. These non-ionic surfactants dissolve in CO2 to concentrations of roughly 0.02-0.10 wt% at typical CO2 enhanced oil recovery (EOR) conditions and, upon mixing with brine in a closed, agitated, windowed vessel, stabilize CO2-in-brine foams. Branched nonylphenol ethoxylates containing an average of 12 (Huntsman SURFONIC (R) N-120) or 15 (Huntsman SURFONIC (R) N-150) ethylene oxide (EO) repeat units, and a branched tridecyl alcohol ethoxylate with 9 EO repeat units (Huntsman SURFONIC (R) TDA-9) are selected for the mobility and computed tomography (CT) studies detailed in this paper. These foam-stabilizing surfactants are much more brine-soluble than CO2-soluble, in accordance with the Bancroft rule for generating CO2-in-brine foam. Transient mobility measurements are conducted using several mixed wettability SACROC carbonate cores of low permeability (13-16 mD), and a high permeability water-wet Bentheimer sandstone core (1550 mD). The CO2 is injected into a brine-saturated core at a constant rate, yielding superficial velocities of 60.96 cm/day or 304.8 cm/day. Surfactant was either not used, dissolved only in CO2, only in brine, or in both brine and CO2. The surfactant concentration is 0.07 wt% in the CO2 (the maximum concentration capable of dissolving in CO2) or in the brine. The transient differential pressure drop during the injection of three pore volumes of CO2 into the core indicate that the average total pressure drop across the core during the experiment increases by an average of 25-120% when the surfactant is dissolved in the CO2, 79-300% when the surfactant is dissolved in the brine, and 220-330% if surfactant is present in both the brine and CO2. These results indicate that the greatest mobility reduction is achieved with the surfactant in both brine and CO2, and the foams that are generated with surfactant dissolved in the brine alone tend to provide greater mobility reduction than when the surfactant is dissolved only in CO2. CT scanning of in-situ foam generation is conducted by injecting high pressure CO2 into a 5 wt% KI brine-saturated water-wet Berea sandstone (4-8 mD). Tests are performed with no surfactant, surfactant dissolved in brine at 0.03 wt%, in CO2 at 0,07 wt%, or in both brine and CO2. CT images indicate that in the absence of surfactant, sweep efficiency is very low primarily because CO2 tends to flow through high permeability bedding planes. The use of CO2-soluble surfactants to form CO2-in-brine foam within a sandstone core is verified via CT imaging. At low and high superficial velocity values of 1433-143.3 cm/day, in-situ foam generation and propagation, as indicated by piston-like flow of the CO2 through the core, is most evident when surfactant was dissolved in the brine. While there is some evidence of foam formation when Huntsman SURFONIC (R) N-120 or Huntsman SURFONIC (R) N-150 is present in the CO2, very distinct foam formation and propagation occurs when Huntsman SURFONIC (R) TDA-9 is dissolved in CO2. (C) 2014 Elsevier B.V. All rights reserved. C1 [McLendon, W. J.; Koronaios, R.; Enick, R. M.] NETL RUA, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [McLendon, W. J.; Koronaios, R.; Enick, R. M.] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. [Biesmans, G.] Huntsman, B-3078 Everberg, Belgium. [Salazar, L.; Miller, A.] Huntsman, The Woodlands, TX 77380 USA. [Soong, Y.; McLendon, T.; Romanov, V.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Crandall, D.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Enick, RM (reprint author), NETL RUA, Natl Energy Technol Lab, 626 Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA. EM w.j.mclendon@gmail.com; pandjkoronaios@yahoo.com; rme@pitt.edu; guy_biesmans@huntsman.com; luis_salazer@huntsman.com; angie_miller@huntsman.com; Yee.Soong@netl.doe.gov; T.McLendon@netl.doe.gov; Vyachaslav.Romanov@netl.doe.gov; Dustin.Crandall@netl.doe.gov RI Romanov, Vyacheslav/C-6467-2008 OI Romanov, Vyacheslav/0000-0002-8850-3539 FU National Energy Technology Laboratory's ongoing research under the RES [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research under the RES contract DE-FE0004000. We would like to thank Bryan Tennant for assistance with the CT scanning and obtaining the images for the Berea core flow tests. We would also like to express our appreciation to Lanny Schoeling of Kinder Morgan for providing us with SACROC cores and typical brine composition. NR 16 TC 7 Z9 10 U1 5 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-4105 EI 1873-4715 J9 J PETROL SCI ENG JI J. Pet. Sci. Eng. PD JUL PY 2014 VL 119 BP 196 EP 209 DI 10.1016/j.petrol.2014.05.010 PG 14 WC Energy & Fuels; Engineering, Petroleum SC Energy & Fuels; Engineering GA AM2QG UT WOS:000339695300020 ER PT J AU Chai, JS Ghergherehchi, M Hahn, KI Han, SY Jeong, IW Joo, KS Kim, EJ Kim, YK Kistenev, E Kwon, Y Lajoie, JG Li, Z Lee, JH Lim, KS Park, JM Park, KS Song, HS Sue, DG Sukhanov, A AF Chai, J. -S. Ghergherehchi, M. Hahn, K. I. Han, S. Y. Jeong, I. W. Joo, K. S. Kim, E. J. Kim, Y. K. Kistenev, E. Kwon, Y. Lajoie, J. G. Li, Z. Lee, J. H. Lim, K. S. Park, J. M. Park, K. S. Song, H. S. Sue, D. G. Sukhanov, A. TI Surface pattern of a Si Mini-Pad sensor for the PHENIX MPC-EX and damage caused by ionizing radiation SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article DE Si Mini-Pad; MPC-EX; Surface pattern; Ionizing radiation ID SILICON DETECTORS AB The Si Mini-Pad sensor is an essential component of the MPC-EX preshower detector. This detector will be integrated into the PHENIX experiment at Brookhaven National Laboratory's Relativistic Heavy Ion Collider. We describe the development of the surface pattern and the fabrication process of the Si Mini-Pad sensor and present a test by the low energy gamma irradiation that is sensitive to the surface design. C1 [Kistenev, E.; Li, Z.; Sukhanov, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Kim, E. J.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Lee, J. H.; Park, J. M.; Park, K. S.] Elect & Telecommun Res Inst, Taejon 305606, South Korea. [Hahn, K. I.; Han, S. Y.] Ewha Womans Univ, Seoul 120750, South Korea. [Kim, Y. K.] Hanyang Univ, Seoul 133792, South Korea. [Lajoie, J. G.] Iowa State Univ, Ames, IA 50011 USA. [Joo, K. S.; Lim, K. S.] Myongji Univ, Yongin 449728, South Korea. [Chai, J. -S.; Ghergherehchi, M.; Song, H. S.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Li, Z.] Xiangtan Univ, Xiangtan 411105, Hunan, Peoples R China. [Jeong, I. W.; Kwon, Y.; Sue, D. G.] Yonsei Univ, Seoul 120749, South Korea. RP Chai, JS (reprint author), Sungkyunkwan Univ, Suwon 440746, South Korea. EM ykwon@yonsei.ac.kr FU U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-98CH10886]; National Research Foundation of Korea [NRF-2011-0014045, NRF-2012M7A1A2055625, NRF-2013-R1A1A2011572, NRF-2011-0011774]; DOE [DE-FG02-10ER41719]; ICT R&D program of MSIP/KEIT [10043897]; Chinese 973 Program FX The authors would like to thank TOPSIL's silicon scientist Leif Jensen for providing detailed wafer characteristics and ARTI's staff members for their kind assistance in the irradiation process. We acknowledge the support for the work at Brookhaven National Lab by the U.S. Department of Energy, Office of Nuclear Physics, under Prime Contract No. DE-AC02-98CH10886, at Chonbuk National University by the National Research Foundation of Korea under NRF-2011-0014045, at Ewha Womans University by the National Research Foundation of Korea under NRF-2012M7A1A2055625, at Iowa State University under DOE Grant DE-FG02-10ER41719, at Myongji University by the National Research Foundation of Korea under NRF-2013-R1A1A2011572, at Sungkyunkwan University by the ICT R&D program of MSIP/KEIT 10043897, at Xiangtan University by the Chinese 973 Program, and at Yonsei University by the National Research Foundation of Korea under NRF-2011-0011774. NR 6 TC 1 Z9 1 U1 1 U2 5 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 EI 1976-8524 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD JUL PY 2014 VL 65 IS 1 BP 25 EP 30 DI 10.3938/jkps.65.25 PG 6 WC Physics, Multidisciplinary SC Physics GA AM4FF UT WOS:000339807900005 ER PT J AU Triplett, M Nishimura, H Ombaba, M Logeeswarren, VJ Yee, M Polat, KG Oh, JY Fuyuki, T Leonard, F Islam, MS AF Triplett, Mark Nishimura, Hideki Ombaba, Matthew Logeeswarren, V. J. Yee, Matthew Polat, Kazim G. Oh, Jin Y. Fuyuki, Takashi Leonard, Francois Islam, M. Saif TI High-precision transfer-printing and integration of vertically oriented semiconductor arrays for flexible device fabrication SO NANO RESEARCH LA English DT Article DE transfer printing; nanowires; flexible electronics; printable electronics; nanoscale devices ID SILICON NANOWIRES; PERFORMANCE; TRANSISTORS; ELECTRONICS; SENSORS; CELLS AB Flexible electronics utilizing single crystalline semiconductors typically require post-growth processes to assemble and incorporate the crystalline materials onto flexible substrates. Here we present a high-precision transfer-printing method for vertical arrays of single crystalline semiconductor materials with widely varying aspect ratios and densities enabling the assembly of arrays on flexible substrates in a vertical fashion. Complementary fabrication processes for integrating transferred arrays into flexible devices are also presented and characterized. Robust contacts to transferred silicon wire arrays are demonstrated and shown to be stable under flexing stress down to bending radii of 20 mm. The fabricated devices exhibit a reversible tactile response enabling silicon based, nonpiezoelectric, and flexible tactile sensors. The presented system leads the way towards high-throughput, manufacturable, and scalable fabrication of flexible devices. C1 [Triplett, Mark; Ombaba, Matthew; Logeeswarren, V. J.; Yee, Matthew; Polat, Kazim G.; Oh, Jin Y.; Islam, M. Saif] Univ Calif Davis, Ctr Nano & Micro Mfg, Davis, CA 95616 USA. [Triplett, Mark] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonard, Francois] Sandia Natl Labs, Livermore, CA 94551 USA. [Nishimura, Hideki; Fuyuki, Takashi] Nara Inst Sci & Technol, Microelect Device Sci Lab, Ikoma, Nara, Japan. RP Islam, MS (reprint author), Univ Calif Davis, Ctr Nano & Micro Mfg, Davis, CA 95616 USA. EM sislam@ucdavis.edu FU DURIP grant - US Army Research Office, University of California CITRIS (the Center for Information Technology Research in the Interest of Society) grant; National Science Foundation grant [CMMI-1235592] FX This work was partially supported by DURIP grant sponsored by US Army Research Office, University of California CITRIS (the Center for Information Technology Research in the Interest of Society) grant and National Science Foundation grant (No. CMMI-1235592). NR 31 TC 3 Z9 3 U1 4 U2 24 PU TSINGHUA UNIV PRESS PI BEIJING PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 10084, PEOPLES R CHINA SN 1998-0124 EI 1998-0000 J9 NANO RES JI Nano Res. PD JUL PY 2014 VL 7 IS 7 BP 998 EP 1006 DI 10.1007/s12274-014-0462-7 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AM5IK UT WOS:000339890400007 ER PT J AU Garcia-Albornoz, M Thankaswamy-Kosalai, S Nilsson, A Varemo, L Nookaew, I Nielsen, J AF Garcia-Albornoz, Manuel Thankaswamy-Kosalai, Subazini Nilsson, Avlant Varemo, Leif Nookaew, Intawat Nielsen, Jens TI BioMet Toolbox 2.0: genome-wide analysis of metabolism and omics data SO NUCLEIC ACIDS RESEARCH LA English DT Article ID SACCHAROMYCES-CEREVISIAE; LIPID-METABOLISM; GENE-EXPRESSION; NETWORK; BIOLOGY; TOPOLOGY; MODEL AB Analysis of large data sets using computational and mathematical tools have become a central part of biological sciences. Large amounts of data are being generated each year from different biological research fields leading to a constant development of software and algorithms aimed to deal with the increasing creation of information. The BioMet Toolbox 2.0 integrates a number of functionalities in a user-friendly environment enabling the user to work with biological data in a web interface. The unique and distinguishing feature of the BioMet Toolbox 2.0 is to provide a web user interface to tools for metabolic pathways and omics analysis developed under different platform-dependent environments enabling easy access to these computational tools. C1 [Garcia-Albornoz, Manuel; Thankaswamy-Kosalai, Subazini; Nilsson, Avlant; Varemo, Leif; Nookaew, Intawat; Nielsen, Jens] Chalmers, Dept Chem & Biol Engn, S-41296 Gothenburg, Sweden. [Nookaew, Intawat] Oak Ridge Natl Lab, Biosci Div, Comparat Genom Grp, Oak Ridge, TN 37831 USA. RP Nookaew, I (reprint author), Chalmers, Dept Chem & Biol Engn, S-41296 Gothenburg, Sweden. EM intawat@chalmers.se; nielsenj@chalmers.se OI Nilsson, Avlant/0000-0002-9476-4516 FU European Research Council (INSYSBIO) [247013]; Chalmers Foundation; Knut and Alice Wallenberg Foundation; Bioinformatics Infrastructure for Life Sciences (BILS); Samsung Electronics Inc.; Chalmers Library FX European Research Council (INSYSBIO) [247013]; Chalmers Foundation; Knut and Alice Wallenberg Foundation; Bioinformatics Infrastructure for Life Sciences (BILS) and Samsung Electronics Inc. Source of open access funding: Chalmers Library. NR 23 TC 10 Z9 11 U1 0 U2 9 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 EI 1362-4962 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JUL 1 PY 2014 VL 42 IS W1 BP W175 EP W181 DI 10.1093/nar/gku371 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AM2XN UT WOS:000339715000029 PM 24792167 ER PT J AU Ma, Q Zhang, HY Mao, XZ Zhou, C Liu, BQ Chen, X Xu, Y AF Ma, Qin Zhang, Hanyuan Mao, Xizeng Zhou, Chuan Liu, Bingqiang Chen, Xin Xu, Ying TI DMINDA: an integrated web server for DNA motif identification and analyses SO NUCLEIC ACIDS RESEARCH LA English DT Article ID FACTOR-BINDING SITES; TRANSCRIPTIONAL REGULATION; REGULATORY MOTIFS; DISCOVERY; DATABASE; GENOME; SEQUENCE; PREDICTION; CONSERVATION; PREFERENCES AB DMINDA (DNA motif identification and analyses) is an integrated web server for DNA motif identification and analyses, which is accessible at http://csbl.bmb.uga.edu/DMINDA/. This web site is freely available to all users and there is no login requirement. This server provides a suite of cis-regulatory motif analysis functions on DNA sequences, which are important to elucidation of the mechanisms of transcriptional regulation: (i) de novo motif finding for a given set of promoter sequences along with statistical scores for the predicted motifs derived based on information extracted from a control set, (ii) scanning motif instances of a query motif in provided genomic sequences, (iii) motif comparison and clustering of identified motifs, and (iv) co-occurrence analyses of query motifs in given promoter sequences. The server is powered by a backend computer cluster with over 150 computing nodes, and is particularly useful for motif prediction and analyses in prokaryotic genomes. We believe that DMINDA, as a new and comprehensive web server for cis-regulatory motif finding and analyses, will benefit the genomic research community in general and prokaryotic genome researchers in particular. C1 [Ma, Qin; Zhang, Hanyuan; Mao, Xizeng; Chen, Xin; Xu, Ying] Univ Georgia, Dept Biochem & Mol Biol, Computat Syst Biol Lab, Athens, GA 30602 USA. [Ma, Qin; Zhang, Hanyuan; Mao, Xizeng; Chen, Xin; Xu, Ying] Univ Georgia, Inst Bioinformat, Athens, GA 30602 USA. [Ma, Qin; Mao, Xizeng; Xu, Ying] Oak Ridge Natl Lab, BESC, Oak Ridge, TN 37831 USA. [Zhang, Hanyuan; Chen, Xin; Xu, Ying] Jilin Univ, Coll Comp Sci & Technol, Changchun 130023, Peoples R China. [Zhou, Chuan; Liu, Bingqiang] Shandong Univ, Sch Mat, Jinan 250100, Shandong, Peoples R China. RP Xu, Y (reprint author), Univ Georgia, Dept Biochem & Mol Biol, Computat Syst Biol Lab, Athens, GA 30602 USA. EM xyn@bmb.uga.edu RI Ma, Qin/O-1525-2013 OI Ma, Qin/0000-0002-3264-8392 FU National Science Foundation [NSF DEB-0830024, NSF MCB-0958172]; Office of Biological and Environmental Research in the Department of Energy Office of Science [DE-PS02-06ER64304]; National Nature Science Foundation of China (NSFC) [61303084]; NSF, Shandong Province, China [ZR2011FQ010] FX National Science Foundation [NSF DEB-0830024 and NSF MCB-0958172, in part]; DOE BioEnergy Science Center, supported by the Office of Biological and Environmental Research in the Department of Energy Office of Science [DE-PS02-06ER64304]; National Nature Science Foundation of China (NSFC) [61303084 to B.L.]; NSF, Shandong Province, China [ZR2011FQ010 to B.L.]. NR 35 TC 9 Z9 9 U1 0 U2 12 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 EI 1362-4962 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JUL 1 PY 2014 VL 42 IS W1 BP W12 EP W19 DI 10.1093/nar/gku315 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AM2XN UT WOS:000339715000004 PM 24753419 ER PT J AU Sulakhe, D Taylor, A Balasubramanian, S Feng, B Xie, BQ Bornigen, D Dave, UJ Foster, IT Gilliam, TC Maltsev, N AF Sulakhe, Dinanath Taylor, Andrew Balasubramanian, Sandhya Feng, Bo Xie, Bingqing Bornigen, Daniela Dave, Utpal J. Foster, Ian T. Gilliam, T. Conrad Maltsev, Natalia TI Lynx web services for annotations and systems analysis of multi-gene disorders SO NUCLEIC ACIDS RESEARCH LA English DT Article ID PROTEIN-INTERACTION NETWORKS; INTERACTION DATABASE; GENE PRIORITIZATION; KNOWLEDGE; NEUROGENETICS; TRANSCRIPTOME; INTEGRATION; INFORMATION; MEDICINE; RESOURCE AB Lynx is a web-based integrated systems biology platform that supports annotation and analysis of experimental data and generation of weighted hypotheses on molecular mechanisms contributing to human phenotypes and disorders of interest. Lynx has integrated multiple classes of biomedical data (genomic, proteomic, pathways, phenotypic, toxicogenomic, contextual and others) from various public databases as well as manually curated data from our group and collaborators (LynxKB). Lynx provides tools for gene list enrichment analysis using multiple functional annotations and network-based gene prioritization. Lynx provides access to the integrated database and the analytical tools via REST based Web Services (http://lynx.ci.uchicago.edu/webservices.html). This comprises data retrieval services for specific functional annotations, services to search across the complete LynxKB (powered by Lucene), and services to access the analytical tools built within the Lynx platform. C1 [Sulakhe, Dinanath; Dave, Utpal J.; Foster, Ian T.; Gilliam, T. Conrad; Maltsev, Natalia] Univ Chicago, Computat Inst, Argonne Natl Lab, Chicago, IL 60637 USA. [Taylor, Andrew; Balasubramanian, Sandhya; Bornigen, Daniela; Gilliam, T. Conrad; Maltsev, Natalia] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA. [Feng, Bo; Xie, Bingqing] IIT, Dept Comp Sci, Chicago, IL 60616 USA. [Bornigen, Daniela] Toyota Technol Inst Chicago, Chicago, IL 60637 USA. RP Sulakhe, D (reprint author), Univ Chicago, Computat Inst, Argonne Natl Lab, Chicago, IL 60637 USA. EM sulakhe@mcs.anl.gov FU Boler Family Foundation and National Institutes of Health/National Institute of Neurological Disorders and Stroke [NS050375]; Genetic Basis of Mid-Hindbrain Malformations; National Institute of Mental Health [1U24MH081810]; National Institutes of Health/National Institute of Neurological Disorders and Stroke [NS050375] FX Mr and Mrs Lawrence Hilibrand, Boler Family Foundation and National Institutes of Health/National Institute of Neurological Disorders and Stroke [NS050375]; Genetic Basis of Mid-Hindbrain Malformations; National Institute of Mental Health [1U24MH081810 to Clara M. Lajonchere ( PI)]. Funding for open access charge: National Institutes of Health/National Institute of Neurological Disorders and Stroke [NS050375]. NR 31 TC 2 Z9 2 U1 0 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 EI 1362-4962 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JUL 1 PY 2014 VL 42 IS W1 BP W473 EP W477 DI 10.1093/nar/gku517 PG 5 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AM2XN UT WOS:000339715000077 PM 24948611 ER PT J AU Hind, G Wall, JS Varkonyi, Z Istokovics, A Lambrev, PH Garab, G AF Hind, Geoffrey Wall, Joseph S. Varkonyi, Zsuzsanna Istokovics, Anita Lambrev, Petar H. Garab, Gyozo TI Membrane Crystals of Plant Light-Harvesting Complex II Disassemble Reversibly in Light SO PLANT AND CELL PHYSIOLOGY LA English DT Article DE Granal thylakoid membranes; LHCII; Light-induced reorganizations; Lipid-protein interactions; Membrane crystal; Thermo-optic effect ID CHLOROPLAST THYLAKOID MEMBRANES; A/B PROTEIN COMPLEX; OPTICALLY INDUCED REORGANIZATIONS; CIRCULAR-DICHROISM; PHOTOSYSTEM-II; STRUCTURAL FLEXIBILITY; TEMPERATURE-DEPENDENCE; PHOSPHORYLATION SITE; ENERGY-DISSIPATION; LHCII AB Using the mass-measuring capability of scanning transmission electron microscopy, we demonstrate that membrane crystals of the main light-harvesting complex of plants possess the ability to undergo light-induced dark-reversible disassociations, independently of the photochemical apparatus. This is the first direct visualization of light-driven reversible reorganizations in an isolated photosynthetic antenna. These reorganizations, identified earlier by circular dichroism (CD), can be accounted for by a biological thermo-optic transition: structural changes are induced by fast heat transients and thermal instabilities near the dissipation, and self-association of the complexes in the lipid matrix. A comparable process in native membranes is indicated by earlier findings of essentially identical kinetics, and intensity and temperature dependences of the Delta CD in granal thylakoids. C1 [Hind, Geoffrey; Wall, Joseph S.] Brookhaven Natl Lab, Biosci Dept, Upton, NY 11973 USA. [Varkonyi, Zsuzsanna; Istokovics, Anita; Lambrev, Petar H.; Garab, Gyozo] Hungarian Acad Sci, Inst Plant Biol, Biol Res Ctr, H-6701 Szeged, Hungary. RP Garab, G (reprint author), Hungarian Acad Sci, Inst Plant Biol, Biol Res Ctr, POB 521, H-6701 Szeged, Hungary. EM garab.gyozo@brc.mta.hu RI Lambrev, Petar/D-3071-2017 OI Lambrev, Petar/0000-0001-5147-153X FU NCRR NIH HHS [P41-RR01777] NR 46 TC 9 Z9 9 U1 0 U2 38 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0032-0781 EI 1471-9053 J9 PLANT CELL PHYSIOL JI Plant Cell Physiol. PD JUL PY 2014 VL 55 IS 7 SI SI BP 1296 EP 1303 DI 10.1093/pcp/pcu064 PG 8 WC Plant Sciences; Cell Biology SC Plant Sciences; Cell Biology GA AM2XL UT WOS:000339714800011 PM 24793749 ER PT J AU Ciupe, SM Ribeiro, RM Perelson, AS AF Ciupe, Stanca M. Ribeiro, Ruy M. Perelson, Alan S. TI Antibody Responses during Hepatitis B Viral Infection SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID IMMUNODEFICIENCY-VIRUS TYPE-1; CIRCULATING IMMUNE-COMPLEXES; NEUTRALIZING ANTIBODIES; CLEARANCE RATE; HIV-INFECTION; DYNAMICS; IGG; KINETICS; THERAPY; PLASMA AB Hepatitis B is a DNA virus that infects liver cells and can cause both acute and chronic disease. It is believed that both viral and host factors are responsible for determining whether the infection is cleared or becomes chronic. Here we investigate the mechanism of protection by developing a mathematical model of the antibody response following hepatitis B virus (HBV) infection. We fitted the model to data from seven infected adults identified during acute infection and determined the ability of the virus to escape neutralization through overproduction of non-infectious subviral particles, which have HBs proteins on their surface, but do not contain nucleocapsid protein and viral nucleic acids. We showed that viral clearance can be achieved for high anti-HBV antibody levels, as in vaccinated individuals, when: (1) the rate of synthesis of hepatitis B subviral particles is slow; (2) the rate of synthesis of hepatitis B subviral particles is high but either anti-HBV antibody production is fast, the antibody affinity is high, or the levels of pre-existent HBV-specific antibody at the time of infection are high, as could be attained by vaccination. We further showed that viral clearance can be achieved for low equilibrium anti-HBV antibody levels, as in unvaccinated individuals, when a strong cellular immune response controls early infection. C1 [Ciupe, Stanca M.] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA. [Ribeiro, Ruy M.; Perelson, Alan S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. RP Ciupe, SM (reprint author), Virginia Tech, Dept Math, Blacksburg, VA 24061 USA. EM stanca@math.vt.edu OI Ribeiro, Ruy/0000-0002-3988-8241 FU NSF [DMS-1214582]; U.S. Department of Energy [DE-AC52-06NA25396]; NIH [P20-GM103452, AI028433, OD011095] FX SMC acknowledges support from NSF grant DMS-1214582. Portions of this work were performed under the auspices of the U.S. Department of Energy under contract DE-AC52-06NA25396 and supported by NIH grants P20-GM103452, AI028433 and OD011095. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 69 TC 8 Z9 8 U1 1 U2 9 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD JUL PY 2014 VL 10 IS 7 AR e1003730 DI 10.1371/journal.pcbi.1003730 PG 16 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA AM5IO UT WOS:000339890900041 PM 25078553 ER PT J AU Parikh, AP Curtis, RE Kuhn, I Becker-Weimann, S Bissell, M Xing, EP Wu, W AF Parikh, Ankur P. Curtis, Ross E. Kuhn, Irene Becker-Weimann, Sabine Bissell, Mina Xing, Eric P. Wu, Wei TI Network Analysis of Breast Cancer Progression and Reversal Using a Tree-Evolving Network Algorithm SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID GENE-EXPRESSION SIGNATURE; 3-DIMENSIONAL CULTURE; EPITHELIAL-CELLS; REGULATORY NETWORKS; GROWTH-FACTOR; PROTEIN NETWORKS; GENOMIC ANALYSIS; TISSUE POLARITY; IN-VIVO; RECONSTRUCTION AB The HMT3522 progression series of human breast cells have been used to discover how tissue architecture, microenvironment and signaling molecules affect breast cell growth and behaviors. However, much remains to be elucidated about malignant and phenotypic reversion behaviors of the HMT3522-T4-2 cells of this series. We employed a "pan-cell-state'' strategy, and analyzed jointly microarray profiles obtained from different state-specific cell populations from this progression and reversion model of the breast cells using a tree-lineage multi-network inference algorithm, Treegl. We found that different breast cell states contain distinct gene networks. The network specific to non-malignant HMT3522-S1 cells is dominated by genes involved in normal processes, whereas the T4-2-specific network is enriched with cancer-related genes. The networks specific to various conditions of the reverted T4-2 cells are enriched with pathways suggestive of compensatory effects, consistent with clinical data showing patient resistance to anticancer drugs. We validated the findings using an external dataset, and showed that aberrant expression values of certain hubs in the identified networks are associated with poor clinical outcomes. Thus, analysis of various reversion conditions (including non-reverted) of HMT3522 cells using Treegl can be a good model system to study drug effects on breast cancer. C1 [Parikh, Ankur P.; Xing, Eric P.] Carnegie Mellon Univ, Sch Comp Sci, Machine Learning Dept, Pittsburgh, PA 15213 USA. [Curtis, Ross E.; Xing, Eric P.; Wu, Wei] Carnegie Mellon Univ, Sch Comp Sci, Lane Ctr Computat Biol, Pittsburgh, PA 15213 USA. [Kuhn, Irene; Becker-Weimann, Sabine; Bissell, Mina] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Xing, Eric P.] Joint Carnegie Mellon Univ Univ Pittsburgh PhD Pr, Pittsburgh, PA USA. RP Parikh, AP (reprint author), Carnegie Mellon Univ, Sch Comp Sci, Machine Learning Dept, Pittsburgh, PA 15213 USA. EM epxing@cs.cmu.edu; weiwu2@cs.cmu.edu FU Alfred P. Sloan Fellowship; NSF [0750271]; NIH [R37 CA064786]; [NIH R01 GM093156-01]; [NSF DBI-0546594]; [IIS-0713379] FX This research was made possible by grants NIH R01 GM093156-01 to EPX and WW, NSF DBI-0546594, IIS-0713379, and an Alfred P. Sloan Fellowship to EPX. APP is partly supported by an NSF Graduate Research Fellowship (under Grant No. 0750271). MB, IK and SBW are supported by NIH R37 CA064786. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 61 TC 2 Z9 2 U1 1 U2 9 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD JUL PY 2014 VL 10 IS 7 AR e1003713 DI 10.1371/journal.pcbi.1003713 PG 18 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA AM5IO UT WOS:000339890900028 PM 25057922 ER PT J AU Frederix, M Hutter, K Leu, J Batth, TS Turner, WJ Ruegg, TL Blanch, HW Simmons, BA Adams, PD Keasling, JD Thelen, MP Dunlop, MJ Petzold, CJ Mukhopadhyay, A AF Frederix, Marijke Huetter, Kimmo Leu, Jessica Batth, Tanveer S. Turner, William J. Rueegg, Thomas L. Blanch, Harvey W. Simmons, Blake A. Adams, Paul D. Keasling, Jay D. Thelen, Michael P. Dunlop, Mary J. Petzold, Christopher J. Mukhopadhyay, Aindrila TI Development of a Native Escherichia coli Induction System for Ionic Liquid Tolerance SO PLOS ONE LA English DT Article ID MICROBIAL BIOFUEL PRODUCTION; PROTEIN OVEREXPRESSION; QUANTITATIVE PCR; EFFLUX PUMPS; CORN STOVER; MARR FAMILY; PRETREATMENT; FERMENTATION; EXPRESSION; BIOMASS AB The ability to solubilize lignocellulose makes certain ionic liquids (ILs) very effective reagents pretreating biomass prior to saccharification for biofuel fermentation. However, residual IL in the aqueous sugar solution can inhibit he growth and unction of biofuel-producing microorganism In E. coli this toxicity can be partially overcome by the heterologous expression of an IL efflux pump encoded by eilA from Enterobacter lignolyticus. In the present work, we used microarray analysis to identify native E. coli IL-inducible promoters and develop control systems for regulating eilA gene expression. Three candidate promoters, PmarR' PydfO', and PydfA', were selected and compared to the IPTG-inducible PiacUV5 system for controlling expression of eilA. The PydfA' and PmarR' based systems are as effective as PlacUV5 in their ability to rescue E. oil from typically toxic levels of IL, thereby eliminating the need to use an IPTG-based system for such tolerance engineering. We Present a mechanistic model indicating that inducible control systems reduce target gene expression hen IL levels are low. Selected-reaction monitoring mass spectrometry analysis revealed that at high IL concentrations EilA protein levels were significantly elevated under the control of PydfA' and PmaR' in comparison to the other promoters Further, in a pooled culture competition designed to determine fitness, the strain containing pPmarR'-eilA outcompetecl rains with other promoter constructs, most significantly at IL concentrations above 150 mM. These results indicate that native promoters such as PmarR' can provide effective systems for regulating the expression of heterologous genes in host engineering and simplify the development of industrially useful strains. C1 [Frederix, Marijke; Huetter, Kimmo; Leu, Jessica; Batth, Tanveer S.; Rueegg, Thomas L.; Blanch, Harvey W.; Simmons, Blake A.; Adams, Paul D.; Keasling, Jay D.; Thelen, Michael P.; Petzold, Christopher J.; Mukhopadhyay, Aindrila] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Frederix, Marijke; Huetter, Kimmo; Leu, Jessica; Batth, Tanveer S.; Blanch, Harvey W.; Adams, Paul D.; Keasling, Jay D.; Petzold, Christopher J.; Mukhopadhyay, Aindrila] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Turner, William J.; Dunlop, Mary J.] Univ Vermont, Sch Engn, Burlington, VT USA. [Rueegg, Thomas L.] Univ Basel, Inst Bot, CH-4056 Basel, Switzerland. [Rueegg, Thomas L.; Thelen, Michael P.] Lawrence Livermore Natl Lab, Biol & Biotechnol Div, Phys & Life Sci Directorate, Livermore, CA USA. [Blanch, Harvey W.; Keasling, Jay D.] Univ Calif Berkeley, Dept Chem, Coll Chem, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Coll Chem, Berkeley, CA 94720 USA. [Simmons, Blake A.] Sandia Natl Labs, Biol & Mat Sci Ctr, Livermore, CA USA. RP Mukhopadhyay, A (reprint author), Joint BioEnergy Inst, Emeryville, CA 94608 USA. EM amukhopadhyay@lbl.gov RI Keasling, Jay/J-9162-2012; Thelen, Michael/G-2032-2014; Adams, Paul/A-1977-2013 OI Keasling, Jay/0000-0003-4170-6088; Thelen, Michael/0000-0002-2479-5480; Adams, Paul/0000-0001-9333-8219 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Mannheim University of Applied Sciences; Office of Science (BER) at the U.S. Department of Energy; NASA Vermont Space Grant Consortium FX This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. Kimmo Hutter was supported by his Master program at the Mannheim University of Applied Sciences and Prof. Matthias Mack. William Turner and Mary Dunlop were supported by the Office of Science (BER) at the U.S. Department of Energy and the NASA Vermont Space Grant Consortium. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 46 TC 11 Z9 11 U1 5 U2 35 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 1 PY 2014 VL 9 IS 7 AR e101115 DI 10.1371/journal.pone.0101115 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AM1UX UT WOS:000339635000054 PM 24983352 ER PT J AU Harley, NH Chittaporn, P Cook, GB Fisenne, IM AF Harley, Naomi H. Chittaporn, Passaporn Cook, Gordon B. Fisenne, Isabel M. TI Radon water to air transfer measured in a bathroom in an energy-efficient home with a private well SO RADIATION PROTECTION DOSIMETRY LA English DT Article ID UNITED-STATES AB Monthly measurements of radon in kitchen and bath tap water along with indoor air concentrations were made from 1994 to 1996 in an energy-efficient home with a private well. The well supplies all water to the home. The radon in cold and hot kitchen water averaged 69 +/- 2 and 52 +/- 2 Bq l(-1), respectively. Radon in cold and hot water from the bath/shower room shower head averaged 60 +/- 1 and 38 +/- 2 Bq l(-1), respectively, whereas hot water collected in the shower at the tub base averaged 5 +/- 1 Bq l(-1) or a 92 % radon loss to air. While the calculated transfer factor of 1/10 000, i.e. radon concentration in air to radon in water, conventionally applies to the whole house, measurements for the specific water release during showering in a bathroom exhibit a larger transfer factor of 1/2300, due to smaller room volume. C1 [Harley, Naomi H.] NYU, Sch Med, Hoboken, NJ USA. [Chittaporn, Passaporn] NYU, Sch Med, Retired Bangkok, Thailand. [Cook, Gordon B.] NYU, Sch Med, Sterling Forest, NY USA. [Fisenne, Isabel M.] US DOE, Hoboken, NJ USA. RP Harley, NH (reprint author), NYU, Sch Med, Hoboken, NJ USA. EM naomi.harley@nyumc.org FU [DE FG02 87 ER60547] FX Funding from DE FG02 87 ER60547. NR 9 TC 0 Z9 0 U1 1 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 EI 1742-3406 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD JUL PY 2014 VL 160 IS 1-3 BP 231 EP 234 DI 10.1093/rpd/ncu085 PG 4 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA AM6DR UT WOS:000339953000055 PM 24803512 ER PT J AU Mert, A Fahjan, Y Pinar, A Hutchings, L AF Mert, Aydin Fahjan, Yasin Pinar, Ali Hutchings, Lawrence TI Strong Ground Motion Simulations Around Princes Islands Fault SO TEKNIK DERGI LA Turkish DT Article DE Broadband earthquake simulation; Green's functions; Prince Islands Fault ID NORTH-ANATOLIAN FAULT; SOURCE PARAMETERS; MARMARA SEA; HORIZONTAL COMPONENT; GREENS-FUNCTIONS; TIME HISTORIES; REGION TURKEY; SAN-FERNANDO; EARTHQUAKE; CALIFORNIA AB The main objective of this study is to simulate broad-frequency-band strong ground motion waveforms resulted from the rupture of Prince Islands Fault, to provide input accelerograms for linear and non-linear time history analyses of the engineering structures. Simulations are performed using Green's Function methodology developed by Hutchings and Wu (1990) [1]. The methodology considers physical based rupture process and takes into account different source parameters to investigate their effects on amplitude and frequency content of simulated waveforms. As a result, the low frequency energy content of the simulated waveforms has significant role in the characteristic of strong ground motion for large earthquakes in Marmara region. C1 [Mert, Aydin] Bogazici Univ, Kandilli Rasathanesi & Deprem Arastirma Enstitusu, Istanbul, Turkey. [Fahjan, Yasin] Gebze Yuksek Teknol Enstitusu, Kocaeli, Turkey. [Pinar, Ali] Istanbul Univ, Jeofizik Muhendisligi Bolumu, Istanbul, Turkey. [Hutchings, Lawrence] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Mert, A (reprint author), Bogazici Univ, Kandilli Rasathanesi & Deprem Arastirma Enstitusu, Istanbul, Turkey. EM mertay@boun.edu.tr; fahjan@gyte.edu.tr; alipinar@istanbul.edu.tr; ljhutchings@lbl.gov NR 67 TC 0 Z9 0 U1 0 U2 3 PU TURKISH CHAMBER CIVIL ENGINEERS PI KIZILAY PA SELANIK CAD NO 19-1, KIZILAY, ANKARA 06650, TURKEY SN 1300-3453 J9 TEK DERGI JI Tek. Dergi PD JUL PY 2014 VL 25 IS 3 BP 6775 EP 6804 PG 30 WC Engineering, Civil SC Engineering GA AM3WP UT WOS:000339783800001 ER PT J AU Griggs, AM Agim, ZS Mishra, VR Tambe, MA Director-Myska, AE Turteltaub, KW McCabe, GP Rochet, JC Cannon, JR AF Griggs, Amy M. Agim, Zeynep S. Mishra, Vartika R. Tambe, Mitali A. Director-Myska, Alison E. Turteltaub, Kenneth W. McCabe, George P. Rochet, Jean-Christophe Cannon, Jason R. TI 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) Is Selectively Toxic to Primary Dopaminergic Neurons In Vitro SO TOXICOLOGICAL SCIENCES LA English DT Article DE Parkinson's disease; PhIP; neurotoxicity; heterocyclic amines ID TANDEM MASS-SPECTROMETRY; ELEVATED BLOOD HARMANE; FRIED GROUND-BEEF; PARKINSONS-DISEASE; HETEROCYCLIC AMINES; 3-AMINO-1-METHYL-5H-PYRIDO<4,3-B>INDOLE TRP-P-2; DIETARY SUPPLEMENTATION; BEHAVIORAL DEFICITS; ALPHA-SYNUCLEIN; FOOD AB Parkinson's disease (PD) is the second most common neurodegenerative disease. Much data has linked the etiology of PD to a variety of environmental factors. The majority of cases are thought to arise from a combination of genetic susceptibility and environmental factors. Chronic exposures to dietary factors, including meat, have been identified as potential risk factors. Although heterocyclic amines that are produced during high-temperature meat cooking are known to be carcinogenic, their effect on the nervous system has yet to be studied in depth. In this study, we investigated neurotoxic effects of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a highly abundant heterocyclic amine in cooked meat, in vitro. We tested toxicity of PhIP and the two major phase I metabolites, N-OH-PhIP and 4'-OH-PhIP, using primary mesencephalic cultures from rat embryos. This culture system contains both dopaminergic and nondopaminergic neurons, which allows specificity of neurotoxicity to be readily examined. We find that exposure to PhIP or N-OH-PhIP is selectively toxic to dopaminergic neurons in primary cultures, resulting in a decreased percentage of dopaminergic neurons. Neurite length is decreased in surviving dopaminergic neurons. Exposure to 4'-OH-PhIP did not produce significant neurotoxicity. PhIP treatment also increased formation of oxidative damage markers, 4-hydroxy-2-nonenal (HNE) and 3-nitrotyrosine in dopaminergic neurons. Pretreatment with N-acetylcysteine was protective. Finally, treatment with blueberry extract, a dietary factor with known antioxidant and other protective mechanisms, prevented PhIP-induced toxicity. Collectively, our study suggests, for the first time, that PhIP is selectively toxic to dopaminergic neurons likely through inducing oxidative stress. C1 [Griggs, Amy M.; Agim, Zeynep S.; Cannon, Jason R.] Purdue Univ, Sch Hlth Sci, W Lafayette, IN 47907 USA. [Griggs, Amy M.; Mishra, Vartika R.; Tambe, Mitali A.; Rochet, Jean-Christophe] Purdue Univ, Dept Med Chem & Mol Pharmacol, W Lafayette, IN 47907 USA. [Griggs, Amy M.] Cook MED Inst, W Lafayette, IN 47906 USA. [Director-Myska, Alison E.] Def Threat Reduct Agcy, Ft Belvoir, VA 22060 USA. [Turteltaub, Kenneth W.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94551 USA. [McCabe, George P.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA. RP Cannon, JR (reprint author), Purdue Univ, HAMP 1271,550 Stadium Mall Dr, W Lafayette, IN 47907 USA. EM cannonjr@purdue.edu FU National Institute of Environmental Health Sciences at the National Institutes [R00ES019879, R03ES022819]; National Institute on Aging at National Institutes of Health [R21 AG039718]; Ralph W. and Grace M. Showalter Research Trust FX National Institute of Environmental Health Sciences at the National Institutes (R00ES019879 and R03ES022819 to J.R.C.); National Institute on Aging at National Institutes of Health (R21 AG039718 to J.-C.R.); Ralph W. and Grace M. Showalter Research Trust (to J.R.C. and J.-C.R.). NR 51 TC 4 Z9 4 U1 1 U2 11 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 EI 1096-0929 J9 TOXICOL SCI JI Toxicol. Sci. PD JUL PY 2014 VL 140 IS 1 BP 179 EP 189 DI 10.1093/toxsci/kfu060 PG 11 WC Toxicology SC Toxicology GA AM3AB UT WOS:000339722100016 PM 24718704 ER PT J AU Zhang, HZ De Yoreo, JJ Banfield, JF AF Zhang, Hengzhong De Yoreo, James J. Banfield, Jillian F. TI A Unified Description of Attachment-Based Crystal Growth SO ACS NANO LA English DT Editorial Material DE particle-mediated growth; oriented attachment; oriented aggregation; particle orienting force; electrostatic field; aggregation driving force; amorphous particle ID ORIENTED ATTACHMENT; MOLECULAR-DYNAMICS; NANOCRYSTALLINE ZNS; AGGREGATION; INSIGHTS; TRANSFORMATION; PHASE; TIO2; TEM AB Crystal growth is one of the most fundamental processes in nature. Understanding of crystal growth mechanisms has changed dramatically over the past two decades. One significant advance has been the recognition that growth does not only occur atom by atom, but often proceeds via attachment and fusion of either amorphous or crystalline particles. Results from recent experiments and calculations can be integrated to develop a simple, unified conceptual description of attachment-based crystal growth. This enables us to address three important questions: What are the driving forces for attachment-based growth? For crystalline particles, what enables the particles to achieve crystallographic coalignment? What determines the surface on which attachment occurs? We conclude that the extent of internal nanoparticle order controls the degree of periodicity and anisotropy In the surrounding electrostatic field. For crystalline particles, the orienting force stemming from the electrostatic field can promote oriented attachment events, although solvent-surface interactions modulate this control. In cases where perfect crystallographic alignment is not achieved, misorientation gives rise to structural defects that can fundamentally modify nanomaterial properties. C1 [Zhang, Hengzhong; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [De Yoreo, James J.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Banfield, JF (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM jbanfield@berkeley.edu NR 30 TC 25 Z9 25 U1 10 U2 104 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUL PY 2014 VL 8 IS 7 BP 6526 EP 6530 DI 10.1021/nn503145w PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AL9LR UT WOS:000339463100004 PM 25000275 ER PT J AU Onses, MS Ramirez-Hernandez, A Hur, SM Sutanto, E Williamson, L Alleyne, AG Nealey, PF de Pablo, JJ Rogers, JA AF Onses, M. Serdar Ramirez-Hernandez, Abelardo Hur, Su-Mi Sutanto, Erick Williamson, Lance Alleyne, Andrew G. Nealey, Paul F. de Pablo, Juan J. Rogers, John A. TI Block Copolymer Assembly on Nanoscale Patterns of Polymer Brushes Formed by Electrohydrodynamic Jet Printing SO ACS NANO LA English DT Article DE block copolymers; electrohydrodynamic jet printing; nanofabrication; polymer brushes; simulation ID DENSITY MULTIPLICATION; SURFACES; LITHOGRAPHY; FABRICATION; DOMAINS; FILMS; NANOPARTICLES; ORIENTATION; RESOLUTION; ALIGNMENT AB Fundamental understanding of the self-assembly of domains in block copolymers (BCPs) and capabilities in control of these processes are important for their use as nanoscale templates in various applications. This paper focuses on the self-assembly of spin-cast and printed poly(styrene-block-methyl methacrylate) Iles on patterned surface wetting layers formed by electrohydrodynamic jet printing of random copolymer brushes. Here, end-grafted brushes that present groups of styrene and methyl methacrylate in geometries with nanoscale resolution deterministically define the morphologies of BCP nanostructures. The materials and methods can also be integrated with lithographically defined templates for directed self-assembly of BCPs at multiple length scales. The results provide not only engineering routes to controlled formation of complex patterns but also vehicles for experimental and simulation studies of the effects of chemical transitions on the processes of self-assembly. In particular, we show that the methodology developed here provides the means to explore exotic phenomena displayed by the wetting behavior of BCPs, where 3-D soft confinement, chain elasticity, interfacial energies, and substrate's surface energy cooperate to yield nonclassical wetting behavior. C1 [Onses, M. Serdar; Rogers, John A.] Univ Illinois, Beckman Inst, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Onses, M. Serdar; Rogers, John A.] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Ramirez-Hernandez, Abelardo; Hur, Su-Mi; Williamson, Lance; Nealey, Paul F.; de Pablo, Juan J.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Ramirez-Hernandez, Abelardo; Hur, Su-Mi; Williamson, Lance; Nealey, Paul F.; de Pablo, Juan J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Sutanto, Erick; Alleyne, Andrew G.; Rogers, John A.] Univ Illinois, Dept Engn Sci & Mech, Urbana, IL 61801 USA. [Onses, M. Serdar] Erciyes Univ, Dept Mat Sci & Engn, TR-38039 Kayseri, Turkey. RP Rogers, JA (reprint author), Univ Illinois, Beckman Inst, Dept Mat Sci & Engn, Urbana, IL 61801 USA. EM jrogers@illinois.edu RI Ramirez-Hernandez, Abelardo/A-1717-2011; Alleyne, Andrew/C-3127-2015; Rogers, John /L-2798-2016 OI Ramirez-Hernandez, Abelardo/0000-0002-3569-5223; Alleyne, Andrew/0000-0002-1347-9669; FU Center for Nanoscale Chemical Electrical Mechanical Manufacturing Systems at the University of Illinois - National Science Foundation [CMMI-0749028]; Air Force Office of Scientific Research MURI [FA9550-12-1-0471]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences-Materials Science [DE-AC02-06CH11357] FX This work was supported by the Center for Nanoscale Chemical Electrical Mechanical Manufacturing Systems at the University of Illinois (funded by the National Science Foundation under Grant CMMI-0749028) and Air Force Office of Scientific Research MURI FA9550-12-1-0471. We gratefully acknowledge the computing resources provided on Blues, high-performance computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. A.R.H., S.M.H., P.F.N. and J.J.d.P. acknowledge support from U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences-Materials Science, under contract DE-AC02-06CH11357. AFM and SEM studies were carried out in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois. NR 38 TC 24 Z9 24 U1 16 U2 114 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUL PY 2014 VL 8 IS 7 BP 6606 EP 6613 DI 10.1021/nn5022605 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AL9LR UT WOS:000339463100014 PM 24882265 ER PT J AU Behafarid, F Matos, J Hong, S Zhang, LH Rahman, TS Cuenya, BR AF Behafarid, Farzad Matos, Jeronimo Hong, Sampyo Zhang, Lihua Rahman, Talat Shahnaz Cuenya, Beatriz Roldan TI Structural and Electronic Properties of Micellar Au Nanoparticles: Size and Ligand Effects SO ACS NANO LA English DT Article DE Au nanoparticle; strain; size effects; XAFS; EXAFS; XANES; TEM; AFM; DFT; FEFF simulation ID RAY-ABSORPTION SPECTROSCOPY; NEAR-EDGE-STRUCTURE; GOLD NANOPARTICLES; CATALYSTS; OXIDATION; CLUSTERS; CO; CONTRACTION; ADSORPTION; REACTIVITY AB Gaining experimental insight into the intrinsic properties of nanoparticles (NPs) represents a scientific challenge due to the difficulty of deconvoluting these properties from various environmental effects such as the presence of adsorbates or a support. A synergistic combination of experimental and theoretical tools, including X-ray absorption fine-structure spectroscopy, scanning transmission electron microscopy, atomic force microscopy, and density functional theory was used in this study to investigate the structure and electronic properties of small (similar to 1-4 nm) Au NPs synthesized by an inverse micelle encapsulation method. Metallic Au NPs encapsulated by polystyrene 2-vinylpiridine (PS-P2VP) were studied in the solution phase (dispersed in toluene) as well as after deposition on gamma-Al2O3. Our experimental data revealed a size-dependent contraction of the interatomic distances of the ligand-protected NPs with decreasing NP size. These findings are in good agreement with the results from DFT calculations of unsupported Au NPs surrounded by P2VP, as well as those obtained for pure (ligand-free) Au clusters of analogous sizes. A comparison of the experimental and theoretical results supports the conclusion that the P2VP ligands employed to stabilize the gold NPs do not lead to strong distortions in the average interatomic spacing. The changes in the electronic structure of the Au-P2VP NPs were found to originate mainly from finite size effects and not from charge transfer between the NPs and their environment (e.g., Au ligand interactions). In addition, the isolated ligand-protected experimental NPs only display a weak interaction with the support, making them an ideal model system for the investigation of size-dependent physical and chemical properties of structurally well-defined nanomaterials. C1 [Behafarid, Farzad; Matos, Jeronimo; Hong, Sampyo; Rahman, Talat Shahnaz] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Zhang, Lihua] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Cuenya, Beatriz Roldan] Ruhr Univ Bochum, Dept Phys, D-44780 Bochum, Germany. RP Cuenya, BR (reprint author), Ruhr Univ Bochum, Dept Phys, D-44780 Bochum, Germany. EM Beatriz.Roldan@rub.de RI Roldan Cuenya, Beatriz/L-1874-2016 OI Roldan Cuenya, Beatriz/0000-0002-8025-307X FU U.S. National Science Foundation [NSF-DMR-1207065]; DOE-BES [DE-AC02-98CH10886]; Cluster of Excellence Ruhr Explores Solvation (RESOLV) - Deutsche Forschungsgemeinschaft [EXC 1069]; NSF [CHE-1310327] FX The authors would like to acknowledge Anatoly Frenkel and Lindsay Merle for their assistance with the acquisition (LM and AF) and analysis (AF) of the EXAFS data. This work was made possible thanks to the financial support of the U.S. National Science Foundation (NSF-DMR-1207065). Support to beamline X18B at NSLS-BNL, where the EXAFS experiments were conducted was provided by DOE's Synchrotron Catalysis Consortium (DE-FG02-05ER15688) and DOE-BES (DE-AC02-98CH10866). TEM measurements were carried out at the Center for Functional Nanomaterials at Brookhaven National Laboratory which is supported by DOE-BES, under Contract No. DE-AC02-98CH10886. This work was also partially funded by the Cluster of Excellence Ruhr Explores Solvation (RESOLV) (EXC 1069) funded by the Deutsche Forschungsgemeinschaft. The DFT part in this work was supported in part by NSF Grant CHE-1310327. The DFT calculations were performed using the computing resources at the National Energy Research Scientific Computing Center (NERSC), the Center for Nanoscale Materials (CNM) of the Argonne National Laboratory, and at STOKES, the high-performance computational facility at UCF. NR 54 TC 12 Z9 12 U1 12 U2 118 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUL PY 2014 VL 8 IS 7 BP 6671 EP 6681 DI 10.1021/nn406568b PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AL9LR UT WOS:000339463100021 PM 24437393 ER PT J AU Yang, L Zhong, D Zhang, JY Yan, ZP Ge, SF Du, PW Jiang, J Sun, D Wu, XJ Fan, ZY Dayeh, SA Xiang, B AF Yang, Lei Zhong, Ding Zhang, Jingyu Yan, Zhiping Ge, Shaofeng Du, Pingwu Jiang, Jun Sun, Dong Wu, Xiaojun Fan, Zhiyong Dayeh, Shadi A. Xiang, Bin TI Optical Properties of Metal-Molybdenum Disulfide Hybrid Nanosheets and Their Application for Enhanced Photocatalytic Hydrogen Evolution SO ACS NANO LA English DT Article DE MoS2; hybrid nanosheets; interface; carrier recombination; pump probe; photocatalysis ID VISIBLE-LIGHT IRRADIATION; MOS2 NANOCLUSTERS; OXYGEN REDUCTION; LAYER MOS2; MONO LAYER; THIN-FILMS; WATER; NANOCRYSTALS; DYNAMICS; SPECTROSCOPY AB Limited control over charge recombination between photogenerated charge carriers largely hinders the progress in photocatalysis. Here, we introduce metal nanoparticles (Cr, Ag) to the surface of MoS2 nanosheets by simple synthetic means creating a hybrid metal-MoS2 nanosheet system with well-defined metal/ semiconductor interfaces. We demonstrate that this hybrid nanosheet structure is capable of decoupling light absorption, primarily in MoS2, and carrier separation, across the metal-MoS2 heterostructure leading to drastic quenching of recombination between photogenerated carriers in MoS2, as proven by absorptance, photoluminescence, and ultrafast pump-probe spectroscopy. The photocatalytic activity in the hybrid system is also improved, which further shows excellent stability against photocorrosion. C1 [Yang, Lei; Yan, Zhiping; Du, Pingwu; Wu, Xiaojun; Xiang, Bin] Univ Sci & Technol China, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China. [Zhong, Ding; Ge, Shaofeng; Sun, Dong] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China. [Zhang, Jingyu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Jiang, Jun] Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Anhui, Peoples R China. [Fan, Zhiyong] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Hong Kong, Peoples R China. [Dayeh, Shadi A.] Univ Calif San Diego, Dept Elect & Comp Engn, San Diego, CA 92093 USA. [Zhong, Ding; Ge, Shaofeng; Sun, Dong] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China. RP Du, PW (reprint author), Univ Sci & Technol China, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China. EM dupingwu@ustc.edu.cn; sundong@pku.edu.cn; binxiang@ustc.edu.cn RI Fan, Zhiyong/C-4970-2012; Du, Pingwu/G-3329-2010; jiang, jun/P-5378-2014; Xiang, Bin/C-9192-2012; Wu, Xiaojun/F-1619-2010; OI Du, Pingwu/0000-0002-2715-0979; jiang, jun/0000-0002-6116-5605; Wu, Xiaojun/0000-0003-3606-1211; Fan, Zhiyong/0000-0002-5397-0129 FU National Natural Science Foundation of China (NSFC) [21373196, 11274015, 21271166]; Recruitment Program of Global Experts; Fundamental Research Funds for the Central Universities [WK2060140014, WK2340000050]; National Basic Research Program of China [2012CB921300, 2014CB920900]; Specialized Research Fund for the Doctoral Program of Higher Education of China [20120001110066]; faculty start-up research grant at UC San Diego FX This work was supported by National Natural Science Foundation of China (NSFC) (21373196, 11274015 and 21271166), the Recruitment Program of Global Experts, and the Fundamental Research Funds for the Central Universities (WK2060140014 and WK2340000050), National Basic Research Program of China (2012CB921300 and 2014CB920900), the Specialized Research Fund for the Doctoral Program of Higher Education of China (20120001110066), and a faculty start-up research grant for S.A.D. at UC San Diego. NR 36 TC 27 Z9 28 U1 25 U2 275 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUL PY 2014 VL 8 IS 7 BP 6979 EP 6985 DI 10.1021/nn501807y PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AL9LR UT WOS:000339463100053 PM 24884001 ER PT J AU Koo, B Goli, P Sumant, AV Claro, PCD Rajh, T Johnson, CS Balandin, AA Shevchenko, EV AF Koo, Bonil Goli, Pradyumna Sumant, Anirudha V. dos Santos Claro, Paula Cecilia Rajh, Tijana Johnson, Christopher S. Balandin, Alexander A. Shevchenko, Elena V. TI Toward Lithium Ion Batteries with Enhanced Thermal Conductivity SO ACS NANO LA English DT Article DE Li-ion battery; thermal conductivity; CNT; gamma-Fe2O3; Li[Ni1/3Co1/3Mn1/3]O-2 ID IRON-OXIDE NANOPARTICLES; CARBON NANOTUBES; INTERFACE MATERIALS; LOW-TEMPERATURE; HIGH-POWER; GRAPHENE; MANAGEMENT; NANOCOMPOSITES; INTERCALATION; DIFFUSIVITY AB As batteries become more powerful and utilized in diverse applications, thermal management becomes one of the central problems in their application. We report the results on thermal properties of a set of different U-ion battery electrodes enhanced with multiwalled carbon nanotubes. Our measurements reveal that the highest in-plane and cross-plane thermal conductivities achieved in the carbon-nanotube-enhanced electrodes reached up to 141 and 3.6 W/mK, respectively. The values for in-plane thermal conductivity are up to 2 orders of magnitude higher than those for conventional electrodes based on carbon black. The electrodes were synthesized via an inexpensive scalable filtration method, and we demonstrate that our approach can be extended to commercial electrode-active materials. The best performing electrodes contained a layer of gamma-Fe2O3 nanoparticles on carbon nanotubes sandwiched between two layers of carbon nanotubes and had in-plane and cross-plane thermal conductivities of similar to 50 and 3 W/mK, respectively, at room temperature. The obtained results are important for thermal management in U-ion and other high-power-density batteries. C1 [Koo, Bonil; Sumant, Anirudha V.; dos Santos Claro, Paula Cecilia; Rajh, Tijana; Shevchenko, Elena V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Johnson, Christopher S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Goli, Pradyumna; Balandin, Alexander A.] Univ Calif Riverside, Bourns Coll Engn, Dept Elect Engn, Nanodevice Lab, Riverside, CA 92521 USA. [Goli, Pradyumna; Balandin, Alexander A.] Univ Calif Riverside, Bourns Coll Engn, Mat Sci & Engn Program, Riverside, CA 92521 USA. [dos Santos Claro, Paula Cecilia] Consejo Nacl Invest Cient & Tecn, FCE UNLP, Dept Quim, Inst Invest Fis Quim Teor & Aplicadas INIFTA, RA-1900 La Plata, Argentina. RP Shevchenko, EV (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM balandin@ee.ucr.edu; eshevchenko@anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC0206CH-11357]; Center for Function Accelerated nanoMaterial Engineering (FAME); MARCO; DARPA; CONICET (Argentina) FX Work at the Center for Nanoscale Materials, Advanced Photon Source, and Electron Microscopy Center, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC0206CH-11357. The work in the Balandin group was supported in part by the Center for Function Accelerated nanoMaterial Engineering (FAME). FAME Center is one of six centers of STARnet-a Semiconductor Research Corporation (SRC) program sponsored by MARCO and DARPA. Dr. dos Santos Claro gratefully acknowledges support from CONICET (Argentina). NR 39 TC 16 Z9 16 U1 10 U2 120 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUL PY 2014 VL 8 IS 7 BP 7202 EP 7207 DI 10.1021/nn502212b PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AL9LR UT WOS:000339463100077 PM 24995678 ER PT J AU He, K Zhou, YN Gao, P Wang, LP Pereira, N Amatucci, GG Nam, KW Yang, XQ Zhu, YM Wang, F Su, D AF He, Kai Zhou, Yongning Gao, Peng Wang, Liping Pereira, Nathalie Amatucci, Glenn G. Nam, Kyung-Wan Yang, Xiao-Qing Zhu, Yimei Wang, Feng Su, Dong TI Sodiation via Heterogeneous Disproportionation in FeF2 Electrodes for Sodium-Ion Batteries SO ACS NANO LA English DT Article DE sodium-ion battery; in situ TEM; disproportionation; sodiation; FeF2; Na3FeF6; heterogeneous reaction ID CONVERSION REACTIONS; ROOM-TEMPERATURE; ENERGY-STORAGE; ELECTROCHEMICAL PROPERTIES; NEGATIVE-ELECTRODE; LITHIUM BATTERIES; IRON FLUORIDES; LI; CHALLENGES; MICROSCOPY AB Sodium-ion batteries utilize various electrode materials derived from lithium batteries. However, the different characteristics inherent in sodium may cause unexpected cell reactions and battery performance. Thus, identifying the reactive discrepancy between sodiation and lithiation is essential for fundamental understanding and practical engineering of battery materials. Here we reveal a heterogeneous sodiation mechanism of iron fluoride (FeF2) nanoparticle electrodes by combining in situ/ex situ microscopy and spectroscopy techniques. In contrast to direct one-step conversion reaction with lithium, the sodiation of FeF2 proceeds via a regular conversion on the surface and a disproportionation reaction in the core, generating a composite structure of 1-4 nm ultrafine Fe nanocrystallites (further fused into conductive frameworks) mixed with an unexpected Na3FeF6 phase and a NaF phase in the shell. These findings demonstrate a core-shell reaction mode of the sodiation process and shed light on the mechanistic understanding extended to generic electrode materials for both Li- and Na-ion batteries. C1 [He, Kai; Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Zhou, Yongning; Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Gao, Peng; Wang, Liping; Wang, Feng] Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA. [Pereira, Nathalie; Amatucci, Glenn G.] Rutgers State Univ, Dept Mat Sci & Engn, North Brunswick, NJ 08902 USA. [Nam, Kyung-Wan] Dongguk Univ Seoul, Dept Energy & Mat Engn, Seoul 100715, South Korea. [Zhu, Yimei] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Su, D (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM fwang@bnl.gov; dsu@bnl.gov RI Nam, Kyung-Wan/B-9029-2013; Gao, Peng/B-4675-2012; Nam, Kyung-Wan/E-9063-2015; Wang, Feng/C-1443-2016; He, Kai/B-9535-2011; Su, Dong/A-8233-2013 OI Nam, Kyung-Wan/0000-0001-6278-6369; Nam, Kyung-Wan/0000-0001-6278-6369; Wang, Feng/0000-0003-4068-9212; He, Kai/0000-0003-4666-1800; Su, Dong/0000-0002-1921-6683 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center - US. DOE, BES [DE-SC0001294] FX This research was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. This work was partially supported by the Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the US. DOE, BES under Award No. DE-SC0001294. NR 38 TC 21 Z9 21 U1 17 U2 145 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUL PY 2014 VL 8 IS 7 BP 7251 EP 7259 DI 10.1021/nn502284y PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AL9LR UT WOS:000339463100082 PM 24911154 ER PT J AU Park, YS Bae, WK Pietryga, JM Klimov, VI AF Park, Young-Shin Bae, Wan Ki Pietryga, Jeffrey M. Klimov, Victor I. TI Auger Recombination of Biexcitons and Negative and Positive Trions in Individual Quantum Dots SO ACS NANO LA English DT Article DE semiconductor nanocrystal; quantum dot; neutral exciton; charged exciton; trion; biexciton; Auger recombination; single-dot spectroscopy ID LIGHT-EMITTING-DIODES; HOT-CARRIER TRANSFER; SEMICONDUCTOR NANOCRYSTALS; PHOTOIONIZATION; BLINKING; ELECTRON; CHARGE; MULTIPLICATION; FLUORESCENCE; SUPPRESSION AB Charged exciton states commonly occur both in spectroscopic studies of quantum dots (QDs) and during operation of QD-based devices. The extra charge added to the neutral exciton modifies its radiative decay rate and also opens an additional nonradiative pathway associated with an Auger process whereby the recombination energy of an exciton is transferred to the excess charge. Here we conduct single-dot spectroscopic studies of Auger recombination in thick-shell ("giant") CdSe/CdS QDs with and without an interfacial alloy layer using time-tagged, time-correlated single-photon counting. In photoluminescence (PL) intensity trajectories of some of the dots, we resolve three distinct states of different emissivities ("bright", "gray", and "dark") attributed, respectively, to the neutral exciton and negative and positive trions. Simultaneously acquired PL lifetime trajectories indicate that the positive trion is much shorter lived than the negative trion, which can be explained by a high density of valence band states and a small hole localization radius (defined by the OD core size), factors that favor an Auger process involving intraband excitation of a hole. A comparison of trion and biexciton lifetimes suggests that the biexciton Auger decay can be treated in terms of a superposition of two independent channels associated with positive- and negative-trion pathways. The resulting interdependence between Auger time constants might simplify the studies of multicarrier recombination by allowing one, for example, to infer Auger lifetimes of trions of one sign based on the measurements of biexciton decay and dynamics of the trions of the opposite sign or, alternatively, estimate the biexciton lifetime based on studies of trion dynamics. C1 [Park, Young-Shin; Bae, Wan Ki; Pietryga, Jeffrey M.; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Bae, Wan Ki] Korea Inst Sci & Technol, Photoelect Hybrid Res Ctr, Seoul 136791, South Korea. RP Klimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM klimov@lanl.gov OI Park, Young-Shin/0000-0003-4204-1305; Klimov, Victor/0000-0003-1158-3179 FU Chemical Sciences, Biosciences and Geosciences Division of Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the Chemical Sciences, Biosciences and Geosciences Division of Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy. NR 54 TC 39 Z9 39 U1 10 U2 119 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUL PY 2014 VL 8 IS 7 BP 7288 EP 7296 DI 10.1021/nn5023473 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AL9LR UT WOS:000339463100086 PM 24909861 ER PT J AU Zhang, H Jang, J Liu, WY Talapin, DV AF Zhang, Hao Jang, Jaeyoung Liu, Wenyong Talapin, Dmitri V. TI Colloidal Nanocrystals with Inorganic Halide, Pseudohalide, and Halometallate Ligands SO ACS NANO LA English DT Article DE nanocrystals; surface chemistry; halide ligands; pseudohalide ligands; halometallate ligands; charge transport; carrier mobility ID QUANTUM-DOT SOLIDS; PEROVSKITE SOLAR-CELLS; ENHANCED THERMOPOWER; SURFACE LIGANDS; POST-SYNTHESIS; LOW-VOLTAGE; PERFORMANCE; PHOTOVOLTAICS; DEPOSITION; EXCHANGE AB We investigate simple halides and pseudohalides as an important class of inorganic ligands for nanocrystals (NCs) in solution phase ligand exchange. These short, robust, and easy to model ligands bind to the NC surface and provide electrostatic stabilization of NC dispersions in N-methylformamide. The replacement of organic ligands on NCs with compact halide and pseudohalide ligands greatly facilitates electronic communication between NCs. For example, a high electron mobility of mu approximate to 12 cm(2) V-1 s(-1) has been observed in thin films made of I--capped CdSe NCs. We also studied charge transport properties of thin films based on the pseudohalide N-3(-)-capped InAs NCs, suggesting the possibility of obtaining "all III-V" solids. In addition, we extend the surface chemistry of halometallates (e.g., CH3NH3PbI3), which can stabilize colloidal solutions of lead chalcogenide NCs. These halide, pseudohalide, and halometallate ligands enrich the current family of inorganic ligands and can open up more opportunities for applications of NCs in the fields of electronics, optoelectronics, and thermoelectrics. C1 [Zhang, Hao; Jang, Jaeyoung; Liu, Wenyong; Talapin, Dmitri V.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Zhang, Hao; Jang, Jaeyoung; Liu, Wenyong; Talapin, Dmitri V.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Talapin, Dmitri V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Talapin, DV (reprint author), Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. EM dvtalapin@uchicago.edu RI liu, wenyong/J-3208-2015 OI liu, wenyong/0000-0001-9143-9139 FU DOE SunShot program [DE-EE0005312]; II-VI Foundation; NSF [DMR-1310398]; DOD ONR [N00014-13-1-0490]; NSF MRSEC Program [DMR 08-20054]; U.S. Department of Energy [DE-AC02-06CH11357]; David and Lucile Packard Foundation; Keck Foundation FX We thank C. Jiang, J. Son, M. Panthani, and M. Boles for helpful discussions and T. Shpigel for editing the manuscript. The work on II-VI and IV-VI nanomaterials was supported by the DOE SunShot program under Award No. DE-EE0005312 and by the II-VI Foundation. The work on III-V nanomaterials was supported by NSF under Award No. DMR-1310398 and DOD ONR Award No. N00014-13-1-0490. D.V.T. also thanks the David and Lucile Packard Foundation and Keck Foundation for their generous support. This work used facilities supported by the NSF MRSEC Program under Award No. DMR 08-20054. The work at the Center for Nanoscale Materials (ANL) was supported by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 57 TC 65 Z9 65 U1 20 U2 220 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUL PY 2014 VL 8 IS 7 BP 7359 EP 7369 DI 10.1021/nn502470v PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AL9LR UT WOS:000339463100094 PM 24988140 ER PT J AU Choi, KM Jeong, HM Park, JH Zhang, YB Kang, JK Yaghi, OM AF Choi, Kyung Min Jeong, Hyung Mo Park, Jung Hyo Zhang, Yue-Biao Kang, Jeung Ku Yaghi, Omar M. TI Supercapacitors of Nanocrystalline Metal-Organic Frameworks SO ACS NANO LA English DT Article DE metal-organic frameworks; nanocrystals of MOFs; electrochemical capacitors ID NITROGEN-DOPED GRAPHENE; ELECTROCHEMICAL CAPACITORS; HIGH-PERFORMANCE; ADSORPTION; SITES; ELECTRODES; STABILITY; DEVICES; STORAGE; OXIDE AB The high porosity of metal-organic frameworks (MOFs) has been used to achieve exceptional gas adsorptive properties but as yet remains largely unexplored for electrochemical energy storage devices. This study shows that MOFs made as nanocrystals (nMOFs) can be doped with graphene and successfully incorporated into devices to function as supercapacitors. A series of 23 different nMOFs with multiple organic functionalities and metal ions, differing pore sizes and shapes, discrete and infinite metal oxide backbones, large and small nanocrystals, and a variety of structure types have been prepared and examined. Several members of this series give high capacitance; in particular, a zirconium MOF exhibits exceptionally high capacitance. It has the stack and areal capacitance of 0.64 and 5.09 mF cm(-2), about 6 times that of the supercapacitors made from the benchmark commercial activated carbon materials and a performance that is preserved over at least 10000 charge/discharge cycles. C1 [Choi, Kyung Min; Zhang, Yue-Biao; Yaghi, Omar M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Div Mat Sci, Berkeley, CA 94720 USA. [Choi, Kyung Min; Zhang, Yue-Biao; Yaghi, Omar M.] Kavli Energy NanoSci Inst Berkeley, Berkeley, CA 94720 USA. [Choi, Kyung Min; Jeong, Hyung Mo; Park, Jung Hyo; Kang, Jeung Ku] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. [Kang, Jeung Ku; Yaghi, Omar M.] Korea Adv Inst Sci & Technol, Grad Sch Energy Environm Water & Sustainabil, Taejon 305701, South Korea. [Yaghi, Omar M.] King Fahd Univ Petr & Minerals, Dept Chem, Dhahran 34464, Saudi Arabia. RP Kang, JK (reprint author), Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, 373-1 Guseong Dong, Taejon 305701, South Korea. EM jeung@kaist.ac.kr; yaghi@berkeley.edu RI Kang, Jeung ku/C-1610-2011; ZHANG, Yue-Biao/E-7870-2011; OI ZHANG, Yue-Biao/0000-0002-8270-1067; Yaghi, Omar/0000-0002-5611-3325 FU BASF SE (Ludwigshafen, Germany) at UC Berkeley; Global Frontier R&D Program of the Center for Hybrid Interface Materials (HIM) [2013-073298]; National Research Foundation of Korea at KAIST-Korea [2011-0028737] FX This research was supported by BASF SE (Ludwigshafen, Germany) at UC Berkeley, the Global Frontier R&D Program (2013-073298) of the Center for Hybrid Interface Materials (HIM), and the National Research Foundation of Korea (2011-0028737) at KAIST-Korea. We thank J. Jiang, H. Bae, L. Wang, and H. Furukawa for help in the nMOF synthesis and invaluable discussions. NR 30 TC 92 Z9 93 U1 98 U2 458 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUL PY 2014 VL 8 IS 7 BP 7451 EP 7457 DI 10.1021/nn5027092 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AL9LR UT WOS:000339463100104 PM 24999543 ER PT J AU Aradhya, SV Nielsen, A Hybertsen, MS Venkataraman, L AF Aradhya, Sriharsha V. Nielsen, Aileen Hybertsen, Mark S. Venkataraman, Latha TI Quantitative Bond Energetics in Atomic-Scale Junctions SO ACS NANO LA English DT Article DE atomic force microscopy; single-molecule junction; chemical bond energy; force spectroscopy ID FORCE MICROSCOPY; MOLECULE JUNCTIONS; SINGLE; CONDUCTANCE; INTERFACES; STABILITY; MECHANICS; CHEMISTRY; SURFACE AB A direct measurement of the potential energy surface that characterizes individual chemical bonds in complex materials has fundamental significance for many disciplines. Here, we demonstrate that the energy profile for metallic single-atom contacts and single-molecule junctions can be mapped by fitting ambient atomic force microscope measurements carried out in the near-equilibrium regime to a physical, but simple, functional form. We extract bond energies for junctions formed through metallic bonds as well as metal-molecule link bonds from atomic force microscope data and find that our results are in excellent quantitative agreement with density functional theory based calculations for exemplary junction structures. Furthermore, measurements from a large number of junctions can be collapsed to a single, universal force extension curve, thus revealing a surprising degree of similarity in the overall shape of the potential surface that governs these chemical bonds. Compared to previous studies under ambient conditions where analysis was confined to trends in rupture force, our approach significantly expands the quantitative information extracted from these measurements, particularly allowing analysis of the trends in bond energy directly. C1 [Aradhya, Sriharsha V.; Nielsen, Aileen; Venkataraman, Latha] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Hybertsen, Mark S.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Venkataraman, L (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM mhyberts@bnl.gov; lv2117@columbia.edu OI Hybertsen, Mark S/0000-0003-3596-9754; Aradhya, Sriharsha/0000-0002-4738-7068; Venkataraman, Latha/0000-0002-6957-6089 FU NSF [CHE-07-44185]; Packard Foundation; DOE [DE-AC02-98CH10886] FX We thank the groups of Prof. Stefan Tautz (Julich University, Julich, Germany) and Dr. Markus Ternes (Max-Planck Insititute for Solid State Research, Stuttgart, Germany) for providing their raw data that was reproduced in Figure 4 here. This work was supported by the NSF Career Award CHE-07-44185 and the Packard Foundation. A portion of this work was performed using facilities in the CFN at BNL and supported by the DOE under contract number DE-AC02-98CH10886. NR 35 TC 6 Z9 6 U1 0 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUL PY 2014 VL 8 IS 7 BP 7522 EP 7530 DI 10.1021/nn502836e PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AL9LR UT WOS:000339463100112 PM 24945851 ER PT J AU Mannix, AJ Kiraly, B Fisher, BL Hersam, MC Guisinger, NP AF Mannix, Andrew J. Kiraly, Brian Fisher, Brandon L. Hersam, Mark C. Guisinger, Nathan P. TI Silicon Growth at the Two-Dimensional Limit on Ag(111) SO ACS NANO LA English DT Article DE two-dimensional materials; silicene; surface reconstruction; scanning tunneling microscopy; molecular beam epitaxy ID STANDING WAVES; GRAPHENE; SURFACE; RAMAN; DEPOSITION; SCATTERING; RINGS; SI AB Having fueled the microelectronics industry for over 50 years, silicon is arguably the most studied and influential semiconductor. With the recent emergence of two-dimensional (2D) materials (e.g., graphene, MoS2, phosphorene, etc.), it is natural to contemplate the behavior of Si in the 2D limit. Guided by atomic-scale studies utilizing ultrahigh vacuum (UHV), scanning tunneling microscopy (STM), and spectroscopy (STS), we have investigated the 2D limits of Si growth on Ag(111). In contrast to previous reports of a distinct sp(2)-bonded silicene allotrope, we observe the evolution of apparent surface alloys (ordered 2D silicon-Ag surface phases), which culminate in the precipitation of crystalline, sp(3)-bonded Si(111) nanosheets. These nanosheets are capped with a root 3 honeycomb phase that is isostnxtural to a root 3 honeycomb-chained-trimer (HCT) reconstruction of Ag on 54111). Further investigations reveal evidence for silicon intermixing with the Ag(111) substrate followed by surface precipitation of crystalline, sp(3)-bonded silicon nanosheets. These conclusions are corroborated by ex situ atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Even at the 2D limit, scanning tunneling spectroscopy shows that the sp(3)-bonded silicon nanosheets exhibit semiconducting electronic properties. C1 [Mannix, Andrew J.; Kiraly, Brian; Fisher, Brandon L.; Guisinger, Nathan P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Mannix, Andrew J.; Kiraly, Brian; Hersam, Mark C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Hersam, Mark C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Guisinger, NP (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 South Cass Ave,Bldg 440, Argonne, IL 60439 USA. EM m-hersam@northwestern.edu; nguisinger@anl.gov RI Hersam, Mark/B-6739-2009 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357]; National Science Foundation [DGE-0824162]; U.S. Department of Energy SISGR [DE-FG02-09ER16109] FX We thank Dr. J. D. Wood (Northwestern University) and Prof. K. E. Newman (University of Notre Dame) for discussions and B. D. Myers and Dr. S.-Y. Li (Northwestern University) for assistance with FIB and TEM. This work was performed at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility, under Contract No. DE-AC02-06CH11357. B.K. acknowledges support from a National Science Foundation Graduate Research Fellowship (DGE-0824162). This work was also supported by the U.S. Department of Energy SISGR Contract No. DE-FG02-09ER16109. NR 49 TC 42 Z9 42 U1 19 U2 184 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUL PY 2014 VL 8 IS 7 BP 7538 EP 7547 DI 10.1021/nn503000w PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AL9LR UT WOS:000339463100114 PM 25000460 ER PT J AU Agbo, S Sutta, P Calta, P Biswas, R Pan, BC AF Agbo, Solomon Sutta, Pavol Calta, Pavel Biswas, Rana Pan, Bicai TI Crystallized silicon nanostructures - experimental characterization and atomistic simulations SO CANADIAN JOURNAL OF PHYSICS LA English DT Article ID NANOCRYSTALLINE SILICON; STRUCTURAL-PROPERTIES; SUPERLATTICES; HYDROGEN AB We have synthesized silicon nanocrystalline structures from thermal annealing of thin film amorphous silicon-based multilayers. The annealing procedure that was carried out in vacuum at temperatures up to 1100 degrees C is integrated in a X-ray diffraction (XRD) setup for real-time monitoring of the formation phases of the nanostructures. The microstructure of the crystallized films is investigated through experimental measurements combined with atomistic simulations of realistic nanocrystalline silicon (nc-Si) models. The multilayers consisting of uniformly alternating thicknesses of hydrogenated amorphous silicon and silicon oxide (SiO2) were deposited by plasma enhanced chemical vapor deposition on crystalline silicon and Corning glass substrates. The crystallized structure consisting of nc-Si structures embedded in an amorphous matrix were further characterized through XRD, Raman spectroscopy, and Fourier transform infrared measurements. We are able to show the different stages of nanostructure formation and how the sizes and the crystallized mass fraction can be controlled in our experimental synthesis. The crystallized silicon structures with large crystalline filling fractions exceeding 50% have been simulated with a robust classical molecular dynamics technique. The crystalline filling fractions and structural order of nc-Si obtained from this simulation are compared with our Raman and XRD measurements. C1 [Agbo, Solomon; Sutta, Pavol; Calta, Pavel] Univ W Bohemia, New Technol Res Ctr, Plzen 30614, Czech Republic. [Biswas, Rana] Iowa State Univ, Dept Phys & Astron, Ames Lab, Microelect Res Ctr, Ames, IA 50011 USA. [Biswas, Rana] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Pan, Bicai] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China. RP Agbo, S (reprint author), Univ W Bohemia, New Technol Res Ctr, Univ 8, Plzen 30614, Czech Republic. EM agbo@ntc.zcu.cz RI Pan, Bicai/A-1235-2010 FU EU [EXLIZ-NTC-7]; Czech government [EXLIZ-NTC-7]; ERDF within the OP RDI program of the Czech Ministry of Education, Youth and Sports [CZ.1.05/2.1.00/03.0088]; Ames Laboratory; Department of Energy by Iowa State University [DE-AC0207CH11385] FX The authors are grateful to the EU and Czech government for sponsorship under the EXLIZ-NTC-7 project. The result was developed within the CENTEM project, reg. No. CZ.1.05/2.1.00/03.0088, which is co-funded from the ERDF within the OP RDI program of the Czech Ministry of Education, Youth and Sports. This research of RB was supported by the Ames Laboratory, operated for the Department of Energy by Iowa State University under contract No. DE-AC0207CH11385. We acknowledge use of computational resources at the National Energy Research Scientific Computing Center. NR 19 TC 0 Z9 0 U1 3 U2 25 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA SN 0008-4204 EI 1208-6045 J9 CAN J PHYS JI Can. J. Phys. PD JUL PY 2014 VL 92 IS 7-8 SI SI BP 783 EP 788 DI 10.1139/cjp-2013-0442 PG 6 WC Physics, Multidisciplinary SC Physics GA AL8HR UT WOS:000339379500051 ER PT J AU Nan, W Krishna, CR Kim, TJ Wang, LJ Mahajan, D AF Nan, W. Krishna, C. R. Kim, T-J. Wang, L. J. Mahajan, D. TI Catalytic Upgrading of Switchgrass-Derived Pyrolysis Oil Using Supported Ruthenium and Rhodium Catalysts SO ENERGY & FUELS LA English DT Article; Proceedings Paper CT 4th International Conference on Biorefinery-Toward Bioenergy CY DEC 03-05, 2013 CL Xiamen, PEOPLES R CHINA ID BIO-OILS; BIOMASS; HYDROTREATMENT; FRACTION; LIGNIN; GC/MS; WOOD; GAS AB Upgrading of fast pyrolysis oils produced from swtichgrass was carried out using 5 wt 96 Ru and 5 wt % Rh on a carbon support as catalysts slurried in a polyethylene glycol solvent in a 300 mL Parr batch reactor in the presence of hydrogen. A hydrodeoxygenation (HDO) reaction was evaluated in the temperature range of 200-280 degrees C under hydrogen pressure of 300-1000 psig. The raw pyrolysis oil and the upgraded products were characterized by gas chromatography (GC), gas chromatography/mass spectrometry (GC/MS), and Fourier transform infrared spectroscopy (FTIR) techniques to establish the effectiveness of the hydrogenation process. With Ru/C at 280 degrees C and 1000 psig, the GC/MS data showed the absence of acetic acid and the principal liquid product slate included alcohols, hydrocarbons, cyclic compounds, and phenolics at a relative concentration of 5.2, 21.2, 3.8, and 35.7%, respectively. C1 [Nan, W.; Kim, T-J.; Mahajan, D.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Krishna, C. R.; Mahajan, D.] Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA. [Wang, L. J.] North Carolina Agr & Tech State Univ, Dept Nat Resources & Environm Design, Greensboro, NC 27411 USA. RP Mahajan, D (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM devinder.mahajan@stonybrook.edu RI KIM, TAE JIN/M-7994-2014 OI KIM, TAE JIN/0000-0002-0096-303X FU National Science Foundation Center for Bioenergy Research and Development (CBERD); U.S. Department of Agriculture (USDA) from North Carolina Agricultural and Technical State University [NIFA 2010-38821-21512] FX The authors acknowledge funding from the National Science Foundation Center for Bioenergy Research and Development (CBERD). The authors thank the funds provided by the U.S. Department of Agriculture (USDA, NIFA 2010-38821-21512) under the subcontract from North Carolina Agricultural and Technical State University. The authors also thank Drs. Charles Mullen and Akwasi Boateng of USDA-ARS, Wyndmoor, PA, for providing samples of the pyrolysis oil. NR 28 TC 5 Z9 5 U1 0 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD JUL PY 2014 VL 28 IS 7 BP 4588 EP 4595 DI 10.1021/ef500826k PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AL8DQ UT WOS:000339368500042 ER PT J AU Bogin, GE Osecky, E Chen, JY Ratcliff, MA Luecke, J Zigler, BT Dean, AM AF Bogin, Gregory E., Jr. Osecky, Eric Chen, J. Y. Ratcliff, Matthew A. Luecke, Jon Zigler, Bradley T. Dean, Anthony M. TI Experiments and Computational Fluid Dynamics Modeling Analysis of Large n-Alkane Ignition Kinetics in the Ignition Quality Tester SO ENERGY & FUELS LA English DT Article; Proceedings Paper CT 4th International Conference on Biorefinery-Toward Bioenergy CY DEC 03-05, 2013 CL Xiamen, PEOPLES R CHINA ID NEGATIVE TEMPERATURE-COEFFICIENT; CONCENTRATION-TIME-HISTORIES; REACTION-MECHANISM; COMPREHENSIVE MECHANISM; HYDROCARBONS OXIDATION; ISOOCTANE OXIDATION; METHANOL OXIDATION; HEPTANE OXIDATION; HIGH-PRESSURE; DELAY TIMES AB This paper presents experimental measurements of ignition delays from low- to high-volatility n-alkanes representative of diesel and jet fuel compounds that are supplemented with a computational fluid dynamics (CFD) analysis. The ignition quality tester (IQT) is shown to be effective for studying ignition of low-volatility fuels, such as n-hexadecane, which are typically difficult to measure. Ignition delays, both experimental and modeled, are presented using an eight-point experimental design matrix (1.5 and 3.0 MPa, 823 and 723 K, and 15 and 21% O-2). A detailed n-alkane mechanism (C-8-C-16 with a total of 2115 species) was reduced to a skeletal 237 species n-hexadecane mechanism using a targeted search algorithm. A CFD model of the IQT (developed using IUVA-3V) coupled with skeletal mechanisms predicted ignition delays of n-heptane and n-hexadecane with reasonable accuracy over the eight-point matrix, with the exception of the highest temperature, lowest pressure, and oxygen concentration conditions. Temperature sweeps across a range of pressures (0.1-1.0 MPa) and temperatures (673-973 K) were performed for n-heptane, n-decane, n-dodecane, and n-hexadecane. The negative temperature coefficient (NTC) region was observed experimentally for the first time for n-hexadecane. The NTC region for n-dodecane and n-decane has previously been observed in shock tubes and rapid compression machines and is reported here for the first time in the IQT. The IQT is thus capable of capturing NTC behavior for large alkanes and can serve as an additional experimental validation tool for chemical kinetic mechanisms of low-volatility surrogates for diesel and jet fuels. C1 [Bogin, Gregory E., Jr.] Colorado Sch Mines, Dept Mech Engn, Golden, CO 80401 USA. [Osecky, Eric; Dean, Anthony M.] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. [Chen, J. Y.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Ratcliff, Matthew A.; Luecke, Jon; Zigler, Bradley T.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Bogin, GE (reprint author), Colorado Sch Mines, Dept Mech Engn, Golden, CO 80401 USA. EM gbogin@mines.edu FU U.S. Department of Energy [DE-AC36-08-GO28308]; NREL; Department of Energy's Office of Energy Efficiency and Renewable Energy FX The authors thank the U.S. Department of Energy Vehicle Technologies Office and Fuel Technologies Program Manager Kevin Stork for their support of this fuel research. This work was supported by the U.S. Department of Energy under Contract DE-AC36-08-GO28308 with the NREL. A portion of the research was performed using computational resources sponsored by the Department of Energy's Office of Energy Efficiency and Renewable Energy and located at the NREL. NR 56 TC 11 Z9 11 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD JUL PY 2014 VL 28 IS 7 BP 4781 EP 4794 DI 10.1021/ef500769j PG 14 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AL8DQ UT WOS:000339368500064 ER PT J AU Singh, G Srinivasan, R Cheng, J Peng, Z Fujimura, K Baek, MS Panzer, AR Tringe, SG Chen, F Sorek, R Weng, L Bristow, J Wiener-Kronish, JP Lynch, SV AF Singh, G. Srinivasan, R. Cheng, J. Peng, Z. Fujimura, K. Baek, M. S. Panzer, A. R. Tringe, S. G. Chen, F. Sorek, R. Weng, L. Bristow, J. Wiener-Kronish, J. P. Lynch, S. V. TI Rearrangement of a Large Novel Pseudomonas aeruginosa Gene Island in Strains Isolated from a Patient Developing Ventilator-Associated Pneumonia SO JOURNAL OF CLINICAL MICROBIOLOGY LA English DT Article ID GENOMIC ISLANDS; PATHOGENICITY ISLANDS; BIOFILM FORMATION; EVOLUTION; DIVERSITY; PAPI-1; DNA; RESISTANCE; VIRULENCE; MICROBES AB Bacterial gene islands add to the genetic repertoire of opportunistic pathogens. Here, we perform comparative analyses of three Pseudomonas aeruginosa strains isolated sequentially over a 3-week period from a patient with ventilator-associated pneumonia (VAP) who received clindamycin and piperacillin-tazobactam as part of their treatment regime. While all three strains appeared to be clonal by standard pulsed-field gel electrophoresis, whole-genome sequencing revealed subtle alterations in the chromosomal organization of the last two strains; specifically, an inversion event within a novel 124-kb gene island (PAGI 12) composed of 137 open reading frames [ORFs]. Predicted ORFs in the island included metabolism and virulence genes. Overexpression of a gene island-borne putative beta-lactamase gene was observed following piperacillin-tazobactam exposure and only in those strains that had undergone the inversion event, indicating altered gene regulation following genomic remodeling. Examination of a separate cohort of 76 patients with VAP for integration at this tRNA(lys) recombination site demonstrated that patients exhibiting evidence of integration at this site had significantly higher 28-day mortality. These findings provide evidence that P. aeruginosa can integrate, rapidly remodel, and express exogenous genes, which likely contributes to its fitness in a clinical setting. C1 [Singh, G.; Baek, M. S.; Panzer, A. R.] Univ Calif San Francisco, Dept Anesthesia & Perioperat Care, San Francisco, CA 94143 USA. [Srinivasan, R.; Fujimura, K.; Lynch, S. V.] Univ Calif San Francisco, Dept Med, Div Gastroenterol, San Francisco, CA 94117 USA. [Cheng, J.; Peng, Z.; Tringe, S. G.; Chen, F.; Sorek, R.; Weng, L.; Bristow, J.] Joint Genome Inst, Walnut Creek, CA USA. [Cheng, J.; Peng, Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Wiener-Kronish, J. P.] Massachusetts Gen Hosp, Dept Anesthesia Crit Care & Pain Med, Boston, MA 02114 USA. RP Lynch, SV (reprint author), Univ Calif San Francisco, Dept Med, Div Gastroenterol, San Francisco, CA 94117 USA. EM susan.lynch@ucsf.edu FU National Institutes of Health [HLO74005, HL69809, AI075410PO1]; Pathways to Careers in Clinical and Translational Research FX This work was supported by research grants from the National Institutes of Health (HLO74005, HL69809, and AI075410PO1) and the Pathways to Careers in Clinical and Translational Research. NR 37 TC 3 Z9 4 U1 0 U2 1 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0095-1137 EI 1098-660X J9 J CLIN MICROBIOL JI J. Clin. Microbiol. PD JUL PY 2014 VL 52 IS 7 BP 2430 EP 2438 DI 10.1128/JCM.01626-13 PG 9 WC Microbiology SC Microbiology GA AL6YM UT WOS:000339279700023 PM 24789195 ER PT J AU Be, NA Allen, JE Brown, TS Gardner, SN McLoughlin, KS Forsberg, JA Kirkup, BC Chromy, BA Luciw, PA Elster, EA Jaing, CJ AF Be, Nicholas A. Allen, Jonathan E. Brown, Trevor S. Gardner, Shea N. McLoughlin, Kevin S. Forsberg, Jonathan A. Kirkup, Benjamin C. Chromy, Brett A. Luciw, Paul A. Elster, Eric A. Jaing, Crystal J. TI Microbial Profiling of Combat Wound Infection through Detection Microarray and Next-Generation Sequencing SO JOURNAL OF CLINICAL MICROBIOLOGY LA English DT Article ID IRAQI-FREEDOM; ACINETOBACTER; EXPRESSION; MANAGEMENT; INJURIES; COLONIZATION; BIOMARKERS; CYTOKINE; BIOFILM; CARE AB Combat wound healing and resolution are highly affected by the resident microbial flora. We therefore sought to achieve comprehensive detection of microbial populations in wounds using novel genomic technologies and bioinformatics analyses. We employed a microarray capable of detecting all sequenced pathogens for interrogation of 124 wound samples from extremity injuries in combat-injured U. S. service members. A subset of samples was also processed via next-generation sequencing and metagenomic analysis. Array analysis detected microbial targets in 51% of all wound samples, with Acinetobacter baumannii being the most frequently detected species. Multiple Pseudomonas species were also detected in tissue biopsy specimens. Detection of the Acinetobacter plasmid pRAY correlated significantly with wound failure, while detection of enteric-associated bacteria was associated significantly with successful healing. Whole-genome sequencing revealed broad microbial biodiversity between samples. The total wound bioburden did not associate significantly with wound outcome, although temporal shifts were observed over the course of treatment. Given that standard microbiological methods do not detect the full range of microbes in each wound, these data emphasize the importance of supplementation with molecular techniques for thorough characterization of wound-associated microbes. Future application of genomic protocols for assessing microbial content could allow application of specialized care through early and rapid identification and management of critical patterns in wound bioburden. C1 [Be, Nicholas A.; Jaing, Crystal J.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Allen, Jonathan E.; Gardner, Shea N.; McLoughlin, Kevin S.] Lawrence Livermore Natl Lab, Computat Global Secur Directorates, Livermore, CA USA. [Brown, Trevor S.; Forsberg, Jonathan A.; Elster, Eric A.] Naval Med Res Ctr, Regenerat Med Dept, Silver Spring, MD USA. [Brown, Trevor S.; Forsberg, Jonathan A.; Elster, Eric A.] Uniformed Serv Univ Hlth Sci, Surg Crit Care Initiat, Bethesda, MD 20814 USA. [Kirkup, Benjamin C.; Elster, Eric A.] Uniformed Serv Univ Hlth Sci, Norman M Rich Dept Surg, F Edward Hebert Sch Med, Bethesda, MD 20814 USA. [Kirkup, Benjamin C.] Walter Reed Army Inst Res, Dept Wound Infect, Silver Spring, MD USA. [Chromy, Brett A.; Luciw, Paul A.] Univ Calif Davis, Sch Med, Dept Pathol & Lab Med, Davis, CA 95616 USA. [Luciw, Paul A.] Univ Calif Davis, Ctr Comparat Med, Davis, CA 95616 USA. RP Be, NA (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM be1@llnl.gov; jaing2@llnl.gov RI Kirkup, Benjamin/C-3610-2009; Brown, Trevor/F-7392-2015 OI Kirkup, Benjamin/0000-0002-8722-6218; Brown, Trevor/0000-0001-7042-785X FU U.S. Army Medical Research and Materiel Command [MIPR1EO89M1115]; U. S. Navy Bureau of Medicine and Surgery under the Medical Development Program and Office of Naval Research [604771N. 0933.001. A0604]; U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U. S. Government FX This work was sponsored by the U.S. Army Medical Research and Materiel Command (MIPR1EO89M1115). The U. S. Army Medical Research Acquisition Activity (Fort Detrick, MD) is the awarding and administering acquisition office. A portion of this effort was also supported by the U. S. Navy Bureau of Medicine and Surgery under the Medical Development Program and Office of Naval Research work unit (604771N. 0933.001. A0604). This study was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.; This document was prepared as an account of work sponsored by an agency of the U. S. Government. Neither the U. S. Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U. S. Government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U. S. Government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. NR 43 TC 11 Z9 12 U1 4 U2 14 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0095-1137 EI 1098-660X J9 J CLIN MICROBIOL JI J. Clin. Microbiol. PD JUL PY 2014 VL 52 IS 7 BP 2583 EP 2594 DI 10.1128/JCM.00556-14 PG 12 WC Microbiology SC Microbiology GA AL6YM UT WOS:000339279700043 PM 24829242 ER PT J AU McMasters, RL Dinwiddie, RB AF McMasters, Robert L. Dinwiddie, Ralph B. TI Anisotropic Thermal Diffusivity Measurement Using the Flash Method SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article AB A well-established method for determining the thermal diffusivity of materials is the laser flash method. The work presented here compares two analysis methods for flash heating tests on anisotropic carbon bonded carbon fiber. This material exhibits a higher conductivity in the direction in which the fibers are oriented than in the direction perpendicular to the fiber orientation. Of the two analysis methods used, one method uses the temperature data from the entire surface of the sample by examining 201 temperature histories simultaneously, with each temperature history originating from an individual pixel within a line across the middle of the sample. The other analysis method uses only the temperature history from a single pixel in the center of the sample, similar to the data that is traditionally generated using the classical flash diffusivity method. Both analysis methods include accommodations for modeling the penetration of the laser flash into the porous surface of the carbon bonded carbon fiber material. The robustness of the method using the single-pixel temperature history shows that anisotropic thermal diffusivity can be measured using standard flash diffusivity instruments, if modeled properly, avoiding the additional complexity associated with the use of a thermal imaging camera. C1 [McMasters, Robert L.] Virginia Mil Inst, Dept Mech Engn, Lexington, VA 24450 USA. [Dinwiddie, Ralph B.] Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP McMasters, RL (reprint author), Virginia Mil Inst, Dept Mech Engn, Lexington, VA 24450 USA. EM mcmastersrl@vmi.edu; dinwiddierb@ornl.gov FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program FX This research at the Oak Ridge National Laboratory's High Temperature Materials Laboratory was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. NR 12 TC 3 Z9 3 U1 1 U2 16 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 EI 1533-6808 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD JUL PY 2014 VL 28 IS 3 BP 518 EP 523 DI 10.2514/1.T4189 PG 6 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA AM1QK UT WOS:000339622500016 ER PT J AU Rezentes, TB Prelas, MA Lukosi, E Watermann, ML Crawford, J Olsher, RH AF Rezentes, Thomas B., Jr. Prelas, Mark A. Lukosi, Eric Watermann, Matthew L. Crawford, Jack Olsher, Richard H. TI COMPUTER-BASED INVESTIGATIVE TECHNIQUES: A COMPARISON OF DOSE USING THE MCNP CODE FOR OPTICALLY STIMULATED LIGHT DOSIMETERS SO NUCLEAR TECHNOLOGY LA English DT Article DE shallow dose equivalent; Monte Carlo; optically stimulated luminescence dosimeter ID LUMINESCENCE AB A computer-based investigative technique, using the Los Alamos Monte Carlo code MCNP5 version 1.51 (Radiation Safety Information Computational Center), was completed to assess the shallow dose equivalent (SDE) reported on the Landauer, Inc.,(TM) Luxel+ optically stimulated light (OSL) dosimeter. Experimental test irradiations were conducted on 18 OSL dosimeters through various controlled exposures to the source (10 mCi Sr-90). The reported SDE for each test irradiation was compared to the results for SDE calculated using MCNP5. All test irradiation experiments were conducted with the Sr-90 source placed in direct contact with the dosimeter with slight placement changes across the dosimeter face. It was found that these slight adjustments caused vast differences in reported doses by Landauer. The SDE determined in a tissue matrix using MCNP5 was studied for two of the dosimeter badge geometries, and it was found that some qualitative agreement exists between the reported and simulated doses in contradiction with the experimental results. Further simulated analysis was not conducted because precise source-dosimeter geometries and the algorithm used by Landauer to analyze its Luxel+ OSL dosimeters were not known. These results indicate that a future study should be conducted with more rigorous simulated benchmarking to verify these results. C1 [Rezentes, Thomas B., Jr.; Prelas, Mark A.; Watermann, Matthew L.; Crawford, Jack] Univ Missouri, Nucl Sci & Engn Inst, Columbia, MO 65211 USA. [Lukosi, Eric] Univ Tennessee, Knoxville, TN 37996 USA. [Olsher, Richard H.] Los Alamos Natl Lab, Hlth Phys Measurements Grp, Los Alamos, NM 87545 USA. RP Rezentes, TB (reprint author), Univ Missouri, Nucl Sci & Engn Inst, E2435 Laffeue Hall, Columbia, MO 65211 USA. EM prelasm@missouri.edu NR 9 TC 0 Z9 0 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2014 VL 187 IS 1 BP 96 EP 102 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AL9OJ UT WOS:000339470300007 ER PT J AU Brown, NR Hanson, AL Diamond, DJ AF Brown, Nicholas R. Hanson, Albert L. Diamond, David J. TI IMPACT OF LOCAL BURNUP ON PREDICTION OF POWER DENSITY IN THE NIST RESEARCH REACTOR SO NUCLEAR TECHNOLOGY LA English DT Article DE NIST research reactor (NBSR); MTR fuel; local fuel depletion ID NUMERICAL STABILITY AB This study addresses the overprediction of local power when the burnup distribution in each half-element of the National Institute of Standards and Technology (NIST) research reactor, known as the NBSR, is assumed to be uniform a constraint in the full-core model used for neutronic analysis. A single-element model was utilized to quantify the impact of axial and platewise burnup on the power distribution within the NBSR fuel elements for both high-enriched uranium (HEU) and (proposed) low-enriched uranium (LEU) fuel. To validate this approach, key parameters in the single-element model were compared to parameters from an equilibrium core model, specifically, neutron energy spectrum, power distribution, and integral U-235 vector. The power distribution changes significantly when incorporating local burn up effects and has lower power peaking relative to the uniform burnup case. In the uniform burnup case, the axial relative power peaking is overpredicted by as much as 59% in the HEU single element and 46% in the LEU single element. In the uniform burnup case, the platewise power peaking is overpredicted by as much as 23% in the HEU single element and 18% in the LEU single element. The degree of overprediction increases as a function of burnup cycle, with the greatest overprediction at the end of fuel element life. However, the overprediction in local power is always conservative in terms of the minimum critical heat flux ratio, a key safety parameter that depends on the local heat flux condition. The thermal flux peak is always in the midplane gap; this causes the local cumulative burnup near the midplane gap to be significantly higher than the fuel element average. Uniform burnup distribution throughout a half-element also causes a bias in fuel element reactivity worth particularly near end of li f e, primarily due to the importance of the fissile inventory in the midplane gap region. Despite this bias, comparisons of cycle length exhibit very good agreement between the core model with uniform burn up and the NBSR, which has many decades of operational experience with HEU fuel. C1 [Brown, Nicholas R.; Hanson, Albert L.; Diamond, David J.] Brookhaven Natl Lab, Nucl Sci & Technol Dept, Upton, NY 11973 USA. RP Brown, NR (reprint author), Brookhaven Natl Lab, Nucl Sci & Technol Dept, Bldg 817, Upton, NY 11973 USA. EM nbrown@bnl.gov FU National Nuclear Security Administration; Brookhaven Science Associates [DE-AC02-98CH10886]; U.S. Department of Energy FX The authors benefitted greatly from the support of the staff at the NIST Center for Neutron Research, which runs the NBSR. Thanks are due S. O'Kelly, R. Williams, and M. Rowe for close collaboration. The authors appreciate the financial support of the National Nuclear Security Administration. This manuscript has been authored by employees of Brookhaven Science Associates under contract DE-AC02-98CH10886 with the U.S. Department of Energy. NR 14 TC 0 Z9 0 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2014 VL 187 IS 1 BP 103 EP 116 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AL9OJ UT WOS:000339470300008 ER PT J AU Aktulga, HM Lin, L Haine, C Ng, EG Yang, C AF Aktulga, Hasan Metin Lin, Lin Haine, Christopher Ng, Esmond G. Yang, Chao TI Parallel eigenvalue calculation based on multiple shift-invert Lanczos and contour integral based spectral projection method SO PARALLEL COMPUTING LA English DT Article; Proceedings Paper CT 7th Workshop on Parallel Matrix Algorithms and Applications (PMAA) CY JUN 28-30, 2012 CL London, ENGLAND DE Parallel eigenvalue computations; Spectral transformation; Multiple shift-invert Lanczos; Contour integral based spectral projection method; Strong scaling; Weak scaling ID ELECTRONIC-STRUCTURE CALCULATIONS; NONSYMMETRIC LINEAR-SYSTEMS; ALGORITHM AB We discuss the possibility of using multiple shift invert Lanczos and contour integral based spectral projection method to compute a relatively large number of eigenvalues of a large sparse and symmetric matrix on distributed memory parallel computers. The key to achieving high parallel efficiency in this type of computation is to divide the spectrum into several intervals in a way that leads to optimal use of computational resources. We discuss strategies for dividing the spectrum. Our strategies make use of an eigenvalue distribution profile that can be estimated through inertial counts and cubic spline fitting. Parallel sparse direct methods are used in both approaches. We use a simple cost model that describes the cost of computing k eigenvalues within a single interval in terms of the asymptotic cost of sparse matrix factorization and triangular substitutions. Several computational experiments are performed to demonstrate the effect of different spectrum division strategies on the overall performance of both multiple shift invert Lanczos and the contour integral based method. We also show the parallel scalability of both approaches in the strong and weak scaling sense. In addition, we compare the performance of multiple shift invert Lanczos and the contour integral based spectral projection method on a set of problems from density functional theory (DFT). (C) 2014 Elsevier B.V. All rights reserved. C1 [Aktulga, Hasan Metin; Lin, Lin; Ng, Esmond G.; Yang, Chao] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Haine, Christopher] Versailles St Quentin enYvelines Univ, F-78000 Versailles, France. RP Aktulga, HM (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. EM HMAktulga@lbl.gov NR 36 TC 4 Z9 5 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD JUL PY 2014 VL 40 IS 7 SI SI BP 195 EP 212 DI 10.1016/j.parco.2014.03.002 PG 18 WC Computer Science, Theory & Methods SC Computer Science GA AM1IA UT WOS:000339598400005 ER PT J AU Langguth, J Azad, A Halappanavar, M Manne, F AF Langguth, J. Azad, A. Halappanavar, M. Manne, F. TI On parallel push-relabel based algorithms for bipartite maximum matching SO PARALLEL COMPUTING LA English DT Article; Proceedings Paper CT 7th Workshop on Parallel Matrix Algorithms and Applications (PMAA) CY JUN 28-30, 2012 CL London, ENGLAND DE Bipartite graphs; Matching; push-relabel algorithms; Graph theory; Transversals ID FLOW PROBLEM; TRANSVERSAL; GRAPHS AB We study multithreaded push-relabel based algorithms for computing maximum cardinality matching in bipartite graphs. Matching is a fundamental combinatorial problem with applications in a wide variety of problems in science and engineering. We are motivated by its use in the context of sparse linear solvers for computing the maximum transversal of a matrix. Other applications can be found in many fields such as bioinformatics (Azad et al., 2010) [4], scheduling (Timmer and Jess, 1995) [27], and chemical structure analysis (John, 1995) [14]. We implement and test our algorithms on several multi-socket multicore systems and compare their performance to state-of-the-art augmenting path-based serial and parallel algorithms using a test set comprised of a wide range of real-world instances. Building on several heuristics for enhancing performance, we demonstrate good scaling for the parallel push-relabel algorithm. We show that it is comparable to the best augmenting path-based algorithms for bipartite matching. To the best of our knowledge, this is the first extensive study of multithreaded push-relabel based algorithms. In addition to a direct impact on the applications using matching, the proposed algorithmic techniques can be extended to preflow-push based algorithms for computing maximum flow in graphs. (C) 2014 Elsevier B.V. All rights reserved. C1 [Langguth, J.] Simula Res Lab, Fornebu, Norway. [Azad, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Halappanavar, M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Manne, F.] Univ Bergen, N-5020 Bergen, Norway. RP Langguth, J (reprint author), Simula Res Lab, Fornebu, Norway. EM langguth@simula.no; aazad@purdue.edu; mahantesh.halappanavar@pnnl.gov; fredrik.manne@ii.uib.no NR 27 TC 5 Z9 5 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD JUL PY 2014 VL 40 IS 7 SI SI BP 289 EP 308 DI 10.1016/j.parco.2014.03.004 PG 20 WC Computer Science, Theory & Methods SC Computer Science GA AM1IA UT WOS:000339598400011 ER PT J AU Brzezowski, P Schlicke, H Richter, A Dent, RM Niyogi, KK Grimm, B AF Brzezowski, Pawel Schlicke, Hagen Richter, Andreas Dent, Rachel M. Niyogi, Krishna K. Grimm, Bernhard TI The GUN4 protein plays a regulatory role in tetrapyrrole biosynthesis and chloroplast-to-nucleus signalling in Chlamydomonas reinhardtii SO PLANT JOURNAL LA English DT Article DE Chlamydomonas reinhardtii; tetrapyrrole biosynthesis pathway; GUN4; retrograde signalling; protoporphyrin IX; singlet oxygen; Mg chelatase ID MG-PROTOPORPHYRIN IX; BENGAL TYPE-II; RED TYPE-I; GENE-EXPRESSION; SINGLET OXYGEN; CHLOROPHYLL BIOSYNTHESIS; INSERTIONAL MUTAGENESIS; OXIDATIVE STRESS; MESSENGER-RNA; ARABIDOPSIS AB The GENOMES UNCOUPLED 4 (GUN4) protein is found only in aerobic photosynthetic organisms. We investigated the role of GUN4 in metabolic activities of the Mg branch of the tetrapyrrole biosynthesis pathway and the plastid signal-mediated changes of nuclear gene expression in Chlamydomonas reinhardtii. In light, gun4 accumulates only 40% of the wild-type chlorophyll level. Light-or dark-grown gun4 mutant accumulates high levels of protoporphyrin IX (Proto), and displays increased sensitivity to moderate light intensities. Despite the photooxidative stress, gun4 fails to downregulate mRNA levels of the tetrapyrrole biosynthesis and the photosynthesis-associated nuclear genes (PhANGs). In contrast, upon illumination, the Proto-accumulating and light-sensitive chlD-1 mutant displays the expected downregulation of the same nuclear genes. Although chlD-1 and the wild type have similar GUN4 transcript levels, the GUN4 protein in chlD-1 is hardly detectable. Overexpression of GUN4 in chlD-1 modifies the downregulation of nuclear gene expression, but also increases light tolerance. Therefore, GUN4 is proposed to function in 'shielding' Proto, and most likely MgProto, by reducing reactivity with O-2. Furthermore, GUN4 seems to be involved in sensing elevated levels of these photoreactive tetrapyrrole intermediates, and contributing to O-1(2)-mediated retrograde signalling, originating from chlorophyll biosynthesis. C1 [Brzezowski, Pawel; Schlicke, Hagen; Richter, Andreas; Grimm, Bernhard] Humboldt Univ, Inst Biol Plant Physiol, D-10115 Berlin, Germany. [Dent, Rachel M.; Niyogi, Krishna K.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Howard Hughes Med Inst, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Dent, Rachel M.; Niyogi, Krishna K.] Phys Biosci Div, Berkeley, CA 94720 USA. RP Grimm, B (reprint author), Humboldt Univ, Inst Biol Plant Physiol, Philippstr 13, D-10115 Berlin, Germany. EM bernhard.grimm@rz.hu-berlin.de OI Richter, Andreas Sven/0000-0002-2293-7297 FU US Department of Energy [449B]; Deutsche Forschungsgemeinschaft [936 GR 15-2] FX The authors would like to thank Marilyn Kobayashi for maintaining the chlD-1 and gun4 mutant strains, Michael Schroda (University of Kaiserslautern, Germany) for the pMS586 vector, Christoph Beck (University of Freiburg, Germany) for providing the GUN4 antibodies, and Setsuko Wakao for comments on the article. The isolation and initial characterization of the gun4 mutant was supported by funding from the US Department of Energy, under Field Work Proposal number 449B granted to K.K.N. This project was supported by a research grant from the Deutsche Forschungsgemeinschaft (project 936 GR 15-2) granted to B.G. NR 50 TC 10 Z9 10 U1 1 U2 23 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 EI 1365-313X J9 PLANT J JI Plant J. PD JUL PY 2014 VL 79 IS 2 BP 285 EP 298 DI 10.1111/tpj.12560 PG 14 WC Plant Sciences SC Plant Sciences GA AL9DG UT WOS:000339439200009 PM 24861705 ER PT J AU He, W Saldana, M Scharadin, T Hoang-Phou, S Trans, D Chang, D Carraway, K Henderson, P Coleman, MA AF He, Wei Saldana, Matthew Scharadin, Tiffany Hoang-Phou, Steven Trans, Denise Chang, Dennis Carraway, Kermit Henderson, Paul Coleman, Matthew A. TI Characterizing HER2 Gene Variation at the Protein Level to Address Racial Disparities in Breast Cancer Mortality SO PROTEIN SCIENCE LA English DT Meeting Abstract CT 28th Annual Symposium of the Protein-Society CY JUL 27-30, 2014 CL San Diego, CA SP Prot Soc, Bristol Myers Squibb, Lilly, Biochemistry C1 [He, Wei; Scharadin, Tiffany; Hoang-Phou, Steven; Trans, Denise; Henderson, Paul; Coleman, Matthew A.] Univ Calif Davis, Sacramento, CA 95817 USA. [Saldana, Matthew; Chang, Dennis; Carraway, Kermit] Univ Calif Davis, Dept Biochem & Mol Med, Sacramento, CA 95817 USA. [He, Wei] NSF Ctr Biophoton, Sacramento, CA USA. [Coleman, Matthew A.] Lawrence Livermore Natl Lab, Livermore, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 EI 1469-896X J9 PROTEIN SCI JI Protein Sci. PD JUL PY 2014 VL 23 SU 1 MA 10-57 BP 74 EP 75 PG 2 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AM0OU UT WOS:000339545700047 ER PT J AU Wu, RY Clancy, S Joachimiak, A AF Wu, Ruiying Clancy, Shonda Joachimiak, Andrzej TI Insight Into the Catalytic Mechanism of GABA-producing Enzyme: Glutamate Decarboxylase from Sphaerobacter thermophilus SO PROTEIN SCIENCE LA English DT Meeting Abstract CT 28th Annual Symposium of the Protein-Society CY JUL 27-30, 2014 CL San Diego, CA SP Prot Soc, Bristol Myers Squibb, Lilly, Biochemistry C1 [Wu, Ruiying; Clancy, Shonda; Joachimiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Genom, Argonne, IL 60439 USA. [Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 EI 1469-896X J9 PROTEIN SCI JI Protein Sci. PD JUL PY 2014 VL 23 SU 1 MA 10-117 BP 106 EP 106 PG 1 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AM0OU UT WOS:000339545700107 ER PT J AU Marean-Reardon, C Reardon, P Squier, T McAteer, K AF Marean-Reardon, Carrie Reardon, Patrick Squier, Thomas McAteer, Kathleen TI Characterization Of A Novel Synthetic Biomaterial For Protein Immobilization SO PROTEIN SCIENCE LA English DT Meeting Abstract CT 28th Annual Symposium of the Protein-Society CY JUL 27-30, 2014 CL San Diego, CA SP Prot Soc, Bristol Myers Squibb, Lilly, Biochemistry C1 [Marean-Reardon, Carrie; McAteer, Kathleen] Washington State Univ, Richland, WA USA. [Reardon, Patrick] Pacific NW Natl Lab, Washington, DC USA. [Squier, Thomas] Western Univ Hlth Sci, Lebanon, OR USA. NR 0 TC 0 Z9 0 U1 1 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 EI 1469-896X J9 PROTEIN SCI JI Protein Sci. PD JUL PY 2014 VL 23 SU 1 MA 12-158 BP 128 EP 128 PG 1 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AM0OU UT WOS:000339545700148 ER PT J AU Reardon, PN Mueller, KT AF Reardon, Patrick N. Mueller, Karl T. TI Structural Characterization Of The Major Pilin Subunit From The Bacterial Nanowires Of Geobacter Sulfurreducens SO PROTEIN SCIENCE LA English DT Meeting Abstract CT 28th Annual Symposium of the Protein-Society CY JUL 27-30, 2014 CL San Diego, CA SP Prot Soc, Bristol Myers Squibb, Lilly, Biochemistry C1 [Mueller, Karl T.] Penn State Univ, Dept Chem, University Pk, PA 16802 USA. [Reardon, Patrick N.; Mueller, Karl T.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 EI 1469-896X J9 PROTEIN SCI JI Protein Sci. PD JUL PY 2014 VL 23 SU 1 MA 06-339 BP 220 EP 221 PG 2 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AM0OU UT WOS:000339545700329 ER PT J AU Bourguet, FA Blanchette, CD Fischer, NO Jackson, PJ Hadi, MZ He, W Kay, BK Lam, KS Laurence, TA Rogers, Z Voss, JC Coleman, MA AF Bourguet, Feliza A. Blanchette, Craig D. Fischer, Nicholas O. Jackson, Paul J. Hadi, Masood Z. He, Wei Kay, Brian K. Lam, Kit S. Laurence, Ted A. Rogers, Zachary Voss, John C. Coleman, Matthew A. TI Cell-free Translation Systems For Biophysical And Biochemical Characterization Of Proteins And Protein Complexes SO PROTEIN SCIENCE LA English DT Meeting Abstract CT 28th Annual Symposium of the Protein-Society CY JUL 27-30, 2014 CL San Diego, CA SP Prot Soc, Bristol Myers Squibb, Lilly, Biochemistry C1 [Bourguet, Feliza A.; Blanchette, Craig D.; Fischer, Nicholas O.; Jackson, Paul J.; Coleman, Matthew A.] Lawrence Livermore Natl Lab, Biol & Biotechnol Div, Livermore, CA USA. [Hadi, Masood Z.] NASA, Ames Res Ctr, Mountain View, CA USA. [He, Wei; Lam, Kit S.; Rogers, Zachary] Univ Calif Davis, Ctr Biophoton, Sacramento, CA 95817 USA. [Kay, Brian K.] Univ Illinois, Chicago, IL USA. [Laurence, Ted A.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA USA. [Voss, John C.; Coleman, Matthew A.] Univ Calif Davis, Sacramento, CA 95817 USA. NR 0 TC 0 Z9 0 U1 1 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 EI 1469-896X J9 PROTEIN SCI JI Protein Sci. PD JUL PY 2014 VL 23 SU 1 MA 06-368 BP 235 EP 236 PG 2 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AM0OU UT WOS:000339545700358 ER PT J AU Hunter, M Segelke, BW Zatsepin, N Coleman, M Benner, WH Hauriege, S Tsai, CJ Li, XD Pedrini, B Schertler, G Frank, M AF Hunter, Mark Segelke, Brent W. Zatsepin, Nadia Coleman, Matt Benner, W. Henry Hauriege, Stefan Tsai, Ching-Ju Li, Xiao-dan Pedrini, Bill Schertler, Gebhard Frank, Matthias TI Advancing Membrane Protein Crystallography Using the LCLS SO PROTEIN SCIENCE LA English DT Meeting Abstract CT 28th Annual Symposium of the Protein-Society CY JUL 27-30, 2014 CL San Diego, CA SP Prot Soc, Bristol Myers Squibb, Lilly, Biochemistry C1 [Zatsepin, Nadia] Arizona State Univ, Tempe, AZ USA. [Hunter, Mark; Segelke, Brent W.; Coleman, Matt; Benner, W. Henry; Hauriege, Stefan; Frank, Matthias] LLNL, Livermore, CA USA. [Tsai, Ching-Ju; Li, Xiao-dan; Pedrini, Bill; Schertler, Gebhard] Paul Scherrer Inst, Villigen, Switzerland. RI Frank, Matthias/O-9055-2014 NR 0 TC 0 Z9 0 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 EI 1469-896X J9 PROTEIN SCI JI Protein Sci. PD JUL PY 2014 VL 23 SU 1 MA 06-370 BP 236 EP 237 PG 2 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AM0OU UT WOS:000339545700360 ER PT J AU Rinehart, SA Rizzo, M Benford, DJ Fixsen, DJ Veach, TJ Dhabal, A Leisawitz, DT Mundy, LG Silverberg, RF Barry, RK Staguhn, JG Barclay, R Mentzell, JE Griffin, M Ade, PAR Pascale, E Klemencic, G Savini, G Juanola-Parramon, R AF Rinehart, S. A. Rizzo, M. Benford, D. J. Fixsen, D. J. Veach, T. J. Dhabal, A. Leisawitz, D. T. Mundy, L. G. Silverberg, R. F. Barry, R. K. Staguhn, J. G. Barclay, R. Mentzell, J. E. Griffin, M. Ade, P. A. R. Pascale, E. Klemencic, G. Savini, G. Juanola-Parramon, R. TI The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): An Experiment for High Angular Resolution in the Far-Infrared SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID MILLIMETER; SPACE; LINE AB The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is a new balloon-borne far-infrared interferometer, being designed to provide spatially-resolved spectroscopy in the far infrared (30-90 mu m). The combination of an 8-meter baseline with a double-Fourier Michelson interferometer allows the identification and separation of closely-spaced astronomical sources, while also providing a low-resolution spectrum for each source. In this wavelength range, BETTII will provide subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. This paper provides an overview of the entire design of the BETTII experiment, with a short discussion of the predicted performance on flight. C1 [Rinehart, S. A.; Rizzo, M.; Benford, D. J.; Fixsen, D. J.; Veach, T. J.; Dhabal, A.; Leisawitz, D. T.; Silverberg, R. F.; Barry, R. K.; Staguhn, J. G.; Barclay, R.; Mentzell, J. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rizzo, M.; Fixsen, D. J.; Dhabal, A.; Mundy, L. G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Veach, T. J.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Silverberg, R. F.] Univ Space Res Assoc, Columbia, MD USA. [Staguhn, J. G.] Johns Hopkins Univ, Henry A Rowland Dept Phys & Astron, Baltimore, MD 21218 USA. [Griffin, M.; Ade, P. A. R.; Pascale, E.; Klemencic, G.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Savini, G.; Juanola-Parramon, R.] UCL, Dept Phys & Astron, Opt Sci Lab, London WC1E 6BT, England. RP Rinehart, SA (reprint author), NASA, Goddard Space Flight Ctr, Mail Code 665, Greenbelt, MD 20771 USA. EM Stephen.A.Rinehart@nasa.gov RI Benford, Dominic/D-4760-2012 OI Benford, Dominic/0000-0002-9884-4206 FU NASA Science Mission Directorate through the ROSES/APRA program; NASA's Goddard Space Flight Center; NASA; STFC PRD grant FX The material presented in this paper is based upon work supported by NASA Science Mission Directorate through the ROSES/APRA program, with additional support provided by NASA's Goddard Space Flight Center. Work by T. Veach was supported by an appointment to the NASA Postdoctoral Program at GSFC, administered by the Oak Ridge Associated Universities under contract with NASA. Contributions to this project were also made by a large number of undergraduate students, including: S. Gomillion, J. Doiron, S. Gore, B. Hoffman, W. Tierney, R. Curley, T. Kale, T. Handleton, S. Shapoval, M. Canaparro, D. Andrade, J. Stokes, C. Gibbons, S. Weinreich, J. Alcorn, A. Rau, S. Padder, P. Nehme, L. Oliviera, H. Spooner, C. Wagner, A. Cotto, N. Mihalko, Y. Okafor, P. Taraschi, J. Gibson, and Y. Huertes-Morales. The BETTII program at Cardiff University and UCL is supported by an STFC PRD grant. NR 34 TC 8 Z9 8 U1 0 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD JUL PY 2014 VL 126 IS 941 BP 660 EP 673 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AM1JQ UT WOS:000339602600005 ER PT J AU Colgan, J Judge, EJ Kilcrease, DP Barefield, JE AF Colgan, J. Judge, E. J. Kilcrease, D. P. Barefield, J. E., II TI Ab-initio modeling of an iron laser-induced plasma: Comparison between theoretical and experimental atomic emission spectra SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE LIBS; atomic physics; LIE kinetics modeling ID INDUCED BREAKDOWN SPECTROSCOPY; LIBS; EQUILIBRIUM; OPACITIES; EXPANSION; CRITERIA AB We report on efforts to model the Fe emission spectrum generated from laser-induced breakdown spectroscopy (LIBS) measurements on samples of pure iron oxide (Fe2O3). Our modeling efforts consist of several components. We begin with ab-initio atomic structure calculations performed by solving the Hartree-Fock equations for the neutral and singly ionized stages of Fe. Our energy levels are then adjusted to their experimentally known values. The atomic transition probabilities and atomic collision quantities are also computed in an ab-initio manner. We perform LTE or non-LTE calculations that generate level populations and, subsequently, an emission spectrum for the iron plasma for a range of electron temperatures and electron densities. Such calculations are then compared to the experimental spectrum. We regard our work as a preliminary modeling effort that ultimately strives towards the modeling of emission spectra from even more complex samples where less atomic data are available. (C) 2014 Elsevier B.V. All rights reserved. C1 [Colgan, J.; Kilcrease, D. P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Judge, E. J.; Barefield, J. E., II] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Colgan, J (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM jcolgan@lanl.gov OI Colgan, James/0000-0003-1045-3858; Barefield, James/0000-0001-8674-6214; Kilcrease, David/0000-0002-2319-5934; Judge, Elizabeth/0000-0002-2747-1326 FU Los Alamos National Security, LLC for the NNSA of the U.S. DOE [DE-AC5206NA25396] FX The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the NNSA of the U.S. DOE under Contract No. DE-AC5206NA25396. We thank Sam Clegg and Joe Abdallah for useful discussions and we thank the anonymous referees for helpful suggestions. NR 44 TC 5 Z9 5 U1 1 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD JUL 1 PY 2014 VL 97 BP 65 EP 73 DI 10.1016/j.sab.2014.04.015 PG 9 WC Spectroscopy SC Spectroscopy GA AM0KI UT WOS:000339534100008 ER PT J AU Hanson, C Phongikaroon, S Scott, JR AF Hanson, Cynthia Phongikaroon, Supathorn Scott, Jill R. TI Temperature effect on laser-induced breakdown spectroscopy spectra of molten and solid salts SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE Electrorefining; LIES; Temperature; Self-absorption; Local thermal equilibrium (LTE) ID MELT CRYSTALLIZATION PROCESS; QUANTITATIVE-ANALYSIS; SAMPLE TEMPERATURE; PLASMA DIAGNOSTICS; EMISSION; ABLATION; WASTE; SPECTROMETRY; SEPARATION; SILICON AB Laser-induced breakdown spectroscopy (LIES) has been investigated as a potential analytical tool to improve operations and safeguards for electrorefiners, such as those used in processing spent nuclear fuel. This study set out to better understand the effect of sample temperature and physical state on LIES spectra of molten and solid salts by building calibration curves of cerium and assessing self-absorption, plasma temperature, electron density, and local thermal equilibrium (LTE). Samples were composed of a LiCI-KCI eutectic salt, an internal standard of MnCl2, and varying concentrations of CeCl3 (0.1, 03, 0.5, 0.8, and 1.0 wt.% Ce) under different temperatures (773, 723, 673, 623, and 573 K). Analysis of salts in their molten form is preferred as plasma plumes from molten samples experienced less self-absorption, less variability in plasma temperature, and higher clearance of the minimum electron density required for local thermal equilibrium. These differences are attributed to plasma dynamics as a result of phase changes. Spectral reproducibility was also better in the molten state due to sample homogeneity. (C) 2014 Elsevier B.V. All rights reserved. C1 [Hanson, Cynthia; Phongikaroon, Supathorn] Univ Idaho, Dept Chem & Mat Engn, Nucl Engn Program, Idaho Falls, ID 83401 USA. [Scott, Jill R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Scott, JR (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM chanson@vandals.uidaho.edu; sphongikaroon@vcu.edu; jill.scott@inl.gov FU U.S. Department of Energy (DOE) under DOE Idaho Operations Office [DE-AC07-05ID14517] FX The authors would like to thank Jeremy J. Hatch and Timothy R. McJunkin for their assistance. This work was performed at the Idaho National Laboratory through support by the U.S. Department of Energy (DOE) under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 48 TC 9 Z9 10 U1 2 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD JUL 1 PY 2014 VL 97 BP 79 EP 85 DI 10.1016/j.sab.2014.04.012 PG 7 WC Spectroscopy SC Spectroscopy GA AM0KI UT WOS:000339534100010 ER PT J AU Runnehaum, RC Ouyang, XY Edsinga, JA Rea, T Arslan, I Hwang, SJ Zones, SI Katz, A AF Runnehaum, Ron C. Ouyang, Xiaoying Edsinga, Jeffrey A. Rea, Thomas Arslan, Ilke Hwang, Son-Jong Zones, Stacey I. Katz, Alexander TI Role of Delamination in Zeolite-Catalyzed Aromatic Alkylation: UCB-3 versus 3-D Al-SSZ-70 SO ACS CATALYSIS LA English DT Article DE delamination; exfoliation; layered zeolite precursor; SSZ-70; MCM-22; aromatic alkylation; cymene; cumene ID LAYER STRUCTURE PRESERVATION; TOLUENE; MCM-22; SELECTIVITY; PROPYLENE; PRECURSOR; MECHANISM; LOCATION; LAMELLAR; BEHAVIOR AB Delaminated zeolite UCB-3 exhibits 2.4-fold greater catalytic activity relative to its three-dimensional (3D) zeolite counterpart, Al-SSZ-70, and 2.0-fold greater activity (per catalyst mass) when compared with industrial catalyst MCM-22, for the alkylation of toluene with propylene at 523 K. The former increase is nearly equal to the observed relative increase in external surface area and acid sites upon delamination. However, at 423 K for the same reaction, UCB-3 exhibits a 3.5-fold greater catalytic activity relative to 3D Al-SSZ-70. The higher relative rate enhancement for the delaminated material at lower temperature can be elucidated on the basis of increased contributions from internal acid sites. Evidence of possible contributions from such acid sites is obtained by performing catalysis after silanation treatment, which demonstrates that although virtually all catalysis in MCM-22 occurs on the external surface, catalysis also occurs on internal sites for 3D Al-SSZ-70. The additional observed enhancement at low temperatures can therefore be rationalized by greater access to internal active sites as a result of sheet breakage during delamination. Such breakage leads to shorter characteristic internal diffusion paths and was visualized using TEM comparisons of UCB-3 and 3D Al-SSZ-70. C1 [Runnehaum, Ron C.; Ouyang, Xiaoying; Edsinga, Jeffrey A.; Zones, Stacey I.; Katz, Alexander] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Arslan, Ilke] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hwang, Son-Jong] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Rea, Thomas; Zones, Stacey I.] Chevron Energy Technol Co, Richmond, CA 94804 USA. RP Zones, SI (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM sizo@chevron.com; askatz@berkeley.edu FU Chevron Corporation; National Science Foundation (NSF) [9724240]; MRSEC Program of the NSF [DMR-520565]; Laboratory Directed Research and Development program at the Pacific Northwest National Laboratory; U.S. Department of Energy [DE-AC05-76RL01830] FX We are grateful to the Management and Transfer of Hydrogen via the Catalysis Program funded by Chevron Corporation for financial support. The NMR facility at Caltech was supported by the National Science Foundation (NSF) under Grant No. 9724240 and in part by the MRSEC Program of the NSF under Award No. DMR-520565. The STEM facility and research were funded by the Laboratory Directed Research and Development program at the Pacific Northwest National Laboratory. PNNL is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 30 TC 4 Z9 4 U1 2 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD JUL PY 2014 VL 4 IS 7 BP 2364 EP 2368 DI 10.1021/cs500285w PG 5 WC Chemistry, Physical SC Chemistry GA AK8QM UT WOS:000338693100034 ER PT J AU Zhang, H Sun, JM Dagle, VL Halevi, B Datye, AK Wang, Y AF Zhang, He Sun, Junming Dagle, Vanessa L. Halevi, Barr Datye, Abhaya K. Wang, Yong TI Influence of ZnO Facets on Pd/ZnO Catalysts for Methanol Steam Reforming SO ACS CATALYSIS LA English DT Article DE ZnO facet; PdZn alloy; PdZn beta; Pd-rich; metallic Pd; methanol steam reforming; MSR; CO selectivity ID HIGH CO2 SELECTIVITY; SILVER NANOPARTICLES; AMMONIA-SYNTHESIS; LOW-TEMPERATURE; PDZN ALLOYS; NANOCRYSTALS; OXIDATION; ADSORPTION; REACTIVITY; MORPHOLOGY AB A series of Pd/ZnO catalysts with different Pd loadings were prepared using needlelike ZnO crystallites (ZnO-N) with predominant (10-10) nonpolar facets exposed and commercial ZnO (ZnO-P) without any dominant facets. The Pd/ZnO catalysts were characterized using complementary techniques, such as nitrogen physisorption, X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and Fourier transform infrared spectroscopy analysis of adsorbed CO (CO-FTIR). The effect of ZnO crystallite faceting on the activity and selectivity of the Pd/ZnO catalysts was studied in methanol steam reforming (MSR). It was found that the Pd-rich phases (PdxZny, x > y) are predominantly formed at low Pd loadings on both ZnO supports (ZnO-N and ZnO-P), resulting in high CO selectivity. As Pd loading increases, the x/y ratio in the PdxZny phases decreases, leading to decreased CO selectivity. At similar Pd loadings, Pd/ZnO-P catalysts are more selective in MSR than Pd/ZnO-N, which is due to more facile formation of the stable PdZn beta phase on polar ZnO (0001) facets than on nonpolar ZnO (10-10) facets. The current study provides insight into the structure-performance relationships in Pd/ZnO catalysts for MSR, helping shed light on the rational design of selective MSR catalysts to minimize CO formation. C1 [Zhang, He; Sun, Junming; Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [Dagle, Vanessa L.; Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Halevi, Barr; Datye, Abhaya K.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Halevi, Barr; Datye, Abhaya K.] Univ New Mexico, Ctr Microengn Mat, Albuquerque, NM 87131 USA. RP Wang, Y (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. EM yong.wang@pnnl.gov RI Sun, Junming/B-3019-2011 OI Sun, Junming/0000-0002-0071-9635 FU U.S. Department of Energy [DE-FG02-05ER15712] FX We greatly acknowledge financial support by the U.S. Department of Energy (Grant No. DE-FG02-05ER15712). We thank Andrew DeLaRiva (University of New Mexico) for doing the CO oxidation reactivity measurements. He Zhang thanks Dr. Feng Gao (PNNL) for the helpful discusson about the CO-FTIR results. NR 40 TC 29 Z9 30 U1 15 U2 120 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD JUL PY 2014 VL 4 IS 7 BP 2379 EP 2386 DI 10.1021/cs500590t PG 8 WC Chemistry, Physical SC Chemistry GA AK8QM UT WOS:000338693100037 ER PT J AU Deng, K Takasuka, TE Heins, R Cheng, XL Bergeman, LF Shi, J Aschenbrener, R Deutsch, S Singh, S Sale, KL Simmons, BA Adams, PD Singh, AK Fox, BG Northen, TR AF Deng, Kai Takasuka, Taichi E. Heins, Richard Cheng, Xiaoliang Bergeman, Lai F. Shi, Jian Aschenbrener, Ryan Deutsch, Sam Singh, Seema Sale, Kenneth L. Simmons, Blake A. Adams, Paul D. Singh, Anup K. Fox, Brian G. Northen, Trent R. TI Rapid Kinetic Characterization of Glycosyl Hydrolases Based on Oxime Derivatization and Nanostructure-Initiator Mass Spectrometry (NIMS) SO ACS CHEMICAL BIOLOGY LA English DT Article ID CLOSTRIDIUM-THERMOCELLUM CELLULOSOME; QUANTITATIVE PROTEOMIC ANALYSIS; CELL-FREE TRANSLATION; ENZYME-ACTIVITY ASSAY; LIGNOCELLULOSIC BIOMASS; MICROBIAL COMMUNITIES; DNA-SYNTHESIS; SWITCHGRASS; PROTEIN; DECONSTRUCTION AB Glycoside hydrolases (GHs) are critical to cycling of plant biomass in the environment, digestion of complex polysaccharides by the human gut microbiome, and industrial activities such as deployment of cellulosic biofuels. High-throughput sequencing methods show tremendous sequence diversity among GHs, yet relatively few examples from the over 150,000 unique domain arrangements containing GHs have been functionally characterized. Here, we show how cell-free expression, bioconjugate chemistry, and surface-based mass spectrometry can be used to study glycoside hydrolase reactions with plant biomass. Detection of soluble products is achieved by coupling a unique chemical probe to the reducing end of oligosaccharides in a stable oxime linkage, while the use of C-13-labeled monosaccharide standards (xylose and glucose) allows quantitation of the derivatized glycans. We apply this oxime-based nanostructure-initiator mass spectrometry (NIMS) method to characterize the functional diversity of GHs secreted by Clostridium thermocellum, a model cellulolytic organism. New reaction specificities are identified, and differences in rates and yields of individual enzymes are demonstrated in reactions with biomass substrates. Numerical analyses of time series data suggests that synergistic combinations of mono- and multifunctional GHs can decrease the complexity of enzymes needed for the hydrolysis of plant biomass during the production of biofuels. C1 [Deng, Kai; Heins, Richard; Cheng, Xiaoliang; Shi, Jian; Singh, Seema; Sale, Kenneth L.; Simmons, Blake A.; Adams, Paul D.; Singh, Anup K.; Northen, Trent R.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Deng, Kai; Heins, Richard; Shi, Jian; Singh, Seema; Sale, Kenneth L.; Simmons, Blake A.; Singh, Anup K.] Sandia Natl Labs, Livermore, CA 94551 USA. [Takasuka, Taichi E.; Bergeman, Lai F.; Aschenbrener, Ryan; Fox, Brian G.] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Cheng, Xiaoliang; Deutsch, Sam; Adams, Paul D.; Northen, Trent R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Deutsch, Sam] Joint Genome Inst, Walnut Creek, CA 94598 USA. [Adams, Paul D.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Deng, K (reprint author), Joint BioEnergy Inst, Emeryville, CA 94608 USA. EM kdeng@sandia.gov; bgfox@biochem.wisc.edu; trnorthen@lbl.gov RI Adams, Paul/A-1977-2013; OI Adams, Paul/0000-0001-9333-8219; Northen, Trent/0000-0001-8404-3259; Simmons, Blake/0000-0002-1332-1810 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231, DE-FC02-07ER64494]; United States Department of Energy's Nuclear Security Administration [DE-AC04-94AL85000] FX The DOE Joint BioEnergy Institute and DOE Great Lakes Bioenergy Research Center are supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 and through contract DE-FC02-07ER64494, respectively. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's Nuclear Security Administration under contract DE-AC04-94AL85000. NR 48 TC 10 Z9 10 U1 4 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1554-8929 EI 1554-8937 J9 ACS CHEM BIOL JI ACS Chem. Biol. PD JUL PY 2014 VL 9 IS 7 BP 1470 EP 1479 DI 10.1021/cb5000289 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AL8CX UT WOS:000339366600012 PM 24819174 ER PT J AU Mahajan, A Barua, D Cutler, P Lidke, DS Espinoza, FA Pehlke, C Grattan, R Kawakami, Y Tung, CS Bradbury, ARM Hlavacek, WS Wilson, BS AF Mahajan, Avanika Barua, Dipak Cutler, Patrick Lidke, Diane S. Espinoza, Flor A. Pehlke, Carolyn Grattan, Rachel Kawakami, Yuko Tung, Chang-Shung Bradbury, Andrew R. M. Hlavacek, William S. Wilson, Bridget S. TI Optimal Aggregation of Fc epsilon RI with a Structurally Defined Trivalent Ligand Overrides Negative Regulation Driven by Phosphatases SO ACS CHEMICAL BIOLOGY LA English DT Article ID MAST-CELL DEGRANULATION; AFFINITY IGE RECEPTOR; BACTERIOPHAGE-T4 FIBRITIN; TYROSINE PHOSPHORYLATION; TRIMERIZATION DOMAIN; HISTAMINE-RELEASE; BETA-SUBUNIT; ACTIVATION; PROTEIN; SHIP AB To investigate why responses of mast cells to antigen-induced IgE receptor (Fc epsilon RI) aggregation depend nonlinearly on antigen dose, we characterized a new artificial ligand, DF3, through complementary modeling and experimentation. This ligand is a stable trimer of peptides derived from bacteriophage T4 fibritin, each conjugated to a hapten (DNP). We found low and high doses of DF3 at which degranulation of mast cells sensitized with DNP-specific IgE is minimal, but ligand-induced receptor aggregation is comparable to aggregation at an intermediate dose, optimal for degranulation. This finding makes DF3 an ideal reagent for studying the balance of negative and positive signaling in the Fc epsilon RI pathway. We find that the lipid phosphatase SHIP and the protein tyrosine phosphatase SHP-1 negatively regulate mast cell degranulation over all doses considered. In contrast, SHP-2 promotes degranulation. With high DF3 doses, relatively rapid recruitment of SHIP to the plasma membrane may explain the reduced degranulation response. Our results demonstrate that optimal secretory responses of mast cells depend on the formation of receptor aggregates that promote sufficient positive signaling by Syk to override phosphatase-mediated negative regulatory signals. C1 [Mahajan, Avanika; Cutler, Patrick; Lidke, Diane S.; Espinoza, Flor A.; Pehlke, Carolyn; Grattan, Rachel; Wilson, Bridget S.] Univ New Mexico, Sch Med, Dept Pathol, Albuquerque, NM 87131 USA. [Barua, Dipak; Tung, Chang-Shung; Hlavacek, William S.] Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Barua, Dipak; Hlavacek, William S.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Kawakami, Yuko] La Jolla Inst Allergy & Immunol, Div Cell Biol, La Jolla, CA 92037 USA. [Bradbury, Andrew R. M.] Los Alamos Natl Lab, Adv Measurement Sci Grp, Biosci Div, Los Alamos, NM 87545 USA. RP Wilson, BS (reprint author), Univ New Mexico, Sch Med, Dept Pathol, Albuquerque, NM 87131 USA. EM bwilson@salud.unm.edu OI Bradbury, Andrew/0000-0002-5567-8172; Hlavacek, William/0000-0003-4383-8711 FU National Institutes of Health [P50 GM085273, R01 AI051575] FX This work was supported by National Institutes of Health Grants P50 GM085273 and R01 AI051575. NR 51 TC 9 Z9 9 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1554-8929 EI 1554-8937 J9 ACS CHEM BIOL JI ACS Chem. Biol. PD JUL PY 2014 VL 9 IS 7 BP 1508 EP 1519 DI 10.1021/cb500134t PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AL8CX UT WOS:000339366600016 PM 24784318 ER PT J AU Mohimani, H Kersten, RD Liu, WT Wang, MX Purvine, SO Wu, S Brewer, HM Pasa-Tolic, L Bandeira, N Moore, BS Pevzner, PA Dorrestein, PC AF Mohimani, Hosein Kersten, Roland D. Liu, Wei-Ting Wang, Mingxun Purvine, Samuel O. Wu, Si Brewer, Heather M. Pasa-Tolic, Ljiljana Bandeira, Nuno Moore, Bradley S. Pevzner, Pavel A. Dorrestein, Pieter C. TI Automated Genome Mining of Ribosomal Peptide Natural Products SO ACS CHEMICAL BIOLOGY LA English DT Article ID MASS-SPECTROMETRY; PROTEIN IDENTIFICATION; STREPTOMYCES-GRISEUS; DATABASE SEARCH; SPECTRA; BIOSYNTHESIS; LANTIBIOTICS; ANNOTATION; MORPHOGEN; DISCOVERY AB Ribosomally synthesized and posttranslationally modified peptides (RiPPs), especially from microbial sources, are a large group of bioactive natural products that are a promising source of new (bio)chemistry and bioactivity.(1) In light of exponentially increasing microbial genome databases and improved mass spectrometry (MS)-based metabolornic platforms, there is a need for computational tools that connect natural product genotypes predicted from microbial genome sequences with their corresponding chemotypes from metabolomic data sets. Here, we introduce RiPPquest, a tandem mass spectrometry database search tool for identification of microbial RiPPs, and apply it to lanthipeptide discovery. RiPPquest uses genomics to limit search space to the vicinity of RiPP biosynthetic genes and proteomics to analyze extensive peptide modifications and compute p-values of peptide-spectrum matches (PSMs). We highlight RiPPquest by connecting multiple RiPPs from extracts of Streptomyces to their gene clusters and by the discovery of a new class III lanthipeptide, informatipeptin, from Streptomyces viridochromogenes DSM 40736 to reflect that was discovered by mass spectrometry based genome mining using algorithmic tools rather than manual inspection of mass spectrometry data and genetic information. The presented tool is available at cyclo.ucsd.edu. C1 [Mohimani, Hosein] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [Kersten, Roland D.; Moore, Bradley S.] Univ Calif San Diego, Scripps Inst Oceanog, Ctr Marine Biotechnol & Biomed, La Jolla, CA 92093 USA. [Liu, Wei-Ting; Dorrestein, Pieter C.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Wang, Mingxun; Bandeira, Nuno; Pevzner, Pavel A.] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA. [Purvine, Samuel O.; Wu, Si; Brewer, Heather M.; Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Bandeira, Nuno; Moore, Bradley S.; Dorrestein, Pieter C.] Univ Calif San Diego, Skaggs Sch Pharm & Pharmaceut Sci, La Jolla, CA 92093 USA. RP Moore, BS (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, Ctr Marine Biotechnol & Biomed, La Jolla, CA 92093 USA. EM ppevzner@eng.ucsd.edu; pdorrestein@ucsd.edu FU U.S. National Institutes of Health [3-P41-GM103484, GM097509, GMS10RR029121]; Department of Energy's Office of Biological and Environmental Research FX This work was supported by the U.S. National Institutes of Health 3-P41-GM103484 (PP, NB) GM097509 (PCD, BSM, and NB), and GMS10RR029121 (PCD). A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 32 TC 26 Z9 26 U1 4 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1554-8929 EI 1554-8937 J9 ACS CHEM BIOL JI ACS Chem. Biol. PD JUL PY 2014 VL 9 IS 7 BP 1545 EP 1551 DI 10.1021/cb500199h PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AL8CX UT WOS:000339366600020 PM 24802639 ER PT J AU Seo, YJ Kang, Y Muench, L Reid, A Caesar, S Jean, L Wagner, F Holson, E Haggarty, SJ Weiss, P King, P Carter, P Volkow, ND Fowler, JS Hooker, JM Kim, SW AF Seo, Young Jun Kang, Yeona Muench, Lisa Reid, Alicia Caesar, Shannon Jean, Logan Wagner, Florence Holson, Edward Haggarty, Stephen J. Weiss, Philipp King, Payton Carter, Pauline Volkow, Nora D. Fowler, Joanna S. Hooker, Jacob M. Kim, Sung Won TI Image-Guided Synthesis Reveals Potent Blood-Brain Barrier Permeable Histone Deacetylase Inhibitors SO ACS CHEMICAL NEUROSCIENCE LA English DT Article DE Histone deacetylase; positron emission tomography; blood-brain barrier permeability; benzamides ID PSYCHIATRIC-DISORDERS; EPIGENETIC REGULATION; INTERNAL CAVITY; HDAC INHIBITORS; PENETRATION; DRUG; PHARMACOKINETICS; PET; ACETYLDINALINE; VORINOSTAT AB Recent studies have revealed that several histone deacetylase (HDAC) inhibitors, which are used to study/treat brain diseases, show low blood-brain barrier (BBB) penetration. In addition to low HDAC potency and selectivity observed, poor brain penetrance may account for the high doses needed to achieve therapeutic efficacy. Here we report the development and evaluation of highly potent and blood-brain barrier permeable HDAC inhibitors for CNS applications based on an image-guided approach involving the parallel synthesis and radiolabeling of a series of compounds based on the benzamide HDAC inhibitor, MS-275 as a template. BBB penetration was optimized by rapid carbon-11 labeling and PET imaging in the baboon model and using the imaging derived data on BBB penetration from each compound to feed back into the design process. A total of 17 compounds were evaluated, revealing molecules with both high binding affinity and BBB permeability. A key element conferring BBB penetration in this benzamide series was a basic benzylic amine. These derivatives exhibited 1-100 nM inhibitory activity against recombinant human HDAC1 and HDAC2. Three of the carbon-11 labeled aminomethyl benzamide derivatives showed high BBB penetration (similar to 0.015%ID/cc) and regional binding heterogeneity in the brain (high in thalamus and cerebellum). Taken together this approach has afforded a strategy and a predictive model for developing highly potent and BBB permeable HDAC inhibitors for CNS applications and for the discovery of novel candidate molecules for small molecule probes and drugs. C1 [Seo, Young Jun; Kang, Yeona; Caesar, Shannon; Jean, Logan; King, Payton; Carter, Pauline; Fowler, Joanna S.; Hooker, Jacob M.] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. [Seo, Young Jun] Chonnam Natl Univ, Dept Chem, Jeonju 561756, South Korea. [Muench, Lisa; Volkow, Nora D.; Kim, Sung Won] NIAAA, Lab Neuroimaging, Upton, NY 11973 USA. [Reid, Alicia] Medgar Evers Coll, Brooklyn, NY 11225 USA. [Wagner, Florence; Holson, Edward] Broad Inst Massachusetts Inst Technol, Stanley Ctr Psychiat Res, Cambridge, MA 02142 USA. [Wagner, Florence; Holson, Edward] Harvard Univ, Cambridge, MA 02142 USA. [Haggarty, Stephen J.] Harvard Univ, Sch Med, Massachusetts Gen Hosp, Ctr Human Genet Res, Boston, MA 02142 USA. [Weiss, Philipp] Johannes Gutenberg Univ Mainz, Inst Organ Chem, D-55122 Mainz, Germany. [Hooker, Jacob M.] Harvard Univ, Sch Med, Massachusetts Gen Hosp,Dept Radiol, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA 02129 USA. [Volkow, Nora D.] NIDA, NIH, Bethesda, MD 20892 USA. [Fowler, Joanna S.; Kim, Sung Won] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Hooker, JM (reprint author), Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. EM hooker@nmr.mgh.harvard.edu; sunny.kim@nih.gov RI Kang, Yeona/M-5305-2016; OI Kang, Yeona/0000-0003-3384-435X; Haggarty, Stephen J./0000-0002-7872-168X FU National Institutes of Health [1R0IDA030321]; National Institute of Alcohol Abuse and Alcoholism; Deutscher Akademischer Austauschdienst (DAAD), Bonn, Germany; U.S. Department of Energy [DE-AC02-98CH10886] FX This work was supported by National Institutes of Health grant 1R0IDA030321 (Y.J.S., J.M.H., S.W.K.), National Institute of Alcohol Abuse and Alcoholism Intramural Program (S.W.K., L.M., N.D.V.), and the Deutscher Akademischer Austauschdienst (DAAD), Bonn, Germany (P.W.). This study was carried out in part at Brookhaven National Laboratory under contract DE-AC02-98CH10886 with the U.S. Department of Energy and with infrastructure support from its Office of Biological and Environmental Research. NR 49 TC 10 Z9 10 U1 4 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7193 J9 ACS CHEM NEUROSCI JI ACS Chem. Neurosci. PD JUL PY 2014 VL 5 IS 7 BP 588 EP 596 DI 10.1021/cn500021p PG 9 WC Biochemistry & Molecular Biology; Chemistry, Medicinal; Neurosciences SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Neurosciences & Neurology GA AL6ET UT WOS:000339226100015 PM 24780082 ER PT J AU Braunecker, WA Oosterhout, SD Owczarczyk, ZR Kopidakis, N Ratcliff, EL Ginley, DS Olson, DC AF Braunecker, Wade A. Oosterhout, Stefan D. Owczarczyk, Zbyslaw R. Kopidakis, Nikos Ratcliff, Erin L. Ginley, David S. Olson, Dana C. TI Semi-random vs Well-Defined Alternating Donor-Acceptor Copolymers SO ACS MACRO LETTERS LA English DT Article ID HETEROJUNCTION SOLAR-CELLS; PHOTOVOLTAIC APPLICATIONS; ORGANIC PHOTOVOLTAICS; CONJUGATED POLYMERS; EXCITON DIFFUSION; EFFICIENCY; PERFORMANCE AB The influence of backbone composition on the physical properties of donor-acceptor (D-A) copolymers composed of varying amounts of benzodithiophene (BDT) donor with the thienoisoindoledione (TID) acceptor is investigated. First, the synthesis of bis- and tris-BDT monomers is reported; these monomers are subsequently used in Stale copolymerizations to create well-defined alternating polymer structures with repeating (D-A), (D-D-A), and (D-D-D-A) units. For comparison, five semi-random D-A copolymers with a D:A ratio of 1.5, 2, 3, 4, and 7 were synthesized by reacting trimethyltin-functionalized BDT with various ratios of iodinated BDT and brominated TID. While the HOMO levels of all the resultant polymers are very similar, a systematic red shift in the absorbance spectra onset of the D-A copolymer films from 687 to 883 run is observed with increasing acceptor content, suggesting the LUMO can be fine-tuned over a range of 0.4 eV. When the solid-state absorbance spectra of well-defined alternating copolymers are compared to those of semi-random copolymers with analogous D:A ratios, the spectra of the alternating copolymers are significantly more red-shifted. Organic photovoltaic device efficiencies show that the semi-random materials all outperform the well-defined alternating copolymers, and an optimal D:A ratio of 2 produces the highest efficiency. Additional considerations concerning fine-tuning the lifetimes of the photoconductance transients of copolymer:fullerene films measured by time-resolved microwave conductivity are discussed. Overall, the results of this work indicate that the semi-random approach is a powerful synthetic strategy for fine-tuning the optoelectronic and photophysical properties of D-A materials for a number of systematic studies, especially given the ease with which the D:A ratios in the semi-random copolymers can be tuned. C1 [Braunecker, Wade A.; Oosterhout, Stefan D.; Owczarczyk, Zbyslaw R.; Kopidakis, Nikos; Ginley, David S.; Olson, Dana C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Ratcliff, Erin L.] Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA. RP Braunecker, WA (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM wade.braunecker@nrel.gov RI Kopidakis, Nikos/N-4777-2015 FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory through the DOE SETP program; Center for Interface Science: Solar Electric Materials, an Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001084] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory through the DOE SETP program. Work by ELR was supported by the Center for Interface Science: Solar Electric Materials, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001084. NR 29 TC 10 Z9 10 U1 1 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD JUL PY 2014 VL 3 IS 7 BP 622 EP 627 DI 10.1021/mz5002977 PG 6 WC Polymer Science SC Polymer Science GA AL6EU UT WOS:000339226200007 ER PT J AU Beckingham, BS Ho, V Segalman, RA AF Beckingham, Bryan S. Ho, Victor Segalman, Rachel A. TI Formation of a Rigid Amorphous Fraction in Poly(3-(2 '-ethyl)hexylthiophene) SO ACS MACRO LETTERS LA English DT Article ID ISOTACTIC POLYSTYRENE; HEAT-CAPACITY; CRYSTALLIZATION; POLY(ETHYLENE-TEREPHTHALATE); TRANSITION; BEHAVIOR AB Herein, we detail the formation of a rigid amorphous fraction in poly(3-(2'-ethyl)hexylthiophene) (P3EHT) at high relative crystallinity, yielding a more complete picture of the solid-state structure. In the differential scanning calorimetry (DSC) heating scans of isothermally crystallized P3EHT a distinct endothermic peak appears slightly above the crystallization temperature. This previously undescribed endothermic feature of P3EHT's thermal behavior is observed consistently similar to 20 degrees C above the crystallization temperature-shifting to higher temperatures with increasing crystallization temperature-and increases in magnitude with both time and crystallization temperature. Here, we determine the origins of this endothermic peak with DSC and temperature-modulated DSC (TMDSC). TMDSC reveals that the annealing peak observed in the total heat flow (THF) heat flow equivalent to that of conventional DSC-is a consequence of an enthalpic relaxation observable as an endothermic peak in the nonreversible heat flow (NHF) and a glass transition evident as a step increase in the reversible heat flow (RHF). In conjunction with conventional DSC observations, these results indicate that the observed annealing peak is a consequence of the formation of distinct amorphous regions-a mobile amorphous fraction (MAF) and a rigid amorphous fraction (RAF)-during the isothermal crystallization process and not the melting of a distinct crystallite population or melt recrystallization. C1 [Beckingham, Bryan S.; Ho, Victor; Segalman, Rachel A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ho, Victor; Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Segalman, RA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM segalman@engineering.ucsb.edu OI Segalman, Rachel/0000-0002-4292-5103; Beckingham, Bryan/0000-0003-4004-0755 FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-AC02-05CH11231]; National Science Foundation [DMR-1206296] FX The authors graciously thank Jesus Guardado for his aid in performing the TMDSC experiments and the Stanford Nano Center for use of the TA Q2000 TMDSC. BSB gratefully acknowledges support from the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award #DE-AC02-05CH11231. V.H. and R.A.S. gratefully acknowledge support from the National Science Foundation, DMR-1206296. NR 25 TC 8 Z9 8 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD JUL PY 2014 VL 3 IS 7 BP 684 EP 688 DI 10.1021/mz500262d PG 5 WC Polymer Science SC Polymer Science GA AL6EU UT WOS:000339226200020 ER PT J AU Hu, SR Zhao, YL Qin, K Retterer, ST Kravchenko, II Weiss, SM AF Hu, Shuren Zhao, Yiliang Qin, Kun Retterer, Scott T. Kravchenko, Ivan I. Weiss, Sharon M. TI Enhancing the Sensitivity of Label-Free Silicon Photonic Biosensors through Increased Probe Molecule Density SO ACS PHOTONICS LA English DT Article DE biosensor; DNA; photonic crystal; ring resonator; label-free; silicon ID CRYSTAL MICROCAVITY BIOSENSORS; MICRORING RESONATORS; PROTEIN-DETECTION; NUCLEIC-ACIDS; WAVE-GUIDES; NANOCAVITY; SURFACES; APTAMER; SILANE; SENSOR AB We report a greater than 5-fold increase in the detection sensitivity and a greater than 3-fold reduction in the response time of planar silicon photonic biosensors by increasing the density of probe molecules through the use of an in situ probe synthesis in approach. DNA probe molecules are grown in a base-by-base manner with the desired sequence on silicon ring resonator and photonic crystal biosensors, resulting in a greater than 5-fold increase in surface area coverage compared to traditional covalent conjugation methods. With this approach, we demonstrate enhanced light-matter interaction, reduced optofluidic assay detection times, increased transduced signal sensitivity, and improved immunity toward false positives. This work highlights the importance of improving bioreceptor surface coverage densities in low mode volume photonic crystal devices and micrometer-scale ring resonators as a means of mitigating the effects of shrinking device sizes that otherwise limit the number of available target molecule capture sites and increase assay times. C1 [Hu, Shuren; Weiss, Sharon M.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Zhao, Yiliang; Weiss, Sharon M.] Vanderbilt Univ, Interdisciplinary Grad Program Mat Sci, Nashville, TN 37235 USA. [Qin, Kun; Weiss, Sharon M.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Retterer, Scott T.; Kravchenko, Ivan I.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Weiss, SM (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM sharon.weiss@vanderbilt.edu RI Retterer, Scott/A-5256-2011; Kravchenko, Ivan/K-3022-2015; OI Retterer, Scott/0000-0001-8534-1979; Kravchenko, Ivan/0000-0003-4999-5822; Zhao, Yiliang/0000-0002-9556-0785; Qin, Kun/0000-0002-4300-4402 FU National Science Foundation [EECS0925642, ECCS0746296]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was funded in part by the National Science Foundation (EECS0925642 and ECCS0746296). A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Equipment and technical support in the Vanderbilt Institute for Nanoscale Science and Engineering and Vanderbilt Institute for Integrative Biosystems Research and Education were also utilized for this work. The authors gratefully acknowledge D. P. Briggs for assistance with sample fabrication, K. R. Beavers for assistance with chemistry, J. D. Ryckman and Y. Jiao for assistance with sample fabrication and optical characterization, and P. E. Laibinis, G. Gaur, X. Wei, and C. Kang for useful technical discussions. NR 36 TC 7 Z9 7 U1 1 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD JUL PY 2014 VL 1 IS 7 BP 590 EP 597 DI 10.1021/ph500075g PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA AL6EP UT WOS:000339225700007 ER PT J AU Sarria, S Wong, B Martin, HG Keasling, JD Peralta-Yahya, P AF Sarria, Stephen Wong, Betty Martin, Hector Garcia Keasling, Jay D. Peralta-Yahya, Pamela TI Microbial Synthesis of Pinene SO ACS SYNTHETIC BIOLOGY LA English DT Article DE advanced biofuels; tactical fuels; isoprenoids; terpene synthase; pinene ID GERANYL DIPHOSPHATE SYNTHASE; CONSTRAINT-BASED MODELS; ESCHERICHIA-COLI; ABIES-GRANDIS; FUNCTIONAL EXPRESSION; ADVANCED BIOFUELS; CDNA ISOLATION; QUANTITATIVE PREDICTION; PYROPHOSPHATE SYNTHASE; MONOTERPENE SYNTHASES AB The volumetric heating values of today's biofuels are too low to power energy-intensive aircraft, rockets, and missiles. Recently, pinene dimers were shown to have a volumetric heating value similar to that of the tactical fuel JP-10. To provide a sustainable source of pinene, we engineered Escherichia coli for pinene production. We combinatorially expressed three pinene synthases (PS) and three geranyl diphosphate synthases (GPPS), with the best combination achieving similar to 28 mg/L of pinene. We speculated that pinene toxicity was limiting production; however, toxicity should not be limiting at current titers. Because GAPS is inhibited by geranyl diphosphate (GPP) and to increase flux through the pathway, we combinatorially constructed GPPS-PS protein fusions. The Abies grandis GPPS-PS fusion produced 32 mg/L of pinene, a 6-fold improvement over the highest titer previously reported in engineered E. coli. Finally, we investigated the pinene isomer ratio of our pinene-producing microbe and discovered that the isomer profile is determined not only by the identity of the PS used but also by the identity of the GPPS with which the PS is paired. We demonstrated that the GPP concentration available to PS for cyclization alters the pinene isomer ratio. C1 [Sarria, Stephen; Peralta-Yahya, Pamela] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Peralta-Yahya, Pamela] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Wong, Betty; Martin, Hector Garcia; Keasling, Jay D.; Peralta-Yahya, Pamela] Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Wong, Betty; Keasling, Jay D.] Univ Calif Berkeley, Inst QB3, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, 5885 Hollis Ave, Emeryville, CA 94608 USA. EM jdkeasling@lbl.gov; pperalta-yahya@chemistry.gatech.edu RI Keasling, Jay/J-9162-2012; OI Keasling, Jay/0000-0003-4170-6088; Garcia Martin, Hector/0000-0002-4556-9685 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Georgia Institute of Technology; Graduate Assistance in Areas of National Need (GAANN) fellowship FX This work was started at the DOE Joint BioEnergy Institute (JBEI) and finished at the Georgia Institute of Technology. JBEI is funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. The work performed at the Georgia Institute of Technology was funded by Start-Up funds to P.P.-Y. and a Graduate Assistance in Areas of National Need (GAANN) fellowship to S.S. The authors thank Mario Ouellet for assembling the Pinus taeda geranyl diphosphate gene. NR 53 TC 49 Z9 50 U1 12 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-5063 J9 ACS SYNTH BIOL JI ACS Synth. Biol. PD JUL PY 2014 VL 3 IS 7 BP 466 EP 475 DI 10.1021/sb4001382 PG 10 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA AL8CO UT WOS:000339365700005 PM 24679043 ER PT J AU Vandavasi, V Taylor-Creel, K McFeeters, RL Coates, L McFeeters, H AF Vandavasi, Venugopal Taylor-Creel, Kasey McFeeters, Robert L. Coates, Leighton McFeeters, Hana TI Recombinant production, crystallization and X-ray crystallographic structure determination of peptidyl-tRNA hydrolase from Salmonella typhimurium SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS LA English DT Article ID ESCHERICHIA-COLI; MINIGENE EXPRESSION; INHIBITION; DOCKING; BINDING; GROWTH; ENZYME; DOMAIN; MODEL AB Peptidyl-tRNA hydrolase (Pth; EC 3.1.1.29) from the pathogenic bacterium Salmonella typhimurium has been cloned, expressed in Escherichia coli and crystallized for X-ray analysis. Crystals were grown using hanging-drop vapor diffusion against a reservoir solution consisting of 0.03 M citric acid, 0.05 M bis-tris propane, 1% glycerol, 3% sucrose, 25% PEG 6000 pH 7.6. Crystals were used to obtain the three-dimensional structure of the native protein at 1.6 angstrom resolution. The structure was determined by molecular replacement of the crystallographic data processed in space group P2(1)2(1)2(1) with unit-cell parameters a = 62.1, b = 64.9, c = 110.5 angstrom, alpha = beta = gamma = 90 degrees. The asymmetric unit of the crystallographic lattice was composed of two copies of the enzyme molecule with a 51% solvent fraction, corresponding to a Matthews coefficient of 2.02 angstrom(3) Da(-1). The structural coordinates reported serve as a foundation for computational and structure-guided efforts towards novel small-molecule Pth1 inhibitors and potential antibacterial development. C1 [Vandavasi, Venugopal; Coates, Leighton] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Taylor-Creel, Kasey; McFeeters, Robert L.; McFeeters, Hana] Univ Alabama, Dept Chem, Huntsville, AL 35899 USA. RP McFeeters, H (reprint author), Univ Alabama, Dept Chem, 301 Sparkman Dr, Huntsville, AL 35899 USA. EM hk0003@uah.edu OI Coates, Leighton/0000-0003-2342-049X; Vandavasi, Venu Gopal/0000-0002-8894-1395 FU Office of Biological and Environmental Research; United States Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357] FX The Office of Biological and Environmental Research supported research at the Oak Ridge National Laboratory Center for Structural Molecular Biology (CSMB) using facilities supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, United States Department of Energy. Results shown in this study are derived from work performed at Argonne National Laboratory (ANL), Structural Biology Center at the Advanced Photon Source. ANL is operated by UChicago Argonne LLC for the United States Department of Energy, Office of Biological and Environmental Research under Contract DE-AC02-06CH11357. NR 35 TC 5 Z9 5 U1 0 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Commun. PD JUL PY 2014 VL 70 BP 872 EP 877 DI 10.1107/S2053230X14009893 PN 7 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA AL1YQ UT WOS:000338923200005 PM 25005080 ER PT J AU Degregorio, BA Willson, JD Dorcas, ME Gibbons, JW Dorcas, ME AF Degregorio, Brett A. Willson, John D. Dorcas, Michael E. Gibbons, J. Whitfield Dorcas, Michael E. TI Commercial Value of Amphibians Produced From an Isolated Wetland SO AMERICAN MIDLAND NATURALIST LA English DT Article ID ECONOMIC VALUE; CAROLINA AB Despite the functional importance of isolated wetlands as supporters and sources of diverse assemblages of amphibians and reptiles, they lack federal protection and local protection is often insufficient to halt their destruction. A key step in guiding informed policy towards isolated wetlands is to understand their economic value. This study combines a year of intensive amphibian surveys within a wetland with the assignment of values to each of the captured species based upon their reported commercial values. The 392,605 amphibians comprising 17 species captured at this wetland in 1 y were valued at $ 3,605,848 (U. S. dollars). Juvenile amphibians produced in the wetland in a single year accounted for the 95% of the reported value ($ 3,413,821). This value far exceeds the value of other natural habitats evaluated with similar methods and exceeds by two orders of magnitude the value of this land had it been converted to agriculture. Although this study does not advocate amphibian harvest as an economic use for wetlands, it does highlight the value, diversity, and abundance of amphibians inhabiting these small, isolated, and often unprotected wetlands and provides a foundation for future research, management, mitigation, and policy. C1 [Degregorio, Brett A.; Willson, John D.; Dorcas, Michael E.; Gibbons, J. Whitfield] Univ Georgia, Savannah River Ecol Lab, Aiken, SC USA. [Dorcas, Michael E.] Davidson Coll, Dept Biol, Davidson, NC 28035 USA. RP Degregorio, BA (reprint author), Univ Illinois, Dept Nat Resources & Environm Sci, Urbana, IL 61801 USA. EM bdegrego@illinois.edu FU U.S. Department of Energy through Financial Assistance Award [DE-FC09-96SR18546, DE-FC09-07SR22506] FX We thank L. Witzcak, and L. A. Harden for their valuable input and the many SREL students and staff who helped with the field portion of the study. Manuscript preparation was aided by the U.S. Department of Energy through Financial Assistance Award No. DE-FC09-96SR18546 and DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 19 TC 0 Z9 0 U1 0 U2 18 PU AMER MIDLAND NATURALIST PI NOTRE DAME PA UNIV NOTRE DAME, BOX 369, ROOM 295 GLSC, NOTRE DAME, IN 46556 USA SN 0003-0031 EI 1938-4238 J9 AM MIDL NAT JI Am. Midl. Nat. PD JUL PY 2014 VL 172 IS 1 BP 200 EP 204 PG 5 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA AL2ID UT WOS:000338948300014 ER PT J AU Casalongue, HGS Ng, ML Kaya, S Friebel, D Ogasawara, H Nilsson, A AF Casalongue, Hernan G. Sanchez Ng, May Ling Kaya, Sarp Friebel, Daniel Ogasawara, Hirohito Nilsson, Anders TI In Situ Observation of Surface Species on Iridium Oxide Nanoparticles during the Oxygen Evolution Reaction SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE electrochemistry; iridium oxide; heterogeneous catalysis; oxygen evolution reaction; X-ray photoelectron spectroscopy ID NEAR-AMBIENT CONDITIONS; PHOTOELECTRON-SPECTROSCOPY; OXIDATION-STATE; WATER; FILMS; XPS; ELECTROLYSIS AB An iridium oxide nanoparticle electrocatalyst under oxygen evolution reaction conditions was probed in situ by ambient-pressure X-ray photoelectron spectroscopy. Under OER conditions, iridium undergoes a change in oxidation state from Ir-IV to Ir-V that takes place predominantly at the surface of the catalyst. The chemical change in iridium is coupled to a decrease in surface hydroxide, providing experimental evidence which strongly suggests that the oxygen evolution reaction on iridium oxide occurs through an OOH-mediated deprotonation mechanism. C1 [Casalongue, Hernan G. Sanchez; Kaya, Sarp; Friebel, Daniel; Nilsson, Anders] LBNL, Joint Ctr Artificial Photosynthesis JCAP Energy I, Berkeley, CA 94720 USA. [Ng, May Ling; Ogasawara, Hirohito] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Nilsson, A (reprint author), LBNL, Joint Ctr Artificial Photosynthesis JCAP Energy I, 1 Cyclotron Rd,MS 976-JCAP, Berkeley, CA 94720 USA. EM nilsson@slac.stanford.edu RI Kaya, Sarp/C-4001-2008; Ogasawara, Hirohito/D-2105-2009; Nilsson, Anders/E-1943-2011 OI Kaya, Sarp/0000-0002-2591-5843; Ogasawara, Hirohito/0000-0001-5338-1079; Nilsson, Anders/0000-0003-1968-8696 FU Office of Science of the U.S. Department of Energy [DE-SC0004993]; Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under award no. DE-SC0004993. H.O. gratefully acknowledges the support from Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST). Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL), a division of SLAC National Accelerator Laboratory and an Office of Science user facility operated by Stanford University for the U.S. Department of Energy. NR 31 TC 45 Z9 45 U1 19 U2 180 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD JUL PY 2014 VL 53 IS 28 BP 7169 EP 7172 DI 10.1002/anie.201402311 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA AL2XR UT WOS:000338989500008 ER PT J AU Zhou, N Khanna, N Feng, W AF Zhou, Nan Khanna, Nina Feng, Wei TI China's Building Energy Use SO ASHRAE JOURNAL LA English DT Article C1 [Zhou, Nan; Khanna, Nina; Feng, Wei] Lawrence Berkeley Natl Lab, China Energy Grp, Berkeley, CA 94720 USA. RP Zhou, N (reprint author), Lawrence Berkeley Natl Lab, China Energy Grp, Berkeley, CA 94720 USA. NR 9 TC 0 Z9 0 U1 2 U2 2 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 EI 1943-6637 J9 ASHRAE J JI ASHRAE J. PD JUL PY 2014 VL 56 IS 7 BP 26 EP + PG 2 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA AL4GQ UT WOS:000339091300019 ER PT J AU Jiang, LH Fan, XH Bian, FY McGreer, ID Strauss, MA Annis, J Buck, Z Green, R Hodge, JA Myers, AD Rafiee, A Richards, G AF Jiang, Linhua Fan, Xiaohui Bian, Fuyan McGreer, Ian D. Strauss, Michael A. Annis, James Buck, Zoe Green, Richard Hodge, Jacqueline A. Myers, Adam D. Rafiee, Alireza Richards, Gordon TI THE SLOAN DIGITAL SKY SURVEY STRIPE 82 IMAGING DATA: DEPTH-OPTIMIZED CO-ADDS OVER 300 deg(2) IN FIVE FILTERS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE atlases; catalogs; surveys ID SURVEY PHOTOMETRIC SYSTEM; 1ST SPECTROSCOPIC DATA; II SUPERNOVA SURVEY; 10TH DATA RELEASE; 9TH DATA RELEASE; SDSS; CATALOG; QUASARS; VARIABILITY; CALIBRATION AB We present and release co-added images of the Sloan Digital Sky Survey (SDSS) Stripe 82. Stripe 82 covers an area of similar to 300 deg(2) on the celestial equator, and has been repeatedly scanned 70-90 times in the ugriz bands by the SDSS imaging survey. By making use of all available data in the SDSS archive, our co-added images are optimized for depth. Input single-epoch frames were properly processed and weighted based on seeing, sky transparency, and background noise before co-addition. The resultant products are co-added science images and their associated weight images that record relative weights at individual pixels. The depths of the co-adds, measured as the 5 sigma detection limits of the aperture (3".2 diameter) magnitudes for point sources, are roughly 23.9, 25.1, 24.6, 24.1, and 22.8 AB magnitudes in the five bands, respectively. They are 1.9-2.2 mag deeper than the best SDSS single-epoch data. The co-added images have good image quality, with an average point-spread function FWHM of similar to 1" in the r, i, and z bands. We also release object catalogs that were made with SExtractor. These co-added products have many potential uses for studies of galaxies, quasars, and Galactic structure. We further present and release near-IR J-band images that cover similar to 90 deg(2) of Stripe 82. These images were obtained using the NEWFIRM camera on the NOAO 4 m Mayall telescope, and have a depth of about 20.0-20.5 Vega magnitudes (also 5 sigma detection limits for point sources). C1 [Jiang, Linhua] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Fan, Xiaohui; McGreer, Ian D.; Green, Richard] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Bian, Fuyan] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Strauss, Michael A.; Buck, Zoe] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Annis, James] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Buck, Zoe] Univ Calif Santa Cruz, Dept Educ, Santa Cruz, CA 95064 USA. [Hodge, Jacqueline A.] NRAO, Charlottesville, VA 22903 USA. [Hodge, Jacqueline A.] Univ Calif Davis, Davis, CA 95616 USA. [Myers, Adam D.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Rafiee, Alireza] Towson Univ, Dept Phys Astron & Geosci, Towson, MD 21252 USA. [Richards, Gordon] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. RP Jiang, LH (reprint author), Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. RI Jiang, Linhua/H-5485-2016 OI Jiang, Linhua/0000-0003-4176-6486 FU NASA through Hubble Fellowship [HST-HF-51291.01]; Association of Universities for Research in Astronomy, Inc., for NASA [NAS 5-26555]; National Natural Science Foundation of China (NSFC) [11003021, 11373003]; Packard Fellowship for Science and Engineering; NSF [AST 08-06861, AST 11-07682]; Princeton University; Alfred P. Sloan Foundation; Participating Institutions; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX Support for this work was provided by NASA through Hubble Fellowship grant HST-HF-51291.01 awarded by STScI, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. L.J. also acknowledge support from the National Natural Science Foundation of China (NSFC) under grants 11003021 and 11373003. X. F. and I.D.M. acknowledge support from Packard Fellowship for Science and Engineering and NSF grant AST 08-06861 and AST 11-07682. Z. B. acknowledges financial support from Princeton University to travel to Kitt Peak.; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/. NR 42 TC 20 Z9 20 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUL PY 2014 VL 213 IS 1 AR 12 DI 10.1088/0067-0049/213/1/12 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AL6HO UT WOS:000339233400012 ER PT J AU Dale, BE Ong, RG AF Dale, Bruce E. Ong, Rebecca G. TI Design, implementation, and evaluation of sustainable bioenergy production systems SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE bioenergy systems; biofuels; design objectives; energy; sustainability; wealth; education; health ID STRATEGIC ENVIRONMENTAL ASSESSMENT; LIFE-CYCLE ASSESSMENT; ETHANOL-PRODUCTION; IMPACT ASSESSMENT; ENERGY-CONSUMPTION; PRODUCTION CHAINS; ECONOMIC-GROWTH; BIOMASS; FRAMEWORK; BIOFUELS AB Bioenergy systems are an essential part of a renewable energy portfolio, particularly as only liquid biofuels can replace petroleum in key applications. Unlike fossil energy systems, bioenergy systems can potentially be sustainable, that is, able to operate indefinitely into the future. Based on our work and the work of others who have examined various sustainability aspects of bioenergy systems, we believe it is possible to operate these systems so that they are sustainably profitable, improve the welfare of local populations, and provide environmental benefits for local and global ecosystems. However achieving greater sustainability by deploying bioenergy systems will not occur without careful thought and consideration. Therefore we propose and apply a set of sustainability objectives for bioenergy systems that span the economic, environmental, and social aspects of sustainability. (C) 2014 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Dale, Bruce E.] Michigan State Univ, Lansing, MI 48910 USA. [Ong, Rebecca G.] Michigan State Univ, Dept Chem Engn & Mat Sci, Lansing, MI 48910 USA. US DOE, Great Lakes Bioenergy Res Ctr, E Lansing, MI USA. RP Dale, BE (reprint author), Michigan State Univ, Dept Chem Engn & Mat Sci, Biomass Convers Res Lab, 3815 Technol Blvd, Lansing, MI 48910 USA. EM bdale@egr.msu.edu OI Ong, Rebecca/0000-0001-5020-646X FU DOE Great Lakes Bioenergy Research Center [DOE Office of Science BER DE-FC02-07ER64494] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). NR 114 TC 7 Z9 7 U1 4 U2 28 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X EI 1932-1031 J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD JUL-AUG PY 2014 VL 8 IS 4 BP 487 EP 503 DI 10.1002/bbb.1504 PG 17 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA AL2VA UT WOS:000338982400015 ER PT J AU Muth, DJ Langholtz, MH Tan, ECD Jacobson, JJ Schwab, A Wu, MM Argo, A Brandt, CC Cafferty, KG Chiu, YW Dutta, A Eaton, LM Searcy, EM AF Muth, David J., Jr. Langholtz, Matthew H. Tan, Eric C. D. Jacobson, Jacob J. Schwab, Amy Wu, May M. Argo, Andrew Brandt, Craig C. Cafferty, Kara G. Chiu, Yi-Wen Dutta, Abhijit Eaton, Laurence M. Searcy, Erin M. TI Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE biofuel; thermochemical conversion; biorefinery size; cost analysis ID LOBLOLLY-PINE; ENERGY CROPS; BIOMASS; TENNESSEE; BIOFUELS; COST AB The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the conversion facility. (C) 2014 The Authors. Biofuels, Bioproducts, Biorefining published by Society of Chemical Industry and John Wiley & Sons, Ltd. C1 [Muth, David J., Jr.] Praxik LLC, Analyt, Ames, IA USA. [Langholtz, Matthew H.; Brandt, Craig C.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Tan, Eric C. D.] Natl Renewable Energy Lab, Biorefinery Anal Grp, Natl Bioenergy Ctr, Golden, CO USA. [Jacobson, Jacob J.; Cafferty, Kara G.; Searcy, Erin M.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Schwab, Amy] US DOE, Bioenergy Technol Off, Natl Renewable Energy Lab, Washington, DC 20585 USA. [Wu, May M.] Argonne Natl Lab, Water Anal Team, Div Energy Syst, Argonne, IL 60439 USA. [Argo, Andrew] Sundrop Fuels, Longmont, CO USA. [Chiu, Yi-Wen] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Dutta, Abhijit] Natl Renewable Energy Lab, Golden, CO USA. [Eaton, Laurence M.] Oak Ridge Natl Lab, Div Environm Sci, Bioenergy Resource & Engn Syst Grp, Oak Ridge, TN 37831 USA. RP Jacobson, JJ (reprint author), Idaho Natl Lab, 2525 N Fremont Ave, Idaho Falls, ID 83415 USA. EM jacob.jacobson@inl.gov RI Eaton, Laurence/E-1471-2012 OI Eaton, Laurence/0000-0003-1270-9626 FU US Department of Energy FX We thank the US Department of Energy for funding and supporting this work. We thank The Dow Chemical Company for allowing the use of their kinetic model, which was integrated into NREL's process model for converting biomass to mixed alcohols for the techno-economic analysis. We thank Don Kaczmarek at USFS Southern Research Station and Kenneth Skog at USFS Forest Product Laboratory for their assistance with the water footprint analyses. We also thank Danny Inman and Yimin Zhang for their assistance with the LCA analyses. NR 29 TC 9 Z9 9 U1 3 U2 24 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X EI 1932-1031 J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD JUL-AUG PY 2014 VL 8 IS 4 BP 545 EP 567 DI 10.1002/bbb.1483 PG 23 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA AL2VA UT WOS:000338982400019 ER PT J AU Cox, K Renouf, M Dargan, A Turner, C Klein-Marcuschamer, D AF Cox, Kelly Renouf, Marguerite Dargan, Aidan Turner, Christopher Klein-Marcuschamer, Daniel TI Environmental life cycle assessment (LCA) of aviation biofuel from microalgae, Pongamia pinnata, and sugarcane molasses SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE LCA; environmental impact; energy; greenhouse gas; alternative fuel; jet fuel ID NITROUS-OXIDE EMISSIONS; AUSTRALIAN SUGARCANE; CARBON; FUEL; CULTIVATION; TRANSPORT; ENERGY; FOCUS; FOOD; N2O AB The environmental benefits and trade-offs of automotive biofuels are well known, but less is known about aviation biofuels. We modeled the environmental impacts of three pathways for aviation biofuel in Australia (from microalgae, pongamia, and sugarcane molasses) using attributional life cycle assessments (LCAs), applying both economic allocation and system expansion. Based on economic allocation, sugarcane molasses has the better fossil energy ratio FER (1.7 MJ out/MJ in) and GHG abatement (73% less than aviation kerosene) of the three, but with trade-offs of higher water use and eutrophication potential. Microalgae and pongamia have lower FER and GHG abatement (1.0 and 1.1; 53% and 43%), but mostly avoid eutrophication and reduce water use trade-offs. All have similar and relatively low land use intensities. If produced on land where existing carbon stocks are not compromised, the sugarcane and microalgae pathways would currently meet a 50% GHG abatement requirement. Based on system expansion, microalgae and pongamia had lower impacts than sugarcane for all categories except energy input, highlighting the positive aspects of these next-generation feedstocks. The low fossil energy conservation potential of these pathways was found to be a drawback, and significant energy efficiencies will be needed before they can affect fossil energy conservation. Energy recovery from processing residues (base case) was preferable over use as animal feed (variant case), and crucial for favorable energy and GHG conservation. However this finding is at odds with the economic preferences identified in a companion technoeconomic study. (C) 2014 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Cox, Kelly; Dargan, Aidan] Brisbane Technol Ctr, Boeing Res & Technol Australia, Brisbane, Qld, Australia. [Renouf, Marguerite] Univ Queensland, Sch Geog Planning & Environm Management, St Lucia, Qld, Australia. [Turner, Christopher; Klein-Marcuschamer, Daniel] Univ Queensland, Australian Inst Bioengn & Nanotechnol, St Lucia, Qld, Australia. [Klein-Marcuschamer, Daniel] Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA USA. [Klein-Marcuschamer, Daniel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Cox, K (reprint author), Boeing Res & Technol Australia, Brisbane, Qld 4000, Australia. EM Kelly.Cox@boeing.com RI Renouf, Marguerite/C-9193-2015 OI Renouf, Marguerite/0000-0003-0225-885X FU US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This work was conducted by Boeing Research and Technology Australia as part of their contribution to the Queensland Sustainable Aviation Fuel Initiative (QSAFI) project. Recognition goes to Brad Wheatley and Shaun Jellett (Boeing Research and Technology) for their contributions in the early stages of the project. The authors acknowledge the valuable input from Tim Grant (Life Cycle Strategies Pty Ltd) in reviewing the work and providing guidance of appropriate allocation and system expansion approaches. Thanks also go to the QSAFI consortium partners - Queensland State Government, University of Queensland, James Cook University, IOR Energy, Mackay Sugar Limited and Virgin Australia. DKM acknowledges help from the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. The authors are also grateful for the useful input provided by the anonymous reviewers. NR 58 TC 8 Z9 8 U1 6 U2 46 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X EI 1932-1031 J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD JUL-AUG PY 2014 VL 8 IS 4 BP 579 EP 593 DI 10.1002/bbb.1488 PG 15 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA AL2VA UT WOS:000338982400021 ER PT J AU Langholtz, M Eaton, L Turhollow, A Hilliard, M AF Langholtz, Matthew Eaton, Laurence Turhollow, Anthony Hilliard, Michael TI 2013 feedstock supply and price projections and sensitivity analysis SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE biomass; resource assessment; economic availability; bioenergy feedstocks; sensitivity analysis ID BIOENERGY AB Farmgate prices (i.e. price delivered roadside ready for loading and transport) for biomass feedstocks directly influence biofuel prices. Using the latest available data, marginal (i.e. price for the last ton) farmgate prices of $51, $63, and $67 dry ton(-1) ($2011) are projected as necessary to provide 21 billion gallons of biofuels from about 250 million dry tons of terrestrial feedstocks in 2022 under price-run deterministic, demand-run deterministic, and stochastic simulations, respectively. Sources of uncertainty in these feedstock supply and price projections include conversion efficiency, global market impacts on crop price projections, crop yields, no-till adoption, and climate. Under a set of low, high, and reference assumptions, these variables introduce an average of +/-$11 dry ton(-1) (similar to 15%) uncertainty of feedstock prices needed to meet EISA targets of 21 billion gallons of biofuels produced with 250 million dry tons of biomass in 2022. Market uncertainty justifies the need for fairly frequent (i.e. annual or biennial) re-assessment of feedstock price projections to inform strategies toward commercialization of biofuels. Published in 2014 by John Wiley & Sons, Ltd C1 [Langholtz, Matthew] Oak Ridge Natl Lab, Bioenergy Grp, Oak Ridge, TN 37831 USA. [Eaton, Laurence] Oak Ridge Natl Lab, Bioenergy Resource & Engn Syst Grp, Div Environm Sci, Oak Ridge, TN 37831 USA. [Turhollow, Anthony] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Hilliard, Michael] Oak Ridge Natl Lab, Ctr Transportat Anal, Oak Ridge, TN 37831 USA. RP Langholtz, M (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008,One Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM langholtzmh@ornl.gov RI Hilliard, Michael/C-3270-2016; Eaton, Laurence/E-1471-2012 OI Hilliard, Michael/0000-0002-4450-9250; Eaton, Laurence/0000-0003-1270-9626 FU US Department of Energy Efficiency and Renewable Energy Bioenergy Technologies Office; Oak Ridge National Laboratory's (ORNL) Environmental Sciences Division; U.S. Department of Energy [DE-AC05-00OR22725] FX This project was funded by the US Department of Energy Efficiency and Renewable Energy Bioenergy Technologies Office as well as by program development funds within Oak Ridge National Laboratory's (ORNL) Environmental Sciences Division. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 18 TC 0 Z9 0 U1 3 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X EI 1932-1031 J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD JUL-AUG PY 2014 VL 8 IS 4 BP 594 EP 607 DI 10.1002/bbb.1489 PG 14 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA AL2VA UT WOS:000338982400022 ER PT J AU Akl, TJ Wilson, MA Ericson, MN Cote, GL AF Akl, Tony J. Wilson, Mark A. Ericson, M. Nance Cote, Gerard L. TI Quantifying tissue mechanical properties using photoplethysmography SO BIOMEDICAL OPTICS EXPRESS LA English DT Article ID HEPATIC PORTAL-VEIN; LIVER-TRANSPLANTATION; CONTOUR ANALYSIS; PULSE-WAVE; DISEASE; SENSOR; COMPLICATIONS; PERFUSION; FIBROSIS; ELASTOGRAPHY AB Photoplethysmography (PPG) is a non-invasive optical method that can be used to detect blood volume changes in the microvascular bed of tissue. The PPG signal comprises two components; a pulsatile waveform (AC) attributed to changes in the interrogated blood volume with each heartbeat, and a slowly varying baseline (DC) combining low frequency fluctuations mainly due to respiration and sympathetic nervous system activity. In this report, we investigate the AC pulsatile waveform of the PPG pulse for ultimate use in extracting information regarding the biomechanical properties of tissue and vasculature. By analyzing the rise time of the pulse in the diastole period, we show that PPG is capable of measuring changes in the Young's Modulus of tissue mimicking phantoms with a resolution of 4 KPa in the range of 12 to 61 KPa. In addition, the shape of the pulse can potentially be used to diagnose vascular complications by differentiating upstream from downstream complications. A Windkessel model was used to model changes in the biomechanical properties of the circulation and to test the proposed concept. The modeling data confirmed the response seen in vitro and showed the same trends in the PPG rise and fall times with changes in compliance and vascular resistance. (C) 2014 Optical Society of America C1 [Akl, Tony J.; Cote, Gerard L.] Texas A&M Univ, Dept Biomed Engn, College Stn, TX 77843 USA. [Wilson, Mark A.] Univ Pittsburgh, Dept Surg, Pittsburgh, PA 15213 USA. [Wilson, Mark A.] VA Pittsburgh Healthcare Syst, Pittsburgh, PA 15240 USA. [Ericson, M. Nance] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Akl, TJ (reprint author), Texas A&M Univ, Dept Biomed Engn, 5045 Emerging Technol Bldg, College Stn, TX 77843 USA. EM takl@tamu.edu RI Ericson, Milton/H-9880-2016 OI Ericson, Milton/0000-0002-6628-4865 FU bioengineering research partnership (BRP) grant from NIH [5R01-GM077150] FX This research was funded by a bioengineering research partnership (BRP) grant from NIH, (#5R01-GM077150). NR 49 TC 3 Z9 3 U1 3 U2 24 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 2156-7085 J9 BIOMED OPT EXPRESS JI Biomed. Opt. Express PD JUL 1 PY 2014 VL 5 IS 7 BP 2362 EP 2375 DI 10.1364/BOE.5.002362 PG 14 WC Biochemical Research Methods; Optics; Radiology, Nuclear Medicine & Medical Imaging SC Biochemistry & Molecular Biology; Optics; Radiology, Nuclear Medicine & Medical Imaging GA AL2AV UT WOS:000338929100028 PM 25071970 ER PT J AU Qiu, XY Tang, L Margaryan, A Xu, JZ Hu, BT Chen, XM AF Qiu Xi-Yu Tang, L. Margaryan, A. Xu Jin-Zhang Hu Bi-Tao Chen Xi-Meng TI Position reconstruction in fission fragment detection using the low pressure MWPC technique for the JLab experiment E02-017 SO CHINESE PHYSICS C LA English DT Article DE hypernuclei; decay; LPMWPC; fission fragment; position reconstruction ID HEAVY HYPERNUCLEI; LIFETIME AB When a Lambda hyperon is embedded in a nucleus it can form a hypernucleus. The lifetime and its mass dependence of stable hypernuclei provide information about the Lambda N interaction in the nuclear medium. This work will introduce the Jefferson Lab experiment (E02-017), which aims to study the lifetime of the heavy hypernuclei using a specially developed fission fragment detection technique: a multi-wire proportional chamber operating under low gas pressure (LPMWPC). The trajectory of the detected fragment is reconstructed and used to find the fission point on the target foil, the position resolution is less than 1 mm, which meets the original design, the separation of target materials and events mixture percentage in different regions are verified by Monte Carlo simulation. C1 [Qiu Xi-Yu; Xu Jin-Zhang; Hu Bi-Tao; Chen Xi-Meng] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China. [Tang, L.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Tang, L.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Margaryan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Xu Jin-Zhang] Hefei Univ Technol, Sch Elect & Automat, Hefei 230009, Peoples R China. RP Qiu, XY (reprint author), Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China. EM chenxm@lzu.edu.cn FU National Natural Science Foundation of China [11175075, 11135002, 91026021] FX Supported by National Natural Science Foundation of China (11175075, 11135002 and 91026021) NR 9 TC 0 Z9 0 U1 0 U2 2 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD JUL PY 2014 VL 38 IS 7 AR 074003 DI 10.1088/1674-1137/38/7/074003 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AL6FQ UT WOS:000339228400005 ER PT J AU Zhang, ZL He, Y Zhang, B Li, DR Shi, AM Pan, G Du, XN Sun, LP AF Zhang Zhou-Li He Yuan Zhang Bin Li De-Run Shi Ai-Min Pan Gang Du Xiao-Nan Sun Lie-Peng TI Study of influence of radial matcher section end shape on RFQ cavity frequency SO CHINESE PHYSICS C LA English DT Article DE ADS project; form cutter; radial matcher section; test module AB To investigate the feasibility of using a form cutter to machine the Radial Matcher Section (RMS) of the Radio Frequency Quadrupole (RFQ) for the Accelerator Driven System (ADS) project at Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS), the influence of RMS end shape on the RFQ cavity frequency is studied. The results indicate that using a form cutter to machine the RMS of an RFQ will indeed influence the cavity frequency. The RMS end shape will give more influence to a shorter RFQ cavity. For the 4.2 m ADS RFQ, the influence is negligible, which means that a form cutter can be used to machine the RMS. C1 [Zhang Zhou-Li; He Yuan; Zhang Bin; Shi Ai-Min; Pan Gang; Du Xiao-Nan; Sun Lie-Peng] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. [Li De-Run] LBNL, Berkeley, CA 94720 USA. RP Zhang, ZL (reprint author), Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. EM jolly@impcas.ac.cn FU Chinese Academy of Sciences [XDA03020500]; NSFC [110790001] FX Supported by "Strategic Priority Research Program" of the Chinese Academy of Sciences (XDA03020500) and NSFC (110790001) NR 3 TC 1 Z9 1 U1 0 U2 0 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD JUL PY 2014 VL 38 IS 7 AR 077007 DI 10.1088/1674-1137/38/7/077007 PG 3 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AL6FQ UT WOS:000339228400024 ER PT J AU Draguta, S Yakovenko, AA Fonari, MS Timofeeva, TV AF Draguta, Sergiu Yakovenko, Andrey A. Fonari, Marina S. Timofeeva, Tatiana V. TI Unusual Chemical Ratio, Z '' Values, and Polymorphism in Three New N-Methyl Aminopyridine-4-Nitrophenol Adducts SO CRYSTAL GROWTH & DESIGN LA English DT Article ID CENTER-DOT-O; CRYSTAL-STRUCTURE PREDICTION; GENERAL STRUCTURAL FEATURES; ORGANIC MOLECULAR-CRYSTALS; PI-STACKING INTERACTIONS; CO-CRYSTAL; CONFORMATIONAL POLYMORPHISM; THERMODYNAMIC RULES; ASYMMETRIC UNIT; PACKING AB Cocrystallization of 4-nitrophenol (I) with N-methyl substituted aminopyridines, 4-N-methylaminopyridine 1, 2-N-methylaminopyridine 2, and 2-N,N-dimethylaminopyridine 3, resulted in three novel adducts 1.2(I), 2.3(I), and 3. 3(I), one of which, 2.3(I), was found in three polymorphic forms, A, B, and C. The single crystals were grown by slow evaporation from ethanol. The proton transfer from the phenoxy to the pyridine moieties was registered in all compounds. The adducts comprise pyridinium cations, 4-nitrophenolate anions, and varying in number neutral 4-nitrophenol molecules. Though the asymmetric hydrogen-bonded network involving the -N+H groups of pyridinium cations and the -C-O- and -C-OH groups of 4-nitrophenol moieties is registered in the adducts, the delicate balance of noncovalent interactions that include CH center dot center dot center dot O hydrogen bonds and face-to-face stacking interactions between the extended antiparallel arrays of components controls the centrosymmetric packing. Although three polymorphs of 2.3(I) share several structural common features, they reveal significant differences in the conformation of the pyridinium cation, and the hydrogen-bonding patterns. C1 [Draguta, Sergiu; Fonari, Marina S.; Timofeeva, Tatiana V.] New Mexico Highlands Univ, Dept Biol & Chem, Las Vegas, NM 87701 USA. [Yakovenko, Andrey A.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Fonari, Marina S.] Moldavian Acad Sci, Inst Appl Phys, MD-2028 Kishinev, Moldova. RP Draguta, S (reprint author), New Mexico Highlands Univ, Dept Biol & Chem, Las Vegas, NM 87701 USA. EM sergiudraguta@gmail.com FU NSF [DMR-0934212, IIA-130134] FX The advice of the anonymous reviewers is acknowledged. The authors are grateful for NSF support via DMR-0934212 (PREM) and IIA-130134. NR 71 TC 3 Z9 3 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD JUL PY 2014 VL 14 IS 7 BP 3423 EP 3433 DI 10.1021/cg500360f PG 11 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA AL4GH UT WOS:000339090400032 ER PT J AU Ayhan, O Malaestean, IL Ellern, A van Leusen, J Baca, SG Kogerler, P AF Ayhan, Ozan Malaestean, Iurie L. Ellern, Arkady van Leusen, Jan Baca, Svetlana G. Koegerler, Paul TI Assembly of Cerium(III) 2,2 '-Bipyridine-5,5 '-dicarboxylate-based Metal-Organic Frameworks by Solvent Tuning SO CRYSTAL GROWTH & DESIGN LA English DT Article ID COORDINATION POLYMERS; STRUCTURAL-CHARACTERIZATION; HYDROTHERMAL SYNTHESIS; CRYSTAL; LUMINESCENCE; NETWORKS; SITES AB Small changes to the reaction conditions differentiate between two metal organic frameworks (MOFs), {[Ce-2(H2O)(bpdc)(3)(dmf)(2)]center dot 2(dmf)}(n) (1) and {[Ce-4(H2O)(5)(bpdc)(6)(dmf)]center dot x(dmf)}(n) (2), that were solvothermally synthesized from cerium(III) nitrate hexahydrate and 2,2'-bipyridine-5,5'-dicarboxylic acid (H(2)bpdc) in dimethylformamide (dmf). The two compounds illustrate how the flexibility of the coordination geometry of Ce-III translates into MOFs, the formation of which readily adapts to different solvent environments. C1 [Ayhan, Ozan; Malaestean, Iurie L.; van Leusen, Jan; Baca, Svetlana G.; Koegerler, Paul] Rhein Westfal TH Aachen, Inst Inorgan Chem, D-52074 Aachen, Germany. [Ellern, Arkady] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Baca, Svetlana G.] Moldavian Acad Sci, Inst Appl Phys, Kishinev 2028, Moldova. RP Kogerler, P (reprint author), Rhein Westfal TH Aachen, Inst Inorgan Chem, D-52074 Aachen, Germany. EM paul.koegerler@ac.rwth-aachen.de RI Baca, Svetlana/J-9336-2012; Kogerler, Paul/H-5866-2013 OI Baca, Svetlana/0000-0002-2121-2091; Kogerler, Paul/0000-0001-7831-3953 NR 43 TC 10 Z9 10 U1 9 U2 65 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD JUL PY 2014 VL 14 IS 7 BP 3541 EP 3548 DI 10.1021/cg500815v PG 8 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA AL4GH UT WOS:000339090400044 ER PT J AU Gagnon, KJ Teat, SJ Beal, ZJ Embry, AM Strayer, ME Clearfield, A AF Gagnon, Kevin J. Teat, Simon J. Beal, Zachary J. Embry, Alyssa M. Strayer, Megan E. Clearfield, Abraham TI Isoreticular Investigation into the Formation of Four New Zinc Alkylbisphosphonate Families SO CRYSTAL GROWTH & DESIGN LA English DT Article ID METAL-ORGANIC FRAMEWORKS; CRYSTAL-STRUCTURES; RATIONAL DESIGN; ION-EXCHANGE; GIANT PORES; DIPHOSPHONATES; MOFS; PHOSPHONATES; CHANNELS AB Through the systematic investigation of zinc alkylbisphosphonates, four new structural families have been obtained. These families are named zinc alkyl-tunnel, -gate, -cation, and -sheet (ZAT, ZAG, ZAC, and ZAS) for convenience and have been synthesized and further extended through isoreticular design utilizing alkylbis(phosphonic acid) ligands of the formula H2O3PCnH2nPO3H2 (n = 3-6) (H(4)Ln). Both even- and odd-length chains were utilized to help determine the effect of chain conformation on structure formation. The investigation lead to two known compounds (ZAG-4, and ZAS-3) and nine new compounds, two of which contain large 1-D channels. The crystal structures of all compounds were determined by single-crystal X-ray diffraction. Of the nine new compounds, only seven of them fall into the new families. In three of the four families, the structure is controlled by alkyl-chain length and conformation (i.e., odd vs even), and in the fourth, a conformational distortion allows both odd and even lengths to form the given structure. Isoreticular species using n = 3 and 5 were obtained in both the ZAT and the ZAS families; using n = 4 and 6 were obtained in the ZAG family; and n = 4-6, in the ZAC family. C1 [Gagnon, Kevin J.; Beal, Zachary J.; Embry, Alyssa M.; Strayer, Megan E.; Clearfield, Abraham] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. [Gagnon, Kevin J.; Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Gagnon, KJ (reprint author), Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. EM kjgagnon@lbl.gov RI Clearfield, Abraham/D-4184-2015 OI Clearfield, Abraham/0000-0001-8318-8122 FU National Science Foundation [DMR-0652166, HRD-0832993, DGE-0750732]; Robert A. Welch Foundation [A0673]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [De-AC02-05CH11231] FX The authors would like to thankfully acknowledge the National Science Foundation for providing funding through grants DMR-0652166, HRD-0832993, and DGE-0750732. We would also like to acknowledge the Robert A. Welch Foundation for supplemental funding through grant A0673. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. De-AC02-05CH11231. NR 36 TC 5 Z9 5 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD JUL PY 2014 VL 14 IS 7 BP 3612 EP 3622 DI 10.1021/cg500568e PG 11 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA AL4GH UT WOS:000339090400052 ER PT J AU Mendes, G Feng, W Stadler, M Steinbach, J Lai, J Zhou, N Marnay, C Ding, Y Zhao, J Tian, Z Zhu, N AF Mendes, Goncalo Feng, Wei Stadler, Michael Steinbach, Jan Lai, Judy Zhou, Nan Marnay, Chris Ding, Yan Zhao, Jing Tian, Zhe Zhu, Neng TI Regional analysis of building distributed energy costs and CO2 abatement: A U.S.-China comparison SO ENERGY AND BUILDINGS LA English DT Article DE Building modeling and simulation; Distributed Energy Resources (DER); Energy efficiency; Combined Heat and Power (CHP); CO2 emissions AB The following paper conducts a regional analysis of the U.S. and Chinese buildings' potential for adopting Distributed Energy Resources (DER). The expected economics of DER in 2020-2025 is modeled for a commercial and a multi-family residential building in different climate zones. The optimal building energy economic performance is calculated using the Distributed Energy Resources Customer Adoption Model (DER-CAM) which minimizes building energy costs for a typical reference year of operation. Several DER such as combined heat and power (CHP) units, photovoltaics, and battery storage are considered. The results indicate DER have economic and environmental competitiveness potential, especially for commercial buildings in hot and cold climates of both countries. In the U.S., the average expected energy cost savings in commercial buildings from DER-CAMs suggested investments is 17%, while in Chinese buildings is 12%. The electricity tariffs structure and prices along with the cost of natural gas, represent important factors in determining adoption of DER, more so than climate. High energy pricing spark spreads lead to increased economic attractiveness of DER. The average emissions reduction in commercial buildings is 19% in the U.S. as a result of significant investments in PV, whereas in China, it is 20% and driven by investments in CHP. (C) 2014 Elsevier B.V. All rights reserved. C1 [Mendes, Goncalo; Feng, Wei; Stadler, Michael; Lai, Judy; Zhou, Nan; Marnay, Chris] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Mendes, Goncalo] Inst Super Tecn, MIT Portugal Program, Lisbon, Portugal. [Steinbach, Jan] Fraunhofer Inst Syst & Innovat Res ISI, Karlsruhe, Germany. [Ding, Yan; Zhao, Jing; Tian, Zhe; Zhu, Neng] Tianjin Univ, Tianjin, Peoples R China. RP Mendes, G (reprint author), Inst Super Tecn, MIT Portugal Program, Lisbon, Portugal. EM goncalo.p.mendes@tecnico.ulisboa.pt OI Mendes, Goncalo/0000-0001-9309-0110 FU U.S. Department of Energy [DE-AC02-05CH11231]; U.S.-China Clean Energy Research Consortium (CERC); Energy Foundation China Sustainable Energy Program; Fundacao para a Ciencia e Tecnologia (FCT) [PTDC/SENENR/108440/2008]; MIT Portugal Program FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, U.S.-China Clean Energy Research Consortium (CERC), and Energy Foundation China Sustainable Energy Program. The authors acknowledge the funding by Fundacao para a Ciencia e Tecnologia (FCT) PTDC/SENENR/108440/2008 and MIT Portugal Program. NR 23 TC 1 Z9 1 U1 1 U2 24 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD JUL PY 2014 VL 77 BP 112 EP 129 DI 10.1016/j.enbuild.2014.03.047 PG 18 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA AL4VO UT WOS:000339133100012 ER PT J AU Yao, LX Hammond, EG Wang, T Bu, W Vaknin, D AF Yao, Linxing Hammond, Earl G. Wang, Tong Bu, Wei Vaknin, David TI Physical and monolayer film properties of potential fatty ester biolubricants SO EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY LA English DT Article DE Biolubricant; 2,3-Butanediol monooleate; Melting point; Monolayer; Pressure-area isotherm; Viscosity ID ACID ESTERS; LANGMUIR MONOLAYERS; VEGETABLE-OILS; LUBRICANTS; TRIMETHYLOLPROPANE; VISCOSITIES; BILAYER; POINTS; GLYCOL; METHYL AB The desire to replace petroleum-based lubricants with alternatives that are environmentally friendly and made from sustainable sources has encouraged the development of biolubricants based on vegetable oils. To be good lubricants, the materials should have low melting points, appropriate viscosity and oxidative stability. In this paper, we report the melting point and viscosity of oleate esters of ethylene glycol, 1,2-propanediol, 2,3-butanediol, and pentaerythritol as well as the decanoate esters of 2,3-butanediol and the 12-methyltetradecanoate esters of 1,2-propanediol. Polyol esters that have a free hydroxy group had lower melting points than the completely esterified polyols, but the completely esterified polyol esters exhibited less change in viscosity with temperature than those having a free hydroxy group. 2, 3-Butanediol monooleate, which melted at -48.6 degrees C shows promise as a biolubricant, but its viscosity index was estimated to be 100. Pentaerythritol oleate esters, with melting points below -10 degrees C and viscosity indices in the range of 170-197, may be suitable candidates as biolubricants. The behavior of esters spread as a monomolecular film at air/water interface may provide insight into the way they behave when spread on metal or polar surfaces, so the pressure-area isotherms of 2,3-butanediol monoleate and selected esters are also reported. Practical applications: The structure and function relationships demonstrated can be used to synthesize biolubricants with desirable physical and performance properties. C1 [Yao, Linxing; Hammond, Earl G.; Wang, Tong] Iowa State Univ, Dept Food Sci & Human Nutr, Ctr Crops Utilizat Res, Ames, IA 50010 USA. [Bu, Wei; Vaknin, David] Iowa State Univ, Ames Lab, Ames, IA 50010 USA. [Bu, Wei; Vaknin, David] Iowa State Univ, Dept Phys & Astron, Ames, IA 50010 USA. RP Wang, T (reprint author), Iowa State Univ, Dept Food Sci & Human Nutr, 2312 Food Sci Bldg, Ames, IA 50010 USA. EM tongwang@iastate.edu RI Vaknin, David/B-3302-2009; Bu, Wei/Q-1390-2016 OI Vaknin, David/0000-0002-0899-9248; Bu, Wei/0000-0002-9996-3733 FU Plant Science Institute; Center for Crop Utilization Research at Iowa State University; Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-07CH11358] FX We thank the Plant Science Institute and Center for Crop Utilization Research at Iowa State University for their financial support. The work at Ames Laboratory was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC02-07CH11358. NR 39 TC 1 Z9 1 U1 2 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1438-7697 EI 1438-9312 J9 EUR J LIPID SCI TECH JI Eur. J. Lipid Sci. Technol. PD JUL PY 2014 VL 116 IS 7 BP 910 EP 917 DI 10.1002/ejlt.201400013 PG 8 WC Food Science & Technology; Nutrition & Dietetics SC Food Science & Technology; Nutrition & Dietetics GA AL4PF UT WOS:000339114200015 ER PT J AU Modera, M Wray, CP Dickerhoff, D AF Modera, Mark Wray, Craig P. Dickerhoff, Darryl TI Low pressure air-handling system leakage in large commercial buildings: Diagnosis, prevalence, and energy impacts SO HVAC&R RESEARCH LA English DT Article AB Air-handling system leakage reduces the amount of air delivered to conditioned spaces and in most cases wastes energy and money. Standards exist for where and how to measure system airtightness, but they tend to focus on new construction, and only on the high-pressure (1500-2500 Pa [6-10 in. w.c.])/medium-pressure [500-1500 Pa (2-6 in. w.c.]) portions of the system. This article investigates air leakage in the low-pressure (<= 500 Pa [<= 2 in. w.c.]) portions of large commercial-building air-handling systems (i.e., downstream of variable-air-volume box inlet dampers). A simplified diagnostic protocol for measuring low-pressure leakage that can be used during normal system operation in an existing building is presented and utilized for this investigation. A validation of the protocol using a calibrated leak in a field installation is also presented, as are the results of applying this protocol in nine other buildings around the United States. The validation results indicate that normalized leakage can be measured to within 10 L/s at 25 Pa (20 cfm at 0.1 in w.c.), with and without the existence of significant flow through the minimum opening of the box inlet damper. The field test results indicate that low-pressure leakage varied considerably from system to system (standard deviation of 50% of the mean value), and that the average value was approximately 10% of the flow entering the low-pressure system sections. The variability of the measured results, combined with a simplified analysis of the impacts of this leakage, suggest that testing of low-pressure system leakage in commercial buildings should be economically justifiable. C1 [Modera, Mark] Univ Calif Davis, Davis, CA 94610 USA. [Wray, Craig P.; Dickerhoff, Darryl] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Modera, M (reprint author), Univ Calif Davis, 215 Sage St,Suite 100, Davis, CA 94610 USA. EM mpmodera@ucdavis.edu FU California Energy Commission Public Interest Energy Research (PIER) program [500-08052]; Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the California Energy Commission Public Interest Energy Research (PIER) program under Contract 500-08052 and by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 9 TC 1 Z9 1 U1 1 U2 3 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 CHESTNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1078-9669 EI 1938-5587 J9 HVAC&R RES JI HVAC&R Res. PD JUL PY 2014 VL 20 IS 5 BP 559 EP 569 DI 10.1080/10789669.2014.920688 PG 11 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA AL3CN UT WOS:000339003000007 ER PT J AU Artioli, G Valentini, L Dalconi, MC Parisatto, M Voltolini, M Russo, V Ferrari, G AF Artioli, Gilberto Valentini, Luca Dalconi, Maria Chiara Parisatto, Matteo Voltolini, Marco Russo, Vincenzo Ferrari, Giorgio TI Imaging of nano-seeded nucleation in cement pastes by X-ray diffraction tomography SO INTERNATIONAL JOURNAL OF MATERIALS RESEARCH LA English DT Article DE Cement; Diffraction; Nucleation; Radial distribution functions; Tomography ID HYDRATION; MICROTOMOGRAPHY; MICROSTRUCTURE; SILICATE AB The 3D phase distribution of cement pastes evolves during hydration and controls the rheology and mechanical properties of the paste. Synchrotron powder-diffraction micro-to-mographic imaging is here employed to assess the cement phase spatial distribution in a totally non-invasive way. This technique can be used to produce distribution maps of the phases present in the hydrating cement paste. The method is applied to an ordinary Portland cement, hydrated in pure water or in the presence of nucleation seeds. The quantitative description of the phase spatial distribution by radial distribution functions allows the discrimination of different nucleation mechanisms. C1 [Artioli, Gilberto; Valentini, Luca; Dalconi, Maria Chiara; Parisatto, Matteo] Univ Padua, Dept Geosci, I-3513 Padua, Italy. [Artioli, Gilberto; Valentini, Luca; Dalconi, Maria Chiara; Parisatto, Matteo] CIRCe Ctr Study Cement Mat, Padua, Italy. [Voltolini, Marco] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Russo, Vincenzo; Ferrari, Giorgio] Mapei SpA, R&D Lab, Milan, Italy. RP Valentini, L (reprint author), Univ Padua, Dept Geosci, Via Gradenigo 6, I-3513 Padua, Italy. EM luca.valentini@unipd.it RI Artioli, Gilberto/F-2149-2015; Voltolini, Marco/G-2781-2015 OI Artioli, Gilberto/0000-0002-8693-7392; FU Mapei S.p.A; [MA-1063] FX Remi Tucoulou (ESRF) is acknowledged for beam-time, provided in the frame of the long term project MA-1063. This research was financially supported by Mapei S.p.A. Two anonymous reviewers are acknowledged for their insightful comments, which improved the quality of the manuscript. NR 25 TC 5 Z9 5 U1 2 U2 29 PU CARL HANSER VERLAG PI MUNICH PA KOLBERGERSTRASSE 22, POSTFACH 86 04 20, D-81679 MUNICH, GERMANY SN 1862-5282 EI 2195-8556 J9 INT J MATER RES JI Int. J. Mater. Res. PD JUL PY 2014 VL 105 IS 7 BP 628 EP 631 DI 10.3139/146.111049 PG 4 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA AL7PZ UT WOS:000339328300003 ER PT J AU Oktem, R Prabhat Lee, J Thomas, A Zuidema, P Romps, DM AF Oektem, Rusen Prabhat Lee, James Thomas, Aaron Zuidema, Paquita Romps, David M. TI Stereophotogrammetry of Oceanic Clouds SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID CLIMATE RESEARCH FACILITY; FAIR-WEATHER CUMULI; RADAR OBSERVATIONS; BASE-HEIGHT; PHOTOGRAMMETRY; PRECIPITATION; CUMULONIMBUS; DOWNDRAFTS; CONVECTION; UPDRAFTS AB This study extends ground-based stereophotogrammetry of clouds to oceanic settings, where there are often none of the landmarks used in traditional camera calibration. This paper introduces a zero-landmark calibration technique and tests it with two off-the-shelf digital cameras situated about 1 km apart facing Biscayne Bay in Miami, Florida. The precision of the stereo reconstruction is studied theoretically, and the accuracy of the reconstructions is validated against lidar and radiosondes. The stereo cameras are able to accurately reconstruct a histogram of cloud-base heights from a single-image pair, a task that requires tens of minutes of observation from a cloud lidar. The stereo cameras are also able to accurately reconstruct horizontal winds in cloud layers with a temporal resolution in the range of 30s to 5 min, compared to once every 12 h for a typical radiosonde launch site. C1 [Oektem, Rusen; Prabhat; Romps, David M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Oektem, Rusen; Romps, David M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Prabhat; Lee, James; Thomas, Aaron] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Zuidema, Paquita] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. RP Oktem, R (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, 455 McCone Hall, Berkeley, CA 94720 USA. EM roktem@lbl.gov RI Zuidema, Paquita/C-9659-2013; Romps, David/F-8285-2011 OI Zuidema, Paquita/0000-0003-4719-372X; FU Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the U.S. Department of Energy [DE-AC02-05CH11231]; Hellman Fellows Fund FX This work was supported initially by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the U.S. Department of Energy Contract DE-AC02-05CH11231 and, subsequently, by the Hellman Fellows Fund. The Marine and Science Technology (MAST) Academy hosted one of the cameras, and many thanks are due to the school administration and technical staff, without whom this project would not have been possible. NR 31 TC 4 Z9 4 U1 0 U2 17 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD JUL PY 2014 VL 31 IS 7 BP 1482 EP 1501 DI 10.1175/JTECH-D-13-00224.1 PG 20 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA AL4KQ UT WOS:000339102200002 ER PT J AU Aitken, ML Lundquist, JK AF Aitken, Matthew L. Lundquist, Julie K. TI Utility-Scale Wind Turbine Wake Characterization Using Nacelle-Based Long-Range Scanning Lidar SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID DISTRIBUTIONS; DIRECTION; SPEED AB To facilitate the optimization of turbine spacing at modern wind farms, computational simulations of wake effects must be validated through comparison with full-scale field measurements of wakes from utility-scale turbines operating in the real atmosphere. Scanning remote sensors are particularly well suited for this objective, as they can sample wind fields over large areas at high temporal and spatial resolutions. Although ground-based systems are useful, the vantage point from the nacelle is favorable in that scans can more consistently transect the central part of the wake. To the best of the authors' knowledge, the work described here represents the first analysis in the published literature of a utility-scale wind turbine wake using nacelle-based long-range scanning lidar. The results presented are of a field experiment conducted in the fall of 2011 at a wind farm in the western United States, quantifying wake attributes such as the velocity deficit, centerline location, and wake width. Notable findings include a high average velocity deficit, decreasing from 60% at a downwind distance x of 1.8 rotor diameters (D) to 40% at x = 6D, resulting from a low average wind speed and therefore a high average turbine thrust coefficient. Moreover, the wake width was measured to expand from 1.5D at x = 1.8D to 2.5D at x = 6D. Both the wake growth rate and the amplitude of wake meandering were observed to be greater for high ambient turbulence intensity and daytime conditions as compared to low turbulence and nocturnal conditions. C1 [Aitken, Matthew L.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Lundquist, Julie K.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Lundquist, Julie K.] Natl Renewable Energy Lab, Golden, CO USA. RP Aitken, ML (reprint author), Univ Colorado, Dept Phys, 390 UCB, Boulder, CO 80309 USA. EM matthew.aitken@colorado.edu OI LUNDQUIST, JULIE/0000-0001-5490-2702 NR 24 TC 5 Z9 5 U1 1 U2 10 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD JUL PY 2014 VL 31 IS 7 BP 1529 EP 1539 DI 10.1175/JTECH-D-13-00218.1 PG 11 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA AL4KQ UT WOS:000339102200005 ER PT J AU Lin, YL Aleksandrov, A Simonson, T Roux, B AF Lin, Yen-Lin Aleksandrov, Alexey Simonson, Thomas Roux, Benoit TI An Overview of Electrostatic Free Energy Computations for Solutions and Proteins SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID POLARIZABLE FORCE-FIELD; PERIODIC BOUNDARY-CONDITIONS; HISTOGRAM ANALYSIS METHOD; IMPLICIT SOLVENT MODELS; SOLVATION FREE-ENERGIES; FINITE-SIZE CORRECTIONS; BINDING FREE-ENERGIES; PARTICLE-MESH EWALD; MOLECULAR-DYNAMICS; COMPUTER-SIMULATIONS AB Free energy simulations for electrostatic and charging processes in complex molecular systems encounter specific difficulties owing to the long-range, 1/r Coulomb interaction. To calculate the solvation free energy of a simple ion, it is essential to take into account the polarization of nearby solvent but also the electrostatic potential drop across the liquid gas boundary, however distant. The latter does not exist in a simulation model based on periodic boundary conditions because there is no physical boundary to the system. An important consequence is that the reference value of the electrostatic potential is not an ion in a vacuum. Also, in an infinite system, the electrostatic potential felt by a perturbing charge is conditionally convergent and dependent on the choice of computational conventions. Furthermore, with Ewald lattice summation and tinfoil conducting boundary conditions, the charges experience a spurious shift in the potential that depends on the details of the simulation system such as the volume fraction occupied by the solvent. All these issues can be handled with established computational protocols, as reviewed here and illustrated for several small ions and three solvated proteins. C1 [Lin, Yen-Lin; Roux, Benoit] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. [Aleksandrov, Alexey; Simonson, Thomas] Ecole Polytech, Biochim Lab, Dept Biol, CNRS,UMR7654, F-91128 Palaiseau, France. [Roux, Benoit] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Simonson, T (reprint author), Ecole Polytech, Biochim Lab, Dept Biol, CNRS,UMR7654, F-91128 Palaiseau, France. EM thomas.simonson@polytechnique.fr; roux@uchicago.edu OI Simonson, Thomas/0000-0002-5117-7338 FU National Science Foundation [MCB-0920261] FX Helpful discussions with Bernard Brooks and Othmar Steinhauser are acknowledged. The help of Huan Rui with Figure 7 was greatly appreciated. The authors are grateful for the hard work from the anonymous reviewers. This work was supported by grant MCB-0920261 from the National Science Foundation (Y.-L.L. and B.R.). NR 107 TC 37 Z9 37 U1 7 U2 71 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD JUL PY 2014 VL 10 IS 7 BP 2690 EP 2709 DI 10.1021/ct500195p PG 20 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AL0GR UT WOS:000338805900007 PM 26586504 ER PT J AU Yu, H Chen, C Ma, JC Liu, WZ Zhou, JZ Lee, DJ Ren, NQ Wang, AJ AF Yu, Hao Chen, Chuan Ma, Jincai Liu, Wenzong Zhou, Jizhong Lee, Duu-Jong Ren, Nanqi Wang, Aijie TI GeoChip-based analysis of the microbial community functional structures in simultaneous desulfurization and denitrification process SO JOURNAL OF ENVIRONMENTAL SCIENCES LA English DT Article DE Expanded granular sludge bed; Elemental sulfur recovery; Microbial community; Functional gene array ID SULFIDE-OXIDIZING BACTERIA; SULFATE-REDUCING BACTERIA; SIMULTANEOUS BIOLOGICAL REMOVAL; MICROARRAY-BASED ANALYSIS; WASTE-WATER; BED REACTOR; AUTOTROPHIC DENITRIFICATION; GENE DIVERSITY; OIL-FIELD; SP-NOV. AB The elemental sulfur (S-0) recovery was evaluated in the presence of nitrate in two development models of simultaneous desulfurization and denittification (SDD) process. At the loading rates of 0.9 kg S/(m(3).clay) for sulfide and 0.4 kg N/(m(3).day) for nitrate, S-0 conversion rate was 91.1% in denitrifying sulfide removal (DSR) model which was higher than in integrated simultaneous desulfurization and denitrification (ISDD) model (25.6%). A comprehensive analysis of functional diversity, structure and metabolic potential of microbial communities was examined in two models by using functional gene array (GeoChip 2.0). GeoChip data indicated that diversity indices, community structure, and abundance of functional genes were distinct between two models. Diversity indices (Simpson's diversity index (1/D) and Shannon-Weaver index (H')) of all detected genes showed that with elevated influent loading rate, the functional diversity decreased in ISDD model but increased in DSR model. In contrast to ISDD model, the overall abundance of dsr genes was lower in DSR model, while some functional genes targeting from nitrate-reducing sulfide-oxidizing bacteria (NR-SOB), such as Thiobacillus denitrificans, Sulfurimonas denitrificans, and Paracoccus pantotrophus were more abundant in DSR model which were highly associated with the change of S-0 conversion rate obtained in two models. The results obtained in this study provide additional insights into the microbial metabolic mechanisms involved in ISDD and DSR models, which in turn will improve the overall performance of SDD process. (C) 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. C1 [Yu, Hao] Liaoning Tech Univ, Sch Environm Sci & Engn, Fuxing 123000, Peoples R China. [Yu, Hao; Chen, Chuan; Ren, Nanqi; Wang, Aijie] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China. [Ma, Jincai] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94550 USA. [Liu, Wenzong; Wang, Aijie] Chinese Acad Sci, Ecoenvironm Sci Res Ctr, Beijing 100085, Peoples R China. [Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Dept Bot & Microbiol, Norman, OK 73019 USA. [Lee, Duu-Jong] Natl Taiwan Univ, Dept Chem Engn, Taipei 10617, Taiwan. RP Chen, C (reprint author), Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China. EM micro_yh@126.com; echo110244@126.com; waj0578@hit.edu.cn RI Ma, Jincai/D-1290-2013 OI Ma, Jincai/0000-0002-0792-0251 FU National High-Tech Research and Development Program (863) of China [2011AA060904]; National Natural Science Foundation of China [51111140388, 51176037] FX This work was supported by the National High-Tech Research and Development Program (863) of China (No. 2011AA060904), and the National Natural Science Foundation of China (Nos. 51111140388, 51176037). NR 37 TC 1 Z9 1 U1 5 U2 58 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 1001-0742 EI 1878-7320 J9 J ENVIRON SCI-CHINA JI J. Environ. Sci. PD JUL PY 2014 VL 26 IS 7 BP 1375 EP 1382 DI 10.1016/j.jes.2014.05.001 PG 8 WC Environmental Sciences SC Environmental Sciences & Ecology GA AL3NX UT WOS:000339036500001 PM 25079984 ER PT J AU Wang, SQ Liu, GX Cheng, SW Boukany, PE Wang, YY Li, X AF Wang, Shi-Qing Liu, Gengxin Cheng, Shiwang Boukany, Pouyan E. Wang, Yangyang Li, Xin TI Letter to the Editor: Sufficiently entangled polymers do show shear strain localization at high enough Weissenberg numbers SO JOURNAL OF RHEOLOGY LA English DT Letter ID MOLECULAR-WEIGHT DISTRIBUTION; NONLINEAR FLOW BEHAVIOR; WALL SLIP; VISCOELASTIC PROPERTIES; DNA SOLUTIONS; STEP SHEAR; MELTS; DISENTANGLEMENT; POLYBUTADIENE; VELOCIMETRY AB This Letter concludes that the recent data of Li et al. [J. Rheol. 57, 1411-1428 (2013)] are entirely consistent with the previous observations of the occurrence and absence of shear banding during startup shear and nonquiescent relaxation after large stepwise shear. In other words, based on the linear viscoelastic characteristics of these solutions depicted in Fig. 5(a) of Li et al., we find their results to follow from the previous analysis: One insufficiently entangled solution naturally exhibited homogeneous shear under the explored conditions. The two more entangled solutions did not exhibit shear banding and nonquiescent relaxation, because the samples appear to have significant polydispersity in the molecular weight distribution and because the applied shear rates were much lower than those needed to produce shear banding. Thus, the observations of Li et al. support rather than refute the existing knowledge concerning nonlinear rheological responses of entangled polymer solutions to startup and stepwise shear. (C) 2014 The Society of Rheology. C1 [Wang, Shi-Qing; Liu, Gengxin; Cheng, Shiwang] Univ Akron, Morton Inst Polymer Sci & Engn, Akron, OH 44325 USA. [Boukany, Pouyan E.] Delft Univ Technol, Dept Chem Engn, NL-2628 BL Delft, Netherlands. [Wang, Yangyang] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Li, Xin] Milliken & Co, Milliken Res Corp, Spartanburg, SC 29303 USA. RP Wang, SQ (reprint author), Univ Akron, Morton Inst Polymer Sci & Engn, Akron, OH 44325 USA. EM swang@uakron.edu RI Boukany, Pouyan/G-5043-2011; Wang, Yangyang/A-5925-2010; Cheng, Shiwang/F-8371-2016; Liu, Gengxin/F-8446-2012 OI Wang, Yangyang/0000-0001-7042-9804; Liu, Gengxin/0000-0002-2998-8572 NR 34 TC 13 Z9 13 U1 3 U2 21 PU JOURNAL RHEOLOGY AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0148-6055 J9 J RHEOL JI J. Rheol. PD JUL-AUG PY 2014 VL 58 IS 4 BP 1059 EP 1069 DI 10.1122/1.4884361 PG 11 WC Mechanics SC Mechanics GA AL4YV UT WOS:000339141600010 ER PT J AU Di, S Kondo, D Cappello, F AF Di, Sheng Kondo, Derrick Cappello, Franck TI Characterizing and modeling cloud applications/jobs on a Google data center SO JOURNAL OF SUPERCOMPUTING LA English DT Article DE Google data center; Cloud task; Characterization and analysis; Large-scale system trace ID COMPUTING ENVIRONMENTS AB In this paper, we characterize and model Google applications and jobs, based on a 1-month Google trace from a large-scale Google data center. We address four contributions: (1) we compute the valuable statistics about task events and resource utilization for Google applications, based on various types of resources and execution types; (2) we analyze the classification of applications via a K-means clustering algorithm with optimized number of sets, based on task events and resource usage; (3) we study the correlation of Google application properties and running features (e.g., job priority and scheduling class); (4) we finally build a model that can simulate Google jobs/tasks and dynamic events, in accordance with Google trace. Experiments show that the tasks simulated based on our model exhibit fairly analogous features with those in Google trace. 95+ % of tasks' simulation errors are 20 %, confirming a high accuracy of our simulation model. C1 [Di, Sheng; Kondo, Derrick] INRIA, Paris, France. [Cappello, Franck] Argonne Natl Lab, Lemont, IL USA. RP Di, S (reprint author), INRIA, Paris, France. EM disheng222@gmail.com; derrick.kondo@inria.fr; cappello@mcs.anl.gov FU ANR [ANR-09-JCJC-0056-01]; Advanced Scientific Computing Research Program, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357]; INRIA-Illinois Joint Laboratory for Petascale Computing; Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX We thank Google Inc, in particular Charles Reiss and John Wilkes, for making their invaluable trace data available. This work is supported by ANR project Clouds@home (ANR-09-JCJC-0056-01), also in part by the Advanced Scientific Computing Research Program, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357, and by the INRIA-Illinois Joint Laboratory for Petascale Computing. This paper has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U. S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 25 TC 7 Z9 8 U1 1 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0920-8542 EI 1573-0484 J9 J SUPERCOMPUT JI J. Supercomput. PD JUL PY 2014 VL 69 IS 1 BP 139 EP 160 DI 10.1007/s11227-014-1131-z PG 22 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA AL0UU UT WOS:000338843200014 ER PT J AU Myung, S Rollin, J You, C Sun, FF Chandrayan, S Adams, MWW Zhang, YHP AF Myung, Suwan Rollin, Joseph You, Chun Sun, Fangfang Chandrayan, Sanjeev Adams, Michael W. W. Zhang, Y. -H. Percival TI In vitro metabolic engineering of hydrogen production at theoretical yield from sucrose SO METABOLIC ENGINEERING LA English DT Article DE Innovative biomanufacturing; In vitro metabolic engineering; Hydrogen; In vitro synthetic biology; Sucrose ID SYNTHETIC ENZYMATIC PATHWAY; ESCHERICHIA-COLI; DIRECTED EVOLUTION; ONE-POT; CELL; COMPLEX; BIOMASS; WATER; TRANSFORMATION; BIOTECHNOLOGY AB Hydrogen is one of the most important industrial chemicals and will be arguably the best fuel in the future. Hydrogen production from less costly renewable sugars can provide affordable hydrogen, decrease reliance on fossil fuels, and achieve nearly zero net greenhouse gas emissions, but current chemical and biological means suffer from low hydrogen yields and/or severe reaction conditions. An in vitro synthetic enzymatic pathway comprised of 15 enzymes was designed to split water powered by sucrose to hydrogen. Hydrogen and carbon dioxide were spontaneously generated from sucrose or glucose and water mediated by enzyme cocktails containing up to 15 enzymes under mild reaction conditions (i.e. 37 degrees C and atm). In a batch reaction, the hydrogen yield was 23.2 mol of dihydrogen per mole of sucrose, i.e., 967% of the theoretical yield (i.e.., 12 dihydrogen per hexose). In a fed batch reaction, increasing substrate concentration led to 3.3-fold enhancement in reaction rate to 9.74 mmol of H-2/L/h. These proof-of-concept results suggest that catabolic water splitting powered by sugars catalyzed by enzyme cocktails could be an appealing green hydrogen production approach. (C) 2014 international Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved. C1 [Myung, Suwan; Rollin, Joseph; You, Chun; Sun, Fangfang; Zhang, Y. -H. Percival] Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Myung, Suwan; Zhang, Y. -H. Percival] Virginia Tech, ICTAS, Blacksburg, VA 24061 USA. [Sun, Fangfang; Zhang, Y. -H. Percival] Cell Free Bioinnovat Inc CFB9, Blacksburg, VA 24060 USA. [Chandrayan, Sanjeev; Adams, Michael W. W.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Adams, Michael W. W.] DOE BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA. RP Zhang, YHP (reprint author), Virginia Tech, Dept Biol Syst Engn, 304 Seitz Hall, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu RI CHANDRAYAN, SANJEEV /M-1662-2016 OI CHANDRAYAN, SANJEEV /0000-0003-2219-4654 FU Shell Game Changer Program; CALS Biodesign and Bioprocessing Research Center to PZ at Virginia Tech; NSF STTR I [IIP-1321528]; DOE STTR I [DE-SC0009659TDD]; ICTAS Scholar Program; Department of Defense through the National Defense Science and Engineering Graduate (NDSEG) Program; Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-FG05-95ER20175] FX This work was supported by the Shell Game Changer Program, the CALS Biodesign and Bioprocessing Research Center to PZ at Virginia Tech, as well as two NSF STTR I (IIP-1321528) and DOE STTR I(DE-SC0009659TDD) awards to Cell Free Bioinnovations Inc. SM was partially supported by the ICTAS Scholar Program. JR was supported by the Department of Defense through the National Defense Science and Engineering Graduate (NDSEG) Program. SC and MA were supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy (grant DE-FG05-95ER20175). NR 63 TC 18 Z9 18 U1 10 U2 41 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1096-7176 EI 1096-7184 J9 METAB ENG JI Metab. Eng. PD JUL PY 2014 VL 24 BP 70 EP 77 DI 10.1016/j.ymben.2014.05.006 PG 8 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AL2CU UT WOS:000338934300007 PM 24836702 ER PT J AU Mertins, P Yang, F Liu, T Mani, DR Petyuk, VA Gillette, MA Clauser, KR Qiao, JW Gritsenko, MA Moore, RJ Levine, DA Townsend, R Erdmann-Gilmore, P Snider, JE Davies, SR Ruggles, KV Fenyo, D Kitchens, RT Li, SQ Olvera, N Dao, F Rodriguez, H Chan, DW Lieblera, D Whiteb, F Rodland, KD Millsc, GB Smith, RD Paulovichd, AG Ellis, M Carr, SA AF Mertins, Philipp Yang, Feng Liu, Tao Mani, D. R. Petyuk, Vladislav A. Gillette, Michael A. Clauser, Karl R. Qiao, Jana W. Gritsenko, Marina A. Moore, Ronald J. Levine, Douglas A. Townsend, Reid Erdmann-Gilmore, Petra Snider, Jacqueline E. Davies, Sherri R. Ruggles, Kelly V. Fenyo, David Kitchens, R. Thomas Li, Shunqiang Olvera, Narciso Dao, Fanny Rodriguez, Henry Chan, Daniel W. Lieblera, Daniel Whiteb, Forest Rodland, Karin D. Millsc, Gordon B. Smith, Richard D. Paulovichd, Amanda G. Ellis, Matthew Carr, Steven A. TI Ischemia in Tumors Induces Early and Sustained Phosphorylation Changes in Stress Kinase Pathways but Does Not Affect Global Protein Levels SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Article ID COMPREHENSIVE GENOMIC CHARACTERIZATION; BREAST-CANCER; POSTTRANSLATIONAL MODIFICATIONS; ENDOMETRIAL CARCINOMA; INTERACTION NETWORKS; OXIDATIVE STRESS; EXPRESSION; ACTIVATION; INDICATORS; FIXATION AB Protein abundance and phosphorylation convey important information about pathway activity and molecular pathophysiology in diseases including cancer, providing biological insight, informing drug and diagnostic development, and guiding therapeutic intervention. Analyzed tissues are usually collected without tight regulation or documentation of ischemic time. To evaluate the impact of ischemia, we collected human ovarian tumor and breast cancer xenograft tissue without vascular interruption and performed quantitative proteomics and phosphoproteomics after defined ischemic intervals. Although the global expressed proteome and most of the >25,000 quantified phosphosites were unchanged after 60 min, rapid phosphorylation changes were observed in up to 24% of the phosphoproteome, representing activation of critical cancer pathways related to stress response, transcriptional regulation, and cell death. Both pan-tumor and tissue-specific changes were observed. The demonstrated impact of pre-analytical tissue ischemia on tumor biology mandates caution in interpreting stress-pathway activation in such samples and motivates reexamination of collection protocols for phosphoprotein analysis. C1 [Mertins, Philipp; Mani, D. R.; Gillette, Michael A.; Clauser, Karl R.; Qiao, Jana W.; Carr, Steven A.] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA. [Yang, Feng; Liu, Tao; Petyuk, Vladislav A.; Gritsenko, Marina A.; Moore, Ronald J.; Rodland, Karin D.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Levine, Douglas A.; Olvera, Narciso; Dao, Fanny] Mem Sloan Kettering Canc Ctr, Dept Surg, Gynecol Serv, New York, NY 10065 USA. [Townsend, Reid; Erdmann-Gilmore, Petra; Snider, Jacqueline E.; Davies, Sherri R.; Kitchens, R. Thomas; Li, Shunqiang; Ellis, Matthew] Washington Univ, Dept Med, St Louis, MO 63110 USA. [Ruggles, Kelly V.; Fenyo, David] NYU, Dept Biochem, Langone Med Ctr, New York, NY 10016 USA. [Rodriguez, Henry] NCI, NIH, Bethesda, MD 20892 USA. [Chan, Daniel W.] Johns Hopkins Med Inst, Dept Pathol, Baltimore, MD 21287 USA. [Lieblera, Daniel] Vanderbilt Univ, Sch Med, Dept Biochem, Nashville, TN 37232 USA. [Whiteb, Forest] MIT, Dept Biol Engn, Cambridge, MA 02139 USA. [Millsc, Gordon B.] Univ Texas MD Anderson Canc Ctr, Dept Syst Biol, Houston, TX 77030 USA. [Paulovichd, Amanda G.] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA. RP Carr, SA (reprint author), Broad Inst MIT & Harvard, Cambridge, MA 02142 USA. EM pmertins@broadinstitute.org; scarr@broad.mit.edu RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Petyuk, Vladislav/0000-0003-4076-151X; Liebler, Daniel/0000-0002-7873-3031; Fenyo, David/0000-0001-5049-3825; Ruggles, Kelly/0000-0002-0152-0863 FU NCI, National Institutes of Health, NCI Clinical Proteomics Tumor Analysis Consortium [U24CA160034, U24CA160019, U24CA160035, U24CA159988, U24CA160036]; Susan G. Komen for the Cure [BCTR0707808, KG090422]; NCI, National Institutes of Health [P30CA091842, 3P50 CA68438]; CTSA [UL1 RR024992]; MD Anderson Cancer Center Support Grant (CCSG) from National Institutes of Health [CA016672]; [PO1CA099031]; [U54CA112970]; [KG081694]; [P30 CA16672] FX This work was supported, in whole or in part, by grants from the NCI, National Institutes of Health (Grant Nos. U24CA160034 to S. A. C. and A. G. P., U24CA160019 to R. D. S. and K. D. R., U24CA160035 to M.J.E. and R. R. T., U24CA159988 to D. L., and U24CA160036 to D. C.), as part of the NCI Clinical Proteomics Tumor Analysis Consortium. The PDX models were developed through grants to Matthew J. Ellis by Susan G. Komen for the Cure (Grant Nos. BCTR0707808 and KG090422). The Siteman Cancer Center Tissue Procurement Core is supported by Grant No. P30CA091842 from NCI, National Institutes of Health. Tissue procurement core was supported Grant No. 3P50 CA68438 from NCI, National Institutes of Health. The HAMLET Core was supported by CTSA grant UL1 RR024992. The ovarian cancer sample collection was supported by the Chia Family Foundation. The RPPA analysis was supported by MD Anderson Cancer Center Support Grant (CCSG) CA016672 from National Institutes of Health and Grant Nos. PO1CA099031, U54CA112970, KG081694, and P30 CA16672 to Gordon Mills. NR 41 TC 67 Z9 68 U1 3 U2 17 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 EI 1535-9484 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD JUL PY 2014 VL 13 IS 7 BP 1690 EP 1704 DI 10.1074/mcp.M113.036392 PG 15 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA AL6OD UT WOS:000339251300005 PM 24719451 ER PT J AU Nelson, FJ Idrobo, JC Fite, JD Miskovic, ZL Pennycook, SJ Pantelides, ST Lee, JU Diebold, AC AF Nelson, Florence J. Idrobo, Juan-Carlos Fite, John D. Miskovic, Zoran L. Pennycook, Stephen J. Pantelides, Sokrates T. Lee, Ji Ung Diebold, Alain C. TI Electronic Excitations in Graphene in the 1-50 eV Range: The pi and pi plus sigma Peaks Are Not Plasmons SO NANO LETTERS LA English DT Article DE Graphene; energy loss function; plasmons; interband transitions; electron energy loss spectroscopy; aberration-corrected scanning transmission electron microscopy ID FREESTANDING GRAPHENE; GRAPHITE AB The field of plasmonics relies on light coupling strongly to plasmons as collective excitations. The energy loss function of graphene is dominated by two peaks at similar to 5 and similar to 45 eV, known as pi and pi + sigma plasmons, respectively. We use electron energy-loss spectroscopy in an aberration-corrected scanning transmission electron microscope and density functional theory to show that between 1 to 50 eV, these prominent pi and pi + sigma peaks are not plasmons, but single-particle interband excitations. C1 [Nelson, Florence J.; Fite, John D.; Lee, Ji Ung; Diebold, Alain C.] SUNY Coll Nanoscale Sci & Engn, Albany, NY 12203 USA. [Idrobo, Juan-Carlos] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Miskovic, Zoran L.] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada. [Miskovic, Zoran L.] Univ Waterloo, Waterloo Inst Nanotechnol, Waterloo, ON N2L 3G1, Canada. [Pennycook, Stephen J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Pantelides, Sokrates T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Nelson, FJ (reprint author), SUNY Coll Nanoscale Sci & Engn, 257 Fuller Rd, Albany, NY 12203 USA. EM florencenel@gmail.com; idrobojc@ornl.gov; adiebold@albany.edu RI Idrobo, Juan/H-4896-2015 OI Idrobo, Juan/0000-0001-7483-9034 FU Institute for Nanoelectronics Discovery and Exploration (INDEX)/Nanoelectronics Research Initiative (NRI); New York Center for National Competitiveness in Nanoscale Characterization (NC3); ORNL's Center for Nanophase Materials Sciences (CNMS) - Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; Natural Sciences and Engineering Research Council of Canada; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank R.F. Egerton, R.F. Klie, G. E. Jellison, and W. Zhou for helpful discussions and comments. This work was funded by the Institute for Nanoelectronics Discovery and Exploration (INDEX)/Nanoelectronics Research Initiative (NRI) and the New York Center for National Competitiveness in Nanoscale Characterization (NC3). This research was supported in part by ORNL's Center for Nanophase Materials Sciences (CNMS), which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy, the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy (S.J.P., S.T.P.). Z.L.M. acknowledges support from Natural Sciences and Engineering Research Council of Canada. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 27 TC 21 Z9 21 U1 2 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2014 VL 14 IS 7 BP 3827 EP 3831 DI 10.1021/nl500969t PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AL2TZ UT WOS:000338979700020 PM 24884760 ER PT J AU Brovelli, S Bae, WK Meinardi, F Gonzalez, BS Lorenzon, M Galland, C Klimov, VI AF Brovelli, Sergio Bae, Wan Ki Meinardi, Francesco Gonzalez, Beatriz Santiago Lorenzon, Monica Galland, Christophe Klimov, Victor I. TI Electrochemical Control of Two-Color Emission from Colloidal Dot-in-Bulk Nanocrystals SO NANO LETTERS LA English DT Article DE Nanocrystal quantum dot; core/shell heterostructure; dual emission; spectro-electrochemistry; trapping; ratiometric sensing ID SINGLE QUANTUM DOTS; SEMICONDUCTOR NANOCRYSTALS; AUGER RECOMBINATION; ELECTRONIC-STRUCTURE; SUPPRESSED BLINKING; SHELL NANOCRYSTALS; CORE; CDS; HETERONANOCRYSTALS; DYNAMICS AB Colloidal "dot-in-bulk" nanocrystals (DiB NCs) consist of a quantum confined core embedded into a bulklike shell of a larger energy gap. The first reported example of this class of nanostructures are CdSe/CdS DiB NCs that are capable of producing tunable two-color emission under both weak continuous-wave optical excitation and electrical charge injection. This property is a consequence of a Coulomb blockade mechanism, which slows down dramatically intraband relaxation of shell-localized holes when the core is already occupied by a hole. Here, we demonstrate electrochemical control of dual emission from DiB NCs. Spectro-electrochemical (SEC) experiments are used to tune and probe the photoluminescence (PL) intensity and branching between the core and the shell emission channels as a function of applied electrochemical potential (V-EC). To interpret the SEC data we develop a model that describes the changes in the intensities of the shell and core PL bands by relating them to the occupancies of electron and hole traps. Specifically, application of negative electrochemical potentials under which theratiometric Fermi level is shifted upward in energy leads to passivation of electron traps at the surface of the CdS shell thereby increasing the total PL quantum yield by favoring the shell emission. Simultaneously, the emission color changes from red (V-EC = 0) through yellow to green (V-EC = 1). Time-resolved PL measurements indicate that as the Fermi level approaches the NC conduction band-edge electrons are injected into the NC quantized states, which leads to typical signatures of negative trions observed under optical excitation. Application of positive potentials leads to activation of electron traps, which quenches both core and shell PL and leads to the reduction of the overall PL quantum efficiency. A high sensitivity of emission intensity (especially pronounced for the shell band) and the apparent emission color of DiB NCs to local electrochemical environment can enable interesting applications of these novel nanostructures in areas of imaging and sensing including, for example, ratiometric probing of intracellular pH. C1 [Brovelli, Sergio; Meinardi, Francesco; Gonzalez, Beatriz Santiago; Lorenzon, Monica] Univ Milano Bicocca, Dipartimento Sci Mat, I-20125 Milan, Italy. [Bae, Wan Ki; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Bae, Wan Ki; Klimov, Victor I.] Los Alamos Natl Lab, Ctr Adv Solar Photophys, Los Alamos, NM 87545 USA. [Galland, Christophe] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. RP Brovelli, S (reprint author), Univ Milano Bicocca, Dipartimento Sci Mat, Via Cozzi SS, I-20125 Milan, Italy. EM sergio.brovelli@unimib.it; klimov@lanl.gov RI Galland, Christophe/A-1075-2013; OI Galland, Christophe/0000-0001-5627-0796; Klimov, Victor/0000-0003-1158-3179 FU Cariplo Foundation [2012-0844]; European Community's Seventh Framework Programme (FP7) [324603]; Chemical Sciences, Biosciences and Geosciences Division of Office of Science, Office of Basic Energy Sciences (BES), U.S. Department of Energy (DOE) FX S.B., F.M., and B.S.G. acknowledge support from Cariplo Foundation (2012-0844). S.B. wishes to thank the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement 324603 for financial support (EDONHIST). W.K.B, C.G., and V.I.K. are supported by the Chemical Sciences, Biosciences and Geosciences Division of Office of Science, Office of Basic Energy Sciences (BES), U.S. Department of Energy (DOE). NR 43 TC 13 Z9 13 U1 6 U2 91 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2014 VL 14 IS 7 BP 3855 EP 3863 DI 10.1021/nl501026r PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AL2TZ UT WOS:000338979700024 PM 24914746 ER PT J AU van der Zande, AM Kunstrnann, J Chernikov, A Chenet, DA You, YM Zhang, XX Huang, PY Berkelbach, TC Wang, L Zhang, F Hybertsen, MS Muller, DA Reichman, DR Heinz, TF Hone, JC AF van der Zande, Arend M. Kunstrnann, Jens Chernikov, Alexey Chenet, Daniel A. You, YuMeng Zhang, XiaoXiao Huang, Pinshane Y. Berkelbach, Timothy C. Wang, Lei Zhang, Fan Hybertsen, Mark S. Muller, David A. Reichman, David R. Heinz, Tony F. Hone, James C. TI Tailoring the Electronic Structure in Bilayer Molybdenum Disulfide via Interlayer Twist SO NANO LETTERS LA English DT Article DE Molybdenum disulfide; twisted bilayer; heterostructure; interlayer interaction; band structure ID VAPOR-PHASE GROWTH; SINGLE-LAYER MOS2; GRAPHENE HETEROSTRUCTURES; 2ND-HARMONIC GENERATION; INTEGRATED-CIRCUITS; TOPOLOGICAL DEFECTS; ATOMIC LAYERS; BAND-GAPS; MONOLAYER; TRANSISTORS AB Molybdenum disulfide bilayers with well-defined interlayer twist angle were constructed by stacking single-crystal monolayers. Varying interlayer twist angle results in strong tuning of the indirect optical transition energy and second-harmonic generation and weak tuning of direct optical transition energies and Raman mode frequencies. Electronic structure calculations show the interlayer separation changes with twist due to repulsion between sulfur atoms, resulting in shifts of the indirect optical transition energies. These results show that interlayer alignment is a crucial variable in tailoring the properties of two-dimensional heterostructures. C1 [van der Zande, Arend M.; Kunstrnann, Jens; Berkelbach, Timothy C.; Hybertsen, Mark S.; Reichman, David R.; Heinz, Tony F.; Hone, James C.] Columbia Univ, Energy Frontier Res Ctr, New York, NY 10027 USA. [van der Zande, Arend M.; Chenet, Daniel A.; Wang, Lei; Zhang, Fan; Hone, James C.] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA. [Kunstrnann, Jens; Berkelbach, Timothy C.] Columbia Univ, Dept Chem, New York, NY 10027 USA. [Chernikov, Alexey; You, YuMeng; Zhang, XiaoXiao; Reichman, David R.; Heinz, Tony F.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Chernikov, Alexey; You, YuMeng; Zhang, XiaoXiao; Reichman, David R.; Heinz, Tony F.] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA. [Huang, Pinshane Y.; Muller, David A.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Hybertsen, Mark S.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Muller, David A.] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA. RP van der Zande, AM (reprint author), Columbia Univ, Energy Frontier Res Ctr, New York, NY 10027 USA. EM av2466@columbia.edu RI Kunstmann, Jens/F-7082-2010; Hone, James/E-1879-2011; van der Zande, Arend/C-1989-2016; You, YuMeng/B-5601-2013; Heinz, Tony/K-7797-2015; Muller, David/A-7745-2010; You, YuMeng/C-6821-2016; OI Hone, James/0000-0002-8084-3301; van der Zande, Arend/0000-0001-5104-9646; Heinz, Tony/0000-0003-1365-9464; Muller, David/0000-0003-4129-0473; Hybertsen, Mark S/0000-0003-3596-9754; Huang, Pinshane/0000-0002-1095-1833; Wang, Lei/0000-0002-1919-9107 FU U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences [DE-SC0001085]; EFRC; Alexander von Humboldt Foundation; NSF [DGE-0707428]; Columbia University; Center for Functional Nanomaterials at Brookhaven National Lab; U.S. Department of Energy, Office of Basic Energy Sciences [DEAC02-98CH10886]; Cornell Center for Materials Research, a National Science Foundation MRSEC [NSF DMR-1120296] FX Overall project coordination, sample growth, and optical characterization were supported as part of the Center for Re-Defining Photovoltaic Efficiency Through Molecular-Scale Control, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under Award DE-SC0001085. A.M.v.d.Z and J.K. were supported by the EFRC as research fellow and postdoctoral researcher, respectively. A.C. was supported by the Alexander von Humboldt Foundation through the Feodor-Lynen fellowship program. Electron microscopy was performed at and supported by the Cornell Center for Materials Research, a National Science Foundation MRSEC (NSF DMR-1120296). Computations were performed at the Center for Information Services and High Performance Computing (ZIH) of the TU Dresden. P.Y.H. was supported under NSF Graduate Research Fellowship Grant DGE-0707428. D.A.C. was supported by a Columbia University Presidential fellowship and a GEM Ph.D. Fellowship sponsored by the Center for Functional Nanomaterials at Brookhaven National Lab. Part of this work was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract no. DEAC02-98CH10886. The authors thank Sasha Gondarenko, Yilei Li, Philip Kim, Gwan Hyoung Lee, and Chul-Ho Lee for helpful discussions. NR 47 TC 55 Z9 55 U1 19 U2 161 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2014 VL 14 IS 7 BP 3869 EP 3875 DI 10.1021/nl501077m PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AL2TZ UT WOS:000338979700026 PM 24933687 ER PT J AU He, XW Fujimura, N Lloyd, JM Erickson, KJ Talin, AA Zhang, Q Gao, WL Jiang, Q Kawano, Y Hauge, RH Leonard, F Kono, J AF He, Xiaowei Fujimura, Naoki Lloyd, J. Meagan Erickson, Kristopher J. Talin, A. Alec Zhang, Qi Gao, Weilu Jiang, Qijia Kawano, Yukio Hauge, Robert H. Leonard, Francois Kono, Junichiro TI Carbon Nanotube Terahertz Detector SO NANO LETTERS LA English DT Article DE Carbon nanotubes; THz photodetector; broadband; polarization sensitive ID BROAD-BAND; GRAPHENE; OPTOELECTRONICS; PHOTODETECTOR; CONDUCTIVITY; TECHNOLOGY; PHOTONICS; FILMS AB Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications. However, despite decades of worldwide efforts, the THz region of the electromagnetic spectrum still continues to be elusive for solid state technology. Here, we report on the development of a powerless, compact, broadband, flexible, large-area, and polarization-sensitive carbon nanotube THz detector that works at room temperature. The detector is sensitive throughout the entire range of the THz technology gap, with responsivities as high as similar to 2.5 V/W and polarization ratios as high as similar to 5:1. Complete thermoelectric and opto-thermal characterization together unambiguously reveal the photothermoelectric origin of the THz photosignal, triggered by plasmonic absorption and collective antenna effects, and suggest that judicious design of thermal management and quantum engineering of Seebeck coefficients will lead to further enhancement of device performance. C1 [He, Xiaowei; Zhang, Qi; Gao, Weilu; Jiang, Qijia; Kono, Junichiro] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA. [He, Xiaowei; Zhang, Qi; Gao, Weilu; Jiang, Qijia; Hauge, Robert H.; Kono, Junichiro] Rice Univ, Richard E Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA. [Lloyd, J. Meagan] Rice Univ, NanoJapan Program, Houston, TX 77005 USA. [Hauge, Robert H.] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Kono, Junichiro] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Kono, Junichiro] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA. [Fujimura, Naoki; Kawano, Yukio] Tokyo Inst Technol, Dept Phys Elect, Quantum Nanoelect Res Ctr, Meguro Ku, Tokyo 1528552, Japan. [Lloyd, J. Meagan] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA. [Erickson, Kristopher J.; Talin, A. Alec; Leonard, Francois] Sandia Natl Labs, Livermore, CA 94551 USA. [Hauge, Robert H.] King Abdulaziz Univ, Dept Chem, Fac Sci, Jeddah 21589, Saudi Arabia. RP Leonard, F (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM fleonar@sandia.gov; kono@rice.edu RI Hauge, Robert/A-7008-2011; Gao, Weilu/O-7521-2016; OI Hauge, Robert/0000-0002-3656-0152; Fujimura, Naoki/0000-0002-0421-2065 FU US Department of Energy, Office of Science under the National Institute for Nano Engineering (NINE) at Sandia National Laboratories; Lockheed-Martin Rice University LANCER Program; National Science Foundation [OISE-0968405, EEC-0540832]; Robert A. Welch Foundation [C-1509]; KAKENHI [26286005, 26600010, 26103513]; STAR at Tokyo Institute of Technology FX This work was supported by the US Department of Energy, Office of Science under the National Institute for Nano Engineering (NINE) at Sandia National Laboratories, the Lockheed-Martin Rice University LANCER Program, the National Science Foundation (through Grant Nos. OISE-0968405 and EEC-0540832), Robert A. Welch Foundation (through Grant No. C-1509), KAKENHI (through Grant Nos. 26286005, 26600010, 26103513), and STAR at Tokyo Institute of Technology. We thank Cary L. Pint for his guidance and assistance with the growth of aligned carbon nanotubes and Bernice Mills for use of the infrared camera. NR 42 TC 48 Z9 49 U1 12 U2 131 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2014 VL 14 IS 7 BP 3953 EP 3958 DI 10.1021/nl5012678 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AL2TZ UT WOS:000338979700039 PM 24875576 ER PT J AU Ren, JD Guo, HM Pan, JB Zhang, YY Wu, X Luo, HG Du, SX Pantelides, ST Gao, HJ AF Ren, Jindong Guo, Haiming Pan, Jinbo Zhang, Yu Yang Wu, Xu Luo, Hong-Gang Du, Shixuan Pantelides, Sokrates T. Gao, Hong-Jun TI Kondo Effect of Cobalt Adatoms on a Graphene Monolayer Controlled by Substrate-Induced Ripples SO NANO LETTERS LA English DT Article DE Kondo effect; scanning tunneling microscopy; graphene; magnetic impurity; surface adsorption ID SINGLE MAGNETIC IMPURITY; RESONANCE; ATOM AB The Kondo effect, a widely studied phenomenon in which the scattering of conduction electrons by magnetic impurities increases as the temperature T is lowered, depends strongly on the density of states at the Fermi energy. It has been predicted by theory that magnetic impurities on free-standing monolayer graphene exhibit the Kondo effect and that control of the density of states at the Fermi level by external means can be used to switch the effect on and off. However, though transport data for Co adatoms on graphene monolayers on several substrates have been reported, there exists no evidence for a Kondo effect. Here we probe the role of the substrate on the Kondo effect of Co on graphene by combining low-temperature scanning tunneling microscopy and spectroscopy measurements with density functional theory calculations. We use a Ru(0001) substrate that is known to cause graphene to ripple, yielding a moire superlattice. The experimental data show a sharp Kondo resonance peak near the Fermi energy from only Co adatoms at the edge of atop regions of the moire pattern. The theoretical results show that the variation of the distance from the graphene to the Ru substrate, which controls the spin polarization and local density of states at the Fermi energy, is the key factor for the appearance of the Kondo resonance. The results suggest that rippling of graphene by suitable substrates is an additional lever for tuning and selectively switching the appearance of the Kondo effect. C1 [Ren, Jindong; Guo, Haiming; Pan, Jinbo; Wu, Xu; Du, Shixuan; Gao, Hong-Jun] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Zhang, Yu Yang; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37240 USA. [Luo, Hong-Gang] Lanzhou Univ, Ctr Interdisciplinary Studies, Lanzhou 730000, Peoples R China. [Luo, Hong-Gang] Lanzhou Univ, Key Lab Magnetism & Magnet Mat, MoE, Lanzhou 730000, Peoples R China. [Luo, Hong-Gang] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China. [Zhang, Yu Yang; Pantelides, Sokrates T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Pantelides, ST (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37240 USA. EM pantelides@vanderbilt.edu; hjgao@iphy.ac.cn RI Du, Shixuan/K-7145-2012; Zhang, Yu-Yang/F-2078-2011 OI Du, Shixuan/0000-0001-9323-1307; Zhang, Yu-Yang/0000-0002-9548-0021 FU National Natural Science Foundation of China [51210003, 61390500, 61274011, 11325417]; National "973" projects of China [2011CB309703, 2013CBA01600]; Chinese Academy of Sciences; Shanghai supercomputer center; U.S. DOE Office of Basic Energy Sciences; Vanderbilt by the McMinn Endowment; U.S. DOE FX Work in China and YYZ were supported by National Natural Science Foundation of China (Grants 51210003, 61390500, 61274011, 11325417), National "973" projects of China (Grants 2011CB309703, 2013CBA01600), the Chinese Academy of Sciences, and Shanghai supercomputer center. STP's work at ORNL was supported by U.S. DOE Office of Basic Energy Sciences and at Vanderbilt by the McMinn Endowment. Computations by YYZ were supported by the XSEDE Science Gateways and by NERSC, which is funded by the U.S. DOE. NR 37 TC 17 Z9 17 U1 8 U2 108 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2014 VL 14 IS 7 BP 4011 EP 4015 DI 10.1021/nl501425n PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AL2TZ UT WOS:000338979700048 PM 24905855 ER PT J AU Chen, XC Wong, DT Yakovlev, S Beers, KM Downing, KH Balsara, NP AF Chen, X. Chelsea Wong, David T. Yakovlev, Sergey Beers, Keith M. Downing, Kenneth H. Balsara, Nitash P. TI Effect of Morphology of Nanoscale Hydrated Channels on Proton Conductivity in Block Copolymer Electrolyte Membranes SO NANO LETTERS LA English DT Article DE Proton exchange membranes; fuel cells; block copolymer electrolytes; morphology; water uptake; proton conductivity ID ANGLE X-RAY; SCHROEDERS PARADOX; NAFION MEMBRANES; MOLECULAR-WEIGHT; HUMID AIR; WATER; TRANSPORT; MODEL; HOMOPOLYMER; TECHNOLOGY AB Hydrated membranes with cocontinuous hydrophilic and hydrophobic phases are needed to transport protons in hydrogen fuel cells. Herein we study the water uptake and proton conductivity of a model fuel cell membrane comprising a triblock copolymer, polystyrenesulfonate-block-polyethylene-block-polystyrenesulfonate (S-SES), as a function of water activity in both humid air and liquid water. We demonstrate that the water uptake and proton conductivity of S-SES membranes equilibrated in liquid water are fundamentally different from values obtained when they were equilibrated in humid air. The morphological underpinnings of our observations were determined by synchrotron small-angle X-ray scattering and cryogenic scanning transmission electron microscopy. A discontinuous increase in conductivity when nearly saturated humid air is replaced with liquid water coincides with the emergence of heterogeneity in the hydrated channels: a water-rich layer is sandwiched between two polymer-rich brushes. While the possibility of obtaining heterogeneous hydrated channels in polymer electrolyte membranes has been discussed extensively, to our knowledge, this is the first time that direct evidence for the formation of water-rich subdomains is presented. C1 [Chen, X. Chelsea; Yakovlev, Sergey; Beers, Keith M.; Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wong, David T.; Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Wong, David T.; Beers, Keith M.; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Downing, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM nbalsara@cchem.berkeley.edu RI Foundry, Molecular/G-9968-2014 FU Electron Microscopy of Soft Matter Program from the Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Primary funding for the work was provided by the Electron Microscopy of Soft Matter Program from the Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. SAXS experiments were performed at the Advanced Light Source (ALS), beamline 7.3.3. The STEM experiments were performed as user projects at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory. The ALS and NCEM are DOE national user facilities and are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under the same contract. X.C.C. thanks Dr. Eric Schaible for help at ALS, Dr. Roseann Csencsits for help with cryo-plunging, Dr. Chengyu Song for help with STEM, and Dr. Cohn Ophus for helpful discussions on the figures. NR 45 TC 12 Z9 12 U1 4 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2014 VL 14 IS 7 BP 4058 EP 4064 DI 10.1021/nl501537p PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AL2TZ UT WOS:000338979700055 PM 24854241 ER PT J AU El-Khoury, PZ Hess, WP AF El-Khoury, Patrick Z. Hess, Wayne P. TI Vibronic Raman Scattering at the Quantum Limit of Plasmons SO NANO LETTERS LA English DT Article DE Tip-enhanced Raman; surface-enhanced Raman; plasmons; background fluctuations; tunneling ID SILVER ELECTRODE; SURFACE; SPECTROSCOPY; SPECTRA; INTENSITY; MOLECULES; FIELD AB We record sequences of Raman spectra at a plasmonic junction formed by a gold AFM tip in contact with a silver surface coated with 4,4'-dimercaptostilbene (DMS). A 2D correlation analysis of the recorded trajectories reveals that the observable vibrational states can be divided into subsets, by virtue of the symmetry of DMS (C-2h). The first set comprises the totally symmetric vibrations of DMS (a(g)) that are neither correlated with each other nor with the fluctuating background, assigned to the signature of charge-transfer plasmons mediated by DMS. The second set consists of b(u) modes, which are correlated both with each other and with the background. Our findings are rationalized on the basis of the charge-transfer theory of Raman scattering and illustrate how current carrying plasmons modulate the vibronic coupling terms from which the intensities of the b(u) states are derived. In effect, this study identifies gateway molecular modes for mediating charge shuttling across a plasmonic gap. C1 [El-Khoury, Patrick Z.; Hess, Wayne P.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP El-Khoury, PZ (reprint author), Pacific NW Natl Lab, Div Phys Sci, POB 999, Richland, WA 99352 USA. EM patrick_elkhoury@pnnl.gov FU Laboratory Directed Research and Development Program through a Linus Pauling Fellowship at Pacific Northwest National Laboratory (PNNL); US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; DOE's Office of Biological and Environmental Research; National Science Foundation [TG-CHE130003] FX P.Z.E. acknowledges support from the Laboratory Directed Research and Development Program through a Linus Pauling Fellowship at Pacific Northwest National Laboratory (PNNL) and an allocation of computing time from the National Science Foundation (TG-CHE130003). W.P.H. acknowledges support from the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. This work was performed using EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is a multiprogram national laboratory operated for DOE by Battelle. NR 19 TC 10 Z9 10 U1 1 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2014 VL 14 IS 7 BP 4114 EP 4118 DI 10.1021/nl501690u PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AL2TZ UT WOS:000338979700064 PM 24926797 ER PT J AU Keenan, TF Gray, J Friedl, MA Toomey, M Bohrer, G Hollinger, DY Munger, JW O'Keefe, J Schmid, HP SueWing, I Yang, B Richardson, AD AF Keenan, Trevor F. Gray, Josh Friedl, Mark A. Toomey, Michael Bohrer, Gil Hollinger, David Y. Munger, J. William O'Keefe, John Schmid, Hans Peter SueWing, Ian Yang, Bai Richardson, Andrew D. TI Net carbon uptake has increased through warming-induced changes in temperate forest phenology SO NATURE CLIMATE CHANGE LA English DT Article ID GROWING-SEASON LENGTH; CLIMATE-CHANGE; ECOSYSTEM PRODUCTIVITY; NORTHERN ECOSYSTEMS; EXCHANGE; AUTUMN; JAPAN; CO2; LATITUDES; RESPONSES AB The timing of phenological events exerts a strong control over ecosystem function and leads to multiple feedbacks to the climate system(1). Phenology is inherently sensitive to temperature (although the exact sensitivity is disputed(2)) and recent warming is reported to have led to earlier spring, later autumn(3,4) and increased vegetation activity(5,6). Such greening could be expected to enhance ecosystem carbon uptake(7,8), although reports also suggest decreased uptake for boreal forests(4,9). Here we assess changes in phenology of temperate forests over the eastern US during the past two decades, and quantify the resulting changes in forest carbon storage. We combine long-term ground observations of phenology, satellite indices, and ecosystem-scale carbon dioxide flux measurements, along with 18 terrestrial biosphere models. We observe a strong trend of earlier spring and later autumn. In contrast to previous suggestions(4,9) we show that carbon uptake through photosynthesis increased considerably more than carbon release through respiration for both an earlier spring and later autumn. The terrestrial biosphere models tested misrepresent the temperature sensitivity of phenology, and thus the effect on carbon uptake. Our analysis of the temperature-phenology-carbon coupling suggests a current and possible future enhancement of forest carbon uptake due to changes in phenology. This constitutes a negative feedback to climate change, and is serving to slow the rate of warming. C1 [Keenan, Trevor F.] Macquarie Univ, Dept Biol Sci, Sydney, NSW 2109, Australia. [Keenan, Trevor F.; Toomey, Michael; Richardson, Andrew D.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. [Gray, Josh; Friedl, Mark A.; SueWing, Ian] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. [Bohrer, Gil] Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA. [Hollinger, David Y.] US Forest Serv, USDA, No Res Stn, Durham, NH 03824 USA. [Munger, J. William] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Munger, J. William] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [O'Keefe, John] Harvard Forest, Petersham, MA 01366 USA. [Schmid, Hans Peter] IMK IFU, Karlsruhe Inst Technol, Inst Meteorol & Climate Res, D-82467 Garmisch Partenkirchen, Germany. [Yang, Bai] Oak Ridge Natl Lab, Carbon Dioxide Informat Anal Ctr, Oak Ridge, TN 37831 USA. RP Keenan, TF (reprint author), Macquarie Univ, Dept Biol Sci, Sydney, NSW 2109, Australia. EM trevor.keenan@mq.edu.au RI Munger, J/H-4502-2013; Richardson, Andrew/F-5691-2011; Schmid, Hans Peter/I-1224-2012; Hollinger, David/G-7185-2012; Keenan, Trevor/B-2744-2010 OI Munger, J/0000-0002-1042-8452; Bohrer, Gil/0000-0002-9209-9540; Richardson, Andrew/0000-0002-0148-6714; Schmid, Hans Peter/0000-0001-9076-4466; Keenan, Trevor/0000-0002-3347-0258 FU NOAA Climate Program Office, Global Carbon Cycle Program [NA11OAR4310054]; Office of Science (BER), US Department of Energy; Macquarie University Research Fellowship; National Science Foundation's Marcrosystem Biology program [EF-1065029]; NASA [NNX11AE75G S01]; National Science Foundation [DEB-0911461, DEB-1114804]; USDA Forest Service's Northern Research Station; Office of Science (BER), US Department of Energy (DOE) FX This research was supported by the NOAA Climate Program Office, Global Carbon Cycle Program (award NA11OAR4310054) and the Office of Science (BER), US Department of Energy. T. F. K. acknowledges support from a Macquarie University Research Fellowship. A. D. R. acknowledges additional support from the National Science Foundation's Marcrosystem Biology program (grant EF-1065029). M. A. F. gratefully acknowledges support from NASA grant number NNX11AE75G S01. G. B. acknowledges the National Science Foundation's grant DEB-0911461. We thank all those involved in the NACP Site Synthesis, in particular the modelling teams who provided model output. Research at the Bartlett Experimental Forest tower is supported by the National Science Foundation (grant DEB-1114804) and the USDA Forest Service's Northern Research Station. Research at Howland Forest is supported by the Office of Science (BER), US Department of Energy. Carbon flux and biometric measurements at Harvard Forest have been supported by the Office of Science (BER), US Department of Energy (DOE) and the National Science Foundation Long-Term Ecological Research Programs. Hubbard Brook phenology data were provided by A. Bailey at the USDA Forest Service, Northern Research Station, Hubbard Brook Experimental Forest. We thank D. Dragoni for useful comments on an earlier version of the manuscript. NR 34 TC 72 Z9 74 U1 16 U2 155 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD JUL PY 2014 VL 4 IS 7 BP 598 EP 604 DI 10.1038/NCLIMATE2253 PG 7 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA AL0SP UT WOS:000338837400026 ER PT J AU Weitering, HH AF Weitering, Hanno H. TI QUANTUM DOTS One atom at a time SO NATURE NANOTECHNOLOGY LA English DT Editorial Material C1 [Weitering, Hanno H.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Weitering, Hanno H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Weitering, HH (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM hanno@utk.edu NR 12 TC 3 Z9 3 U1 2 U2 29 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD JUL PY 2014 VL 9 IS 7 BP 499 EP 500 PG 2 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA AL4GT UT WOS:000339091600004 PM 24974936 ER PT J AU Kapaklis, V Arnalds, UB Farhan, A Chopdekar, RV Balan, A Scholl, A Heyderman, LJ Hjorvarsson, B AF Kapaklis, Vassilios Arnalds, Unnar B. Farhan, Alan Chopdekar, Rajesh V. Balan, Ana Scholl, Andreas Heyderman, Laura J. Hjorvarsson, Bjorgvin TI Thermal fluctuations in artificial spin ice SO NATURE NANOTECHNOLOGY LA English DT Article ID MAGNETIC MONOPOLE; CELLULAR-AUTOMATA; FRUSTRATION; ENTROPY AB Artificial spin ice systems have been proposed as a playground for the study of monopole-like magnetic excitations(1,2), similar to those observed in pyrochlore spin ice materials(3). Currents of magnetic monopole excitations have been observed's, demonstrating the possibility for the realization of magnetic-charge-based circuitry. Artificial spin ice systems that support thermal fluctuations can serve as an ideal setting for observing dynamical effects such as monopole propagation and as a potential medium for magnetricity investigations(1,2). Here, we report on the transition from a frozen to a dynamic state in artificial spin ice with a square lattice. Magnetic imaging is used to determine the magnetic state of the islands in thermal equilibrium. The temperature-induced onset of magnetic fluctuations and excitation populations are shown to depend on the lattice spacing and related interaction strength between islands. The excitations are described by Boltzmann distributions with their factors in the frozen state relating to the blocking temperatures of the array. Our results provide insight into the design of thermal artificial spin ice arrays where the magnetic charge density and response to external fields can be studied in thermal equilibrium. C1 [Kapaklis, Vassilios; Arnalds, Unnar B.; Hjorvarsson, Bjorgvin] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Farhan, Alan; Chopdekar, Rajesh V.; Heyderman, Laura J.] Paul Scherrer Inst, Lab Micro & Nanotechnol, CH-5232 Villigen, Switzerland. [Farhan, Alan; Heyderman, Laura J.] ETH, Dept Mat, Lab Mesoscop Syst, CH-8093 Zurich, Switzerland. [Chopdekar, Rajesh V.; Balan, Ana] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Scholl, Andreas] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Kapaklis, V (reprint author), Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden. EM vassilios.kapaklis@physics.uu.se RI Chopdekar, Rajesh/D-2067-2009; Scholl, Andreas/K-4876-2012; Heyderman, Laura/E-7959-2015; Arnalds, Unnar/L-9315-2015; Farhan, Alan/N-7288-2016; OI Chopdekar, Rajesh/0000-0001-6727-6501; Arnalds, Unnar/0000-0002-5988-917X; Farhan, Alan/0000-0002-2384-2249; Kapaklis, Vassilios/0000-0002-6105-1659; Hjorvarsson, Bjorgvin/0000-0003-1803-9467 FU Knut and Alice Wallenberg Foundation; Swedish Research Council; Swedish Foundation for International Cooperation in Research and Higher Education; Swiss National Science Foundation; Office of Science. Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX The authors acknowledge support from the Knut and Alice Wallenberg Foundation, the Swedish Research Council, the Swedish Foundation for International Cooperation in Research and Higher Education and the Swiss National Science Foundation. The Advanced Light Source (ALS) is supported by the Director, Office of Science. Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02-05CH11231). The authors thank A. Young of the ALS for support during the PEEM experiments and A. Weber for development of the patterning processes and sample manufacture. The authors are also grateful to V. Guzenko for support with electron-beam lithography. V.K. would like to thank P.E. Jonsson for discussions. NR 32 TC 28 Z9 28 U1 5 U2 79 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD JUL PY 2014 VL 9 IS 7 BP 514 EP 519 DI 10.1038/NNANO.2014.104 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA AL4GT UT WOS:000339091600010 PM 24908258 ER PT J AU Bzdak, A Bozek, P McLerran, L AF Bzdak, Adam Bozek, Piotr McLerran, Larry TI Fluctuation induced equality of multi-particle eccentricities for four or more particles SO NUCLEAR PHYSICS A LA English DT Article DE p plus A collisions; Azimuthal anisotropy; Ellipticity; Glauber model; Hydrodynamics ID AZIMUTHAL CORRELATIONS; ELLIPTIC FLOW; PB COLLISIONS; MULTIPLICITY; TEV AB We discuss eccentricities (ellipticity and triangularity) generated in nucleus-nucleus and proton-nucleus collisions. We define multi-particle eccentricities is an element of(n) {m} which are associated with the n'th angular multipole moment for m particles. We show that in the limit of fluctuation dominance all of the is an element of(n) {m}'s are approximately equal for m >= 4. For dynamics linearly responding to these eccentricities such as hydrodynamics, these relations among eccentricities are translated into relations among flow moments nu(n) {m}. We explicitly demonstrate it with hydrodynamic calculations. (C) 2014 Elsevier B.V. All rights reserved. C1 [Bzdak, Adam; McLerran, Larry] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Bozek, Piotr] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Bozek, Piotr] Inst Nucl Phys, PAN, PL-31342 Krakow, Poland. [McLerran, Larry] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [McLerran, Larry] Cent China Normal Univ, Dept Phys, Wuhan, Peoples R China. RP Bzdak, A (reprint author), Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. EM abzdak@bnl.gov; piotr.bozek@ifj.edu.pl; mclerran@bnl.gov RI Bozek, Piotr/A-5031-2012 OI Bozek, Piotr/0000-0001-6050-4380 FU RIKEN-BNL Research Center; National Science Centre, Poland [DEC-2012/05/B/ST2/02528]; PL-Grid infrastructure; DOE [DE-AC02-98CH10886] FX A.B. thanks Gabriel Denicol for interesting conversations. L.M. gratefully acknowledge very useful discussions with Sergei Voloshin and Arthur Poskanzer concerning the seminal work that they pioneered in the study of flow and eccentricity cumulants. L.M. also acknowledges an important discussion with Jean-Yves Ollitrault concerning the dependence of various cumulants on the number of sources at large number of sources. We also gratefully acknowledge a comment sent to us by Jurgen Schukraft when this paper was being prepared for publication, showing numerical computations based on a Glauber model in substantial agreement with our numerical results. A.B. is supported through the RIKEN-BNL Research Center. P.B. is partly supported by the National Science Centre, Poland, grant DEC-2012/05/B/ST2/02528, and PL-Grid infrastructure. The research of L.M. is supported under DOE Contract No. DE-AC02-98CH10886. NR 27 TC 36 Z9 36 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD JUL PY 2014 VL 927 BP 15 EP 23 DI 10.1016/j.nuclphysa.2014.03.007 PG 9 WC Physics, Nuclear SC Physics GA AL4UC UT WOS:000339129300002 ER PT J AU Philippe, AM Banfield, JE Clarno, KT Ott, LJ Philip, B Berrill, MA Sampath, RS Allu, S Hamilton, SP AF Philippe, Aaron M. Banfield, James E. Clarno, Kevin T. Ott, Larry J. Philip, Bobby Berrill, Mark A. Sampath, Rahul S. Allu, Srikanth Hamilton, Steven P. TI Validation Study of Pin Heat Transfer for UO2 Fuel Based on the IFA-432 Experiments SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID NUCLEAR-FUEL; CODE AB The Integrated Fuel Assessment IFA-432 experiments from the International Fuel Performance Experiments database were designed to study the effects of gap size, fuel density, and fuel densification on fuel centerline temperature in light water reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for uranium dioxide (UO2) fuel systems was performed, with a focus on the densification stage (2.2 GWd/tonne UO2). In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole. The analysis demonstrated excellent agreement for rods 1, 2, 3, and 5 (varying gap thicknesses and density with traditional fuel), demonstrating the accuracy of the codes and their underlying material models for traditional fuel. For rod 6, which contained unstable fuel that densified an order of magnitude more than traditional, stable fuel, the magnitude of densification was overpredicted, and the temperatures were outside the experimental uncertainty. The radial power shape within the fuel was shown to have a significant impact on the predicted centerline temperatures, whereas the effect of modeling the fuel at the thermocouple location as either annular or solid was relatively negligible. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for UO2 fuel with respect to a well-validated nuclear fuel performance code. C1 [Philippe, Aaron M.; Banfield, James E.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Clarno, Kevin T.; Ott, Larry J.; Philip, Bobby; Berrill, Mark A.; Sampath, Rahul S.; Allu, Srikanth; Hamilton, Steven P.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Philippe, AM (reprint author), Univ Tennessee, Dept Nucl Engn, 315 Pasqua Engn Bldg, Knoxville, TN 37996 USA. EM clarnokt@ornl.gov OI Philip, Bobby/0000-0001-6716-3515; allu, srikanth/0000-0003-2841-4398 FU U.S. Department of Energy [DE-AC05-00OR22725]; Eugene P. Wigner Fellowship at ORNL FX This paper has been authored by the Oak Ridge National Laboratory (ORNL), managed by UT-Battelle under contract DE-AC05-00OR22725 with the U.S. Department of Energy.; M. Berrill acknowledges support from the Eugene P. Wigner Fellowship at ORNL. NR 15 TC 3 Z9 3 U1 2 U2 8 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD JUL PY 2014 VL 177 IS 3 BP 275 EP 290 PG 16 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AL4VQ UT WOS:000339133300003 ER PT J AU Burr, T Hamada, MS AF Burr, Tom Hamada, Michael S. TI Smoothing and Time Series Modeling of Nuclear Material Accounting Data for Protracted Diversion Detection SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID LOSSES AB The time series of material balances in nuclear material accounting (NMA) is also known as the material unaccounted for (MUF) sequence. This paper applies a joint cusum test to residual time series from NMA that arise from either of two options. The first residual series is the standardized, independently transformed MUF (SITMUF) sequence that relies on an estimate of Sigma, the MUF covariance matrix. The second residual series arises from using either time series modeling or nonparametric smoothing on the MUF sequence and ignores the estimate of Sigma. Assuming that the MUF sequence is multivariate Gaussian and ignoring estimation error in Sigma, we find the anticipated result that the first option is superior to the second option. In addition, we find that the SITMUF scheme in the first option is robust to modest estimation error in Sigma over a large number of idealized facilities, but not necessarily so for any specific idealized facility. These two findings provide a perspective on previous literature that addressed a perceived weakness in NMA. C1 [Burr, Tom; Hamada, Michael S.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87544 USA. RP Burr, T (reprint author), Los Alamos Natl Lab, Stat Sci Grp, MS-F600, Los Alamos, NM 87544 USA. EM tburr@lanl.gov NR 12 TC 1 Z9 1 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD JUL PY 2014 VL 177 IS 3 BP 307 EP 320 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AL4VQ UT WOS:000339133300005 ER PT J AU Favorite, JA AF Favorite, Jeffrey A. TI Analysis of Example Problems for Monte Carlo Surface Flux Tallies SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB Particle fluxes on surfaces are difficult to calculate with Monte Carlo methods because the score requires a division by the surface-crossing angle cosine, and grazing angles lead to inaccuracies. The traditional method for dealing with this problem was recently extended by recognizing the assumptions that were implicit in its derivation. More recently, a kernel density estimator (KDE) has been proposed to replace the traditional method. In this technical note, example problems from the KDE development are analyzed, and the failure of the traditional method is shown to be due to the invalidity of one of the implicit assumptions, as previously predicted, and the extended theory is used to correct the traditional method. C1 Los Alamos Natl Lab, Computat Phys X CP Div, Los Alamos, NM 87545 USA. RP Favorite, JA (reprint author), Los Alamos Natl Lab, Computat Phys X CP Div, MS F663, Los Alamos, NM 87545 USA. EM fave@lanl.gov NR 9 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD JUL PY 2014 VL 177 IS 3 BP 361 EP 366 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AL4VQ UT WOS:000339133300009 ER PT J AU Syed, A Lesoine, MD Bhattacharjee, U Petrich, JW Smith, EA AF Syed, Aleem Lesoine, Michael D. Bhattacharjee, Ujjal Petrich, Jacob W. Smith, Emily A. TI The Number of Accumulated Photons and the Quality of Stimulated Emission Depletion Lifetime Images SO PHOTOCHEMISTRY AND PHOTOBIOLOGY LA English DT Article ID FLUORESCENCE MICROSCOPY; STED MICROSCOPY; RESOLUTION; ACTIN; PHALLOIDIN; BREAKING; BINDING; LIMIT AB Time binning is used to increase the number of photon counts in the peak channel of stimulated emission depletion fluorescence lifetime decay curves to determine how it affects the resulting lifetime image. The fluorescence lifetime of the fluorophore, Alexa Fluor 594 phalloidin, bound to F-actin is probed in cultured S2 cells at a spatial resolution of similar to 40 nm. This corresponds to a 10-fold smaller probe volume compared to confocal imaging, and a reduced number of photons contributing to the signal. Pixel-by-pixel fluorescence lifetime measurements and error analysis show that an average of 40 +/- 30 photon counts in the peak channel with a signal-to-noise ratio of 20 is enough to calculate a reliable fluorescence lifetime from a single exponential fluorescence decay. No heterogeneity in the actin cytoskeleton in different regions of the cultured cells was measured in the 40-400 nm spatial regime. C1 [Syed, Aleem; Lesoine, Michael D.; Bhattacharjee, Ujjal; Petrich, Jacob W.; Smith, Emily A.] US DOE, Ames Lab, Ames, IA 50011 USA. [Syed, Aleem; Lesoine, Michael D.; Bhattacharjee, Ujjal; Petrich, Jacob W.; Smith, Emily A.] Iowa State Univ, Dept Chem, Ames, IA USA. RP Petrich, JW (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM jwp@iastate.edu; esmith1@iastate.edu RI Petrich, Jacob/L-1005-2015; OI Syed, Aleem/0000-0001-7942-3900; Smith, Emily/0000-0001-7438-7808 FU National Science Foundation Chemical Research Instrumentation and Facilities program [CHE-1026028]; National Science Foundation [CHE-0845236]; U.S. Department of Energy [DE-AC02-07CH11358] FX The STED microscope was built using funds from the National Science Foundation Chemical Research Instrumentation and Facilities program (CHE-1026028) and image analysis was supported by the National Science Foundation under Grant CHE-0845236. Image collection was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences through the Ames Laboratory. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract DE-AC02-07CH11358. NR 27 TC 3 Z9 3 U1 1 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0031-8655 EI 1751-1097 J9 PHOTOCHEM PHOTOBIOL JI Photochem. Photobiol. PD JUL-AUG PY 2014 VL 90 IS 4 BP 767 EP 772 DI 10.1111/php.12248 PG 6 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA AL4IM UT WOS:000339096400005 PM 24506181 ER EF